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ABSTRACT: Structural health monitoring (SHM) is a key method for assessing the condition of civil infrastructure, detecting 

and localizing damage through continuous data acquisition. Damage detection methods are divided into physically based 

approaches, using finite element (FE) models, and data-driven approaches, relying on signal processing. A key challenge in SHM 

is the lack of data from the damaged state, which complicates the validation of the technique. However, the successful deployment 

of SHM systems on real civil infrastructure depends mainly on their reliability. For non-destructive testing (NDT) systems, the 

Probability of Detection (POD) is an accepted approach for quantifying reliability. In contrast to NDT, there is no generally 

applicable procedure to assess the reliability of SHM systems.  

This study addresses this gap by evaluating SHM reliability with POD models and data generated from calibrated FE models. 

These FE models are calibrated through Bayesian inverse methods. To manage computational challenges, generalized Polynomial 

Chaos Expansion (gPCE) surrogate models are employed. These methods are tested using vibration-based measurements on a 

laboratory-scale four-degree-of-freedom (4-DOF) wood frame. The results highlight the use of MAPOD and limitations of the 

method, emphasizing their potential to enhance SHM reliability and enable smarter infrastructure systems. 

KEY WORDS: MAPOD; SHM; Bayesian inverse methods; vibration-based measurements. 

1 INTRODUCTION  

Structural Health Monitoring (SHM) is a key method for 

assessing the condition and integrity of civil infrastructure 

through continuous or periodic data acquisition. By deploying 

sensor networks, SHM systems are capable of detecting and 

localizing damage of structures, thereby enhancing 

maintenance strategies and extending service life. Damage 

detection methods in SHM are typically categorized into two 

major classes: physics-based methods, which utilize for 

example finite element (FE) models to simulate structural 

behavior; and data-driven methods, which rely on signal 

processing, statistical analysis, and machine learning [1]. 

A major challenge in SHM is the lack of damaged-state data, 

which complicates the validation and benchmarking of 

diagnostic techniques. This issue becomes critical when aiming 

to ensure the operational reliability of SHM systems in real 

civil infrastructure applications. While Non-Destructive 

Testing (NDT) technologies benefit from standardized 

reliability assessment procedures such as the Probability of 

Detection (POD), the SHM community is still developing a 

generally applicable methodology for quantifying SHM system 

reliability. 

POD is a metric used to evaluate the performance of 

Inspection system of NDE. POD quantifies the likelihood that 

a flaw of a given size will be reliably detected by the inspection 

system NDE. POD curves have been widely applied in the 

aerospace and nuclear power industries to ensure structural 

safety [2–4]. The conventional approach for estimating POD 

curves as used in the aerospace industry is based on empirical 

testing as outlined in MIL-HDBK-1823A [2]. This approach 

requires the generation of a sufficiently large and representative 

data set covering a range of flaw sizes. Two primary techniques 

are commonly used: the Hit/Miss method and the â vs. a 

(response vs. flaw size) method. These procedures form the 

foundation of standardized POD analysis in NDE.  

In contrast, the Model-Assisted Probability of Detection 

(MAPOD) approach integrates physics-based model 

simulation for estimating POD. MAPOD aims to extend and 

complement the basic MIL-HDBK methodology by reducing 

(though not eliminating) the need for physical testing samples.  

The application of MAPOD has been investigated in several 

studies [7–9]. Smith et al. [8] successfully conducted a fully 

model-assisted POD validation for immersion ultrasonic 

inspection targeting embedded flat-bottom holes. Their results 

demonstrated equivalence to those obtained using the 

conventional MIL-HDBK-1823 approach.  

Knopp et al. [7] explored a MAPOD approach for evaluating 

crack detection in a two-layer airframe structure with 

countersunk fasteners using Eddy Current Testing (ECT). The 

study involved 171 fasteners, including 38 with known cracks, 

with crack lengths ranging from 0.69 mm to 4.29 mm. Physical 

models were calibrated with experimental data, and 5000 

synthetic data points were generated via Monte Carlo 

simulation for MAPOD estimation. The results showed 

excellent qualitative agreement between the empirical and 

simulation-based POD curves, although uncertainties in the 

input parameters were not explicitly addressed. 

