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Dear colleagues, 

It is with great respect and appreciation that we present the proceedings of the 13th International Conference 

on Structural Health Monitoring of Intelligent Infrastructure (SHMII-13), organized under the auspices of 

the Society for Civil Structural Health Monitoring (SCSHM, formerly ISHMII). This conference served as 

a dynamic forum for scientists, engineers, industry leaders, researchers, public sector experts, infrastructure 

owners, and representatives of technical associations from around the world to engage in meaningful 

exchange and collaboration. 

Hosted by Graz University of Technology in Austria, the five-day event brought together a vibrant 

international community to share recent advances in the field of structural health monitoring (SHM). More 

than 200 contributions were presented across over 30 sessions, highlighting cutting-edge developments in 

smart sensing technologies, sensor networks, data processing and management, diagnostics and prognostics, 

and life-cycle performance evaluation. The scope of discussions spanned a wide range of civil infrastructure, 

including bridges, dams, tunnels, retaining walls, road and rail networks, high-rise buildings, and more. 

These proceedings contain the extended abstracts and full papers presented at the conference. We sincerely 

thank all authors for their valuable contributions and the scientific committee for their commitment to a 

thorough and thoughtful double-review process. 

We also extend our heartfelt gratitude to everyone who contributed to the successful organization of 

SHMII-13. This includes the local organizing team, student volunteers, technical staff, supporting 

institutions, and sponsors, whose dedication, professionalism, and hard work were essential to making this 

event a success. Their behind-the-scenes efforts ensured a smooth and enriching experience for all 

participants. 

We hope these proceedings will serve as a lasting resource and inspiration for future research, innovation, 

and international collaboration in the field of SHM. 

With kind regards, 

 

     

Werner Lienhart  &  Markus Krüger 

Chairs of the SHMII-13 Conference 
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ABSTRACT: 

Our transportation infrastructure faces increasing demands, driven by larger and heavier trucks that place growing stress on bridges 

with ever-higher frequency. At the same time, much of this infrastructure is aging, with many structures having reached or 

exceeded their intended service lives and operating near their capacity limits. Addressing these challenges requires innovative 

tools and approaches to monitor, evaluate, and maintain infrastructure assets effectively. 

Structural Health Monitoring (SHM) offers a transformative solution by enabling continuous, sensor-based condition assessment. 

SHM systems can track changes in structural behavior, detect damages, and provide valuable data for condition evaluation and 

prediction. However, to fully realize the potential of SHM, the integration of sensor data into a seamless digital process chain—

built on Building Information Modeling (BIM)—is essential. This linkage ensures that data is not only collected but also analyzed 

and utilized in a way that is directly connected to the structure's digital twin. 

Within the DTEC-SHM project, we equipped two bridges with over 400 sensors to enable comprehensive monitoring. These 

included conventional sensors for measuring accelerations, inclinations, and temperatures, as well as weather stations for capturing 

environmental conditions. Additionally, innovative sensors were deployed for durability monitoring and axle load measurement 

through Bridge Weigh-In-Motion (B-WIM) technology. To complement the sensor network, a detailed finite element (FE) model 

was developed and calibrated using monitoring data and load testing results, enabling a deeper understanding of the bridges' 

structural behavior.  

Now, we focus on advancing SHM applications by developing a predictive maintenance management system based on Key 

Performance Indicators (KPIs). This will allow for proactive and efficient maintenance planning. Furthermore, the digital twin of 

bridges will be refined and tested to enhance its integration with SHM systems. In addition, by prioritizing the preservation of 

infrastructure over new construction, the project promotes significantly more sustainable practices in infrastructure management. 

For asset owners, SHM provides critical insights into the health of their structures, enabling informed decision-making to prioritize 

repairs, optimize maintenance schedules, and allocate resources efficiently. By leveraging SHM and digital twin technologies, 

asset owners can transition from reactive to predictive maintenance, enhance safety, and ensure the long-term sustainability of 

infrastructure. This keynote will explore these innovations, emphasizing what asset owners need to harness the full potential of 

SHM in addressing today's infrastructure challenges. In addition, the keynote provides an overview about the datasets collected 

through the DTEC-SHM project, which we are committed to sharing with the broader research and engineering community to 

foster collaboration and innovation. 

Digitalizing Infrastructure:  

Advancing Structural Health Monitoring for Smarter Asset Management 

Sylvia Keßler1 
1Helmut Schmidt University/University of the Federal Armed Forces, Hamburg, Germany 

email: sylvia.kessler@hsu-hh.de 
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ABSTRACT:  

Numerous bridges in Germany and worldwide are subject to high stress from increased heavy traffic and their advanced age. Due 

to advanced damage and unfavourable construction methods, many bridges can no longer be repaired at a reasonable cost and 

must be replaced with new structures. However, to maintain traffic flow, they often need to remain in operation for years and be 

monitored in real-time for deterioration to ensure safe continued use. Complex measurement systems are now available for this 

purpose, capable of detecting various structural conditions, such as strain, or events, such as acoustic emissions from wire breaks 

of the prestressed reinforcement. 

The planning of a monitoring system should proceed in a stage manner. The first step involves identifying the structural 

weaknesses and potential damage mechanisms of the structure, such as wire breaks, crack formation of the cross-section or 

reinforcement corrosion etc. Based on this, the structural responses resulting from the damage mechanisms are determined. In the 

final planning step, the measurement systems suitable for measuring the structural responses are selected. 

This keynote presents the workflow for planning a monitoring system and provides examples of the implementation, visualization 

and evaluation of various measurement systems and measurement data in a common monitoring system. 

 

 

 

  

SHM for bridges – the work flow 

Christian Sodeikat 1 
1 Ingenieurbüro Schiessl Gehlen Sodeikat GmbH, Munich, Germany 

email: sodeikat@ib-schiessl.de 
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ABSTRACT:  

In 2023, the Data-Enhanced Infrastructures Management Committee of the Society of Civil Structural Health Monitoring 

(SCSHM) launched a benchmark study on in-service structural monitoring of bridges. A comprehensive dataset, developed in 

collaboration with the University of Manitoba, was made available to the engineering community to promote the validation and 

comparison of methods for structural performance evaluation. 

The benchmark structure is a span of a multi-supported bridge with a total length of 291 meters. A monitoring system was installed 

on the structure and operated for approximately nine months. The instrumentation included strain gauges and thermocouples to 

record strain measurements and air/structure temperatures beneath the deck. 

This presentation outlines the details of the structure, the objectives of the study, the dataset shared with the engineering 

community, and reports some initial applications that leverage the dataset to validate in-service monitoring approaches. 

             

  

Bridge in service structural monitoring: the SCSHM benchmark 

Maria Pina Limongelli1 
1 Politecnico di Milano, Italy 

email: mariagiuseppina.limongelli@polimi.it 
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ABSTRACT:  

The Brenner Base Tunnel (BBT) is one of the key civil infrastructure projects currently under construction world-wide and will 

be the longest underground railway connection globally with a total length of about 64 km once completed. Its service lifetime of 

200 years implies essential requirements on the tunnel design, with focus on reducing risks and enabling optimized maintenances 

works based on appropriate monitoring. The tunnel owner BBT SE has therefore initiated an enhanced distributed fiber optic 

sensing (DFOS) network inside concrete tunnel lining segments for structural monitoring without human access. This contribution 

introduces the designed DFOS network, consisting of more than 35 km sensing cable along numerous tunnel cross-sections, spread 

over more than 30 km tunnel drive and two different construction lots.  
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ABSTRACT: The Brenner Base Tunnel (BBT) is one of the key infrastructure projects currently under construction and will be 

one of the longest underground railway connection with a total length of approximately 64 km once completed. Its service life of 

200 years implies essential requirements on the tunnel design. One important focus is to increase the availability of the tunnel, 

e.g. by enabling optimized maintenance work based on appropriate monitoring. The tunnel owner BBT SE has therefore initiated 

an enhanced Distributed Fiber Optic Sensing (DFOS) network inside the segmental lining for structural health monitoring without 

human access. The technology has significantly evolved in recent years to monitor large scale infrastructure, especially for in-situ 

tunnel monitoring as the distributed sensing feature can provide a complete picture of the strain distribution without blind spots. 

This contribution introduces the designed DFOS network, consisting of more than 35 km sensing cable along numerous tunnel 

cross-sections, spread over more than 30 km tunnel drive and two different construction lots. The monitoring data is autonomously 

evaluated and transferred to the online dashboard in real time. Analysis of the strain distribution provides fundamental information 

about the actual loading state of the segmental lining. The results together with experiences gained from practical implementations 

demonstrate the technology’s high potential for innovative civil structural health monitoring. 

KEY WORDS: Distributed fiber optic sensing; segmental tunnel lining; structural integrity monitoring; deformation behavior; 

strain distribution

1 PROJECT CHARACTERISTCS AND MONITORING 

OBJECTIVES 

The Brenner Base Tunnel (BBT), a flat rail link with high 

transport capacity, will connect the Tulfes portal (near 

Innsbruck, Austria) with the Franzensfeste portal (Italy) over a 

total length of approximately 64 km in the near future. The 

cross-alpine rail link is a key project of the 9,121 km long TEN-

T Scan-Med (Scandinavian-Mediterranean) corridor and cuts 

the alpine crest in the base, with high overburdens of up to 

1,720 m. It consists of two single-track railroad tunnels with a 

diameter of 8.1 m, spaced 70 m apart and accompanied by a 

continuous exploratory tunnel running 12 m below in-between 

(Figure 1). The exploratory tunnel improves the geological 

forecast for the rail tunnels, which are partially being advanced 

by tunnel boring machines afterwards.  

Availability plays a decisive role for key infrastructures such 

as long cross-alpine rail tunnels. The tunnel design includes 

increased partial safety factors and concrete cover to reach a 

200-year service life. Maintenance should be possible without 

interruption of the operation as far as technically feasible. 

Tunnel equipment has therefore been shifted to accessible areas 

or high-maintenance installation areas became accessible by 

horizontal shafts from the accompanying exploration tunnel. 

In addition, the BBT-SE has incorporated an enhanced 

strategy for structural health monitoring (SHM) during 

construction and operation using Distributed Fiber Optic 

Sensing (DFOS). The technology is beneficial compared to 

conventional techniques as the fiber optic sensing cable can be 

directly embedded inside the structure to enable distributed 

strain (and temperature) assessment along hundreds of sensing 

points. The measurement results can be well compared to 

traditionally used vibrating wire sensors [1], but also allow an 

overall assessment of the strain and temperature without blind 

spots. The sensing unit itself may be placed even kilometers 

away from the measurement location, even outside of the 

tunnel and monitoring is possible without any interference with 

construction works or later operation. The sensor’s durability 

and insensitivity against electromagnetic interferences are 

essential with respect to the use in rail operation.  

 

 

 

Figure 1. Schematic representation of the typical tunnel cross-

sections at Brenner Base Tunnel project (based on [2]) 
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The DFOS implementation at the BBT focusses on structural 

health monitoring of the segmental lining, with the aim of 

optimizing maintenance works by monitoring during operation 

[3].  

Machine-driven tunnel structures within the BBT are 

constructed efficiently as single shells. Various monitoring 

approaches have been initiated during construction including 

chord length measurements, geodetic displacement readings of 

discrete targets using total stations, laser scanning and fiber 

optic sensors in defined cross-sections. While the first three are 

used for accompanying the construction process. The DFOS 

measurement ring is installed only at structural cross sections 

of interest like the intersection of rail tunnel and cross-passage 

as well as in fault zones. The deep-lying machine-driven tunnel 

and the high stiffness of the segmental lining require a load 

monitoring with high accuracy. The DFOS strain sensing 

feature is deployed to analyze the loading condition at 

dedicated locations inside the segmental lining. Hence, 

decisions can be made based on these results by choosing the 

appropriate pre-designed supporting measure for the openings 

of the cross passages. Additionally, supporting measures like 

secondary linings are placed according to the load bearing 

capacity of the existing lining. 

 

The DFOS approach is therefore designed to pursue three 

primary monitoring objectives: 

 

1) Construction phase monitoring: Verification of 

segmental ring openings and cross-passage 

advancements. 

2) Load-bearing assessment: Ensuring compliance 

with structural safety requirements. 

3) Operational Structural Health Monitoring: 

Enabling long-term monitoring without interrupting 

rail operations. 

 

2 DFOS DESIGN AND MONITORING NETWORK 

The instrumentation of concrete tunnel lining segments can 

be performed outside of the tunnel apart from excavation. This 

procedure is advantageous in terms of installation as the 

sensing cables can be reliably attached without time-consuming 

and cost-intensive inferences with the excavation works, which 

have not to be interrupted due to the sensor installation. 

For more information about the implemented DFOS sensing 

cables for strain and temperature monitoring as well as the 

sensor installation inside the individual tunnel lining segments, 

reference is given to [4]. 

Inside the tunnel, the fiber optic monitoring segments are 

built as a normal ring without restrictions after the excavation 

has been performed. Once the ring is set, the connection boxes 

for each segment can be opened and the individual segments 

can be connected to establish a continuous monitoring loop. 

Supply cables are used to connect the fiber optic sensing cables 

inside the ring to the reading unit, which is placed in a 

measurement equipment box approx. 150 m to 200 m behind 

the monitoring cross-section (see Figure 2). This location is 

advantageous as the space along the TBM’s back-up system is 

limited and the reading unit shall be as accessible as possible 

during monitoring for potential maintenance. The equipment 

box itself is waterproof and does not only contain the reading 

unit, but also an uninterruptible power supply and an industrial 

PC with stable internet connection for reliable data transfer. 

The fiber optic installation works can be usually performed in 

about 90 to 120 minutes once the ring is constructed. 

Monitoring is started immediately after the installation, with 

the monitored segmental lining ring inside the shield, before the 

TBM continues its further excavation work.  

 

 

Figure 2. Schematic representation of tunnel installation 

(based on [5]) 

The DFOS system’s long-term performance and its 

suitability must be well considered within the network design 

to provide reliable monitoring over decades. Each individual 

monitoring cross-section is therefore not only linked to their 

equipment box behind the TBM, but also connected to a 

continuous network, which allows monitoring of numerous 

cross-sections using only one reading unit per tube (Figure 3, 

top). The so-called active monitoring zone during construction 

can therefore include up to 7 cross-sections in the actual 

configuration, excluding additional cross-sections in geological 

interference zones, where the reading unit is placed in the 

central equipment box. After the excavation works are 

completed, the overall system will be adapted for operational 

monitoring. The DFOS equipment boxes and corresponding 

connecting cables will be re-located to the maintenance cross-

passages (cf. Figure 3, bottom), from where measurements can 

be performed without interruption during rail operation by 

accessing from the exploratory tunnel. 

3 DFOS DESIGN AND MONITORING NETWORK 

The installed fiber optic sensing network has been 

interrogated using the fTB 5020 from fibris Terre Systems 

GmbH (Germany). Based on the Brillouin Optical Frequency 

Domain Analysis (BOFDA) technique, this sensing unit 

enables distributed measurements up to 25 kilometers within 

several minutes per monitoring channel, a standard spatial 

resolution of 0.5 m and a strain repeatability of about 2–10 

μm/m depending on the sensing fiber [6]. The interrogation unit 

is placed inside the DFOS equipment boxes, where the raw data 

is collected and transferred to external databases via FTP 

gateway.  
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The quality of the conversion from the raw measurement 

quantity (cf. Brillouin frequency shift) to strain (and 

temperature) depends on reliability of the sensor characteristics 

curve, usually not specified by manufacturers in detail. Using 

standard coefficients might however results in errors of up to 

several percent, cf. [7] or [8]. Therefore, each sensing cable 

production batch was calibrated at the unique calibration 

facilities at Graz University of Technology [9] to derive 

individual coefficients for cables installed at BBT. 

Each DFOS monitoring ring delivers high-resolution strain 

measurements at three circumferential locations within each 

tunnel segment (beginning, middle and end), enabling the 

assessment of its circumferential total strain distribution at 

different locations within one monitoring ring. In addition to 

structural related strains, the recorded information along the 

individual layers includes also creepage, shrinkage and 

temperature-related strains. Furthermore, stress profiles are 

calculated from the derived strain profiles at the inner and outer 

layer based on the experimentally determined stress-strain 

behavior of the concrete [10]. This enables the integration of 

the circumferential normal force and bending moment 

distribution, which are finally compared to the internal forces 

of the segmental lining design to assess the rock loading 

conditions. 

The monitoring workflow was validated by comparative 

DFOS measurements from loading tests of real-scale segmental 

loading tests [11]. These experimental studies, performed under 

well-documented loading conditions, depict high correlation 

between calculated internal forces derived from DFOS 

measurements and analytical models utilizing traditional load 

cell data. 

4 CONCLUSIONS 

The integration of DFOS technology at the BBT demonstrates 

that distributed fiber optic sensors have significantly developed 

within recent years and have reached the next level for civil 

structural health monitoring. Their capability to monitor fully 

distributed strain and temperature profiles with high 

measurement repeatability and resolution in real-time, without 

disrupting tunnel operation, qualify them as an ideal solution 

for long-term monitoring of relative deformations. 

Known practical limitations can be overcome by suitable 

monitoring design and appropriate installation techniques, 

which also represent the DFOS technology path from 

fundamental research into innovative practice. It should be 

however highlighted that the quality of the monitoring 

approach is essentially related to its design and installation. It 

is therefore strongly recommended to include the monitoring 

design as early as possible into the project planning process, to 

use suitable, high-quality fiber optic components (i.e. 

interrogation unit and sensing cable) and to fit the sensor 

Figure 3. Schematic representation of overall monitoring setup during construction (top) and operation (bottom) [4] 
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installation to the construction process and reduce any 

interruption on-site to a minimum.  

The tunnel construction lots at the BBT project were already 

being tendered with enhanced fiber optic monitoring solutions, 

aiming to provide an overall assessment of the structural 

behavior. This especially beneficial with respect to long-term 

monitoring since arising changes in the structural performance 

can be detected at an early stage to plan and design predictive 

maintenance works in due time during the operational lifetime. 

The DFOS system is designed to provide measurements 

without any interference with the regular railway operation 

from the maintenance cross-passages, which can be accessed 

from the exploratory tunnel. This fact combined with the fiber 

optic’s insensitivity against electromagnetic interferences are 

essential for reliable sensing over decades. 

DISCLAIMER 

This contribution is submitted as an extended abstract for the 

13th International Conference on Structural Health Monitoring 

of Intelligent Infrastructure and presents an enhanced project 

review of the DFOS monitoring system realized at the Brenner 

Base Tunnel. Figures, texts and contents are therefore already 

partly or fully published elsewhere. 
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ABSTRACT:  

The year 2025 marks the centenary of Stevenson Creek Experimental Dam tests. While the sensors were used in monitoring real 

civil structures under the test loading since the 19th century, these early sensors measured external changes in the structures, 

mostly deflections, and relied on direct human access to sensors to read the measurements. To the best of the author’s knowledge, 

the first practical sensor to measure internal changes in civil structures with indirect remote reading capability was strain sensor, 

and the first such sensor was based on vibrating wire (VW) principle, invented in Germany in 1919. 

The Stevenson Creek Experimental Dam Project motivated American scientists to develop, in 1924, a resistive strain sensor 

consisting of a stack of carbon discs. Several such sensors were embedded in the dam, and the scientists performed reading of the 

sensors remotely, using wired connections. This 100-year anniversary represents the moment for reflection on advancements in 

the development of strain sensors for applications in civil structures, and the impact that strain-based monitoring has in the field 

of structural health monitoring. 

The aim of this presentation is to summarize the progress in strain sensing technologies over the last hundred years, overview the 

techniques for detection of unusual structural behaviors that various strain sensor types enabled, and present perspectives on the 

future developments related to strain-based monitoring. 

  

Stevenson Creek Experimental Dam Monitoring Centenary: Overview and 

Perspectives of Strain Sensing and Strain-Based Monitoring of Civil Structures 
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ABSTRACT:  

The growing availability of high-resolution multi-frequency imagery from satellite, aerial, and ground-based platforms is 

revolutionizing the monitoring of geohazards, land deformation, and the structural health of critical infrastructure. 

State-of-the-art image processing techniques—including Synthetic Aperture Radar Interferometry (InSAR), Digital Image 

Correlation (DIC), Speckle Tracking, Change Detection, and Structure-from-Motion (SfM) photogrammetry—enable the 

extraction of surface displacements and structural changes with unprecedented spatial density, precision, and temporal resolution. 

These fully remote and non-invasive methodologies support the systematic observation of large-scale areas, offering significant 

benefits for continuous and pervasive monitoring. Their integration into operational workflows enhances the ability to assess risks, 

improve infrastructure resilience, and inform data-driven decision-making processes in both natural and built environments. 
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ABSTRACT: Distributed Fiber Optic Sensing (DFOS) is an innovative technique for Structural Health Monitoring (SHM). Taking 

advantage of the fact that DFOS can conveniently measure mechanical strain continuously along an optical fiber, it is increasingly 

used in monitoring of concrete bridges and tunnels. However, DFOS still needs research in new application areas, such as 

monitoring of steel bridges. In the present study, DFOS is used to investigate the potential to monitor fatigue crack initiation and 

propagation by experiments. In a full-scale test, a steel railway bridge was dynamically excited into resonance, generating fatigue-

effective vibration amplitudes. The fiber was glued to the flange of the main beam in several loops to cover a larger area for crack 

detection. The measured strain signal was compared with results obtained from Finite Element Method (FEM) simulations 

supported by data acquired from conventional strain gauges and extensometers. The strain measurement with DFOS showed 

excellent agreement with the simulated strain. In this context, additional information about crack initiation, propagation, opening 

and length can be obtained indirectly from the DFOS measurement. However, when the crack is crossing the fiber, nonlinear 

effects come into play. To consider the nonlinear effects, a hysteresis model taking steel-fiber interaction into account was applied. 

The results of the study are presented and the applicability and potential of DFOS for fatigue crack monitoring in railway bridges 

is discussed. 

KEYWORDS: Distributed Fiber Optic Sensing; Structural Health Monitoring; Crack propagation; Steel railway bridge; Finite 

Element Method; Dynamic excitation. 

1 INTRODUCTION 

Structural health monitoring of fatigue cracks in steel bridges 

aims to detect and evaluate cracks as early as possible before 

they can cause serious consequences. The current 

well-established method for detecting and monitoring fatigue 

cracks is visual inspection, which does not necessarily imply 

crack detection due to its inherent limitations [1]. Conventional 

extensometers, vibrating wire sensors, or strain gauges are well 

suited for monitoring only a small area of a component. This is 

suitable for monitoring of known cracks, but not for detecting 

new cracks [2].  

To overcome the drawbacks of these methods, various 

sensors and monitoring techniques have been proposed. For 

example, a soft elastomeric capacitor that monitors a particular 

area of interest [3], coating sensors that use the change in 

potential difference [4], or the strain-based method employs 

fiber optic sensors [5]. 

When it comes to crack monitoring along bridges, the ability 

to simultaneously measure strain along a fiber, is the main 

advantage of the DFOS technique over other sensors that utilize 

different measurement principles [2]. 

The measurement principle of distributed fiber optic sensing 

is based on the backscattering of light sent through an optical 

fiber. Changes in temperature and mechanical strain lead to 

changes in the characteristics of the backscattered light, which 

are evaluated by reflectometer [1], [2], [6]. Rayleigh, Raman, 

and Brillouin scattering are commonly studied and mentioned 

in the scientific literature as types of scattering, where Rayleigh 

type achieves much higher spatial resolution and it is preferred 

for crack monitoring and micro-damage detection [1].  

Spatial resolution is one of the most important factors in 

DFOS measurement. It can be thought of as the fiber being 

divided into small virtual gauges. The distance between the two 

closest gauges is also known as the “gauge pitch” (the term 

“gage pitch” is used interchangeably in the literature). In this 

study, the finest available spatial resolution of 0.65 mm can be 

used with up to 20 m long fibers [7]. The spatial resolution 

decreases with increasing fiber length or sampling frequency. 

Small gage pitches should be preferred in regions with large 

strain gradients, such as around cracks [1]. However, if the 

strains or strain gradients are too high and exceed the technical 

capabilities of the interrogator, the measurement software will 

replace unreliable values with not a number (NaN) value, also 

known as dropouts. Dropouts can also occur in the area of small 

bending radius, poor terminations, at the fiber splices, or due to 

high frequency effects during vibration [1]. 

The DFOS technique has found application in broad range of 

industries. One example can be taken from the structural health 

monitoring of a prestressed concrete highway bridge in Austria 

[8]. The authors took advantage of this DFOS technique to 

monitor mechanical strains and temperatures of approximately 

2×30 m long bridge sections during the construction process. 

Within the observed time period, several cracks resulting from 

concrete shrinkage were detected. DFOS also allowed to 

observe the cracks closing while prestressing.  

To the best knowledge of the authors, it is identified that the 

investigation of the crack propagation in a steel bridge under 

cyclic loading by means of DFOS remains unexplored. The 

present contribution wants to explore this possible new 

application and wishes to close this knowledge gap. 

Monitoring of fatigue crack propagation by means of distributed fiber optic sensing 
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2 MATERIALS AND METHOS  

The bridge investigated in this study was a steel railroad bridge 

built in 1953 and decommissioned in 2022. The single-span 

girder bridge with a length of 21.5 m and a width of about 2.2 m 

(after cutting the sidewalks) was transported as a whole, with 

crossties and rails, to the test site of the Austrian Federal 

Railways (ÖBB) in St. Pölten, see Figure 1, where it was 

subjected to an experimental campaign. 

 

Figure 1: Pinkabach Bridge without sidewalks  

at the ÖBB test site. 

 Loading and investigated areas of the Pinkabach Bridge 

Six concrete blocks, each weighing 11 tons, were placed on top 

of the rails to ensure that the minimum and maximum peaks of 

the imposed harmonic loading were always in tension. 

Harmonic excitation near to the bridge’s natural frequency was 

applied using a large hydraulic exciter, the Mobile Seismic 

Simulator (MoSeS), provided by Austrian Institute of 

Technology (AIT). The amplitude of the imposed harmonic 

loading was intended to be on the same level as the maximum 

amplitude of a passing train. 

Two critical areas (details) of the bridge were considered in 

this investigation. These were located on the lower right and 

left flanges near the transverse plane of symmetry of the bridge, 

see Figure 2. The right and left locations of interest are further 

referred to as Q3R and Q3L, respectively.  

In order to initiate a fatigue crack at these locations, a notch 

was made on each side by an angle cutter near the gusset plates 

of the girders, which were used to attach the transverse and 

diagonal struts inside the bridge. At the Q3R location, the notch 

was 150 mm away from the symmetry plane; at the Q3L 

location, the notch was 360 mm from the transverse symmetry 

plane. Both notches were about 30 mm long and 3 mm wide. 

 Conventional measurement techniques 

The experimental methods relevant to this study consisted of 

conventional strain gauge and extensometer measurements, 

positioned as shown in Figure 3. The latter allowed the 

measurement of crack openings, while the strain gauges 

provided information on the strain response of the structure due 

to the harmonic excitation. The strain oscillations were 

recalculated to stresses and the cyclic stress levels were 

evaluated using the rainflow counting algorithm. These results 

served as: i) an input for fracture mechanics calculations and 

ii) comparative values for the innovative DFOS application.  

The strain gauges for ferritic steel 1-LY41-6/120 (HBK 

GmbH, Germany) were attached to the underside of the flanges 

directly below their webs, 800 mm from the transverse plane of 

symmetry, see DMS positions in Figure 2. Two extensometers 

K-WA-U020W (HBK GmbH, Germany) were installed at the 

tips of the notches on the left and right sides of the bridge. It 

should be noted that the mounting points of the extensometers 

were 40 mm away from the notch tip (80 mm from each 

mounting point), as indicated by the two crosses in Figure 3. 

 

Figure 2: Top view of the central area of the Pinkabach Bridge 

plan showing the arrangement of the strain gauges, DMS 

(marked by blue rectangles), and DFOS fibers (pink loops) 

near the gusset plates. 

 

Figure 3: Detailed scheme of the conventional measurement 

instruments installed near the center of the girder. Source: 

TU Graz, Hottinger Brüel & Kjaer GmbH. 

 DFOS measurement technique 

Two polyimide optic fibers (Polytec GmbH, Germany) were 

glued (Loctite EA 3430, Henkel AG, Germany) at the Q3R and 

Q3L locations in front of the cut notches where crack initiation 

and propagation were expected. The fibers were laid in multiple 

loops on the underlying flange and are referred to as fiber 

sections 1 to 5, numbered ascending from the flange edge. Due 

to the minimum allowable bend radius of the fiber, the order of 

the acquired signal by ODiSI 6000 interrogator (Luna 

Innovations Inc., USA), differs from the section numbering and 

corresponds to the winding of the loops that as illustrated in 

Figure 4. An example of the received signal from the five 

sections and their numbering is shown in Figure 5. 

 Linear FEM modeling of the DFOS measurements 

The arrangement of the notched flange with a crack and an 

optical fiber was represented as a finite element method (FEM) 

model. The Ansys Mechanical Solver (Ansys Inc., USA) was 

used together with APDL coding to perform linear elastic 

calculations. In order to facilitate the manipulation and 

parameterization of the model and to speed up the calculations, 

a 2D FEM model was used to carry out the main numerical 
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simulations. Since the Q3R and Q3L locations are at very 

similar positions with respect to the length of the bridge, the 2D 

FEM model with the same geometry was used for both Q3R 

and Q3L locations. 

 

 

Figure 4: Schematic representation of the half-flange with the 

fiber winding layout in relation to the fiber section numbering. 

The dash-dotted and the continuous lines represent the web 

and the edge of the flange, respectively. The arrows indicate 

the uniaxial tensile stress state. 

One of the most important parameters investigated in this 

study is the crack width, also referred to as the crack opening. 

Because the crack opens in the longitudinal direction of the 

flange (y-direction as shown in Figure 4), the contribution of 

the web to the girder stiffness was investigated as it is expected 

to have the most influence affecting the results of the 2D FEM 

model. In this context, the crack openings of the 2D model were 

compared with the 3D FEM model of the main longitudinal 

girder of the Pinkabach Bridge. The motivation was to 

investigate the effect of the absence of the web and the upper 

(compressed) flange on the stiffness of the 2D FEM model. 

This is described in more detail in Section 2.7. 

 Linear 2D FEM model of cracked flange and DFOS 

optical fibers 

The geometry of the flange was modeled as a rectangle 400 mm 

wide, corresponding to the width of the flange, and 600 mm 

long, which is long enough to have a uniform stress state at its 

ends. The shape of the notch does not affect the calculated crack 

widths. Therefore, it was not accounted for in the present study 

and only the material discontinuity was considered, i.e., the 

nodes on the axis of symmetry located at the position of the 

crack were allowed to move freely. The fibers were modeled as 

beams with a thickness of 0.5642 mm at each position, taken 

from [2]. 

The flange mesh was generated with 8-node quadrilateral 

PLANE183 elements using plane stresses with a thickness 

option [9] corresponding to the flange thickness. A mapped 

mesh with an element size of 5 mm and 1 mm in the 

longitudinal and transverse directions, respectively, was 

applied to the flange. The optical fibers were meshed using a 

three-node BEAM189 element with quadratic shape functions 

[9]. The length of the beam elements was 5 mm, and the 

position of the nodes coincided with the nodes of the flange. 

COMBIN14 elements [9] were used as spring elements 

connecting the coincident nodes of the flange and optical fibers 

and representing the glue between these two components. The 

COMBIN14 elements were used for nodes that were more than 

5 mm away from the axis of symmetry. 

The boundary conditions for the optical fibers were as 

follows: the nodes of the fibers lying on the axis of symmetry 

were constrained in their longitudinal displacement as well as 

in their total rotation. On the other side of the flange, the last 

nodes of the beam elements were coupled in all directions to 

their corresponding elements of the flange. The nodes of the 

flange that were on the axis of symmetry were constrained in 

the longitudinal direction, where there was also a fixed material 

on the other side. There was no constraint for the nodes in the 

cracked area, i.e. the crack length is controlled by the 

constraining the displacements of the nodes in the y-direction. 

One node on the symmetry axis, located in the center of the 

flange, was also constrained in transverse direction. 

The tensile load was applied in the form of pressure on the 

shorter edge opposite to the axis of symmetry. The geometry, 

mesh and boundary conditions are shown in Figure 6. 

The material properties of the components were linear 

elastic. For the steel flange, standard elastic properties were 

used with a modulus of elasticity of 210 GPa and a Poisson's 

ratio of 0.3. The glass fiber was assigned a modulus of elasticity 

of 30 MPa and a Poisson's ratio of 0.3 [2]. The elastic modulus 

of the glue was initially unknown and it was subject of the 

investigation. After the investigation, a modulus of elasticity of 

900 kPa was assumed. 

 Linear 3D FEM model of the main girder 

The 3D FEM model simulates a crack in the flange of one of 

the main girders of the Pinkabach Bridge. The girder length, 

web height, web thickness, flange thickness, flange width of the 

girder amount to 21500 mm, 1875 mm, 14 mm, 30 mm, 

400 mm, respectively.

Figure 5: An example of the acquired strain signal along the fiber at a specific time instance.  

The plateaus of the received signal correspond to the straight fiber sections shown in Figure 4. 

Δσ Δσ 
fiber section 1 

fiber section 2 

fiber section 3 

fiber section 4 

fiber section 5 

crack 

y 

length [m] 

st
ra

in
 [

µ
m

/m
] 

0.5 1.5 1.0 2.0 

1000 

2000 

3000 crack propagated 

beyond this section 

0 fiber section 1 fiber section 2 fiber section 3 fiber section 4 fiber section 5 

elevated strain 

because of crack  
homogeneous strain 

far from crack 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-007 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 16 

 

Figure 6: The 2D FEM model of the cracked flange. The 

dashed line corresponds to the transverse axe of symmetry; 

the blue rectangles represent finite elements; the red 

rectangles mark the area of higher web stiffness; the yellow 

vertical lines mark the optical fibers. The blue rectangles on 

the symmetry axis indicate the boundary condition for the 

displacement. The orange rectangles applied to each fiber 

ending on the axis of symmetry are rotational constraints, 

while the green triangles correspond to coupled nodes 

between the fiber and the flange. Red arrows indicate the 

direction of the applied stress. 

The flanges as well as the web were meshed by SHELL281 

elements with quadratic base functions [9]. Around the notch, 

the mesh was finer than in the rest of the girder and its 

properties are the same in terms of element type and element 

size. Outside of the fine area, a coarse mesh was used. As for 

the web, elements with a length of 697 mm and a width of 

127 mm were used. For the coarse part of the flange, the 

elements were 697 mm long and 200 mm wide. Mapped mesh 

with quadrilaterals was used on most of the girder geometry, as 

shown in Figure 7.  

The boundary condition of the 3D FEM model was 

analogous to a simple supported girder, corresponding to 

suppression of longitudinal, and vertical displacements of the 

nodes at the short edge of the lower flange (with crack) on one 

side and the suppression of vertical displacements along the 

edge of the other side, see Figure 7. In addition, one node in the 

middle of the edge of the bottom flange at the end is constrained 

in transverse direction. 

The loading of the numerical 3D FEM model was carried out 

by a single point force in the middle of the upper flange. The 

elastic material properties of all parts used in the 3D FEM 

model were the same as in the 2D model. 

 

Figure 7: The 3D FEM model of the Pinkabach Bridge main 

girder with cracked flange and DFOS fibers. The 

displacement boundary condition, and the point load are 

marked by blue triangles and red arrow, respectively. The 

detail of the fine-mesh area with crack and DFOS fibers 

(yellow lines) is shown in the lower left. 

 Comparison of the linear 2D and 3D FEM models: 

 web stiffening factor 

The crack openings of the 2D FEM model were compared with 

those of the 3D model in order to investigate the influence of 

the absence of the web in the 2D model. This absence was 

manifested by a higher crack opening of the 2D model, 

indicating a lower stiffness of the 2D model. As a remedy, a 

strip of higher stiffness than the surrounding steel was inserted 

to the 2D FEM model. This strip is 14 mm wide and is located 

in the middle of the flange, geometrically corresponding to the 

footprint of the web, see the red area in Figure 6. The modulus 

of elasticity of the strip was expressed as a multiplication factor 

to the surrounding steel with a modulus of elasticity of 

210 GPa. Depending on the crack length, higher elastic moduli 

were assigned to the strip in order to match the crack openings 

of the 3D and 2D models. The multiple of the higher steel 

elastic modulus of the strip is referred to as the web stiffening 

factor in this document. 

The procedure for finding the web stiffening factor was as 

follows:  

i) Find the single point load of the 3D model (red arrow in 

Figure 7) that yields the same stress of 50 MPa in the 

homogeneous stress field in the vicinity of the notch (with 

crack length = 0) of the 2D and 3D models. 

ii) After harmonizing the homogeneous stress fields in the 

vicinity of the notch and finding the point load of the 3D 

model, the distance between the two corner nodes at the 

very end of the notch was measured. This ”notch opening” 

was compared to the 3D and 2D models. 

iii) The strip stiffness of the 2D model (red area in Figure 6), 

which caused the same “notch opening” in the 2D and 3D 

models, was expressed as a multiple of the steel stiffness of 

210 GPa. In this way, the web stiffening factor was 

obtained. 

iv) The crack length behind the notch tip was increased by a 

certain increment, and the step iii) was repeated. 

The web stiffening factors were obtained for crack lengths 

from 0 mm up to 160 mm by means of repeating steps iii) and 

iv). The increments for crack lengths from 0 mm to 140 mm 

were 20 mm, and for crack lengths from 140 mm to 160 mm 

y 

x 
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were 10 mm. The web stiffening factors as a function of crack 

length are plotted in Figure 8. 

 

Figure 8: Web stiffening factors as a function of the crack 

length. Web stiffening factors are the multiples of the flange 

steel elastic modulus assigned to the strip in the 2D model. 

 Modeling the glue between the flange and optic fibers 

The glue bonds the DFOS optical fiber with the underlying 

steel flange, see Figure 9 a). In the linear FEM models, this 

bond was modeled by linear springs characterized by their 

stiffness, see Figure 9 b). The springs connect coincident nodes 

of the flange and the fiber. The springs were active in the 

y-direction, the longitudinal axis of the flange. In the FEM 

models, the first spring was located 5 mm away from the 

symmetry axis. The next springs connected the flange and 

fibers from this point to the end of the fiber where the flange 

and fiber nodes were coupled, see Figure 6. 

The stiffness of the glue was investigated based on 

experience from previous work [2] and the current DFOS 

measurement. Softer springs (i.e., softer glue) produced flatter 

strain peaks when the crack was close to the fiber. Increasing 

the stiffness caused the calculated strain response curve to 

become narrower, see Figure 9 c). The calculated strain 

response from the 2D model was compared to the measured 

DFOS signal. A glue stiffness of 900 kPa gave satisfactory 

agreement between the calculated and measured strain shapes 

and was used in further calculations. 

 

Figure 9: Detailed sketch of a) cross-section of the bond 

between fiber, glue, and the flange, b) glue being represented 

as linear springs connected to coincident nodes (zero glue 

thickness). c) strain response corresponding to 

 soft glue (dashed curve) and hard glue (orange curve). 

 Nonlinear hysteresis model for determining crack width 

The linear FEM model, simulating the strain distribution from 

the glass fiber to the underlying object, is able to reproduce the 

measured values up to the crack formation. However, as it will 

be shown in the result section, once the crack reaches the fiber, 

there is no longer sufficient agreement and the strain from the 

linear FEM model deviates more and more from the measured 

values as the crack increases in size. This is due to 

nonlinearities in the fiber and the glue that occur at very high 

strains and can no longer be represented by the linear model. 

Although this phenomenon is known from earlier studies, as 

explained in [2], the physical background has not yet been 

clarified in detail. The most likely explanation is a permanent 

mutual displacement between fiber and base material in the 

glue layer (sliding), which occurs after exceeding the mutual 

friction, or plastic deformation of the optical fiber. 

A mechanical model based on this hypothesis had already been 

developed by the AIT research group and proved to be very 

effective. It allowed the strain behavior to be simulated with a 

high degree of accuracy under various loading and unloading 

scenarios and crack widths of up to 2.8 mm.  

An overall model of the optical fiber structure and the glue 

was adopted from [2], with the parameters being slightly 

adjusted to the actual fiber used. This model makes it possible 

to calculate the interaction of these elements and also to 

calculate non-measurable strain signal during high-frequency 

excitation with large crack widths (high amplitudes) using FE 

methods. The hysteresis model consists of a combination of 

linear and nonlinear spring and beam elements. The fiber 

structure, including the connecting elements, is shown in 

Figure 10 a) and b). The glue (3) is modeled as a linear spring, 

while the coating (2) and the fiber (1) are defined as 1D beam 

elements. The crucial connection between the fiber and the 

coating is modeled by nonlinear springs (4). This is an 

elasto-plastic spring element whose force F increases linearly 

with the deformation V and the stiffness kint up to the limit force 

FS. After the limit force FS is exceeded, slippage VSL occurs as 

a permanent displacement of the fiber optic cable (1) relative to 

the coating (2), see Figure 10 c). 

The model was implemented in the FE program Ansys, 

whereby, in contrast to the linear model, only a 20 cm long 

section around the crack and only one fiber at a time is 

considered separately. The aim of this investigation is to 

interpret the measurement signal and to draw conclusions about 

the crack width. During the interpretation, it can be determined 

whether the crack is currently closing or opening or whether a 

larger crack has occurred previously. It is not necessary to 

apply the nonlinear model to recalculate the crack width if a 

complete, continuous measurement signal is available, as the 

crack width can be calculated by integrating the signal over the 

fiber length. Since it is known that transient or permanent 

dropouts can occur at higher amplitudes and higher excitation 

frequencies, this step is important to significantly increase the 

accuracy of the crack width determination. 

In the present case of the linear model described in 

Section 2.8, a fiber without a coating was used, which 

theoretically results in differences to the model shown in Figure 

10, as the comparison with the simplified model in Figure 9 

shows. However, since comparable nonlinear effects occurred 

in the measurement data despite the absence of the fiber 

coating, the model described in [2] was also applied here and 

showed good results. 
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Figure 10: Schematic drawing of a) cross section and b) side view of the nonlinear model used to estimate the crack width; 

c) the material model prescribed to the springs where slippage is initiated when the force F exceeds the limit force FS. 

This is also due to the fact that the model parameters were 

not determined individually, but were found empirically from 

the measurement data by model fitting as an overall model. 

These determined characteristic values in Table 1 thus do not 

represent any physical material parameters, but the overall 

structure including the glue. These characteristic values 

determined in this way are not transferable to other fiber 

applications, even with the same fiber, without slight 

adjustment. 

Table 1: Input parameters for the nonlinear FE analysis. 

element 

size 

glue 

(spring) 

coating 

(beam) 

interaction 

(spring) 

glass fiber 

(beam) 

2 mm K = 
106 N/m2 

A=10-4 m2 

E=30 MPa 
K=7·106 N/m2 

Fs=0.35 N/m 
A=10-5 m2 
E=30 MPa 

3 RESULTS 

 Crack width vs. crack length under unit load 

One of the main results of this study is the relationship between 

crack width and crack length. Since the problem is modeled 

with linear elasticity, it is reasonable to do this for a unit load. 

The calculations were carried out using the 2D model. 

The crack widths were obtained for the following locations: 

at the notch tip (x = 30 mm), at the fiber locations, at the 

location of the crack tip, and the notch tip (x = 30 mm), but 

40 mm above the axis of transverse symmetry of the 2D model 

(y = 40 mm). This location corresponds to the extensometer 

mounting points. The crack widths were determined for crack 

lengths from 0 mm to 160 mm with 5 mm increments. For each 

calculation, the appropriate web stiffening factor was taken into 

account. The results are shown in Figure 11. It is noteworthy, 

that the extensometer reading is non-zero even for zero crack 

length, which is caused by the elasticity of the steel between the 

extensometer mounting points. 

 Comparison of crack growth and fracture mechanics 

As part of the test evaluation, a fracture mechanics analysis of 

the fatigue tests on the Pinkabach Bridge was carried out by the 

scientific partner, the Institute of Steel Structures of the 

Technical University Graz (TU Graz), which also included the 

evolution of the crack length over the number of cycles for the 

two locations Q3L and Q3R shown in Figure 12. This fracture 

mechanics analysis is compared to the crack width vs. crack 

length relationship derived from the 2D FEM model in the 

previous Section 3.1, shown in Figure 11. 

In order to perform this comparison, the number of cycles 

was determined at each measurement time instance. At this 

particular measurement time instance, the crack length was 

determined using Figure 11 and the extensometer reading. This 

crack length and number of load cycles were entered into the 

fracture mechanics diagrams in Figure 12. 

Comparison with the fracture mechanics analysis "best fit" 

(green curve) shows reasonable agreement, although it is not 

perfect. The numerical results tend to be slightly higher than 

the fracture mechanics results for short crack lengths. For long 

crack lengths, however, the numerical results are slightly lower 

than the fracture mechanics results. There are uncertainties in 

both, the fracture mechanics analysis and the numerical 

analysis, and it is expected that there will be differences. For 

example, a complete 3D model of the main girder including the 

gusset plates, and the influence of the bracing would allow a 

more accurate analysis. However, the method is considered to 

be adequate for estimating the crack length for practical 

construction purposes based on simple extensometer readings. 

 

Figure 11: Crack width as a function of crack length; FEM 

extensometer corresponds to the displacement reading at the 

location of the extensometer attachment, i.e.: at the notch tip 

(x = 30 mm from the flange edge) and y = 40 mm above the 

axis of transverse symmetry of the 2D model. 

 Comparison of the linear 2D FEM model with the 

DFOS measurement at the Q3R and Q3L locations 

The strains calculated by the 2D FEM model, to which the 

conventional experiments provided input, are compared in 

side-by-side plots with the DFOS strain signal at multiple time 

instances throughout the experimental campaign. The results 

from the 2D FEM model at a time instance were obtained in 

3 steps. First, the loading stress was determined as the 

difference between the minimum and maximum amplitude 

readings from respective strain gauge at the corresponding time 

instance, multiplied by the modulus of elasticity of 210 GPa. 

Second, the crack length was extracted from Figure 11 (FEM 

extensometer), by knowing the displacement reading of the 

extensometer divided by the loading stress derived from the 
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strain gauge reading for the corresponding time instance. Third, 

the applied stress and crack length were used as input for the 

FEM simulations. 

 

  
Figure 12: Fatigue calculations provided by TU Graz showing the 

crack length as a function of the number of load cycles for the two 

locations: a) Q3R and b) Q3L; the solid black circles show the results 

derived from the linear elastic FEM model; the monotonically rising 

curves correspond to different fatigue models. Credit: TU Graz. 
 

The measured DFOS signal used for comparison with the 

numerical simulations was obtained by subtracting the 

minimum DFOS signal (red graph in Figure 13) from the 

consecutive maximum DFOS (green graph in Figure 13) signal 

for the corresponding time in order to account for the mean 

strain value (blue graph in Figure 13). In this way, the 

difference between the numerical and measured signals is 

“tared”, and they can be directly compared. The elevated strain 

values reminiscent of plateaus in this blue graph correspond to 

individual fiber sections. The order of the fiber sections is the 

same as shown in the Figure 4 and Figure 5. 

An example of a typical comparison of the measured and 

simulated strain signals at fiber section 5 is shown in Figure 14, 

where the signals are almost identical. It was observed that 

when the fiber is far away from the crack tip, the measured and 

simulated signals are in good agreement.  

The measured DFOS signal indicates that the cracks were 

already present near the fiber section 1 already on the first day 

of measurements at both Q3R and Q3L locations. At this time, 

it can be seen that the simulated and measured signal 

amplitudes do not match each other, see Figure 15. This 

suggests that a nonlinear effect is at play, which may be caused 

by the interaction between the optic fiber, coating, glue, and the 

flange due to excessive strain loading. This effect is even more 

pronounced as the crack propagates further behind the fiber, 

resulting in an “inversion” of the signal and an increasing 

number of dropouts, as shown in Figure 16. 

 

Figure 13: Subtraction of the minimum (red) and maximum 

(green) DFOS signal from May 9, 2023, at 10:52 to obtain the 

mean (blue), which was compared to the output from the 

numerical simulations; Q3R location. 

 

Figure 14: Comparison of the strain signal at fiber section 5 

from the linear FEM simulation and the DFOS measurements 

taken on the sixth measurement day at the Q3R location. 

 

Figure 15: The crack tip near fiber section 1 causing nonlinear 

effect resulting in smaller strain peaks, first day of 

measurement at Q3R location. 
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Figure 16: An “inversion” of the measured DFOS signal 

showing dropouts due to the wide crack opening inducing 

excessive strain. Third day of measurements at the Q3R 

location of fiber section 1. 

 Crack widths determined by the nonlinear model 

The crack widths for the Q3L and Q3R locations were 

determined using the nonlinear FE hysteresis model. The 

following paragraphs describe the procedure at the Q3L 

location for fiber section 1. Here, two points in time were 

selected where the crack had already grown considerably, both 

on May 12, 2023, one at about 06:45 and one at about 10:30. 

The best results were obtained in the earliest measurement 

because the crack widths were still not very large. The times of 

the maximum (load), minimum (unload) and constant load 

(resting state) of a cycle is considered in each loading case. 

At 06:41, the cyclic loading was stopped for a short time, which 

led to a brief complete reappearance of the DFOS strain signal. 

At this point, the permanent crack under constant load became 

very well measurable. The corresponding signal is shown in 

purple continuous line in Figure 17. The unloading curve (gray 

continuous line) is also clearly visible and shows only a few 

interruptions. It can be seen here that the measured values in 

the crack area are even slightly negative, while the areas where 

the load is applied remain virtually unchanged. This can be well 

modeled by means of the hysteresis model. It should be noted 

that as the crack width increases, so does the number of 

dropouts in the data. The loading curve (red) is only partially 

visible and must be reconstructed to determine the underlying 

area corresponding to the crack width. This is done by the 

accompanying FE analysis, which is shown in the Figure 17 as 

a dash-dotted line in the respective colors. Since the parameters 

of the FE model were optimized once for all processes, each 

recalculation only searches for the crack width that best 

matches the measurement data. 

The crack widths, w, in Figure 17, indicate the crack opening 

at each loading phase. If w.max is given, it means that at an 

earlier point in time a larger crack caused a change in the fiber. 

This can be beneficial if there was no measurement at that point 

in time or if the signal was too disturbed to measure. In this 

case, the amplitudes of the crack widths are compared and 

validated with the results of the displacement sensors in 

combination with the relationship between crack length and 

width in Figure 11 derived from the linear 2D FEM model. 

They result from the differences in crack width during loading 

(red) and unloading (gray) and thus correspond to the change 

in crack width during harmonic loading. The crack width at rest 

(purple) should be exactly between the two values for a 

symmetrical load amplitude. This also makes it possible to 

calculate the static crack opening without harmonic excitation. 

The crack opening under constant load at the fiber section 1 

after crack crossing is therefore 0.205 mm and the amplitude of 

the crack opening under cyclic loading is 0.22 mm. 

The same procedure was carried out for the later 

measurement at 10:28, see Figure 18, whereby the crack is 

considerably more developed. In this case, no DFOS strain 

signal could be measured in the loading phase. The strain data 

for unloading and constant load phases was very fragmented, 

but could be reconstructed by numerical simulation, The 

resemblance to the existing data is not as good as in the 

previous example, which indicates that there are more 

extensive nonlinearities that cannot be simulated by the model 

that is used. Therefore, it is expected that the evaluation of the 

crack widths will be less accurate in this case. Despite the 

absence of a loading phase, the crack width could be estimated 

from the difference between the unloading and the constant 

loading phases. 

 

Figure 17: Matched strain signals of DFOS (“continuous 

lines”) and the nonlinear FEM model (dash-dotted lines) for 

fiber section 1; measurement location Q3L; loading curves are 

red, unloading in gray, and constant load in purple. 

4 DISCUSSION 

 Influence of gage pitch on dropouts 

Three gage pitches (0.65 mm, 1.3 mm, and 2.6 mm) were used 

during the DFOS experimental campaign in order to investigate 

their suitability for monitoring of crack propagation under 

harmonic loading. Although it is recommended to use the 

shortest gage pitches for regions with high strain gradients [1], 

in this case the signal acquired with the 0.65 mm gage pitch 

contained the most dropouts and noise. The larger the crack 

opening, the more pronounced this effect was. Therefore, it was 

not suitable for further processing and the two longer gage 

pitches were preferred for evaluation as the acquired signal 
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contained fewer dropouts, with 2.6 mm gage pitch having the 

fewest. 

It is recognized that the situation can be remedied by using 

optical fibers with higher sensitivity. In [1], the authors 

monitored cracks in a concrete beam using four different 

optical fibers and gage pitch of 0.65 mm. The results 

emphasized the need for careful selection of optical fibers that 

are better suited for measuring high gradients, if case that the 

crack location and crack opening are to be reliably quantified. 

 

Figure 18: Matched strain signal of DFOS (“continuous 

lines”) and the nonlinear FEM model (dash-dotted line) for 

fiber section 1; measurement location Q3L at 10:28;  

unloading curves are red, constant loading in gray. 

 Fiber layout – loop length and minimum fiber radius 

In order to maintain the minimum fiber radius that can cause 

additional signal dropouts the optic fiber was laid in the 

following order of fiber section 1, 3, 5, 2, and 4. The lower the 

number, the closer the fiber section is to the flange edge and the 

notch. Although the length of the straight part of each fiber 

section was sufficient to capture the uniaxial stress state, 

it would be preferable to make these straight sections even 

longer, so the there are no sudden signal drops as it can be seen, 

for example, on the right hand side of the blue line in Figure 

14. 

 Limitation of the linear FEM models 

Although the handling of the 2D FEM model was significantly 

easier than the full-scale 3D FEM model of the main girder, 

significant amount of was required to correctly create the 2D 

FEM model. As a side effect, the contribution of the web to the 

stiffness of the flange in the presence of a crack was 

investigated. Interestingly, the web stiffening factor as a 

function of crack length is not monotonic. For crack lengths 

from 0 to 20 mm (and in the presence of the notch), the web 

stiffening effect slightly decreases, but from 20 mm to 150 mm, 

the web contributes to the overall stiffness by a factor 2.5 to 

4.5, respectively. 

It would be also of interest to investigate, how incorporating 

more construction details, e.g. constraining lateral movement 

of the main girder, modeling the gusset plates, or using 

displacement loading, would manifest itself on the web 

stiffening factor as well as on the overall results. However, it is 

anticipated that these effects are rather small and would not 

significantly change the results. 

 Validation and limitation of the nonlinear model 

This study shows that the nonlinear hysteresis model is able to 

reproduce the measured DFOS strain signal for smaller crack 

widths where the interaction between the optical fiber and the 

flange is governed by nonlinear behavior. However, for larger 

crack widths, it remains subject to certain inaccuracy. The 

deviations increase with crack growth, indicating additional 

nonlinearities not represented in the model. It is therefore 

important to consider the expected crack widths of interest 

when selecting fibers. A thicker coating would smear the strain 

peaks around cracks over the longer part of the fiber core, 

resulting in lower peak values and thus preventing highly 

nonlinear effects from occurring. 

The resulting crack widths for the two locations, the 

considered time instances, and the optical fibers were compiled 

and validated. The validation was done by comparing the crack 

width and crack length relationship developed from the 

extensometers and the linear FEM model in Figure 11 in 

Section 3.2. The results are summarized in Table 2 for 

measurement location Q3L and fiber sections 1 to 4. 

For the considered time instances and the location Q3L, 

almost complete measured values are only available for the 

measurement time around 06:30. Therefore, the first validation 

was carried out at location Q3L for May 12, 2023, at 06:28, see 

third and sixth row in Table 2. The maximum deviations for 

this time instance are only 0.03 mm. This result is consistent 

with the previous findings on the accuracy of crack width 

measurements using DFOS in [2]. The comparison at 10:28 for 

the same location and measurement day shows significantly 

larger deviations of up to 0.09 mm. 

Table 2: Comparison of the crack widths from the linear and 

nonlinear FEM models at Q3L location on May 12, 2023 

  linear model + extensometer [mm] 

date 
time 

(UTC) 

fiber 

sec. 1 

fiber 

sec. 2 

fiber 

sec. 3 

fiber 

sec. 4 

12.05.2023 06:28 0.19 0.15 0.12 0.05 

12.05.2023 10:28 0.35 0.30 0.24 0.17 

  nonlinear model + DFOS [mm] 

12.05.2023 06:28 0.22 0.15 0.12 0.08 

12.05.2023 10:28 0.35 0.21 0.21 0.11 

 Practical applicability of the crack monitoring using 

DFOS 

The DFOS measurement technique could be implemented in 

real-world scenarios analogous to the current study. The fiber 

can be placed in different shapes around critical details of new 

or existing bridges if the minimum bending radius requirement 

is met. Since the unit cost of a basic optical fiber is relatively 

low, two or more parallel fibers can be used to measure a 

quantity to increase redundancy in case of fiber damage. 

If the structure is exposed to different temperatures, 

temperature compensation is required. In this case, it is 

recommended to install a fiber for temperature measurement 

next to the fiber for strain measurement. The temperature 

sensing fiber should be able to move freely so that it is not 
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affected by mechanical strain and can provide reliable 

temperature values. 

One of the challenges is the risk of fiber damage during 

installation in the busy and harsh conditions of a construction 

site. To mitigate this risk, it is recommended to use a 

specialized company to install the fibers. 

A notable practical example of the use of DFOS is on a 

concrete highway bridge near Aurachkirche, Austria, 

documented in [8]. In this pilot project, approximately 60 m of 

the Aurach Bridge is monitored in two 30 m long sections using 

2.6 mm gage pitch. In each section, temperatures and strains 

were measured in the top and bottom slabs. During the 

observation period, several cracks were detected as a result of 

concrete shrinkage. The DFOS measurements also allowed to 

observe the crack closure due to prestressing. By integrating the 

area under the obtained strain signal, the crack widths were 

estimated, which were in line with the expectation for a 

prestressed concrete bridge. It was concluded that DFOS can 

be used to monitor important milestones in the construction 

process, including the development of cracks. 

Another practical example is the recent installation of DFOS 

technology during the replacement of a railway bridge in 

Eschenau, Upper Austria. In this project, optical fibers will 

monitor temperature and strain throughout the construction 

process and future service life, enabling the detection of 

potential crack development. These examples demonstrate the 

growing adoption of DFOS in structural health monitoring 

projects and highlight the suitability of this technique for 

integration into routine bridge maintenance. 

5 CONCLUSIONS 

Based on the current study, the following conclusions are 

drawn: The FEM simulations fed with strain gauge and 

extensometer data can provide good qualitative and 

quantitative agreement with the measured DFOS strain signal. 

The simulated strain signal from the linear elastic FEM model 

agrees well with the measured DFOS strain signal in cases 

where linear elasticity governs the interaction between the 

optical fiber and the underlying steel flange. Once the crack is 

close enough to the fiber, the nonlinear effect comes into play 

and the nonlinear model must be used to reproduce the 

measured DFOS strain signal. In these cases, the nonlinear 

model can also be used to estimate the crack opening, see 

Section 2.9. 

With increasing crack opening, the high strain in the optical 

fiber causes signal dropouts. This is usually the case when the 

crack has propagated well beyond the fiber.  

The crack propagation can be clearly seen in the cyclic 

loading test using DFOS. First, the nonlinear effects come into 

play, which can be accompanied by some dropouts. Then, in 

the next phase, the peak of the measured strain signal changes 

to a trough so that it is "inverted" with respect to the previous 

state, see Figure 16. 

The further away the fiber section is from the crack tip, the 

better the agreement between the measured and simulated 

strain signals was obtained. Typically, the best agreement 

between simulated and measured strain was observed for fiber 

section 5. 

The DFOS have proven to be very good at determining steel 

strain up to crack initiation, crack detection, and crack widths 

up to 0.2 mm. Beyond that, the measured strain signal become 

more incomplete and the signal reconstruction is subject to 

increasing inaccuracy. This is exacerbated by dynamic 

excitation, which disturbs the strain signal. If large crack widths 

are still of interest, it is advisable to use coated fibers for such 

measurements, which reduces the peak strains. If the 

information on whether and where a crack has occurred is 

sufficient, simple and inexpensive commercially available 

fibers, such as those used in the Pinkabach Bridge tests, can 

provide adequate information. When more precise evaluations 

were required, it became apparent that the fiber had to be 

selected precisely according to the expected crack widths. 

Overall, the DFOS technique was found to be suitable for crack 

detection and crack propagation monitoring. 
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ABSTRACT: The assessment of fatigue consumption and the remaining lifetime of structural components is affected by 

considerable uncertainties on the side of the traffic loads, fatigue resistance and structural response. The purpose of the presented 

work was to develop methods for dealing with these uncertainties, as well as methods for improving the accuracy of assessment 

with the use of additional data. 

Within the research project Assets4Rail, a structural monitoring system was installed on a railway bridge located on a local track 

in Austria. The system consisted of strain sensors, acceleration sensors and inclinometers. It was used to measure the bridge 

response during train passages with known axle loads in course of a test with controlled conditions. This data was used to calibrate 

the structural model and develop probabilistic methods for fatigue assessment. Influence lines at fatigue-critical locations were 

evaluated from measured bridge strain response including their uncertainty. Further uncertainties considered in the assessment 

include the load histories and the fatigue resistance. 

The results showed the largest contribution by evaluation of model uncertainties from monitoring data. The effect of model 

updating was also considerable, but less significant. Further increase of estimation accuracy is achieved using section-specific 

traffic data. Whereas wayside monitoring data represent the reference scenario, the use of traffic management data provides a 

usable alternative. 

KEY WORDS: fatigue; probabilistic; reliability; monitoring; updating. 

1 INTRODUCTION 

Railway bridges are often designed in steel. Their high ratio 

of traffic load to dead load as well as the high train axle forces 

makes them prone to fatigue issues. Many structures or 

components are reaching their planned lifetime. A survey 

conducted by the European project Sustainable Bridges, 

revealed that 75% of steel railway bridges are over 50 years old 

and almost 35% of them are over 100 years old [1]. Although 

fatigue damage is not among the leading causes of bridge 

collapses [2], it plays a role in maintenance of railway 

infrastructure. To optimize the investment planning for railway 

bridge maintenance and replacement, it is therefore 

advantageous to perform more accurate assessment of their 

expected remaining fatigue lifetime. 