By leveraging FE models or numerical simulations, MAPOD 

can significantly lower the time, cost, and logistical complexity 

of traditional POD studies [7]. This numerical simulation-based 

method has great potential in evaluating the reliability of SHM 

systems, where empirical data is often limited or difficult to 

obtain. 

This study proposes a framework for evaluating the 

reliability of SHM systems using POD and MAPOD models. 

The framework is enhanced by simulated data generated from 
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finite element (FE) models, which are calibrated in the 

reference/undamaged state using Bayesian inverse methods to 

capture uncertainties and improve prediction accuracy based on 

experimental observations. As a result, simulations of 

parametric variations, such as the initiation and progression of 

damage, can be conducted with higher accuracy, thereby 

improving the predictive capability and overall reliability of the 

SHM system.  

To address the computational demands of FE simulations, 

surrogate models based on generalized Polynomial Chaos 

Expansion (gPCE) theory are employed. 

The calibration of the FE model is performed by applying a 

Polynomial Chaos Expansion-based Kalman Filter (PCE-KF). 

This method is validated using a laboratory-scale experiment 

involving a four-degree-of-freedom (4-DOF) wooden frame 

subjected to vibration-based measurements. The measurements 

are performed under both reference and changed states, where 

the changes are introduced through controlled mass variations. 

The results demonstrate the feasibility of applying MAPOD 

techniques within the SHM context and provide insight into the 

limitations and practical considerations of this approach. 

Ultimately, this work contributes to the development of reliable 

SHM systems for civil infrastructure. 

 

2 METHODOLOGY  

The overall workflow proposed for the MAPOD construction 

is illustrated in  Figure 1, while a detailed explanation of each 

component is provided in the subsequent sections.  

 

 

Figure 1. MAPOD model building process 

 Experimental Setup   

A laboratory-scale four-story wooden frame structure is 

designed to simulate the response of four degrees of freedom 

system. To achieve this, the column dimensions are carefully 

adjusted to ensure that the stiffness in one translational 

direction is significantly greater than in other translational or 

rotational directions. The column cross-section is 300 mm by 

6.4 mm. The total height of the wooden frame is 1000 mm, with 

a width of 500 mm. Each story has a height of 250 mm. The 

beam cross-section is 60 mm by 60 mm. The columns are 

constructed from laminated wood sheets, while the beams are 

made of solid wood. The mass of each structural element is 

determined by weighing the components prior to assembly. The 

frame is instrumented with triaxial accelerometers to record its 

vibration response under random excitation induced by a 

handheld rubber hammer. A data acquisition system from 

Dewesoft and MMF KS903B100 triaxial accelerometers are 

used in this experiment. The experimental setup is illustrated in 

Figure 2, and the structural geometry and mass is summarized 

in Table 1. 

Table 1. Structural geometry and mass 

Geometry [mm] Mass [gr] 

Column  

cross-section 
300x6.4 

Column 1 

Column 2 

885 

915 

H, Height 1000 Beam 1st Floor 1122 

  Beam 2nd Floor 1060 

Beam cross-section 60x60 Beam 3rd Floor 1046 

L, Length 500 Beam 4th Floor 1020 

  
Triaxial 

Accelerometer 
11 

 

 

 

Figure 2. Experimental setup 

The measurements are conducted under both reference 

(undamaged) and changed (damaged) states. The changed state 

is simulated by incrementally adding mass to the fourth floor 

of the structure. For each state, vibration responses are recorded 

for 90 seconds at a sampling rate of 1000Hz, with each test 

repeated at least 15 times to ensure statistical consistency. The 

experiments are performed over several days, from March 24th 

to March 29th 2025, to ensure sufficient data collection and to 

capture a broader range of variability even under stable 

environmental conditions.   