Several techniques to this end have already been developed 

and tested. The application of monitoring techniques to capture 

the real structural behavior has been implemented in many 

variants, usually evaluating the stress spectra from strain data 

acquired at fatigue-critical locations and consequent 

application of the Miner’s rule to determine the damage 

accumulation [3]. The use of monitoring data leads often to 

lower stress ranges compared to results predicted by numerical 

models due to their inherent simplifications and their aspiration 

to ensure sufficient structural safety. Thus, SHM-based 

evaluations tend to predict a more extended fatigue lifetime. 

However, some application cases [4] show that it is not to be 

generalized as a rule. 

Through a combination of monitoring data with calibrated 

FE-models, stress spectra can be evaluated also at unmeasured 

locations. This technique of virtual sensing has been validated 

[5], [6] to obtain nominal stresses at railway bridges equipped 

with strain and acceleration sensors. The modelling can be 

further extended using the multiscale approach to also evaluate 

the local stresses – for example using a 3-scale concept 

encompassing the global scale, the structural member scale and 

the local scale [7]. 

Besides monitoring the structural response, the estimation of 

overpassing axle-load histories is the next important parameter 

in the fatigue accumulation assessment. While the train mixes 

defined in the Eurocode are suitable for design of new bridges, 

for the assessment of existing structures it is more expedient to 

use axle-load histories specific to the respective track location. 

The actual axle loads can be acquired for example using 

wayside monitoring systems applied on rails. However, the 

application of such systems is relatively new, so they provide 

data on the current state of traffic loading and axle-load 

histories prior to their installation remain unmeasured. During 

bridge lifetime, the axle-load histories may have changed 

significantly. Reconstruction of historic traffic loads provides a 

possible solution, as shown in a study for Norwegian railway 

bridges [8]. In here, it was identified that modern freight trains 

introduced after 1985 increased the fatigue damage 

accumulation rate significantly. Based on axle-load 

measurements in Dutch railway network, new fatigue load 

models for bridge assessment were proposed [9]. One of the 

load models addresses the period before 1970 and is based on 

limited available data and expert judgement. In another study 

[10], a simple approach was proposed, which considers 

development of total rail traffic volumes on national level, but 

neglects changes in train composition over time. 

Updating prediction of fatigue reliability index of railway bridges using structural 

monitoring data and updated load histories 
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The evaluation of remaining fatigue lifetime is typically 

based on S-N curves as the definition of material resistance to 

fatigue loads. This approach features a fair amount of 

conservatism [11], which is understandable considering the 

significant variance of fatigue test results and the requirements 

of structural reliability, and it is necessary in semi-probabilistic 

assessment. However, the uncertainties can be modeled using a 

full-probabilistic approach by formulating the fatigue 

resistance as a random variable and evaluating probabilities of 

its exceedance. This type of evaluation results in estimating the 

reliability index and its development as the fatigue damage 

accumulates over time [12]. 

This work, which was done within the Shift2Rail project 

Assets4Rail [13], combines several abovementioned aspects, 

with the aim to highlight the joined effect of several methods. 

Three areas of more accurate fatigue assessment are addressed 

here: monitoring of structural response, track-specific axle-

load histories, and probabilistic modelling of fatigue resistance. 

Moreover, the issue of track-specific axle-load histories is 

handled in different cases of data availability. 

 

2 STRUCTURAL MONITORING AND MODEL 

CALIBRATION 

 Bridge description 

The bridge is a semi-through type truss steel bridge (U-frame), 

which was constructed in the 1990’s (Figure 1). It is a single 

span of 41.67 m length, which consists of 10 segments of equal 

length. The top chord has a rectangular cross-section, while the 

bottom chord is U-shaped. The diagonals have I-shaped cross 

section, except for the outer diagonals with rectangular cross-

section. The truss members are constructed from welded steel 

plates and the truss members connect to each other with bolted 

plates. 

 

 

 

Figure 1. Side view of the bridge. 

The bridge carries a single unballasted railway track. The 

rails are placed on top of wooden sleepers carried by 

longitudinal beams, which are rigidly connected to transverse 

beams (Figure 2). The transverse beams connect to bottom 

chord of the truss. The connections are again executed using 

bolted plates. The bridge deck has two layers of diagonal 

bracing, stiffening the longitudinal beams under the sleepers, 

as well as bottom chords of the truss. 

 

Figure 2. Structure of the bridge deck. 

The bridge is located on a side track in Austrian railway 

network and experiences very low traffic volumes. This 

facilitated performing various tests and measurements on this 

bridge. For purposes of this study, a traffic constitution was 

assumed with properties that correspond to a main railway line, 

thus simulating high traffic volumes. 

 Measurement system 

The bridge was equipped with 31 optical strain gauges. The 

sensor locations concentrated around truss-member 

connections between truss segments 4 and 5 (Figure 3), as well 

as connection between longitudinal and transverse beams at 

segment 8 and the transverse beam to truss chord connection 

(Figure 4). Since the fatigue evaluation was indented to be 

based on nominal stresses, the purpose of this monitoring 

system was to capture nominal stresses in structural members, 

which explains positioning the sensors at a little distance from 

the connection nodes and not directly on the fatigue hot spots. 

 

 

 

Figure 3. Locations of fibre-optic strain sensors on truss 

members. 

The sensors were located on several points of the same cross-

section to increase accuracy of the measurement and also to 

capture secondary effects like transverse bending or warping of 

cross-sections. Additionally, acceleration sensors were placed 

on several locations across the bridge, as well as inclinometers 

and temperature sensors. However, they are not relevant for the 

purposes of the work presented here, therefore they will not be 

described here. 
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Figure 4. Locations of fibre-optic strain sensors on transverse 

and longitudinal beams. 

The Bragg grating of the fibre-optic strain sensors provides 

an active sensor length of 10 cm. The actual sensor is held by 

threaded extension rods, which increase the effective 

measurement length to 50 cm in total. This enables a higher 

sensitivity of the sensor, which was required to capture the 

relatively low strains. The extension rods are connected to the 

structure through strong magnets. In this way, the layers of 

corrosion protection remained untouched in spite of sensor 

application. However, such mounting of the sensors (Figure 5) 

causes also an offset between the structure’s surface and the 

sensor axis. This means that the strain captured by the sensor is 

not the same as the strain at the structure surface, if the cross-

section experiences bending moments. Since several sensors 

were installed in each cross-section, the measured strains can 

be interpolated to any other (unmeasured) point of the cross-

section, assuming linear strain gradients within a cross-section. 

 

Figure 5. Fibre-optic strain sensors mounted using magnets 

and threaded extension rods. 

The strains were measured during passages of a test train, 

which consisted of a diesel-powered locomotive with 32 t 

weight on two axles, followed by two 4-axle wagons weighing 

78.4 t and 49.45 t, respectively, and one 2-axle wagon weighing 

18 t. The train passages were repeated with different speeds 

ranging from 5 to 40 km/h, reaching ca. 100 passages in total. 

In order to relate axle loads to the measured strain response, 

it is expedient to transform the measured strain signals from the 

time domain to the domain of axle positions. This was done by 

identification of axle positions in the measured strain signals, 

and transforming the time to the distance covered by the first 

train axle, starting at the bridge abutment above the bearing. 

The differences between strain signals measured during 

different passages of the test train were relatively small. They 

are displayed in Figure 6 for two selected sensors. The top 

figure shows results from sensor OS10 located at the bottom 

chord of the truss, while the bottom figure shows results from 

sensor OS21 located in midspan of the transverse beam. 

Records of individual train passages are displayed as thin grey 

lines, and their mean is displayed as bold blue line. 

 

 

Figure 6. Strains during 102 passages of the test train 

measured at the bottom chord (top) and at the transverse beam 

(bottom). 

The measured responses were used to calibrate the numerical 

model that was later used for estimation of fatigue damage 

accumulation. 

Additionally to the static structural response, dynamic 

resonance parameters were identified from acceleration 

measurements, and used in calibration of the numerical model. 

Three identified modes were used to this end; their frequencies 

are listed in Table 1. The first was a global mode of vertical 

bending with one half-wave along the span length. The other 

two modes represent lateral vibration of the upper chord, with 

1 and 1.5 waves along the span length, respectively. The 

agreement between frequencies of the numerical model and the 

ones identified from measurements were good already for the 

initial model, indicating its high quality. 
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Table 1. Comparison of measured eigenfrequencies with 

predictions of the initial numerical model. 

Parameter Measured FE-Model 

f1, vertical bending 5.40 Hz 5.48 Hz 

f2, upper chord 1 wave 9.99 Hz 10.22 Hz 

f3, upper chord 1.5 waves 12.19 Hz 13.04 Hz 

  

 Model calibration 

The numerical analysis was done using a shell model, which 

was constructed, meshed and calculated using FOSS (Free and 

Open Source Software) products. In particular the Pre- and 

Post-Processing platform SALOME [14] was used for the 

geometrical construction and meshing of the model, while the 

FEM-Solver CalculiX [15] was used for solving the meshed 

model. The model optimization of the FE-model was conducted 

using self-made algorithms in the Python programming 

language, utilizing optimization routines of the SciPy 

(Scientific Python) package. 

The symmetry of the structure as well as the loading was used 

to reduce the model size and work with only half of the bridge 

and respective symmetry conditions (Figure 7, top). As the 

analysis will be done on the level of nominal stresses, a detailed 

modelling of the bolted connections was not necessary; the 

connections were modeled as rigidly connected plates (Figure 

7, bottom). 

 

 

Figure 7. Geometry of the FE-model (top) and a detail of its 

mesh (bottom). 

Using modal analysis of the bridge structure, several 

eigenfrequencies and mode shapes were calculated; the first 

two of which are displayed in Figure 8. 

 

    

Figure 8. Mode shapes of the FE-model: f1=5.48 Hz (left) and 

f2=10.22 Hz (right). 

The model calibration was performed in three steps: 1. using 

measured strain responses during train passages, 2. using 

measured eigenfrequencies and mode shapes, 3. using both sets 

of measured data together. The updating was done twice, using 

two different objective functions: the squared differences 

approach (Eq.1) and the Gauss error function approach (Eq.2). 

 𝐽𝑠𝑞 =  ∑ (
𝑧𝑛(𝑖)−𝑧𝑒(𝑖) 

𝜎𝑒(𝑖)
)

2
𝑚
𝑖=1  (1) 

 𝐽𝑒𝑟𝑓 =  ∑ 𝑒𝑟𝑓 (𝑤 ∙
|𝑧𝑛(𝑖)−𝑧𝑒(𝑖)| 

𝜎𝑒(𝑖) √2
)𝑚

𝑖=1  (2) 

The structural parameters that were subjected to updating are 

listed in Table 2. They comprise of relevant parameters 

affecting the global stiffness, stiffness of connections, as well 

as distribution of structural masses. 

Table 2. Values of updating parameters. 

Parameter Initial 

value 

Updated 

with 𝐽𝑠𝑞 

Updated 

with 𝐽𝑒𝑟𝑓 

Young’s modulus [GPa] 210  220.5 205.8 

Steel density [kg/m³] 7850 8282 8282 

Coef. for cross-girder 

connection stiffness 
1 1.5 1.31 

Coef. for main truss 

connection stiffness 
1 1.5 0.683 

Translation rail spring 

[MN/m] 
0 0 0 

Rotational bearing spring 

[MNm/m] 
0 1000 0 

Coef. for sidewalk mass 1 1.1 0.9 

Cover plate mass coef. 1 1.1 0.9 

Thickness of stiffener at 

cross-girder connection 

[mm]  

17.5 20.2 19.2 

 

The two updating algorithms suggested different solutions 

for the updating parameters. While the squared differences 

approach favored increase of both stiffness (global and 

connections) and masses, the updating approach of Gauss error 

function suggested in comparison lower connection stiffness 

and non-structural masses. The agreement of the updated 

parameters with their real values could not be checked due to 

significant effort that would be required for such testing. This 

would be also the usual case in any other real applications. 

The updated models were subsequently used in evaluation of 

fatigue damage evaluation at selected fatigue-critical details. 

Five critical details were identified in total. The first three of 

them are displayed in Figure 9. Most critical was detail nr.3, 

which covers fatigue failure in the lateral direction in the 

stiffener plate at the toe weld. The upper fillet weld produced a 
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detail category of 36 N/mm² for a root crack at the weld, which 

ranked it as most fatigue-critical spot on the structure. 

 

Figure 9. Three fatigue-critical details at the connection of 

cross-girder to bottom chord of the truss. 

The differences in updated structural parameters resulted in 

influence lines of strain at fatigue-critical location as presented 

in Figure 10.  

  

 

Figure 10. Influence lines of strain at five fatigue-critical 

details before updating (solid lines), after updating with… 

(dashed lines) and after updating with … (dash-dotted lines). 

3 TRAFFIC LOADS 

To highlight the difference of traffic load assumptions in 

different cases of data availability, three cases were considered: 

• No track-specific data available 

• Traffic management data available for given section 

• Wayside monitoring data available for given section 

The first case represents the usual situation used in design of 

new bridges, where the train mix according to Eurocode is 

used. In the second case, the traffic management data provide 

basic information about train traffic specific to the track 

section. This information includes total train length, total train 

weight (estimated from wagon specifications), number of 

wagons and type of locomotive, and is listed for all train 

passages in a given time period. The third case represents the 

most accurate information: data from a wayside monitoring 

system, which provide axle forces and axle spacings of all train 

passages in a given time period. 

Since the availability of wayside monitoring data is generally 

limited, it is expedient to have a methodology that can use 

traffic management data to generate track-specific estimation 

of traffic loads. Such a methodology was developed within the 

Assets4Rail project. Detailed description of the methodology 

can be found in [16]; in this paper only a brief outline can be 

presented. 

The procedure evaluates basic properties of trains from train 

management data and groups similar trains into clusters. For 

freight trains, the chosen basic properties were: unit mass of 

wagons [t/m], unit mass of locomotive(s) [t/m], and the number 

of carriages. Clustering algorithms were used to create train 

groups from available data, and then evaluate statistical 

properties of each group created. Figure 11 shows an example 

of evaluated train groups, represented by individual boxes. The 

placing and dimension of the displayed boxes correspond to the 

range 〈𝜋 − 𝜎; 𝜇 + 𝜎〉 of the three parameters annotated on the 

respective axes. The number in center of each box indicated the 

cluster size, i.e. number of train passages that were grouped in 

the respective cluster. 

 

Figure 11. Clustered train management data of freight trains. 

In the next step, a representative axle sequence was generated 

for each cluster. A database of wagon properties and a train 

model generation algorithm developed within the Assets4Rail 

project was used to this end. This algorithm requires 

deterministic values of basic train properties (number of 

carriages, etc.) as input: one set of values for each cluster. From 

the statistical evaluation of train data within each cluster, 

different quantiles can be chosen to represent each cluster. In 

order to compare the differences, the quantiles of 25%, 50%, 

75% and 95% were used in further evaluations. 

Schemes of generated axle sequences for 10 selected clusters 

of freight trains is partly shown in Figure 12; they consist of a 

sequence of arrows, height of which is proportional to the axle 

force magnitude. Loading situation of individual wagons 

(empty / full) is considered. 

 

 

Figure 12. Partial schemes of freight train axle-sequences 

generated for selected train clusters. 
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In each train scheme, a locomotive with 6 axles is visible on 

the left side; the axle-force arrows display a force of 220 kN. 

The empty wagons can be recognized by the very small axle-

forces shown at the wheel positions, which correspond to forces 

of less than 100 kN. The wagons feature different lengths (15 – 

25 m) and axle configurations, which were chosen from 

catalogues of existing wagon stock. 

Comparison of the track-specific train properties with the 

fatigue load model of the Eurocode showed some differences 

presented in Figure 13. The unit mass of the trains was 

considerably lower compared to the Eurocode standard traffic 

mix, while the number of axles was slightly higher in the freight 

trains. The shown results refer to one of the locations within 

Austrian railway network that was analyzed. 

  

 

Figure 13. Cumulative Density Functions of the unit train 

mass (left) and number of axles (right) for trains generated 

from train management data compared to Eurocode. 

In order to compare the differences between different axle-

load sequences, their effect on the fatigue damage 

accumulation on different systems was analyzed. For this 

purpose, the midspan bending moment in simply-supported 

single-span bridges was used, simulating fatigue critical details 

governed by longitudinal stresses at such location. The span 

length was varied between 4 and 60 m. Eight traffic load mixes 

were analyzed: three Eurocode traffic mixes (light, standard, 

heavy), four traffic mixes generated the train management data 

using 25%, 50%, 75%, 95% quantiles of basic train properties 

for each cluster (TRGEN:_q25, _q50, _q75, _q95), and finally 

axle-sequences as measured by a wayside monitoring system. 

The fatigue damage accumulation evaluated using the wayside 

monitoring data was used as reference (𝑑𝑟𝑒𝑓), since it 

represents the most accurate result. To eliminate the influence 

of total traffic volume, all traffic mixes were normalized the 

total traffic volume of 25 Mt/year. Figure 14 shows a 

comparison of the evaluated fatigue damages in relation to the 

reference (wayside monitoring data). 

This comparison shows that the Eurocode standard traffic 

mix produced a fatigue damage that exceeds the reference by 

50% - 160%, depending on the span length. The dependance of 

this exceedance on the span length could be caused by the way 

the Eurocode models were calibrated, and may vary for bridges 

with different static systems. 

Using the train management data, this conservativism would 

be reduced to 35% - 105% exceedance. 

 

Figure 14. Fatigue damage accumulation evaluated for 

different normalized traffic mixes relative to 𝑑𝑟𝑒𝑓 . 

 

4 FATIGUE RELIABILITY EVALUATION 

A full-probabilistic approach was chosen to evaluate the 

reliability index of fatigue damage occurrence. This included 

probabilistic modelling of structural properties, traffic load 

actions, as well as the fatigue resistance. The distributions of 

many of the probabilistic variables were adopted based on the 

recommendations of the probabilistic model code [17]. The 

limit state function was defined according Eq. 3, where 𝐷𝑐𝑟  is 

the accumulated fatigue damage at the failure (defined as a 

probabilistic variable) and 𝐷𝑌𝑒𝑎𝑟  is the fatigue damage 

accumulation within one year (also a probabilistic variable).  

 𝐺(𝑡) = 𝐷𝑐𝑟 − 𝐷𝑌𝑒𝑎𝑟 ⋅ 𝑡 (3) 

The failure probability and the reliability index are then 

evaluated using Eq. 4 and 5, respectively. 

 𝑃𝑓(𝑡) = 𝑃[𝑇 ≤ 𝑡] = 𝑃[𝐺(𝑡) < 0] (4) 

 𝛽 = −𝛷−1(𝑃𝑓) (5) 

Figure 15 shows 𝐷𝑌𝑒𝑎𝑟  for the detail Nr. 3, compared 

between different models. The blue curve represents the case 

without using any monitoring data (no prior information) and 

results into the highest estimates of damage accumulation. If 

the model uncertainty can be estimated from the monitoring 

data, it can substantially reduce the total uncertainties. In here, 

the model uncertainty was determined from the uncertainty of 

influence lines evaluated from the measurements with the test 

train and the resulting distribution of damage accumulation (the 

orange curve) shows a significant reduction as result. The 

influence lines still correspond to the initial model, i.e. without 

updating. 

After the model updating, the evaluated damage 

accumulation shows further reduction, as it can be observed 

from the green curve obtained using updating with the squared 

differences approach (Eq.1), and red curve obtained using 

updating with the Gauss error function approach (Eq.2). 
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Figure 15. Distribution of the yearly fatigue damage 

accumulation on detail 3 using different numerical models. 

The Figure 16 shows the reliability index evaluated at 

different points in time, comparing the same evaluation cases 

as in Figure 15: blue curve – without monitoring, orange curve 

– model uncertainty from monitoring but no updating, green 

and red curves – with additional model-updating step. The 

minimum required value of the reliability index is specified to 

be in range 1.5 – 3.8, depending on the accessibility of the detail 

and other factors. This range is displayed as a grey area. The 

failure probabilities related to reliability indices of β=1.5 and 

β=3.8 are Pf = 0.067 and Pf = 7.23 .10-5, respectively. 

Whereas without monitoring data, the reliability index would 

reach after 100 years the value of β=2.1 (Pf = 0.018), the 

inclusion of monitoring data combined with model updating 

could increase the reliability index value up to β=4.35 (Pf = 

6.8 .10-6) in this particular case. 

 

Figure 16. Development of the reliability index for detail 3 

over time: comparison of different models. 

 

5 CONCLUSIONS 

The presented work summarizes the uncertainty parameters 

affecting fatigue damage evaluations and shows a way of 

dealing with them in a full-probabilistic analysis. The traffic 

loads can be updated using section-specific data, preferably 

wayside monitoring data that provide measured axle-load 

sequences. Alternatively, train management data can also be 

used to derive alternative, section-specific axle-sequences for 

fatigue evaluations. Since they rely on less accurate data 

regarding train masses compared to wayside monitoring, they 

tend to provide more conservative results. The use of train 

management data could be regarded as intermediate step 

between wayside monitoring (which is the reference) and the 

use of Eurocode fatigue load models. 

Probabilistic fatigue evaluations have shown that updating of 

the uncertainty of influence lines using monitoring data 

contributed significantly to improving the result accuracy, as 

compared to the case with no prior information, in which model 

uncertainties according to recommendations of the 

probabilistic model code were used. 

The updating of the numerical model provided a further 

increase of estimated reliability indices, at a cost of significant 

computational effort required to perform the model updating. 

The results presented in this use case cannot be generalized. 

The increase of reliability index due to more accurate models 

of traffic loads and the numerical model of the bridge depend 

on many factors that are specific to the respective track section, 

the bridge structure and the monitoring system applied. 

The purpose of this work was rather to present an approach 

that encompasses dealing with uncertainties on the side of 

traffic loads as well as of the structural response, and joins them 

together with probabilistic definition of fatigue resistance in a 

full-probabilistic evaluation of the fatigue reliability index. 

The application of the presented methods could be 

recommended especially for cases where larger discrepancies 

between the original fatigue assessment assumptions and the 

reality are suspected. This may apply to bridges on track 

sections with much lower (or much higher) portion of freight 

traffic, or sections where freight trains operate with a 

significant number of empty wagons. Further, bridges with 

larger modelling uncertainties may profit from the use of 

monitoring data, for example short bridges (due to uncertain 

track interaction) or bridges that were calculated using models 

with significant simplifications, especially simplifications of 

member connections. 
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ABSTRACT: The ÖBB Rheinbrücke, situated in the vicinity of Lustenau, represents a novel approach to steel-concrete composite 

arch structure engineering, boasting a span of 102 meters. The primary supporting structure is a tied-arch comprising 12 round 

steel hangers, each with a diameter of 100 mm, situated on either side of the bridge. The maximum length of the hangers is 18.9 

meters. In arch bridges of this type with steel hangers, wind-induced vibrations in the hangers can result in high-frequency, high-

amplitude fluctuations in stress levels, particularly in the hangers and their connections. This can be problematic from the 

perspective of fatigue, particularly given that the hanger connections often have notch-sensitive details. Following the completion 

of the bridge, comprehensive monitoring was conducted in accordance with the original plan. This was done with the objective of 

acquiring data regarding the vibrations experienced by the hangers and the subsequent damage to the material. This data was then 

used to determine whether vibration-reducing measures were necessary. During the course of monitoring and subsequent 

evaluation, it was observed that wind-induced vibrations in the hangers could result in the occurrence of fatigue-relevant stress 

ranges. This article serves to emphasise the importance of structural health monitoring in confirming the efficacy of vibration 

reduction measures, which have the potential to extend the service life of railway bridges. 

KEY WORDS: monitoring; wind-induced vibrations; fatigue. 

1 INTRODUCTION 

Railway bridges, integral to transportation networks, are 

subjected to diverse and dynamic loading conditions, 

necessitating diligent monitoring and maintenance strategies to 

guarantee their continued safety and operational efficiency. 

Specifically, the application of SHM to railway bridges enables 

the early detection of potential damage or deterioration, thereby 

averting catastrophic failures and extending the lifespan of 

these critical infrastructures. The implementation of SHM 

systems typically involves the deployment of various sensors, 

data acquisition systems, and communication networks to 

continuously monitor key structural parameters such as strain, 

displacement, acceleration, and temperature [1] By analyzing 

the data acquired from these sensors, engineers can identify 

anomalies or deviations from baseline behavior, which may 

indicate the presence of damage or deterioration [2] The 

integration of advanced data analytics, significantly augments 

the capabilities of SHM systems, enabling the detection of 

nuanced changes in structural behavior that might elude 

traditional inspection methodologies. These analytical 

techniques can discern patterns and trends in the data, thereby 

providing valuable insights into the underlying mechanisms 

driving structural degradation. [3]. In light of these 

considerations, this paper delves into the practical application 

of SHM in assisting the decision to apply correction 

measurements, with a particular focus on the ÖBB Rheinbrücke 

near Lustenau. the ÖBB Rheinbrücke is single-track and 

electrified. It is a total of 276.5 m long and 7.95 m wide and 

consists of a 102 m wide tied arch bridge over the Rhine as well 

as four trough bridges over the western foreland and two trough 

bridges over the eastern foreland (Figure 1).  

 

Figure 1. ÖBB Rheinbrücke 

The entire bridge has a continuous ballast bed. The tied arch 

bridge has two parabolic arches made of reinforced concrete, 

which are clamped in steel sleeves on the end cross girders. The 

bridge structure has twelve round steel hangers with a diameter 

of 100 mm on each side of the bridge. The maximum hanger 

length is 18.9 m. The connection of the hanger trapeziums to 

the connecting plate and the connecting plate to the upper 

flange of the longitudinal beam are designed as welded seams 

(Figure 2). 

Wind-induced vibrations in these hangers can lead to high-

frequency, high-amplitude stress fluctuations, particularly in 

the hangers and their connections, posing a significant fatigue 

risk. The susceptibility to fatigue is exacerbated by the presence 

of notch-sensitive details in the hanger connections, rendering 

them vulnerable to crack initiation and propagation under 

cyclic loading conditions [4]. Great attention was already paid 

to this issue during the planning phase of the bridge built in 

2011. However, in order to gain experience of the phenomenon 

of hanger vibrations for this and future bridges, the hangers 
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were initially designed without vibration-reducing measures. 

nevertheless, precautions were taken for the later installation of 

measures to reduce vibrations. 

 

 

Figure 2. Detail of the hanger connection 

 

Two wind related physical phenomena, vortex-induced 

transverse vibrations and rain-wind-induced vibrations, can 

appear during the structure's service life. Those characteristics 

of those phenomena are briefly described below. 

● Vortex-Induced Vibrations: These vibrations are caused by 

vortices detaching alternately from each side of the hanger. The 

frequency of this oscillating force is related to the Strouhal 

number, approximately 0.2 for cylinders. According to [5], the 

critical wind speed for the respective mode shape is calculated 

using equation (1) 

  𝑣𝑐𝑟𝑖𝑡,𝑖 =
𝑓𝑖∙𝐷

𝑆𝑡
 (1) 

Where D is the hanger diameter, fi is the natural frequency of 

the respective mode shape and St is the Strouhal number. 

● Rain-Wind-Induced Vibrations: These vibrations occur 

during simultaneous rain and wind events. They are 

characterized by low frequency and high amplitude, potentially 

leading to high stress amplitudes. According to [5], [6] the 

critical wind speed for this type of excitation can be calculated 

using equation (2). 

  𝑣𝑐𝑟𝑖𝑡,𝑖 = 73.5 ∙ 𝐷 ∙ 𝑓0 ∙ (
𝑓𝑖

𝑓0
)
0.6

 (2) 

where D is the hanger diameter, f0 is the reference frequency 

and fi the natural frequency for the respective mode shape 

Empirical studies [7],[8],[9] indicate these vibrations are 

most likely in light to moderate rain and wind speeds between 

4 and 20 m/s. 

 

2 MONITORING SYSTEM AND DATA EVALUATION 

After the construction of the bridge, an extensive measurement 

program was started as planned. The monitoring system 

deployed on the ÖBB Rheinbrücke comprised an array of 

sensors strategically positioned to capture the dynamic 

response of the hangers. In the preliminary stage of the 

program, two cables of varying lengths were subjected to 

monitoring. H6, the longest cable on the bridge, measures 19 

meters, while H4 measures 14 meters. The most critical 

element in terms of fatigue failure was used as the reference 

point for calculating the stresses. In the present case of the 

Rheinbrücke, they are the connections between the connecting 

plates of the hanger and the upper flange of the longitudinal 

girder (Fiure. 2) which present a notch type of 45 N/mm(2) 

([10], Table 8.5, Design Detail 1). Strain gauges were affixed 

to these hanger connection plates to measure stress variations, 

while accelerometers were installed to capture vibrational 

frequencies and amplitudes on the hangers. In addition, 

temperature sensors were integrated into the system to account 

for thermal effects on the structural behavior of the bridge. The 

acquired data was transmitted in real-time to a central data 

acquisition system, where it underwent processing, analysis, 

and storage. Table 1 and Figure 3 show the number and location 

of the installed sensors.  

 

Table 1. Sensors at the Rheinbrücke 

 Ref.in 

Figure 3 

Number of 

Sensors 

Acceleration AS 8 

Displacement Weg 2 

Temperature (Component) TEMP 4 

Linear strain gauges DMS-L 35 

Rosette strain gauges DMS-R 10 

Wind speed  1 

Wind direction  1 

Rain intensity  1 

Air temperature  1 

 

In order to keep the amount of data reasonably limited, the 

strain values are recorded in a triggered manner; the recordings 

are started at accelerations greater than 0.4 m/s2 at the hangers. 

The weather data and temperature, on the other hand, are 

recorded continuously.  

 

Figure 3. Position of the installed sensors 

 

During the almost ten-year monitoring period (April 2013 to 

the end of 2022) on the Rhine bridge, numerous events with 

vortex-induced transverse vibrations and rain-wind-induced 
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vibrations were recorded. To evaluate the recorded data, the 

critical wind speeds were calculated using formula (1) for 

vortex-induced vibration and formula (2) for rain-wind-

induced vibration. The calculated speeds were useful for the 

analysis and classification of the different events.  

To assess the effects of the wind induced vibrations on the 

fatigue resistance of the structure, the cut-off limit for the 

fatigue strength was calculated according to [10], resulting in a 

value of 15.8 N/mm2. This implies that every stress range 

above this limit is relevant for the fatigue resistance. and must 

be considered for the damage accumulation. The process of 

damage accumulation is an important aspect of fatigue analysis 

as it is used to predict the remaining service life of a component 

or structure. The Palmgren-Miner rule [11,12] has been used to 

calculate the amount of damage produced by a given loading 

history by summing the damage caused by each loading cycle. 

The following sections describe one event of each type, 

providing a better insight into the effects of these events on the 

structure.  

 Vortex induced vibrations 

Table 2 shows the calculated frequencies for the monitored 

hangers. 

Table 2. Natural frequencies 

Hanger H4 H6 

Mode 

Shape 

f[Hz] f[Hz] 

1 4.0 3.5 

2 8.7 7.4 

3 14.5 11.9 

 

The measurements carried out show that the critical wind 

speed calculated for the 3rd natural frequency wind speed 

vcrit.3= 6 m/s caused the hanger H6 to oscillate over longer 

periods of time with stress oscillation amplitudes above the 

fatigue strength threshold value, as the stress history plot in 

figure 4 shows. During the duration of the event, the condition 

for vortex-induced vibration excitation was fulfilled by a 

constant wind speed around the calculated critical speed for a 

long period of time (over two hours in this event). 

 

 

Figure 4. Stresses caused by a vortex-induced vibration event 

Figure 4 shows that the stresses measured on cable H6 are 

much higher than those measured on cable H4. The stresses on 

cable H4 are irrelevant for fatigue damage. Figure 5 clearly 

shows that the measured frequencies are close to the calculated 

third natural frequency. This indicates that higher natural 

modes than the first must be considered when evaluating 

fatigue damage. 

 

 

Figure 5. Frequency of the vortex-induced vibration 

 Rain-wind induced vibration 

To detect and characterize event of this type, a criterion based 

on the calculated critical speed (table 2) for the first natural 

frequency and the presence of persistent precipitation has been 

applied. A typical stress history for this type of events is 

presented in figure 6. 

 

Figure 6. Stress history over a rain-wind induced vibration 

event 

During the duration of this event, the wind speed was only 

occasionally in the range of the calculated critical wind speed 

vcrit,1= 15.7 m/s, the damaging vibrations nevertheless 

occurred for a longer period of time. It should be also noted that 

it rained unusually heavily (over 50 mm/h) shortly before the 

build-up. Generally, from the recorded rain-wind-induced 

events, it can be inferred that the stress range of hanger H6 is 

significantly higher than in events in which vibrations are 

caused solely by vortex-excited transverse vibrations. 

 

3 FATIGUE DAMAGE AND LIFE CYCLE  

During the entire bridge monitoring period, regular 

calculations of the remaining service life of the critical weld 

seam between the connecting plate and the top chord of the 

longitudinal girder were carried out on the basis of the 

Palmgren-Miner rule. In order to be able to make a statement 

as to whether the observed stresses could become a problem for 

the hanger connections over the years, the stress range 

collective recorded during the measurement period was 

extrapolated to a service life of 100 years in this work. For this 

purpose, it is assumed that exactly the same stresses occur 

during the extrapolation period as during the period in which 

the monitoring was carried out. Under this assumption, the 

collective stress range measured can simply be multiplied by a 

corresponding factor and thus a forecast for the theoretical 

service life can be created using the Palmgren-Miner 

hypothesis. No distinction was made between individual 

vibration types in these forecasts; all vibration sources such as 
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rain-wind-induced vibrations and vortex-induced transverse 

vibrations, as well as train passages, are therefore included 

here. The data are added together to obtain a statistically sound 

statement about the remaining service life of the monitored 

hangers. It should be noted at this point that only heavy freight 

trains can cause stress oscillation amplitudes relevant to 

fatigue, and that these do not significantly reduce the remaining 

service life, due to their low frequency. The history of the 

theoretical residual service life is shown in Table 3 

Table 3. Progress of theoretical service life (years) 

Hanger Marz 

2018 

July 

2019 

June 

2020 

June 

2021 

June 

2022 

Nov. 

2022 

H4 465 269 394 475 573 626 

H6 42 40 21 18 22 23 

H7 207 360 265 353 461 518 

 

The remaining service life forecasts show that the influence of 

wind induced vibrations, on the hanger H6 is remarkable, while 

the influence on the shorter hanger (H4) plays a subordinate 

role with regard to the planned service life. 

 

4 VIBRATION-REDUCING MEASURES 

Following the results of the monitoring campaign, it was 

decided to install a system to reduce the effects of vibration on 

the Rheinbrücke. Interconnecting adjacent cables using cross-

ties is a method that has been experimentally tested on 

numerous suspension bridges [13], which simply and 

effectively mitigates the effects of wind-induced vibrations. In 

addition, this vibration reducing measure was already proposed 

during the planning phase in case of need. It consists of 

connecting the bridge hangers with small-diameter cables. In 

this way, the vibration energy is distributed over several 

hangers with different natural frequencies. In this manner, 

unexcited hangers act as dampers [13,14]. 

 

 

Figure 7. Vibration reducing cable 

 

In May 2017 such measure was implemented by installing 

a 3 mm cable connecting hanger H7 and hanger H8 (Figure 7). 

After installation, H7, which has the same length as H6, was 

also monitored to evaluate the effectiveness of the procedure. 

As can be seen in figures 3 and 4, the amplitude of the measured 

stresses is significant reduced when compared with those in 

hanger H6. Using this method, it is possible to improve the 

issue of fatigue damage in the structure, as can be seen from the 

calculation of the theoretical service life in Table 3. In the 

summer of 2021, the measure was installed on the remaining 

bridge cables. The data presented in Table 3 unequivocally 

reveals a trend change in the theoretical service life of cable H6 

since the installation of the connecting cable. This finding is 

confirmed by calculations for the subsequent years, thereby 

underscoring the beneficial effect of this measure. 

 

5 CONCLUSION 

This article presents the effects of vortex-excited transverse 

vibrations and rain-wind-induced vibrations on the ÖBB 

Rheinbrücke near Lustenau. Data collected during a long and 

extensive monitoring campaign on the bridge were used for this 

purpose. 

The following conclusions can be drawn from the analyzed 

data: 

• Wind-induced events cause fatigue-relevant stresses 

that are dependent on the weather conditions  

• The effects of vortex-induced and rain-wind-induced 

events on the fatigue strength are much more 

pronounced for the hangers with greater length. 

• The damaging effect of such events can be effectively 

reduced by installing cables joining adjacent hangers 

The theoretical service life increases progressively, 

which confirms the positive effect of the measure 

against fatigue failure. 

 

These findings underscore the critical importance of 

considering wind-induced vibrations in the design and 

maintenance of arch bridges, especially those with slender steel 

hangers. The implementation of a structural health monitoring 

system proved invaluable in detecting and quantifying these 

vibrations, allowing for timely intervention and mitigation 

strategies. The SHM system enabled the detection of wind-

induced vibrations in the hangers, which could have led to 

fatigue damage and premature failure, thus contributing to the 

mitigation of potential risks. 
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ABSTRACT: Railway steel bridges are often affected by material fatigue, i.e. crack formation and crack growth at areas of high 

stress concentrations under millions of load cycles due to the traffic load. To support the continued safe operation of these 

structures a flexible and robust system solution for structural health monitoring is needed. It provides the responsible bridge 

inspector with useful information regarding the current condition and the future development of the monitored area. This offers 

the infrastructure operator an opportunity for optimised planning of inspection intervals and maintenance measures and helps to 

extend the service life of these structures. For this purpose, the RISE system was developed by TÜV AUSTRIA in close 

cooperation with the Austrian Federal Railways ÖBB. The RISE system monitors fatigue cracks and/or highly stressed areas using 

acoustic emission (AE). The system records the AE response from the monitored area while the material is stressed by the usual 

day-to-day railway operations. The analysis of the change of this material response over the monitoring period is used to predict 

the future development of the crack. In this paper the application of the RISE system for bridge inspection is presented for steel 

bridges in the railway network of ÖBB. The system solution is presented as a whole, from the installation on-site until the 

evaluation of the monitoring data and the obtained results supporting the responsible bridge inspectors. 

 

KEY WORDS: SHMII-13; acoustic emission, fatigue cracks, steel bridges. 

1 INTRODUCTION 

Steel bridges are often affected by fatigue cracks due to cyclical 

loading caused by trains passing over them. Bridges at the end 

of their service life inevitably develop such cracks. The ÖBB 

team takes care of the maintenance of the bridges in its railway 

network and thus ensures the safety of the day-to-day train 

traffic. ÖBB employees inspect the bridges at regular intervals 

and assess their condition. 

ÖBB was looking for a way to find a tool for these bridge 

inspectors to give them a way to monitor fatigue cracks and 

detect cracks at locations where cracks are suspected. In 

addition, this tool should be able to predict the future 

development of the condition of the monitored component 

when cracks already present, to help with a more precise 

planning for inspections intervals and repair measures. As part 

of the Rail4Future program co-financed by the Austrian 

Research Promotion Agency, the monitoring of cracks using 

acoustic emission (AE) was selected as the method. 

TÜV AUSTRIA and ÖBB have been cooperating for years in 

the implementation of acoustic emission as a monitoring tool 

for railway steel bridges. As part of this cooperation, a stand-

alone solution, RISE (Remote Inspection System Edge), has 

been developed. A monitoring solution for the detection and 

monitoring of fatigue cracks on railway steel bridges.  

RISE offers monitoring as a service for railway infrastructure 

operators, from setting up the monitoring, recording the data to 

generating the report. In addition, a prediction on the future 

development of the crack is also provided.  

This method is known as the failure forecast method (FFM). 

A method that is utilizing the near constant measurement data 

stream from the device to predict the time until the maximum 

utilization of the monitored component is reached.  

The RISE device was developed with the focus point to be a 

reliable and easy to install acoustic emission monitoring 

system. RISE is specifically designed for monitoring due to its 

compact design, low power consumption and simple 

installation. 

2 OVERVIEW OF MONITORING SYSTEM 

 Technical overview 

RISE by TÜV AUSTRIA is an acoustic emission system 

designed for detection and continuous monitoring of fatigue 

cracks. RISE consists of a hardware component, the RISE-

Core, which is installed on site and a server infrastructure for 

data evaluation and monitoring result presentation on an online 

dashboard. The data from the RISE-Core is sent to this data 

platform via a mobile network and an encrypted connection. 

The data stream is processed on the server. The results are 

displayed on a graphical online interface, the RISE dashboard, 

where they are accessible by the customer.  

The RISE-Core is installed at the position where a crack is 

suspected, or an already existing crack needs to be monitored. 

The system has four acoustic emission channels. The connected 

piezoelectric sensors detect the mechanical waves generated by 

the growth of cracks inside the material. Acoustic emission 

occurs when the defects in the material are excited by a load. 

The propagation of the defect is accompanied by the release of 

energy in form of an elastic wave. Acoustic emission is 

therefore a passive non-destructive method. In the case of 

railway steel bridges, the load needed for activation of cracks 

is the passage of trains over the bridge from the usual daily 

Acoustic emission monitoring of fatigue cracks for railway steel bridge inspection 
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traffic. Monitoring with the system therefore provides 

information about the acoustic emission material response to 

the currently operational load.  

The preprocessing of the signals in the form of extraction of 

basic acoustic emission parameters takes place on site. The 

system is designed so that the power can be provided via a small 

off-grid solar system. A mobile network connection is required 

to outsource the needed computing power to a server. It is 

possible to use several RISE-Cores on one bridge. For every 

monitoring position one RISE system is required. 

 Theory of operation 

Every time a train passes over the steel bridge, the material is 

stressed. This can cause fatigue crack growth to occur at 

locations with high stress concentrations due to periodic 

overloading of the material. The crack growth is accompanied 

by a stress reconfiguration and a sudden release of energy in 

form of elastic waves in the material. The mechanical waves 

propagate in the material and can be converted into an electrical 

signal utilizing the piezoelectric sensors. This signal is 

digitalized and the acoustic emission parameters that are 

relevant for further evaluation are extracted from it. The system 

therefore is recording the AE material response to the 

operational load. 

As first processing of data on the server, located events are 

calculated. This method deals with combining the signal 

information from the whole sensor array and not an individual 

sensor only and providing the information about the point of 

origin of the mechanical wave. To indicate an acoustic 

emission event as a located event, several sensors must be 

excited by the mechanical wave and the strength of the 

electrical signal generated by the piezoelectrical element must 

exceed a specified threshold (in mV). In addition, the time 

difference on arrival at the different sensors must not exceed a 

certain specified value (1st-Hit Discrimination Time). This 

time value is related to the distance between the sensors and the 

time it takes for the mechanical wave to travel this distance at 

a defined speed of sound. The calculation of the wave's point 

of origin is calculated from the time differences of the 

individual signals, the speed of sound and the position of the 

sensors. The detection of the events relevant for further 

evaluation is carried out by 3 measuring sensors, which 

surround the crack or the monitored area in a triangular 

configuration. 

So-called guard sensors are used to ensure that no noise from 

outside the monitored area interferes with the measurement. 

These are placed around the measuring array consisting of the 

three measuring sensors. Incoming waves that are first detected 

by one of the four guard sensors are not used to calculate the 

material response, as the system recognizes that the mechanical 

wave originated outside the monitored area of interest. 

RISE provides a statement about the further development of 

the crack after a given measurement time. This method is 

known as the failure forecast method. The information helps 

the infrastructure operator to plan the inspection intervals and 

repair measures for ageing bridges. The method is based on 

rate-based structural health monitoring and requires near-

continuous measuring data [1].  

Many load-controlled processes, such as fatigue crack 

growth, show positive feedback. Crack growth accelerates as 

the degree of degradation progresses. The closer the system 

gets to the point where it has exhausted its capacity to withstand 

the load, the higher the rate at which the degradation 

progresses.  

This point in time is therefore the time when the maximum 

utilization of the monitored component is reached. The 

advantage of this method is that it is not the crack growth per 

se that is monitored, e.g. the crack length, but the change in a 

measured value that is symptomatic for the degradation (see 

Figure 1). 

 

 

Figure 1 Illustration of the acoustic emission material 

response with the progression of a fatigue crack growth due to 

the cyclic loading of trains passing over the bridge. 

In the case of acoustic emission monitoring, this value can be 

the energy of the acoustic emission signals, localized events, or 

hits detected from the monitored area.  

Crack growth generates a mechanical wave that propagates 

through the material by releasing elastic energy stored in the 

crack tip. These mechanical waves can be converted into an 

electrical signal using piezoelectric sensors, which is then 

digitized and made available for further evaluation. The 

advantage of FFM over conventional methods for assessing 

degradation is that it does not require any detailed information 

about material properties and crack geometry. Only the 

material response to the operational conditions over time 

provides the data required to make a statement about future 

development.  

Fukuzono [2] and Voight [3][4] were able to show in their 

works that there is a correlation for many degradation processes 

that can be expressed in Equation 1: 

 
𝑑2Ω

𝑑𝑡2 = 𝐴 (
𝑑Ω

𝑑𝑡
)

𝛼

 (1) 

Ω is the measured variable associated with the degradation. 

In the case of monitoring fatigue cracks on steel bridges, the 

variable is the accumulated acoustic emission response of the 

material (see Figure 1). The two constants A and α are 

empirical parameters that are dependent on the process under 

consideration. The equation can be integrated in the range from 

t to time tf (time of maximum utilization of the component) with 

α > 1 (Equation 2): 

 (1/ 
𝑑Ω

𝑑𝑡
)

𝛼−1

≈ (𝛼 − 1)𝐴(𝑡𝑓 − 𝑡) (2) 

The equation can be further simplified for the case that α≈2, 

which is the case for fatigue crack growth [1]. This can be 
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verified from the measurement data by plotting the logarithm 

of the first and second time derivatives of Ω and finding α from 

the calculated slope. 

So obtained equation shows a linear correlation (Equation 3). 

 
1

Ω̇
≈ 𝐴(𝑡𝑓 − 𝑡) (3) 

As the rate of change of the material response is very high at 

the point in time at which the maximum material utilization of 

the monitored component is reached, a statement can be made 

from the monitoring data about this point in time. For this 

purpose, the inverse rate of the material response is plotted 

against time. The calculated linear regression line intersects the 

time axis at the point where the inverse rate of change of the 

material response approaches zero (see Figure 2). 

Based on the remaining time until the maximum utilisation of 

the component is reached, a traffic light rating system is set up 

and the operator is given a recommendation on how to proceed. 

If the time until maximum utilisation is reached is longer than 

the time window of a regular periodic inspection, further 

monitoring is only necessary within the designated time (green 

area). If the time interval is shorter than the time window of a 

periodic inspection, a permanent monitoring is recommended 

(yellow area). If the time to maximum utilisation of the 

component is very short, not only a further inspection is 

required, but also safety measures are appropriate (red area).  

The failure forecast method is shown to be tolerant for 

random variable amplitude loading that is statistically 

stationary as it is the case for train passages that have a variety 

of train mass [7]. A significant change in the exploitation of the 

bridge would require a new monitoring of the material response 

due to drastically changed traffic loads. 

 

 

Figure 2 Illustration of application of the failure forecast 

method on continuous monitoring data. The linear regression 

line is intersecting the time axis at the time point of maximum 

utilization of useful life of the monitored component. 

 

3 FIELD APPLICATIONS 

 Bridge with fatigue cracks in the area of the transverse 

stiffener to the main girder web plate 

During the regular inspection of this bridge, cracks were 

discovered in the area of the main girder web plates. In the first 

on-site analysis, these cracks could be identified as fatigue 

cracks [5]. The cracks were limited to the connection detail of 

the transverse stiffeners welded to the main girder web plate. 

  

Figure 3 Monitored position with the suspected crack at the 

welded connection of the transverse stiffener to the main 

girder web plate 

A concept of measures was developed to carry out an 

objective assessment of the cracks on the main girder based on 

calculations and measurements and to make a statement about 

the future development. In the subsequent measurements, 

TÜV AUSTRIA was called in to help assess reinforcement 

measures by means of acoustic emission measurements at the 

crack positions [5]. Around 14% of the 140 identical elements 

were affected by the cracks. During this initial AE 

measurements, also at some reference points with no 

reinforcement installed, a new crack indication was detected. It 

was decided to do a further AE-monitoring using the RISE 

system at this position of interest (see Figure 3) and to assess 

the possible future development of the crack. The aim was to 

test the RISE as a tool for detecting cracks in the early stages 

and to use the measurement results of the monitoring to predict 

the future development of the cracks. 

The measuring equipment required for the monitoring was 

installed while the bridge was in operation, so the train traffic 

was not affected. The piezoelectric sensors (VS150-RSC from 

Vallen, peak frequency at 150 kHz, integrated preamplifier 

with gain of 34 dB) were installed as shown in Figure 5. Three 

sensors were installed near the crack position. These sensors 

record the mechanical waves coming from the crack. To 

improve the coupling of the sensors to the surface, they were 

mounted with a coupling agent. In addition, the paint layer was 

removed off at the sensor positions. The sensors were attached 

to the surface using magnet holders. The connection to the 

sensors was made via BNC-cables (1.5 m). The RISE-Core 

measuring system was also attached near the measuring 

position using a magnetic holder. Four guard sensors were 

installed around the measurement position to shield the 

measurement setup from interfering noise from sources other 

than the crack position. These were positioned to suit the 

installation location in such a way that possible interference 

signals were first detected by the guard sensors and thus filtered 

in the signal processing. As a 230V connection was available 

near the bridge, the measuring system was connected to this. 

This was the only cable that had to be laid out to the measuring 

position. 
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Figure 4 Top - Location map of events from pencil lead 

breaks at the position of the suspect crack. Bottom – Location 

map of events acquired after one train passage over the bridge 

in the position of the crack indication localized with pencil 

lead break test. 

 

The functionality of the installation of the measuring device 

(RISE-Core) and the sensors for condition monitoring could be 

checked using user friendly installation software known as 

"Client Setup Mode". This software solution offers a 

supporting function for checking the functionality of the 

measuring chain, coupling verification of the sensors and 

localization in accordance with the EN 17391:2022-06 

standard. Verification is carried out using a pencil lead break 

(0.5mm/ 2H, in accordance with ASTM E976). A simple and 

reproducible event with energy in the order of magnitude of 

crack growth events. To check the function and the correctness 

of the set parameters, pencil lead breaks were carried out in the 

area of the suspected crack (Figure 4).  

 

 

Figure 5 AE sensor arrangement at the monitored position 

with suspected crack. Sensor 2, not in the picture, is 

positioned behind the connection detail in the distance of 12 

cm from the suspected crack. 

This area is also where the crack growth events are to be 

expected. The Figure 4 shows in the bottom map the localized 

events after a train passing over the bridge. The entire 

installation and inspection of the measurement setup can be 

carried out by a trained technician within one hour. The 

measurement period was 6 months.  

 During this time, the passings of the individual trains and the 

resulting AE material response were recorded. 

 Monitoring at five representative points on a riveted 

steel bridge 

This case involves a riveted steel bridge built in 1936, which 

was found to be in good condition during a visual inspection by 

the ÖBB bridge inspectors. The bridge was to be given a new 

corrosion protection. As this is a cost-intensive maintenance 

measure for the infrastructure operator, the ÖBB wanted to help 

with additional useful information to support the final 

evaluation of the condition of the bridge through the 

responsible bridge inspectors.  

With the help of the bridge inspectors, five neuralgic areas on 

the bridge were selected. These points were selected from the 

experience of the technicians responsible for the inspection as 

the components most affected by cracks and can thus be used 

to assess the general condition of the bridge. This field example 

deals with the measurement of the first selected area, a 

transverse stiffener in the area of the fixed bearing of the bridge. 

This case is an example for monitoring of a hot spot. A larger 

area is monitored than in the case of already known cracks. 

Here too, the 3 measuring sensors (see Figure 6) detect the 

incoming mechanical waves in a triangular arrangement, which 

are triggered in the material by the load of the trains crossing 

over the bridge. 

 

Figure 6 AE sensor arrangement at the monitored position for 

hot spot monitoring at the area of the riveted connection 

element of the transvers stiffener to the main girder. 

 

 

The material response is evaluated for crack growth and 

provides information about the condition of the material in the 

monitored area. As commercially available magnetic sensor 

mounts are too large for the distance between the individual 

rivets, in-house developed sensor mounts are used for the 

riveted bridges. In addition, 4 guard sensors were applied 

around the triangular configuration of the measuring sensors in 

order to exclude spurious noise outside the measuring 

arrangement.  
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Figure 7 Modular PV-solution for RISE. 

As there was no power supply on site at this bridge, a modular 

PV system was installed (see Figure 7) to supply the RISE 

device with power.  

RISE requires less than 10 W of power when all sensor 

channels are fully utilized. The entire equipment could be 

transported to the site by three men.  

 

4 RESULTS 

The material response was recorded by the RISE system during 

the monitoring process. The results of the cumulative plot of 

the AE material response can be seen in the Figure 8. At first 

glance, different trends in the material response can be 

recognised in the progression of the individual curves. The 

curve with the most pronounced progressive course is the 

Pinkabach bridge. A bridge that was completely dismantled in 

a single piece by ÖBB and equiped in the workshop with a 

shaker. It was subjected to a fatigue test [41]. As part of the 

Rail4Future project, TÜV AUSTRIA, in cooperation with 

ÖBB, carried out an acoustic emission measurement on the 

main girder bottom flange during the fatigue test, where an 

artificial crack was introduced and the AE material response 

during fatigue crack growth was observed.  

 

 

Figure 8 Comparison of AE material response of the different 

bridges. Monitoring time is normalized. Red: fatigue test on 

the Pinkabach bridge with artificial introduced crack. Yellow: 

monitoring of a bridge at crack position. Green: representative 

hot spot on a bridge with no known crack indications. 

The crack had grown after its initiation at the notch near to 

the edge of the bottom flange in transversal direction almost till 

to the web plate at the centre of the girder. 

The material response shows a progressive growth, which is 

a well-known trend in the acoustic emission for sever 

degradation. In comparison to the Pinkabach bridge, both the 

trends of the crack affected bridge and the riveted bridge show 

a linear progression. The slope of the cumulative AE response 

is significantly more pronounced on the crack affected bridge 

where crack monitoring was performed than on the riveted 

bridge. 

The application of the FFM like in the Figure 9 delivered the 

prediction of time of maximum utilization of the monitored 

components for the two bridges. In the case of the crack 

monitoring, for example, it was possible to conclude that 

further monitoring should be carried out at the next scheduled 

inspection interval. The riveted bridge showed that the 

remaining time until maximum utilisation of the first monitored 

position is so far in the future that a new investment in a new 

corrosion protection will be resonable, when the other positions 

will show a similar result. Other positions on this bridge are 

still being monitored in order to make a general statement about 

the overall condition of the bridge. The results are made 

available to the customer on an online dashboard using a traffic 

light system. This allows the customer to track the status of 

their monitored bridges and components.  

 

 

Figure 9 Failure forecast method applied on the monitoring 

data. Areas for the traffic light result grading system are 

marked. 

5 SUMMERY 

The system solution RISE by TÜV AUSTRIA was presented 

as an acoustic emission monitoring tool for railway steel 

bridges. The acoustic emission monitoring system is able to 

detect and monitor cracks. Based on the failure forecast 

method, a statement can be made about the condition of the 

monitored component and after several months of measurement 

a further prognose when the maximum utilization of the 

component is reached. 

Two field examples were used to demonstrate how RISE 

could support the ÖBB bridge inspectors. A field case for 

identification of a suspected crack at the monitored component 

of interest was shown. After the detection of the crack a forecast 

for remaining time, until the maximum utilization time of the 

component, was done. In the second case a hot spot monitoring 
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was shown. Where the component was monitored to make sure 

that it was in good condition and no crack activity was present. 

The system helps the infrastructure operators and bridge 

inspectors to plan maintenance intervals, repairs and new 

reinvestments measures for ageing bridges. This saves the 

infrastructure operator costs and reduces the man-hours 

required for monitoring. The examples showed that the system 

can be installed easily and in a short time. The monitoring does 

not require any major interventions and the installation can 

often be carried out while the bridge is in operation. The results 

and recommendations for the customer can be made available 

via an online dashboard using an easy-to-understand traffic 

light system.  

In addition to the numerous monitoring projects already 

carried out on railway steel bridges, further bridge monitoring 

projects are planned with the help of which RISE can be 

established as an indispensable tool in bridge inspection and a 

helpful addition to the classic periodic inspections. 
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ABSTRACT: We demonstrate the practical feasibility of assessing geotechnical parameters of rail infrastructure based on ‘dark 

fiber’ distributed acoustic sensing (DAS) recordings using trains as sources. A workflow to image the shallow (3 m – 20 m depth) 

subsurface in terms of shear wave velocity has been established. The shear wave velocity distribution is obtained from inversion 

of seismic surface waves excited by the trains and recorded on the fiber optic cables, and is used as a proxy for the geotechnical 

strength (e.g., shear modulus).  Our results allow for the interpretation of potential geologic hazards and other features relevant 

for assessing the geotechnical integrity of rail infrastructure. This approach does not require dedicated field measurements or 

interruption of the train schedule, and therefore represents a cost-effective and robust method for different application scenarios.    

KEY WORDS: DAS, hazard, infrastructure, rail, near-surface geophysics 

1 INTRODUCTION 

Shallow geologic hazards such as washouts, karstification, 

liquefaction, or mass movements pose risks to rail 

infrastructure and operations. Additionally, the stability of 

artificial rail embankments may be affected by poor 

consolidation or external influences such as extreme weather 

events or neo-tectonic activity. While the conventional near-

surface geophysical toolbox provides a range of suitable 

investigation methodologies, their application to rail networks 

is challenged by the train operation schedule and the potentially 

large spatial extent. 

In recent years, Distributed Acoustic Sensing (DAS) 

performed on existing fiberoptic cable infrastructure (‘dark 

fiber’) has become a widely used approach for seismic 

subsurface imaging and monitoring (Li et al, 2022). As many 

rail tracks are equipped with fiberoptics for telecommunication 

purposes, and trains are sources of abundant seismic energy, 

the method is potentially well suited for seismic subsurface 

imaging below rail tracks (Hernandez et al., 2023; Fuchs et al, 

2018). 

We present a case study from Austria (Europe), where DAS 

registrations of commuter trains along a 6.5 km long rail track 

section were used to image the shallow subsurface. A workflow 

comprising data selection, seismic interferometry, and 

advanced MASW (multi-channel analyses of surface waves) 

techniques resulted in almost continuous coverage of the shear 

wave velocity (Vs) in the depth interval ~3 m - ~20 m. The 

results were validated against conventional MASW data and 

existing geologic/geotechnical information.   

2 METHOD 

DAS measurements provide strain or strain rate variations 

along a fiberoptic cable with potentially high resolution and 

accuracy. Dynamic strain variations are an expression of 

dynamic medium deformations, and therefore DAS data can be 

considered as first-order proxies to seismic wavefields. Seismic 

processing techniques can be used to model and characterize 

the subsurface in terms of shear wave velocity (Vs) distribution 

which is indicative of geotechnical properties (e.g., shear 

modulus). Our workflow starts with geometrical calibration of 

the DAS recordings and selection of recording periods which 

include trains. In a next step, the seismic interferometry method 

(e.g., Wapenaar et al., 2010, and references therein) is applied 

to reconstruct surface Rayleigh waves propagating in-between 

individual DAS channels and is used to synthesize virtual shot 

gathers for each channel.  Those shot gathers are subjected to a 

proprietary MASW workflow Xia et al., 1999) with emphasis 

on improving the S/N (signal-to-noise)  ratio and taking 

advantage of the dense spatial sampling capabilities of DAS 

(Guan et al., 2024). The final output is a continuous 2D-model 

of the shear wave velocity distribution Vs below the rail tracks.    

3 DATA, PROCESSING, AND RESULTS 

The used fiber optic cable is installed in a hard-plastic 

protective tubing which runs inside a large concrete duct, 

therefore poor ground coupling is to be expected. Several loops 

and partial re-routing of the cable required careful geometrical 

calibration. A Febus A1 interrogator (Febus, 2025) was used 

for the measurement. Aiming for compromise between 

resolution and S/N ratio, the gauge length and channel spacing 

were chosen as 2 m and 0.8 m, respectively, such that finally 

8,751 channels were recorded along the 6.5 km long section. 

The total recording length cumulates to ~7 h, during which time 

29 commuter trains were registered with a temporal sampling 

rate of 2 ms, resulting in a data volume of ca. 370 GB. The 

trains are short (3 – 6 carriages) and operate with low speed 

(~70 km/h). From the continuous recordings, we only use short 

time windows around the train arrivals which contribute to ca. 

5% of the entire data set.  

The MASW workflow aims at deriving Vs-depth profiles at 

a nominal spacing of 5 m which are interpolated into 

continuous 2D models (Fig 1). The average frequency range for 

the retrieved surface waves is ~7 Hz - ~16 Hz. Due to partially 

insufficient fiber-ground coupling and re-routing, 70% of the 

section could be imaged continuously (Fig. 1). The resulting 

Vs-models were verified against conventional active source 

MASW profiles, geological and borehole information, and CPT 

logs. Overall, those different methods support the results 

obtained from the seismic imaging workflow.  

The results allow for the interpretation of weakened 

embankment zones and shallow potential geologic hazards. A 

suspected small-scale mass movement is indicated by 

Rail track subsurface imaging from train vibrations recorded at dark fiber networks 
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significantly decreased velocities, and a known large-scale 

fault zone with the potential for neo-tectonic reactivation 

correlates with low velocities at larger depths. 

4 CONCLUSIONS 

We have developed an efficient and robust workflow for 

imaging potential geologic hazards along rail tracks from 

seismic waves excited by trains and recorded on existing fiber 

infrastructure. This approach does not require dedicated field 

measurements or interruption of the train schedule. It can be 

used for large-scale mapping of entire rail networks as well as 

for time-lapse monitoring of selected and potentially hazardous 

sections. The methodology might also be applied to roads using 

vehicle noise as seismic sources.      
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Figure 1: Concept and result of the seismic processing workflow applied to DAS-data. Passing trains excite seismic surface 

waves (green wiggles), which are recorded at existing fiberoptic telecommunication cables (yellow line). The recorded 

seismic waves are inverted for the shear-wave (S-wave) velocity structure below the fiberoptic cable. Zones of low S-wave 

velocity (pale/purple colors) are interpreted for reduced shear strength and thus reduced geotechnical integrity (e.g., 

weakened embankments). Velocity variations at larger depths are indicative of lithological inhomogeneities.        
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ABSTRACT: Coda Wave Interferometry has been used in Geophysics to detect weak changes in scattering media. Past research 

in Structural Health Monitoring has shown that this methodology can be applied to concrete structures to detect material changes 

by calculation of relative velocity changes. Successive measurements with embedded ultrasonic transducers provide a repeatable 

signal for reliable long-term monitoring of concrete. To research the application in real-world structures, we have embedded 

ultrasonic transducers in a bridge in Ulm and a Metro station in Munich, Germany. This study gives an overview of the monitoring 

of these two structures. The results show the potential and challenges of the method. Data evaluation can be largely automated to 

gain insights into material changes and other influences on the structure, such as traffic-induced load and temperature variations. 

The experiments demonstrate the ease of installation, longevity of the sensor installation, and sensitivity of the measurement 

technique, but highlight problems with the application, especially if electromagnetic noise affects data quality. As no confirmed 

substantial damage was recorded during the monitoring period on both structures, we evaluate load tests to investigate the effect 

of static load on the structures and the coda monitoring results. The experiments show that the influence of load can be detected, 

even if the temperature influence is not removed from the data. This indicates that online damage detection with coda monitoring 

is possible, but further research on damage detection in real-world structures has to be conducted to confirm laboratory findings. 

KEY WORDS: Active Ultrasound Measurements, Coda Wave Monitoring, Embedded Transducers 

1 INTRODUCTION 

Coda Waves – multiply scattered late-arriving seismic waves - 

have been studied in seismology for decades. Beginning with 

Keiiti Aki's work in 1969 [1], where he developed a method to 

determine the seismic moment of earthquakes from coda waves 

the analysis of these waves has since evolved as a valuable tool 

for understanding subsurface properties. In Coda Wave 

Interferometry (CWI), the medium acts as an interferometer, 

combining the scattered waves originating at a source at the 

receiver [2]. This enables the detection of small velocity 

variations in a material volume with a limited number of 

sources and receivers. These changes are often not detected by 

analyzing the direct wave. Applications of CWI include the 

detection of stress, temperature, and damage-related material 

alterations across multiple scales.  

 

The heterogeneous composition of concrete allows the 

application of CWI in infrastructure as most structures are 

composed of concrete. Planès and Larose [3] have summarized 

the applications of CWI in concrete, including sensitivity to 

thermal fluctuations and stress-induced changes via the 

acoustic-elastic effect. Their following work has also shown the 

potential of localizing change with a sensor network [4], 

highlighting the potential of CWI for monitoring changes in 

large concrete structures. Their sensitivity-kernel-based 

approach leverages the spatial sensitivity of coda wave 

measurements, which allows analysis of different volumes of 

material with a limited number of measurements and sensors. 

 

These advancements and the necessity of constant coupling for 

long-term monitoring have initiated the design of special 

embedded piezoelectric transducers [5]. To further investigate 

the potential of concrete damage assessment by coda waves on 

the micro and macro scale, a DFG funded research group (FOR 

2825) has combined modelling, simulations, laboratory 

experiments, and applications of CWI in large structures [6] 

using these transducers. 

  

This publication intends to give an overview of two monitored 

structures, the applied technology, and key findings with their 

implications for future wider application of CWI-Monitoring to 

ensure early damage detection in infrastructure and support 

authorities and infrastructure owners in the process of long-

term maintenance and infrastructure planning. The monitoring 

of large structures poses unique challenges as influences of 

temperature, traffic-induced load, and other external factors are 

detected with CWI. These factors must be taken into account to 

isolate indicators of material degradation. In this context, we 

will present results from monitoring a road bridge in the city of 

Ulm and a subway station in Munich. At both structures, 

retrofitted transducers have been used to monitor material 

degradation and environmental influences for several years. 

Therefore, they are representative specimens for analyzing the 

potential of CWI monitoring. 

2 METHODOLOGY 

 Active Ultrasonic Measurements and Coda Wave 

Interferometry 

. For active CWI measurements in concrete, ultrasonic 

waveforms are consecutively recorded as time series u1(t) and 

u2(t). When a pulse is emitted at the source, elastic waves travel 

through the medium and are scattered at inhomogeneities (e.g. 
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grains) or reflected at boundaries (e.g. concrete-air boundary). 

Therefore, when recording several milliseconds of signal after 

emission of the pulse, a waveform consisting of the direct wave 

travelling between source and receiver and later arriving 

scattered and reflected coda waves is recorded (for a sample 

waveform, see section 2.4, Figure 3). Changes in the medium 

(e.g. cracks) change the wave propagation and therefore the 

recorded waveforms. To detect such waveform changes, the 

basic measure for signal comparison is the correlation 

coefficient (−1 ≤ 𝐶𝐶 ≤ 1), calculating a measure of signal 

similarity on a time window [t1, t2]. A decrease of CC indicates 

a change in wave propagation but is not linked to a specific 

physical property of the material.  

 

Changes in the material affecting the bulk or shear modulus, 

directly influence the propagation velocity of P- and S-waves 

respectively. Therefore, CWI evaluates velocity changes, by 

analyzing phase shifts in the signals.  The standard method for 

this analysis is the stretching technique [7], where the first 

signal is time-stretched to align with the second. The following 

equation describes the calculation of a velocity change using 

the stretching technique [3]: 

 

 

𝑎𝑟𝑔𝑚𝑎𝑥(𝐶𝐶(𝜀))

=  
∫ 𝑢1[𝑡(1 + 𝜀)]𝑢2[𝑡]𝑑𝑡

𝑡2

𝑡1

√∫ 𝑢1
2[𝑡(1 + 𝜀)]𝑑𝑡

𝑡2

𝑡1
∫ 𝑢2

2[𝑡]𝑑𝑡
𝑡2

𝑡1

 

 
(1a) 

 𝜀 =  −
𝑑𝑣

𝑣
 (1b) 

By varying the stretching factor 𝜀, the correlation coefficient in 

equation (1a) is maximized. The maximizing stretching factor 

corresponds to the relative velocity change (equation 1b) 

between the recording of u1 and u2. To analyze spatially 

localized changes, CC and 𝜀 can be evaluated on different time 

windows [t1, t2], which corresponds to different sensitivities 

described by sensitivity kernels (see [8]).  

For CWI in monitoring a reference needs to be chosen to 

determine the baseline. After choosing the baseline, all material 

changes altering wave propagation in a structure can be tracked 

by repeated ultrasonic recordings given source and receiver 

position and coupling do not change. In practice, several 

different approaches for choosing the reference exist, 

depending on the magnitude of change and the minimum 

threshold of CC that allows a reliable analysis of velocity 

change. If the medium is influenced by non-permanent 

environmental changes, the reference can be kept fixed, (fixed-

reference technique), making a comparison to the baseline 

timestamp straightforward. Other methods change the 

reference constantly, e.g. the stepwise reference method [9] or 

a rolling reference method [10]. The velocity change can be 

referenced to the baseline as well, but the correlation 

coefficient is not referenced to the baseline anymore. The 

rolling reference method is especially advantageous in practical 

monitoring scenarios, as the reference lag can be adjusted based 

on external influences such as temperature or known stress 

variations, thereby improving the robustness of the velocity 

change estimation over time. 

 Sensors and Sensor Installation 

 

Figure 1. ACS S0807 (red square) prepared for retrofit with 

a grouting cap, prepared for the desired installation depth 

(left) and attached to the rebar before concreting (right). 

For long-term monitoring of real structures, it is essential to 

ensure constant coupling. Therefore, cylindrical piezoelectric 

P-wave transducers (type: S0807, dimensions: length 72mm, 

diameter 20mm) described in [5] and developed in cooperation 

with Acoustic Control Systems (ACS) are designed to be 

embedded in concrete, either attached to the reinforcement 

before concreting or retrofitted in an existing structure 

(Figure 1). In retrofit applications, the structure is evaluated 

with Ground Penetrating Radar (GPR) before drilling to avoid 

damage to rebars and tendons. The sensors are then placed 

within the borehole and regrouted using reusable grouting caps.  

 

These transducers can function both as sources and receivers, 

converting electrical signals into mechanical vibrations (elastic 

waves) and vice versa. In a sensor network, a typical 

configuration involves a source transducer emitting waves with 

one or several transducers acting as receivers (pitch-catch 

configuration). These roles can be interchanged, so source 

transducers can become receivers. With a bandwidth between 

50 and 100 kHz, the transducers combine the possibility of 

analyzing direct waves for a large transducer distance with the 

high-frequency scattering properties required for CWI. 

Therefore, they are well suited for long-term structural health 

monitoring of concrete structures. 

 Measurement Devices 

For monitoring with CWI, a custom measurement device was 

developed, as described in [11]. The device (Figure 2) is based 

on a Raspberry Pi and is capable of measuring one sensor 

combination every 5-10 seconds. The core component, the 

Raspberry Pi serves as the control unit, addressing the 

measurement PCBs, data storage, and transmission. 

 

The system includes a power and pulse board that can send a 

300Vpp double rectangular pulse to up to 75 multiplexed 

channels. The signal is then digitized and saved on the 

Raspberry Pi. The modular design of the measurement board 

allows the addition of temperature and humidity sensors to 

track environmental parameters.  

 

The measurement device has shown that it can produce good 

data quality compared to a commercial system based on a NI-

DAQ Mx and Keithley Multiplexer as described in [12]. The 

major advantage of the commercial system is the measurement 
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repetition rate. Therefore, it is used in experiments where fast 

dynamic changes in the medium require quick data collection. 

 

 

Figure 2. W-Box, custom made CWI Measurement device 

based on a Raspberry Pi. 

 

 Ultrasonic Measurements – Direct Wave and Coda 

 

Figure 3. Two ultrasonic signals were recorded at a bridge 

in Ulm, Germany comparing the commercial US data 

acquisition device and the self-made W-Box. (a) The direct 

wave and (b) an excerpt of the coda. 

Figure 3 shows two signals recorded with the W-box and the 

commercial data acquisition system in November 2021 and 

December 2021. In the direct wave (a), small amplitude 

differences are visible, primarily due to the different resolutions 

of the systems (14-bit vs. 16-bit). Despite this, the waveforms 

align closely. This supports the use of the slower W-box for 

long-term monitoring, supplemented by the faster commercial 

system when higher temporal resolution is required.  

 

Figure 3 (b) shows an excerpt of the coda.  A small shift can be 

detect, caused by temperature variations. During the time 

between the two displayed measurements, the temperature at 

the bridge decreased by approximately 3.5 degrees. This shows 

the sensitivity of the coda. The influence of temperature on the 

ultrasonic velocity measured by CWI has been researched, e.g. 

in [13] and quantified at around 0.03-0.06 percent per Kelvin, 

which varies depending on the investigated structure. The onset 

of coda waves is a gradual transition. Even after the first arrival 

in figure 3, high energy reflections are recorded until 1.5 ms. 

Nevertheless, at this time the recordings do already include 

scattered coda waves. Therefore, the evaluation window for 

CWI has to be chosen individually for every source receiver 

pair after analysis of the wave recording. 

3 MONITORED STRUCTURES 

In the past years, we have instrumented two structures with the 

embedded ultrasonic transducers and recorded data with the W-

Box. The recorded signals are directly uploaded to a database, 

where the signals can be analyzed (e.g. CC analysis) or 

requested for further evaluation through a MySQL API in 

Python. 

 Gänstorbrücke Ulm 

 

Figure 4. Sensor installation at ‘Gänstorbrücke’, Ulm. 20 

sensors are installed in an array in the centre of the bridge 

(marked with red dots). 

In 2020, 24 Ultrasonic transducers were embedded in the 

‘Gänstorbrücke’ bridge in Ulm to monitor damage to the 

structure under constant traffic between the cities of Ulm and 

Neu-Ulm, Germany. The sensors were installed in the abutment 

and the center of the bridge (Figure 4). The bridge, designed by 

Ulrich Finsterwalder, is a 96m prestressed concrete structure, 

composed of two parallel partial structures with two slabs per 

partial structure. Of the 24 sensors, 20 were installed in the 

centre of the bridge in a single slab. Prior to the installation of 

the CWI monitoring system, the bridge was instrumented with 

a commercial monitoring system including acoustic emission, 

strain sensors, and temperature sensors in 2018 [14], after 

significant damage was detected to ensure safe operation until 

demolition and reconstruction in 2025.   

 

To further evaluate CWI monitoring capabilities, in 2021, a 

static load experiment was conducted using a 15t and a 32t 
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truck to evaluate the behaviour of the bridge under a substantial 

load and the influence on coda waves. The monitoring system 

remained operational from 2020 until February of 2025 to test 

the longevity of the sensors as well as the signal quality. Over 

the five years of monitoring, no additional permanent damage 

was recorded on the bridge by the commercial monitoring 

system, confirming the stability of the bridge and the reliability 

of the monitoring systems. 

 Metro Station Scheidplatz Munich 

 

Figure 5. Sensor installation at ‘Scheidplatz’, Munich.  

The ‘Scheidplatz’ metro station in Munich, Germany opened in 

1972, just before the Munich 1974 Summer Olympics. On the 

surface of the metro construction, several tramways and bus 

stops are located. As a result, the ceiling structure is subject to 

constantly varying loads due to public transport activity. To 

monitor the crack behaviour and load variations caused by 

passing and stopping tramways, 15 sensors were embedded in 

the ceiling in 2022 (Figure 5).  

 

The brittle outer layer of the ceiling made overhead regrouting 

difficult. As a result, two sensors have bad coupling to the 

structure, leading to reduced signal quality. Nevertheless, they 

are still operational. Therefore, surface inspection is advised 

before retrofitting sensors, to devise the suitable regrouting 

technique. Besides the monitoring aspect, the installation was a 

pilot run for the W-Box and the installation procedure in an 

environment with significant electromagnetic noise. 

 

Figure 6. Temperature (top) and CWI velocity change at 

Gänstorbrücke for the first half of 2024. The color of the 

scatters represents the correlation coefficient.   

 

4 MONITORING RESULTS 

 Gänstorbrücke Ulm 

Since its installation in 2020, the monitoring system has 

remained operational with only a few periods of downtime 

caused by instrument failures and network problems. Neither 

the coda monitoring system nor the commercial acoustic 

emission monitoring system recorded significant new damage 

during this period. This shows that the measures taken to 

preserve the bridge until reconstruction were sufficient.  

 

The data quality throughout the entire monitoring period is 

consistently good. A minimal number of measurements were 

influenced by electromagnetic noise, which can be eliminated 

by frequency analysis. Without any new damage in the 

monitored area, we cannot make conclusions about the ability 

to distinguish damage from environmental influences in a real-

world monitoring setup, however.  

Nevertheless, the dataset provides valuable insights to assess 

the requirements for a real-world monitoring setup. Especially 

temperature changes cause strong signal decorrelation. Figure 

6 shows the temperature and the relative velocity change of a 

representative transducer pair for the first half of 2024. During 

this time the temperature ranges from -10°C to nearly 30°C. 

The velocity change was calculated on the first three 

milliseconds of the signal, thus investigating both, the direct 

wave and the coda, using the fixed reference method. Figure 6 

shows a clear correlation of temperature and velocity change, 

particularly visible in the trough in January 2024. The relation 

between temperature and velocity change is linear, as shown in 

[15]. For ‘Gänstorbrücke’ we estimate a change of -0.025 

percent per Kelvin. 
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The color scale in Figure 6 indicates the correlation coefficient. 

When CC remains high, the results of the fixed reference CWI 

can be interpreted reliably. This is only valid for small 

temperature variations (± 10°C). In summer, the correlation 

coefficient decreases significantly, causing outliers and jumps 

in the results, which cannot be physically interpreted due to the 

strong decorrelation.  

 

To improve the robustness for a long-term analysis, one could 

shift to the stepwise or rolling reference CWI. However, 

preliminary analyses of the ‘Gänstorbrücke’ dataset have 

shown that this does not significantly improve the 

interpretation of the long-term trends. Furthermore, these 

methods require more computational power and time. Given 

the focus on detecting short-term permanent change (i.e. 

damage) we propose to analyse the data in short rolling time 

windows while tracking the temperature to define a corridor of 

expected velocity change induced by temperature. To this 

purpose, a linear regression model is trained using temperature 

measurements and corresponding calculated velocity changes. 

This model allows the prediction of temperature induced 

‘normal’ velocity changes.  Based on the root mean square error 

(RMSE) of this model, a corridor can be defined indicating the 

velocity change attributed to temperature change with a 

certainty of 95%.  This corridor can serve as a threshold for 

outlier detection and enable the automatic detection of no 

temperature induced changes.  

 

Figure 7. CWI velocity change in December of 2021. The 

temperature effect on the velocity change is modeled and a 

corridor of expected temperature induced velocity change 

is calculated. The data from the load experiment is 

highlighted in black. 

Figure 7 shows this method for a three-week period in 

December of 2021, the time of the static load test. As the load 

test represents the largest known mechanical disturbance to the 

structure during the monitoring period, it serves as the best 

representation of damage-induced changes. A detailed analysis 

of the load test can be found in [15]. One can see that the linear 

model of temperature-induced velocity change fits well for the 

analyzed period. Using the fixed reference approach, CC 

remains above 0.65 throughout the analysed subset. The 

temperature changes in these weeks were below ± 10°C. The 

permanent monitoring data is represented with blue scatters and 

the load test data is highlighted using black scatters.  

 

One can see in Figure 7, that the velocity change induced by 

load is of the same magnitude as the change induced by 

temperature. Nevertheless, as the temperature model gives a 

corridor of expected change, the outliers can be detected. 

Combination 11-12 is a sensor combination with a minimum 

distance to the nearest loading point of 10 meters. Importantly, 

as during the load test, the bridge was not loaded all the time, 

the datapoints at unloaded measurements are within the 

temperature corridor. For sensor combinations located closer to 

the load application points, stronger deviations were observed 

(see [15]).  

 

With the results of the load experiments, we show that for 

permanent monitoring a windowed approach can be beneficial 

for damage detection. Although no new damage was detected, 

the results show the capabilities of monitoring using CWI and 

embedded sensors. Key conclusions of this long-term 

experiment are: 

 

• Data quality remains consistent with embedded 

transducers, although temperature variations have a 

big influence on the signals.  

• The fixed reference method cannot be applied over 

long periods, even if no damage has been recorded. 

• The load-induced perturbations can be detected within 

the temperature trend, even if they are of similar 

magnitude. 

• A short window, fixed reference approach enables fast 

automated data analysis, and potentially allows for 

edge computing on site, while allowing for the 

detection of perturbations in the temperature trend. 

 Metro Station Scheidplatz Munich 

Since the sensor installation in 2022, signals have been 

continuously recorded at 10-minute intervals at ‘Scheidplatz’. 

This cycle reveals results indicating general increasing and 

decreasing trends in relative velocity change, which are 

attributed to temperature variations inside the concrete ceiling.  

From February 24th to March 13th, 2023, the measurement 

frequency was increased to one measurement per minute to 

determine whether it was possible to study the structural 

behaviour following a transient load. In this case, the transient 

load was induced by tramways stopping directly above the 

sensor array. The total load of these tramways varies depending 

on the vehicle type, ranging from 560 kN to 722 kN, distributed 

over three or four axles. The results of March 18th are displayed 

in Figure 8. 

During this period, the overall change in dv/v was 

approximately 0.20%, primarily attributed to temperature 

variations. Additionally, multiple frequent relative velocity 

drops of approximately 0.02% were observed, which generally 

recovered to their original values within 10 to 15 minutes. 
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These relative velocity drops were caused by the transient loads 

exerted by the passing tramways. Tramway operations 

conclude at approximately 1:15 AM; however, some relative 

velocity drops were detected even after this time. This is likely 

due to tramways passing through the station without stopping 

as they transit to the depot. 

 

Figure 8. Relative velocity change. Velocity drops visible 

after the tramway stops above the sensor array. 

 This confirms that both stopping and passing tramways 

induce velocity drops in the structure. Previous experiments 

with CWI in 4-point bending tests [16, 17] have shown that 

velocity changes are predominantly negative. While we expect 

an increase in velocity in the pressure zone due to an increase 

in bulk modulus, the tension zone is dominant, especially in 

cracked specimens, causing a velocity drop with increasing 

load. As the installed structure is already cracked, the opening 

of cracks with load contributes to the velocity decrease. The 

observed velocity drops are reminiscent of the time-dependent 

nature of rock healing [18], and similar applications to 

assessing damage in concrete materials through slow dynamics 

[19]. To examine potential long-term variations in the 

relaxation processes of the structure, high-temporal-resolution 

measurements were repeated a year and a half later. This test 

was conducted from October 18th to November 7th, 2024, this 

time, the signal quality was significantly degraded. 

Additionally, we conducted controlled experiments by 

positioning a tramway stationary above the sensor array and 

regulating the passage of tramways to analyse their impact on 

the recorded signals. 

Upon reviewing the data, it was evident that, starting in 

September 2024, electromagnetic noise levels had abruptly 

increased. This increase did not coincide with maintenance 

work on the electrical network, making the source of the noise 

not identifiable. Since then, data quality has deteriorated 

considerably, as illustrated in Figure 9, to the point where the 

recovery curves can no longer be extracted as in previous 

periods.  

Various low-quality data rejection strategies were implemented 

based on waveform characteristics such as amplitude, duration, 

and signal-to-noise ratio (SNR). However, while these 

strategies were successful in filtering out the low-quality data, 

the remaining usable waveforms were insufficient for a detailed 

slow dynamics analysis. Alternative approaches involving 

frequency filtering were explored, but in this case, the 

frequency bandwidths of the ultrasonic signals and the 

electromagnetic noise overlapped, rendering this method 

ineffective. The measurement device was inspected, 

confirming that it was not the source of the recorded noise. 

While poor sensor coupling or cable damage has not yet been 

ruled out, further investigation is necessary to determine the 

exact cause of the signal degradation. To prevent similar 

interference in future implementations of this method, it is 

recommended to monitor and mitigate potential sources of 

electromagnetic noise, such as maintenance work on nearby 

electrical networks, and to establish shielding or filtering 

techniques that preserve signal integrity. 

 

Figure 9. Representative pre-processed waveforms with good 

quality (Top) and low quality likely due to electrical noise 

(Bottom). 

 

5 CONCLUSION AND OUTLOOK 

The presented CWI monitoring experiments show the potential 

and challenges of application in real world structures. 

 

Installation: Embedding sensors either in existing structures or 

previously to casting the concrete is an easy way to ensure 

coupling and longevity. 

 

Data quality: The measurement devices and cables must be 

tailored to the monitoring situation. In high electromagnetic 

noise locations like metro stations, data quality can suffer. An 

increased measurement repetition rate, or on-site rejection of 

‘bad’ measurements can improve the data quality, but better 

shielding of cables and the measurement device can avoid data 

quality problems and ensure a seamless dataset. 
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Data evaluation: Temperature influences the data evaluation 

strategy. The influence depends on the individual structure and 

the location of the monitoring system. If long-term monitoring 

is the goal of the installation, temperature must be monitored. 

To display long-term trends, advanced methods like the 

stepwise method must be applied, but its benefits have to be 

evaluated individually. If the data is only evaluated on shorter 

time windows, the fixed reference method suffices, and 

corridors can be defined allowing automated outlier detection. 

This accelerates the calculation of results, enabling data 

analysis on-site, with online and automated monitoring results.  

 

Detection of changes not induced by temperature: The 

target of CWI monitoring is the detection of irreversible 

change. Previous research has shown that CWI analysis can 

detect e.g. cracking [16] or akali silica reaction [20], and can 

potentially monitor all material altering damage processes in 

concrete. In this study, we have shown the influence of traffic 

and load, which must be accounted for to distinguish between 

reversible changes and material degradation. Combining 

traffic/load monitoring with CWI could improve damage 

detection reliability. Furthermore, the analysis of recovery 

curves after repeated loading, as explored in the ‘Scheidplatz’ 

experiment, suggests the potential for damage state assessment. 

This aspect requires further controlled laboratory research. 

 

The presented experiments and the datasets offer a strong 

foundation for further research. In February of 2025, shortly 

before the decommissioning of the ‘Gänstorbrücke’, a tendon 

was deliberately cut, and the effects of its destruction were 

monitored closely with CWI. This dataset provides the 

opportunity to further determine the detection and localization 

capabilities of CWI in real-world structures. Additionally, 

monitoring continues at ‘Scheidplatz’, where further 

experiments targeting damage assessment under repeated 

controlled loading can be conducted once electromagnetic 

noise issues are resolved. The continuous monitoring gives the 

opportunity to confirm laboratory experiments showing the 

potential of damage detection using CWI [4, 16, 20]. 
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ABSTRACT: Computational meshes serving as input to wave simulations are often crafted manually and bear a significant cost 

to construct. The aim of this work is to minimize that overhead and apply it to structures lacking models and meshes, particularly 

in earthquake-prone regions, to image and monitor their structural health in response to ground movement. To address this 

challenge, we have developed a workflow to facilitate the creation of 3D finite element meshes, starting with 2D photos acquired 

by an inexpensive consumer-level unmanned aerial system (i.e., a drone). After photo acquisition, the process proceeds by utilizing 

computer graphics and vision software to transform these photos into a 3D surface composed of triangles. Surface meshes are 

generally sufficient products for other workflows that likewise create 3D assets via reconstruction methods (e.g., for topographic 

mapping, archiving, and entertainment). However, to simulate waves through complex structures with high fidelity, we employ a 

spectral element wave solver, which requires a 3D volume composed of hexahedra. The steps from a 3D triangular surface to a 

3D hexahedral volume include enclosing the surface, conditioning, and remeshing it with appropriate element geometry. We apply 

a first version of this workflow to the Contra (Verzasca) dam in Switzerland, from which we discuss key stages, challenges, and 

learnings in developing the pipeline – showcasing elastic wave simulation through the constructed mesh.  

KEY WORDS: Photogrammetry; UAS; UAV; Gridding; Meshing; Numerical modelling; Geophysics; Seismology.

1 INTRODUCTION 

Seismological research focused on understanding the behavior 

of complex media and structures to ground motion requires the 

use of computational meshes, which permit the physical world 

to be discretized in order to numerically solve the wave 

equation. These meshes must be constructed in a way that not 

only honors structural topography and field parameters, but 

also maintains efficiency, preserves the physics, and upholds 

numerical stability requirements dictated by grid size, 

frequency, and velocity parameters [1,2]. When no compatible 

computational mesh or model exists for the object or area of 

interest, a mesh must then be constructed from scratch. This is 

an arduous task for geoscientists, being a bottleneck for those 

wishing to focus their attention on imaging the Earth and 

likewise on deriving insights from the non-destructive testing 

of engineering structures and their responses to earthquakes.  

A proposed solution to this challenge is a workflow that 

incorporates the use of unmanned aerial vehicles (i.e., UAVs, 

unmanned aerial systems (UASs), or drones) along with 

computer vision and graphics software to process the imagery 

and generate meshes for wave propagation and seismic 

research problems. Significant advances in hardware (e.g., 

digital cameras, GPS, drone portability, etc.) have opened the 

door to more flexibly capture thousands of images without 

resorting to expensive equipment, non-trivial calibration 

methods, and the use of priors (e.g., camera settings, motion, 

etc.) [3-6]. This lower barrier to entry has furthermore been 

complemented by improvements in key computer vision 

algorithms (namely, Structure-from-Motion and Multi-View 

Stereo) which now make it practical to reconstruct 3D surface 

models from these thousands of images using a high-end laptop 

or modest workstation [7]. 

We develop a first iteration of this workflow and apply it to 

the Contra dam located in the Verzasca valley in southern 

Switzerland, whose results we present. This structure and its 

surroundings have no known mesh, making it an ideal 

candidate to qualify whether it is possible to generate a useable 

mesh with minimal effort via these off-the-shelf and improved 

technologies.  

2 WORKFLOW AND RESULTS 

 Methodology 

The workflow to generate a computational-ready mesh for 

input into a spectral element wave solver, as applied to the 

Contra dam, is as follows:  

1) identifying the object or area of interest 

2) survey design 

3) photo acquisition 

4) color calibration 

5) surface model generation 

6) surface model enclosing 

7) conditioning and layer additions 

8) hexahedral remeshing 

9) populating field parameters 

We now proceed in the following paragraphs to describe these 

steps in further detail. 

2.1.1.a Identifying the object or area of interest 

The Contra dam is selected as a test candidate, given the fact 

that it lies within a seismically active region and lacks a mesh 

for itself and its surrounding environment. Located near the city 

of Locarno, it is embedded in somewhat steep mountain flanks 

with outcropping metamorphic synfolds [8,9]. At the time of 

acquisition, the dam was undergoing maintenance with the 

Finite element mesh construction for seismic analysis using drone imagery 
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reservoir (Lago di Vogorno) drained to allow for an acquisition 

of not only the dam, but also the lakebed topography leading 

into the dam. The field site is presented in Figure 1. 

 

 
 

  

Figure 1. (top left) Location of the Contra dam zoomed out 

and in respect to the city of Locarno to its southwest. The light 

teal line represents 5 km. Lime lines are mapped faults. (top 

right) A zoomed view of the area, as taken from swisstopo, 

with the dam near the center and the reservoir Lago di 

Vogorno behind. The lime polyline to the right of the dam is 

the edge of a mapped fault. (bottom left) A terrain map of the 

field site. (bottom right) A reconstructed orthophoto overlain 

revealing the drained lakebed. 

2.1.1.b Survey design 

Data are collected with significant overlap among the photos 

such that common features could be identified. We achieve this 

by flying at different heights and by also adjusting the camera’s 

angle. For the drone, we choose the DJI Mavic Air 2, retailing 

for under 1000 USD. With a field-of-view of 84° and given a 

fixed f//2.8 aperture with equivalent focal length of 24mm, this 

brand of drone gives us the flexibility to acquire photos from 

seven meters or greater to achieve a reasonable depth of field, 

which is vital in the later step of identifying common features 

among the fore-, mid-, and backgrounds.  In terms of 

acquisition paths, we opt for circular and linear hyperlapse 

defaults as found within the drone’s support software. We do 

not use ground control points or calibration tables. 

We additionally plan and coordinate with the dam operators 

and Locarno air traffic control prior to and during acquisition. 

2.1.1.c Photo acquisition 

During a period of three hours, we pilot a Mavic Air 2 drone 

and use its camera to acquire 1143 images at 12 MP (4000 x 

3000 MP). We select a shutter speed of 1/640 s and a 100 ISO 

setting due to sunny conditions. A subset of the acquired photos 

is given in Figure 2. 

 

 

Figure 2. Various photos of the dam and lakebed as taken 

from a drone. 

2.1.1.d Color calibration 

Having acquired the photos on a sunny day over a few hours, 

we observe inconsistent lighting (Figure 2). As this may hinder 

mesh reconstruction [10], we apply basic post-photo processing 

to correct for various degrees of whiteness, brightness, and 

moving shadows. 

2.1.1.e Surface model generation 

Multiple photogrammetry software options (WebODM, 

Meshroom, RealityCapture, and Metashape) are evaluated in 

terms of their speed, accuracy, ease-of-use, functionality, and 

of particular concern, ability to reconstruct 3D surface meshes 

with minimal topological issues (e.g., holes). RealityCapture 

(RC) and Metashape perform the best, with RC having the 

added benefit of being free. However, RC only runs on 

Windows and requires an Nvidia CUDA GPU. But due to 

clever memory management, RC does not require significant 

amounts of RAM. Metashape can run on Linux, Mac, and 

Windows, with RAM demands scaling with number of 2D 

photos. We move forward with a 3D surface mesh created in 

Metashape on a 16-core CPU/40-core GPU M3 Max MacBook 

Pro laptop with 64 GB of unified memory shared between the 

CPU and GPU. The photogrammetry process of importing 

photos, to feature matching, to image alignment, to the eventual 

mesh generation, decimation, and smoothing requires less than 

thirty minutes to complete. 

2.1.1.f Surface model enclosing 

To perform 3D wave simulations using the spectral element 

method, we require a volumetric mesh and not a surface mesh. 

Our workflow uses a specific implementation of the spectral 

element method called Salvus [11], which requires a mesh 

either composed of hexahedra if solving 3D wave solutions or 

quadrilaterals for 2D problems. The reason for this is to exploit 

a fundamental benefit of using spectral element methods for 

wave propagation modelling: 2D quads or 3D hexes result in a 

diagonal mass matrix and thus trivialize inverting the mass 

matrix [11-13]. Given the 3D nature of our dam, we take the 

3D triangular surface mesh from 2.1.1.e and extrude the mesh 

outwards and downward before sealing the base, thus creating 
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a watertight 3D surface mesh. This is accomplished using 

Blender, a free and open-source 3D computer graphics software 

package [14]. 

2.1.1.g Conditioning and layer additions 

Before converting the 3D enclosed surface mesh of triangles 

into a 3D volumetric mesh of hexes, we further correct for any 

additional topology issues using Blender’s 3D sculpting tools 

and then remesh the surface into quads. Any unhandled spikes 

or non-physical geometries may result in bad elements (with 

small or negative Jacobians – i.e., squished elements) which 

would render subsequent wave simulations infeasible. And the 

reason for converting from triangles to quads is that the next 

step more robustly remeshes when given a quad surface. Once 

satisfied with the mesh, we add a water layer on top. 

2.1.1.h Hexahedral remeshing 

The surface mesh is then transformed into a volumetric 

hexahedral mesh using Cubit, a meshing software tool 

developed to create tetrahedral and hexahedral meshes for 

finite element analysis and fluid dynamics [15]. To preserve the 

topography of the dam and the surface, we choose an element 

size of approximately 2.5 m x 2.5 m x 2.5 m. Based on results 

at this stage, an iterative process takes place by returning to 

2.1.1.d to further improve the quality of this mesh. We 

accomplish this by conditioning the surface mesh in a manner 

that prevents Cubit from outputting volumetric meshes 

containing elements with a small Jacobian, as these elements 

are unphysical or dimensioned smaller than desired. A smaller 

element size dictates a decrease in timestep, which adversely 

increases simulation time and memory requirements. Results 

from steps 2.1.1e to 2.1.1h are presented in Figure 3. 

 

 

Figure 3. (A) displays the 3D surface mesh output as 

described in section 2.1.1e; (B) is the result of enclosing that 

surface mesh as detailed in section 2.1.1f; (C) shows a 

despiked and smoother version of (B) with the inclusion of a 

water layer in orange as noted in section 2.1.1.g; and (D) is an 

arbitrary slice through the hexahedral mesh, with bedrock and 

dam in gray and the water layer in blue as discussed in section 

2.1.1h. 

2.1.1.i Population field and simulation parameters 

To qualify the mesh, we must populate it with elastic field 

parameters. We use a homogeneous compressional velocity of 

4800 m/s, shear velocity of 2800 m/s, and density of 2710 

kg/m3 for the basement bedrock and dam. The water layer is 

given a sonic velocity of 1500 m/s and density of 1000 kg/m3.  

 Simulation 

The prepared mesh can now be used as input to the wave solver. 

For illustrative purposes, we initiate a 130 Hz Ricker spherical 

explosive point source (i.e., the curl of displacement is zero in 

an elastic homogeneous model). Dirichlet boundary conditions 

are assigned to the water-air, dam-air, and basement-air 

interfaces, and absorbing boundaries are placed on the other 

outer faces. Snapshots in both 2D and 3D are showcased in 

Figure 4. The mesh thus succeeds in allowing a solution to the 

wave equation, thus validating the workflow for this use case. 

 

 

Figure 4. (A) shows a snapshot of an acoustic wavefield 

successfully propagating through the 3D mesh created from a 

drone photo acquisition. (B) is a slice through that 3D model 

at a later timestep to showcase various wave modes 

propagating through different media and structures in the 

model due to a point source activated at an earlier time at the 

location given by the yellow star. Waves within the water 

column are measured in pressure, whereas within the 

basement and dam they are given in terms of compressional 

and shear wave particle displacement. 
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3 DISCUSSION 

 Alternative acquisition methods and inputs 

Though the workflow emphasizes the use of drones to acquire 

photos as input, this is not a requirement. In fact, a LiDAR 

system, a phone camera, and other capture methods and tools 

could be employed – each with its own trade-offs [7]. We also 

consider the use of satellite imagery to construct a usable mesh. 

Unfortunately, it does not yield the necessary 3D detail or 

resolution to faithfully recover the dam and surrounding 

topography – which are paramount in ground motion studies 

[11,16,17]. Furthermore, satellite imagery is unable to capture 

complex 3D surface structures such as the dam’s overhang. 

Figure 5 compares surface meshes created from various 

satellite sources to that generated from drone imagery. 

 

  

Figure 5. A comparison of different surface meshes created 

using satellite imagery input from Google Maps and 

swisstopo to that generated from drone imagery. There is 

added serendipity in having acquired the drone footage during 

dam maintenance. Meshes are displayed in perspective view. 

 Seismic hazard and risk analysis 

We now have a beneficial workflow that substantially reduces 

the burden of constructing meshes. This leaves us with ample 

time to prioritize our focus on other problems within 

seismology. One of these problems includes quantifying 

ground shaking and its impacts on the environment.  

As an example, we may now compute ground acceleration in 

our model and hypothetically venture to assess the risk of 

structural failure. For this demonstration, we simulate two 

different rupture sites at the dam and note the acceleration 

values that the dam and the bedrock (basement) may 

experience, as given in Figure 6. Analyzing the wavefields 

further would allow one to compute peak ground acceleration 

(PGA) values as input to probabilistic hazard and risk 

calculations [18]. As can be observed, ground motion values 

are amplified and dampened by many factors, including the 

topography, orientation of the rupture mechanism, and the 

presence of air or water at an interface.  

 

Figure 6. Magnitude of ground acceleration from two different 

sources, with snapshots taken near peak acceleration within 

the dam region for each scenario. Earthquake rupture location 

is indicated with a star, along with its orientation. The source 

at (A) is located farther from the dam and is underneath a 

water layer with smoother topography. (B)’s source lies closer 

to the dam below an air interface with rougher topography. 

4 CONCLUSION 

We provide a workflow outlining how images acquired from 

drones can be leveraged to create hexahedral meshes that may 

serve as input to wave simulations, successfully applying it to 

the Contra dam in Switzerland. The workflow has many steps, 

all of which may be readily accomplished by performing minor 

tweaks to off-the-shelf technologies. For situations where no 

computational mesh exists, acquiring the photos may take no 

more than a day or two – and in our case three hours. Given 

proficiency with the tools in the workflow, the simulation-

ready mesh may be created in under a week, which marks a 

substantial improvement to the process of manually creating 

these meshes over the course of months. Nevertheless, some 

manual work is still required to make the mesh physics-ready – 

though this may be greatly reduced by spending more time 

upfront with the survey design to ensure the object of interest 

is properly photographed. Selecting photogrammetry software 

tools which are more robust to poorer acquisitions may further 

aid the process. 

The way forward includes further workflow automation and 

determining how to more adaptively discretize the mesh such 

that we use fewer elements. Ideally, we envisage employing 

this methodology on structures lacking computer models, 

including historical structures in earthquake-prone regions. Up 

to this point, we have described a forward modelling process in 

response to a source. Naturally, using ambient or active 

vibrations to then invert for 3D elastic field parameters and 

possibly detect time-lapse changes at intermediate scales within 

such structures would be among the next steps to investigate. 
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ABSTRACT: Differential settlement in ballasted railway tracks, particularly in transition zones between two track forms, poses 

a critical challenge for railway infrastructure. Such settlement, often exacerbated by a stiffness gradient due to changes in track 

superstructure and substructure, typically causes a local dip in the longitudinal track level a few metres from the transition, leading 

to higher dynamic traffic loading and reduced passenger comfort. Regular monitoring of transition zones is essential for safe 

operations and cost-effective maintenance. This paper reviews methods for monitoring differential settlement in railway tracks. 

To measure the properties and loading of the superstructure, potential methods include fibre Bragg grating (FBG) sensors, point 

receptance measurements, track geometry (and track stiffness) recording cars, and wheel load impact detectors (WILD). 

Characterisation of the subgrade can be carried out via a multichannel analysis of surface waves (MASW), dynamic cone 

penetration tests (CPT), interferometric synthetic aperture radar (InSAR), frost sticks for temperature monitoring, and total 

stations. Lessons learned from an in-situ measurement involving an extensive FBG-based system deployed in northern Sweden to 

monitor a transition zone in harsh weather conditions are presented. Integrating a combination of monitoring methods with a 

simulation model to verify and support the accurate prediction of differential settlement is a useful approach to addressing 

challenges associated with track stiffness gradients and guiding the improvement of transition zone designs. 

KEY WORDS: Differential settlement, railway transition zone, condition monitoring, fibre Bragg grating sensors

1 INTRODUCTION 

In transition zones between two different railway track forms, 

there is a discontinuity in the track structure, resulting in a 

gradient in track stiffness. Examples include transitions 

between different superstructures, such as slab track to 

ballasted track, and/or between different substructures, such as 

an embankment to a bridge or tunnel structure. Differences in 

the cyclic loading and supporting substructure on either side of 

the transition may lead to differential settlement of the ballasted 

track and an irregularity in longitudinal rail level soon after 

construction due to densification of ballast and consolidation of 

the subgrade layers. This results in an amplification of dynamic 

traffic loading along the transition, contributing to the 

degradation process of the foundation and further deterioration 

of the vertical track geometry. Historically, the design of 

transition zones has aimed to minimise the difference in track 

stiffness between the ballasted track on the embankment and 

the engineering structure [1–4]. 

Some researchers argue that the main causes of track 

deterioration in transition zones are the non-uniform stiffness 

and damping between different layers of subgrade materials, 

which are impacted by variations in moisture and other 

geotechnical factors [5,6]. In a field test conducted in Sweden 

[7], it was observed that the displacement of sleeper ends varied 

significantly from one sleeper to the next due to differences in 

support conditions. This highlights the importance of ballast 

and subgrade conditions in a railway network. 

Various transition zone designs have been implemented to 

mitigate variations in loading and support conditions. Many of 

these solutions aim to achieve a gradual and smoother variation 

in track stiffness from one track form to another. Some 

approaches are designed to enhance the support of the 

subgrade, such as transition wedges and approach slabs, while 

others focus on the superstructure, including the 

implementation of track components such as wider sleepers, 

auxiliary rails, and elastic pads (including conventional rail 

pads with varying stiffness along the transition zone and/or 

under sleeper pads). A review of transition zone designs can be 

found in [5,6]. In parallel, advancements in real-time data 

acquisition, computational techniques, and the emergence of 

'big data' approaches have enhanced the analysis and modelling 

of railway degradation, facilitating more comprehensive and 

precise evaluations [8]. 

Increasing frequency of traffic, higher axle loads and train 

speeds result in quicker deterioration of the infrastructure. 

Infrastructure managers need up-to-date information on both 

the current condition (diagnosis) and the expected future state 

(prognosis) of their assets to effectively plan maintenance and 

renewal efforts. Structural health monitoring (SHM) has 

emerged as a valuable tool for railway systems, enabling 

efficient asset management by providing real-time feedback on 

the condition of various components. By facilitating early 

damage detection, SHM enhances structural reliability and 

reduces life cycle costs. Condition-based maintenance means 

that system operators schedule maintenance based on the actual 

condition of the system and the anticipated deterioration rate. 

To achieve this, operators need to employ a monitoring strategy 

for recording the condition of their assets. The collected data 

can serve to develop or create regulations, such as acceptable 

condition thresholds [6], which are used to determine if 

maintenance should be performed.  

2 LITERATURE REVIEW 

Emerging sensing techniques, along with innovations in 

sensors and data analytics, present exciting opportunities in 

geotechnical, structural, and railway engineering to enhance the 

understanding of infrastructure performance during both 

construction and operation. A monitoring system could, and 
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perhaps should, be integrated into the construction package to 

facilitate long-term, proactive operational monitoring, thereby 

contributing to quality control, maintenance, resilience against 

hazards, and reuse. Such a system should include techniques 

capable of capturing a wide range of data, ranging from low 

sampling rate parameters such as temperature, humidity, 

moisture, settlement, and inclination to high sampling rate data 

including acceleration, noise, rotation, wind velocity, and 

more. 

In railway engineering, monitoring techniques can be 

categorised into trackside monitoring of both geotechnical and 

structural elements, onboard monitoring, and inspection. 

Trackside monitoring involves the use of instrumentation in or 

adjacent to the track to monitor the track, vehicles passing by, 

or the interactions between them [9]. For the track, this includes 

observing the status of various track layers, their geometry, and 

how they evolve over time [10]. Examples include assessing 

the condition of ballast and subgrade using methods such as 

ground-penetrating radar (GPR) [11] and cone penetration tests 

(CPT) [12]. GPR uses electromagnetic waves to scan and map 

subsurface features within the railway industry, offering 

geospatial data on subsurface conditions [13]. To evaluate the 

stiffness and stratification of the layered substructure at a test 

site, a multi-channel analysis of surface waves (MASW) can be 

used [14]. Furthermore, fibre optic sensors can be embedded in 

the track bed to monitor settlement and detect early signs of 

degradation and potential landslides in the embankment 

[15,16]. Research has also been conducted on technologies 

capable of accurately monitoring the average settlement of 

railway lines over extensive areas using synthetic aperture 

radar (SAR) and interferometric SAR (InSAR) techniques [17]. 

On the other hand, onboard track monitoring and inspection 

are generally carried out using in-service vehicles, as their 

regular passing over longer sections of track allows for efficient 

monitoring of track status. Onboard component monitoring is 

carried out by instrumentation on vehicles, evaluating their 

condition over time. Dedicated vehicles are equipped with 

advanced equipment that enables in-depth inspections, which 

are vital for railway safety. However, these vehicles require 

special scheduling and trained personnel, limiting their usage 

[18]. Measurement units on these vehicles use technologies 

such as laser imaging, image processing, GPR, ultrasonic 

sensors, vibration sensors, high-precision accelerometers, and 

electromagnetic sensors.  

Several in situ investigations utilising trackside monitoring 

have been conducted to assess the dynamic behaviour of 

railway track using instruments such as accelerometers, strain 

gauges, and displacement transducers. In [19], results were 

presented from an extensive monitoring campaign of transition 

zones (embankment to culvert) in the Netherlands. Vertical 

displacement at various depths of ballast and subgrade, axle 

load, and average track stiffness were measured using 

geophones, uniaxial accelerometers (within the ballast), triaxial 

accelerometers (within the soil below the track), strain gauges, 

and a high-speed camera. It was concluded that voided sleepers 

in the transition zone, due to long-term differential track 

settlement, were the main sources of large track displacements 

that caused increased impact loading and accelerated track 

degradation. Zuada Coelho et al. [12] used CPT and borehole 

data to consider stochastic variations in support conditions on 

a network scale in the Netherlands when predicting track 

settlement using a two-dimensional model.  

In [20], a track deflection and stiffness survey was carried out 

using micro-electro-mechanical-systems (MEMS) 

accelerometers. About 80 of these devices were placed on 

successive sleeper ends, primarily on the field side of the track, 

and then moved along the site during consecutive night-time 

possessions. This was done in two batches of 200 sleepers with 

an overlap of 50 sleepers, and measurements were repeated 

three months apart [21]. Additionally, a webcam mounted on a 

telescope was positioned at 6 m from the track to reduce the 

influence of ground vibration. It captured an image of the 

target, which was mounted on the sleeper for the measurement 

of peak-to-peak displacement. A key limitation of this method 

was that the video recording system could monitor the 

displacement of only one or two sleepers at a time. 

Optical fibre sensors offer significant advantages over 

conventional and other smart sensors due to their high 

sensitivity, small size, and potential for short- and long-

distance measurement. For example, Wang et al. [22] attached 

two FBG sensors on the rail web as a bi-directional device to 

measure longitudinal force in a high-speed railway line. 

Temperature compensation via calibration tests was conducted. 

Wheeler et al. [23,24] measured rail strains using Rayleigh 

backscattered, distributed optical fibre sensors. Their field test 

instrumentation included a 7.5 m long section of rail with 

nylon-coated single-mode fibres installed on the rail web at 

20 mm and 155 mm from the bottom of the rail. The measured 

rail strains were used to determine shear forces, which, together 

with the known static wheel loads, were employed as part of 

the calibration to determine the rail seat loads for 14 

consecutive sleepers as the train traversed the instrumented 

track. These data were then combined with measurements of 

dynamic rail displacement captured through high-speed 

imaging using digital image correlation (DIC) to process the 

rail seat load–deflection relationships for each sleeper. 

On-board monitoring techniques have been investigated in 

research and used in infrastructure management [25]. This 

leads to better maintenance planning and reduces the delay 

between decision-making and the execution of maintenance 

actions. For example, in Finland, ballast degradation due to 

traffic and freeze-thaw cycles, leading to further particle 

breakage, settlement, or heaving, has been investigated using 

track geometry recording cars [26]. In Sweden, vertical track 

geometry degradation between 1999 and 2016 has been studied 

using regular monitoring by track geometry recording cars 

[27,28]. Furthermore, in Switzerland, an on-board monitoring 

policy is considered in infrastructure maintenance planning 

[29], and similarly in Australia [30]. 

This paper presents a review of methods and challenges 

associated with monitoring of differential settlement in railway 

transition zones. Specifically, it discusses the results and 

lessons learned from an extensive measurement campaign 

conducted under harsh conditions on a heavy haul line in 

northern Sweden. These measurements included both short-

term dynamic and long-term static responses of the transition 

zone in different sleeper bays, using an FBG-based sensor setup 

and complementary measurements. 
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3 MONITORING AND MEASUREMENT METHODS 

Monitoring in a railway transition zone may involve numerous 

sensor types and measurement techniques, such as seismic, 

electrical, electromagnetic, and resistivity methods in 

geophysics. Brief descriptions and definitions of some of these 

are presented below. In Section 4, the practical use of many of 

these techniques will be discussed with reference to the 

challenges encountered during an extensive field test recently 

carried out in a transition zone on Malmbanan in northern 

Sweden. 

 MASW 

The Multi-channel Analysis of Surface Waves (MASW) 

method is a cost-effective and non-destructive geophysical 

technique used to evaluate subsurface conditions (and to 

determine the location of bedrock) by analysing the 

propagation of surface waves, particularly the dispersion of 

Rayleigh waves. It provides shear wave velocity profiles down 

to a depth of up to 20 m, which are used to obtain small-strain 

stiffness and damping properties of the soil [31]. 

In this specific field test, an excitation source, such as a 

sledgehammer, weight drop, or specialised loading device, 

generates surface waves. An array of geophones, typically 

ranging from 12 to 48, is placed in a straight line on the ground 

at regular intervals. These geophones detect and record the 

waveform and arrival time of the seismic waves. The Rayleigh 

waves exhibit dispersion, meaning their velocity changes with 

frequency due to variations in subsurface material properties. 

Lower-frequency waves penetrate deeper into the ground, 

while higher-frequency waves provide information about 

shallower layers [31]. Typically, earth models are formulated 

using CPT data to distinguish the number of soil layers and 

provide a reasonable estimation of soil density. Consequently, 

shear wave velocity is fitted to the data at smaller strains. 

 CPT 

The Cone Penetration Test (CPT) is a geotechnical 

investigation technique to provide a detailed soil profile by 

assessing the mechanical cone resistance of different layers of 

subgrade soils. The cone resistance is directly linked to the 

strength of the soils, and empirical relations are established to 

identify the soil type [32]. The data obtained from a CPT aids 

in designing track foundations, evaluating ballast and sub-

ballast layers, and identifying soft soil layers that could lead to 

settlement or instability [32]. However, the density of data per 

square kilometre in railway infrastructure is generally relatively 

low due to the high cost of these boreholes [12]. 

The test is conducted by jacking or driving a steel cone into 

the ground at a controlled rate while continuously measuring 

cone resistance. Two primary types of CPT are used: Static 

Cone Penetration Testing (SCPT) and Dynamic Cone 

Penetration Testing (DCPT). In SCPT, the cone is jacked into 

the soil at 1 – 2 m intervals at a constant rate using a hydraulic 

system. This method records key parameters such as (1) cone 

resistance, which indicates soil strength, (2) sleeve friction, 

which helps to determine soil type, and (3) (excess) pore water 

pressure, which provides insights into soil drainage and 

consolidation behaviour. SCPT is frequently used in railway 

infrastructure to investigate embankment stability. 

 In DCPT, a steel cone is driven into the ground using a 

standardised weight dropped from a specified height. The 

number of weight drops required to penetrate a specific depth 

is recorded, providing an estimate of soil resistance and 

compaction quality. DCPT is widely utilised in ballast and 

subgrade assessment, as well as rapid evaluations of soil 

stability [32]. The data from CPT or MASW tests can be used 

to estimate dynamic subsoil stiffness and damping along the 

track using analytical approaches, such as the cone method 

from [33] and the analytical formulae in [34]. 

 GPR 

Ground-Penetrating Radar (GPR) is a non-destructive 

electromagnetic geophysical technique used to investigate and 

analyse subsurface structures. These systems can be mounted 

on track geometry recording cars, enabling continuous data 

collection at operational train speeds. This allows infrastructure 

managers to efficiently assess large sections of the track 

network and make data-driven decisions for maintenance 

planning. GPR operates by emitting electromagnetic waves 

(EM) into the ground and measuring their reflections using a 

receiving antenna to identify issues such as ballast fouling, 

moisture intrusion, and subsurface voids, as these can be linked 

to changes in electrical impedance [13]. GPR functions within 

a finite frequency range where the velocity and attenuation of 

the EM wave are independent of frequency (typically 1 MHz – 

1 GHz) [13].  

The receiving antenna captures the reflected signals, and the 

system measures the time delay and amplitude of these 

reflections. This data is then processed and visualised in 

radargrams, in the form of black-and-white, or coloured, waves 

and patterns, each corresponding to the radar signals reflected 

by different underground materials. These radargrams enable 

engineers to analyse subsurface conditions, detect hidden 

defects, and determine the thickness of different layers. The 

frequency of the radar waves plays a critical role in determining 

both the resolution and depth of penetration. High-frequency 

waves, typically above 1 GHz, provide detailed images but can 

only penetrate shallow depths, making them ideal for 

inspecting ballast conditions. Lower-frequency waves, in the 

range of 100 – 500 MHz, penetrate deeper but offer lower 

resolution, making them more suitable for analysing subgrade 

and deeper structural layers. Water-saturated or clay-rich soils 

tend to absorb radar waves, limiting penetration, while dry, 

coarse materials like gravel or sand allow for better wave 

transmission [13]. 

 InSAR 

Interferometric Synthetic Aperture Radar (InSAR) is a remote 

sensing technique that uses satellite-based radar imagery to 

measure ground surface deformation with millimetre-level 

precision. By analysing the phase differences between radar 

signals captured at different times, InSAR provides detailed 

information about land subsidence, uplift, and ground 

movement [32,35]. The precision of this technique is of the 

order of 3 – 5 mm. 

 FREE AND FORCED VIBRATION 

Point receptance analysis in railways is a testing technique used 

to assess the dynamic properties of track by measuring its 

response to applied forces. A sledgehammer with a steel tip, or 
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a falling weight of 8 kg, has been used in free vibration tests to 

generate an excitation impulse on the rail [36]. In a forced 

vibration test, a hydraulic actuator generates linear frequency 

sweeps with constant load amplitudes to stimulate various 

natural frequencies of a structure, such as a bridge [37]. The 

resulting accelerations are recorded using accelerometers or 

laser Doppler vibrometers at different positions, and the data is 

processed to compute Frequency Response Functions (FRFs). 

Measured FRFs can then be compared with corresponding 

calculated FRFs from a simulation model to identify the 

stiffness and damping of different parts of the structure [38]. 

 PERMANENT DISPLACEMENT, SETTLEMENT 

Various tools and instruments are available for measuring and 

monitoring settlement in track layers. These include the Multi-

Depth Deflectometer (MDD), which is embedded in the track 

bed, uniaxial and triaxial accelerometers [39], settlement plates 

paired with total stations, vibrating wire-based measurement 

systems, liquid level sensors, inclinometers, Linear Variable 

Differential Transformers (LVDTs), Global Navigation 

Satellite Systems (GNSS), and FBG sensors. 

The MDD is specifically designed to assess the mechanical 

response and deformation of soil layers. It is widely used at 

railway track sites to evaluate soil stiffness and condition. 

Primarily, the MDD serves as a reliable tool for accurately 

measuring the permanent deformation of different pavement 

layers. Additionally, it facilitates the calculation of the effective 

elastic moduli of multilayered pavement structures based on the 

collected data [40]. 

The LVDT is a displacement sensor used to detect linear 

movements in both the short and long term. It is commonly 

applied in railway infrastructure to monitor the displacement of 

components, such as sleepers, rails, bridges, and slabs [15]. 

A total station is an advanced electronic and optical 

instrument designed for precise measurement of angles, 

distances, and coordinates. In railway applications, it plays a 

crucial role in ensuring accurate track alignment, calculating 

gradients, and maintaining track conditions by detecting 

deviations and elevation changes [15]. 

The GNSS utilises satellite signals to determine the position 

of objects on Earth. It operates through a network of orbiting 

satellites that transmit signals to ground receivers, which 

process the timing and strength of these signals to compute 

position, altitude, and velocity. In railway systems, GNSS is 

used for continuous real-time monitoring of track settlement, 

enabling a better understanding of foundation changes at 

different stages and enhancing railway safety [41,42]. 

 BALLAST INSPECTION 

Ballast degradation occurs when fine materials or fouling 

agents accumulate in the spaces between ballast particles. This 

fouling can result from ballast fragmentation, contamination 

from external elements, or the infiltration of fines from the 

subgrade soil. Over time, as ballast continues to age, it becomes 

increasingly affected by fouling and degradation due to particle 

breakage and surface wear. These processes contribute to 

inadequate drainage, excessive settlement, track misalignment, 

and diminished lateral stability, all of which negatively impact 

railway track performance. In severe cases, excessive ballast 

degradation can lead to operational disruptions and safety risks 

[43]. Assessing ballast conditions typically involves visual 

inspections, manual measurements, and field sampling, which 

is often followed by sieve analysis. Additionally, automated 

methods such as the Ballast Scanning Vehicle (BSV) have been 

introduced to enhance evaluation processes. The BSV is 

capable of capturing field ballast images, video footage, and 3D 

height maps from both plan and depth profile perspectives, 

enabling a thorough assessment of ballast conditions [44]. 

 WILD 

Wheel flats and other forms of wheel out-of-roundness can be 

detected through acoustic or visual inspections, or by 

measuring vertical wheel–rail contact forces using wheel 

impact load detectors (WILDs). These detectors help operators 

monitor force levels, enabling proactive maintenance to 

prevent excessive wheel out-of-roundness. Commercial WILD 

systems use various types of sensors, including strain gauge 

circuits, fibre optic technology for measurements of rail 

bending, and load cells for rail seat loads [45].   

 FROST DEPTH 

Extreme weather conditions in northern European countries 

may lead to recurrent issues with freeze-thaw cycles and 

seasonal variations in track geometry. Frost depth can be 

measured using frost sticks [15].  

 TRACK GEOMETRY AND TRACK STIFFNESS 

RECORDING CAR 

Track geometry recording cars are specialised rail vehicles 

equipped with advanced measurement systems such as laser 

profilometers, accelerometers, and ultrasonic sensors. Track 

geometry is evaluated based on band-pass filtered indicators, 

such as longitudinal level, horizontal alignment, cant, 

curvature, gauge, and twist. These indicators are assessed based 

on the specific wavelength intervals defined in EN13848-5, see 

Table 1 [46].  

 

Table 1. Wavelength ranges according to EN 13848–5[46]. 

Longitudinal level Wave type Wavelength range (m) 

D0 Short wave 1 – 3 

D1 Mid wave 3 – 25 

D2 Long wave 25 – 70 

 POINT MEASUREMENTS 

Strain gauges (traditional or FBG-based), accelerometers, and 

contact pressure cells [39] are widely used in railway 

measurements to monitor track and vehicle dynamics, ensuring 

safety and performance. Strain gauges are installed on rails, 

sleepers, and train components to assess strain, stress, load 

distribution, and deformation under varying operational 

conditions.  

4 CASE STUDY: THE GRANSJÖ TEST SITE 

In 2022–2023, an extensive field measurement campaign was 

carried out in a transition zone at Gransjö, north of Boden, on 

the Swedish heavy haul line Malmbanan [15]. The transition 

zone was between a conventional ballasted track on 

embankment and a Moulded Modular Multi-Blocks (3MB) 

slab track. An FBG-based long-term monitoring arrangement, 

with a high temporal resolution, was used for both short-term 

and long-term condition monitoring of the operational railway 

track in the harsh conditions of northern Sweden. The test set-
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up was limited to measuring the response in four selected 

sleeper bays. 

 

 

Figure 1. An overview of the test site including a transition 

zone between ballasted track and 3MB slab track at Gransjö, 

north of Boden, Sweden. 

 TEST SITE 

Traffic on the line is dominated by iron ore freight trains with 

axle loads up to 32 tonnes, operating from the mines in Kiruna 

and Malmberget to the ports in Narvik and Luleå. The speed of 

the loaded heavy haul trains is 60 km/h. The line is also used 

by passenger trains at maximum speed 135 km/h and by other 

freight trains. The annual traffic load is of the order of 14 MGT 

(mega gross tonnes).  

The track design includes 60 kg/m rails, rail fastenings with 

10 mm rubber rail pads, and concrete sleepers designed for axle 

loads of 35 tonnes at a sleeper distance of 0.6 m. The 3MB 

track at Gransjö was constructed in September 11 – 15, 2022, 

as part of the Horizon 2020 Shift2Rail EU project In2Track3. 

[15]. It was decommissioned in August 2023, see Figure 1. 

 GEOTECHNICAL SURVEY 

Prior to the construction of the 3MB track, geotechnical tests in 

the form of CPT and MASW were conducted to determine the 

stiffness and stratification of the layered substructure. The 

results indicated that the subgrade at the site consists almost 

exclusively of moraine, mixed with large blocks of rock, with 

a maximum depth of 5 m to bedrock [47]. The embankment 

height varies between 2 and 2.5 m. Due to years of maintenance 

involving tamping and re–ballasting of the track, the thickness 

of the ballast layer (nominally 30 cm) has increased to 80 cm. 

This necessitated additional excavation depth to remove the 

ballast layer (and large blocks) during the construction of the 

3MB slab system.  

In the MASW survey [47], the dispersion of Rayleigh waves 

on the ground surface, acquired using vertical geophones, was 

used for the interpretation of small strain shear stiffness. See 

Figure 2 for an example of measured distribution of wave speed 

in a cross-section of the subgrade at the test site. 

Track geometry was measured using a track geometry 

recording car. For reference, in another study conducted on 

Malmbanan, track geometry car recordings from 1999 to 2016 

were analysed to investigate rates of vertical track geometry 

degradation. This analysis indicated some correlation between 

track stiffness gradient and differential settlement, providing 

insights into how variations in substructure stiffness can lead to 

local track irregularities. As expected, it was concluded that the 

settlement rate along Malmbanan varies significantly 

depending on the local conditions and properties of the 

subgrade. For a poorly supported section of the track, the 

standard deviation of the longitudinal level (1 – 25 m), 

evaluated over a 50 m track segment, increases by 

approximately 1 mm per annum [27,28]. 