All experiments are conducted under constant room 

temperature ranges and humidity conditions. This experimental 

setup serves as the basis for validating the MAPOD analysis 

compared to real physical test data. Details of the measurement 

set and repetition are provided in Table 2.  
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Table 2. Measurement set 

Measurement 

Set 

Added 

Mass [gr] 

[%] to the 

Mass of 4th 

floor 

 Repetition  

Reference 0 0 267 

Mass 1 25 2,4 % 69 

Mass 2 51 4.9 % 55 

Mass 3 75 7.3 % 20 

Mass 4 102 9.9 % 70 

Mass 5 153 14.8 %  66 

Mass 6 204 19.8 % 55 

Mass 7 255 24.7% 15 

 

 Finite element model and Bayesian updating 

A three-dimensional finite element (FE) model of the four-

story wooden frame structure is developed in Ansys to simulate 

its modal dynamic response. The model geometry reflects the 

actual dimensions of the physical structure, incorporating 

column and beam cross-section. Shell elements are used to 

represent the thin column sections, while beam elements are 

used to represent beams. The beam-column connections are 

assumed to be rigid. The boundary conditions simulate fixed 

line support at the base, consistent with the physical setup. 

Material properties are initially assigned based on measured 

values. The material density is then calculated as the ratio of 

mass to volume for each element. The elastic modulus is 

unknown and is treated as random variable in wood properties. 

In addition to the elastic modulus, the thickness of the columns 

is also modeled as a random variable, accounting for 

imperfections in the thickness of the wood elements. The 

elastic modulus and column thickness are then treated as input 

random parameters in the Bayesian model updating. 

Meanwhile the natural frequencies and mode shapes obtained 

from modal analysis are used as output (observed) parameters 

for the Bayesian model updating.  

 Polynomial Chaos Expansion based Kalman Filter 

A Bayesian model updating approach is applied to minimize 

discrepancies between the outputs of the FE model and the 

experimental measurements. The uncertain parameters, such 

elastic modulus and thickness of columns, are treated as 

random input parameters 𝑸 ∈ ℝ𝑁𝑛 where 𝑁𝑛 is the number of 

input parameters, modeled as Gaussian independent variables 

  

𝑸 =  𝒩(𝝁𝑄 , 𝑪𝑄) 

 

(1) 

where 𝝁𝑄 ∈ ℝ𝑁𝑛  is the vector of mean values and 𝑪𝑄 ∈

ℝ𝑁𝑛×𝑁𝑛  is the covariance.  

The system random inputs are transformed by a forward 

model operator ℳ into the outputs 𝒀 = ℳ(𝑸) ∈ ℝ𝑁𝑚 where 

𝑁𝑚 is the number of measured outputs. The measurement 𝒁 ∈
ℝ𝑁𝑚 is affected by an error 𝑬 ∈ ℝ𝑁𝑚, which follows a normal 

distribution and combines linearly with the measured output 

 

𝒁 = ℳ(𝑸) + 𝑬, 𝑬 =  𝒩(0, 𝑪𝐸) 

 

(2) 

where 𝑪𝐸 ∈ ℝ𝑁𝑚×𝑁𝑚 is error covariance. The scope of the 

Bayesian updating is to improve the estimation of the random 

input 𝑸 given output measurements 𝒛. An efficient approach to 

Bayesian updating consists in applying the linear Bayesian 

Filter 

𝑸′  = 𝑸 + 𝑲(𝒛 − 𝒀) 

 

(3) 

where 𝑸 are prior parameter estimates, 𝑸′ are the posterior, 𝒛 

are output measurements, 𝒀 are measured system outputs and 

𝑲 is the Kalman Gain 

 

𝑲 = 𝑪𝑸𝒀(𝑪𝒀 + 𝑪𝑬)−𝟏 (4) 

 

where 𝑪𝒀 is the system outputs covariance, 𝑪𝑬 is the error 

covariance and 𝑪𝑸𝒀 is the covariance between system inputs 

and outputs. 