Track stiffness at rail level, measured using the same track 

geometry recording car before and after construction of the 

3MB track, is presented in Figure 3. A large gradient in 

stiffness is observed at either end of the 48 m slab track. The 

mean value of the track stiffness is particularly low for the slab 

track due to the softer elastic pads and the poor compaction of 

the backfill material after the excavation carried out during 

construction. 

 

 
Figure 2. An example of measured shear wave speed 

distribution of layered soil at the test site [47]. 

 

 
Figure 3. Track stiffness at rail level for ballasted track on 

embankment, two transition zones, and 48 m of slab track at 

Gransjö, measured by a track geometry recording car before 

and after construction. Blue vertical solid lines indicate the 

positions of two transitions (slab ends). Blue vertical dashed-

dotted lines show the positions of instrumented sleepers 3, 5, 

8, and 11, numbered from the slab. 

 FROST DEPTH AND INSAR 

The extreme weather conditions at the test site, with 

temperatures down to -40°C during the winter and relatively 

warm summers, result in recurrent issues associated with 

freeze-thaw cycles and seasonal variations in track geometry. 

https://www.sciencedirect.com/science/article/pii/S2214391223002398#f0085
https://www.sciencedirect.com/topics/engineering/backfill-material
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The Swedish Transport Administration monitors frost depth 

using frost sticks, which record the temperature in the subgrade 

at various levels down to a depth of a few metres, thereby 

generating a temperature profile. The variation in frost depth 

over a period of eight months, recorded at a station near the test 

site, is shown in Figure 4. It is observed that prior to the end of 

October 2022, the ground was not frozen at all. By mid-

December 2022, the ground had commenced freezing gradually 

down to a depth of 2 m. From mid-December 2022 until the 

beginning of May 2023 more than 2 m of the ground remained 

frozen.  

Frost penetrating to a certain depth may induce the expansion 

of the subgrade, resulting in ground uplift. This phenomenon, 

known as frost heave, poses a significant issue on Malmbanan. 

To evaluate the average settlement at the test site, InSAR data 

was used, providing the average settlement over a specified 

surface area at various times. It was found that the average 

settlement at a track point near the test site is about 1 – 2 mm 

per year [31], see Figure 5. 

 

 
Figure 4. Temperature profile of subgrade down to 2 m depth 

at a measurement station near the test site [15]. 

 

 
Figure 5. An example of InSAR long-term settlement 

measurements at a track point near the Gransjö site, covering 

the period from 2015 to 2021 [48]. Positive settlement 

numbers indicate downward permanent displacement. 

 TRAFFIC LOAD 

Information regarding traffic loading is crucial for evaluating 

railway infrastructure. In this campaign, data from a nearby 

wheel impact load detector was used to assess the range of 

mean wheel‒rail contact forces for a specific train passage 

traversing the test site [15]. 

Additionally, to evaluate the influence of the stiffness 

gradient and to detect potential voids beneath sleepers, the 

wheel–rail contact force was measured within the transition 

zone. Temporary electrical strain gauges were used to measure 

the contact forces in sleeper bays 3, 5, and 8 from the transition. 

A Wheatstone bridge comprising two waterproof strain gauges, 

each with a sensing area of 6 mm × 2.2 mm, was glued to the 

neutral axis of the rail within a specified span between two 

adjacent sleepers, oriented at ±45° relative to the horizontal and 

vertical coordinate axes, see Figure 6. Shear deformations of 

the rail web were measured on two occasions, with a six-month 

interval. 

It was concluded that the wheel–rail contact force in sleeper 

bay 3 was higher than in sleeper bays 5 and 8. The higher load 

could be attributed to vehicle dynamics when traversing the 

transition between two track forms with a stiffness gradient and 

potentially voided sleepers on the ballasted side. Consequently, 

the greater settlement of sleeper 3 could be a result of the higher 

loading. Additionally, it was observed that the wheels were 

generating forces, on average, about 5 kN higher in May 2023 

than in October 2022 due to the evolving irregularities in the 

longitudinal level along the transition. The magnitude of forces 

derived from WILD data for the same train was consistent with 

the measured wheel‒rail contact forces. 

 

 
Figure 6.  Full Wheatstone bridge mounted on the neutral axis 

of the rail web 

 TRACK FORM DYNAMICS 

Vertical point and cross receptances (frequency response 

functions) of both track forms were measured by exciting the 

rail using an instrumented impact hammer and recording the 

track response with accelerometers. The rail was excited either 

above a rail seat or at the centre of a sleeper bay. Apart from 

the hammer excitation, the track was in unloaded conditions. 

Accelerations were measured at locations sufficiently far from 

the transition to mitigate any boundary effects resulting from 

the change in track form.  

For the ballasted track, see Figure 7, three resonance peaks 

can be observed in the measured receptance at 30, 290, and 

950 Hz. The first peak corresponds to a vertical in-phase 

vibration of the rail and sleepers, characterised by high 

damping due to the propagation of waves in the ballast and 

subgrade. The second peak corresponds to an out-of-phase 

motion between the rail and sleepers, influenced by the 

flexibility of the rail pads. The third peak represents the pinned-

pinned resonance mode, which is a vertical bending mode with 

a wavelength twice the sleeper span. 

 SHORT-TERM TRACK RESPONSE 

The instrumentation setup included sensors for measuring 

axial rail strains to assess rail bending moment and rail seat 

load, vertical sleeper displacement, and vertical acceleration at 

the sleeper ends. The setup consisted of four clusters placed in 

sections between two sleepers in sleeper bays 3, 5, 8, and 11, 

numbered from the transition. Each FBG-based cluster 

consisted of one accelerometer, one displacement transducer, 

and one strain array with four strain gauges. In total, 30 FBG 

sensors were installed. Aluminium covers and cable conduits 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/subgrade
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were added to protect the sensors and cables from mechanical 

damage and harsh weather conditions.  

The interrogator was housed in a heated cabinet to maintain 

operational temperatures (0 – 60 °C) and positioned near a 

power source and data connection. Additional site equipment 

included a field computer, hard drive, junction box, 

temperature sensors, thermostat, fan, 4G antenna for backup, 

and a network switch. The interrogator continuously recorded 

sensors data at a 2 kHz sampling rate, distributing data via a 

network socket to a computer. A custom LabVIEW-based 

program, FemtoGateway, processed and stored the data locally 

before synchronising it with a server at Chalmers. 

 

 
Figure 7. Magnitudes of measured rail receptances for the 

ballasted track. Vertical hammer excitation on the rail at 

midspan. Response measured on the rail at midspan (point 

receptance shown using a blue line) or on the rail at railseat 

(cross receptance shown using a red line). 

 

 

Figure 8. Overview of the four clusters (C1 – C4), and strain 

sensor numbering for each cluster. 

 

Figure 9. Detail of an instrumented sleeper equipped with a 

vertical base plate, an L-shaped mechanism, 

one accelerometer and one displacement transducer.  

Axial rail strains were measured using strain gauges at the 

positions indicated in Figure 8. Based on the measured strains 

and assuming Euler-Bernoulli beam theory, examples of the 

evaluated time histories of rail bending moment above sleepers 

5 and 11 for part of a loaded iron ore train are shown in 

Figure 10. Each peak corresponds to a passing axle. It is 

observed that the rail bending moment above sleeper 11 is 

higher than that above sleeper 5, indicating that sleeper 11 has 

softer support conditions. This was confirmed by comparing 

the corresponding measured sleeper displacements. 

Based on the elongation of the displacement transducer, the 

vertical displacement of the sleeper was measured relative to a 

fixed anchor embedded deep into the ground (fixed reference), 

as indicated in Figure 9. Additionally, vertical accelerations 

were measured using six FBG-based accelerometers. Five of 

these were placed at the sleeper ends (3, 5, 8, 11, and 31), while 

one was positioned on the first block on the slab track side.  
 

 
Figure 10. Rail bending moment above sleepers 5 and 11 

along the transition. 
 

 LONG-TERM TRACK SETTLEMENT 

Permanent displacements of the track structure were 

determined by extracting the at-rest positions of the 

instrumented sleepers from intervals between train passages. 

The resulting long-term track settlements for sleepers 5 and 11, 

evaluated over a period of about 11 months, including one 

winter, are shown in Figure 10. It is observed that the initial 

settlement rate immediately after the installation of the slab 

track and transition zone was very high, but it slowed down 

after a few weeks of traffic. For sleeper 11, there was a reversal 

in the permanent displacement during the winter due to frost 

heave. 

To verify the trend in measured permanent sleeper 

displacements, a sleeper level survey was conducted using a 

Trimble SX12 self-levelling, automatic-scanning total station 

with an active prism. The survey was carried out on six 

occasions over a period of ten months. Overall, the long-term 

sleeper displacement data aligned well with the total station 

survey results for the ballasted track until the end of December. 

Subsequently, the relative measurement from the FBG system, 

which was referenced to a ground anchor, indicated less 

upward movement of sleeper 5 due to frost heave compared to 

the total station survey results. This discrepancy may be due to 

the short (2 m) length of the anchor that did not extend below 

the frozen ground layers, see Figure 4. To obtain a fixed 

https://www.sciencedirect.com/topics/engineering/baseplate
https://www.sciencedirect.com/topics/materials-science/accelerometer
https://www.sciencedirect.com/topics/engineering/displacement-transducer
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reference, longer anchors extending beneath the frozen layers 

would have been necessary. For sleeper 11, the total station 

survey results were consistent with the relative track 

displacement measurements since the anchor length exceeded 

4 m.  

 

 
Figure 11. Evolution of permanent sleeper displacement 

(settlement) over time for sleepers 5 and 11. Sleeper 5 was 

tamped after 20 days of operation. 

 

The Swedish Transport Administration utilises frost sticks to 

monitor frost depth. These instruments are capable of 

measuring temperature profiles to a depth of a few metres. 

Based on these measurements it was concluded that the ground 

remained unfrozen until late October, at which point it 

gradually froze to a depth of 2 m by mid-December. This depth 

was exceeded until early May 2023, cf. Figure 4. As air 

temperatures declined below -10 °C and frost depth exceeded 

2 m, sleeper settlement at positions 5 and 11 ceased and 

initiated a reverse process. This indicated that frost heave was 

the probable cause of this uplift. 

5 CONCLUSIONS AND LESSONS LEARNED 

In this paper, various methods for measurement and monitoring 

of differential settlement in railway infrastructure have been 

reviewed. The case study presented, conducted in a transition 

zone between ballasted track and a short demonstrator section 

of 3MB slab track at Gransjö on Malmbanan, aimed to integrate 

existing data, such as geotechnical surveys and InSAR 

measurements, with observations from an extensive FBG-

based instrumentation system that captured both short-term 

dynamic track responses and long-term static settlements 

(permanent displacements) of selected sleepers. 

Given the sensor requirements, harsh weather conditions at 

the test site on Malmbanan, operational railway track with 

heavy haul train traffic, and budget constraints, FBG sensors 

were selected. This system reduced the installation time, which 

was critical due to the narrow installation window during the 

construction of the 3MB slab track. Another benefit was the 

simplified routing of optical cables, allowing the interrogator 

to be placed in a heated cabinet to maintain operational 

temperatures (0 – 60 °C), as well as to be near the available 

power source and data connection provided by the track owner. 

FBG-based sensors have a higher initial cost than traditional 

sensors but offer superior performance, including multiplexing 

capabilities, reduced installation complexity, and greater 

durability in harsh environments. Their high sensitivity and 

immunity to electromagnetic interference enhance reliability, 

making them a more efficient and sustainable choice for 

advanced monitoring applications despite the higher upfront 

investment. 

The measured data have been used for a long-term 

assessment of the transition zone and the new slab track design, 

as well as for the calibration of track models for further 

simulation studies [38]. It was concluded that most 

implemented sensors performed reliably. The FBG-based 

strain gauges enabled the setup to successfully detect the type 

of vehicle, train speed, and the number of axles in each train. 

The spatial and temporal resolution of the observed rail 

curvature distribution were found to be sufficient for analysing 

rail bending moments. 

A considerable variation in measured displacements between 

the selected adjacent sleepers in the transition zone was 

observed. These displacements depend on the initial and 

evolving support conditions of each sleeper and their distance 

from the transition. For example, sleeper number 3, located 

near the transition, became voided shortly after installation, 

while sleeper 8 appeared to be supported by a very stiff 

foundation, leading to minimal settlement. Good agreement 

was observed between the displacement data from the FBG 

sensors and the total station survey.  

Unfortunately, the conditions and available time window 

during the construction of the transition zone and slab track at 

Gransjö were far from optimal. The excavated volume of 

ballast and subgrade was replaced with insufficiently 

compacted backfill material before the construction of the slab, 

leading to significant settlement of the slab track soon after 

installation. Due to the excessive settlement of the slab track, 

the fasteners on the slab side had to be adjusted to their desired 

height by sliding shims after 20 days of operation. At the same 

time, the first six sleepers on the ballasted side were tamped to 

restore the longitudinal level. Still, the substantial settlement of 

the slab track continued, albeit at a lower rate. This had a 

significant effect on the support conditions also for the sleepers 

near the transition, particularly indicated by the measured 

short-term displacements and settlement of sleeper 3.  

The signal-to-noise ratio of the acceleration data was too low 

because the delivered accelerometers were designed to measure 

higher acceleration levels than anticipated, preventing the use 

of the acceleration data for reconstructing sleeper 

displacements [49]. This issue could not be resolved, as the 

sensors were deployed in clusters, and replacing them in the 

field was not feasible. To address this issue, it is recommended 

to implement more rigorous quality control tests prior to 

installation.  

Furthermore, based on Euler-Bernoulli beam theory and the 

measured difference in rail bending moment across the width 

of the rail pad [23], the plan to evaluate time histories of rail 

seat loads failed due to inconsistent data from different strain 

gauges. 

The test site was distant from the university, leading to high 

travel costs in the event that anomalies needed to be addressed 

during the measurement period. For example, the displacement 

sensors and anchor arrangements needed adjustments on a few 

occasions due to the unexpectedly high levels of settlement. 

The measurements were conducted during winter, with heavy 

snowfall and low temperatures, which further complicated 

access to the sensors and made the process more challenging. 

Nevertheless, it is argued that the combination of the 

described FBG-based test set-up (improved with 

accelerometers with higher signal-to-noise ratio and more 
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consistent strain data) with existing geotechnical and traffic 

load data is a powerful approach that can be employed by 

infrastructure managers to justify, test, and evaluate transition 

zones and new track designs across their network. 

This study has focused on the heavy haul track on 

Malmbanan in northern Sweden, but insights discussed here are 

relevant to railways operating in other climates. Accurate 

monitoring of differential settlement in railway infrastructure is 

a common challenge worldwide, regardless of the type of 

loading and climate. It is argued that elements of the setup used 

here will assist infrastructure managers across the network in 

justifying, testing, and assessing new track designs. 
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ABSTRACT: Aging infrastructure poses significant challenges in ensuring safety, reliability, and long-term serviceability. The Parchi 

Viaduct, a 3-km multi-span structure on Milan’s A51 Eastern Ring Road, experienced critical degradation in its Gerber saddles, 

necessitating temporary closure for safety assessments. In response, Milano Serravalle Milano Tangenziali S.p.A. and CAEmate 

S.R.L. deployed an advanced Structural Health Monitoring (SHM) system, integrating distributed fiber optic sensing (DOFS) and a 

physics-informed digital twin (PINN) to enable real-time load-bearing capacity evaluation and predictive maintenance. This paper 

presents the implementation of the WeStatiX SHM platform, utilizing DOFS to capture strain, temperature, and vibration data while 

dynamically updating a finite element model (FEM) through inverse analysis and multi-objective optimization. By continuously 

refining modal parameters such as natural frequencies, mode shapes, and damping ratios, the system enables early detection of 

structural anomalies and degradation trends. 

The validated digital twin successfully predicted real-world structural behavior, confirming residual load-bearing capacity despite 

saddle deterioration and supporting the safe reopening of the viaduct under real-time monitoring per Italian NTC standards. Load test 

results and FEM simulations demonstrated excellent agreement, with taller piers exhibiting ~20% greater deflection, emphasizing 

pier height's impact on load distribution and deformation patterns. These findings enhance predictive maintenance planning, improve 

stress redistribution modeling, and contribute to prolonging the structural lifespan of aging infrastructure assets. 

 

KEY WORDS: Structural Health Monitoring (SHM); Digital Twin; Distributed Fiber Optic Sensors (DOFS); Finite Element 

Modeling (FEM); Predictive Maintenance; Artificial Intelligence (AI); Operational Modal Analysis (OMA); Physics-Informed 

Neural Networks (PINN); Machine learning (ML)    

1 INTRODUCTION 

The Milano Serravalle Milano Tangenziali S.p.A. manages a 

motorway network with over 400 bridges and viaducts, requiring 

regular structural assessment to comply with national safety 

regulations. Increasing traffic loads, environmental exposure, 

and material aging necessitated the implementation of an 

advanced Structural Health Monitoring (SHM) system for real-

time diagnostics and predictive maintenance. 

Following the Ponti Guidelines, the SHM deployment prioritizes 

viaducts with high traffic volumes, complex configurations, or 

significant material degradation. The strategy captures structural 

responses under traffic-induced loading, providing quantitative 

safety assessments. The network includes various bridge types, 

many built in the 1960s and expanded in the 1990s, making SHM 

essential for early damage detection, optimized maintenance, and 

long-term serviceability. 

This paper presents the Milano Serravalle SHM initiative, 

detailing sensor deployment, real-time data processing, and AI-

driven digital twin modeling for viaduct safety assessment and 

predictive maintenance. 

 

Figure 1. Sensors installed under the deck of viaducts over 

piazza Maggi. 

2 SYSTEM ARCHITECTURE 

2.1 Structural Health Monitoring Framework 

The SHM system deployed on the Milano Serravalle motorway 

network provides real-time structural diagnostics by 

continuously measuring key mechanical and dynamic 

parameters. It integrates threshold-based evaluation with a data-

driven digital twin, ensuring a comprehensive and adaptive 

approach to infrastructure monitoring. 

2.2 Threshold-Based Evaluation Approach 

Conventional SHM relies on predefined safety thresholds 

derived from design standards, material properties, and historical 

data to detect deviations from expected behavior. While effective 

for early anomaly detection, this method is limited by 

uncertainties in aging structures, undocumented modifications, 

and hidden defects such as microcracks and corrosion. To 

address these gaps, advanced sensor-driven modeling techniques 

complement threshold-based assessments. 

2.3 Model-Driven Digital Twin Approach 

To overcome static threshold limitations, the SHM system 

employs a model-driven digital twin that continuously refines 

structural models using real-time sensor data. A finite element 

model (FEM) serves as the foundation, integrating as-built 

documentation, material properties, and initial boundary 

conditions. However, continuous refinement is essential to align 

the model with actual structural behavior. 

Real-time sensor data from distributed fiber optic sensors 

(DOFS), MEMS-based accelerometers, and inclinometers is 

processed in the SHM cloud platform, where inverse modeling 

techniques, including physics-informed neural networks 

(PINNs), adjust structural parameters dynamically. This 
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feedback loop enhances damage detection, predictive 

maintenance, and risk assessment. 

Modal and frequency analysis further refine the model by 

tracking changes in natural frequencies, mode shapes, and 

damping ratios, key indicators of stiffness loss, fatigue, or 

settlement issues. This enables early intervention and cost-

effective maintenance planning. 

2.4 Multi-Sensor Data Acquisition System 

The SHM system relies on a multi-sensor network to capture the 

structure’s response under various conditions. Triaxial MEMS 

accelerometers facilitate Operational Modal Analysis (OMA) for 

detecting stiffness reductions. Inclinometers and displacement 

transducers measure rotations and deflections at critical 

structural interfaces, identifying foundation movements and 

misalignment. 

DOFS technology provides continuous strain, temperature, and 

stress distribution data, crucial for detecting localized stress 

concentrations and thermal expansion effects contributing to 

material fatigue. 

All sensor data is synchronized via satellite-linked data 

acquisition units (UCLs) and transmitted through fiber optic 

networks to the SHM cloud platform, ensuring precise temporal 

alignment for real-time analysis. 

3 DISCRETE SENSORS 

The structural health monitoring (SHM) system deployed across 

the Milano Serravalle motorway network incorporates a 

comprehensive array of discrete sensors, each carefully selected 

to measure critical structural and environmental parameters. The 

placement and configuration of these sensors were strategically 

determined based on the structural scheme, constraint conditions, 

and anticipated mechanical behavior of each viaduct. This 

systematic deployment ensures that all relevant dynamic, 

thermal, and displacement-related phenomena are captured with 

high accuracy and precision. 

3.1 Sensor Types and Technical Specifications 

A range of high-precision sensors was employed to monitor key 

structural response parameters, including vibrations, rotations, 

displacements, and temperature variations. The primary sensor 

types used in the monitoring network include: 

• Triaxial MEMS-Based Accelerometers: These sensors are 

used for capturing dynamic structural response by 

measuring accelerations in three orthogonal directions. The 

accelerometers deployed in this system have a measurement 

range of ±2 g, with a frequency response spanning from 0 

Hz to 500 Hz and a spectral noise level of ±22.5 μg/√Hz, 

ensuring high-resolution vibration monitoring. Their role is 

particularly critical for Operational Modal Analysis (OMA), 

which enables real-time identification of stiffness variations 

and localized damage detection. 

• Biaxial MEMS Inclinometers: The inclinometers are 

installed to measure angular rotations at key structural joints 

and supports. These sensors feature a measurement range of 

±15° with an angular resolution of 0.001°, enabling precise 

detection of structural tilting, pier settlements, and 

deformation trends over time. 

• Potentiometric Displacement Transducers: To monitor 

relative displacements between structural components, 

potentiometric displacement transducers were installed at 

expansion joints and pier connections. These devices have a 

measurement range of 0–150 mm, with a precision of 0.05 

mm, allowing for accurate tracking of longitudinal and 

transverse displacement variations. 

• High-Sensitivity Thermometers: Thermal effects play a 

significant role in structural deformation and stress 

redistribution, particularly in reinforced and prestressed 

concrete structures. Thermometers were deployed across 

critical structural sections, enabling the continuous 

monitoring of temperature variations. This data is essential 

for compensating thermal expansion effects in stress 

analysis and predicting long-term material fatigue due to 

cyclic temperature fluctuations. 

3.2 Sensor Placement Strategy 

The placement of sensors was carefully optimized to ensure 

maximum coverage of structural behavior while minimizing 

redundancy. In general, accelerometers and inclinometers were 

mounted along the lateral edges of the bridge decks, with 

installations concentrated at on-axis sections and quarter-span 

positions. These locations were selected to provide a detailed 

characterization of modal behavior, resonance effects, and 

dynamic loading conditions. 

To capture pier behavior and bridge support movements, 

inclinometers and displacement transducers were positioned at 

the tops of piers and at expansion joints, where rotational 

deformations and relative displacements are most pronounced. 

This setup allows for early detection of differential settlements, 

support degradation, and abnormal structural movements that 

could indicate potential failure mechanisms. 

Thermometers were distributed across key structural regions, 

including deck intrados, piers, and expansion joints, ensuring 

comprehensive thermal profiling. This placement allows for 

accurate correlation of temperature-induced stresses with real-

time displacement and strain measurements. 

3.3 Data Acquisition and Synchronization 

All sensors were hardwired to a high-speed data transmission 

network, ensuring continuous and reliable data flow to the central 

processing platform. The monitoring system employs a satellite-

synchronized local control unit (UCL), which manages data 

acquisition, synchronization, and pre-processing before 

transmitting the information to the SHM cloud platform. 

Figure 2. Logical scheme of the system architecture 

implemented by Milano Serravalle. 
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The optical fiber transmission BUS provides a secure and 

interference-free data link, enabling real-time sensor readings to 

be collected, processed, and stored in a structured database. The 

synchronized nature of this setup ensures that all measurements 

are precisely time-aligned, allowing for accurate modal and 

frequency analysis of the structures. 

Once collected, the sensor data is integrated with the digital twin 

platform, where it undergoes automated noise filtering, anomaly 

detection, and inverse modeling-based calibration. This process 

allows engineers to rapidly detect deviations from expected 

structural behavior and implement predictive maintenance 

strategies. 

 

3.4 Role of Discrete Sensors in the Digital Twin Model 

The real-time measurements from discrete sensors serve as the 

foundation for updating and refining the digital twin model. By 

continuously integrating modal data from accelerometers, 

rotational data from inclinometers, and displacement readings 

from transducers, the FEM-based digital twin can iteratively 

adjust its parameters to match actual structural behavior. 

The long-term tracking of temperature variations and 

displacement trends further enhances the predictive capabilities 

of the model, allowing for proactive intervention before critical 

failure conditions arise. As a result, the combination of discrete 

sensor data and AI-driven model updating enables a high-fidelity 

representation of viaduct performance, significantly improving 

the reliability of maintenance planning and infrastructure 

resilience. 

 

Figure 3. Discrete sensors used: displacement transducers (top), 

biaxial inclinometer (bottom left), triaxial accelerometer and 

biaxial inclinometer (bottom right). 

4 THE “VIADOTTO DEI PARCHI” AND THE 

DISTRIBUTED FIBER OPTIC SENSORS (DOFS) 

4.1 Structural Characteristics of the Viadotto dei Parchi 

The Viadotto dei Parchi is a critical viaduct on Milan’s A51 

Eastern Ring Road. Originally designed by engineer Silvano 

Zorzi in 1970, the structure features a continuous deck plate 

integrated with the piers, forming spans of 24 meters. Its design 

includes a zero-moment point positioned 7 meters from the pier 

axis, materialized through a Gerber-type saddle system that 

ensures efficient load redistribution and structural continuity. 

The viaduct consists of two parallel structures, each supporting 

a separate motorway carriageway, with a center-to-center 

distance of approximately 29 to 30 meters. Extending nearly 

3,000 meters in total length, it is one of the longest and most 

strategically significant bridges within the Milan motorway 

network. 

4.2 Structural Expansion and Modification 

In 1992, the viaduct underwent a major expansion to 

accommodate increased traffic demand, adding a third lane to 

the Eastern Ring Road. The available space between the two 

existing viaducts allowed for the construction of two additional 

structures, effectively increasing capacity while maintaining 

overall structural integrity. However, this intervention 

introduced engineering challenges, including increased 

dynamic loads, differential settlements, and stress 

redistribution between the old and new structures. 

Due to the viaduct’s scale and the number of spans, an 

advanced monitoring system was required to assess its real-

time structural performance, particularly in response to 

dynamic traffic loading, thermal variations, and long-term 

material degradation. This necessity led to the deployment of a 

Distributed Fiber Optic Sensor (DOFS) network, providing 

high-resolution continuous monitoring across the entire 

structure. 

 

Figure 4. “Viadotto dei Parchi” after the widening in the early 1990s. 

4.3 Advantages of Distributed Fiber Optic Sensors Over Discrete 

Fiber Sensors 

The DOFS system implemented on the Viadotto dei Parchi 

represents a significant advancement over traditional discrete 

fiber optic sensors, such as Fiber Bragg Gratings (FBG). FBG 

sensors operate through spectroscopic techniques that measure 

strain at discrete points along the fiber. While useful in 

localized assessments, they present several limitations, 

including restricted spatial resolution, installation complexity, 

and fragility. 

FBG sensors are typically deployed in limited chains, resulting 

in spatial gaps in the monitoring data and reduced effectiveness 

in capturing localized stress concentrations or progressive 

deformation. Their fabrication process modifies the fiber optic 

core, making them prone to breakage, and installation requires 

precise alignment with specialized equipment, increasing 

deployment costs and long-term maintenance efforts. 
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DOFS technology overcomes these limitations by using a 

continuous optical fiber embedded into the structure with 

mortar or adhesive compounds. This approach enables 

uninterrupted, high-resolution measurements of strain, 

temperature, and mechanical deformation along the entire 

monitored length. The method ensures superior durability, 

simplified installation, and greater resistance to environmental 

degradation, making it a more reliable solution for long-term 

structural health monitoring. 

4.4 Measurement Principles and Data Acquisition in DOFS 

Systems 

DOFS measurements rely on light scattering phenomena that 

occur within the optical fiber when subjected to external loads. 

The Brillouin Scattering Effect, a nonlinear optical 

phenomenon, forms the foundation of the measurement system. 

By analyzing the Brillouin frequency shift, the system 

determines absolute strain and temperature variations with high 

precision. 

The system achieves a strain resolution in the micro-epsilon 

range, allowing the detection of extremely subtle structural 

deformations. The spatial resolution is adjustable, ranging from 

a few meters to a few centimeters, depending on the 

interrogation time and system configuration. Temperature 

effects are automatically compensated through a dual-

wavelength technique, ensuring that strain measurements 

remain unaffected by thermal fluctuations. A secondary optical 

fiber within the same system provides independent temperature 

readings, allowing precise differentiation between temperature-

induced expansion and load-induced deformation. 

In addition to static strain and temperature measurements, 

DOFS systems capture real-time structural vibrations, enabling 

the identification of natural frequencies, mode shapes, and 

transient dynamic events. Unlike traditional accelerometers, 

which have bandwidth limitations, DOFS technology measures 

broad-spectrum vibrational activity with unmatched sensitivity, 

further enhancing the accuracy of structural assessments. 

4.5 Deployment of DOFS on the Viadotto dei Parchi 

The DOFS network was installed to maximize monitoring 

effectiveness across critical structural components. Optical 

fibers were embedded along both the intrados and extrados of 

the deck, covering longitudinal stress paths to ensure 

comprehensive strain tracking. Their positioning was 

optimized based on FEM simulations, allowing accurate 

assessment of curvature, bending moments, and stress 

redistribution. 

By integrating DOFS with the digital twin model, the 

monitoring system provides real-time structural assessments. 

This integration enables the early detection of microcracking 

and stress concentrations before they evolve into critical 

failures. Additionally, long-term deformations associated with 

creep, shrinkage, and fatigue effects can be tracked, ensuring 

that maintenance strategies are data-driven and proactive. The 

continuous monitoring and validation of FEM predictions 

ensure that theoretical models remain aligned with real 

structural behavior. 

The sensors used in this project were developed as a patented 

technology by a spin-off company of the Polytechnic of Milan, 

further enhancing the resolution, reliability, and predictive 

capabilities of SHM methodologies employed on the Viadotto 

dei Parchi. 

4.6 Impact of DOFS-Based Monitoring on Structural 

Management 

The implementation of DOFS-based SHM on the Viadotto dei 

Parchi has significantly improved structural assessment 

methodologies. The ability to obtain continuous, high-

resolution strain and temperature data across the entire viaduct 

allows for more effective maintenance planning and risk 

mitigation. 

Real-time monitoring enables early detection of evolving 

structural anomalies, allowing timely intervention before 

critical damage occurs. By tracking long-term performance 

trends, engineers can optimize reinforcement and retrofitting 

strategies, extending the viaduct’s service life while reducing 

maintenance costs. Furthermore, the integration of DOFS 

technology with digital twin modeling minimizes reliance on 

costly manual inspections, enhancing efficiency in 

infrastructure management while ensuring compliance with 

safety regulations. 

 

Figure 5. Cross section of DOFS fiber arrangement. 

4.7 DOFS Findings 

The Viadotto dei Parchi serves as a pioneering case study in the 

application of distributed fiber optic sensing for SHM. The 

successful deployment of DOFS technology has demonstrated 

its superiority over traditional discrete sensor networks, 

providing unmatched measurement resolution, real-time 

diagnostics, and enhanced predictive maintenance capabilities. 

The combination of DOFS with AI-enhanced digital twin 

modeling establishes a comprehensive framework for long-

term structural health assessment. By continuously integrating 

high-fidelity monitoring data into predictive maintenance 

strategies, this approach sets a new benchmark for SHM in 

large-scale civil infrastructure applications. Future 

implementations of similar systems across other critical 

viaducts will further refine predictive models and improve 

infrastructure resilience. 

 

5 FINITE ELEMENT MODELING AND DIGITAL TWIN 

TECHNOLOGY 

 

Figure 6. Comparison between real structure and Digital Twin. 
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5.1 The Role of Digital Twins in Structural Health Monitoring 

The integration of digital twin technology within the Milano 

Serravalle motorway network represents a paradigm shift in 

structural health monitoring (SHM), enabling a continuous, 

bidirectional exchange of information between the physical 

structure and its virtual counterpart. These simulation-based 

digital twins leverage high-fidelity finite element models (FEMs) 

to replicate the mechanical, thermal, and dynamic behavior of 

infrastructure assets, allowing engineers to conduct real-time 

diagnostics, predictive maintenance, and performance 

optimization. 

The development of digital twins follows a phased modeling 

approach, in which each structural component is incrementally 

integrated into the model, mirroring the actual construction 

sequence of the viaduct. This approach ensures that time-

dependent effects, such as viscosity (creep), concrete shrinkage, 

and load redistribution, are accurately accounted for. By 

incorporating historical construction data, including post-

tensioning phases and material aging effects, the digital twin 

provides a high-fidelity representation of the viaduct’s evolving 

mechanical properties over its operational lifespan. 

The thermomechanical behavior of the structure is also explicitly 

modeled, allowing for the simulation of temperature-induced 

stresses, expansion effects, and seasonal thermal cycles. This is 

particularly relevant for large-scale viaducts, where differential 

thermal expansion between spans can lead to progressive 

degradation and altered load paths over time. 

5.2 Finite Element Model Development for the Parchi Viaduct 

A comprehensive FEM was developed for the Parchi Viaduct, 

following standard structural simulation methodologies used in 

the design and assessment of large-scale infrastructure assets. 

The model accurately represents the structural geometry, 

material properties, and support conditions of the viaduct, 

ensuring that its simulated response aligns with real-world 

structural behavior. 

 

 

Figure 7. Parchi Viaduct and its Digital Twin (side view). 

The deck, piers, and foundations were modeled using 20-node 

brick finite elements with quadratic shape functions, which 

provide a high degree of accuracy in stress and strain 

calculations. The DYWIDAG bars and post-tensioning tendons 

were modeled as axially loaded structural elements, ensuring a 

realistic representation of prestress-induced force distributions. 

 

 

Figure 8.  Parchi Viaduct and its Digital Twin (bottom view). 

Given the variable pier heights of the viaduct, multiple models 

were generated to account for differential stiffness effects 

associated with varying substructure configurations. The 

selected pier heights of 7.5 m, 12.5 m, and 17.5 m reflect the 

actual structural conditions encountered during field inspections. 

These variations were included in the FEM to ensure accurate 

modeling of load redistribution effects and differential 

settlements. 

5.3 Interaction Between Spans and Load Redistribution Effects 

One of the key challenges in modeling the Parchi Viaduct was 

accurately simulating the interaction between successive spans. 

The viaduct's Gerber saddle system introduces complex load 

redistribution mechanisms, requiring nonlinear contact elements 

to properly model stiffness discontinuities and stress transfer 

zones. 

The interaction between successive spans was simulated using 

contact elements with linear elastic behavior, which were 

constrained to react only in compression. This approach captures 

the realistic load transfer behavior between deck segments, 

allowing for accurate assessment of bending moments and shear 

forces (Figure 9). 

The original deck structure incorporated a system of longitudinal 

and transverse post-tensioning bars, while the widened deck 

sections utilized 12 additional longitudinal cables, each 

containing 19 strands of 0.6-inch steel tendons. The interaction 

between these newly introduced elements and the existing 

structural components was modeled using tensioned beam-type 

elements, accurately representing the anchoring effects and 

prestress redistribution mechanisms (Figure 10). 

Figure 9. Model of three adjacent spans of the Parchi Viaduct. 
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Figure 10. Modelling of the bars and longitudinal tendons 

within the original and widened deck. 

 

 

Figure 11. Anchor detail used in the joint area. 

5.4 Calibration of the Digital Twin Using SHM Data 

To ensure that the finite element model remains an accurate 

representation of the actual viaduct, the WeStatiX SHM platform 

employs AI-driven inverse modeling techniques for continuous 

model updating. The calibration process follows a multi-step 

approach: 

1) Initial FEM Validation 

• The FEM is initially validated against historical design 

calculations and load test results from the viaduct’s original 

construction phase. 

2) Integration of Real-Time SHM Data 

• Sensor data from DOFS, MEMS accelerometers, and 

displacement transducers is used to update strain fields, 

displacement trends, and modal parameters in the model. 

3) Iterative Model Refinement via AI Optimization 

• A multi-objective optimization framework iteratively 

refines material properties, boundary conditions, and 

stiffness coefficients, ensuring alignment with measured 

structural response data. 

• Physics-informed neural networks (PINNs) are employed to 

enhance the accuracy of model predictions, particularly in 

identifying early-stage stiffness degradation. 

4) Utilization Factor Computation and Structural Safety 

Assessment 

• The stress state of individual structural components is 

computed through numerical integration of the finite 

element stress field. 

• The exploitation coefficient of materials (concrete, 

reinforcement bars, prestressing cables) is evaluated to 

ensure compliance with design safety margins and 

regulatory requirements (Figure 9). 

5.5 Structural Joint Modeling and Connection Reinforcement 

The integration of widened structural segments introduced new 

connection challenges, requiring specialized modeling 

techniques to assess joint behavior and stress redistribution. In 

the transition zones between the original deck and the expanded 

deck, beam-type elements were used to model anchor 

connections, ensuring that the prestress force transfer was 

accurately simulated (Figure 12). 

 

 

Figure 12. Modelling of the anchors used in the joint area. 

Additionally, the joints were analyzed under both static and 

dynamic loading conditions, allowing for detailed assessment of 

fatigue-induced stress cycles. By incorporating nonlinear contact 

constraints, the model was able to replicate realistic load transfer 

mechanisms, ensuring that joint regions remained within safe 

stress limits under operational loads. 

 

5.6 Structural Monitoring and Digital Twin Utilization for 

Predictive Maintenance 

The calibrated digital twin model serves as a decision-support 

tool for predictive maintenance, enabling engineers to: 

• Simulate various loading conditions and forecast long-term 

degradation trends. 

• Identify structural weaknesses by detecting deviations in 

modal properties. 

• Optimize maintenance schedules by predicting the 

remaining fatigue life of critical components. 

• Ensure regulatory compliance by continuously monitoring 

stress utilization factors. 

By integrating real-time SHM data with FEM simulations, the 

digital twin enables a data-driven approach to infrastructure 

management, reducing reliance on reactive maintenance 

strategies and minimizing the risk of unexpected structural 

failures. 

6 POST-PROCESSING OF MEASUREMENTS AND 

DIGITAL TWIN CALIBRATION 

6.1 Dynamic Adaptation of the Digital Twin to Measured Data 

A fundamental feature of the digital twin framework employed 

in the Milano Serravalle motorway network is its ability to 

dynamically update its properties based on the real-time behavior 

of the structure. Unlike static numerical models, which rely 

solely on design assumptions and material properties, the digital 

twin is designed to minimize discrepancies between theoretical 

simulations and measured structural response data. This ensures 

that the computed stress states, deformation patterns, and modal 

properties of the viaducts reflect their actual in-service 

conditions rather than idealized design scenarios. 

The primary objective of the digital twin calibration process is to 

ensure that the numerical model accurately represents the 

structure’s response across its entire load history. By 

continuously refining key structural parameters, the system 

enhances predictive accuracy and enables early detection of 

damage mechanisms. Through an automated and iterative 
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inverse analysis (back-analysis) framework, the digital twin 

minimizes deviations between sensor-acquired data and finite 

element simulations, allowing for high-fidelity structural 

assessments. 

6.2 Inverse Analysis and Model Calibration Techniques 

The real-time calibration of the digital twin is achieved using 

advanced inverse modeling techniques, which allow for the 

automated identification and refinement of uncertain structural 

parameters. The WeStatiX SHM platform implements an 

iterative multi-objective optimization framework, leveraging 

surrogate models trained on thousands of numerical simulations 

to efficiently estimate unknown properties. 

The parameters subject to calibration include both linear and 

nonlinear material characteristics, whose variation over time 

may indicate the onset of damage or degradation. Some key 

parameters continuously updated in the digital twin include: 

• Elastic and nonlinear material properties (stiffness 

variations due to progressive damage). 

• Time-dependent effects such as creep, shrinkage, and 

corrosion-related stiffness reductions. 

• Boundary conditions and joint behavior changes caused by 

foundation settlements or bearing degradation. 

• Temperature-dependent stress redistributions due to 

seasonal thermal cycles. 

Through inverse analysis, these parameters are iteratively 

adjusted until the numerical model converges with real-world 

sensor measurements, ensuring that structural assessments 

remain highly accurate and reliable (Figure 13) 

 

 

Figure 13. Calibration through inverse analysis. 

6.3 Operational Modal Analysis (OMA) for Dynamic Parameter 

Identification 

A key component of digital twin calibration is the identification 

of the structure’s dynamic properties through Operational Modal 

Analysis (OMA). Unlike traditional modal testing, which 

requires artificial excitation sources such as shakers or impact 

hammers, OMA leverages the ambient vibrations naturally 

present in the structure, such as those induced by wind, traffic 

loads, and micro-seismic activity. 

By processing acceleration data from MEMS-based sensors 

placed along the viaduct deck and piers, the system is able to 

accurately determine the structure’s modal frequencies, mode 

shapes, and damping ratios (Figure 14). This enables continuous 

tracking of structural stiffness variations, which are critical for 

detecting:  

• Local reductions in stiffness caused by fatigue, cracking, or 

reinforcement deterioration. 

• Progressive changes in modal parameters indicative of 

structural aging. 

• Sudden shifts in dynamic response due to damage events 

such as bearing failures or impact loads. 

 

 

Figure 14.  Inverse analysis calibration. 

The digital twin is continuously updated to minimize 

discrepancies between FEM-based modal predictions and OMA-

extracted parameters, ensuring real-time identification of 

structural changes. This approach allows for the detection of 

subtle stiffness reductions before they become critical, enabling 

early intervention strategies. 

6.4 Distinguishing Thermal, Transient, and Permanent 

Deformation Components 

One of the key challenges in long-term structural monitoring is 

the ability to differentiate between transient deformations (due to 

environmental conditions) and permanent structural changes 

(indicative of damage evolution). The WeStatiX SHM platform 

employs an automated algorithmic framework to process 

rotation, displacement, and strain data, allowing it to reconstruct 

the full deformation state of the viaduct. The system applies 

multi-stage filtering and correlation techniques to distinguish 

between: 

• Thermal deformations, caused by seasonal and diurnal 

temperature fluctuations. 

• Transient load-induced deformations, resulting from traffic 

loads and dynamic excitation. 

• Permanent deformation trends, which may indicate creep 

effects, prestress losses, or progressive material fatigue. 

Unlike traditional calibration approaches that simply enforce 

measurement-matching, the WeStatiX SHM methodology does 

not impose measured data onto the numerical model directly. 

Instead, it utilizes a cause-and-effect framework, ensuring that 

the structural behavior is characterized over time, across its entire 

operational lifespan. 

6.5 Multi-Timescale Calibration Strategies 

To provide a comprehensive assessment of structural 

performance, the digital twin employs two interrelated 
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calibration procedures, tailored to identify different categories of 

structural changes: 

1) Long-Term Calibration 

This process is designed to track slow-evolving structural 

characteristics, such as material degradation, creep progression, 

and corrosion effects. 

Using longitudinal datasets spanning months to years, the 

calibration process refines the governing material laws, ensuring 

that the digital twin reflects the actual deterioration mechanisms 

influencing the structure (Figure 15). 

 

 

Figure 15. Modal shape identification. 

 

2) Short-Term Calibration 

This process is focused on detecting rapid changes in structural 

behavior, such as those caused by thermal fluctuations, sudden 

damage events, or traffic-induced loading variations. 

It enables precise assessment of thermomechanical material 

properties, as well as the quantification of elastic and plastic 

deformations caused by transient loads. 

Both calibration processes work in tandem, allowing the system 

to accurately separate transient anomalies from permanent 

structural changes while ensuring that the digital twin remains an 

accurate and reliable decision-support tool. 

 

6.6 Digital Twin Utilization for Predictive Maintenance and 

Decision Support 

The continuously calibrated digital twin provides a quantitative 

basis for structural decision-making, allowing engineers to: 

 

• Predict the remaining service life of critical components 

based on degradation trends. 

• Assess real-time stress utilization factors to ensure that 

safety margins are maintained. 

• Optimize maintenance schedules based on accurate 

forecasts of fatigue life and prestress losses. 

• Trigger automated damage alerts, allowing for targeted 

inspections and cost-effective interventions. 

• Through automated calibration, inverse modeling, and real-

time FEM updating, the digital twin enables a fully 

predictive maintenance approach, shifting away from 

traditional schedule-based inspections toward data-driven 

infrastructure management. 

 

The post-processing and calibration methodologies implemented 

in the WeStatiX SHM platform represent a state-of-the-art 

approach to real-time structural assessment. By leveraging 

inverse analysis, OMA-based modal tracking, and AI-driven 

optimization techniques, the system ensures that the digital twin 

remains dynamically synchronized with real-world structural 

behavior. 

This multi-layered calibration framework provides a powerful 

tool for early damage detection, predictive maintenance, and 

infrastructure resilience assessment, setting a new benchmark for 

SHM in large-scale civil infrastructure applications. 

7  VALIDATION RESULTS AND PREDICTIVE 

ANALYSIS 

7.1 Load Testing and Digital Twin Validation 

To ensure the accuracy and reliability of the digital twin model, 

validation was conducted by simulating controlled load tests, 

comparing the numerical results with real-world structural 

behavior observed during field testing. For the Parchi Viaduct, 

these load tests took place in May 2021, during which multiple 

spans of the viaduct were subjected to static loading using a 

maximum of six fully loaded trucks, each weighing 

approximately 30–32 tons. The arrangement of the vehicles on 

the deck, as illustrated in Figure 16, was designed to produce 

representative loading conditions for evaluating the structural 

response. 

 

Figure 16. Truck loading configuration. 

During the tests, topographic survey methods were used to 

measure deck displacements and assess deformation trends 

under loading conditions. The digital twin model, previously 

described, was utilized to numerically simulate the load tests, 

integrating precise vehicle positions, tire contact pressures, and 

asphalt-layer load distribution effects in accordance with 

regulatory standards. These elements were accurately modeled 

to ensure a realistic representation of stress propagation through 

the bridge deck and substructure (Figures 17, 18, 19). 

 

 

Figure 17. Parchi Digital Twin load configuration  (side view). 
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Figure 18. Parchi Digital Twin load configuration  (top view). 

 

 

Figure 19. Utilization factor visualization of Parchi Twin. 

7.2 Pier Height Influence on Structural Response 

The simulation model was further refined by incorporating 

variations in pier heights, introducing additional pier elevations 

of 15 m and 9 m, corresponding to different spans of the viaduct. 

The results demonstrated a significant correlation between pier 

height and deflection response, with taller piers exhibiting 

approximately 20% greater maximum deflection under the same 

applied loads (Figure 20). This effect highlights the importance 

of accounting for pier stiffness variations in structural assessment 

and maintenance planning, as local stiffness differences can 

influence global load redistribution patterns. 
 

 

Figure 20. Pier height load test correlation of Parchi Twin. 

Comparisons between measured displacements from the load 

tests and simulated results from the digital twin showed excellent 

agreement, with negligible discrepancies in both maximum 

deflection values and the overall deformation trends (Figure 20). 

These results confirm the high fidelity of the digital twin model 

and its ability to accurately capture real-world structural behavior 

under operational conditions. 

7.3 Distributed Fiber Optic Sensor Data Analysis 

In addition to traditional displacement monitoring, the 

distributed fiber optic sensing (DOFS) system installed on the 

Parchi Viaduct provided continuous real-time strain 

measurements, enabling both dynamic characterization and 

modal parameter identification for each individual span. 

The DOFS system measures strain rate values, defined as the 

derivative of strain over time. 

This data is automatically processed by the SHM platform to 

extract modal characteristics, including natural frequencies and 

damping ratios (Figure 21). 

 

 

Figure 21. Natural frequency identification. 

Continuous strain measurements allow for full-field 

reconstruction of structural deformation. 

Any anomalous strain distributions or unexpected deformation 

patterns are automatically flagged, triggering maintenance alerts 

before failure conditions develop. 

For other viaducts within the highway network, similar modal 

parameter identification and deformation reconstructions were 

performed using accelerometer and inclinometer data, combined 

with temperature compensation models. An example of this 

modal analysis workflow is shown in Figure 22, where 

deformation trends were reconstructed based on correlated 

inclinometrics and temperature data. 
 

 

Figure 22. Deformation reconstruction using inclinometric data. 

7.4 Interactive Visualization and Digital Twin Integration 

One of the key features of the WeStatiX SHM platform is the 

integration of digital twins within an interactive geospatial 

interface, providing real-time access to structural health data for 

all monitored viaducts in the motorway network. Through an 

interactive map interface, engineers can: 

• Select specific viaducts and bridge structures to access real-

time monitoring data. 

• Perform virtual inspections through 3D visualization of the 

digital twin model. 

• Review sensor data trends, including modal parameters, 

stress distributions, and temperature variations (Figure 23). 

This user-friendly visualization system ensures that structural 

assessment personnel can efficiently analyze infrastructure 

health indicators, facilitating rapid response to emerging issues 

while streamlining the decision-making process for maintenance 

planning. 
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Figure 23. Interactive map. 

7.5 AI-Based Predictive Maintenance and Self-Learning 

Algorithms 

A distinguishing feature of the WeStatiX SHM platform is its 

advanced predictive analysis capabilities, which leverage 

physics-informed artificial intelligence to anticipate future 

structural behavior based on: 

• Historical SHM data trends 

• Machine learning-trained degradation models 

• Structural simulations under progressive load scenarios 

By continuously assimilating real-world monitoring data, the 

digital twin functions as a self-learning system, progressively 

improving its predictive accuracy (Figure 24). This automated 

learning process enhances the platform’s ability to: 

• Predict structural degradation trends and forecast the 

remaining service life of individual bridge components. 

• Simulate long-term performance under variable load 

conditions, identifying potential failure scenarios before 

they occur. 

• Optimize maintenance scheduling, ensuring that 

interventions are proactively planned based on data-driven 

insights rather than reactive repairs. 
 

 

Figure 24. Monitoring and prediction dashboard. 

The WeStatiX SHM system integrates a suite of real-time 

dashboards, enabling infrastructure managers to analyze 

monitoring data and numerical simulation outputs 

simultaneously. These dashboards display key structural health 

indicators, including: 

• Current stress states and utilization factors 

• Real-time displacement and deformation trends 

• Predicted deterioration pathways based on historical load 

conditions 

By integrating AI-driven forecasting with SHM diagnostics, the 

platform provides unprecedented decision-making capabilities, 

supporting a predictive maintenance strategy that optimizes 

resource allocation, minimizes intervention costs, and ensures 

long-term infrastructure resilience. 

8 CONCLUSIONS 

The AI-enhanced digital twin framework implemented for the 

Parchi Viaduct has demonstrated the effectiveness of real-time 

SHM in large-scale infrastructure monitoring. By integrating 

DOFS, OMA, and PINN-based inverse modeling, the WeStatiX 

SHM platform accurately captures structural behavior, detects 

damage progression, and optimizes predictive maintenance. 

Load test comparisons validated the high accuracy of the digital 

twin, with minimal discrepancies in displacement predictions. 

The observed 20% increase in deflection for taller piers 

underscores the need to incorporate pier height variations in 

FEM-based assessments. Real-time monitoring has provided 

crucial insights into stress redistribution, long-term deformation, 

and material degradation, enabling early anomaly detection. 

Beyond reactive damage identification, self-learning AI 

algorithms support long-term deterioration forecasting and data-

driven maintenance planning. Interactive visualization tools 

further enhance usability, enabling real-time virtual inspections 

and safety assessments. 

This study establishes a scalable SHM methodology for 

infrastructure asset management, lifecycle extension, and cost-

effective maintenance. Future work will refine AI-driven 

anomaly detection, expand digital twin applications, and 

integrate multi-hazard risk assessments, advancing proactive 

structural assessment and predictive maintenance strategies. 
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ABSTRACT: In regard to subway structures, non-destructive testing and structural health monitoring techniques are beneficial 

for construction and operation, which require an integrated quality control and sustainability concept. Such an integrated concept 

is presented, focusing on two main tasks. Inspection during construction will lead to a better quality of the components and 

structures. Proper data can be integrated into a building information model (BIM). The conceptual design should, however, 

anticipate later impacts and possible deteriorations at critical parts. The building information model could then be continued 

(updated) in the form of structural health monitoring (SHM) to make (visual) maintenance of subway structures more efficient,  

resulting in fewer disruptions (fewer closures, less downtime) and lower costs. It can also contain sensors at non-visible or non-

assessible locations. Recording impacts on the structure (e.g. loads, vibrations, chlorides) enables a digital model as a so-called 

digital twin and the calculation of the remaining service life. Such a concept is presented for a new subway station in Munich.  

 

KEY WORDS: Digital model; BIM; Subway station; Monitoring. 

1 MOTIVATION 

In order to minimize the carbon footprint of constructions over 

their life cycle, it is necessary to maximize their service life. In 

addition, operational disruptions or breakdowns must be kept 

to a minimum in terms of number and duration to avoid 

"switching effects" to private transport. Up to now, quality 

control during construction has mainly been carried out 

visually. Conformity with the approved and released execution 

documents is examined, representative random samples of the 

building materials to be installed are taken, and compatibility 

with subsequent components and equipment elements is 

checked. However, as soon as a component or construction 

section has been concreted, quality control is essentially only 

carried out on the surfaces (e.g. gravel pockets, cracks, etc.). 

During the operation of the construction, inspection of 

infrastructure in Germany is carried out based on the German 

standard DIN 1076, establishing an inspection cycle of 6 years 

for so-called “major structural inspections” (German: 

Hauptprüfung). So-called "minor inspections" (German 

Nebenprüfung) with a reduced scope must be carried out every 

adjacent 3rd year. 

2 STRATEGY FOR NOVEL QUALITY INSURANCE 

 New constructions 

A customized selection and combination of BIM (Building 

Information Modelling), non-destructive testing (NDT) 

inspection techniques, and monitoring procedures can improve 

quality assurance during the construction phase and make 

condition monitoring and maintenance easier and more 

competent during operation. The first step would be 

categorizing all structural components with regard to their 

importance for stability, traffic safety, and durability. This can 

be done based on a Building Information Modeling (BIM) 

approach. The BIM model can be the basis for a digital model 

(sometimes referred to as a Digital Twin) containing physical 

or chemical material parameters for each structural component. 

To derive the resistivities of the materials, the monitoring of 

exogenous impacts can lead to a better understanding of 

material degradation. Proper monitoring techniques have the 

capability to measure such impacts as well as physicochemical 

conditions of the material in near real-time to update the digital 

model. Such a model is often called Digital Shadow, which 

always represents the actual state of the construction. 

 Existing structures 

Such implementations are most efficient if they are 

implemented during the construction of the structure. However, 

there is also considerable potential for such a monitoring 

approach to increase resilience, durability, and, therefore, 

sustainability of existing structures from the perspective of 

retrofitting during operation. Such techniques can be combined 

with conventional visual inspection during certain intervals (as 

mentioned above), but can contribute information from the 

interior of the structures and from structural parts that are 

inaccessible. 

 

Figure 1. BIM model of a new subway station. 

3 COMBINED APPROACH 

To exemplify the above-given strategy, a novel monitoring 

concept is illustrated for a new subway station to be built (see 
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a BIM model in Fig. 1). Assuming that the station has a total 

length of 400 m, such an underground structure is typically 

built in the so-called “cut-and-cover” technique (“Deckel-

bauweise” or “Schlitzwand-Deckel”, see the example in Fig. 

2). The outer walls are first inserted into the ground as 

diaphragm walls. The reinforced concrete cover is then 

produced in a shallow cover construction pit. Under the 

protection of the already constructed diaphragm walls and the 

tunnel cover, the ground is excavated up to the lower edge of 

the floor slab. The floor slab, the inner shell, the mezzanine 

floors, and the platforms are then constructed from bottom to 

top using solid construction methods. This construction process 

considerably limits the traffic restrictions caused by the 

construction work as well as the dirt and noise emissions. The 

subway station significantly impacts the groundwater, which is 

why all external components must be designed as watertight 

concrete structures and complex culvert structures are required. 

 

  

Figure 2. Cross-section of the BIM model in Fig. 1 of the 

subway station. 

Fig. 2 provides, in addition, some elements of an integrated 

quality control concept, which is divided into measures for 

quality assurance during the construction phase and for 

structural maintenance during operation. Non-destructive 

testing methods such as endoscopy, ultrasound, radar, electro-

magnetic induction, etc., are primarily used. These are mainly 

operated right after the production of concrete components that 

are important, for example, in terms of structural design or for 

the tightness of the building. This is intended to rule out 

damage that is not visible on the surface, such as cavities, etc. 

Continuous monitoring methods such as fiber optic measuring 

methods are used in the construction phase, for example, for 

concrete parts with architecturally high-quality surface design 

to control the development of hydration heat and thus the early 

forced stresses in order to control the post-treatment and thus 

limit the formation of cracks. 

Sensor systems and monitoring methods are also very 

important for repetitive structural testing and for structural 

maintenance during operation. For this reason, a new subway 

station can be equipped with a series of measuring devices for 

continuous monitoring of the structure: Earth pressure and pore 

water pressure sensors to record the load conditions, 

inclinometers to measure the structural deformations, multi-

sensors, particularly in the area of component or structural 

joints, to detect the penetration of moisture and possible 

corrosion activity [1] (Fig. 3), fibre optic measuring systems to 

observe the stress conditions and possible load redistributions 

in the load-bearing components [2] and, last but not least, so-

called "weigh in motion" systems for vibration measurements 

in the track bed. For more information on sensing systems for 

structural health monitoring it is to be referred to the literature 

[3]. 

     

Figure 3. Multi-sensor system for corrosion monitoring [1] 

including different sensor modalities (left) and embedded into 

a concrete structure via a borehole (right). 

 

4 CONCLUSIONS 

Quality assurance for subway stations, as presented here, 

essentially consists of a combination of a digital model with 

modern measurement methods. This makes it possible to 

improve the quality achievable during the construction of the 

structure and to maintain the structure's condition at a high-

quality level for a long time during operation. The structure's 

service life can be significantly extended, and the probability 

of occurrence and extent of operational disruptions minimized, 

as was shown earlier for wind turbines [4]. 

It is certainly true that the development of a digital twin and the 

installation and operation of inspection and continuous 

monitoring procedures are associated with costs. However, 

these costs are very low in relation to the structure's life cycle 

and the considerable monetary and environmental benefits 

associated with extending the service life. 
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ABSTRACT: In Germany, the bad condition of many older bridges and changes in the code provisions often result in deficits 

after assessment and recalculation. In case the necessary structural safety is not provided, structural health monitoring can be 

employed to gain knowledge about the time variant actions, the progression of structural damage and the overall condition of 

structures. To allow for effective use of the usually dense monitoring raw data, the derivation of condition indicators is key, since 

they indicate a need for action for the owners and the engineers. At the same time, real-time data as well as comprehensive 

condition indicators are key elements for creating a Digital Twin of a structure, as a Digital Twin requires a bidirectional flow of 

data, which affects the physical entity of the twin. In this paper, a method for deriving condition indicators from monitoring data 

is described which was developed for a large cable-stayed bridge, the Köhlbrand Bridge in Hamburg, Germany. The method 

allows for the calculation of a reliability index as a time variant condition indicator based on dynamic monitoring data, which is 

then implemented into a Digital Twin of the structure.  

KEY WORDS: SHM, reliability, condition indicators, condition monitoring, digital twin, bridges. 

1 INTRODUCTION 

Due to the poor condition of many older bridges and changes 

in the regulations, there are often deficits in the recalculation of 

existing bridges according to the German recalculation 

guidelines (NRR) [1]. If the required structural safety cannot be 

verified using standardized load models and modified 

resistance models in accordance with the various NRR 

standards, structural measurements can be carried out for a 

limited period or as continuous structural health monitoring 

(SHM) to gain knowledge about actions that vary over time. 

This makes it possible, for example, to derive object-specific 

traffic load models by using complex algorithms and models to 

infer the traffic volume and traffic composition based on 

structural measurements [2]-[4]. In the case of time variant 

physical state variables, an approach can be to reduce these to 

extreme values in defined time intervals and describing the 

frequency of their occurrence using approximation functions 

[5],[6]. These approximation functions allow for a prediction 

of which extreme values of the state variable will occur in the 

future [7] and what reliability against structural failure will 

result from this [8]. It is important here that sufficiently long 

measurement periods are available for such an investigation [9] 

and that the long-term stability of the measurement system is 

guaranteed for the measurement period [10]. 

The general aim of SHM is to assess the condition or 

performance of the structure. The key to this is the derivation 

of condition indicators for the structure which can relate, for 

example, to the state of preservation, safety or maintenance 

[11] and indicate to operators and engineers any need for 

action. Key figures relating to structural safety can be 

determined using a component-based or system-based 

approach [12]. In the simplest case, for example, a physical 

state variable of an individual component is compared with a 

corresponding threshold value to determine a degree of 

utilization. However, since these utilization rates are based on 

different actions, materials and failure modes with different 

variability, a utilization rate does not allow any conclusions to 

be drawn about the existing risk and, strictly speaking, only 

enables a binary assessment of the risk (exceedance or no 

exceedance). In this article, a procedure is therefore explained 

and implemented using the example of the Köhlbrand Bridge 

in Hamburg, which allows a reliability index to be derived from 

the dynamic monitoring ring data as a time-varying condition 

indicator in relation to a buckling monitoring. As part of the 

smartBRIDGE Hamburg project, the condition indicator was 

integrated into a digital twin of the structure, which contains a 

total of over 40 different condition indicators. 

 

 

Figure 1. Köhlbrand Bridge Hamburg (source: HPA-archive 

Martin Elsen). 

Since the buckling verification in this example is to be 

classified as a decisive structural check, this safety index does 

not refer to the system reliability but is determined for the 
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critical components of the structure. The structure and the 

problem are explained in more detail in the following chapter. 

 

2 PROBLEM DESCRIPTION AND MEASUREMENT 

MEASURES 

 Problem Description 

As one of Hamburg's most important traffic arteries, the 

Köhlbrand Bridge has been crossing the Köhlbrand between 

the Elbe island of Wilhelmsburg and Waltershof since 1974. 

The middle section, the river bridge, is a two-legged cable-

stayed bridge with individual spans of 97.5 m, 325 m and 

97.5 m (Fig. 1). The superstructure is designed as a single-cell 

steel box girder with an orthotropic deck [13]. 

 

In the course of a recalculation of the current bridge carried 

out in 2016 in accordance with levels 1 and 3 of the German 

recalculation guideline [1], the verification against buckling of 

the web and base plates in the pylon area for the required target 

load level (i. e. LM1 according to the German bridge code DIN-

FB 101) could not be provided [14],[15]. The buckling 

verifications were carried out using the so-called reduced stress 

method in accordance with the German code for steel bridges 

DIN-FB 103 [16]. Due to the normal force distribution in the 

stiffening girder, the pylon area represents the decisive area for 

the buckling checks, with the checks being exceeded by up to 

30 %. As part of level 3 of the recalculation guideline [17], 

cable force measurements were carried out to determine the 

stresses from permanent actions, which resulted in slightly 

lower longitudinal compressive stresses. However, the 

buckling check could not be provided here either using the 

reduced stress method. The degrees of utilization resulting from 

the calculation according to level 3 are shown in Fig. 2. 

 

The iterative verification using the method of effective 

widths according to DIN FB 103 [16] Chapter III-4 also led to 

an intolerable exceedance. As a result, a distance requirement 

of 50 m for trucks was added to the existing truck overtaking 

ban as a compensatory measure in accordance with the 1st 

amendment to the recalculation guideline [17] in order to 

reduce the traffic loads on the outer lanes and to be able to apply 

the reduced BK60 load model in accordance with the older 

traffic load code DIN 1072 (1967) [18]. However, this measure 

leads to considerable disturbance of regional and national 

traffic in Hamburg. 

 

To be able to lift the distance requirement in the medium 

term, early monitoring measures were commissioned by the 

Hamburg Port Authority AöR (HPA) as part of the 

smartBRIDGE Hamburg project [19], the piloting of a digital 

twin of the Köhlbrand Bridge. These include strain 

measurements in the web and floor plates in the area at risk of 

buckling, as well as acceleration measurements on some of the 

harp cables to assess the risk of buckling. To assess the risk of 

buckling, the long-term buckling monitoring data from a 12-

month period from July 2019 to June 2020 was evaluated as a 

first step. The data evaluation has recently been extended to 

December 2024. The aim of the monitoring is to determine 

whether there is a risk of buckling for the superstructure in the 

current load situation with the distance requirement and 

whether there are sufficient load-bearing reserves to lift the 

distance requirement. Probabilistic evaluation concepts of 

different levels of complexity were developed for this purpose. 

In the following, a simplified evaluation concept for the 

detection of buckling risk is described and applied to the long-

term data of the buckling monitoring to derive a suitable 

condition indicator for assessing the risk of buckling. 

 

 

 SHM Measures  

As the buckling of the web and floor plates could not be 

verified analytically, even with the aid of cable force 

measurements, MKP GmbH and WTM Engineers GmbH 

developed a measurement concept for a 

continuous structural monitoring. Variable 

actions in the superstructure were to be 

recorded via strain measurements on the 

superstructure and converted into acting 

stresses. In addition to the strain measurements, 

sensors for measuring the temperature of the 

structure, meteorological data (air temperature, 

radiation, humidity, wind direction and wind 

speed) and accelerations on the superstructure 

were provided. In conjunction with a Weigh-in-

motion system installed on the structure, the 

additional sensors record the external effects on 

the bridge structure almost completely and 

should, for example, make it possible to assign 

the measured stress components in the web and 

floor plates to the different traffic load 

components. In addition, acceleration sensors 

(y- and z-axis) were permanently installed on 

22 harp cables, which corresponds to a quarter 

of all cables on the current bridge. These 

sensors enable, among other things, the 

continuous determination of the cable forces, Figure 2. Utilization of buckling verification after recalculation 

level 3 (taken from [15]) 
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on which the stresses due to dead load of the superstructure 

depend on to a large extent. 

The strain measurements were carried out in a total of seven 

measurement cross-sections along the longitudinal axis of the 

current bridge (Fig. 3). 

A distinction is made between two types of measuring cross-

section: Measuring cross-section ST1 (Fig. 4a) comprises nine 

Y-rosette strain gauges (arrangement of the measuring 

elements 0°/45°/90°) on the web, bottom and top plates, 

through which three independent directions of strain are 

recorded to determine the main stress states. Measuring cross-

section ST2 (Fig. 4b) is a reduced measuring cross-section and 

comprises four T-rosette type sensors in the corners of the box 

girder. These record two directions of strain (arrangement of 

the measuring grids 0°/90°) to accurately determine the strain 

distribution in the horizontal and 

vertical directions, considering 

transverse strain influences, but 

without the possibility of 

determining the main stress 

directions. The details of the 

strain sensor arrangement of the 

ST1 and ST2 measuring cross-

sections are shown in Figures 4c 

and 4d. The strain sensors of the 

monitoring system measure at a 

frequency of 100 Hz, whereby 

the minimum (min), maximum 

(max) and average values (avg) 

of the strains and stresses of 5-

minute intervals are stored and 

evaluated. 

 

The sensor system is very 

extensive with a total of 94 

strain sensors in the 

superstructure, 44 acceleration 

sensors on the cables, nine acceleration sensors on the 

superstructure, 20 temperature sensors and eight additional 

meteorological sensors. The scope of the measurements can 

also be explained by the continued use of the measuring system 

as part of the smartBRIDGE Hamburg project [19], in which 

additional condition indicators were developed and monitored. 

In addition, the aim was to check whether the Finite Element 

(FE) hybrid model of the structure provides accurate strain 

states under a defined load, which requires an accurate 

measurement of the strain distribution over the entire cross-

section height. 

 

Figure 4. Measuring cross-sections and arrangement of the strain sensors (Source: MKP GmbH) 

Figure 3. Position of the measuring cross-sections in longitudinal direction 

(source: MKP GmbH) 
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 Load Tests  

Defined load tests and model calibrations are required to 

verify the plausibility of the stress values measured on the 

structure and to be able to relate them to the stress values 

calculated using normative load models. For this reason, the 

sensor system installed in June 2019 was tested as part of 

extensive load tests during a full closure of the structure in July 

2019. The structure was driven over with four concrete pump 

vehicles with a total weight of around 180 tons in different 

formations (Fig. 5a). In addition, measurements were carried 

out on cables under ambient and harmonic excitation with 

installed and removed dampers to determine the damping 

parameters. The evaluation of the load tests generally showed 

very good agreement between the measured longitudinal 

stresses and the stresses of the FE models [20]. The influence 

line of a real crossing and the influence line of an FE beam and 

shell model are compared as an example in Fig. 5b. The FE 

shell model shows almost complete agreement with the 

measured longitudinal stresses, while the beam model slightly 

underestimates the stresses. This is to be expected as 

longitudinal stress concentrates in the corner areas of the box 

girder, an effect which is not captured by a beam model. The 

functionality and accuracy of the monitoring system could thus 

be confirmed by the field test and the FE model. 

 

3 EVALUATION METHODOLOGY 

 Semi-probabilistic evaluation concept 

The developed concept for the monitoring-based buckling 

analysis is shown in Fig. 6. The concept is focused on the 

metrological determination of the acting stresses, whereby the 

resistance side of the buckling analysis is not directly included 

in the consideration (Section 3.2). The following two methods 

are available as examples for determining the design stresses 

from variable effects: Direct measurement of the steel stresses 

in the buckling field (method (a)) and indirect measurement by 

determining the external actions (method (b)). 

Direct measurement according to method (a) requires strain 

measurement on the cross-section using strain gages at the 

relevant points. The existing stresses from dead loads can be 

determined by cable force measurements or taken from the 

recalculation. The extreme values of stresses from a relatively 

short measurement period (e.g. one year) can be converted into 

design values of the acting stresses by a statistical evaluation of 

the variable stresses. On the resistance side, the permissible 

stresses according to DIN FB 103 [16] are applied. The target 

values for reliability can be taken from EC0 [21]. 

 

In the indirect measurement according to method (b), the 

main effects on the current bridge are recorded and 

characteristic values for the respective actions are derived. 

These can in turn be applied to the structural FE model to 

determine the characteristic stresses in the buckling areas. The 

design value of the compressive stress can then be determined 

conventionally using the design partial safety factors and 

combination coefficients of German bridge codes. 

Alternatively, the combination coefficients can be derived 

individually based on the data from the long-term monitoring. 

In this article, the design stresses are determined based on 

method (a), as this method does not require a distinction 

between different types of action, but only a distribution 

function for the measured extreme values is derived. 

 

 Determination of target reliability 

The total design resistance stresses in the ultimate limit state 

(ULS) are determined in accordance with the recalculation of 

the bridge [14],[15] based on the concept of reduced stresses in 

accordance with DIN-FB 103. The design resistance of the 

variable compressive stresses in the longitudinal direction Q,Rd 

results from the difference of the total design resistance 

according to DIN FB 103 Rd,DIN-FB minus the design value of 

the permanent actions g,Ed. For the area of the base plate, the 

design resistance of the variable compressive stresses results 

according to Eq. (1). 

𝜎𝑄,𝑅𝑑 = 𝜎𝑅𝑑,𝐷𝐼𝑁−𝐹𝐵 − 𝜎𝑔,𝐸𝑑 = −113 𝑁/𝑚𝑚² (1) 

Figure 5. a) Load test on the structure; b) Comparison of measured and calculated 

longitudinal stresses (source: WTM Engineers) 
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For the area of the web plates, the design resistance of the 

variable compressive stresses at the point of intersection with 

the base plate are given by Eq. (2). 

𝜎𝑄,𝑅𝑑 = 𝜎𝑅𝑑,𝐷𝐼𝑁−𝐹𝐵 − 𝜎𝑔,𝐸𝑑 = −123 𝑁/𝑚𝑚² (2) 

Since the resistance side is not considered further when 

determining the design values of the action or when calculating 

the existing reliability, the target value of the reliability index 

for the actions Ed is determined with E = E  ∙  (EC0 [21], 

Eq. C.6a), with E = -0.7 and  = 3.8 according to EC0, Table 

C.2 [21]. 

 

For the case of normally distributed basic variables of the 

actions, Eq. (3) applies to the determination of the measurement 

value Ed. 

𝐸𝑑 = 𝑚𝐸 + 𝛼𝐸 ∙ 𝛽 ∙ 𝜎𝐸 (3) 

Here, mE is the mean value of the actions with the standard 

deviation E. The target value of the reliability index  thus 

refers to both permanent and variable loads. However, the 

evaluation concept presented here is based on the stresses from 

dead loads determined in the recalculation and only the design 

value of the variable stress is determined probabilistically from 

monitoring data. For this purpose, it should first be checked 

under which boundary conditions a separate consideration of 

permanent and variable actions is on the safe side. Permanent 

and variable loads can be divided on the safe side according to 

Eq. (4). 

𝐸𝑔,𝑑 + 𝐸𝑄,𝑑 = 𝑚𝑔 + 𝑚𝑄 + 𝛼𝐸𝛽√𝜎𝑔
2 + 𝜎𝑄

2

< 𝑚𝑔 + 𝑚𝑄 + 𝛼𝐸 ∙ 𝛽(𝜎𝑔 + 𝜎𝑄) 

(4) 

Due to the fact that the permanent actions are determined 

with Eg,d = g ∙ mg and g = 1.35, Eq. (4) can be transformed into 

Eq. (5). 

𝐸𝑄,𝑑 < 𝑚𝑔 [𝛼𝐸 ∙ 𝛽 ∙
𝜎𝑔

𝑚𝑔

+ 1,0 − 𝛾𝑔]

+ [𝑚𝑄 + 𝛼𝐸 ∙ 𝛽 ∙ 𝜎𝑄]

< 𝑚𝑄 + 𝛼𝐸 ∙ 𝛽 ∙ 𝜎𝑄 

(5) 

The estimate at the end of Eq. (5) is valid for the conditions 

Vg = g/mg < 0.132, g = 1.35 and E = E ∙  = 2.66. In the 

event that the aforementioned boundary conditions apply, the 

design value of the variable actions EQ,d can therefore be 

determined on the safe side with the target safety index E = 

E ∙ . These are generally complied with for normal bridge 

structures, as the coefficient of variation Vg for dead loads 

should be well below 10 %. As a cable-stayed bridge is a 

structure with a complex interaction between cable forces and 

stiffening girders, further investigations were carried out as part 

of the buckling monitoring to determine the variability of the 

self-weight stresses using Monte Carlo simulations. The 

previous consideration still only applies to the case of normally 

Figure 6. Concept for compensating for safety deficits through SHM (source: WTM Engineers) 
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distributed variables, whereas the measured minimum values 

of the stresses are to be described here by an extreme value 

distribution of type I (Gumbel-distrubution). However, as this 

provides values that are on the safe side compared to a normal 

distribution, the design value of the variable actions EQ,d with 

the target safety index E = E ∙  is determined on the basis of 

an extreme value distribution in the simplified procedure 

presented here. 

 

 Determining the rated values from measurement data 

To determine the parameters of the extreme value 

distribution, the selected reference period must be chosen in 

such a way that the structure experiences a load series that 

recurs as evenly as possible during this period. In the case of an 

hourly evaluation, strong stress differences arise between day 

and night hours, as well as in the case of a daily evaluation 

between working days and weekends. This results in 

unfavorable standard deviations of the extreme values. A 

comparatively uniform exposure is obtained if a weekly 

evaluation is selected as the reference period [4],[22]. 

For a continuous monitoring period of one year, 52 weekly 

extreme values are available for determining the parameters of 

the distribution function. The standard deviation x and the 

mean value mx can be estimated from the available weekly 

extreme values, e.g. using the method of moments or the 

maximum likelihood method. The density and distribution 

function of the extreme value distribution type I (Gumbel 

distribution) for minimal values are given in Eqs. (6) and (7) 

[23]. 

 

Density function for minimum values: 

𝑓(𝑥) = 𝑎 ∙ exp[𝑎(𝑥 − 𝑢) − 𝑒𝑥𝑝[𝑎(𝑥 − 𝑢)]] (6) 

 

Distribution function for minimum values: 

𝐹(𝑥) = 1 − exp[− 𝑒𝑥𝑝[𝑎(𝑥 − 𝑢)]] (7) 

 

Using eqs. (8), (9) the parameters a and u of the distribution 

function can be determined. 

𝑎 =
𝜋

𝜎𝑥 ∙ √6
 (8) 

𝑢 = 𝑚𝑥 +
0,577216

𝑎
 (9) 

 

A special characteristic of the extreme value distribution 

type I is that the standard deviation of the distribution function 

does not change when the reference period is altered. 

Accordingly, the extreme value distribution for a selected 

reference period results from the shift of the extreme value 

distribution along the horizontal axis by converting the 

expected values (Fig. 7). The initial reference period of one 

week can thus be adapted to the corresponding target period for 

the measurement. 

 

The reference period can be converted by calculating the 

corresponding fractile value. The associated exceedance 

probability q is calculated for maximum values according to 

Eq. (10) [24]. 

𝑞 = 1 −
1

𝑛𝑎 ∙ 𝑎
 (10) 

where 

na  values per year depending on the reference period of the 

extreme values (here na = 52) 

a Return period or assessment period in years 

 

Next, Eq. (10) must be adjusted for minimum values 

according to Eq. (11): 

𝑞 =
1

𝑛𝑎 ∙ 𝑎
 (11) 

 

The calculation of fractile values of an extreme value 

distribution type I is carried out for minimum values according 

to Eq. (12). 

𝐹−1(𝑥) = 𝑢 +
1

𝑎
ln(− 𝑙𝑛[1 − 𝑞]) (12) 

where 

q  undercut probability 

 

The characteristic value of the effect Ek for a reference period 

of 50 years is obtained as a 2% fractile value of the expected 

value of the annual extreme value distribution (with 

q = 1/(1∙50) = 0.02) or as a 0.038% fractile value of the 

expected value of the weekly extreme value distribution (with 

q = 1/(52∙50) = 3.8∙10-4). The reference period for which the 

characteristic value of the action is to be determined cannot be 

clearly determined. While according to EC1 [25] the 

characteristic values for some types of action refer to a 

reference period of 50 years (e.g. wind or temperature), a return 

period of 1000 years is specified for the LM1 load model 

according to EC1-2. In [26] examples are given according to 

which reference periods between 50 and 1000 years were 

applied for characteristic traffic loads. Since no normative 

partial safety factor for variable loads is applied in the present 

evaluation, the choice of the reference period is of secondary 

importance, since the target value of the reliability for different 

reference periods according to EC0 [21], Eq. C.3 is to be 

Figure 7. Exemplary conversion of the extreme value 

distributions for two reference periods (source: WTM 

Engineers) 
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converted in such a way that the same design values result for 

all reference periods. 

It is important to note here that the weighting factors 

specified in the standards R = 0.8 and E = -0.7 only apply to 

a reference period of 50 years and may therefore only be 

applied to the value 50 (see also DIN 1055-100 [27], Eq. B.7). 

The 50 index can be converted to other reference periods by 

applying the weighting factors for maximum values according 

to Eq. (13) (corresponding to EC0, Eq. C.3). 

Φ(𝛽𝑛) = [Φ(𝛽1)]𝑛 = [Φ(𝛽50)]𝑛 50⁄  (13) 

Here, () is the cumulative distribution function of the 

standardized normal distribution. Eq. (14) applies for minimum 

values with  < 0. 

Φ(𝛽𝑛) = 1 − [1 − Φ(𝛽1)]𝑛

= 1 − [1 − Φ(𝛽50)]𝑛 50⁄  
(14) 

To determine the design value of the action Ed, the fractile 

value of the action associated with the reference period n must 

be determined with the undercut probability q = (E,n) based 

on the characteristic value Ek determined according to Eq. (12). 

The safety index for actions E,50 is 2.66 for a reference period 

of 50 years, which corresponds to an undercut probability of 

q = (-2.66) = 0.4%. 

 

4 VERIFICATION OF BUCKLING RISK 

 Evaluation of long-term data 

The statistical evaluation of the variable stresses from the 

long-term monitoring is only shown here for the critical base 

plate of the measurement cross-section 26630 in the pylon area 

(see Fig. 3). The daily minima measured on the south side of 

the base plate during the measurement period are shown in 

Fig. 8a. The seasonal influence of the compressive stresses, 

which increase towards winter, can be clearly seen. The diurnal 

influences of temperature and traffic can also be seen in the 

hourly minima of a February week shown in Fig. 8b. 

 

Figures 9a and 9b show the weekly minima of two measuring 

points each in the base plate and in the web in measuring cross-

section 26630 over the measuring period. In addition to a 

greater variance, the measured values of the base plate on the 

Figure 8. a) Daily minima of the measurement period; b) Hourly minima of a week in February 2020 

(source: WTM Engineers) 

Figure 9. Weekly minima of the measuring points a) 26330 ST1_UiBoS (south side); b) 26330 ST1_UiBoN (north side) 

(source: WTM Engineers) 
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south side (Fig. 9a) show a clear influence of the seasonal 

temperature profile compared to the same measuring point on 

the north side. Analyses of the different types of actions have 

shown that influences from direct sunlight are much more 

pronounced at this measuring point, which explains the 

stronger basic variance. In addition, there likely is a local 

temperature-related constraint that does not exist in this form 

on the north side. Similar effects are visible for the evaluation 

of the web stresses, whereby these are due to the influence of 

direct solar radiation (Fig. 9b). A more detailed investigation 

was carried out, which, however, is not the subject of this paper. 

 

The distribution of the weekly extreme values of the two 

measuring points in the relevant measuring cross-section 26630 

is shown in Fig. 10. The parameters of the extreme value 

distribution (type I) mx (expected value) and x (standard 

deviation) as well as the minimum compressive stress s,min 

recorded at the measuring point during the measuring period 

are each shown in the diagram. It can be seen that the Gumbel 

distribution represents a very good approximation of the actual 

distribution of the weekly extreme values at the measuring 

points investigated. 

 

However, it is also clear that the distribution functions differ 

significantly with regard to the standard deviations. The critical 

stresses occur at the measuring point MQ 26630 ST1_UiBoS 

(Fig. 10a)) on the south side of the superstructure. The 

parameters of the distribution functions determined for the 

individual measuring points are the basis for the design stresses 

determined in the following. 

 

 Determination of the design values 

Based on the weekly extreme values recorded during the 

measurement period and presented in the previous section, the 

design values of the action were determined with an extreme 

value distribution of type I according to the calculation steps 

explained in Section 3. Table 1 summarizes the target 

reliabilities t and E,t, the weighting factors E, characteristic 

values of the actions Ek and the design values Ed for different 

reference periods. The partial safety factors Q result from the 

ratio of the design value Ed to the characteristic action Ek. 

 

Table 1. Comparison of target reliability and characteristic 

expected values for different reference periods 

Reference period t 1 year 
50 

years 
100 

years 
200 

years 
1000 
years 

Target reliability t 4,68 3,80 3,62 3,44 2,98 

Target reliability E,t -3,78 -2,66 -2,42 -2,16 -1,44 

Weighting factor  

E = E,t / t 
-0,81 -0,70 -0,67 -0,63 -0,48 

Expected value  
Ek,t = u(t) [MPa] 

-41,27 -63,18 -67,05 -70,92 -79,91 

Design value Ed -94,2 

Partial safety factor 

Q = Ed/Ek 
2,28 1,49 1,40 1,33 1,18 

 

The calculation of the design value of the stress is carried out 

below as an example for a reference period of 200 years. The 

parameters a and the model value u result in  

 

a = /(7.182∙√6) = 0.179  

 

and  

 

u = 22.47 + 0.577216/0.179 = 19.25 MPa  

 

for the weekly extreme value distribution (initial values cf. 

Fig. 10a). The fractile value for determining the characteristic 

value Ek for a reference period of 200 years is  

 

q = 1/(52∙200) = 9.615E-5.  

 

The characteristic expected value is therefore  

 

Ek,200 = 19.25+1/0.179∙LN[ LN (1-9.615E-5)] = 70.92MPa.  

 

The fractile value of the target reliability for the ULS for a 

reference period of 200 years is  

 

Figure 10. Distribution of the weekly extreme values in the base plate of measurement cross-section 26630 for a) the 

south side; b) the north side (source: WTM Engineers) 
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Pf = (E,200) = 1-[1-(-0.7∙3.8)]200/50 = 1.539E-2  

 

(here the reliability index for a reference period of 50 years 

is the starting point). This corresponds to a safety index of  

 

E,200 = -1(1,539E-2) = -2.16.  

 

The design value thus results in  

 

Ed = -70.92+1-0.179∙ LN[ LN(1-1,539E-2)] = 94.2 MPa.  

 

Based on this evaluation, it can be determined that the safety 

against buckling can also be provided for the safety level 

applicable to new structures with a significant safety margin. 

The ratio of permissible compressive stress to design 

compressive stress ( = Q,Rd / Q,Ed) is  = 113/94.2 = 1.20. 

 

 Additional stress due to lifting of the distance 

requirement 

The calculations to date reflect the state of traffic under the 

distance requirement in force during the measurement period. 

However, one aim of the permanent monitoring was to lift the 

current distance requirement in the event that sufficient safety 

reserves arise with regard to the buckling proof. One question 

to be clarified is the extent to which the stresses are likely to 

increase as a result of the removal of the distance requirement. 

According to Table A1-3 of the NRR [17], the traffic 

compensation measures of a truck overtaking ban and a truck 

distance requirement of 50 m correspond to a reduction of the 

target load level from LM1 to BK60. 

In simplified terms, the load can increase from load model 

BK60 to LM1 if the spacing requirement is lifted. A 

comparison of the UDL loads distributed over a large area of 

the load models BK60 and LM1 results in a potential increase 

of qLM1/qBK60 = 1.18 if the traffic mix is largely maintained 

when the distance requirement is lifted.  

According to the recalculation of the Köhlbrand Bridge [15], 

the share of traffic loads in the variable loads is approx. 50 %. 

This means that an increase in the traffic load by 18 % results 

in an increase in the variable loads by a total of around 9 %. 

Even if the distance requirement is lifted, the buckling check is 

not expected to fall below the safety requirements for new 

structures. In any case, permanent monitoring would be 

continued if the distance requirement is lifted in order to be able 

to assess the actual effects on buckling safety. 

 

 Dynamic monitoring of reliability 

To enable dynamic monitoring of reliability as a condition 

indicator, the existing safety index can be calculated for a 

reference period of 50 years to assess the buckling safety with  

 

E,50,prov  = -1(F(Q,Rd))  

 = -1(1-exp[-exp(0,179∙(-113 + 63,18))]) = -3,64 

(with Q,Rd = 113 MPa).  

 

In continuous long-term monitoring, the existing safety index 

E,50,prov can be updated weekly in this way. This is shown as an 

example in Fig. 11. From the 25th week of long-term 

monitoring, the database for calculating the existing reliability 

E,50, prov is expanded and updated by one value every week. In 

this way, E,50, prov approaches the final value of -3.64 after one 

year of monitoring. If the distance requirement is lifted, the 

effects on buckling safety can be assessed immediately after a 

few weeks using this diagram. The advantage of this reliability-

based parameter is that it reflects the cumulative load history 

and exceptional load events can be directly classified here. In 

addition, lower reliability requirements can be defined as 

threshold values for existing structures with a short remaining 

service life. The advantage of this parameter is also that, unlike 

a degree of utilization, its threshold values are independent of 

the kind of verification to be performed (and therefore do not 

have to be scaled) and the procedure shown here is therefore 

transferable to other types of verification. 

 

 Integration into the digital twin of the Köhlbrand Bridge 

The condition indicator described above was used as part of 

a higher-level project to develop a digital twin of the Köhlbrand 

Bridge [19] and integrated directly into the system. The system 

is based on a BIM model of the current bridge and the ramp 

structures and combines the available information from 

structure books, the German digital structures database (SIB), 

information from structure diagnostics and the structure 

monitoring within one system. Instead of operating separate 

data silos, all available key information on the condition of the 

structure is combined in one system. A major advantage is that 

it is much easier to recognize correlations between different 

sources of information. For example, information on structural 

damage is displayed directly in the 3D model (Fig. 12). 

 

The taxonomy of the BIM model is based on the component 

groups according to the German taxonomy code ASB-ING. For 

the “Strombrücke” substructure of the Köhlbrand Bridge, a 

condition indicator was developed for each component group, 

which summarizes all available information on the component 

group into a condition group. A procedure was developed to 

combine the condition scores from the structural inspections 

with the information from structural monitoring to form a 

condition score [28]. Fig. 13a shows the condition indicator 

“superstructure” (steel box girder). The overall condition of the 

Figure 11. Dynamic development of existing reliability 

from long-term monitoring (source: WTM Engineers) 
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superstructure results from the PCI (Partial Condition 

Indicator) of the structural inspection and the PCI of the 

measurement-based calculations. With the PCIs “buckling 

safety” and “fatigue safety of transverse frame”, the CI includes 

the monitoring of two potential damage scenarios that were 

classified as critical for the structure based on sensitivity 

analyses. 

The buckling safety is assessed by the previously described 

probabilistic evaluation of the strains measured at the areas at 

risk of buckling (Fig. 13b). The calculation of the existing 

safety index for buckling failure on the basis of structural 

measurements is explained in Section 4. The reliability index 

(here βE-index, related to the action side) is permanently 

determined from the existing measurement data, which in turn 

is converted into a condition rating as explained in [28],[29]. In 

the visualization, the changes in the condition scores are shown 

in order to illustrate the effect of the damage scenario under 

consideration on the overall structure. In addition, a time 

diagram with the development of the reliability index over time 

is shown to illustrate the development of the 

condition over time and, if necessary, for an 

initial plausibility check. 

 

5 SUMMARY AND OUTLOOK 

In this paper, long-term buckling 

monitoring data from a twelve-month period 

from July 2019 to June 2020 was evaluated 

to derive a reliability-based condition 

indicator for assessing the risk of buckling 

of the Köhlbrand Bridge superstructure. The 

aim was to use probabilistic methods to 

determine whether there is a risk of buckling 

for the superstructure in the current load 

situation with a distance requirement in 

place and whether there are sufficient load 

reserves to lift the distance requirement. 

The statistical evaluation of the weekly 

extreme values showed that the critical stress values occur on 

the south side in the pylon area of the superstructure. As 

expected, the distribution of the measured values could be 

approximated very well by a type I extreme value distribution. 

Based on the distribution function, the design values of the 

variable actions were determined and compared with the 

structural resistances. This data was used to derive a time-

variable reliability index as a condition indicator, which places 

exceptional load events in the context of the load history and 

whose threshold values can be defined independently of the 

verification to be performed. In this example, there were 

sufficient reserves to lift the distance requirement. Continuous 

monitoring will nevertheless be continued, also in order to be 

able to assess the actual effects on safety against buckling if the 

distance requirement is lifted. In a further step, the condition 

indicator described in this article was implemented with other 

condition indicators as part of the smartBRIDGE Hamburg 

project in a digital twin of the Köhlbrand Bridge. By combining 

and aggregating all available information on the condition of 

the structure into a condition score, operators 

and structural engineers can immediately 

identify any need for action on the structure. 

 

 

  

Figure 12. Visualization of structural damage information  

(source: MKP GmbH) 

Figure 13. Visualizations in the Condition Control smartBRIDGE Hamburg 

of the a) CI “Superstructure” of the Köhlbrand Bridge with the associated 

PCIs; b) Detailed view of the PCI “Buckling safety” (source: MKP GmbH) 
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ABSTRACT: We report on recent developments in distributed fiber-optic strain and temperature sensing (DTSS) technologies. 

In recent years, both Brillouin- and Rayleigh-based fiber-optic sensing systems have found an increasing number of applications 

measuring static and dynamic displacement and deformation events in geotechnical and structural health monitoring. The focus 

of this contribution is on Brillouin-based DTSS systems, for which we present recent advancements in spatial resolution and 

signal-to-noise ratio under harsh real-world conditions. The state-of-the-art Brillouin DTSS technology is considered also in 

relation to Rayleigh-based technologies like c-OFDR and DAS systems that also play an increasing role in geotechnical and 

structural monitoring, in order to illuminate the technology-specific strengths and challenges within the DFOS family. Recent 

insights from industrial projects and research activities in embankment monitoring are presented. 

KEY WORDS: Distributed Fiber Optic Sensing, Structural Health Monitoring, geotechnical monitoring, Brillouin DTSS, 

BOFDA, embankment monitoring, crack detection 

1 INTRODUCTION 

 Fiber-optic sensing is applied in many different domains of 

structural and geotechnical surveillance. Among the various 

technologies available, Brillouin-based Distributed 

Temperature and Strain Sensing (DTSS) offers particular 

advantages in that it addresses the analysis of physical 

parameters with measurement performance that meets 

engineering requirements particularly well. These 

performances, in particular the spatial resolution, accuracy and 

measurement range, integration time, long-term reliability 

continue to evolve thanks to a continuous development effort 

from the scientific and industrial community. The type of 

optical sensing fibers and deployed sensors in general, as well 

as the installation procedures and the management techniques 

for sophisticated measurement data sets must also be 

continuously adapted to the demanding needs of continuously 

more complex projects and the new technological possibilities 

that become available. 

In this study, an overview of the most widely used distributed 

fibre-optic sensing technologies is presented, with a 

comparison of these technologies according to their key 

advantages. 

In particular, we demonstrate the latest developments achieved 

by the Brillouin Optical Frequency Domain Analysis 

(BOFDA) technology, in terms of enhanced spatial resolution 

and deployability on various types of sensing fibers. 

These performances make it possible to achieve measurement 

results with previously unattained quality and flexibility. This 

is demonstrated by the application of crack detection on dike 

covers presented in this article. 

 

2 DISTRIBUTED FIBER OPTIC SENSING 

TECHNIQUES FOR STRUCTURAL AND 

GEOTECHNICAL MONITORING 

Monitoring of buildings, transport infrastructure and the 

geotechnical and hydrogeological natural environment using 

distributed fiber optic sensors is becoming widespread. 

The availability of a range of complementary measurement 

techniques on the market to suit the specific requirements of 

diverse applications and environments has enabled DFOS to be 

used on a large scale and for a variety of different Structural 

Health Monitoring (SHM) and geotechnical monitoring 

projects [1]. Even more importantly, a new generation of 

interdisciplinary engineers is arising and tackling large-scale 

and complex DFOS-based projects mastering dedicated 

instrument and sensors integration procedures as well as data 

management models complying with the spatially distributed 

nature of the DFOS, also deploying artificial intelligence and 

digital twins [2]. 

Complementary DFOS measurement techniques can be applied 

alternatively or jointly in structural monitoring campaigns [3, 

4]. Different sensing technologies have advantages and 

disadvantages in terms of sensitivity to specific physical 

quantities, spatial distribution, temporal response, stability, 

field applicability, and financial cost. 

The most relevant DFOS technique of interest for structural and 

geotechnical monitoring are shortly presented here after. 

 

 High-spatial resolution coherent Optical Frequency 

Domain Reflectometry (c-OFDR) 

In the case of structures of limited dimensions (typically 

smaller than 100 m), monitoring with coherent Optical 

Frequency Domain Reflectometry (c-OFDR) [5, 6] is often the 

preferred choice. 
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The c-OFDR technology measures the distributed profile of the 

intensity of Rayleigh backscattering. This backscattering 

profile constitutes a unique fingerprint of the microscopic 

distribution of the scattering centers along the optical fiber, and 

is assumed to be stable over time – with limitations due to 

ageing, water intrusion, radioactive impact, etc. With its sub-

centimeter spatial resolution and microstrain accuracy over tens 

of meters, c-OFDR is well suited for precise monitoring in 

SHM applications, achieving high acquisition rates (up to few 

hundreds of Hz for small objects under test), allowing for 

dynamic measurements. Commercial instruments are, on the 

other hand, limited in monitoring large structures and for long-

term measurement campaigns. Even if rectification of the 

decorrelation of measurements in the long-term have been 

demonstrated in post-processing of acquired data [7, 8], the 

technique is mostly deployed in laboratory environments or for 

short, discrete measurement campaigns. 

 

For the structural and geotechnical monitoring of larger objects, 

long spatial range DFOS techniques such as Distributed 

Temperature and Strain Sensing (DTSS) based on Brillouin 

analysis, and Distributed Acoustic Sensing (DAS) based on the 

dynamic analysis of Rayleigh scattering are widely preferred. 

 

 Dynamic measurements by Distributed Acoustic 

Sensing (DAS) 

Distributed acoustic sensing (DAS), also referred to as phase 

sensitive optical time-domain reflectometry (Φ-OTDR), is a 

fiber optic sensing technology also relying on Rayleigh 

backscattering and is sensitive to strain and temperature 

perturbations in the fiber [9, 10]. By injecting pulses of 

coherent laser light into an optical fiber, an optical phase 

change is recorded, resulting from the backscattered light 

between two sections of fiber. DAS broadband capability at 

frequencies of several kHz and its high sensitivity in the 

picostrain range makes it ideally to be deployed in application 

fields such as geophysics (seismology, oil and gas, geothermal 

energy), electricity distribution, and perimeter monitoring. On 

the other hand, its inadequate performance to detect strain 

changes at low frequencies implies that its deployment is rare 

in long-term quasi-static geotechnical applications, where 

changes occur in time scales ranging from seconds (e.g. by pile 

loading tests) to years (e.g. for monitoring tunnel convergence, 

subsidence in transport infrastructure, landslides). One of the 

rare deployment examples of low-frequency DAS to 

characterize the movement of slow-moving shallow landslides 

is recurrently cited in literature [11]. 

On the other hand, DAS finds possible deployment 

opportunities in SHM, for example for monitoring the dynamic 

response of built structures such as bridges [4]. Namely the 

combination of DAS with long-term stable DFOS techniques, 

such as Distributed Temperature and Strain Sensing (DTSS) 

based on Brillouin Optical Time/Frequency Domain Analysis 

(BOTDA / BOFDA), comes with several advantages. Both the 

Brillouin and Rayleigh backscatter are sensitive to strain and 

temperature changes, but complementary spectral information 

can be gained. DAS is mainly sensitive to strain changes caused 

by acoustic signals or vibration along the fiber with acquisition 

rates up to several kHz. This allows insights on the vibration 

behavior of the bridge. Brillouin sensing, in contrast, offers 

highly stable and reliable measuring of long-term evolutions of 

strain and temperature. 

 

 Long-term stable DTSS by Brillouin Optical 

Time/Frequency Domain Analysis (BOTDA / BOFDA) 

Brillouin scattering allows for measurement of the absolute 

material density state of an optical fiber, thereby providing 

strain and temperature profiles over more than 50 km, with a 

spatial resolution down to 50 cm. These performance figures 

make distributed Brillouin sensing highly suitable for 

monitoring large structures [12, 13, 14].  

The basic principle of all distributed sensing principles based 

on Brillouin scattering is to spatially resolve the nonlinear 

Brillouin interaction along an optical fiber in order to retrieve 

the locally characteristic Brillouin frequency shift, which in 

turn is (over most of the strain and temperature ranges that are 

relevant for geotechnical monitoring) linearly connected with 

the fiber’s density. The Brillouin frequency shift can be 

retrieved from the Brillouin backscattering in a reflectometric 

set-up, which requires access to only one end of the sensing 

fiber; such configurations are denoted by the letter “R” in the 

common acronyms (BOTDR/BOFDR). The signal quality of 

distributed Brillouin sensing can be highly improved by 

analyzing the resonance frequency between two 

counterpropagating optical signals injected from both ends of 

the sensing fiber. Such configurations bear the letter “A” at the 

end of the specifying acronyms (BOTDA/BOFDA). Whether 

the spatially resolved profile of the Brillouin frequency shift is 

recorded in the time domain or the frequency domain, is 

denoted by the letters “T” and ”F” (BOTDA/R, BOFDA/R). 

 

Due to its primarily measured material parameter being the 

intrinsic density of the optical fiber, the BOTDA/BOFDA 

technology is specifically long-term stable and free from the 

requirement of on-site sensor calibration both at the initial 

baseline measurements and during long-term operation. With 

the calibration parameters known for the fiber-optic sensing 

cables in use (to be acquired from one-time laboratory tests), 

the Brillouin frequency shift from each measurement iteration 

can be converted into absolute values for temperature and 

strain, with no drift being caused by aging, fatigue, or changes 

in the optical properties of the cables and connectors. 

Therefore, the technique is especially suitable for geotechnical 

and structural monitoring over a time horizon even of many 

years.  

For reliable and stable measurements, the behavior of the 

bonding between the fiber-optic strain sensing cable and the 

surrounding structure under test must be considered. This is a 

key point when defining the integration procedures of the 

sensors in the host structure. On concrete structure the sensor 

can be embedded with high during the construction process, 

e.g. close to reinforcement elements (re-bars, pre-stained 

tendons), or applied on surface by retrofitting (by continuous 

gluing or using discrete fixation anchors). In the case of 

geotechnical monitoring this can be optimized, for example by 

burring the sensing cables in compacted soil or more efficiently 

in combination of smart geocomposites [15].  

Often it is necessary to compensate the effect of temperature 

on the strain measurement (since Brillouin, as well as Rayleigh 

sensing show strain-temperature cross-sensitiveness). In order 
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to separate strain and temperature, the use of dedicated (loose-

tube) fiber-optic temperature sensing cables, in which the fiber 

is mechanically decoupled, in parallel to a tight-buffered strain 

sensing cable is often the preferred monitoring configuration. 

 

 Cracks, voids, debonding detection by Distributed 

Temperature Sensing (DTS) 

Distributed Temperature Sensing (DTS) using Raman (and also 

Brillouin and Rayleigh) scattering is widely used in 

geotechnical and structural monitoring. It ensures accurate 

deformation measurements by compensating for thermal 

effects, tracks exothermic reactions in concrete curing, and 

detects fluid seepage in dams, pipelines, and tailings storage 

[16]. It has also been shown how DTS can be effectively 

applied to detect the presence of subsurface defects (voids) in 

concrete-filled structures [17]. The DTS methodology 

combined with heat conduction modeling, and inverse analysis 

has been applied to measure the geometry of foundation piles 

and to calculate their bearing capacity [18].  

Recent studies demonstrate how Brillouin-based DTS can be 

used for non-intrusive detection of desiccation cracks in dikes. 

This application is discussed in a later section of this work. 

 

 Key takeaways 

• DTS & Brillouin-based DTSS offer the best long-term 

stability, making them ideal for infrastructure monitoring over 

decades. 

• DAS is highly reliable for dynamic applications, such as 

seismic, traffic monitoring, vibrational mode analysis. 

• c-OFDR provides high precision, but is more sensitive to 

environmental factors over time. 

 

3 PERFORMANCE PARAMETERS AND PRACTICAL 

IMPLICATIONS OF BOFDA MEASUREMENTS 

Specifically for the Brillouin Optical Frequency Domain 

Analysis (BOFDA), the technology on which the focus of this 

work lies, we would like to go into deeper detail on two 

performance aspects for practical distributed measurements in 

optical fibers. 

 

 Performing DFOS measurements in multi-mode optical 

fibers using Brillouin sensing system: 

It is commonly accepted that for each of the different DFOS 

technologies, the respective optimum fiber type shall be used 

in order to gain optimum performance. In Raman DTS systems, 

these will be multi-mode optical fibers due to their ability to 

handle high optical power levels (even though dedicated single-

mode Raman DTS systems exist, minimizing modal dispersion 

to achieve higher distance ranges). In contrast, for Brillouin 

DTSS, literature clearly states that the use of single-mode 

optical fibers is mandatory. The reason here is that, in multi-

mode optical fibers, the excitation of the Brillouin interaction 

needs to be achieved for each optical mode separately, which 

makes the backscattering intensity (or the Brillouin gain) 

highly sensitive to the arbitrary modal distribution of the 

involved optical signals [19]. While earlier works had shown 

that a strict limitation to exciting the fundamental mode only 

when injecting the optical signals into the fiber under test [20], 

such an approach has not found its way into practice, with the 

consequence of a clear directive to practical users of Brillouin 

DTSS to exclusively use single-mode optical fibers as sensors.  

However, in many real-world application scenarios, the user 

might not have the choice of the fiber type – be it due to 

previously installed fiber-optic cables that comprise multi-

mode fibers for whatever reason, or due to imperfect project 

design or any other cause. Therefore, Brillouin DTSS 

measurements in multi-mode fibers have been frequently 

reported, and the results show that they are indeed suitable for 

quantitatively meaningful strain and temperature sensing. One 

of such application scenarios is reported in a later section of this 

work.  

In general, the design variety of multi-mode optical fibers 

contains specifications on the core diameter (typically 50 µm 

and 62.5 µm), and the refractive index profile between core and 

cladding being a gradient or a step-function profile.  

On order to give a generic orientation for Brillouin DTSS 

performance in a common-type multi-mode optical fiber, we 

present laboratory measurements from a step-index 50/125 µm 

(core/cladding diameters) step-indexed optical fiber of 445 m 

length. The measurements are performed using a BOFDA 

system on an optical fiber loop with the multi-mode optical 

fiber under test connected in series with a standard single-mode 

optical fiber (ITU-T G.652) of 120 m length for reference.  

 

   Figure 1. Brillouin gain spectra from one BOFDA 

measurement on a multi-mode and a single-mode optical fiber 

 

Figure 2. Full BOFDA measurement result: Intensity of 

Brillouin interaction (color map); local Brillouin frequency 

shift (black trace) 

 

The measurement results (figures 1, 2) show that the 

characteristics of Brillouin sensing for a specific fiber type, 

specifically the characteristic parameters of the Brillouin gain 

spectrum, indeed differ between the multi-mode optical fiber 

under test and the reference single-mode fiber:  

1. Brillouin frequency shift: While single-mode fibers have a 

characteristic Brillouin frequency shift (at room temperature 

and under strain-free conditions) at values between 10.6 GHz 

and 10.9 GHz, the multi-mode fiber shows a considerably 
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lower Brillouin frequency shift at 10.31 GHz. This is a 

quantitative difference, but does not at all compromise the 

performance of Brillouin sensing, because the observed 

frequency lies well within the scan range of commercial 

interrogator units.  

2. Brillouin linewidth: The full width at half its maximum of 

the Lorentzian-shaped Brillouin gain spectrum is observed as 

36 MHz for the multi-mode fiber and 25 MHz for the single-

mode fiber. Again, this is merely a quantitative characterization 

and does not imply a significant degradation of the 

measurement quality.  

3. Brillouin gain: The amplitude of the Brillouin gain 

spectrum of the multi-mode fiber is observed to be 3 dB (half 

intensity) below the reference single-mode fiber. The direct 

consequence of this discrepancy is a loss of 3 dB in signal-to-

noise ratio between the two fiber types, confirming that single-

mode optical fibers are better suited for distributed Brillouin 

sensing. However, considering the very clear implication of 

single-mode fibers being the obligatory choice, this 3 dB 

difference is considerably small. All in all it can be stated that 

multi-mode optical fibers can in fact be used for distributed 

Brillouin sensing. 

 

 The spatial resolution of BOTDA and BOFDA systems 

The spatial resolution is one of the central performance figures 

of any DFOS system. In general, the following definition has 

been widely accepted throughout the industry [21]:  

 

The spatial resolution is specified for a fiber by the minimum 

distance between two step transitions of the fiber’s strain / 

temperature condition. It is directly related to the pulse length 

of the measuring instrument. 

 

For general time-domain DFOS systems, the relation between 

the pulse length 𝛥𝑡𝑝 and the spatial resolution 𝛿𝑧 is  

 

𝛿𝑧 =
1

2

𝑐0

𝑛
𝛥𝑡𝑝 

 

with 𝑐0 being the vacuum light speed and 𝑛 the group refractive 

index of the optical fiber. A rectangular pulse of 10 ns length 

thus allows a spatial resolution of 1 m.  

 

When considering incoherent frequency-domain systems, such 

as BOFDA, the pulse length is not directly determinable 

because no physical pulses are used. In BOFDA, a series of 

sinusoidally modulated signals is injected into the optical fiber 

as the pump light; the received signal (the Stokes wave, upon 

which the sinusoidal modulation is transferred) is analyzed by 

gain and phase, which – over the full series of different 

modulation frequencies – results in the complex transfer 

function, that, eventually, can be converted into the pulse 

response (and thereby the equivalent time-domain signal of a 

BOTDA system) by means of an inverse Fourier transform.  

Whereas in a time-domain system, the spatial resolution is 

directly related to the pulse width, in a frequency-domain 

system it is related to the width of the virtual pulse after the 

inverse Fourier transform, and therefore, in its origin, 

determined by the bandwidth (or range of the frequency scan) 

of the sinusoidal intensity modulation. 

The equivalent relation found in literature implies that a 

bandwidth of 100 MHz results in a spatial resolution of 1 m. 

We hereby state that this appears to be not consistent with the 

theory behind nor with experimental results. The key to this 

discrepancy between commonly accepted literature and 

everyday observation is that these literature sources neglect the 

complex nature of the retrieved transfer function. The true 

assumption there is that the number of scanned frequencies of 

the transfer function within the given bandwidth equals the 

number of points along the equivalent time axis for the relation 

100 MHz bandwidth ⇔ 1 m spatial resolution. 

However, every frequency point of the complex transfer 

function comprises two values in the complex domain (gain and 

phase, or real and imaginary part, respectively). Conservation 

of information energy results in the fact that this doubles the 

number of points along the time axis (and thus the equivalent 

spatial axis), and results in a spatial resolution twice as narrow 

as the above cited literature implies. The relation for incoherent 

frequency-domain systems, specifically BOFDA, becomes 

 

 

𝛿𝑧 =
1

4

𝑐0

𝑛

1

𝛥𝑓𝑚

 

 

in which 𝛥𝑓𝑚 is the bandwidth of the sinusoidal intensity 

modulation.  

 

Figure 3. Virtual pulse in the time / spatial domain from a 

BOFDA acquisition scan 

Figure 4. Discrete strain event of 0.5 m along an optical fiber, 

measurement result from BOFDA (𝛥𝑓𝑚 =  101.76 MHz) 

 

For future developments, this means that a native spatial 

resolution (virtual pulse width) of 0.25 m is achievable by 

increasing the bandwidth of the intensity modulation to 

200 MHz, which is subject to current research by the authors.  
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4 APPLICATION CASE: UNINTRUSIVE CRACK 

DETECTION ON DIKE COVERS BASED ON DTS   

In the Netherlands, levees also referred to as ‘dikes’ are built 

from locally obtained materials like sand, clay, and peat, with 

peat and clay as the most common and abundant materials. 

They are used as they are the least permeable and most 

cohesive, thus most mechanically stable and erosion resistant. 

The outer portions of dikes tend to be made of grass covered 

hard clay, while the inner portions may be made of sand or peat 

for easier drainage and flexibility. Nonetheless, these materials 

respond differently to prolonged drought conditions. Under 

prolonged periods of dry weather, clay and peat dominated 

soils tend to develop desiccation cracks in the outer parts and 

thus the evaporating of moisture tends to increase their 

dimensions in time. Peat for example, is also a very organic and 

porous soil which shrinks massively during drought periods 

which also causes mechanical fracturing of the outer covers of 

dikes. These processes can seriously compromise the dike’s 

ability during a sudden storm as faster infiltration will saturate 

the dike core faster which in combination with a high-water 

level may result in a slope stability failure and consequently an 

eventual dike breach.    

Currently, the detection of desiccation cracks over dikes 

involves is done mostly by visual inspection and only prior and 

during drought periods which normally occur during the spring 

and summer [22]. These inspections, often result in subjective 

conclusions and their spatial density and frequency are 

significantly low with respect to their natural occurrence [22]. 

Some attempts have been made to increase efficiency in their 

detection by developing artificial intelligence methods which 

combine visual inspection and satellite data in machine 

learning algorithms to analyze dike sections susceptible to 

cracking and predict them based on exogenous variables [23]. 

Such methods are useful, but they still depend on extensive 

human-supplied datasets, which can be inaccurate and 

relatively small. 

 

For the present study, the main hypothesis is that a DTS fiber-

optic (FO) cable-based sensor can be used to differentiate 

‘healthy’ dike cover area from a similar area with desiccation 

cracks, without requiring the sensing cable to be buried in the 

ground. It is expected that the thermal response along the FO 

cable must differ significantly among the two types of surfaces 

given that the thermal emission and absorption will be highly 

influenced by the difference in thermal capacity and thermal 

conductivity. FO cables have been already widely used in 

geohydrological research [7] such as temperature monitoring 

for abnormal seepage water flow detection and soil moisture 

content measurement [26, 27]. It is important to note that by 

making the system as less intrusive as possible, the collected 

thermal signal is highly influenced by a larger number of 

external environmental heat sources such as solar radiation 

(absorption and reflection) wind thermal advection, convection 

and dispersion, grass moisture content, evapotranspiration, 

ground heat flux cycle and cable material emissivity among the 

most important. All these processes and their influence in the 

thermal response recorded by the sensor have been studied in 

detail via finite element model and can be found in [24]. 

 

 To test the main hypothesis, setup under real scale and 

representative environmental condictiones was built at ‘Flood 

Proof Holland’; a Dutch real scale dike and flood defense 

testing facility operated by Delft University of Technology 

among other local governmental and private partners.  

The setup consisted in the installation of a multi sensor thermal 

monitoring system over a pre-existing desiccation peat-based 

crack found on one of the lab dikes. The cracked area thermal 

emission was monitored during a period of 20 days and 20 

nights with a frequency of 15 minutes. The crack was 

monitored simultaneously with a Thermal Forward-looking 

infrared Remote sensor Camara (TRC), a conventional pc 

webcam and a DTS based FO sensor (See Figure 5).  

 

 

Figure 5. Dike Crack Monitoring setup at FPH, The 

Netherlands. 

The TRC recorded 16-bit (uint16) thermal images of the crack 

throughout the measurement period (See figure 6). Each image 

had a thermal a resolution of 256 × 320 thermal pixels and an 

intensity range spanning from 0 to 216-1. Its calibration was 

performed using the recorded air temperature in the 

climatological Rotterdam Airport from the KNMI (Royal 

Dutch Metrological Institute), located approximately 5 km 

from FPH.  

 

Figure 6. Thermal image of crack with chosen TRC areas for 

pixel averaging and point DTS fiber cable measurement 

locations for time series retrieval.    

The TRC was mounted just on top of the crack at an elevation 

of 2.6 m. This made possible to cover an approximate area of 

2 m by 1.80 m wide. Over the same surface, the FO multimode 
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cable was laid and anchored to the ground in linear transects 

orthogonally directed with respect to the main axis of the crack. 

The DTS system consisted on a BOFDA interrogator 

manufactured by fibrisTerre Systems GmbH type fTB 2505 

[28] and a fiber-optic cable of 3 mm of external diameter 

(including Kevlar isolation, armoring and polystyrene jacket) 

with a multi-mode optical fiber as the sensing elements. 

Each transect was approximately 4.5 m in length spaced every 

0.5 m as shown in Figure 1. The first part of the study consisted 

in analyzing and post-processing time series extracted only 

from the TRC images by choosing representative areas inside 

them and averaging their temperature values per area from the 

thermal pixels. The time series are presented in Figure 7. Each 

area represented different elements (see Figure 2) to be 

analyzed such as a bare grass covered area (TRC-GRS), a 

cracked area (TRC-CRK) and the environmental air 

temperature (KNMI). 

Figure 7. Time series generated from averaging thermal pixel 

on each image at different locations. 

From Figure 7, it can already be observed that there is almost 

no delay among the three different time series given the chosen 

recording frequency (15 minutes). However, in terms of 

amplitude of the signal it can be observed that the TRC-GRS is 

greater most of the time with respect to the TRC-CRK which 

implies that the cracked areas have less capacity of storing the 

heat and may also release the stored one in a faster way, 

especially for the hotter days at the end of the monitored period. 

In addition, it can also be observed that both type of dike 

surfaces is always warmer when comparing them to the 

nocturnal environmental temperature during the last days 

which also can be explained by the stored heat during the day.  

So, from this preliminary analysis, it was concluded that the 

best way to characterize the thermal response of each of the 

surfaces while reflecting both emission and storage of heat, was 

by estimating the maximum daily amplitude on each of the 

surfaces. To validate this, the time series analysis of specific 

points over the grass before and after the crack (See figure 6) 

and the temperature in the segment of FO exactly over the crack 

were analyzed as well.   

Figure 8. Thermal image of cracks with chosen areas for pixel 

averaging and DTS fiber cable approximate locations for time 

series retrieval.    

It is important to note that the cable's exposure to the 

environment affects its temperature readings. The estimated 

temperature from the TRC-GRS will differ from the DTS-GRS 

due to the thermal properties and emissivity of the cable jacket 

material, which absorbs and releases heat at a different rate 

compared to the grass surface. This is why in the Figure 4, it 

can be observed that the amplitude values is greater for the 

cable in cracked zones which contradicts what was observed 

with the TRC in Figure 7. This is due to the effect of the very 

different thermal properties of the cable with respect to the 

grass and crack cover when directly exposed to the solar 

radiation and environment moisture. Nonetheless while 

inverse, the relation holds trough out the whole-time span of 

the experiment which means that it can still be used for crack 

detection despite of presenting the opposite thermal behavior 

of the actual soil medium.     

 

Now based on these conclusions, a way of reflecting the 

difference in thermal properties at each location (cracked and 

healthy), is proposed based on the estimation of the maximum 

daily amplitude value (Amax) from each thermal signal 

withdrawn from the DTS. To do that, we propose to plot the 

cracked and non-cracked Amax ratio between DTS and KNMI 

versus the same Amax from KNMI as shown in Figure 9.   

Figure 9. Amplitude ratios of DTS over KNMI plotted against 

maximum daily amplitude from KNMI. Left plot corresponds 

from cable over crack. Right plot comes from cable where no 

crack is present (see Figure 6). 

 

From this last figure, the results indicate that indeed, in 

locations where a crack is present, the ratio of heat amplitude 

at a point with a crack compared to a point without one is 

typically greater than 1 due to the influence of the thermal 

properties of the cable. In contrast, at locations where no crack 

exists at the midpoint, this ratio is consistently less than 1. This 

suggests that areas with cracks tend to release heat more 

quickly and cool to lower temperatures at night compared to 

areas where the grass remains unfractured. We have also 

confirmed these findings through a finite element model study. 

Based on all the observations reported earlier, this study 

concludes that a DTS FO based sensor can be used to 

effectively detect cracks using daily cycle measurements taken 

at three points along a cable sensor. This conclusion relies on 

the physical principle that the recorded internal temperature of 

the cable tends to be higher in cracked surfaces during daytime 

and colder during nighttime with respect to the cable reading 

over grass. This behavior is inverse to the one observed by 

monitoring the temperature with TRC which reflect the actual 

thermal emission from the grassed surface without any 

interference.  
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5 CONCLUSIONS 

This study highlights the effectiveness and evolving 

capabilities of distributed fiber-optic sensing technologies for 

structural and geotechnical monitoring. Among these, 

Brillouin-based systems, particularly BOFDA, demonstrate 

specifically long-term measurement stability, making them 

well-suited for complex infrastructure applications. The 

successful use of DTS for non-intrusive crack detection on dike 

covers further underlines the potential of fiber-optic sensors in 

surface-level diagnostics without the need for invasive 

installation. By leveraging the thermal response differences 

across varied surface conditions, DTS proves to be a powerful 

tool for environmental and structural assessments. The findings 

presented herein lend further support to the ongoing integration 

of DFOS in contemporary monitoring strategies, a process that 

is set to be further accelerated by the ongoing advancement of 

sensing technologies (instrumental performance, sensors 

quality), integration procedures, and complex data 

interpretation methodologies. 
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ABSTRACT: The diagnosis and maintenance of both new and ageing infrastructure are among the main challenges facing the 

civil engineering and geotechnical industries today. The effectiveness of monitoring systems depends on several factors, including 

the choice of measurement techniques. Conventional point-based methods (e.g., vibrating wire sensors, electrical strain gauges, 

or accelerometers) are inherently limited by their locality, as they cannot directly capture what occurs between discrete 

measurement points. In contrast, distributed fibre optic sensing (DFOS) introduces new capabilities for structural condition 

assessment by enabling continuous measurement of various physical quantities along the entire length of the sensor. This 

eliminates the risk of missing localized extreme events or damages, such as cracks, leakages, or stress concentrations. However, 

the widespread adoption of DFOS is hindered by the high costs of optical interrogators, which often restrict its use to periodic 

measurements rather than fully automated monitoring. A practical solution to this challenge is the synergistic combination of 

point-based and distributed technologies within hybrid monitoring systems. Such systems leverage the strengths of both 

approaches, offering a more comprehensive understanding of structural behavior. This paper explores the concept of hybrid 

systems, illustrating their potential and real-world applications through selected case studies. 

KEY WORDS: hybrid system, DFOS, distributed sensing, optical sensors, bridges. 

1 INTRODUCTION 

Diagnostics and maintenance in an appropriate technical 

condition of existing, ageing infrastructure (including bridges, 

tunnels, pipelines and other safety-critical facilities) is one of 

the key challenges currently faced by both Polish and global 

civil engineering. Today, experts conducting periodic 

inspections have significantly broader responsibilities than in 

the past [1], along with an increased scope of accountability for 

the decisions they make. Therefore, the decision-making 

process [2] related to the operational safety of structures, 

particularly those with large spans [3] or unconventional 

structural solutions, should be supported by objective, 

effective, and cost-efficient diagnostic methods. As a result, 

integrated structural health monitoring (SHM) systems [4] are 

increasingly being used, enabling the measurement of selected 

physical and mechanical parameters of structures during their 

normal operation. 

Beyond the growing awareness within the engineering 

community, the development of monitoring systems is also, 

unfortunately, driven by the recurring occurrence of structural 

failures and collapses [5][6]. These incidents often stem from 

errors made during the design, construction, and maintenance 

of bridge structures. From a statistical standpoint, it is 

impossible to completely eliminate such errors. However, it is 

essential to take measures aimed at minimising the risk of 

structural failures. SHM systems contribute to this objective by 

providing early warnings of potential hazards, detecting trends 

that enable forecasting of structural behaviour over time, and 

supplying objective data for the calibration of theoretical and 

numerical models. 

The effectiveness of monitoring systems, however, depends 

on numerous factors, including the choice of measurement 

techniques, data acquisition methods, installation quality, 

selection of measurement locations, accuracy of applied data 

processing algorithms, thermal compensation, and the adopted 

diagnostic procedures. Developing an effective system requires 

interdisciplinary knowledge that often extends beyond the 

expertise of civil engineers and even mechanical specialists. 

Another challenge is the wide range of measurement 

techniques available on the market, each with its own 

advantages and limitations. There is no universal solution. 

Monitoring systems should therefore be designed individually, 

tailored to the specific characteristics and operational 

conditions of a given structure. 

Analysing the rapidly evolving market for structural 

diagnostics and monitoring, certain trends shaping the general 

approach to monitoring systems design can be observed. One 

of the most promising directions is the development of hybrid 

monitoring systems, which aim to synergistically combine 

selected measurement techniques to optimise the information 

obtained about the structural safety while simultaneously 

reducing overall system costs. The following sections of this 

article explain the concept of hybrid systems and present their 

operational principles using the selected case studies, with the 

main focus on bridge structures. 

2 SPOT MEASUREMENTS CONTINOUS IN TIME 

The fundamental requirement for implementing an early 

warning system is to carry out measurements automatically and 

continuously over time. The vast majority of such systems are 

built using spot sensors, installed at selected locations within 

the structure – Fig. 1. 

 

Hybrid monitoring systems:  

synergising distributed fibre optic sensing with spot measurements 

Rafał Sieńko1, 0000-0002-2751-7558, Tomasz Howiacki1,3, 0000-0002-6833-7203, Łukasz Bednarski2, 0000-0002-5404-9921,  

Katarzyna Zuziak3, 0000-0002-3577-399X 

1Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland  
2Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology in Krakow,  

Mickiewicza 30, 30-059, Kraków, Poland 
3SHM System / Nerve-Sensors, Libertów ul. Jana Pawła II 82A, 30-444 Kraków, Poland 

email: rafal.sienko@pk.edu.pl, th@nerve-sensors.com, lukaszb@agh.edu.pl, kz@nerve-sensors.com 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-019 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 100 

 

Figure 1. The scheme of the monitoring based on automatic 

spot sensors, performing continuous measurements over time 

at selected locations of the structure. 

Thanks to their long-term stability, high accuracy, and 

resistance to environmental conditions, vibrating wire gauges 

[7] have found widespread use in such systems. The most 

commonly measured physical quantities are strains [8], based 

on which local stress in the monitored material can be 

estimated. Nowadays, all vibrating wire gauges are equipped 

with integrated thermistors, allowing for appropriate 

corrections to the measured strain values due to temperature 

changes over time, as well as enabling an assessment of the 

global structural performance due to the thermal loading [9]. 