The application of the linear Bayesian filter requires to assess 

the above mentioned covariances. This process is not 

straightforward in the case of implicit and/or non-linear 

forward model operators. To speed up the uncertainty 

propagation process and the application of the linear Bayesian 

filter, it is possible to represent each random variable in 

polynomial chaos expansion (PCE) form 

 

𝑸̂ = ∑ 𝒒̂𝜶𝓘 𝜱𝒒,𝜶,   𝒀̂ = ∑ 𝒚̂𝜶𝓘 𝜱𝒚,𝜶,  

 𝑬̂ = ∑ 𝒆̂𝜶𝓘 𝜱𝒆,𝜶,   𝒁̂ = ∑ 𝒛̂𝜶𝓘 𝜱𝒛,𝜶 

 

(5) 

where 𝒒̂𝜶, 𝒚̂𝜶, 𝒆̂𝜶, 𝒛̂𝜶 are coefficients, 𝜱[∙],𝜶 multi-variate 

orthogonal polynomials for the quantity [∙], and 𝓘 represents 

the set of multi-indices 𝜶 truncated to the polynomial order p. 

In this case, the linear Bayesian filter takes the following form 

 

𝑸̂′  = 𝑸̂ + 𝑲(𝒛̂ − 𝒀̂) (6) 

 

and the covariances required to calculate the Kalman Gain can 

be analytically computed by the expansion coefficients. 

Detailed information about the polynomial chaos expansion 

based Kalman filter (PCE-KF) can be found in Rosic et al. 

(2012) and Rosic et al. (2013). 

 POD estimation and reliability metrics 

The POD curve in this study is estimated using the â vs. a 

approach. The â vs. a model POD is a technique used in NDT 

to quantify the capability of a detection system based on 

continuous damage indicators. Unlike hit/miss POD methods, 

which rely on binary detection outcomes, the â vs. a model 

POD utilizes a continuous detection metric â that reflects 

measurable differences in the system's response between 

undamaged and damaged states. This approach allows for an 

assessment of detection performance, particularly in systems 

where subtle changes in dynamic characteristics, such as 

natural frequencies or mode shapes, are used to infer damage. 

In vibration-based monitoring, such metrics are often derived 

from modal parameter shifts or other features sensitive to 

structural changes.  

The â vs. a model involves fitting a linear function to the 

response feature, â, as a function of the parameter of interest a, 

𝒂̂ = 𝛽0 + 𝛽1𝒂 + 𝝐 

 

(7) 

where β0 and β1 are parameters that are estimated by 

performing a fit to the data and ϵ is a noise term, ϵ∼𝒩(0, σ2). 

The noise term ϵ is assumed to follow a normal distribution. 

The aforementioned parameters β0, β1 and σ are estimated in 
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the usual way by deploying ordinal least squares. We can 

ignore the more elaborated Tobit regression modeling from 

MIL-HDBK-1832A [2], because the observed â values (see 

below) are far away from their natural bounds. 

When multiple response features are available, a 

representative scalar value is needed to consolidate the relevant 

information into a single damage-sensitive metric. To address 

this, the Mahalanobis distance (MD) is employed as a fault 

indication metric. The Mahalanobis distance is a multivariate 

measure that accounts for correlations between variables, 

providing a statistically normalized distance of an observation 

from a reference distribution. For an observation vector 𝒙𝑖  

(e.g., the measured eigenfrequencies of a structure at a specific 

time or condition), and a reference data set (e.g., the average 

eigenfrequencies in the undamaged state) characterized by 

mean vector μ and covariance matrix Σ, the Mahalanobis 

distance is defined as 

 

𝐷𝑀(𝒙𝑖) = √(𝒙𝑖 − 𝝁)𝚺−1(𝒙𝑖 − 𝝁) (8) 

 

To determine the statistical decision threshold for damage 

detection, the confidence interval approach based on the Chi-

squared distribution is employed. Since the Mahanlaobis 

distance 𝐷𝑀  follows follows a Chi-squared distribution with 

degrees of freedom equal to the number of variables  𝑑, the 

decision threshold is defined as:  