This approach allows for the analysis of time-dependent 

phenomena, including trend identification, forecasting the 

behaviour of the structure, and identifying potential threats that 

become apparent in changes in locally measured parameters. 

Depending on the design of the vibrating wire gauge, in 

addition to strains, it is possible to measure other physical 

quantities such as stress, displacements, rotations or forces. 

Other spot measurement technologies are also used, such as 

piezoelectric accelerometers for vibration monitoring, MEMS 

inclinometers for measuring rotations, inductive sensors, and 

many others. A typical scheme of a spot-based monitoring 

system for a bridge structure is shown in Figure 2. 

 

 

Figure 2. A typical monitoring system for a bridge structure 

designed with spot gauges. 

The gauges are connected to local dataloggers that send 

measurement data to a remote server, where further analysis 

and interpretation are carried out. The cost of such loggers is 

typically negligible in the context of the entire investment. 

However, despite the many advantages of this approach, it also 

has several limitations. First, measurements are only taken at 

selected spots. Aside from the need to choose optimal 

measurement locations, which is often not a trivial task, there 

is a lack of information during operation about what is 

happening with the structure between the measurement points. 

In other words, this system does not allow for the direct 

detection of local threats, such as cracks, damage, or stress 

concentrations. Furthermore, the unit cost of a single gauge is 

relatively high due to the justified necessity of using high-

quality sensors. Another issue is often the need to install long 

and complex cable routes, as each sensor must be connected to 

the logger using dedicated signal cables. 

3 DISTRIBUTED FIBRE OPTIC SENSING 

(MEASUREMENTS CONTINOUS OVER LENGTH) 

Distributed fibre optic sensing (DFOS) [10] features a number 

of advantages such as high accuracy, measurement stability 

over time, and immunity to electromagnetic interference. 

However, its primary characteristic and advantage, 

distinguishing it from traditional discrete methods, is the ability 

to perform measurements of strain, temperature, displacement, 

and vibration not only at selected points of the structure but 

along its entire length (Fig. 3), ranging from a few centimetres 

to several hundred kilometres. Therefore, the analysis of the 

structure's performance can be carried out not only in the time 

domain ε(t) but also in the length domain ε(l), providing 

entirely new insights and diagnostic possibilities. 

 

 

Figure 3. The scheme of the monitoring based on fibre optic 

sensors (DFOS), performing continuous measurements along 

the entire length of the structure.  

Thanks to the use of linear sensors, there is no need to select 

optimal locations for measurement locations, the number of 

which is often limited by budget constraints. DFOS sensors are 

installed along the entire length of the monitored elements or 

entire structures [11], such as bridges [12][13], roads [14], 

tunnels [15], railways [16][17], collectors and pipelines [18], or 

linear concrete elements like girders [19]. A significant 
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consequence of performing geometrically continuous 

measurements is the ability to directly detect local damage or 

threats, such as concrete cracking [20][21], local stress 

concentrations, sinkholes, leaks, and others. As a result, the 

effectiveness of the measurement system in early risk 

identification is very high – there is no possibility of missing 

extreme values of the measured physical quantities. This is one 

of the main reasons for the dynamic growth and development 

of DFOS technology in construction and civil engineering, 

which translates into a noticeable increase in its practical 

applications. Figure 4 shows selected examples of 

implementations within Polish bridges only [22, 23, 24, 25, 26, 

27]. The full list of bridges and various types of structures is 

much longer. 

 

 

Figure 4. Example bridge structures in Poland equipped with 

distributed fibre optic sensing DFOS systems. 

It is worth emphasising that depending on the type of chosen 

interrogator (optical datalogger), sensors, and installation 

approaches, the DFOS technique allows for the measurement 

of various physical quantities. The most commonly measured 

parameters include mechanical-thermal strains [28], but also 

shape changes (displacements) [29][30] and vibrations. 

Interestingly, there is the possibility of connecting the same 

sensors to different optical interrogators for simultaneous 

measurements of various quantities, such as strain and 

temperature. It should also be noted that, although the DFOS 

technique can represent a breakthrough in monitoring and 

diagnosing structures, there is no one universal solution for 

optimal sensor and interrogator properties. In other words, 

a wide range of optical fibres, cables, and sensors is available 

on the market [31][32][33], each characterised by its own 

advantages and limitations. When selecting a specific sensor, 

attention should be given to aspects such as: 

• size and shape of the cross-section (round, rectangular), 

• internal construction (layered, monolithic), 

• core material parameters such as elasticity modulus or 

maximum elongation, 

• type of outer surface (smooth, ribbed, with a braid), 

• mechanical, chemical, and environmental resistance, 

• minimum bending radius. 

It is important to emphasise that both the parameters of the 

interrogators and sensors should be selected individually based 

on the needs of a given project. For example, in the case of 

embedding sensors in concrete, round cross-sections and an 

external braid to improve adhesion are preferred. On the other 

hand, for gluing to flat surfaces, a flat rectangular cross-section 

without a braid is better. Sensors are a key component of the 

entire system. Once integrated into the monitored structure, 

they should provide reliable information about its performance 

throughout the entire service life. In telecommunications 

applications, optical fibres are used with various protective 

coatings, as well as layered cables, where the fibre is protected 

by additional protective layers. However, these layers usually 

do not adequately transmit strain to the sensing fibre inside the 

cable, creating the risk of data misinterpretation [20]. 

Therefore, in engineering applications, sensors designed as 

composite elements with fibres fully integrated with the single-

material core during production are more often applied. Fig. 5 

shows the family of various monolithic sensors. The 

EpsilonSensor has a low modulus of elasticity (3 GPa), making 

it particularly sensitive to detecting cracks in concrete. The 

EpsilonRebar, with a modulus of 50 GPa, can, in addition to its 

sensing function, also serve as reinforcement with parameters 

similar to typical GFRP (glass fibre reinforced polymer) bars. 

The EpsilonFlat is suitable for bonding to the surface of 

structures, while the EpsilonGraph is ideal for projects where 

rapidly changing temperature is a key parameter. 

 

 

Figure 5. Typical monolithic sensors for mechanical-thermal 

strains [courtesy of SHM System / Nerve-Sensors]. 

There is no doubt that a well-designed DFOS system can 

provide unique information, allowing reliable inferences about 

the technical condition of a structure. However, a key limitation 

of this technology in practice, slowing down its widespread 
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adoption, is the high cost of optical interrogators. Therefore, 

a common practice is to use a single device for periodic 

readings from sensors installed on multiple structures. Of 

course, the cost efficiency of the system will also depend on the 

scale of the investment and the responsibility (failure 

consequences) of the monitored structure. 

While DFOS measurements are most commonly performed 

periodically today, it is worth noting the rapid development of 

optical equipment. In recent years, new devices have appeared 

on the market, and existing ones have been improved in terms 

of selected parameters, such as spatial resolution or maximum 

measurement range. The high cost is partly due to the patents 

in place, which, in some cases, will expire in a few to several 

years. Therefore, it is expected that the cost of such devices will 

decrease in the future, while their diagnostic capabilities will 

increase. Creating intelligent infrastructure today, equipped 

with relatively not expansive DFOS sensors, will not only 

allow precise periodic measurements but also prepare for the 

use of future, yet unknown capabilities. 

It is also worth noting that DFOS sensors are, at the same 

time, signal cables (transmitting information from thousands of 

measurement points directly to the interrogator). In spot 

measurements, a signal cable must be routed (and secured) 

from each sensor to the local datalogger, which in many cases 

can be problematic. This applies especially to structures such 

as bridges, large-scale buildings (halls and stadiums), and 

linear infrastructure such as pipelines, collectors, or railways. 

A comparison in cross-section volume of 20 typical signal 

cables with a single optical fibre is shown in Figure 6. 

 

 

Figure 6. Comparison of 20 typical signal cables with a single 

optical fibre, capable of handling tens of thousands of 

measurement points. 

4 HYBRID SYSTEMS 

To summarise the above considerations, it should be stated 

that the primary limitation of classical spot techniques is their 

locality, while the limitation of DFOS methods is their 

periodicity (resulting from economic, rather than technical, 

factors). Therefore, a natural consequence of attempting to 

solve this problem is the synergistic combination of spot 

technology with geometrically continuous sensing through the 

design of a hybrid system – Figure 7. In this approach, 

automatic spot measurements (continuous in time) are 

supported by periodic DFOS measurements (continuous in 

length) to optimise the obtained information, while maintaining 

economic feasibility. Hybrid systems have the following 

advantages: 

• low cost of distributed fibre optic sensors, 

• possibility of limiting the number of relatively expensive 

spot gauges and cabling, 

• no need to purchase expensive DFOS interrogators, 

• ability to install distributed sensors during the construction 

phase, with measurements taken at later times (a “time-

delayed investment”), 

• increased system reliability through comparative analysis 

of data from at least two independent measurement 

techniques, 

• direct detection of local damage, cracks, or stress 

concentrations (using DFOS sensors), 

• possibility of analysing and identifying long-term trends in 

the operation of the structure (forecasting with spot 

gauges). 

 

 

Figure 7. Concept of a hybrid system providing information 

about the technical condition of the structure both as 

a function of time and as a function of length. 

Hybrid systems are not just a theoretical concept, but an 

increasingly common solution used in practice. According to 

the authors, it is one of the main directions that the structural 

health monitoring market will follow in the coming years. The 

further part of this article discusses the examples of the use of 

a hybrid approach for the diagnostics of one of the polish bridge 

and gas pipeline. 

5 EXAMPLE APPLICATION – THE CONCRETE 

BRIDGE IN NOWE MIESTO LUBAWSKIE 

The analysed system concerns the road bridge over the Wel 

River, which is the longest and most technologically complex 

structure on the Polish national road DK15. This five-span 

bridge, with a total length exceeding 267 m, was built as part 

of the bypass around the city “Nowe Miasto Lubawskie”. The 

load-bearing structure of the bridge is a prestressed concrete 

box girder (Figure 8) with a structural height of 3.5 m. The 

installation of the box girder system using longitudinal 

launching technology was divided into 9 segments, each of 

which was cast in two stages. Due to certain concerns regarding 

the durability of the structure, it was decided to equip the 

existing bridge with a hybrid monitoring system, consisting of: 

1) distributed fibre optic sensors for strain measurements and 

crack detection, and 2) automatic vibrating wire gauges for 

strain and temperature measurements continuous in time. 
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Figure 8. General view of the analysed bridge from the 

outside (top) and inside of the prestressed box (bottom). 

Distributed strain sensors (EpsilonSensors) with an external 

braid were installed in four measurement lines (A, B, C, D) 

along the entire length of the bridge, achieving a total of 1040 

meters of sensing path. Assuming a spatial resolution of the 

interrogator used at 5 mm, this results in a total of 208,000 

measurement locations within a single session. Installing such 

a large number of spot gauges with cabling would be 

impossible both technically and economically. The sensors 

were installed inside the prestressed box in near-to-surface 

grooves using a dedicated mortar. Additionally, 4 sections were 

installed on the side wall of the box along the prestressing 

cables, with a total length of 44 m, by gluing the sensors 

without external braid directly to the surface (Figure 9). 

 

 

Figure 9. Installation of the EpsilonSensors with braid in near-

to-surface grooves (top) and without braid directly on the 

concrete surface (bottom). 

For the automatic measurements, spot strain gauges in the 

form of vibrating wire transducers were chosen, installed in 3 

cross-sections, with 4 gauges in each section. This resulted in 

a total of 12 measurement locations, additionally equipped with 

reference thermistors – Figure 10.  

 

Figure 10. Example view of vibrating wire strain gauge 

(Geokon 4000) during installation. 

The location of all the sensors (both spot gauges and 

distibued EpsilonSensors) within the hybrid system in question 

is shown in Figure 10. 

 

 

Figure 11. Location of distributed sensors (red) and vibrating 

wire gauges (blue) within the considered hybrid system. 

An example of the strain and temperature plot as a function 

of time for a selected spot gauge is presented in Figure 12. The 

period under consideration is the first year of system operation, 

from July 2023 to July 2024. The obtained results indicate 

a complete dependency of strain on temperature changes on an 

annual basis, without any visible alarming trends. The graph 

shows three vertical blue lines marking the moments of 

periodic DFOS measurement sessions (S00, S01, and S02). The 

S00 session was the reference state (zero reading) for both 

independent techniques to enable their direct comparison. 

On the other hand, the profile of the measured strains along 

the entire length of the central span (60 m) obtained during the 

periodic, but distributed measurements is presented in 

Figure 13. The DFOS-based strains profiles exhibit a smooth 

course, without distinct local extremes characteristic of 

cracking. Based on the measurements, no open cracks were 

found along the entire length of the bridge, which is a crucial 

piece of information for assessing the durability of the analysed 

structure. Local fluctuations are related to the typical behaviour 

of concrete as a heterogeneous material. During the first 

measurement session (S01), a temperature drop of 

approximately 30°C was recorded in reference to zero reading, 

which caused the bridge length to decrease due to thermal 

contraction (negative strain values). Measurements in session 

S02 were taken under similar thermal conditions to session 

S00, so the measured strain profile is close to the zero axis. 
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Figure 12. Example strain changes versus temperature 

changes over time at selected location. 

 

Figure 13. Example strain distribution along the central span 

in subsequent measurement sessions. 

The data from the first year of system operation indicate the 

normal behaviour of the bridge (in accordance with theoretical 

predictions) under varying thermal conditions. No hazardous 

trends were identified through continuous measurements, nor 

were any local damages detected by distributed sensing. 

6 EXAMPLE APPLICATION - PIPELINE 

The second example concerns the high-pressure pipeline 

monitored with a hybrid approach. The general concept of the 

system is visualised in Figure 14. The installation included 12 

vibrating wire strain transducers (Geokon 4150) arranged 

within four cross-sections (Figure 15). On the other hand, the 

entire 180 m long segment of the pipeline was equipped with 

distributed strain sensors (EpsilonRebas) and distributed shape 

sensors (3DSensors). 

There were two types of installation approaches. The first one 

(and more challenging) included the gluing the strain sensors 

directly to the pipeline surface (Figure 16). On the other hand, 

both strain and displacements sensors were embedded in 

surrounding ground (Figure 17), which is relatively simple 

procedure. The goal of that was to analyse the quality and 

possible correlation of the data obtained with these two 

methods and thus to optimise the future installations. 

 

Figure 14. Visualisation of the hybrid monitoring system  

for the analysed gas pipeline segment 

 

Figure 15. Vibrating wire gauges and their initial check during 

installation on the pipeline section. 

 

Figure 16. Distributed strain sensors (EpsilonRebars) during 

the installation (just before glueing) directly on the pipeline. 

 

Figure 17. Distributed displacement sensors (3DSensors) 

during the installation within the surrounding ground. 
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Figure 18 shows the analysed segment of the pipeline 

equipped with all the sensors in the final installation stage, right 

before backfilling the entire section with soil. 

 

 

Figure 18. The view of the monitored section during final 

stage of installation (just before its backfilling with the soil). 

The example data provided by the system in the first year of 

its operation are discussed hereafter. Figure 19 shows the 

relationship between strain and thermal changes measured by 

one of the spot gauges at a selected location. As with the 

previously presented bridge, the data indicate the normal, 

cyclic behaviour of the pipeline with no alarming trends. There 

is a full correlation between these two quantities, indicating that 

other potentially hazardous mechanical actions (e.g. mass 

movements, settlements, or sinkholes) are not present. 

 

 

Figure 19. Example strain changes versus temperature 

changes over time at selected location. 

Despite the importance of the above findings, it is not 

possible to determine the extreme strain (and stress) values or 

directly answer the question regarding the pipeline's state 

between measurement locations based on spot gauges. Since no 

significant deformations were identified throughout the entire 

year of operation, the results from the pressure test conducted 

before the pipeline was put into service were selected to 

demonstrate the capabilities of distributed measurements. 

Figure 20 presents the influence of spiral welds, resulting in 

local distortions in strain profiles. These welds cause both 

tensile and compressive strains. In the theoretical analysis of a 

continuous pipeline section under the pressure test, only tensile 

strains are expected. A similar effect, but much stronger, was 

observed at the pipeline bends, as shown in Figure 21. Such 

effects are not always considered in engineering analysis 

during the design stage, nor are they detectable by conventional 

spot techniques. This is why the DFOS approach enhances the 

understanding of the structural performance of pipelines, 

enabling better (safer) designs in future applications, as well as 

effective monitoring for optimised maintenance. 

The last, but not least, example of DFOS data shows strain 

distributions at the beginning of the analysed section 

(Figure 22). Based on this, it is possible to estimate the length 

of the transition zone along which the friction between the 

pipeline and surrounding ground is mobilised. After this length, 

the mean strains in the pipeline section oscillate around zero 

due to full constraint. 

 

Figure 20. Distributed strain sensing results: the local 

influence of spiral weld along the length 

 

Figure 21. Distributed strain sensing results: the local 

influence of the turn (curve) along the length 

 

Figure 22. Distributed strain sensing results: the estimation of 

friction mobilisation at the beginning of the section 

An important feature and, at the same time, an advantage of 

DFOS technology is its capability to measure various physical 

quantities using exactly the same sensors connected to different 

optical interrogators. In the present project, EpsilonRebars 

provided mechanical strain data, as shown above, but also 

enabled distributed temperature sensing (DTS) with a Raman-

based interrogator. Example temperature profiles measured 

over three consecutive months along the entire length of the 
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monitored pipeline section are presented in Figure 23, 

alongside results from reference spot thermistors. The data 

comparison shows very good agreement, demonstrating the 

required accuracy of DFOS technology in practical field 

applications. 

 

 

Figure 23. Example temperature distributions along the 

pipeline in three subsequent months versus results from 

reference spot thermistors (R1, R2, R3 and R4). 

The temperature can be averaged over the entire length and 

presented in the time domain to observe changes on an annual 

basis and identify possible trends. Such data are presented in 

Figure 24 for three EpsilonRebars glued directly to the pipeline 

surface. The colours in the last three months correspond to the 

colours in the temperature distributions in Figure 24. 

 

Figure 24. Mean temperature values from three EpsilonRebars 

in subsequent months over the entire year. 

7 SUMMARY 

The article discusses the concept and an example 

implementation of a hybrid monitoring system on a bridge and 

a gas pipeline. Thanks to the adopted approach, it was possible 

to obtain extensive information about the technical condition of 

these structures while maintaining economic feasibility. 

In the first year of the systems’ operation, the full correlation 

between strain and temperature over time was identified using 

automatic spot measurements. No concerning trends in the 

structures’ performance (e.g., a monotonic increase in strains 

unrelated to temperature changes) were observed. 

Meanwhile, periodic, geometrically continuous DFOS 

measurements enabled a detailed analysis in the length domain. 

In the case of the prestressed bridge structure, they confirmed 

that it remained in an uncracked state along its entire length -

crucial information for assessing technical condition and 

structural safety. For the pipeline, DFOS provided deep 

insights into the local influence of welds and geometrical bends 

on strain distribution, an aspect that could not be captured by 

other spot sensing technologies. 

The technical effectiveness and economic benefits of hybrid 

monitoring systems, along with lessons learned from previous 

applications, suggest that this approach will be increasingly 

adopted in the structural health monitoring market in the near 

future, particularly within safety-critical infrastructure. 
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ABSTRACT: Leak detection for water pipelines, and anomaly detection more broadly, is vital to ensuring reliable access to 

drinking water. Monitoring transmission and distribution pipelines supports proactive fault detection to reduce water loss amid 

deteriorating infrastructure and depleting water resources. Distributed acoustic sensing (DAS) in the form of phase-sensitive 

optical time-domain reflectometry (φ-OTDR) can quantify vibrations and sound along fiber optic cables over long distances with 

high spatial resolution and frequency. In this study, DAS was deployed on a new fiber optic cable-instrumented pipeline to 

investigate DAS sensitivity to pipe water leakage noise. A reproducible workflow for system deployment and signal processing 

aimed at pipe water leak detection in field conditions is presented. The influence of fiber optic cable type (tight-buffered vs. loose 

tube) and installation condition (pipe-mounted vs. trench-lain) on DAS sensitivity was assessed during pipe water filling and 

simulated leakage. Findings demonstrate relatively high sensitivity to water leak noise detection when DAS is deployed on fiber 

optic cables near the pipeline. This informs best practices for data-driven pipeline monitoring by presenting a reproducible 

procedure to operationalize water pipeline leak detection using DAS.  

KEY WORDS: Water pipeline leak detection; Distributed fiber optic sensing (DFOS); Distributed acoustic sensing (DAS).

1 INTRODUCTION 

Water leak detection on transmission and distribution 

pipeline networks is critical to reduce water loss. Growing 

challenges, such as deteriorating infrastructure and depleting 

water resources, highlight the need for resilient water 

infrastructure to ensure reliable access to drinking water. 

Proactive monitoring plays an important role in helping track 

down unaccounted non-revenue water losses across 

geographically distributed pipeline systems. Monitoring also 

helps water supply agencies effectively predict life expectancy 

and plan maintenance and rehabilitation of lifeline pipelines. 

Furthermore, water infrastructure monitoring in low-resource 

environments is vital for resilient asset management in 

vulnerable communities. 

Conventional methods for pipeline water leak detection are 

often limited in their balance of scale or spatial resolution. 

Satellite sensing with synthetic aperture radar (SAR) as well as 

unmanned aerial vehicle (UAV) sensing with multi-spectral or 

thermal imaging can detect elevated levels of underground soil 

moisture caused by leaking water. These offer regional-scale 

monitoring, but at relatively low spatial resolution. Various 

pipe-mounted or in-pipe point sensors can detect leakage-

related water pressure drops or acoustic emissions, but their 

scale and spatial resolution is dependent on sensor density 

(which scales poorly due to high installation and maintenance 

costs). Ground penetrating radar (GPR) to detect subsurface 

moisture and listening sticks to listen for water leakage noise 

can offer pipe segment scale and spatial resolution, but their 

large-scale deployment is constrained by slow manual labor. In 

short, conventional methods balance between scale and spatial 

resolution due to technical constraints. As a result, they 

typically need to be deployed in parallel to attempt 

comprehensive monitoring of entire pipeline networks.  

However, regional-scale sensing with meter-level spatial 

resolution is in fact achievable with Distributed Fiber Optic 

Sensing (DFOS). This family of technologies is at the forefront 

of large-scale infrastructure performance monitoring of strain, 

temperature, vibrations, and sound along fiber optic cables over 

long distances at a high spatial resolution with high 

measurement frequencies [1]. Distributed acoustic sensing 

(DAS) in the form of phase-sensitive optical time-domain 

reflectometry (φ-OTDR) has proven uniquely suitable for 

vibration and sound monitoring of linear civil infrastructure 

such as offshore wind turbines [2][3], roadways [4],  boreholes 

[5], and pipelines [6][7]. Furthermore, DAS has proven an 

effective tool even in noisy acoustic environments [8]. 

Previous work has investigated ground movement-induced 

pipeline deformation, a common cause of pipe water leakage, 

in both laboratory and field conditions using Distributed Strain 

and Temperature Sensing (DSTS) [9][10][11]. This study 

builds on this work to develop robust methods to directly 

investigate pipe water leakage by characterizing the distributed 

acoustic signal of typical and atypical pipeline activities. DAS 

was deployed on a new 120 m (394 ft) segment of 15.3 cm (6-

inch) Earthquake Resistant Ductile Iron Pipe (ERDIP) in a 

residential neighborhood within the Hayward Fault Zone in 

Berkeley, California. This new pipeline replaced the old 

existing pipe which had previously experienced multiple main 

breaks and major leakage events.  

Operationalizing DAS involves implementing an 

interpretable and reproducible workflow for system 

deployment and signal processing. Data gathering should be 

grounded in domain knowledge encompassing real world 

conditions and decisions and adaptable to past, present, and 

future data. Data processing should support: 1) predictable 

outputs withstanding scrutiny from reality checks; 2) 

computationally efficient use of data storage and processing 

resources; 3) stability under perturbations in input data and data 
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gathering and processing judgement calls [12]. In this context, 

this study presents a reproducible workflow for DAS system 

deployment and signal processing aimed at pipe water leak 

detection in field conditions.  

2 DAS METHOD 

Distributed Fiber Optic Sensing (DFOS) quantifies 

backscattered light in optical fibers to quantify strain, 

temperature, or vibrations and sound. DFOS involves a sensing 

device (optical interrogator) connected to one end of a long 

linear sensor (fiber optic cable). The interrogator sends pulses 

of light through the optical fiber core of the cable. As these light 

pulses travel though the core, they interact with imperfections 

in the silica glass material and are backscattered. Light is 

backscattered in three typical mechanisms: Raman, Brillouin, 

and Rayleigh scattering. These mechanisms are sensitive to 

changes in temperature, strain, or vibrations/sound along the 

fiber. Rayleigh backscattered light is detected by the 

interrogator and processed with optical interferometry for 

distributed acoustic sensing (DAS) [1]. Specifically, phase-

sensitive optical time-domain reflectometry (φ-OTDR) uses the 

phase change ∆𝜙 of coherent Rayleigh backscattering to 

quantify vibrations and sound as dynamic strain 𝜀 given a 

known operational wavelength 𝜆, fiber refractive index 𝑛, 

gauge length 𝐺, and photoelastic scaling factor 𝜉 [8].  

 𝜀 =
𝜆

4𝜋𝑛𝐺𝜉
Δ𝜙 (1) 

 System selection 

A DAS system includes a sensing device (optical interrogator) 

and sensor (fiber optic cable). Optical interrogator hardware 

and data acquisition parameter selection must ensure adequate 

sensing range, sampling frequency, spatial resolution, and 

sampling interval to capture the signal of interest. The sensing 

range must be sufficiently long to capture measurements along 

the entire sensing fiber. Sampling frequency should ensure 

sufficient temporal resolution to capture signals of interest at 

frequencies below the Nyquist frequency. For context, the 

Nyquist frequency is the highest frequency that can be 

accurately measured in a discrete signal and is typically defined 

as half the sampling frequency 0. In short, sampling frequency 

should be greater than double the expected frequency of the 

signal of interest. Spatial resolution (gauge length) [13] and 

sampling interval (gauge pitch or channel spacing) [14] depend 

on optoelectronic hardware component capabilities. In short, 

spatial resolution and sampling interval should be sufficiently 

low to capture localized signals along the fiber. Generally, data 

acquisition parameters are limited by hardware limitations and 

data processing constraints.  

In this study, data acquisition parameters were set to a 

sampling frequency up to 100 kHz, a minimum spatial 

resolution of 2 m, and a minimum sampling interval of 1 m for 

690 m total sensing fiber length using an OptaSense ODH4 

DAS interrogator unit. Note, the 100 kHz raw ping rate was 

decimated down to 25 kHz during data acquisition and down to 

5 kHz during data processing for reasons explained later.  

Fiber optic cable selection must ensure proper protection of 

the optical fiber core and adequate coupling between the core 

and the external environment. Protecting the optical fiber core 

from moisture, chemicals and physical damage in the external 

environment is necessary to ensure fiber survival. This 

protection is achieved through various layers separating the 

central core from the outer cable jacket. Two typical protection 

designs are tight-buffered (Figure 1) and loose-tube (Figure 2). 

Tight-buffered cables tightly envelop the optical fiber with a 

plastic buffer to protect from moisture, steel reinforcement 

wires to protect from physical damage, and a plastic outer 

jacket to serve as a fluid barrier. Loose-tube cables loosely 

suspend the optical fiber with gel-filled tube to protect from 

excessive tension or bending, surrounded by aramid yard and a 

plastic outer jacket to protect from fluid moisture.  

 

 
Figure 1. Tight-buffered fiber optic cable 

 

 
Figure 2. Loose-tube fiber optic cable 

In terms of DFOS performance, the tight layer boundaries of 

tight-buffered cables provide a high degree of strain transfer 

from the outside environment to the fiber optical core. This 

enables high acoustic signal transmission from outside the 

cable to the fiber core. On the other hand, the gel-suspension 

layer boundary in loose-tube cables results in a significantly 

lower degree of strain transfer from the outside environment to 

the fiber optical core. This results in lower acoustic signal 

sensitivity from outside the cable to the fiber core.  

In terms of durability and long-term environmental 

longevity, tight-buffered cables are more rugged and flexible 

during handling and installation but less resistant to extreme 

environmental conditions. On the other hand, loose-tube cables 

are more fragile during installation, but more resistant to hard 

environments with significant moisture and temperature 

changes. As a result, tight-buffered cables are typically used for 

DFOS applications or short-distance telecommunications, 

while loose-tube cables are used for long-distance 

telecommunications. Accordingly, tight-buffered cables are 

often more expensive due to lower niche demand, while loose-

tube cables are more affordable given the high demand during 

mass deployment in global telecommunications networks. 

In this study, tight-buffered cables and loose-tube fiber optic 

cables were both used to compare their DAS sensitivity to 
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pipeline water leakage noise. Tight-buffered cables were 

sourced from NZ Sensing (NZS-DSS-C02). Loose-tube cables 

were sourced from Belden (FSSC002N0).  

 System deployment 

DAS system sensitivity is influenced by the ability of the signal 

of interest to reach the fiber optic cable. The closer the cable 

sensor is to the signal source, the better the dynamic strain 

transfer-related acoustic signal transmission between the cable 

outer jacket and the fiber core, the better the DAS sensitivity.  

If it is possible to install fiber optic cables designated for 

DAS directly on the monitored structure, they should be 

positioned as close as possible to the expected signal source 

location. Structure-mounted (or even structure-embedded) 

fiber optic cables intuitively offer the best DAS sensitivity. 

Installing both tight-buffered and loose-tube fiber optic cables 

supports DSTS (tight-buffered cables with high strain transfer 

for strain sensing vs. loose-tube cables with low strain transfer 

for temperature sensing). In the case of DAS, installing both 

enables a robust comparison between the two. However, 

deploying structure-mounted fiber optic cables has financial 

and logistical challenges due to the material and labor cost 

associated with custom installations.  

Instead, existing buried fiber optic cables can be used. 

Conveniently, these existing cables are widespread under city 

streets in urban areas with fiber optic internet and 

telecommunications networks. This provides a cost-effective 

opportunity to deploy DAS on “dark” (currently unused) fibers 

in these existing cables without having to install new cables. 

However, deploying dark fiber DAS on existing 

telecommunications cables has two significant challenges: 1) 

existing cables may not be close to the monitored structure and 

2) existing cables typically have a loose-tube (either gel-filled 

or air-filled) internal structure. This results in typically lower 

dark fiber DAS sensitivity using these types of existing cables.  

In short, structure-mounted fiber optic cables offer superior 

DAS sensitivity but require resources to deploy, while existing 

buried fiber optic cables offer a convenient low-cost sensor but 

have lower DAS sensitivity. Using dark (unused) telecom 

fibers offer unique opportunities for widespread urban DAS 

activity monitoring. However, quantifying dark fiber DAS 

sensitivity to pipe water leakage remains a technical challenge.  

In this study, both characteristic cable configurations were 

simulated to investigate their influence on DAS sensitivity to 

pipeline water leakage noise. Four sensing cable type and 

location configurations were deployed: 1) pipe-mounted tight-

buffered; 2) pipe-mounted loose-tube; 3) trench-lain loose-

tube; 4) trench-lain tight-buffered (Figure 3). Pipe-mounted 

cables were epoxied along the top of the pipe directly to the 

external pipe wall (Figure 4). A generic field-grade epoxy 

(toughened methacrylate adhesive system) was used to securely 

attach the fiber optic cables to the outer surface of the top of the 

pipe. Cables were aligned and epoxied straight along each 

approximately 6 m (20 ft) pipe segment. A small loop of slack 

cable was left at each joint between pipe segments to 

accommodate the discontinuity in the pipeline surface. Overall, 

the pipe-mounted cable installation process had a productivity 

of about 30 minutes per pipe segment. This time was primarily 

spent on placing and smoothing out the epoxy along the cables. 

Trench-lain cables were aligned parallel to the pipeline and 

laid out on the bottom of the excavated pipe trench (Figure 5). 

This process was relatively fast and did not require any 

specialized tools. Reasonable effort was taken to ensure the 

cables were aligned straight along the pipeline with an 

approximately 5 cm offset from the side of the pipe. 

 

 

Figure 3. Fiber optic-instrumented pipeline 

 

 

Figure 4. Pipe-mounted fiber optic cable installation 

Regarding fiber protection, no additional protection 

measures were taken. This was to simulate a simple direct-

Pipe-mounted 
FO cables 
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burial fiber cable installation process. After fiber optic cables 

were epoxied to the pipeline and lain in the trench, the entire 

trench was backfilled with coarse sand. The backfill material 

(Class I backfill) is a typical crushed stone manufactured 

aggregate used in pipeline construction in the region. The 

trench backfill material was poured into the trench and was not 

compacted. A final thin layer of pavement subbase layer of 

course aggregate was placed on top of the trench backfill. This 

pavement subbase was compacted at the ground surface.  

 

 

Figure 5. Trench-lain fiber optic cable installation 

These four combinations were compared to investigate the 

influence of fiber-environment coupling conditions. Pipe-

mounted cables were expected to exhibit higher DAS 

sensitivity to signals originating from the pipeline than trench-

lain cables. Tight-buffered cables were expected to exhibit 

lower noise levels with a higher signal-to-noise (SNR) ratio 

than loose-tube cables with higher noise and lower SNR.  

DAS measurements were performed during pipeline 

commissioning in which this 120-meter pipeline section was 

connected to the wider water distribution pipeline network. 

After the two ends of this pipeline was physically connected to 

the network with valves, the commissioning process involved 

1) filling the empty pipe with water and 2) high flow flushing 

water through the pipe to flush out random debris.  

During both tasks, a valve was opened at the downhill end of 

the pipe to allow water from the pressurized network to flow 

into the pipe, and a second valve at the uphill end of the pipe 

was open to air pressure. This water then flowed up into the 

pipe and filled the pipe with a velocity of approximately 0.7 

m/s (2.3 ft/s). This filling process took approximately 180 

seconds to fill 120 m of pipe. This meant that once the water 

level inside the pipeline reached the uphill valve, water would 

flow out to the ground surface. In the case of the second task, 

the high flow flushing process resulted in water violently 

erupting into the air (Figure 6). These conditions uniquely 

resembled a violent pipeline break and high flow pipe water 

leakage. This presented an opportunity to quantify DAS signal 

characteristics during simulated pipe water leakage.  

 

 

Figure 6. Simulated leakage at uphill end pipe valve 

 Signal processing 

Analysis of φ-OTDR DAS data started with downsampling the 

raw measured phase shift data to reduce dataset size while 

preserving key signal characteristics. The 100 kHz interrogator 

ping rate was decimated down to 25 kHz during data 

acquisition and down to 5 kHz during data processing to reduce 

computational costs and facilitate data handling. Data 

acquisition decimation was performed by a proprietary 

OptaSense algorithm inside the ODH4 operating software. 

Data processing decimation was performed by filtering (order 

8 Chebyshev type I zero-phase anti-aliasing digital filter) and 

downsampling the signal. This effective sampling rate of 5 kHz 

with a Nyquist frequency of 2.5 kHz was sufficiently high to 

capture the relatively acoustic signal of pipeline water flow.  

Next, phase change ∆𝜙 was related to dynamic strain 𝜀 as 

presented earlier (Equation 1). Next, frequency band extraction 

(FBE) was used to inspect the acoustic signal energy content at 

a specific frequency band appropriate for pipe water leakage 

noise. Given the dynamic strain spatial timeseries 𝑥𝑐ℎ(𝑡) across 

time 𝑡 for each channel location 𝑐ℎ, each timeseries is divided 

into time frames and windowed with a periodic Hann window 

applied to each frame 𝑤(𝑡), and detrended by subtracting the 

mean value within the time frame 𝜇𝑐ℎ.  

 𝑥 𝑐ℎ(𝑡) = (𝑥𝑐ℎ(𝑡) − 𝜇𝑐ℎ) ∙ 𝑤(𝑡) (2) 

Detrending helps remove low-frequency signal drift, while 

windowing helps reduce spectral leakage in the signal [12][15] 

. A Fast Fourier Transform (FFT) is then then applied to the 

detrended and windowed signal.  

Trench-lain 
FO cables 
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 𝑋𝑐ℎ(𝑓) = 𝐹𝐹𝑇(𝑥 𝑐ℎ(𝑡)) (3) 

Next, the power spectrum for each channel is estimated on 

the FFT and scaled based on the FFT size 𝑁𝐹𝐹𝑇 = 256, 

sampling frequency 𝑓𝑠, and energy correction factor 𝐶𝑤 =

√8/3 for Hann window coherency gain. 

 𝑃𝑐ℎ(𝑓) =
2

  𝑁𝐹𝐹𝑇  ∙ 𝑓𝑠
∙ |𝑋𝑐ℎ(𝑓)|

2 ∙ 𝐶𝑤 (4) 

Afterwards, the frequency band extracted (FBE) power for 

each channel is extracted by averaging the power across the 

number of frequency bins 𝑁𝑓 within the target frequency band 

from 𝑓𝑚𝑖𝑛 to 𝑓𝑚𝑎𝑥.   

 𝐹𝐵𝐸𝑐ℎ =
1

𝑁𝑓
 ∑ 𝑃𝑐ℎ(𝑓)

𝑓𝑚𝑎𝑥
𝑓𝑚𝑖𝑛

 (5) 

Finally, the mean FBE power in the frequency band is 

expressed on a logarithmic scale as decibels (dB). 

 𝐹𝐵𝐸𝑐ℎ
𝑑𝐵 = 10 log10 𝐹𝐵𝐸𝑐ℎ  (6) 

Given the initial input strain spatial time series in units of 

microstrain 𝜇𝜀, the units of FBE power are 𝑑𝐵(𝜇𝜀2/𝐻𝑧). The 

FBE power spatiotemporal trend was visualized along the 

entire fiber length using a waterfall plot format of space (y axis) 

vs. time (x axis) vs. FBE power (pixel color). This full fiber 

signal encompassed multiple pipe-sensing strands on the pipe 

or in the trench separated by intermediate fiber sections which 

were spliced together at pull boxes at either end of the pipeline. 

By inspection, the start/end points of each relevant sensing 

strand were indexed, and the dataset was partitioned by strand. 

FBE power was compared between the four combinations of 

cable type and installation location to assess acoustic signal 

quality and identify channels with signals of interest.  

These signals of interest were then evaluated using channel-

specific spectrograms and magnitude spectra. Spectrograms 

visualize signal power spectral density (PSD) across 

frequencies and time. The spectrogram is computed using the 

short-time Fourier transform (STFT) with a Hann window 

𝑁𝑤𝑖𝑛𝑑𝑜𝑤 = 2048, overlap of 50%, and FFT size 𝑁𝐹𝐹𝑇 = 1024.  

 𝑆(𝑡, 𝑓) = 𝑆𝑇𝐹𝑇(𝑥 𝑐ℎ(𝑡)) (7) 

PSD is then computed on the STFT across frequency and 

time and reported as decibels (dB/Hz).  

 𝑃𝑆𝐷(𝑡, 𝑓) = 10 log10(|𝑆(𝑡, 𝑓)|
2) (8) 

The magnitude spectrum visualizes signal magnitude 𝑀 at 

various frequencies. The magnitude spectrum in decibels (𝑑𝐵) 

is computed on the FFT across the total signal frequency range. 

 𝑀 = 20 log10|𝑋𝑐ℎ(𝑓)| (9) 

To compare different characteristic signals of interest, signal-

to-noise (SNR) ratio was computed using root-mean-square 

amplitude of the signal 𝐴𝑠𝑖𝑔𝑛𝑎𝑙  and “noise” (absence of signal 

of interest) 𝐴𝑛𝑜𝑖𝑠𝑒  strain timeseries using the expressed as 

decibels (dB).  

 𝑆𝑁𝑅 = 20 log10 (
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
) (10) 

3 DAS RESULTS 

DAS measurements were performed continuously during a 1-

hour pipeline commissioning procedure to capture acoustic 

signals during three characteristic processes (Figure 7):  

1) water flow as the pipe is filled with water 

2) pressure transient-related resonance vibrations  

3) simulated leakage  

First, time-domain signals during both characteristic 

processes were explored by visualizing FBE power across time 

and space. Waterfall plots of FBE power were created using 

DAS measurements from all signal channels along the 120-

meter pipeline. Furthermore, to facilitate comparing DAS 

sensitivity between the four cable deployment configurations, 

signals from each were plotted in four stacked subplots.  

Second, frequency-domain signals were investigated at the 

simulated leakage location at the uphill end valve. DAS 

measurements from channel 120 (location 120 meters) were 

selected for this purpose. Acoustic signal frequency content 

over time was explored with spectrograms. Signal baselines 

were assessed with time-independent magnitude spectra and 

quantified with signal-to-noise (SNR) ratio to compare between 

the four sensing cable configurations. Note, SNR was 

computed using the same strain amplitude signals used to 

compute the magnitude spectrum of the “signal” and “noise” 

spectrum. In full transparency, SNR was computed for the full 

pipe signal relative to the empty pipe noise (water flow 

detection), resonance signal relative to the no resonance noise 

(pressure transient detection), leaking pipe signal relative to the 

full pipe noise (leakage detection).  

Ultimately, the objective of this proof-of-concept 

experimental setup was to explore DAS signals from fiber optic 

cables along a water distribution pipe in the context of local 

installation methods and environmental conditions.  

Figure 7. DAS for water pipeline monitoring 
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 Water flow detection 

DAS sensitivity to water flow inside the pipe during water 

filling was investigated. Water flowed into the empty pipe from 

the downhill end valve. The uphill end valve was open to air 

pressure. This resulted in a rising water level inside the inclined 

pipe (Figure 8). As the water level advanced up pipe, water 

flow and sloshing emitted vibrations and sound. This 

characteristic acoustic signal was detected and tracked across 

time along the pipeline. The spatiotemporal trend of 10 to 100 

Hz frequency band extracted (FBE) reveals the advancing 

water level from the downhill end (location 0 m) to the uphill 

end (location approx. 120 m) (Figure 9). Signal visibility is best 

on tight-buffered cable on pipe, and progressively worse for 

other sensing configurations. 

 
Figure 8. Pipe water flow condition 

 
Figure 9. 10 to 100 Hz FBE power during pipe water filling 

Spectrograms of frequency-domain signals at the uphill pipe 

end (location 120 m) reveal a characteristic jump in PSD at 0 

to 400 Hz frequencies as the water level passes (Figure 10). 

This PSD signal is similarly visible on all sensing 

configurations. Differences in magnitude spectra before and 

after water level arrival highlight the relatively high SNR 

between the empty pipe noise floor and the water-filled pipe 

signal on all sensing configurations (Figure 11). 

 
Figure 10. Spectrogram during passing water level 

 
Figure 11. Magnitude spectra during passing water level 

In short, DAS detected pipe water flow on all four sensing cable 

configurations. FBE Power signal is most visible on tight-

buffered cable on pipe. Nonetheless, frequency-domain signal 

was relatively similar on all four sensing cable configurations.  

Empty pipe Full pipe 

Empty pipe Full pipe 

Water level arrival 
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 Pressure transient detection  

DAS sensitivity to pipe water pressure transients was assessed. 

After the pipe was filled and the simulated leakage experiment 

was finished, the final steps of the pipeline commissioning 

procedure were performed. During this time, a water pressure 

transient was detected (Figure 12). FBE power from 2 to 20 Hz 

reveals a 10 second period of elevated acoustic signal along the 

entire pipeline (Figure 13). The resonant acoustic signal grows, 

stabilizes, and then disappears. It is most visible on the tight-

buffered cable on the pipe, with progressively lower visibility 

on the other cable configurations.  

 

 

Figure 12. Pipe water pressure transient condition 

 
Figure 13. 2 to 20 Hz FBE power during pressure transient 

Spectrograms at the uphill pipe end (location 120 m) reveal 

elevated PSD at low 0 to 20 Hz frequencies (Figure 14). PSD 

levels at higher frequencies remain relatively low and do not 

display a matching trend between the different sensing cables 

configurations. However, magnitude spectra reveal a much 

clearer difference between signals during the resonant pressure 

transient and the signal before without acoustic resonance 

(Figure 15). Both tight-buffered cables and the loose-tube cable 

on the pipe exhibited less noisy magnitude spectra and a higher 

SNR than the loose-tube cable in the trench. 

 

 
Figure 14. Spectrogram during pressure transient 

 
Figure 15. Magnitude spectra during pressure transient 

In short, DAS detected a pipe water pressure transient on all 

four sensing configurations, albeit with lower SNR on loose-

tube cable in the trench. 

 

Full pipe Pressure 
Transient 

Full pipe Pressure 
Transient 
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 Leakage detection 

DAS sensitivity to pipe water leakage noise was evaluated. 

After the pipe was filled with water, water inflow increased by 

further opening the downhill end valve. This ensured water 

would escape from the open valve at the uphill pipe end to 

simulate high-flow leakage (Figure 16). Simulated leakage was 

maintained for 6 to 7 minutes until the downhill valve was 

closed. Water rushing through and exiting the pipe generated 

vibrations and sound. FBE power from 10 to 100 Hz highlights 

the start and end of the heavy water flow along the entire 

pipeline (Figure 17). FBE power was similarly visible on all 

four sensing configurations. As expected, the maximum 

acoustic signal was measured at the simulated leakage location. 

 
Figure 16. Pipe water leakage condition 

 
Figure 17. 10 to 100 Hz FBE power during simulated leakage 

Spectrograms of frequency-domain signals at the simulated 

leakage location (location 120 m) display a striking jump in 

PSD at 0 to 400 Hz, and elevated PSD at 400 to 1000 Hz during 

simulated leakage (Figure 18) on all sensing cable 

configurations. Differences in magnitude spectra for signals 

from the full pipe and leaking pipe suggest a reasonably high 

SNR between the leaking pipe signal against the full pipe 

baseline (Figure 19).  

 
Figure 18. Spectrogram of channel at simulated leak 

 
Figure 19. Magnitude spectra of channel at simulated leak 

In short, DAS detected pipe water leakage on all four sensing 

configurations, with similar sensitivity on all four sensing cable 

configurations.  

Full pipe 

Start  
Leakage 

Full pipe 

End  
Leakage 

Start  
Leakage 

End  
Leakage 
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  To summarize, each of the three pipe signal states: 1) pipe 

water flow, 2) pressure transient-induced resonance, and 3) 

simulated leakage exhibited unique DAS data characteristics in 

terms of FBE power, spectrogram power spectral density, and 

magnitude spectrum trends. 

Pipe-mounted cables exhibited a higher degree of FBE power 

sensitivity than trench-lain cables. Tight-buffered cables 

generally exhibited a higher degree of FBE power sensitivity 

than loose-tube cables. At the channel near the simulated 

leakage location, all sensing configurations exhibited relatively 

high frequency-domain signal visibility. Notably, trench-lain 

fibers turned out more sensitive than expected. Their high 

signal sensitivity was possible because they were located very 

close to the pipeline. This suggests that trench-lain fiber optic 

cables can offer sufficient DAS sensitivity to detect pipeline 

signals if the cables are located close to the pipeline. 

4 DISCUSSION 

Deploying DAS for water pipeline leakage monitoring presents 

a trade-off between DAS signal sensitivity and fiber optic cable 

deployment feasibility and cost (Figure 20).  

 

Figure 20. Qualitative comparison of DAS sensitivity to 

pipeline signals vs. fiber optic cable deployment cost 

 

Mounting fiber optic sensing cables directly to the pipe offers 

superior DAS sensitivity. This is because pipeline acoustic 

signals can transmit directly to the fiber. However, this 

approach requires significant manual labor and installation 

logistics coordination. In short, it is a high-cost high reward 

approach appropriate for high resource deployment conditions 

such as new installations or retrofits for lifeline pipelines.  

On the other hand, laying fiber optic sensing cables in the 

trench along the pipeline offers relatively lower DAS 

sensitivity. This is because pipeline acoustic signals need to 

travel through the trench backfill soil to reach the fiber. 

However, this approach requires less manual labor and is faster 

than attaching cables to the pipe. With reasonable DAS 

sensitivity, this medium cost approach may be a more feasible 

alternative for low resource deployment conditions. 

Nonetheless, both methods require resources and coordination 

to deploy sensing cables during pipeline construction 

excavations. They are therefore only usable if a DAS 

deployment is planned before pipeline construction activities.  

Long term monitoring and maintenance are also a challenge. 

Although sensing cables typically have a long lifespan, when 

deployed in a pipeline alignment, they may be accidentally 

damaged during pipeline maintenance operations. Installing 

DAS interrogators in the field may be cost prohibitive given the 

need for power supply, climate control, and theft-prevention. 

From a scaling perspective, deploying sensing cables inside the 

pipeline alignment as done in this study can be difficult. 

Accordingly, it works best for critical pipelines with committed 

stakeholders in a supportive regulatory environment.  

Alternatively, dark fiber DAS using existing buried 

telecommunications fiber optic cables is incredibly convenient 

with zero physical deployment installation and negligible 

maintenance costs. In this approach, a DAS interrogator is 

safely connected to an existing telecommunications cable 

network that runs from a datacenter through the pipeline 

network of interest. From a scaling perspective, a standardized 

dark fiber DAS method for detecting water pipeline leakage 

would offer a truly low cost and large-scale solution. However, 

this approach typically has lower DAS sensitivity given that 

existing cables may be far away from the monitored pipeline 

and may have poor acoustic signal coupling with subsurface 

soil. Therefore, further research is needed to better understand 

and improve dark fiber DAS sensitivity to pipe water leakage. 

5 CONCLUSIONS 

This study presents a reproducible workflow for DAS system 

deployment and signal processing for water pipeline leak 

detection in field conditions. The experimental configuration 

involved fiber optic sensing cables deployed directly in the 

pipeline alignment during construction. Both tight-buffered 

and loose-tube cables were installed on the pipe and in the 

trench. All four sensing cable configurations exhibited 

relatively high DAS sensitivity (high SNR) to pipeline acoustic 

signals during pipe water filling and simulated leakage. These 

results approximate a potential upper-bound for DAS 

sensitivity to water pipeline leak detection for each of the 

sensing cable configurations.  

In contrast to other past work which simulated pipeline 

leakage in fully controlled laboratory conditions, this study 

consciously pursued the complete opposite approach to 

embrace the potentially high levels of uncertainty associated 

with deploying fiber optic cables and DAS in the field. In this 

context, we acknowledge this study is limited to a single 

location with a single pipeline and a single simulated leakage 

signal source. The presented optimistic results of high SNR for 

all sensing cable configurations near the simulated leakage may 

be due to supportive experimental conditions. Intuitively, all 

four deployed sensing cables were on or very close to the pipe, 

so they detected pipeline acoustic signals reasonably well. Had 

the sensing cables been further away, their DAS sensitivity to 

pipeline signals would likely have been reduced. 

Further work will investigate DAS sensitivity for water 

pipeline leakage detection with sensing cable configurations 

where fiber-optic cables are further away from the pipeline of 

interest. This will help demonstrate the workflow is applicable 

to dark fiber conditions where DAS is deployed on existing 

buried telecommunications cables which may be not close to 

the monitored pipeline. Furthermore, additional testing in 

locations with different subsurface conditions (soil type, 

temperature, moisture), with various pipe materials and leakage 

mechanisms is needed to develop a comprehensive dataset of 

pipe water leakage noise signals. This will support a robust and 
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adaptable workflow for dark fiber DAS to operationalize water 

pipeline leakage detection. This standardization effort can be 

scaled up with engagement from public agency stakeholders 

and regulators to ultimately transform the state of practice for 

water pipeline monitoring.  

To summarize the main contributions of this work: 

1. Developed reproducible framework for DAS system 

deployment and signal processing for water 

distribution pipeline monitoring. 

2. Characterized influence of fiber optic cable type (tight-

buffered vs. loose-tube) and installation location (on 

pipe vs. along pipe in trench) on DAS sensitivity to 

pipeline acoustic signals. 

3. Explored time-domain and frequency-domain content 

of acoustic signals relevant to pipeline anomaly and 

leakage detection. 
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ABSTRACT: In this study, we investigate the load-bearing capacity of pre-stressed concrete girders under various damage levels. 

We employed Distributed Acoustic Sensing (DAS) technology to monitor and quantify changes in the girder response as damage 

levels were incrementally introduced. This approach enabled the real-time measurement of dynamic behavior over the entire 

length of the girder, allowing for a detailed characterization of damage-induced structural changes. To complement the DAS-

based approach, we also applied classical acceleration-based damage detection techniques. By integrating these methods, we 

aimed to cross-validate the results and provide a more comprehensive understanding of damage progression and its impact on 

structural performance. 

The experimental campaign, conducted in Ljubljana, ZAG, involved full-scale testing of pre-stressed concrete girders subjected 

to controlled damage scenarios. This setup ensured a realistic assessment of the girders’ residual capacity and failure mechanisms. 

The paper presents preliminary results from this experimental study, emphasizing the capability of DAS measurements to detect 

and characterize damage, while also comparing its performance against traditional methods. By combining advanced sensing 

technologies with established techniques, this research highlights the potential of DAS as a transformative tool in structural health 

monitoring. 

KEY WORDS: Distributed Acoustic Sensing; Distributed Fiber Optic Sensing; Structural Health Monitoring; Frequency 

Analysis; Load Test; Infrastructure Monitoring; Bridge Monitoring. 

 

1 INTRODUCTION 

Structural Health Monitoring (SHM) of civil structures is 

gaining more and more significance in the recent years, 

especially in the case of bridges, since many of them are 

coming to the end of their design life time or even have to be 

replaced earlier due to increased loads on the structure. Current 

incidents such as the collapse of the Carola Bridge in Dresden, 

Germany draw international attention to the importance of 

infrastructure monitoring.  

In order to gain more knowledge on the structural response 

due to increasing loads and damages, laboratory load tests on a 

bridge girder were carried out. The bridge girder stems from a 

bridge partly collapsed due to flooding in summer 2024. More 

detailed information about the tested bridge beam and the test 

procedure can be derived from [1]. The aim of the controlled 

load tests was to determine the structural behavior and perform 

measurements at all damage states in order to get a better 

understanding for condition assessment. This can be done using 

different measurement techniques, which can be broadly 

categorized in point-wise and distributed sensors. Suitable 

point-wise sensors are e.g. accelerometers, but also static or 

dynamic Robotic Total Station (RTS) measurements [2][3] can 

deliver valuable results. The drawback of these point-wise 

techniques is that they require several sensors in order to 

monitor the structure, and all of them need to be mounted in 

appropriate positions to obtain meaningful results. Distributed 

Fiber Optic Sensing (DFOS) functions as a distributed sensor, 

where one fiber can precisely sense information along its entire 

length. Different DFOS techniques can provide insights on the 

frequency behavior of the structure, but also on the bending due 

to the applied force. Furthermore, cracks appearing in the 

structure can be detected. The fiber can be glued on the 

structure, but also embedded directly inside the structure if it is 

newly constructed. The application of DFOS for bridge 

monitoring is currently becoming of more interest [4].  

All of the mentioned measurement techniques were applied 

at the conducted laboratory tests. However, this paper focuses 

on the results and comparison of Distributed Acoustic Sensing 

(DAS) and accelerometers.  

2 BRIDGE MONITORING WITH DFOS 

The general principle of DFOS is light coupled into a glass 

fiber, which gets scattered at natural impurities at every point 

inside the fiber. A part of the light gets backscattered to the 

interrogation unit, where different information, especially 

temperature (T), strain (ε) or strain rates (ε/t), can be derived 

depending on the measured backscatter effect (see Figure 1). 

As the light propagates through the fiber, information is sensed 

along the entire length of the fiber, which can amount up to 

several tens of kilometers. Significant advantages of DFOS are 

immunity to electromagnetic interferences and only the small 

and lightweight fiber being needed on-site, a passive element 

which requires no power supply. 

Since this paper focuses on Distributed Acoustic Sensing 

(DAS) only, the following paragraph will describe the working 

principle in more detail.  
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Pulsed light is coupled into the fiber with high frequency, 

whereby the maximum sampling frequency fmax is dependent on 

the fiber length L by  

 𝑓𝑚𝑎𝑥 =
𝑐

2𝑛𝐿
 (1) 

in order to avoid overlapping pulses in the fiber.  

 

 

Figure 1. (a) Schematic representation of the operating 

principle of distributed fiber optic sensing techniques and (b) 

different backscatter effects, based on [5]. 

 

DAS interrogation units only detect and measure Rayleigh 

backscatter, which has the highest intensity [6]. Rayleigh 

backscatter is affected by strain and temperature changes, 

which in turn cause differences in the optical path length. The 

optical path length is determined from the differential phase 

between two scatter points [7]. Since the measurand is the 

optical phase change within a certain distance (the gauge 

length), the output consists of relative measurements describing 

the behavior of strain within a certain period of time, resulting 

in strain rate measurements. The gauge length is typically on 

the order of several meters and defines the spatial resolution of 

the measurement. Compared to other DFOS techniques, DAS 

provides lower spatial resolution, but much higher temporal 

resolution reaching up to several kHz, making it suitable for 

dynamic measurements. 

The seamless high frequency measurements can provide 

valuable information about the structural integrity of a bridge 

by deploying only one fiber to the structure. By numerically 

integrating the derived strain rate measurements to strain, 

additional information about the strain distribution along the 

structure can be gained.  

3 LOAD TESTS 

 Setup 

The structure under test is a prestressed girder with a deck plate 

and has a length of about 10 m. It was placed in the laboratory 

of the Slovenian National Building and Civil Engineering 

Institute (ZAG) underneath a hydraulic actuator able to apply 

vertical load. More information about the placement of the 

girder on the testing facility can be found in [1]. Several sensors 

were mounted on the structure. The location of the sensors 

discussed in this paper can be seen in Figure 2, but also other 

sensors such as tilt sensors, RTS and camera have been used.  

 

 

Figure 2. Schematic representation of tested structure with 

mounted sensors. 

As also shown in Figure 3, the fiber was mounted on the upper 

and lower part of the girder along its entire length. A second 

fiber was glued in order to be able to perform simultaneous 

measurements with different DFOS techniques, which are not 

subject of this present paper. For the DAS measurements, the 

inner fiber was used.  

 

 

Figure 3. Glued fibers on the bridge girder placed in the 

laboratory. 

 

The measurement settings for DAS and accelerometers were as 

stated in Table 1.  

Table 1. Measurement settings. 

 DAS Accelerometers 

Sampling frequency  5000 Hz 200 Hz 

Measurement channels 25 3 

Measurand µm/m/s m/s² 

 

 Test procedure 

The test procedure consisted of 10 load phases with 2 cycles 

each, increasing the maximum load with every phase. For the 

first three phases, the applied load was increased stepwise with 

a waiting time of 2 minutes after every load increment, while 

for the latter phases a constant linear load increase was applied. 

The loading speed was 1 kN/s, and the same procedure was 

applied for both loading and unloading. The load cycles are 

shown in Figure 4. Note that the pause between the load 

phases 3 and 4 is not shown correctly in the plot, since there 

was an overnight pause in between.  

In between the phases, ambient vibration tests were 

performed. These aimed to stimulate the girder in a way so the 

eigenfrequencies could be detected. The stimulation was 

performed by a human jumping on the girder in order to induce 

an impulse. After phase 5, shaker tests were performed by 

placing a vertical shaker on the beam, stimulating it with 

different singular frequencies as well as with a frequency 

sweep.  
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Figure 4. Performed load cycles. 

 

 Eigenfrequencies 

The eigenfrequencies can be determined from the ambient 

vibration tests and provide significant information about the 

structural integrity, since a change in the eigenfrequency 

indicates structural damage. Figure 5 shows the ambient 

vertical vibration of the girder after phase 2, measured with the 

accelerometers at 3 discrete positions on the beam bottom.  

 

 

Figure 5. Accelerometer measurements of ambient vibration, 

3 positions on the bottom. 

DAS measurements can be obtained along the entire fiber. The 

occurring strain rates caused by the excitation of the girder can 

be seen in Figure 6, whereby the y-axis shows the distance 

along the fiber, and the x-axis depicts the change over time.  

 

 

Figure 6. DAS waterfall plot of ambient vibration.  

From the DAS waterfall plot, a location on the fiber close to the 

accelerometer can be selected. For comparison, a location at the 

bottom center and also in the upper center was chosen. Note 

that the spatial resolution of the DAS amounts to 0.8 m. When 

compared with the accelerometers, it is noticeable that the 

measurements look very comparable with the single impacts 

being clearly differentiable in both (Figure 7). For better 

comparison, the DAS measurements have been down sampled 

to the same sampling frequency as the accelerometers 

(200 Hz). What stands out in the DAS measurement is the 

significant difference between the upper and lower part of the 

beam, with the lower section showing considerably more 

movement than the upper section. This indicates a high vertical 

position of the neutral axis. As the measured vibrations on the 

upper and lower fiber are in phase (see Figure 8.), the neutral 

axis must be located above the upper fiber.  

 

 

Figure 7. DAS measurements of ambient vibration, top and 

bottom center. 

 

Figure 8. Measurements of upper and lower fiber are in phase 

for measurement of ambient vibration. 

In order to determine the eigenfrequencies appearing through 

the excitation, a Short Time Fourier Transform (STFT) with a 

window length of 4 s was computed both for the accelerometers 

and DAS measurements. For the accelerometer mounted at the 

bottom center of the girder, the resulting amplitudes of each 

window are shown in Figure 9. The appearing main frequency 

amounts to 14.75 Hz. The same procedure was applied to the 

DAS measurements. Again, a bottom center position on the 

fiber, as well as a top center position were chosen for 

comparison. For both positions, the same eigenfrequency of 

14.75 Hz was observed (Figure 10), which is in agreement with 

the accelerometer measurements shown in Figure 9. 
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Figure 9. Eigenfrequency of the beam after loading phase 2, 

bottom center accelerometer. 

However, the measured amplitudes at the bottom and top part 

vary significantly, with the bottom part responding about 

5 times stronger than the top part (note the different scaling in 

Figure 10). This again implies a high vertical position of the 

zero line of the beam.  

 

Figure 10. Eigenfrequency of the beam after loading phase 2, 

bottom and top center measured with DAS. 

One of the main advantages of Distributed Fiber Optic Sensing 

is the seamless measurement along the entire fiber. The 

frequency and amplitude can be obtained at any point and give 

a more complete picture of the overall structural behavior. 

Therefore, a frequency analysis was carried out for every point 

along the fiber. The eigenfrequency of 14.75 Hz remained 

constant along the entire girder, but the amplitude varies 

strongly as it can be seen in Figure 11.  

 

 

Figure 11. Amplitude curve for eigenfrequency of 14.75 Hz 

along the top and bottom part of the beam. 

Note that the different dimension of the amplitudes compared 

to Figure 10 stems from the FFT being computed over the entire 

event, instead of 4 s windows. Again, it can be observed that 

the bottom part of the beam shows stronger reaction, and also 

the middle part of the beam shows increasing amplitudes for 

both the upper and lower side. 

The eigenfrequencies have been determined for every ambient 

vibration event, which was carried out after each load phase. 

With increasing damage, the measured eigenfrequencies 

decrease significantly. The first cracks appeared in load 

phase 2. Table 2 shows the results for both DAS and 

accelerometers, which are in complete agreement for every 

measurement. Note that due to the window size of 4 s, the 

frequency resolution only amounts 0.25 Hz.  

Table 2. Comparison of eigenfrequencies for DAS and 

accelerometers, ambient vibration at different damage states.  

Impulse 

Excitation 

After load 

phase 

f Acc. [Hz] f DAS [Hz] 

1 Phase 2 14.75 14.75 

2 Phase 3 14.25 14.25 

3 Phase 4 14.25 14.25 

4 Phase 6 13.75 13.75 

5 Phase 7 12.50 12.50 

6 Phase 8 10.50 10.50 

7 Phase 9 10.00 10.00 

 

 Shaker Tests 

In addition to the ambient vibration tests, experiments with a 

shaker were carried out. The shaker weighs approx. 100 kg and 

can oscillate vertically. Different singular frequencies and 

amplitudes can be set, and also frequency or amplitude sweeps 

can be performed. The shaker was placed as close to the middle 

of the girder as possible (Figure 12).  

 

 

Figure 12. Placement of the vertical shaker on the girder. 

First, a frequency sweep from 2-100 Hz was carried out. After 

that, the shaker was operated with different constant 

frequencies but increasing amplitude. An overview of the test 

procedure is shown in Figure 13. The different amplitude 

sweeps can be clearly seen in the DAS raw data. A STFT shows 

in more detail the appearing frequencies and amplitudes. The 

frequency sweep (t=100-350 s) is visible well, with higher 

amplitudes appearing when the shaker frequency matches the 

eigenfrequency. Also, the second harmonics can be detected.  
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Figure 13. Overview shaker tests - raw data and STFT. 

After that, the STFT with a window size of 2 seconds clearly 

shows the amplitude sweeps (t=500-1500 s) at different 

constant frequencies. A strong structural response can be 

detected when the input frequency amounts to the 

eigenfrequency or the latter is a harmonic of the stimulating 

frequency. This can be seen in the first (t=500-600 s) and third 

(t=840-1000 s) sweep, where the input frequency is 7.1 Hz and 

14.2 Hz. Furthermore, a detailed look is taken at the excitation 

close to the eigenfrequency. Note that the eigenfrequency 

already decreased to 14.25 Hz, since the shaker tests were 

carried out after phase 5 (compare Table 2).  

Taking a closer look at sweep 3, where the girder was 

stimulated with the eigenfrequency, also the harmonics can 

clearly be detected. This can be seen at the bottom position as 

well as at the upper position (Figure 14). The most dominant is 

the third harmonic at 42.6 Hz.  

 

 

Figure 14. FFT at top and bottom center position. 

 

 Load Capacity 

In addition to a frequency analysis, DFOS measurements can 

also serve to determine the applied strain on the structure. 

Typically, static DFOS measurements such as Optical 

Frequency Domain Reflectometry (OFDR) or Brillouin 

backscattering are used to measure absolute strain. These 

systems usually provide a better spatial resolution, but a poor 

sampling rate, if at all capable of performing dynamic 

measurements. 

By numerically integrating the measured strain rates over 

time, the appearing strain can be calculated from the DAS 

measurements. For this purpose, a known starting value (initial 

strain) is needed. In case of the load tests, this was 

accomplished by starting the measurement before any load is 

applied, thereby minimizing the induced integration error. 

However, this is based on the assumption that the fiber does not 

experience any permanent strain from the previous load cycles. 

Figure 15 shows a waterfall plot of the appearing strain along 

the entire fiber. The load increments can be seen as 

progressively increasing elongation of the fiber over time, as 

well as a clear difference between the upper and lower part of 

the beam.  

 

 

Figure 15. Waterfall plot of induced strain along the fiber, 

load phase 2.  

Taking a closer look at the top and bottom center position of 

the girder, the load increments and pause time in between are 

visible (Figure 16), as well as the significant difference in strain 

between the upper and lower part. Note that the outlier in the 

load strain profile (t=750-900 s) derives from a failure of the 

hydraulic actuator.  

 

 

Figure 16. Increasing strain at top and bottom center, phase 2. 

Figure 17 shows the strain distribution along the fiber for load 

phase 4, cycle 2. At this phase, there was no load 

incrementation followed by a waiting period, but a linear 

increase of the load until the maximum load. The applied load 

is approximately one third higher than in phase 2 (see Figure 

4), which results in significantly higher strain. Figure 17 shows 

the loading as well as the unloading of the element. 
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Figure 17. Waterfall plot of strain distribution, phase 4, 

cycle 2.  

Of particular interest is the strain distribution, which appears 

very concentrated in the center of the girder, where the force is 

applied (Figure 18, right).  

Also, a more detailed look can be taken at the strain 

distribution on the bottom and top center of the girder (Figure 

18, left). The lower part experiences significantly higher strain, 

amounting more than twice as much as the upper part. It should 

also be noted that with increasing force the ratio of the 

measured strain between the lower and upper part increases, 

which implies an upwards moving neutral axis with increasing 

load.  

 

 

Figure 18. Load phase 4. Left: Measured strain at top and 

bottom center. Right: Strain distribution along the fiber at 

maximum load. 

 

4 SUMMARY AND CONCLUSION 

The loading tests have shown that Distributed Fiber Optic 

Sensing is a suitable measurement technique to determine the 

structural integrity of girders or bridges. While delivering 

comparable results to other sensing techniques, it can provide 

significant advantages compared to pointwise sensors. A 

frequency analysis can be performed seamlessly along the 

entire fiber, whereby the high sampling rates can determine any 

changes in the eigenfrequencies. In addition to the high 

frequency strain rate measurements, the occurring strain at the 

structure can also be determined. The obtained results can 

provide valuable insights about the damage state of the 

structure. All this information can be sensed with only one fiber  

mounted to the structure, whereby after the initial installation 

no further direct interaction with the structure is necessary.  

Further work will include a deeper look on detecting the tearing 

of tension cables, as well as a more detailed look on damage 

assessment using mode shapes. 
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ABSTRACT: The alarming frequency of bridge collapses in recent years underscores the critical need for advanced monitoring 

strategies tailored to existing infrastructure. Many concrete bridges, built decades ago, now face increasing traffic demands and 

environmental stressors that threaten their structural integrity. 

This study investigates the use of distributed fiber optic sensors (DFOSs) with high spatial resolution (independent strain 

measurements every 2.6 mm) during static load tests to assess the structural performance of concrete girder bridges. The goal is 

to gain a deeper understanding of their condition using data-driven approaches. The fiber optic technology provides detailed strain 

profile information that gives insights into global bridge behavior, such as stress distributions, support conditions and static 

responses. It also allows the detection of cracks along the fiber path and other localized effects that may remain undetected without 

a calibrated numerical model.  

This method of structural performance monitoring is applied to a prestressed concrete bridge in Switzerland. Static load tests have 

been performed on a full-scale bridge in Switzerland and the resulting distributed strain datasets allow the accurate understanding 

of bridge behavior, including deflection extrapolation and crack detection. The results underline the potential of DFOS to develop 

novel data-driven solutions for extending the service life of structures. 

KEY WORDS: Distributed fiber optic sensors, Structural identification, Structural performance monitoring, Structural health 

monitoring, Load testing, Concrete bridge.

1 INTRODUCTION 

Across the globe, bridge networks are experiencing a rapid 

deterioration amid rising traffic demands and environmental 

effects, posing significant challenges to infrastructure safety 

and management. Budgetary constraints and the potential 

socioeconomic disruptions from closures or failures, such as 

the catastrophic collapse of the Morandi Bridge in Genoa 

[Calvi et al., 2019], highlight the critical need for accurate 

structural safety assessments to optimize resource allocation 

and ensure public safety. 

Traditional engineering approaches, created for the design of 

new structures, are not adapted to existing bridges, where 

material degradation and unforeseen modifications obscure 

true conditions. Compounding this issue, visual inspections 

suffer from subjectivity and an inability to detect hidden flaws, 

driving the need for more reliable, data-driven solutions [1]. To 

address these shortcomings, researchers have developed 

advanced monitoring methodologies that harness field 

measurements to either pinpoint damage or deepen 

understanding of structural behavior [2]. Structural 

performance monitoring (SPM), in particular, seeks to uncover 

hidden reserves of load-bearing capacity by leveraging precise 

measurements from real-world conditions [3]. The 

effectiveness of such frameworks hinges on the choice of 

monitoring technology. Since the 1950s, strain gauges have 

been a cornerstone of structural assessment, valued for their 

affordability and durability [4]. However, their discrete spatial 

sampling limits their ability to capture the full spectrum of a 

bridge response, especially in aging concrete structures prone 

to localized deterioration. 

The introduction of fiber optic sensors (FOS) has marked a 

pivotal advancement, enabling distributed strain monitoring 

over extended distances with high spatial resolution [5]. More 

recently, distributed fiber optic sensors (DFOS) have pushed 

this boundary further, achieving gauge pitches as fine as 1.3–

2.6 mm through breakthroughs in optical technology. This 

development, depicted in Figure 1, facilitates precise detection 

of local strain anomalies, such as impacts of concrete cracks, 

by analyzing time- and frequency-domain signals, far 

exceeding the capabilities of traditional sensors [6].  

 
Figure 1. Comparison between distributed fiber optic sensors 

and conventional strain gauge for concrete-structure 

monitoring. 
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Despite these advances, notable gaps remain in the literature. 

Most research focuses on long-term structural health 

monitoring (SHM) to track trends over time [7], while the 

potential of DFOS for SPM, evaluating immediate responses 

under specific loads, remains largely untapped.  

This study explores the transformative potential of DFOS in 

concrete bridge monitoring, with a focus on the role of signal 

processing in unlocking comprehensive structural 

understanding. Using datasets collected during static load tests 

on a full-scale prestressed concrete bridge, the approach 

demonstrates how DFOS-derived strain profiles provide a dual 

lens, detecting local effects like cracks and elucidating global 

responses like girder interactions and boundary effects. The 

primary objective of this study is to show the result of 

application a novel SPM methodology that integrates DFOS 

technology with static load testing to provide detailed 

evaluations of both local and global structural behaviors [8].  

This approach is applied to an existing prestressed concrete 

bridge, Ferpècle bridge in Switzerland. This methodology 

illustrates the substantial benefits of DFOS and signal 

processing in providing a holistic understanding in enhancing 

safety, optimizing maintenance strategies, and extending the 

service life of critical infrastructure.  

2 BRIDGE BEHAVIOURS IDENTIFICATION – 6 STEPS 

METHODOLOGY 

Evaluating the structural integrity of existing bridges, 

especially those with complex geometries, demands detailed 

knowledge of their characteristics and construction history, yet 

such information is frequently incomplete or absent for older 

structures. This section outlines a new methodology [8] that 

utilizes static load test data to generate new insights, enhancing 

the accuracy of structural assessments. The methodology, 

illustrated in Figure 2, centers on SPM of girder bridges using 

DFOS. 

 

Figure 2. Overview of the methodology for the examination of 

existing girder concrete bridges with DFOS. 

Step 1 involves selecting monitoring systems and load test 

configurations to acquire informative datasets. Multiple DFOS, 

coupled with a high-resolution data acquisition system, capture 

strain responses with fine spatial detail during controlled static 

load tests. Supplementary sensors, such as linear variable 

differential transformers (LVDTs), may be incorporated to 

augment data richness. Step 2 entails analyzing and refining the 

collected data. At each measurement point, the most probable 

value is extracted and anomalies are filtered to ensure only 

reliable, representative data proceed to analysis. In Step 3, the 

consistency of strain data is validated against expected values 

derived from the bridge structural properties and the load test 

configurations. Step 4 examines the strain distribution to 

determine the bridge’s static behavior, revealing global 

structural patterns and localized effects, such as concrete cracks 

(via strain peaks) and the impact of secondary elements on 

main girder deformations. 

Step 5 extrapolates stress distributions among girders, support 

conditions, and bridge deflection from the strain data, yielding 

refined insights into structural behavior for improved 

assessments. Step 6 addresses structural safety through 

standard verifications, though these lie beyond this study’s 

scope; further details are available in [9]. This model-free 

approach systematically converts raw data into actionable 

knowledge, facilitating a comprehensive understanding of 

three-dimensional bridge behavior. 

3 STRUCTURAL PERFORMANCE MONITORING 

WITH DISTRIBUTED FIBER OPTIC SENSORS 

 Bridge presentation 

Located in Les Haudères in the Swiss Alps (canton of Wallis) 

at an altitude of 1450 meters, the Ferpècle Bridge is a 

prestressed reinforced concrete structure erected in 1958. 

Designed with a single 35-meter span, the bridge originally 

consisted of two girders, each 1.5 meters high, arranged in a 

slender TT cross-section and is one of the first prestressed 

bridges in the country (Figure 3). In 2023, a structural 

intervention expanded the deck width from 5.3 meters to 7.9 

meters using ultra-high-performance fiber-reinforced 

cementitious composite (UHPFRC). This intervention 

employed a cantilevered UHPFRC slab with varying thickness, 

rigidly linking the superstructure to the abutments and 

converting the bridge into a semi-integral static system (Figure 

4) [9]. 

 
Figure 3. Photograph and cross-section scheme before 

intervention. 
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Figure 4. Photograph and cross section scheme after 

intervention. 

This structural modification, accomplished by establishing a 

monolithic connection between the superstructure and 

abutments, redistributes bending moments, removes expansion 

joints and increases support capacity. As a result, the bridge 

benefits from significantly enhanced rigidity, bending capacity, 

and shear strength, while the low permeability of UHPFRC 

improves its long-term durability.  

Materially, the bridge was initially built with C30/37 concrete, 

now reassessed as C40/50 to account for strength increases over 

time [10]. The reinforcing steel has a characteristic tensile yield 

stress of fyk=345 MPa, and the prestressed bars feature a 

strength of fpd=840 MPa. The UHPFRC, categorized as type 

UB, meets Swiss standards with a tensile strength of fUtud=6.9 

MPa [11]. 

 Distributed fiber optic monitoring campaign 

Comprehensive monitoring campaigns were conducted in 2023 

and 2024, following the intervention on the Ferpècle Bridge to 

evaluate its structural behavior and mechanical properties. 

During the deck widening from 5.3 to 7.9 meters, scaffolding 

facilitated the installation of distributed fiber optic sensors 

(DFOS) along the full 35-meter span of both prestressed 

concrete girders. Grooves 6 mm deep were cut into the external 

web of each girder, 0.5 meters from the girder bottom. DFOS 

cables (SMARTEC-DiTeSt SMARTProfile Sensor [12]) were 

affixed with glue and protected by aluminum plates to shield 

against environmental exposure, as illustrated in Figure 5. This 

figure also depicts the fiber optic positioning process and a 

schematization of the SMARTEC sensor, which incorporates 

two fibers for detecting temperature variations and two for 

measuring strain, both monolithic sensors with standard 

acrylate coating, further shielded by UHPFRC cantilevers. The 

installation presented challenges, requiring a scaffolding to 

groove the concrete and the careful gluing of fiber optic cables 

to avoid sensor slip. Uniform glue distribution was critical to 

ensure consistent response in the concrete-glue-coating-sensor 

system. The upstream girder is designated Channel 1 (CH1) 

and the downstream girder Channel 2 (CH2). Strain data were 

recorded using a LUNA ODiSI 6100 system [13] at a 2.6 mm 

resolution, yielding approximately 12,000 data points per 

girder, at a 5 Hz sampling rate. Five static load tests were 

performed using one or two three-axle trucks, each weighing 

26.4 tons (axle loads: 8.9 tons, 10.4 tons, 7.1 tons; transverse 

axle spacing: 2.0 meters). These configurations, detailed in 

Figure 4, included single-truck midspan loading (LT1 and 

LT2), dual-truck side-by-side placement at midspan (LT5) and 

longitudinal alignment along one girder (LT1 and LT2) to 

maximize the effects in one-quarter span.  

 

Figure 5: SMARTEC fiber optic installation 

Six linear variable differential transformers (LVDTs) were 

installed vertically beneath the girders at midspan, near 

abutments and quarter-span positions, recording deflection at 

10 Hz to complement DFOS datasets. 

A similar monitoring campaign was conducted in 2024, 

differing only in the repositioning of the two LVDTs from near 

the abutments to the transverse beam at quarter-span locations 

and an increase in truck load to approximately 28 tons. 

For both campaigns, temperature compensation was deemed 

unnecessary due to the short data collection period 

(approximately 30 minutes) and cloudy sky conditions. These 

conditions did not result in temperature changes significant 

enough to alter the structural response compared to the 

calibration baseline. This assumption is validated by the strain 

and LVDT signals in the time domain, as shown in Figure 9, 

where signals start at zero when no truck is on the bridge and 

return to zero after the truck leaves, indicating no effects 

necessitating temperature compensation. 

 

Figure 6. Sensor configuration. (Up) Elevation view; 

(Down) Plan view. 
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Figure 7. Sensor configuration. (Up) Cross section in one 

quarter-span for the load configuration LT3; (Down) Photo of 

the bridge with sensor locations.  

 

Figure 8. Static load tests with either one truck (LT1 and 

LT2) or two trucks (LT3, LT4 and LT5). 

Each test produced two strain vectors per girder (N × T 

dimensions, where N ≈ 12,000 points and T denotes time steps), 

totaling ten vectors across the campaign. LVDTs yielded six 

deflection vectors per test (1 × T dimensions), totaling 30 

vectors. 

 

 Application of the methodology for LT3 

The methodology of Section 2 is applied considering the strain 

measurements by the DFOS for CH2 during LT3 from the 

monitoring campaign of 2024.  

As a first step, the raw DFOS and LVDT data are processed to 

extract reliable structural response measurements. Consistent 

strain and deflection values are determined by averaging 

measurements taken while the trucks remain stationary (Figure 

9), filtering out anomalies. For CH2, the most probable strain 

value at a midspan DFOS point is 20 µε while for LVDT4 (one 

quarter span of CH2), the deflection is 2.32 mm. Post-selection, 

DFOS datasets are reduced from N × T to N × 1 vectors (N ≈ 

12,000), and LVDT datasets from 1 × T to 1 × 1, streamlining 

subsequent analysis. Figure 10 illustrates the reconstructed 

signal for LT3 in CH2. 
 

 

 

Figure 9. Signal selection. (Up) Strain value at a specific 

DFOS measurement of CH2 under LT3; (Down) Deflection 

value for LVDT4 under LT3. 

The reliability of LT3 strain data is validated by confirming 

their consistency with expected structural behavior. The strain 

distribution for LT3, as shown in Figure 10, aligns fully with 

the load configuration and the fixed-fixed static scheme. Strain 

data exhibit negative values near the abutments, positive values 

at midspan, and zero values near the transverse beams at the 

one-quarter and three-quarter span positions, following the 

expected bending-moment diagram. Notably, the strain on the 

left side of the diagram is higher at the one-quarter span than at 
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the three-quarter span, which is entirely consistent since the 

load is applied at the one-quarter span.  

 

Figure 10. Reconstructed strain signal with the selected 

value at every DFOS measurement location of CH2 under 

LT3. 

Beyond the noise range (approximately ± 5 µε), strain peaks 

are observed on the left side and near midspan on the right side, 

represented by red dots in Figure 11.  

 

Figure 11. Peaks characterization for LT3 data in CH2. 

These peaks are localized using the prominence technique [14], 

which identifies significant strain values by measuring how 

much they stand out from their surroundings. The strain peaks 

are detected in the negative strain zone when the strain is 

negative (at the initial and end sides of the bridge) and in the 

positive strain zone when the strain is positive (at the middle of 

the bridge), reflecting the expected strain distribution. This 

method ensures that only relevant peaks, corresponding to 

structural responses rather than noise, are detected. 

Furthermore, as depicted in Figure 12, these peaks persist 

throughout the monitoring period when the truck is stationary, 

confirming their consistency rather than indicating transient 

anomalies. They likely indicate concrete cracks or stress 

concentrations, which, for this case study, cannot be confirmed 

through visual inspection or unmanned aerial vehicle (UAV) 

photogrammetry due to the protective steel plates covering the 

fiber optic locations. Since the available data do not allow 

differentiation between cracks and stress concentrations, all 

strain peaks are conservatively treated as cracks. The relative 

crack opening (positive strain) and relative crack closing 

(negative strain) are evaluated by integrating the strain over the 

effective influence length of the crack.  

 

Figure 12. Consistency of DFOS measurements at peak A 

location in time. 

Figure 13 presents histograms of relative crack opening and 

closing, clearly showing that the magnitudes are very low and 

do not pose structural concerns. The term ‘relative’ is used 

because the DFOS signal captures only the strain induced by 

the load test, not pre-existing crack widths. The width of pre-

existing cracks and the causes of these strain peaks will be 

investigated in future monitoring campaigns. Additionally, 

some data are absent on the right side of the signal, but given 

the high spatial resolution (2.6 mm gauge pitch), the dataset 

remains sufficiently consistent for analysis. 

 

 

Figure 13: Crack width variation for LT3 in CH2. (Up) 

Relative crack opening; (Down) Relative crack closing. 

The analysis of DFOS data highlights the localized impacts on 

strain distribution at the interfaces between the main girders 

and secondary beams, significantly shaped by the specific load 

configurations applied. The strain distribution across CH1 and 

CH2 displays distinct localized effects near the crossbeam 

edges. The LT3 load configuration induces a noticeable strain 
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reduction near the junctions with secondary beams, as evident 

in Figure 14.  

 

Figure 14. Strain measurements along the main girders for 

LT3 data of 2024. 

This phenomenon stems from the transverse positioning of the 

axial load and the three-dimensional interactions between the 

main girders and secondary beams.  

At this stage, the structural performance can be assessed using 

three key parameters:  

• transverse load distribution between the main girder, 

quantifying the traffic load carried by each girder; 

• boundary conditions; 

• deflection of the main girders. 

The transverse load distribution is evaluated by analyzing the 

strain ratio from DFOS datasets for the two main girders. This 

approach captures the influence of structural characteristics and 

load configurations while ensuring robustness by minimizing 

the impact of localized anomalies through reliance on spatially 

continuous strain data. 

To illustrate the effectiveness of DFOS measurements, five 

monitoring scenarios are examined, each using different 

methods to calculate load distribution coefficients derived from 

sensor data: 

• Scenario 1 uses strain data from the DFOS, focusing 

on the ratio between CH1 and CH2 measurements; 

• Scenario 2 employs values calculated from 

equilibrium equations based on classical beam theory 

(De Saint-Venant), typically used in bridge 

assessments without monitoring data; 

• Scenario 3 relies on discrete strain measurements at 

midspan, simulating a conventional strain gauge at 

that location; 

• Scenario 4 combines discrete strain measurements at 

midspan and quarter-span strain data; 

• Scenario 5 integrates discrete strain measurements at 

midspan and near-support measurements. 

Results for load distribution coefficients (ϵCH2/ϵCH1) for LT3 are 

presented in Figure 15. The strain ratios using DFOS display a 

near-Gaussian distribution. For Scenario 1, the strain ratio is 

thus taken as the mean value of this distribution.  When 

calculated using only discrete measurements (Scenarios 3 to 5), 

the results are substantially affected by local phenomena linked 

to boundary effects and strain variability at critical sections. 

Moreover, employing classical pre-design approaches based on 

equilibrium equations (Scenario 2), the strain ratio obtained 

differs significantly from the measured DFOS strain ratio, 

indicating that load distribution between girders is more 

balanced than suggested by conservative design assumptions. 

 

Figure 15. Transversal load distribution evaluation. 

These scenarios result in inaccurate bending moment 

evaluations, as shown in Figure 16, potentially overestimating 

or underestimating safety.  

 

 

Figure 16. Bending moment comparison. (Up) Maximum 

bending moment in CH2; (Down) Minimum bending moment 

in CH2. 

Once the load distribution is established, the characterization of 

boundary conditions becomes essential. These are evaluated by 

comparing DFOS strain profiles with theoretical distributions 

for simply supported and fixed-fixed configurations (Figure 

17). From the graph, the theoretical fixed-fixed model closely 

aligns with the observed data (negative strains at supports, 

positive at midspan), confirming the post-intervention static 

scheme. Minor discrepancies, due to uncertainties in elastic 

modulus (E), stiffnesses of abutments, and load distribution 

coefficients, do not compromise this conclusion, confirming the 

structural modification’s effectiveness.  
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Figure 17. Boundary-condition valuation in CH2 under 

LT3. 

Subsequently, bridge deflection is derived from DFOS datasets 

via double integration of the strain profile, following the 

methodology outlined in [8]. This process relies on load 

distribution data, boundary conditions, and structural rigidity. 

Since the latter cannot be directly measured from DFOS 

datasets, it is approximated between 33 GPa (C30/37) and 42 

GPa (C80/95). Simulations with different rigidity values enable 

defining an envelope of possible bridge deflections, with the 

best fit, calibrated across all five load tests, determined by 

aligning rigidity with LVDT measurements, as shown in Figure 

18. 

 

 

Figure 18. Comparison DFOS displacement predictions vs 

LVDT measurements under LT3. (Up) Comparison in CH2; 

(Down) Comparison in CH1. 

The mean discrepancy between best-fit predictions and LVDT 

measurements, considering all load tests (LT1 to LT5) for both 

channels (CH1 and CH2), is 0.065 mm. This compares 

favorably to the 0.101 mm mean absolute difference reported 

in [8] using 2023 datasets, possibly due to greater uncertainty 

in LVDT positioning in 2023 compared to 2024. The small 

differences between these predictions demonstrate that DFOS-

based deflection estimates can closely match actual 

measurements when rigidity is calibrated. 

Furthermore, the impact of discrete strain measurements and 

conservative pre-design assumptions on displacement 

prediction is evaluated. Table 1 presents the maximum, 

minimum and mean absolute relative displacement differences 

between DFOS and LVDT measurements for Scenarios 1 to 5. 

The maximum difference increases significantly from Scenario 

1 (0.162 mm) to others: 405% (0.818 mm) in Scenario 2, 253% 

(0.571 mm) in Scenario 3, 1909% (3.252 mm) in Scenario 4, 

and 264% (0.590 mm) in Scenario 5. The minimum difference 

varies slightly, from 0.00018 mm in Scenario 4 to 0.020 mm in 

Scenario 3. The mean difference rises by 362% (0.299 mm) in 

Scenario 2, 267% (0.238 mm) in Scenario 3, 1141% (0.803 

mm) in Scenario 4, and 183% (0.183 mm) in Scenario 5 relative 

to Scenario 1 (0.065 mm).  

Table 1. Maximum, minimum, and mean absolute relative 

displacement values between DFOS and LVDT measurements 

for Scenarios 1 to 5. 

 Max 

discrepancy 

[mm] 

Min 

discrepancy 

[mm] 

Mean 

discrepancy 

[mm] 

Scenario 1  0.162 0.013 0.065 

Scenario 2 0.818 0.002 0.299 

Scenario 3 0.571 0.020 0.238 

Scenario 4 3.252 0.0018 0.803 

Scenario 5 0.590 0.005 0.183 

These findings indicate that Scenarios 2 to 5 yield mean 

displacement estimation errors ranging from 0.2 mm to 0.8 

mm, whereas Scenario 1 has a mean error around 0.065 mm, 

establishing it as a reliable tool for displacement monitoring. It 

demonstrates that load-distribution estimations using only 

discrete strain measurement may be inaccurate and lead to 

significant discrepancies in the expected bridge deflection. 

4 CONCLUSIONS 

This study investigates the DFOS-based methodology from [8], 

originally developed for 2023 datasets, to analyze the 2024 

Ferpècle Bridge datasets. By evaluating strain data across both 

channels under various static load configurations, the approach 

demonstrates its ability to capture local phenomena (e.g., 

cracks, secondary beam effects) and global responses (e.g., 

boundary conditions, load distribution, displacement estimates) 

with exceptional accuracy and precision. Compared to 

traditional discrete strain sensors, DFOS offers significant 

advantages, yielding the following insights: 

• High-resolution monitoring. DFOS enables spatially 

continuous strain measurements with millimeter-scale 

precision, accurately determining load distribution 

coefficients, bending moment diagrams, and 

displacement estimates with ~0.1 mm accuracy, 

surpassing the capabilities of discrete sensors. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-022 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 131 

• Longitudinal (1D) crack detection. The methodology 

reliably identifies cracks and stress concentrations but 

faces challenges in classification due to limited data 

on pre-existing micro-crack distributions (sometimes 

difficult to detect due to their size and locations) and 

its linear sensing configuration, which restricts bi-

dimensional (2D) strain mapping. 

• Consistency across years. The 2024 results align 

closely with 2023 findings, confirming the 

methodology’s reliability, high accuracy, and 

precision, while indicating no significant structural 

changes in the bridge. 

• Future directions. Further research should investigate 

temperature effects under ambient daily and seasonal 

loads, integrate visual inspection or UAV 

photogrammetry alongside 2D strain mapping to 

enable proper crack characterization and develop a 

calibrated finite element model (FEM) to support 

long-term SHM. 

This high-resolution DFOS methodology provides detailed 

insights into structural behavior, enabling precise safety 

assessments and informed decision-making for sustainable 

bridge maintenance and management. 
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ABSTRACT: This study presents an innovative AI-powered smart-liner system designed to enhance the safety and efficiency of 

oil and gas transportation and storage infrastructure. By integrating polymer composite liners with distributed fiber optic sensors 

(DFOS), the system enables continuous monitoring of mechanical deformations and damage formation, providing real-time 

insights into the infrastructure’s condition throughout its lifespan. Finite element analysis (FEA) is employed to simulate the 

mechanical responses of the smart-liner-protected specimen over time. Machine learning (ML) algorithms are applied to analyze 

images generated from collected DFOS data, enabling the identification and assessment of risk variations across different locations 

and time steps. This approach demonstrates the high accuracy and effectiveness of ML in automatically detecting deformations 

and crack formation under buckling loading conditions. The methods enable comprehensive structural health monitoring, allowing 

for precise localization, visualization, and quantification of mechanical changes and damage within the infrastructure. With the 

above approaches, the smart-liner system facilitates continuous data collection across the entire protected surface, supporting the 

development of a dynamic digital twin model that evolves alongside the infrastructure. The findings provide critical insights for 

the oil and gas industry, offering an advanced and efficient solution for monitoring and mitigating risks associated with 

transportation and storage infrastructure. 

KEY WORDS: Distributed fiber optic sensors; Structural health monitoring; Finite element analysis; Machine learning.

1 INTRODUCTION 

As the traditionally most energy-consuming industry in the 

United States [1], the oil and gas industry relies on an extensive 

network of pipelines, storage tanks, and processing facilities to 

transport and store hydrocarbons. The infrastructure network is 

crucial for maintaining the stability and efficiency of the energy 

supply chain, ensuring that the country can meet its growing 

energy demands and support rapid economic growth. However, 

pipeline infrastructure is subjected to various mechanical, 

environmental, and operational stresses that can lead to 

material degradation, structural deformations, and eventual 

failures. Such failures pose significant risks, including 

environmental pollution, financial losses, and safety hazards 

for personnel and surrounding communities. A notable 

example of oil and gas infrastructure failure is the Deepwater 

Horizon oil spill in the Gulf of Mexico, which occurred in 2010. 

This disaster is one of the largest and most devastating oil spills 

in history. The primary cause was the failure of the cement and 

shoe track barriers, allowing the uncontrolled surge of high-

pressure hydrocarbons to escape from the wellbore, travel up 

the riser, and ignite the oil spillage [2]. Additionally, the San 

Bruno pipeline explosion occurred in the same year due to the 

fracture in the welded seam, resulting in the eight deaths [3]. 

These catastrophic events show significant needs for protecting 

and monitoring the health conditions of the oil and gas 

infrastructure. 

Ensuring the mechanical resilience of infrastructure is 

crucial. One way to protect the oil and gas infrastructure is by 

implementing a polymer composite liner, which is made of 

fiber fabric and polymer composite. It serves as an additional 

protective layer, protecting metallic pipelines and storage tanks 

from mechanical stress, corrosion, and environmental 

degradation [4], [5]. Polymer composite liners provide 

significant advantages, including high strength-to-weight 

ratios, corrosion resistance, and enhanced durability [6]. The 

liners are engineered to withstand extreme environmental 

conditions, making them ideal for high-risk applications such 

as oil and gas transportation and storage. However, despite 

these benefits, the liner-protected infrastructure still faces 

structural challenges. One critical issue is mechanical 

deformation, which can occur due to factors such as thermal 

expansion, pressure fluctuations, external impacts, and ground 

movement. Over time, these deformations may lead to 

localized buckle or collapse, ultimately compromising the 

structural integrity [7]. Traditional monitoring techniques, such 

as periodic visual inspections and ultrasonic testing, are often 

insufficient in detecting infrastructure early-stage damage, as 

many deformations occur beneath the surface or in hard-to-

reach areas. Additionally, the liner is always installed on the 

interior surface of infrastructure, making the inspection and 

maintenance even more difficult. To address these limitations, 

a practical and efficient structural health monitoring (SHM) 

system is necessary to ensure prolonged service of liner-

protected oil and gas infrastructure. 

Distributed fiber optic sensor (DFOS) is widely used in 

monitoring structural health, for its ability of continuous 

measurement along the fiber length [8]. DFOS operates by 

transmitting light pulses through optical fibers and analyzing 

the backscattered signals to measure strain and temperature 

along the fiber length. This capability is particularly important 

for large-scale infrastructure, where traditional sensors are 

impractical or insufficient. Besides, DFOS has advantages in 
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small size, lightweight, water resistance, and suitable for harsh 

working environments such as extreme weather conditions and 

seismic-prone regions, making it applicable and reliable in the 

oil and gas industry [9]–[11]. Zhang et al. [12] attached DFOS 

on the exterior surface of the pipeline to monitor its 

compressive and tensile strain distribution. Inaudi and Glisic 

[13] monitored the conditions of gas pipelines with DFOS for 

two years. The measured strain and temperature results showed 

high accuracy. The installation method of both DFOS and liner 

involves attaching them to the interior surface of the target 

object. Therefore, the integration of DFOS and polymer 

composite liner is worth exploring, as it has the potential for 

simultaneous structural protection and real-time SHM. The 

DFOS-embedded liner system becomes “smart”, which 

facilitates continuously track of strain variations, and provides 

early warnings before critical failure occurs. For example, with 

the continuous measurement and sensitivity properties of 

DFOS, it is widely applied to detect cracks in concrete 

structures [14]. Thus, it also has the potential to detect cracks 

in liners for the development of a comprehensive SHM for oil 

and gas infrastructure. This integration marks a significant 

advancement in SHM, enabling a proactive approach to oil and 

gas infrastructure maintenance. 

With the development of smart sensor and AI technology, 

digital twin becomes an emerging technology in civil and 

infrastructure applications. DFOS is a critical component in a 

digital twin model, for its capacity of collecting and updating 

real-time data [15]. Digital twin model acts as a dynamic, real-

time, virtual representation of physical structures. It 

continuously evolves based on data and simulators for real-time 

monitoring purpose [16]. Although DFOS provides real-time 

strain monitoring data, the digital twin model has limitations in 

presenting the structural shape, for example, the deformation 

information. To address this issue, finite element analysis 

(FEA) is an alternative solution, for its capacity in simulating 

structural mechanical responses efficiently. As the 

infrastructure is monitored using DFOS, real-time strain data 

can be correlated to FEA simulation results to find the 

corresponding deformation information, which supports the 

development of the digital twin model. The correlation 

approach requires a high-efficiency method to satisfy the 

requirement of real-time monitoring purpose. Hence, the AI-

driven machine learning (ML) based method is proposed to 

automatically identify the most accurately correlated pairs. 

Then the structural deformation is reconstructed and provided 

to establish an efficient, real-time digital twin model in a rapid 

response time. Additionally, minor damages are found in the 

polymer composite liners of oil and gas pipelines [17]. The 

early detection and maintenance are vital for structural safety. 

By integrating DFOS with FEA and AI-driven correlation 

methods, an efficient and real-time digital twin model can be 

developed to enhance structural health monitoring. This 

approach not only improves real-time visualization of structural 

behavior but also facilitates early damage detection, ultimately 

contributing to the safety and longevity of critical oil and gas 

infrastructure. 

In this paper, we develop a smart-liner system with DFOS to 

protect and real-time monitor the strain responses of oil and gas 

infrastructure. FEA and AI-driven approaches are paired with 

the smart sensor data to identify the digital twin-based real-time 

SHM function. Section 2 introduces the experimental design, 

including the materials used to prepare the test sample and 

experimental instrumentation. Section 3 provides the method 

of DFOS strain field generation and interpolation function for 

damage identification and localization. Furthermore, the steps 

for the digital twin model establishment are introduced, 

including developing the finite element model for experimental 

validation and conducting AI-driven strain field correlation 

between DFOS and FEA results. Section 4 presents the strain 

field comparison results. Meanwhile, the minor damages in the 

test sample are identified and localized. Afterward, the best 

correlated strain fields are fed back to FEA for the development 

of the digital twin model. This study aims to investigate the 

feasibility of a smart-liner system with DFOS in real-time 

structural health monitoring of oil and gas infrastructure, and 

the accuracy of the digital twin model in representing the 

structural information. By inducing the buckling load, the study 

has the potential to provide valuable insights into damage 

identification, localization, and prevention, contributing to the 

enhanced safety and reliability of oil and gas infrastructure. 

2 EXPERIMENTAL DESIGN 

 Materials 

The materials prepared to develop the smart-liner protected 

metallic substrate, including metallic substrate, polymer 

composite liner, DFOS, and adhesive layer. A 152.4 mm × 

304.8 mm (W × L) steel plate is used as a substrate, which 

represents the metallic pipes and vessels that store and transport 

oil and gas. A commercial Starline® 2000 polymer composite 

liner made of woven fabric and polyurethane/polyethylene 

coating serves as a protective layer for the metallic substrate. 

The installation of DFOS is a critical step in sample 

preparation. One Luna high-definition DFOS is first firmly 

attached to the surface of the liner with a thin coating of 3M 

DP460 epoxy adhesive. After the adhesive is consolidated, the 

DFOS-installed liner is then securely attached to a metallic 

substrate through a 1 mm thick epoxy resin adhesive layer, 

which simulates the liner rehabilitation for oil and gas 

pipelines. The prepared sample is placed at room temperature 

for 24 hours to ensure it is fully cured. The installation of DFOS 

does not require specialized tools or expert personnel, making 

it suitable for practical field applications where ease of 

deployment is essential. 

The schematic of a smart-liner protected metallic substrate 

sample is shown in Figure 1. The sample contains three layers: 

polymer composite liner, adhesive layer, and metallic substrate. 

The DFOS is embedded into the interface between the liner and 

adhesive layer. The thicknesses of each layer from top to 

bottom are 1.94 mm, 1 mm, and 0.81 mm, respectively. The 

DFOS, though delicate and easily fractured, is flexible which 

allows for embedment in a semi-circular style for turning 

installation direction. It is equipped with a thin, sensitive optic 

fiber inside, and protected by a multi-layer coating. The DFOS 

used in this study relies on Rayleigh scatting of light. When a 

laser pulse travels through the fiber, a small portion of the light 

is scattered in all directions due to its natural inhomogeneities 

[18]. External loads, such as mechanical stress, thermal 

expansion, or vibrations, induce strain in the fiber, causing 

measurable changes in the backscattered Rayleigh signal. By 

analyzing these changes, the system can detect variations in 
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strain along the length of the fiber. We install a 5 m fiber length 

long DFOS, covering the strain measurement area in a zig-zag 

pattern.  

 

Figure 1. Schematic of a smart-liner protected metallic 

substrate. 

 Experimental instrumentation 

To introduce the buckling damage on the smart-liner protected 

metallic substrate, it is placed in an MTS Criterion® 

Electromechanical Test Systems, which has a force capacity up 

to 600 kN. As shown in Figure 2, the sample is clamped on the 

two edges along the longitudinal direction and subjected to an 

eccentric buckling load, simulating real-world complex 

structural deformation. The two clamped sections have same 

dimension with 25.4 mm × 30 mm (W × L). The loading 

machine is controlled by a constant displacement rate of 0.2 

mm/min, with a total vertical displacement of 5 mm. Luna 

optical distributed sensor interrogator (ODiSI) 6100 is used for 

strain data collection from DFOS. When backscattered light 

interferes with the reference signal in the interrogator, it 

generates an interference pattern containing phase and 

amplitude information, which correlates with strain variations 

along the fiber. By applying a fast Fourier transform, the 

system extracts high-resolution, spatially continuous strain 

data. This processed data is used to generate a high-resolution 

strain profile along the fiber length, providing a real-time, 

visually accessible strain plot on the ODiSI control platform.  

 

Figure 2. The smart-liner protected metallic substrate sample 

clamped in loading machine. 

3 RESEARCH METHODOLOGY  

 DFOS strain field generation 

The measurement performance of DFOS is highly reliant on its 

settings, including measurement rate and gauge pitch. If the 

measurement rate is too high, the generated strain data not only 

occupies excessive storage and computational resources but 

also contains unnecessary noise. Previous DFOS applications 

in engineering practices used measurement rates ranging from 

5 to 50 Hz [19]–[21]. In this study, the measurement rate is set 

to 10 Hz to balance the measurement accuracy and efficiency. 

Gauge pitch, also called spatial resolution, refers to the distance 

between each measurement point along the optic fiber. The 

measurement area in our case is relatively small, as shown in 

Figure 2. A large gauge pitch, for example, 5.2 mm [22], is 

inapplicable. Since this is a laboratory experiment conducted 

with a short DFOS length, the highest available spatial 

resolution of 0.65 mm is selected to achieve a dense strain 

measurement [23]. 

The illustration of the smart-liner system with DFOS is 

shown in Figure 3. The DFOS is attached to the polymer 

composite liner surface in a zig-zag pattern, forming 14 distinct 

measurement lines with a uniform spacing of 10 mm. L1 

represents the first line, and L14 is the last line close to the 

clamped edge, which is subjected to the largest buckling 

deformation. The blue stars represent the measurement point 

along the fiber. As discussed earlier, the distance between two 

contiguous measurement points equals the gauge pitch of 0.65 

mm. DFOS covers an area of 130 mm × 200 mm, for strain 

monitoring purpose.  

The generation of the DFOS strain field contains the 

conversion of the one-dimensional strain data to the two-

dimensional strain field, through the X-Y coordinate system, as 

shown in Figure 3. For example, to map the strain data point on 

L1 into the strain field, the Y-coordinate is fixed along the line, 

and the X-coordinate is uniformly increasing at the rate of 

gauge pitch. In this approach, the DFOS strain field is 

generated, enabling visualization representation of strain 

distribution for smart-liner system.  

 

Figure 3. Schematical illustration of the smart-liner system 

with DFOS. 

 

 Damage identification and localization 

To promote the application of DFOS for real-time monitoring 

of large oil and gas infrastructures, automated damage 

identification and localization are essential. When the DFOS 
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passes through a crack, a significant increase in strain rate is 

always detected, making it appliable to identify the presence 

and location of cracks [24]. To achieve the identification, 

obtaining strain values on a finer grid is the prerequisite. 

Bilinear interpolation and triangle-based interpolation are two 

widely employed planar interpolation algorithms for estimating 

unknown data based on known data in two-dimensional plane 

[25]. This study applies bilinear interpolation to estimate the 

strain on a finer grid, because DFOS has a fixed gauge pitch, 

the collected strain is uniformly distributed. Bilinear 

interpolation is a method the uses repeated linear interpolation 

to interpolate functions of two variables, which typically used 

on regular grids. Equation (1) illustrates how this method 

estimates the value for a target point using four neighboring 

lattice points.  

𝑓(𝑥, 𝑦) ≈ 𝑤11𝑓(𝑄11) + 𝑤12𝑓(𝑄12) + 𝑤21𝑓(𝑄21)
+ 𝑤22𝑓(𝑄22) 

(1) 

where (𝑥1, 𝑦1) , (𝑥1, 𝑦2) ,  (𝑥2, 𝑦1) , (𝑥2, 𝑦2)  are the 

coordinates of the four neighboring lattice points 𝑄11 , 

𝑄12, 𝑄21, 𝑄22. The weights 𝑤 are listed as follows: 

𝑤11 =
(𝑥2 − 𝑥)(𝑦2 − 𝑦)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤12 =
(𝑥2 − 𝑥)(𝑦 − 𝑦1)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤21 =
(𝑥 − 𝑥1)(𝑦2 − 𝑦)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

𝑤22 =
(𝑥 − 𝑥1)(𝑦 − 𝑦1)

(𝑥2 − 𝑥1)(𝑦2 − 𝑦1)

 

The gradient calculation formula, shown in Equation (2), 

represents the slope limit as the distance between two 

neighboring lattice points 𝑑  approaches zero. A denser grid 

provides a gradient closer to the true value but increases 

computational costs. Based on a convergency study, we 

determine to interpolate strain value on 0.1 mm × 0.1 mm grid, 

as further reducing the grid size has little impact on the 

gradient. 

gradient =  lim
𝑑→0

𝑓(𝑥 + 𝑑) − 𝑓(𝑥)

𝑑
 (2) 

 Establishment of digital twin model 

This study aims to develop a smart-liner system with DFOS to 

enable digital twin-based real-time monitoring of oil and gas 

infrastructure. Once the smart-liner system with DFOS collects 

the real-time, accurate strain results, we establish a digital twin 

model for virtual and real-time representation. To build the 

virtual model, we create a three-dimensional finite element 

model to replicate the experimental testing on smart-liner 

protected metallic substrate. Section 3.3.1 presents the detailed 

design, including geometry, interfacial contact, and mesh 

information, to construct the finite element model to simulate 

the smart-liner protected metallic substrate under the eccentric 

buckling load. Section 3.3.2 shows the AI-driven method to 

correlate the DFOS-measured strain field and FEA-predicted 

strain field. This method facilitates deformation reconstruction 

and the digital twin model establishment to visualize buckling 

deformed smart-liner system in the real-time. 

3.3.1 Finite element model design 

FEA is carried out to simulate the smart-liner protected metallic 

substrate under the buckling load, correlate strain results with 

the experimental study, and generate deformation information 

to establish the digital twin model. FEA is a powerful 

computational tool that enables accurate prediction of structural 

behavior under various loading conditions, which is widely 

applied in the oil and gas transportation and storage 

infrastructure [26]. By simulating experimental scenarios, it 

reduces the need for costly physical samples, saving both time 

and resources. Abaqus/CAE 2024 is employed to generate and 

analyze the finite element model in this study. The finite 

element model has same geometry and material settings as the 

test sample with three layers: metallic layer, the adhesive layer, 

and liner layer. To generate the mesh for this thin and multi-

layer object, the widely-used C3D8R (8-node linear brick 

element with reduced integration) element is not the best 

choice. Instead, we select the C3D8S (8-node linear brick 

element with improved surface stress visualization) element for 

discretization, because of its advantage in estimating surface 

strain [27]. The mesh size of this model is 2.5 mm uniformly. 

The material properties of each layer are presented in Table 1. 

The metallic substrate is made of high-ductility steel and 

simulated using a bilinear model with strain hardening. The 

adhesive layer and polymer composite line have significantly 

lower stiffness compared to the metallic substrate. Thus, elastic 

models are applied in the analysis. 

Table 1. Material properties in finite element model. 

Layer Material property 

Metallic substrate 

Young’s modulus = 210 GPa 

Poisson’s ratio = 0.3 

Yield strength = 500 MPa 

Ultimate strength = 635 MPa 

Ultimate strain = 0.2 

Adhesive layer 
Young’s modulus = 1 GPa 

Poisson’s ratio = 0.3 

Polymer composite liner 
Young’s modulus = 400 MPa 

Poisson’s ratio = 0.4 

 

 Figure 4 exhibits the finite element model of the smart-liner 

protected metallic substrate. The bottom edge areas are 

constrained to move and rotate, identical to the bottom clamped 

area in the experiment. The top edge is also constrained to 

rotation but allowed for a vertical displacement of 5 mm, 

accurately replicating the experimental buckling load setup. 

The interfacial contact between two interfaces is simplified as 

tied, given the careful curing procedures, to simulate a perfectly 

bonded condition. 
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Figure 4. Finite element model of smart-liner protected 

metallic substrate. 

Performing a buckling analysis in Abaqus involves two steps: 

linear eigenvalue analysis, and nonlinear Riks analysis. The 

linear eigenvalue analysis is the first step, which estimates the 

critical buckling load and corresponding mode shape. This 

method assumes small deformations and linear material 

behavior, making it computationally efficient. While this 

method is useful for obtaining a quick estimate of the buckling 

load, it does not account for geometric imperfections, material 

nonlinearities, or post-buckling behavior, which may lead to 

inaccurate predictions. Therefore, we also conduct nonlinear 

Riks analysis that accounts for geometric and material 

nonlinearities, as well as initial imperfections. The geometric 

and material nonlinearities are enabled by changing the setting 

and inputting material nonlinear properties. The first three 

mode shapes from linear eigenvalue analysis serve as the initial 

imperfections. The magnitudes of the first, second, and third 

buckling mode shapes are set as 1.00%, 0.50%, and 0.25% of 

the plate thickness, respectively [28]. The predicted strain 

distribution is compared with the DFOS strain field result for 

validation purpose, and then correlated with the DFOS strain 

field to generate corresponding deformation distribution to 

establish the digital twin model. 

3.3.2 AI-driven strain field correlation 

It is common for the strain data from experiments and 

simulations to exhibit slight differences, because of the 

discreteness of the experiment. To fill this gap, this research 

implements a strain field correlation method based on the 

convolution neural network (CNN) to find the most similar pair 

between DFOS and FEA results. Figure 5 illustrates the basic 

process of strain field correlation. The inputs are strain field 

images generated from DFOS and FEA, from which CNN can 

be used to extract the abstract features. Then, the cosine 

similarity between the extracted features of the DFOS and FEA 

data is compared. Through iterating over the entire FEA 

database, the best matching pair is found. In order to enhance 

the feature-extracting capability of CNN, the pre-trained 

ResNet18 model is used to process the input images. ResNet is 

a classic CNN that has shown extraordinary feature extraction 

ability in engineering fields [29], [30]. We employ ResNet18, 

one of the smallest models of ResNet, to process images, and 

its output feature maps are flattened to a one-dimensional 

vector for comparison. The best matching pair will be fed back 

into FEA for deformation generation and digital twin model 

establishment. 

 

Figure 5. The workflow of strain field correlation. 

4 RESULTS AND DISCUSSION 

 Strain field comparison between experiment and FEA 

The one-dimensional DFOS data collected on the interface 

between the adhesive layer and polymer composite liner is 

converted to a two-dimensional strain field for visualization 

and comparison, following the methodology introduced in 

Section 3.3.2. The strain results with the increasing vertical 

displacement levels are shown in Figure 6. The positive strain 

in the middle of the right edge is represented in yellow, 

indicating the tensile strain. The negative strain at the corners 

of the right edges is represented in dark blue showing the 

compressive strain. The strain fields show an approximately 

symmetric pattern with respect to the central transverse line. As 

the test sample is subjected to an eccentric load and clamped at 

the corners of the left edges symmetrically, resulting in a 

symmetric strain distribution. The slight asymmetry can be 

attributed to the instrumental limitations such as the minor 

drifts. 

Additionally, the strain distribution contours on the interface 

between the adhesive layer and liner are obtained from FEA 

results, as shown in Figure 6. To facilitate the comparison, the 

strain fields from DFOS and FEA are extracted at the same 

displacement level and share the same colormap. Due to the 

advantage of numerical analysis is free of external 

disturbances, the comparison results show that FEA has a 

symmetric strain distribution, which is highly similar to the 

results from DFOS. For further validation, we apply pixel-

based comparison to quantify the similarity between DFOS and 

FEA results, by using the parameters including structural 

similarity index measure (SSIM) and mean absolute percentage 

error (MAPE). Table 2 presents the strain field comparison 

results. The SSIM results for the three cases are approximately 

around 0.9, indicating the results from DFOS and FEA have 

high similarities. MAPE results provide the relative error 

percentage between DFOS and FEA results, which demonstrate 

that the difference is less than 0.60%. Overall, the strain 

comparison demonstrates that the FEA results have good 

agreement with the DFOS results, validating the accuracy of 

the finite element model. Building on this, FEA can help DFOS 

expand the capacity from strain monitoring to mechanical 

performance monitoring, reconstruct the structural 

deformation, and facilitate the establishment of the digital twin 

model. 
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Figure 6. Strain distribution fields with increasing vertical 

displacements collected from DFOS (left), and FEA (right). 

Table 2. Strain field comparison results. 

Displacement 

level 
SSIM MAPE 

1 mm 0.91 0.56% 

3 mm 0.91 0.22% 

5 mm 0.89 0.60% 

 Identification and localization of potential damages in 

adhesive layer 

The identification of potential damages is important, as they 

often correspond to the areas where failure initiates. The 

damages on the adhesive layer are hard to detect visually so a 

non-destructive monitoring method is necessary. As introduced 

in Section 3.2, the DFOS strain rate has a significant increase 

when it passes a crack. By converting the location of the strain 

rate surge into two-dimensional coordinates, we can localize 

the damage in the structure, which enables real-time structural 

damage monitoring. After processing the strain data from 

DFOS using interpolation and gradient calculation, we can 

visualize the region where the strain rate increases rapidly. 

Figure 7 shows the plot of strain gradient distribution. We set 

the strain gradient limit of damage as 200, any region with a 

strain gradient greater than 200 is highlighted in red circles. The 

results show that damages commonly occur close to the edge, 

near the highest strain region. It is also observed that, although 

the strain field distribution has a symmetric pattern, the 

potential damage has not. Therefore, the identification and 

localization of damage becomes more significant, as they are 

unpredictable. This method leverages the continuous 

measurement capacity of DFOS, enabling the detection and 

mapping of the potential damage. It enhances the efficiency of 

real-time structural damage monitoring, can be employed to 

identify potential damages in liner-rehabilitated oil and gas 

infrastructure, and extends the structural service life. 

 

Figure 7. The location of potential damages in adhesive layer. 

 Strain correlation and digital-twin model establishment 

of buckled liner-protected metallic substrate 

Although DFOS and FEA results demonstrated a good 

agreement, the strain field correlation is required for an 

accurate representation of deformation reconstruction. In terms 

of the strain field correlation methods as introduced in Section 

3.3.2, the DFOS strain fields at 1 mm, 3 mm, and 5 mm 

displacement levels are inputted into the AI-driven strain 

correlation model and set as ground truth. FEA strain fields are 

organized as a database, which includes all FEA strain fields at 

every 0.01 mm displacement. By extracting the features from 

DFOS strain fields and iteratively comparing the cosine 

similarities of the FEA strain field database, the most similar 

pairs are found. Table 3 shows the strain correlation results. We 

compare the corresponding displacements of the correlated 

strain field pairs. It can be seen that the correlation results have 

some differences, but the difference is not significant, 

remaining within an acceptable millimeter-level range for 

practical applications in the oil and gas industry. 

Based on strain correlation results, we reconstruct the 

deformation and establish the digital twin model of the buckled 

liner-protected metallic substrate, as illustrated in Figure 8. The 

digital twin model presents the key deformation characteristics 

and provides a predictive framework for real-time monitoring. 

The comparison and correlation between the experimental and 

numerical strain fields verify the effectiveness of the digital 

twin model. The digital twin framework enables continuous 

tracking of deformation states, which is crucial for real-time 

SHM, enabling dynamic, real-time, virtual representation of the 

liner-protected metallic substrate. This study highlights the 

potential of a smart-liner system with DFOS in combination 

with a digital twin model for structural integrity assessment. 

The findings support the feasibility of using digital twin models 

for predictive maintenance and damage prevention in oil and 

gas infrastructure. Although the implementation of the digital 

twin model faces challenges, such as high initial investment 

and potential incompatibility, experimental investigation 

demonstrates its capability for real-time monitoring of liner-

protected substrate conditions, with the potential to prevent 

even greater financial losses resulting from pipe failure. 

Additionally, the installation of CIPP liners is a mature and 
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widely adopted practice. The integration method developed in 

this study also confirms the durability of DFOS under buckling 

conditions. Therefore, the implementation of the smart-liner 

system is both feasible and promising for practical applications.  

Table 3. Strain field correlation results. 

Displacement 

level 

Correlated 

displacement 
Difference 

1 mm 0.81 mm -0.19 mm 

3 mm 3.38 mm +0.38 mm 

5 mm 4.75 mm -0.25 mm 

 

Figure 8. Digital twin model of buckled liner-protected 

metallic substrate with increasing deformation. 

5 CONCLUSION 

In this paper, we establish a digital twin-based real-time 

monitoring system for oil and gas infrastructure by integrating 

smart sensor technology, finite element analysis, and deep 

learning algorithms. Through the embedment of the distributed 

fiber optic sensor into the polymer composite liner, this study 

validates the feasibility and accuracy of the smart-liner system 

in real-time monitoring of the strain fields, without 

compensating the protective capability of the liner. Enhanced 

by finite element analysis, the smart-liner system achieves the 

capability from strain monitoring to structural mechanical 

performance monitoring. Further improved with a deep 

learning-based approach, the digital-twin model is generated 

for visualization of a three-dimensional smart-liner protected 

substrate with accurate deformation representation. In addition 

to the external visualization, some flaws inside of the structure, 

such as cracks, are be detected through the smart-liner system, 

showing the robust health monitoring capabilities. Several 

summarized conclusions are listed as follows: 

• The durability of DFOS under large deformation is 

promising. Under an extreme buckling scenario, as 

shown in this study, the DFOS can constantly 

provide accurate and continuous data, and facilitate 

strain field monitoring for oil and gas infrastructure. 

• The finite element analysis results are of high 

accuracy, with a lowest SSIM of 0.89, and highest 

MAPE of 0.60% compared to experimental results. 

This validates the reliability of developed finite 

element model in predicting structural behavior, 

supporting its use in generating digital twin model. 

• The smart-liner system has the capacity to identify 

and localize minor cracks in the adhesive layer with 

high efficiency, realizing early maintenance and 

rehabilitation. 

• The AI-driven strain correlation analysis establishes 

a foundation for developing the digital twin model. 

This model provides a real-time, three-dimensional 

representation of the structural physical conditions, 

enabling accurate structural health monitoring for 

oil and gas infrastructure. 

In summary, this study proposes a framework for 

establishing the digital twin model for real-time structural 

health monitoring of oil and gas infrastructure. This study has 

limitations in assessing the proposed framework on the smart-

liner protected metallic substrate. Scaling this study to large 

and complex oil and gas transportation and storage 

infrastructure networks introduces challenges such as data 

management, sensor deployment, and integration with existing 

large-scale infrastructure. With the advancement of high-

performance computing technologies, data analytics is 

becoming increasingly capable of handling the vast amount of 

information generated by distributed sensing systems. 

Distributed sensing technologies have already been applied in 

large-scale structures such as bridges, railways, and pipelines 

[31], [32], demonstrating their feasibility and robustness in 

extensive monitoring applications. Furthermore, the 

widespread application of polymer composite liners in the oil 

and gas industry supports the practical applicability of scaling 

up the developed smart-liner system for structural health 

monitoring across extensive networks of pipelines and storage 

facilities. Future work will be expanded to the long-term 

durability test, aiming to investigate the long-term performance 

of smart-liner system and digital-twin models. 
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ABSTRACT: Distributed fiber optic sensing is a suitable method for long-term, wide-area monitoring of civil engineering 

structures such as the ground, tunnels, dams, and bridges. In recent years, distributed strain sensing technologies such as distributed 

acoustic sensing (DAS) and optical frequency domain reflectometry (OFDR), which can realize real-time monitoring, have made 

remarkable progress. In particular, OFDR, which performs strain sensing with high spatial resolution, can quantitatively evaluate 

the strain distribution of civil engineering structures with an accuracy comparable to conventional strain gauges. This method has 

been limited in its application to structural health monitoring due to its short measurement range. However, by extending the 

sensing distance, it is evolving into a practical technology for on-site testing. This paper introduces middle-range, rapid strain 

sensing based on Phase-noise-compensated OFDR (PNC-OFDR) and its application to bridge monitoring. Optical fiber sensors 

were installed on bridge girders, and the change in strain distribution when the moving load was applied by vehicles was measured 

using the PNC-OFDR sensing system. 

KEY WORDS: PNC-OFDR; bridge monitoring; strain; dynamic strain. 

1 INTRODUCTION   

Distributed optical fiber sensing, in which an optical fiber is 

installed as a sensor on a target object to measure strain and 

temperature distribution, is actively applied for long-term, 

wide-range monitoring of civil engineering structures such as 

the ground, tunnels, dams, and bridges. For example, ground 

anchors embedded with optical fiber sensors are installed on 

on-site slopes, and landslide monitoring is performed by the 

tension measurement using optical fiber sensors [1]. This 

monitoring has been carried out over several years, and the 

measurement data acquired over a certain period are compared 

quantitatively. The long-term feasibility of the distributed 

strain sensing using Rayleigh backscattered light spectrum, 

which is a high-precision measurement technique, was 

reported. In addition, seafloor fiber optic cables and terrestrial 

fiber networks (dark fiber) over tens of kilometers are used as 

sensing fiber to monitor seismic activity [2] and traffic flow [3].  