𝑻 = √𝝌𝟏−𝜶,𝒅
𝟐  

 

(9) 

 Where 𝝌𝟏−𝜶,𝒅
𝟐  denotes the critical value from the Chi-

squared distribution at a confidence level of 1 − 𝛼, and 𝑑 is the 

dimensionality of the feature. For example, at a 99.9% 

confidence level and 𝑑 = 3, the threshold is 𝜒0.999,3
2 = 16.27, 

corresponding to a Mahalanobis distance threshold of 𝑇 =

√16.27 ≈ 4.03. This captures the upper 0.1% of the reference 

distribution and yields a very strict false alarm rate.  

The Probability of Detection (POD) as a function of damage 

size 𝑎 is expressed as: 

 

𝑷𝑶𝑫(𝒂) =  𝚽 (
𝒂 − 𝝁𝒂

𝝈𝒂

) 
(10) 

 

Where Φ(∙) is the cumulative distribution function of the 

standard normal distribution, and 𝜇𝑎 and 𝜎𝑎 are suitable 

parameters controlling the shape of the POD curve. These 

parameters are derived from the linear regression model, with  

𝜇𝑎 = (𝑇 − 𝛽0) 𝛽1⁄  and 𝜎𝑎 =  𝜎 𝛽1⁄ , where β0, β1 and σ are the 

model parameters. The threshold corresponding to a 90% 

detection probability, a90 with POD(a90) = 0.9, is then 

calculated as 𝑎90 = 𝜇𝑎 + 1.645 ∙ 𝜎𝑎. To account for the 

uncertainty in this threshold, the value a90/95, representing the 

damage size for 90% POD with 95% confidence bounds, is 

computed using the Delta method referred to MIL-HDBK-

1832A [2]. These performance metrics are used to assess and 

compare the detection capabilities of the SHM system. 

Following the same methodology, the Probability of Detection 

(POD) is also calculated using data generated from the 

calibrated finite element (FE) model.  

 

3 ANALYSIS  

 Data Analysis/Operational Modal Analysis   

The recorded vibration data are analysed using operational 

modal analysis (OMA) to identify the dynamic parameters of 

the wooden frame. OMA is chosen because it enables the 

extraction of modal parameters under ambient or operational 

conditions without requiring controlled excitation forces. 

Using Artemis Modal Pro 7.2 software, the OMA is performed, 

and the natural frequencies (f), damping ratios (ς), and mode 

shapes of the structure are estimated. Based on the analysis 

results, four resonance frequencies are identified, 

corresponding to the four translational modes of the wooden 

frame. Figure 3 illustrates the identified mode shapes of the 

wooden structure in the reference state.  

 

 
f1= 6.36 Hz 

 
f2 = 20.21 Hz 

 
f3 = 36.22 Hz 

 
f4 = 50.27 Hz 

Figure 3. Mode shapes and frequency of wooden frame in 

reference state 

OMA is also performed for all added mass configurations. 

Modal tracking is carried out to identify the mode similarities 

between each configuration to the reference state, with the 

Modal Assurance Criterion (MAC) threshold set to greater than 

80%. The tracked resonance frequencies across all data sets are 

presented in Figure 4.  

 

 
Figure 4. Tracked frequency (MAC > 80%) for the reference 

state and various added mass configurations 
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From Figure 4, it can be observed that the addition of mass 

on the fourth floor affects the dynamic response of the 

structure, particularly the resonance frequencies. As the added 

mass increases, the natural frequencies tend to decrease, which 

is consistent with the theoretical expectation that an increase in 

mass leads to a reduction in the system's stiffness-to-mass ratio. 

In addition to the frequency shifts, the damping ratios of the 

structure were also examined; however, no clear trend was 

observed in relation to the parameter changes. Furthermore, the 

first four dominant mode shapes remained largely unchanged, 

indicating that the modifications had minimal influence on the 

modal characteristics. 

The results of the Operational Modal Analysis in the 

reference state, as shown in Figure 3, are used as the baseline 

data for calibrating the FE-model through a Bayesian model 

updating approach. An overall Operational Modal Analysis, as 

shown in Figure 4,  is used to compute the empirical Probability 

of detection.  

 Bayesian model updating   

A finite element (FE) model of the structure is developed using 

Ansys Mechanical, based on the given structural conditions. 

The FE model is then calibrated through Bayesian updating to 

estimate random model parameters. In this study, two key 

parameters are considered: the elastic modulus of the columns 

and the column thickness, as previously described. The FE-

Model in Ansys is illustrated in Figure 5. 

 
Figure 5. FE-Model in Ansys Mechanical 

 

Initially, the prior distributions of the uncertain model 

parameters defined by their mean (μ) and standard deviation (σ) 

are established based on engineering judgment and available 

data. The Bayesian model updating is performed using the 

generalized Polynomial Chaos-based Kalman Filter (gPC-KF) 

approach. These methods incorporate measurement 

uncertainties to update the parameter distributions, resulting in 

posterior distributions (μ′, σ′) that reflect improved estimates 

conditioned on the observed vibration data. The summary 

statistics of both prior and posterior distributions are presented 

in Table 3 and the resulting posterior approximation 

distribution is shown in Figure 6. 

The results of the Bayesian updating process show a 

reduction in the standard deviations of the posterior 

distributions, indicating improved parameter certainty in a 

model calibration. To assess the accuracy of the updated FE 

model, its predicted mean resonance frequencies – computed 

using the mean values of the parameters from the posterior 

distributions – are compared against those obtained from 

Operational Modal Analysis (OMA) in the reference state, as 

detailed in Section 3.1. The relative difference between the 

simulated and experimental frequencies observed for the four 

modes is 0.54%, which is well within the maximum relative 

error of 0.6% in reference data. This close agreement confirms 

the reliability of the Bayesian-updated model.  

Table 3. Prior and posterior of random parameters 

Parameter Elastic 

Modulus 

of Column 

Thickness  

of Column 

Prior  

Mean value,  

standard deviation  

(μ, σ) 

4000, 400 

[MPa] 

σ = 0.1μ 

6.4, 0.32 

[mm] 

σ = 0.05μ 

measurement error 0.6 % 

  

Posterior 

Mean value,  

standard deviation  

(μ’, σ’) 

3800, 316 

[MPa] 

σ’ = 0.083μ’ 

6.18, 0.18 

[mm] 

σ’ = 0.29μ’ 

relative difference 

𝜖𝑖 =
|𝑓𝑖_𝐹𝐸 𝑚𝑜𝑑𝑒𝑙

− 𝑓𝑖_𝑂𝑀𝐴
|

𝑓𝑖_𝑂𝑀𝐴

 

0.54 % 

 

 
Figure 6. Results from updating with Bayesian model 

updating approach 

 

Table 4. Comparison of resonance frequencies between the 

updated finite element (FE) model and experimental 

measurements from Operational Modal Analysis (OMA) 

 

Mode 

No. 

Frequency  

FE-Model 

Frequency  

OMA 

relative 

difference 

[%] 

MAC 

[%] 

1 6.39 6.40 0.21 97 

2 19.91 19.81 0.53 90 

3 36.16 35.97 0.54 90 

4 50.81 50.56 0.10 98 

 

Following the successful calibration of the FE model in the 

reference state, a Monte Carlo simulation is performed to 

generate modal frequency data for various added mass 

configurations. Based on the posterior distributions of the 

elastic modulus and column thickness, combined with discrete 
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added mass values to simulate different structural states, 120 

samples of frequencies are generated for each state. The 

additional masses varied from 0 to 200 grams in increments of 

25 grams. The resulting dataset is then used as the input for 

computing the Model-Assisted Probability of Detection 

(MAPOD), providing a statistical basis for assessing the 

detection performance under varying conditions. 

 Simulation of Model-Assisted Probability of Detection 

This section presents a comparative analysis between the 

experimental Probability of Detection (POD) and the Model-

Assisted POD (MAPOD) derived from the simulations. The 

comparison aims to validate the simulation framework and 

assess its capability to replicate detection performance 

observed in physical experiments. The observed strategy is 

based on changes in modal frequencies associated with varying 

levels of added mass, simulating structural changes/damage.  

Figure 7 illustrates the comparison of resonance frequencies 

identified from OMA experimental data measurements and 

those predicted by the calibrated FE model, demonstrating 

good agreement and confirming the effectiveness of the model 

updating process. Modes 1 and 2 are highly sensitive to the 

added mass, showing noticeable shifts in frequency. In contrast, 

Mode 3 exhibits only minor changes, while Mode 4 shows the 

least response to mass variation. This behavior is to be 

expected, as higher-order modes typically require more energy 

to be effectively excited and are thus less influenced by 

localized changes in structural mass [16,17]. Therefore, only 

Modes 1, 2, and 3 will be considered for further POD 

estimation, as they exhibit measurable sensitivity to the added 

mass and are thus more suitable for damage detection analysis. 

To evaluate the consistency between the experimental POD 

and the MAPOD derived from simulated data, Mahalanobis 

distances from the 1st ,2nd and 3rd modes are computed and 

plotted against the corresponding flaw sizes, as shown in Figure 

8. Finally, the POD curves are presented in Figure 9, comparing 

the empirical POD derived from experimental data with the 

MAPOD computed from the simulation results.  

 

 

 
Figure 7. Added Mass-Frequencies comparison from OMA experimental data and FE-Model 
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Figure 8. a vs â for OMA experimental data and FE-Model 

 

 
Figure 9. POD OMA experimental data and FE-Model simulation data  

 

From Figure 9, the experimentally derived a₉₀/₉₅ value from 

the POD curve is 77.81 grams, while the simulated MAPOD 

yields an a₉₀/₉₅ of 71.42 grams, representing a relative 

difference of 8.2%. This a₉₀/₉₅ value corresponds to 7,0% of 

the total mass of the fourth floor. These results indicate that 

the POD derived from the calibrated FE model in the reference 

state provides sufficient predictions of the structural response 

to varying added mass conditions on the fourth floor. The 

alignment between the experimental and simulated POD 

curves demonstrates that the simulation-based MAPOD can 

approximate the experimental detection, supporting its 

application for scalable and cost-effective SHM reliability 

assessments. 

4 CONCLUSION AND OUTLOOK  

This study presents a framework for evaluating the reliability 

of Structural Health Monitoring (SHM) systems using 

Probability of Detection (POD) and Model-Assisted POD 

(MAPOD) approaches. A laboratory-scale 4-DOF wooden 

frame structure was used as a case study, with varying mass 

configurations to simulate structural changes. Experimental 

modal data were collected using Operational Modal Analysis 

(OMA) and used to calibrate a Finite Element (FE) model 

through Bayesian updating. The updated FE-Model served as 

the basis for generating simulated response/modal data 

through Monte Carlo simulations under various mass 

configurations, enabling the construction of MAPOD curves. 

The comparison between experimental POD and MAPOD 

simulation data shows the relative difference with less than 

10% deviation in key detection metrics such as a a₉₀/₉₅. The 

MAPOD approach can effectively supplement physical 

testing by providing scalable, repeatable reliability 

assessments with reduced experimental effort. 

Outlook: 

Future research should aim to extend the MAPOD framework 

by incorporating more complex damage scenarios—such as 

sequential cracking or cross-sectional area reduction leading 

to structural stiffness degradation—exploring a wider range of 
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SHM sensing techniques and expanding the set of observed 

response features beyond the four considered in this study. 

Furthermore, integrating environmental and operational 

variability into the model could further enhance its predictive 

robustness. Finally, applying this method to real-scale 

structures will be a crucial step toward broader 

implementation in practical SHM deployments. 
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