In terms of sensing technology, with the advent of wavelength 

tunable coherent OTDR [4] and DAS based on phase-OTDR 

[5] that detect Rayleigh backscattered light with high intensity, 

high-precision strain sensing on the order of 1με and real-time 

monitoring over the entire length can be performed at the 

construction site [6]. Currently, distributed fiber optic sensing 

is utilized to evaluate construction quality and manage safety 

in the construction field. Strain and temperature distribution 

data are converted into physical quantities such as displacement 

and tension force, and construction management based on the 

sensing data is carried out. For a detailed analysis of the data, 

it is important to verify that the strain measured by the 

distributed fiber optical sensing matches the value indicated by 

a conventional electrical strain gauge. In regard to bridge 

monitoring, bridge structure shows a variety of responses, from 

slowly changing static strain to dynamic strain caused by traffic 

loads. However, few methods can evaluate strain distribution 

statically and dynamically with a gauge length of a few 

centimeters, similar to that of a strain gauge. A comparison 

table of DFOS spatial resolution and sample rate is shown in 

Figure 1. Brillouin-based sensing technology BOTDR and 

Rayleigh-based sensing technology TW-COTDR, which have 

been widely used for structural health monitoring, have a 

spatial resolution of about 1m or 10cm and are suitable for 

static sensing. Phase OTDR, one type of DAS, is utilized as a 

dynamic sensing method to capture vibration distributions with 

a spatial resolution of several meters. OFDR is both a static and 

dynamic sensing method [7, 8, 9] with spatial resolution close 

to that of a strain gauge. Despite its excellent sensing 

performance, OFDR has been restricted to applications in 

structural health monitoring due to the sensing distance limited 

by the temporal coherence of a laser source. Since the sensing 

Middle range, rapid strain sensing based on PNC-OFDR  

and its application to bridge monitoring 
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distance is generally less than 100 m, OFDR has been widely 

used for laboratory use in civil engineering. On the other hand, 

in the field of telecommunications, a PNC (phase noise 

compensation) algorithm for demodulating the coherence of a 

laser source has already been verified, and PNC-OFDR, which 

implements the PNC algorithm in OFDR, has succeeded in 

measuring with a spatial resolution of 5 cm over a distance of 

40 km [10].  However, this PNC-OFDR has not been confirmed 

for strain and temperature measurements performed in 

structural health monitoring. The authors expected that PNC-

OFDR would be a practical strain sensing technology for on-

site structural health monitoring and developed a distributed 

strain analyzer based on PNC-OFDR (Figure 2). This paper 

describes an overview of the PNC-OFDR based strain 

measurement system and reports its application to static and 

dynamic strain measurements on an actual bridge. 

 

2 PNC-OFDR BASED STRAIN SENSING SYSTEM 

 Rapid sensing with a fast wavelength-swept laser source  

OFDR, known as a high-precision strain measurement 

method, incorporates a wavelength-tunable laser source with 

excellent coherence. Most of these tunable laser sources sweep 

the output wavelength slowly by motor drive and are used for 

the static strain analyzer that samples data over several seconds. 

Recently, Anritsu released a new high-speed wavelength swept 

light Source [11]. This laser realizes both high-speed 

wavelength-sweeping using a MEMS (Micro-Electro-

Mechanical System) scanning mirror and high coherence, 

contributing to middle-range fiber sensing. Especially, sweep 

repetition frequency, which corresponds to the time interval in 

strain sensing, reaches 150 Hz. According to the Nyquist 

theorem, the maximum observable frequency is 75 Hz, making 

it possible to measure dynamic strain caused by traffic 

vibrations. Besides, another feature of this system is the short 

data acquisition time. Acquisition time per one shot is 2 msec. 

This property is similar to taking photographs that are resistant 

to subject blur using a high-speed camera and is believed to be 

suitable for stable static and vibration (dynamic strain) 

monitoring of infrastructure structures that are subjected to live 

loads. Figure 3 shows about data sampling when measuring 

static and dynamic strain with this system. The laser 

wavelength is swept periodically with a 15 nm width, and 

dynamic sensing can be performed by arbitrarily setting the 

time interval in synchronization with the sweep period. It is also 

possible to perform long-term static strain sensing, such as 

creep monitoring. 

 Extending the sensing distance by the PNC algorithm 

In distributed strain sensing using Rayleigh scattered light, 

reference and measurement data are obtained, and the relative 

strain variation is output. Strain is calculated from the spectral 

correlation to each segment, corresponding to the distributed 

fiber optic sensor gauge. Figure 4 shows a schematic diagram 

of OFDR-based distributed strain sensing. The data for the 

entire length of the optical fiber is converted into spectral data 

 
Figure 3. Static and dynamic strain sensing using with a fast wavelength-swept laser source. 

 
Figure 2. PNC-OFDR based distributed strain analyzer 

 and a laptop PC for data processing. 
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for each gauge, and strain is calculated by multiplying the strain 

coefficient by the spectral shift frequency that shows the cross-

correlation peak. Since this measurement method utilizes the 

repeatability of the spectrum, it is particularly important to 

perform a linear wavelength sweep to reproduce the spectrum. 

To achieve high spectral correlation, wavelength sweep 

correction is performed, which resamples the raw data based on 

clock timing with a constant wavelength interval. While this 

wavelength sweep correction works well up to the coherence 

length of the source, further correction algorithms are required 

to go beyond the distance limit of the source. The analyzer 

implements a PNC algorithm to extend the sensing distance to 

1,000 m [12], over 70 times the coherence length of the swept 

laser. Table.1 shows the measurement specifications of the 

PNC-OFDR based strain sensing system. 

 

 

 

 

 

 

 

 

 

 

 

3 APPLICATION TO BRIDGE MONITORING  

By applying this sensing technology to bridge monitoring, it 

is expected to capture the distribution of static strain changes 

used to evaluate seasonal variations, as well as the dynamic 

strain response subject to moving vehicles. In addition to 

identifying stress variations that indicate structural strength and 

the location of damage, it may be possible to obtain information 

useful for the maintenance and management of civil 

engineering structures, such as estimating traffic loads. In this 

study, we report the results of measuring the strain distribution 

when vehicles are stopped and passing through an existing 

bridge with optical fiber sensors installed on the bottom of the 

bridge girder. The applicability of PNC-OFDR sensing system 

to bridge maintenance was verified. 

 

 Bridge monitoring methods 

 These tests were conducted on the prestressed concrete bridge 

of the Atami Beach Line (Figure5.). Figure 6. shows the layout 

of the optical fiber sensors and strain gauges installed on the 

bottom of the girder.  0.9 mm tight-buffered single-mode fiber 

was used as the optical fiber sensor, and it was firmly bonded 

with epoxy glue to the concrete surface on the bottom of the 

girder closest to the mountain side. 

First, a load test was conducted in which a vehicle was placed 

at the center of the bridge span to measure the static strain. 

Three vehicles with different weights were used for 

quantitative static strain evaluation. Then, as a dynamic load 

test, a 20-ton truck runs at a speed of 60 km/h on the road close 

to the mountain side. The strain distribution was output with a 

sampling interval of 5 cm and a spatial resolution of 10 cm. In 

the dynamic loading test, the sampling rate was set to 5 Hz. 

 
Figure 5. PC bridge of the Atami Beach Line 

(Testing site). 

P1 P2 P3

Table.1 Specifications of PNC-OFDR based  

strain sensing system. 

 

 

 
Figure 4. Schematic diagram of OFDR-based distributed strain sensing. 
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Figure 6. Location of the strain gauges and installed 

fiber sensors during the load test. 
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 Results 

 Figure 7 shows the strain distribution on the bottom of the 

girder when cars were placed at the center position between P2 

and P3. The results of the strain gauges measured at the same 

time were also plotted. The downward direction on a vertical 

axis represents tensile strain value. Tensile strain due to 

deflection at the bottom of the girder can be seen. The strain 

increases in proportion to the vehicle weight, and the strain 

gauge and DFOS values match well. The relationship between 

the strain at the center of the span and the vehicle weight is 

shown in Figure 8. This linear correlation indicates the elastic 

response of the bridge girder. These results suggest that DFOS 

could be used to detect overloaded vehicles that cause damage 

to road bridges. 

Figure 9. shows the dynamic strain distribution when a 20-

ton truck was running as a dynamic loading test. The strain 

distribution according to the vehicle position can be confirmed. 

At a speed of 60 km/h, it takes about 1.6 seconds to pass 

through the 26.9 m span. Strain distribution changes over a 

period of 1.6 seconds, and the dynamic strain caused by the 

vehicle movement is accurately captured by the PNC-OFDR 

based strain sensing system. Strain values at the center of the 

span observed in the static and dynamic loading tests were 

nearly equal, suggesting the possibility of dynamic weight 

monitoring such as the bridge weigh in motion. 

 

4 CONCLUSION 

We investigated a PNC-OFDR based strain sensing system 

equipped with a high-speed wavelength-swept laser source and 

its application to bridge monitoring. This system can obtain 

static and dynamic strain distribution with the same accuracy 

as a strain gauge. Currently, the sensing distance of this system 

has been extended to 1000m.  
We will continue to develop PNC-OFDR so that it will 

become a sensing technology necessary for quantitative 

evaluation of civil engineering structures, such as bridges. 
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Figure 7.  Strain distribution in static loading tests. 

 
Figure 8. Relationship between strain at the center of 

span and vehicle weight. 

 
Figure 9. Dynamic strain distribution during vehicle 

movement with 5Hz sampling. 
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ABSTRACT: This submission presents a structural monitoring solution for railway bridges and viaducts that leverages distributed 

fibre optic sensors (distributed temperature and strain sensing, DTSS, and distributed acoustic sensing, DAS) to capture both long-

term static trends and dynamic behaviour under train loads. The long-term monitoring uses hourly DTSS strain measurements, 

accounting for day/night and seasonal variations, while the dynamic monitoring system records real-time strain and vibration data 

during train passages. By integrating these measurements with structural calculation services, the system can detect anomalies 

(e.g., stiffness changes, potential cracking) and inform predictive maintenance. Lastly, the results are displayed via a digital twin, 

providing an intuitive, web-based platform for analysing historical data and forecasting future conditions. 

KEY WORDS: Distributed acoustic sensors, Distributed temperature and strain sensors, Structural health monitoring, Railway 

bridges.

1 INTRODUCTION 

The increasing demand for reliable and efficient monitoring 

of critical infrastructure has driven the development and 

deployment of advanced sensing technologies. Among these, 

distributed fibre optic sensing (DFOS) has emerged as a 

powerful tool, offering continuous, real-time measurements 

over long distances with high spatial resolution [1]. Distributed 

temperature sensing systems (DTSS) and distributed acoustic 

sensing (DAS) have demonstrated significant potential in a 

wide range of civil engineering applications [2], [3], [4]. State-

of-the-art implementations of DFOS include structural and 

crack monitoring, geotechnical engineering (such as landslide 

detection and tunnelling construction and integrity 

monitoring), the surveillance of buried infrastructure, and 

transportation infrastructure monitoring (including railways 

and bridges) [2]. Within this broad landscape, DAS and DTSS 

have been successfully applied to railway bridge monitoring, 

enabling early detection of structural degradation, train-

induced vibrations, temperature variations, and other anomalies 

that could compromise safety or performance [5], [6], [7]. 

These implementations establish DFOS as a multi-scale 

monitoring solution capable of addressing both immediate 

safety concerns (through real-time anomaly detection) and 

long-term preservation needs (via historical trend analysis), 

while overcoming traditional limitations of discrete sensor 

systems through its distributed, high-resolution measurement 

capabilities. 

In this paper, we present the results obtained from monitoring 

a 471-meter-long concrete viaduct used by high-speed trains. 

The system integrates three main units: a sensing unit, a 

computing unit, and an information analysis unit. The sensing 

unit consists of two distributed fibre optic sensors that 

simultaneously monitor the structure by interrogating optical 

fibres embedded along the structure. These sensors include a 

distributed acoustic sensor (DAS) and a distributed strain and 

temperature sensor (DTSS). The computing unit processes the 

measurements acquired by these sensors to calculate various 

structural parameters under both static and dynamic conditions. 

Static structural parameters are derived from measurements 

obtained when the viaduct is at rest, while dynamic structural 

parameters are obtained from measurements obtained during 

and after a train passage. The following static parameters are 

calculated: vertical displacement of the deck and displacement 

of the piers. Also, the calculated dynamic parameters include 

deck dynamic properties, vertical acceleration of the deck, 

bending rotation of the deck, fatigue caused at longitudinal and 

transverse reinforcement of the deck, and dynamic 

displacement of the piers. The analysis unit analyses the results 

to determine whether the obtained structural parameters fall 

within a normal range or exhibit any anomalies compared to 

historical data and theoretical modelling.  

The structural monitoring system provides operators with 

two key functionalities based on temporal scope: (1) current 

state assessment, enabling remote evaluation of real-time 

structural health through comprehensive indicators and 

immediate risk alerts, which reduces inspection needs and 

optimizes maintenance responses; and (2) future state 

prediction, using advanced analytics to forecast structural 

evolution and assess capacity for future operational scenarios, 

thereby improving maintenance planning and infrastructure 

adaptability. This dual approach transforms traditional reactive 

maintenance into a proactive, data-driven strategy while 

enhancing both safety and resource efficiency. 
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2 METHODS 

 Distributed fibre optic sensors 

2.1.1 Distributed Temperature and Strain Sensing (DTSS) 

The DTSS system employs Brillouin backscattering in optical 

fibres to provide continuous, high-resolution measurements of 

strain and temperature along the entire bridge structure. By 

analysing spectral shifts in the Brillouin backscattered light, 

DTSS achieves a spatial resolution of 0.5–1 m with strain 

accuracy of ±10 𝜇𝜀 and temperature precision of ±0.5°C [8], 

[9], [10]. In this application, DTSS monitors long-term 

deformations and detects gradual anomalies such as settlement 

or bearing degradation. Its absolute strain measurement 

capability and high spatial resolution make it particularly suited 

for structural health monitoring. The optical fibre is 

interrogated by a UTS-FB1000 DTSS system from Uptech 

Sensing [11]. It is configured with 20 Hz sampling rate, a 

spatial resolution of 1 m, and a spatial sampling interval of 1 

m, covering the full 470 m of the viaduct.   

 

2.1.2 Distributed acoustic sensor (DAS) 

The DAS system utilises phase-sensitive optical time-domain 

reflectometry (φ-OTDR) to detect dynamic strain variations 

along the optical fibre [1], [12]. Sensitive to vibrations up to 

several kHz, DAS captures high-frequency events including 

train-induced vibrations, impact loads, and sudden structural 

changes. In this implementation, DAS provides real-time 

monitoring of dynamic responses during train crossings, 

enabling the identification of transient phenomena. The 

system's dense spatial sampling allows for localised event 

detection across the entire bridge span. The optical fibre is 

interrogated by a UTS-AS1000 DAS system from Uptech 

Sensing [13]. It is configured with 1kHz sampling rate, a pulse 

width of 50 ns, a gauge length of 5 m and a spatial sampling 

interval of 5 m.   

 

2.1.3 Limitations and Complementarity 

While DTSS excels in static or quasi-static monitoring, its 

sampling rate (typically <100 Hz) [14] limits dynamic response 

characterisation. This limitation can be mitigated by integrating 

complementary information from DTSS, which provides 

accurate temperature measurements. By combining data from 

both sensors, it is possible to decouple temperature effects from 

true mechanical responses, enhancing the reliability of dynamic 

strain interpretation. Their integration in this study creates a 

synergistic monitoring framework: DTSS establishes baseline 

structural behaviour and detects slow-evolving damage, while 

DAS identifies transient events and verifies dynamic 

performance. This dual-sensor approach overcomes individual 

limitations, providing comprehensive structural assessment 

across all relevant timescales, from gradual deterioration to 

instantaneous dynamic loading.  

 

 Optical fibre cable installation on the structure 

The monitoring system integrates DTSS and DAS interrogators 

within Span 1 at the viaduct's northbound section. A single 

optical fibre, epoxy-bonded to the structure, completes two full 

round trips (totalling ~2.5 km) following a systematic path: 

starting from the interrogators, it sequentially traverses the 

upper right (UR), upper left (UL), lower left (LL) and lower 

right (LR) surfaces. Strategic fibre loops are incorporated at 

deck cross-sections to capture transverse structural responses, 

while vertical runs instrument the piers, descending one side 

and ascending the opposite. This configuration achieves four 

complete viaduct passes, enabling comprehensive 3D 

monitoring through: (1) longitudinal strain profiling along all 

critical surfaces, (2) transverse deformation assessment via 

deck loops, and (3) pier behaviour characterization. Figures 1 

and 2 detail the installation geometry and pier instrumentation 

respectively. 

 

 

Figure 1: Optical fibre installation on a viaduct deck. Four 

optical fibre segments (blue lines) are installed, one on each 

side, as well as on the top and bottom of the deck. 

Additionally, loops of fibre are placed across the transverse 

section of the deck. 

 

 

Figure 2: Optical fibre installation on the piers (orange line).  

 

 Data acquisition and processing architecture 

The monitoring system utilizes both sensors in a coordinated 

manner to capture complementary structural responses. The 

DTSS sensor operates in a dual-mode configuration, 

performing periodic static measurements at fixed intervals to 

monitor long-term deformations and thermal effects, then 

automatically switching to dynamic-measurements mode. 

Simultaneously, the DAS sensor provides continuous, real-time 

vibration monitoring with millisecond temporal resolution, 

ensuring comprehensive detection of all dynamic events.  

 

The software architecture employs modular microservices 

for all computational operations (characterization, alarm 

detection, and predictive analytics), executed through 

orchestrated workflows. Local processing units on the viaduct 

handle real-time structural characterization and immediate 
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alarm detection, reducing data transmission volumes via 4G 

VPN by preprocessing sensor outputs. Cloud-based Azure 

services perform historical data analysis and predictive 

modelling, supported by: (1) a NoSQL database storing 

processed results in JSON format, (2) blob storage for raw 

sensor data archiving, and (3) a web-accessible frontend for 

operator interaction. Orchestrators in both environments 

manage service dependencies and execution sequences, 

ensuring proper data flow between services where outputs 

become subsequent inputs. This hybrid architecture optimizes 

bandwidth usage while maintaining complete data traceability 

for verification and system upgrades throughout the 

infrastructure's lifecycle. The data handling pipeline scheme is 

shown on Figure 3.  

 

 

Figure 3: Data handling pipeline. 

 

Given the dual-mode sensing architecture, accurate time 

synchronization is essential to correlate static (DTSS) and 

dynamic (DAS) measurements for event-based diagnostics and 

digital twin integration. Both systems independently generate 

data streams with embedded timestamps. To align these 

streams, the local processing unit performs time correlation by 

matching temporal features, such as strain peaks, slope 

reversals, or train-induced vibration signatures, across both 

modalities. 

Time references are maintained through a hybrid 

synchronization approach: GPS-disciplined oscillators provide 

high-precision absolute timing, while NTP (Network Time 

Protocol) ensures fallback synchronization across distributed 

edge nodes and cloud-based analytics. This architecture 

enables sub-millisecond temporal alignment between DTSS 

and DAS outputs, ensuring that combined measurements 

reflect coherent physical events and supporting reliable fusion 

of static and dynamic data streams in the digital twin 

environment. 

3 STRUCTURAL MEASURANTS AT VIADUCTS 

 Static measurements 

At 30-minute intervals (or at a user-defined sampling rate), the 

system captures a ‘snapshot’ of the current deformed shape of 

the monitored deck and piers. Each measurement is checked to 

ensure displacements remain within predefined thresholds 

while also detecting: (1) substructure settlements, (2) bearing 

lockups (in instrumented piers), and (3) excessive deck 

deformations. This automated process enables real-time 

structural integrity assessment and early anomaly detection. 

3.1.1 Deck’s vertical displacement 

The calculation is based on the execution of four fundamental 

steps: (1) computation of the strains measured at the four 

corners of the section; (2) fitting of the curvature plane passing 

through these four points using a least-squares adjustment; (3) 

application of the generalised Mohr’s theorem in three-

dimensional space to determine rotations and deflections at all 

points [15]; and (4) enforcement of boundary conditions at the 

initial point to derive displacements and rotations at any 

location along the deck. This systematic approach ensures 

accurate structural deformation analysis while accounting for 

geometric constraints. 

Figure 4 shows the viaduct and its spans (grey background 

scheme) along with the static vertical displacement at all spatial 

locations for a specific datetime (black line). Also, historical 

data from 18 months (orange line indicating the historical 

average, while the shaded area represents the standard 

deviation) is shown. Analysis of the historical data reveals that 

each span experiences a distinct vertical displacement. 

 

 

Figure 4: Deck’s static vertical displacement. 

 Dynamic measurements 

3.2.1 Dynamic properties 

This constitutes an essential service as it provides the 

foundation for detecting structural changes through dynamic 

behaviour analysis. Using the DAS measurements, the system 

continuously calculates the viaduct's dynamic characteristics, 

specifically determining for each of the first N vibration modes: 

(1) the natural frequency, (2) the vibrational mode shape 

(structural deformation pattern), and (3) the damping ratio. 

Using the Stochastic Subspace Identification-Covariance 

method (SSI-Cov) reliable operational modal analysis under 

ambient vibrations is performed [16]. This calculation forms 

the critical baseline for structural health monitoring by 

quantifying the bridge's dynamic fingerprint and enabling 

subsequent detection of behavioural deviations that may 

indicate damage or degradation. 
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3.2.1.a Calculation method  

The vibration characterization process involves three key 

stages: (1) The SSI-Cov algorithm computes vibration poles 

(mode shapes, natural frequencies, and damping ratios) across 

multiple solution orders, generating both physical and spurious 

results. (2) A pole stabilization stage filters non-physical poles 

by eliminating those with inconsistent dynamic properties (e.g., 

negative damping) or insufficient consensus across solution 

orders. (3) A final pole clustering stage, using HDBSCAN's 

density-based algorithm [17], groups duplicate poles from 

different orders while automatically determining the optimal 

number of clusters based on modal similarity in 

multidimensional space.  

This robust three-stage process ensures only validated, 

unique vibration modes are returned, with the clustering step 

providing additional quality control by rejecting any remaining 

outliers. Figure 5 and Figure 6 shows the results of stages (1) 

and (3), respectively, demonstrating the algorithm’s capability 

to distinguish physical vibration modes from computational 

artifacts. The implemented filtering and clustering successfully 

identify 20 meaningful vibration modes. Each identified 

vibration mode is associated to a specific mode shape which 

enables structural engineers to do a comprehensive analysis of 

the algorithm result. 

 

 

 

Figure 5: Vibration modes calculation at stage (1), SSI-Cov 

method result.  

 

 

Figure 6: Identified vibration modes at stage (3) after filtering 

and clustering. Each mode is numbered and represented by a 

distinct coloured line. 

 

3.2.1.b Dynamic behaviour change detection 

This service identifies structural degradation by monitoring 

changes in dynamic characteristics (natural frequencies, 

damping ratios, and vibration modes) across multiple 

monitoring events, while accounting for temperature effects 

measured by DTSS. Using HDBSCAN clustering, it groups 

historically observed frequencies based on their associated 

mode shapes rather than simple frequency proximity. For each 

cluster, the algorithm: (1) quantifies temperature's influence on 

frequency variations, and (2) compares current frequencies 

against their temperature-adjusted historical interquartile 

ranges. When frequencies deviate beyond expected thermal-

effect boundaries, the system triggers alarms indicating 

potential stiffness reduction (e.g., from cracking). This dual 

analysis of vibrational patterns and thermal compensation 

ensures reliable damage detection while preventing false 

alarms from normal temperature-induced variations. 

 

3.2.2 Dynamic vertical displacement and bending rotation  

3.2.2.a Calculation method 

The dynamic analysis is initiated automatically upon detection 

of train passage across the structure, employing the same 

method used for static displacement calculations. The system 

acquires displacement and rotation data at each timestep, with 

sampling frequencies ranging from 50 Hz to 1000 Hz 

depending on whether DTSS or DAS sensors are utilised. For 

each monitored cross-section, temporal evolution analysis of 

the deformation data provides dynamic curvatures, dynamic 

rotations, instantaneous dynamic deflections, velocities (first 

derivatives), and accelerations (second derivatives). This 

methodology enables comprehensive characterisation of the 

structure's dynamic response under live loading conditions, 

while maintaining consistency with the static analysis 

framework through shared computational architecture. 

 

3.2.2.b Regulatory compliance and operational limits 

These parameters are strictly regulated by railway standards as 

they critically impact both passenger comfort and operational 

safety. UIC guidelines establish specific limits for dynamic 

structural responses, including [18]: (1) maximum permissible 

passenger-perceived accelerations during bridge crossings, and 

(2) dynamic deflection thresholds expressed as a percentage of 

span length - with stricter limits applying to higher train speeds. 

The standards define "good comfort" levels when dynamic 

displacements remain below these velocity-dependent 

thresholds. Additionally, the regulations mandate compliance 

with complementary safety-related limits governing structural 

vibrations and deformations, ensuring simultaneous 

satisfaction of both comfort criteria and essential safety 

requirements throughout the infrastructure's operational life. 

These parameters are used together with the historical 

behaviour of structural parameters to define alarms and 

behavioural changes. 

3.2.2.b.1 Vertical dynamic displacement 

 

Figure 7: Deck’s dynamic vertical displacement.  

 

Figure 7 illustrates the viaduct and its piers (grey background 

scheme) together with the vertical dynamic displacement of the 

deck induced by a train passage for all spatial locations of the 

viaduct (grey line). Additionally, statistical values derived from 
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18 months of operational data are presented. The blue and green 

lines indicate the maximum and minimum average 

displacement values, respectively, while the shaded areas 

represent the corresponding standard deviations for positive 

(blue) and negative (green) displacement values. This 

visualization enables direct comparison between instantaneous 

structural response and long-term performance trends, 

facilitating the identification of anomalous behaviour or 

progressive stiffness degradation.  

The historical displacement monitoring results demonstrate 

two key structural behaviours: spans in direct contact with the 

ground (Spans 1 and 11) exhibit significantly reduced 

displacement amplitudes (0.2-0.4 mm) due to enhanced 

restraint from soil-structure interaction, while all spans show 

consistent asymmetric response with positive displacements 

(+0.8 mm peak) being approximately 30% smaller than 

negative displacements (-1.2 mm peak). 

Also, the results indicate that vertical displacement is 

maximum at midspans and minimum at the piers, being 

consistent with expected behaviour for this type of structure. 

3.2.2.b.2 Vertical dynamic acceleration 

 

Deflection calculation throughout curvature integration 

allows the derivation of vertical accelerations of the deck, 

enabling to check safety and comfortability on the train. Figure 

8 illustrates the vertical dynamic acceleration of the deck 

induced by a train passage for all spatial locations of the viaduct 

(grey line), together with its historical values. The blue and 

green lines indicate the maximum and minimum average 

acceleration values, respectively, while the shaded areas 

represent the corresponding standard deviations for positive 

(blue) and negative (green) acceleration values. Similar to the 

previous case, the historical acceleration data reveals consistent 

spatial trends across the viaduct: Spans 1 and 11, which 

interface with the ground, exhibit lower peak accelerations 

compared to intermediate spans. Also, the maximum 

acceleration occurs at the centre of the spans and minimum at 

the piers.  

 

 

Figure 8: Deck’s dynamic vertical acceleration.  

3.2.2.b.3 Bending rotation 

 

Curvature integration enhances the calculation of the induced 

rotations of pot bearings. Figure 9 illustrates the bending 

rotation induced by a train passage for all spatial locations of 

the viaduct (grey line), together with its historical values. The 

blue and green lines indicate the maximum and minimum 

average bending values, respectively, while the shaded areas 

represent the corresponding standard deviations for positive 

(blue) and negative (green) bending values. The historical data 

analysis reveals distinct rotational pattern along the viaduct, 

with maximum rotation occurring near the piers and minimum 

rotation at midspan locations. This behaviour is consistent with 

expected structural mechanics for simply supported spans.  

 

 

Figure 9: Deck’s dynamic bending rotation.  

 

3.2.2.b.4 Pier’s dynamic displacement 

 

The monitoring system extends its dynamic characterization 

methodology to instrumented piers, employing an analogous 

analytical process to that implemented for the deck structure. 

Figure 10 shows one of the piers (grey background scheme) 

together with its vertical dynamic displacement after a passing 

train (black lines), together with its statistical values. The blue 

and green lines indicate the maximum and minimum average 

height values, respectively, while the shaded areas represent the 

corresponding standard deviations for positive (blue) and 

negative (green) height values. Historical monitoring data 

reveals a distinct asymmetry in displacement variability, with 

negative displacements exhibiting greater variance than 

positive displacements. 

 

 

Figure 10: Pier’s dynamic displacement. 

3.2.3 Fatigue check of reinforcement 

A major concern in railway bridges is degradation due to 

material fatigue, especially of steel reinforcement and 

prestressing [19]. Dynamic measure of the induced strain both 

along the deck and at specific cross sections allows to compute 

stress variations and fatigue cycles induced both at longitudinal 

prestress and transverse reinforcement [20]. 
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3.2.3.a Calculation method 

Building on the dynamic strains and curvatures obtained from 

the previous calculation service, this module determines strain 

distributions across any point of the cross-section. Through 

extrapolation, it specifically evaluates strain conditions at 

reinforcement locations (which are typically more eccentric 

than measurement points). This enables the analysis of stress 

variations in both longitudinal and transverse reinforcement 

during each train passage. 

3.2.3.b Fatigue analysis  

This service analyses DTSS-measured stress data from train 

crossing events to quantify fatigue life consumption. The 

algorithm: (1) performs rainflow cycle counting to identify 

stress ranges and mean stresses, (2) optionally converts to 

equivalent alternating stress (per Eurocode EN 1992-1-1 

guidelines for reinforcement/prestressing steel [21]), (3) 

compares results against material S-N curves to determine 

allowable cycles, and (4) applies Miner's rule for cumulative 

damage assessment [22]. Separate analyses are conducted for 

transverse reinforcement (from transverse fibre loops data) and 

longitudinal prestressing steel (from longitudinal deck fibres), 

with material-specific fatigue limits applied in each case. 

 

3.2.3.c Results 

Figure 11 illustrates the transverse stress distribution in the 

internal reinforcement (Fi) of the upper slab at section L/4 of 

Span 1 under different train loading scenarios. The stress 

profiles are evaluated for both minimum and maximum train 

load cases. The colour legend distinguishes the results: Min Fi 

is represented in green, Max Fi in gray, the average minimum 

stress in red, and the average maximum stress in orange. This 

figure highlights how internal forces respond to varying 

operational loads, providing insights into the structural 

performance of the interior reinforcement. 

Figure 12 presents the transverse stress distribution in the 

superior reinforcement (Fs) of the upper slab at the same 

section under identical loading conditions. The color coding for 

Fs is as follows: minimum Fs is shown in red, maximum Fs in 

gray, the average minimum stress in green, and the average 

maximum stress in blue. By comparing these results with 

Figure 11, the figure reveals differences in stress behavior 

between internal and superior reinforcement layers, aiding in 

the assessment of load distribution and reinforcement 

efficiency in the slab structure. 

Both figures collectively enhance the understanding of stress 

variations under different train loads, supporting the evaluation 

of structural integrity and design optimization. 

 

 

Figure 11: Deck’s transverse internal reinforcement. 

 

Figure 12: Deck’s transverse superior reinforcement. 

 

4 CONCLUSION 

This study demonstrates the successful implementation of a 

dual-mode DFOS monitoring system integrating DTSS and 

DAS technologies for comprehensive railway bridge 

assessment. The system provides: (1) synchronized static-

dynamic measurements (static deformations via DTSS, 

vibrations up to 1 kHz via DAS), (2) historical trend analysis 

revealing temperature-compensated structural evolution, and 

(3) event-based diagnostics (train responses). Results validate 

the approach's capability to detect stiffness changes, bearing 

anomalies, and fatigue-critical stress variations. The DTSS-

DAS synergy establishes a new paradigm for infrastructure 

monitoring, combining kilometre-scale coverage with meter-

resolution measurements for lifecycle management. 

In addressing practical deployment aspects, the survivability 

of optical fibers in harsh environments, particularly under 

sustained dynamic loads, was considered. While tight-buffered 

cables were selected to minimize micro-bending losses, 

ongoing vibration exposure may still induce attenuation 

changes. Future deployments could integrate real-time loss 

monitoring and fiber routing strategies (e.g., loose-tube or 

armored cable designs) to improve durability. 

Although this study focused on a 471-meter concrete viaduct, 

the proposed dual-mode system is adaptable to a broad range 

of bridge typologies, including steel truss, cable-stayed, and 

segmental concrete structures. For longer spans, signal 

processing techniques (e.g., dynamic range scaling, adaptive 

windowing) and distributed computing architectures can be 

extended to preserve performance without compromising 

spatial or temporal resolution. 

Overall, the dual-mode DFOS platform, enhanced by edge 

computing, time-synchronized sensing, and AI-driven 

analytics, offers a robust and scalable solution for intelligent 

bridge monitoring across diverse operational and structural 

contexts. 
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ABSTRACT: This study aims to evaluate the use of distributed fiber-optic strain and temperature sensing for structural health 

monitoring in underground mining drifts and chambers including 3D mobile laser scanning. This method seeks to create a digital 

twin to improve safety and efficiency through better digital planning. Temperature and deformation data from distributed fiber-

optic sensing (DFOS) cables will serve as boundary conditions of the combined ventilation and geomechanical models of the drift 

and chambers. Initially, a 60-meter-long drift will be monitored using fiber-optic cables. Next, deformations of a flexible arch 

support, induced by hydraulic cylinders, will be observed. A hydraulic cylinder will then apply load orthogonally to the rock. 

Fiber-optic cables will be inserted and cemented into the rock, along rock bolts, and in boreholes around each bolt to measure 

deformations from rock bolt pull-out tests. Preliminary examinations identified the best adhesive bonding method for DFOS 

cables, considering the specific ambient conditions. A 3D point cloud will be used to plan and validate the cable installation. The 

meshed 3D cloud will serve as the foundation for the combined ventilation and geomechanical models, creating a virtual reality-

capable digital twin enhanced with live DFOS measurements. 

KEY WORDS: fiber-optic sensing, 3D point cloud, digital twin, underground mining 

1 INTRODUCTION 

In the recent years, digital twins have increasingly been 

investigated within the realms of tunnel construction [1] and 

mining [2], [3] with promising results. All digital twins must be 

provided with real data to capture and model reality as closely 

as possible (e.g. [1], [3], [4]). Depending on the particular use 

of the digital twin, various types of datasets and sensors are 

used including 3D laser scanners, environmental data such as 

temperature and humidity [1] and information on geology and 

rock deformation [3] to name only a few. Since the beginning 

of modern fiber-optic development in the 1960s, distributed 

fiber-optic sensing (DFOS) has found a wide range of 

applications ranging from infrastructure health monitoring [5], 

[6], river dikes [7], volcano monitoring [8] and tunnel 

monitoring as well as underground mine monitoring [9], [10]. 

In the context of the latter, the DFOS technique enables the 

detection of small temperature and strain changes and their 

resulting deformations [9], [10]. In the realm of DFOS based 

measurement principles, the Brillouin optical frequency 

domain analysis (BOFDA) technique [11] allows for 

distributed measurements along several kilometers with a 

spatial resolution below 1-meter [7] and has been successfully 

used for structural health monitoring [5], river dike monitoring 

[7] and tunnel inspection [9]. 

 In this paper, the BOFDA based fiber-optic solution provided 

by fibrisTerre Systems GmbH (Germany) is used. The mine 

used for installation of the fiber-optic cables and for 

construction of the underground lab is the research and 

education mine “Forschungs- und Lehrbergwerk (FLB) Reiche 

Zeche” at TU Bergakademie Freiberg (TUBAF) in Germany. 

The fiber-optic cables will be installed in a 60 m long drift and 

additionally in four chambers for experimental setups. Both the  

main drift and the chambers form part of the FLB mine and are 

referred to underground lab in the following. The first part of 

the installation of the fiber-optic cables is scheduled to be 

completed by September 2025.  

 The strain and temperature measurements will be used as 

boundary conditions for geomechanical and ventilation 

models, which will be coupled including a geometrical and 

geological model of the underground lab. The creation of an 

artificial intelligence (AI)-supported coupled model will enable 

real-time visualization of changes in physical parameters in the 

coupled geomechanical and ventilation model, which will 

ultimately lead to development of a digital twin. For a more 

detailed overview about the individual models see [12]. To our 

knowledge, fiber-optic sensing data was not yet used for 

providing temperature and strain measurements as boundary 

conditions for creating a digital twin in an underground mine. 

Therefore, the overall aim of the collaborative research project 

“MOdel coupling in the context of a VIrtual underground lab 

and its development process” (MOVIE) is to develop a digital 

twin of the underground lab provided with fiber-optic sensing-

based temperature and strain data, which will ultimately be 

visualized using a Meta Quest 3 mixed-reality headset (see 

Figure 1). 
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Figure 1 MOVIE project overview. Special emphasis in this paper is on fiber-optic sensing and laser scanning (Geometry). 

 

 The MOVIE project includes partners at five different 

departments at the Clausthal University of Technology (TUC) 

and one department at the TU Bergakademie Freiberg 

(TUBAF). Additionally, one external industry partner is 

included, fibrisTerre Systems GmbH (fibrisTerre). The project 

is led by the Chair of Geomatics for Underground Systems 

within the Institute of Geotechnology and Mineral Resources 

(IGMR) at the TUC. Despite the MOVIE project covering 

various aspects of geomechanical and ventilation modeling and 

AI application, this paper focuses on the installation of the 

fiber-optic cables, supported by a 3D point cloud acquired with 

a Zoller+Fröhlich (Z+F) FlexScan 22 mobile mapping SLAM 

platform. Additionally, the meshed surface of the underground 

lab, i.e., the geometrical model, generated from the 3D point 

cloud is of concern in this paper. 

2 MATERIALS AND METHODS 

2.1 The underground lab 

 Geologically, the FLB mine consists of ortho- and 

paragneisses and is veined with silver/lead/zinc mineralization. 

From the first discovery of silver-rich ores in 1168, active 

mining was maintained until 1969 with a focus on lead and zinc 

in the last exploitation stage [13]. Currently, the mine hosts 

more than 30 national and international collaborative research 

projects conducted in the underground space. The decision to 

plan the underground lab here is based on this particular part of 

the mine being relatively isolated from the other mine workings 

and experiments. The area of the underground lab can only be 

accessed via two raises from a lower level, however, only one 

of the raises has a mine ladder, while the other access is 

intended for material transport via winches. This isolated 

location allows the conditions to be well controlled, particularly 

in terms of temperature and ventilation. The underground lab 

(see Figure 5) consists of a 60 m long main drift and four 

chambers with variable roof heights ranging between 2.75 and 

4.9 m. 

2.2 3D point cloud acquisition and data processing 

 Two 3D point clouds of the underground lab were acquired in 

two different field campaigns using a Z+F FlexScan 22 mobile 

mapping SLAM platform (Figure 2). The first point cloud was 

acquired in March 2024 containing a total of 368,291,128 

points (~9.75 GB in e57-format). The second point cloud was 

acquired in May 2024 containing a total of 621,441,614 points 

(~16.5 GB in e57-format). The Z+F FlexScan 22 system 

incorporates a Z+F IMAGER 5016a laser scanner mounted on 

a backpack, merging the high spatial resolution of a stationary 

laser scanner with the versatility of a mobile platform. This 

technology is based on the simultaneous localization and 

mapping (SLAM) approach, which enables to create a map of 

the environment while data capturing [14]. 

 The acquired 3D point clouds were processed using the 

software Z+F Lasercontrol 10.0.7.1. including loop closure, 

intensity based filtering and manual cleaning of noisy data 

points. Additionally, the 3D point clouds were aligned and 

registered using the open-source software packages 

CloudCompare 2.13.2. In the next processing stage, the 

resulting aligned and registered 3D point cloud was meshed 

based on a Poisson-Surface reconstruction approach using the 
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open-source software package MeshLab 2023.12 to generate 

triangular meshes with variable spatial resolutions. The 

generated mesh, i.e., the geometrical model, serves as the input 

to the geomechanical and ventilation models created by the 

project partners at TUC. Additionally, the geometrical model 

was visualized using the software package LiquidEarth One 

provided and developed by Terranigma Solutions GmbH. This 

software package was specifically designed for the 

visualization of geologic models in virtual reality including the 

use of a Meta Quest 3 VR headset and serves as the target 

software for visualization of the digital twin to be developed in 

the MOVIE project. 

 

 

Figure 2 Z+F FlexScan22 mobile mapping SLAM platform. 

2.3 Gluing experiments on fiber-optic cables using epoxy 

resin glue and injection mortar 

 The use of the fiber-optic cable type Fibrasens DSS-S and the 

fiber-optic cable type Solifos BRUsens DFOS B-DTS 2SMF 

was decided due to their specific design to perform strain and 

temperature measurements, respectively. Additionally, the 

cables have an overall good flexibility and proved to be reliable 

in former projects of fibrisTerre.  

 Especially for fiber-optic strain measurements, optimal 

bonding conditions to the object to be measured have to be 

ensured. Typically, DFOS cables for strain and temperature 

measurements are installed on pre-existing structures, e.g. in 

geotextiles [7], along rock bolts [10] or on reinforcement grids 

[9]. However, in the underground lab, none of these structures 

are present and installation along, e.g., rock bolts would result 

in a spatial discretization of the deformation measurement to 

the span interval between the rock bolts, e.g., [10]. Therefore, 

gluing experiments using the Fibrasens DSS-S strain cable 

were conducted on-site in the underground lab and under room 

temperature conditions in the Geomatics Indoor Lab at the 

IGMR using hand specimens taken from the underground lab 

to identify the optimal adhesive bonding method. Based on 

experiences of fibrisTerre, the epoxy resin glue Sikadur 31+ 

from Sika and the injection mortar FIS VS Low Speed 300 T 

from Fischer were tested. The Sikadur 31+ consists of two 

components that must be mixed in an external container before 

application. One container of the epoxy glue, containing a total 

of 1.2 kg, was used for the test. The epoxy glue is a moisture-

tolerant adhesive designed to bond a variety of different 

materials including concrete, natural stone, ceramics etc. and is 

used for repairs, joint fillings and crack sealing. According to 

the manufacturer information [15] the Sikadur 31+ has a 

compressive strength of ~50 MPa and a tensile strength of 

~6 MPa after 3 days curing time at +10°C. The shear strength 

is reported as ~16 MPa. In contrast, the FIS VS Low Speed 

300 T is delivered in a cartridge press containing 490 g of two 

components that are instantly mixed in the press upon handling. 

This injection mortar has approved use in water-filled drill 

holes and is used for fixations in cracked and non-cracked 

concrete as well as masonry. Due to its preferred use with 

anchors in drill holes, the strength metrics of the FIS VS Low 

Speed 300 T depend on the diameter of the anchor/rod used and 

the composition of the concrete/masonry. Information on 

bonding strength metrics were taken from the manufacturer 

homepage [16]. According to manufacturer information, 

permissible tensile loads are in the order of 0.34 kN up to 

3.43 kN and permissible shear loads are in the order of 0.26 kN 

to 3.28 kN for solid and perforated masonry. In normal 

concrete, values for permissible tension and shear loads ranging 

from 3.9 kN up to 121.2 kN are reported depending on the 

anchor/rod type used. The characteristics of the epoxy resin 

glue and the injection mortar were estimated to be suitable to 

securely bond the Fibrasens DSS-S cable with a weight of 

9 kg/km to the gneiss host rock. 

 Handling and application were tested using both a cartridge 

press and a trowel. The behavior of both the epoxy glue and 

injection mortar under dry and wet surface conditions was 

tested. Before gluing a cable to the wall or the specimen, the 

surface was prepared using a scratch brush to remove loose 

particles and dust. For temporarily fixing the fiber-optic cable 

to the rock surface, two fabric tapes were tested. The first was 

a standard tape for domestic use, and the second was the natural 

rubber tape “Beton- und Mauerband Premium, 44 mm x 50m” 

specifically manufactured for use on poorly adhering surfaces 

such as walls and concrete [17].  

2.4 The DFOS measurement system 

 The fiber-optic measurements presented in this paper are based 

on the DFOS principle, specifically using the BOFDA, which 

enables spatially resolved strain and temperature measurements 

along the profile of the fiber. The measurement hardware 

consists of an interrogation unit (model name: fTB 5020), a 

fiber-optic switch for channel extension (a total of 12 channels 

for this project), an industrial PC and an ethernet switch for 

internet connection (Figure 3). For data analysis, the software 

fTView will be used and the cloud platform fTScope for data 

storage (not shown in Figure 3).  

 The BOFDA measurement enables a range of spatial 

resolutions for temperature and strain measurements of 0.2 m 

to 2.5 m depending on the fiber length. The minimum 

resolvable event is >2 microstrain [µε] and >0.1°C for 

temperature measurements. Total fiber lengths of up to 80 km 

are possible [18]. 

The BOFDA technique makes use of the so-called Brillouin 

frequency shift of the fiber, which in a first instance is 

dependent on the intrinsic properties of the fiber material itself.  

However, small changes in the local density also impact the 

Brillouin frequency shift, which are interpreted in terms of 

changes in temperature and strain [7].  



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-026 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise  154 

 The conversion from Brillouin frequency shift [GHz] to 

temperature and strain for each position along the fiber is 

performed using the following relationships: 

 

𝑓𝐵 = 𝑓𝐵0 +  𝜀 · 𝑐𝜀  (1) 

 

𝑓𝐵 = 𝑓𝐵0 + (𝑇 − 𝑇0) ∙ 𝑐𝑇  (2) 

 

where fB is the measured Brillouin frequency shift [GHz], T is 

the temperature [°C] and ε is the applied strain in 

microstrain [µε]. The calibration parameters fB0, cε and cT are 

dependent on the specific optical fiber and cable type used 

(strain or temperature cable). 

 To test the DFOS measurement configuration, an aluminum 

frame was installed in the Geomatics Indoor Lab at the IGMR, 

which will be equipped with clamping jaws and deflection rolls 

to enable test strain and temperature measurements using both 

cable types. 

2.5 Fiber-optic cable installation configuration and 

experimental setup in the underground lab 

 On-site in the underground lab, the fiber-optic sensors will be 

installed along the main drift to obtain longitudinal temperature 

and strain along the entire drift. These sensors will be installed 

with the aim of providing continuous measurements throughout 

the MOVIE project period. In contrast to the strain cable, the 

temperature cable in the main drift is planned to be installed 

disconnected from the drift wall using clamps, as 

measurements of the temperature of the air inside the drift is of 

interest. The temperatures on the surface of the rock, where the 

fiber-optic strain sensing cable is installed, are assumed to be 

overall stable and in equilibrium with air temperatures, with no 

sudden variations to be expected. The temperature distribution 

retrieved from the fiber-optic temperature sensing cable will 

therefore be suitable to temperature compensate the strain 

measurements along the drift, where the fiber-optic strain 

sensing cable is largely running in parallel to the temperature 

sensing cable. For the strain cable installations that are directed 

further into the gneiss body, being the rock bolt test 

installations, the temperature is assumed to be even more stable 

and constant over the cable length. The temperature impact on 

these strain measurements will therefore be neglected, and no 

temperature compensation is assumed to be necessary. To 

induce measurable deformation in the gneiss that is large 

enough to be used as boundary conditions for the 

geomechanical model, three test rigs will be installed in three 

of the four chambers to perform short-term push and pull 

experiments. In the first chamber, an arch support will be 

installed in such a way that a distance from direct contact with 

the rock is maintained, allowing exertion of pressure on 

specific points of the support structure. In the second chamber, 

a hydraulic cylinder will be installed, which enables to transfer 

a load orthogonally onto the rock.  

 For both chambers, stress and strain changes will be recorded 

with fiber-optic cables installed superficially either in the 

support structure of the arch or directly on the chamber wall 

surrounding the hydraulic cylinder.  

 In the third chamber, four separate configurations of 4 m long 

anchor boreholes surrounded by four 5 m long measurement 

boreholes are planned, resulting in a total of four anchor 

boreholes and 20 measurement boreholes to be drilled. The 

fiber-optic cables will be directly cemented into the rock along 

the rock bolts. For each of the four configurations separately, 

the rock bolt cemented in the anchor borehole will be pulled 

and deformations of the surrounding concrete and rock will be 

measured in the measurement boreholes along the cemented 

fiber-optic cables. 

 

Figure 3 fibrisTerre measurement setup (principle). 

Additional numerical simulations were conducted by the 

Geomechanics department at the TUC based on the rock 

elasticity modulus, the mechanical properties of the steel and 

the detection limit of the fibrisTerre interrogation unit of 2 µε 

to ensure optimal fiber-optic cable installation planning. The 

simulation parameters are based on the dimensions of the 

planned experiments. For the hydraulic cylinder in chamber 2, 

a steel plate with diameters of 0,30 m was modeled, which was 

placed on a rock cube 1.5 m in diameter with an assumed elastic 

modulus of 50 GPa. A maximum pressure of 182 MPa was 

exerted on the steel plate. The simulation results were used to 

identify the maximum radius in which a superficial strain 

change can still be measured if a load is transferred onto the 

rock. Results showed a maximum radius of ~52 cm around the 

steel plate to be maintained for the cable installation (Figure 4). 

For the rock bolt pull out test in chamber 3, a borehole with a 

radius of 38 mm and a depth of 4 m was assumed, in which a 

rod with radius 25 mm and a length of 3975 mm is installed. 

The scenario was modeled under the assumption of inelastic 

grout and steel and a rock elasticity modulus of 50 GPa. The 

simulation results were used to identify the maximum distances 

between the anchor and measurement boreholes in which a 

strain change in the measurement borehole is expected to be 

still measurable. The results showed a maximum distance of 

~36.2 cm to be maintained (Figure 4). 
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Figure 4 Geomechanical simulation results of (A) plate load test and (B) rock bolt pull out test. A strain cut off value of  10-5was 

used in both cases. To save computational effort and under the assumption of radial symmetry, only one fourth of the geometry 

was simulated. 

 The 3D point cloud acquired in May 2024 was used for fiber-

optic cable installation planning for the main drift and the test 

rigs separately. The Trace Polyline tool available in the 

software package CloudCompare 2.13.2. was used to draw 

polylines in the 3D point cloud representing the fiber-optic 

cables to be installed. To estimate the overall lengths of the 

cables, the individual polylines were summed up in 

CloudCompare. Since the 3D point cloud only allows for 

estimating the lengths of cables installed superficially, the 

lengths of the cables needed for the rock bolts were added to 

the calculated superficial installation lengths.  

 All cables from the main drift installation and the test rigs will 

be installed in a loop configuration from and towards a fiber-

optic cable termination box connected with the fibrisTerre 

measurement configuration, which both will be installed 

roughly opposite of chamber 2. 

3 RESULTS 

3.1 Visualization of 3D point cloud and determination of 

fiber-optic cable positions and their lengths 

 The 3D point cloud acquired in May 2024 was scanned with 

an average spatial resolution, i.e., average point distance, of 

approximately 0.76 mm in roughly 29.5 minutes. Due to 

computational performance reasons, a subsampled version of 

the original 3D point cloud with a resolution of ~3.63 mm 

(22,378,105 points; ~417 MB in .e57-format) was used for 

planning the installation of the fiber-optic cables, which still 

captured enough details to ensure realistic positioning of the 

cables. Figure 5 shows the subsampled 3D point cloud of the 

underground lab, including its four chambers. Additionally, 

Figure 5 shows the meshed 3D point cloud visualized in the 

target software for the digital twin LiquidEarth One. Figure 6 

presents views within the 3D point cloud, showing the 

polylines representing the positions of the fiber-optic cables for 

the main drift and exemplary for chambers 1 and 2. Based on a 

high resolution meshed version of chamber 2, a relatively flat 

section extending across a large portion of the roof was 

identified, making it an ideal candidate for the installation of 

the hydraulic cylinder unit and the cables surrounding the 

terminating steel plate of the cylinder (see Figure 6C). 

Table 1 Estimated lengths [in meters] of the Fibrasens strain 

cable and Solifos BRUsens temperature cable based on 

polylines drawn in the 3D point cloud 

Position Experiment 

setup 

Cable type Length 

[m] 

Main drift Continuous 

monitoring 

Strain 138 

Chamber 1 Arch support 

structure 

Strain 29 

Chamber 2 Hydraulic 

cylinder 

Strain 35 

Chamber 3 Rock bolt 

pull out 

Strain 387 

SUM [m] 589 

 

Main drift Continuous 

monitoring 

 

Temperature 

 

138 

 

 The lengths of the cables to be installed were determined in the 

3D point cloud supported by the results of the geomechanical 

simulations. The overall length of the Fibrasens strain cable to 

be installed for the main drift and the test rigs was estimated to 

be roughly 600 m, while the overall length of the Solifos 

BRUsens temperature cable was estimated to be roughly 

140 m. Table 1 presents the detailed estimated lengths for the 

strain cable along the main drift and the test rigs separately. 

Since temperature measurements are only performed along the 

main drift, the estimated length of the temperature cable is 

added at the bottom of Table 1. 
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Figure 5 (A) 3D point cloud of underground lab including main drift and four chambers (chambers numbered 1 to 3 are used for 

installation of the test rigs); (B) Meshed 3D point cloud visualized in software LiquidEarth One developed by Terranigma 

Solutions GmbH; (C) View inside the underground lab in LiquidEarth One using a Meta Quest 3 VR headset. 

 

Figure 6: Views in the 3D point cloud (and mesh) showing the positions of the fiber-optic cables to be installed as polylines (A) 

BRUsens temperature cable in main drift, (B) Fibrasens strain cable in the arch support structure (Chamber 1), (C) Meshed 3D 

point cloud of Chamber 2 for estimation of distances (in meters) to the walls for installation planning of the hydraulic cylinder. 

The terminating steel plate of the hydraulic cylinder is shown as a dark red square on the chamber roof (D) Fibrasens strain 

cable around the steel plate of the hydraulic cylinder (dark red) in Chamber 2 (view towards the chamber roof) 
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3.2 The gluing experiments 

Several gluing tests were conducted to ensure optimal 

bonding between the Fibrasens strain cable and the drift wall 

(Figure 7). For temporarily fixing the cable to the rock 

surface, the tape for domestic-use did not provide sufficient 

adhesion for both dry and wet surfaces. However, the special 

wall and concrete tape adhered well to a dry surface. Under 

room temperature conditions in the Geomatics Indoor Lab at 

IGMR, the Sikadur 31+ epoxy resin glue achieved its 

maximum bonding strength one day after application, with 

no observable differences for wet and dry surfaces. After 

mixing, the epoxy resin glue remained usable for 

approximately 60-70 min, but became sticky (and therefore 

unworkable) after roughly 90 min. Once applied, the cables 

were securely fixed to a rock specimen in the Geomatics 

Indoor Lab or on-site on the drift wall and could not be 

removed by pulling on the cable. In contrast, the FIS VS Low 

Speed 300 T injection mortar reached maximum bonding 

strength after just 3.5-5 min. However, on damp surfaces, the 

cured mortar broke off with slight force. Application of both 

the glue and the mortar to a vertical wall and overhead was 

challenging, as a lot of material crumbled or fell off and did 

not adhere to the rock. The use of a cartridge press and a 

trowel partially solved this problem and proved to be the 

most effective method to best apply both the glue and the 

mortar to the rock. 

 

Figure 7 Gluing tests with Fibrasens strain cable on a hand 

specimen (A) using a cartridge press and (B) a trowel; (C) 

Fibrasens strain cable glued to drift wall on-site in the 

underground lab (measuring rod for scale) 

4 DISCUSSION 

4.1 3D mobile laser scanning and determination of fiber-

optic cable positions/lengths 

The Z+F FlexScan22 mobile backpack laser scanner 

solution proved capable of accurately capturing the complex 

wall geometry of the underground lab with a very high 

resolution of approximately 0.76 mm in about 29.5 min 

acquisition time. Compared to a classical terrestrial laser 

scanning system, at least about eight different stationary 

scanner positions would have been necessary to capture the 

underground lab, resulting in a much longer data acquisition 

time. Despite the high data acquisition speed, a shortcoming 

of the mobile laser scanning system are omnipresent noise 

pixels in the drift, which requires greater (manual) cleaning 

efforts compared to data acquired with a stationary terrestrial 

laser scanner system. In contrast, the registration of 

independently acquired 3D point clouds is not necessary 

when using a mobile laser scanner system, which should 

result in an overall shorter time for data acquisition and 

processing using the Z+F FlexScan22 solution.  

 Using this approach made it possible to identify optimal 

positions for the fiber-optic cables and to estimate their 

required lengths in the 3D point cloud. Due to the high point 

density, it is not possible to click every successive point in 

the 3D point cloud as a vertex point of the polyline. This 

might lead to some of the distances between individual 

vertex points being shorter than in reality, since some of the 

line segments between individual vertex points might not 

follow the wall roughness, which might result in a slight 

underestimation of the cable lengths. Conversely, due to 

uncertainties in the distance measurements themselves 

stemming from intrinsic device errors and external factors 

such as dust particles and/or humidity, the points in the 3D 

point cloud are slightly spread, i.e., not exactly matching 

with their position on the wall. This might lead to greater 

roughness in the 3D point cloud compared to the drift wall, 

which could, in contrast, result in a slight overestimation of 

the cable lengths. However, for the practical installation of 

the cables on-site, the estimated positions and cable lengths 

will act as a guiding principle and do not need to be accurate 

on a centimeter-scale. Additionally, the practical installation 

of the cables requires consideration of the maximum allowed 

bending radii, which are 3.8 cm for the Fibrasens strain cable 

and 9.6 cm for the Solifos BRUsens temperature cable. Due 

to the large roughness of the drift walls, the bending radii 

might be exceeded in some places particularly for the strain 

cable. 

4.2 The gluing experiments and fiber-optic cable 

installation configuration 

 The Geomatics Indoor Lab and on-site experiments 

presented in this paper showed that gluing the strain cable to 

the drift wall is a difficult task, since most of the glue and 

mortar crumbles or falls off especially when working on a 

perpendicular wall or overhead. Still, direct installation on 

the wall is necessary in this project, since there are no pre-

existing structures present in the underground lab, which the 

cable can be installed at and direct installation on the wall 

allows to make full use of the system’s spatial resolution. To 

overcome this issue, cutting a ~3-25 mm deep and ~4 mm 

wide slit in the drift wall is planned with the strain cables 

placed in. After its installation, the slit will be closed with 

the injection mortar due to its easier handling and the shorter 

setting time if compared to the epoxy resin glue. Before 

application of the mortar, the acquisition of another 3D point 

cloud is planned to document the position of the slit (and 

therefore the position of the fiber-optic cable).  
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The overhead installation of the cables might still be 

challenging, but could be successfully addressed with 

combined use of the cartridge press and trowel. If needed, 

“modeling” rough parts using the injection mortar is 

possible, which will ensure optimum bonding between the 

strain cables and the drift wall. Cable installation within the 

arch support structure and installation along the rock bolts 

for the rock bolt pull out test requires a different setup, which 

is in the planning phase at the time of writing this paper. 

 The current fiber-optic cable setup plans the installation of 

a termination box and the fibrisTerre measurement 

configuration in the underground laboratory. This results in 

the shortest possible spanned distances between the 

termination box and the individual test rigs (see Table 1). 

The same applies for the temperature and strain cables 

installed in the main drift for continuous measurements. 

Still, the planned setup in chamber 3 requires longer cable 

lengths if compared to the installations in chamber 1 and 2 

due to cable installation along the 4 to 5 m long rock bolts. 

Additionally, each of the four configurations of anchor and 

measurement boreholes must be connected to the 

termination box separately, as the cable will most likely be 

destroyed after performing a pull out test. Besides pure cable 

installation with the help of a 3D point cloud, meshes were 

created for visualization purposes and a highly resolved 

mesh of chamber 2 was used for installation planning of the 

hydraulic cylinder. The mesh allowed to identify a region 

most suitable for installation of the terminating steel plate 

and to precisely determine the distances to the wall to ensure 

enough space for installation of the cylinder foot. 

 It is planned to prepare the cables based on the determined 

lengths in the Geomatics Indoor Lab at IGMR before 

installing them in the underground lab. This preparatory step 

might be beneficial, since the very sensitive splicing work 

should be kept away from the harsh and dark environment of 

an underground environment. 

4.3 Long-term stability of the BOFDA measurement 

system 

 Due to its primarily measured material parameter being the 

intrinsic density of the optical fiber, the BOFDA technology 

is specifically long-term stable and free from the 

requirement of on-site sensor calibration both at the initial 

baseline measurements and during long-term operation. 

With the above calibration parameters known for the fiber-

optic sensing cables in use (to be acquired from one-time lab 

tests), the Brillouin frequency shift from each measurement 

iteration can be converted into absolute values for 

temperature and strain, with no drift being caused by aging, 

fatigue, or changes in the optical properties of the cables and 

connectors. Therefore, the technique is especially suitable 

for the monitoring of the underground structure over a time 

horizon of many years. More critical, however, will be the 

long-term behavior of the bonding between the fiber-optic 

strain sensing cable and the rock and grout structures under 

test.  

4.4 Preparation of data fusion and comparison to El 

Teniente mine (Chile) 

 A first attempt at fusing the fiber-optic position data, i.e., 

the polylines, with the BOFDA strain and temperature 

measurements provided promising results via exporting the 

strain and temperature data from fTView and merging them 

with the exported fiber-optic position data from 

CloudCompare using a Python script. When merged, the 

strain and temperature data can be re-loaded into 

CloudCompare as scalar fields of the position data and can 

be visualized. The strain and temperature measurements will 

serve as the boundary conditions for a coupled 

geomechanical and ventilation model provided by our 

project partners. As a first step towards visualization, the 

meshed version of the acquired 3D point cloud, i.e., the 

geometrical model, was uploaded and visualized in the target 

software for our digital twin LiquidEarth One using a Meta 

Quest 3 VR headset. The final product, i.e., the digital twin, 

to be visualized in LiquidEarth One and using virtual reality 

will be a coupled geomechanical and ventilation model 

provided with measurements from the fiber-optic sensors as 

boundary conditions and speeded-up with AI to shorten 

processing times and to enable real-time user interaction. 

The planned AI based approach is currently developed at 

TUC and is based on the Equilibrium Neural Operator 

(EquiNO) for solving steady-state multiscale modeling 

problems [19]. The expected results of the MOVIE project 

might be transferable to active mining environments such as 

e.g. the El Teniente mine in Chile. In this mine, fiber-optic 

sensors were installed in the ventilation level of a 201 m long 

test field and measured deformations were interpreted in 

terms of mining activities conducted in the production level 

[10]. The results presented in this paper are expected to be 

transferable to mines in a hard rock setting, such as e.g., the 

El Teniente mine [cf. [20]]. Additionally, the use of a digital 

twin, as described in this paper, might simulate the impacts 

of mining activities in terms of geotechnical parameters and 

ventilation even before a particular mine is opened, thereby 

enhancing safety and efficiency. Due to the capability of the 

BOFDA technology to measure within a range of up to 

80 km, the results of this project should also be scalable to 

large mining areas. However, challenges remain in installing 

and protecting fiber-optic strain sensing cables when 

considering the occurrence of (locally constrained) 

deformations in the macrostrain region, such as e.g., in coal 

mines [21]. With both metallic and non-metallic fiber-optic 

sensing cable designs being typically specified for operation 

up to 1% strain, other strategies than straight gluing and pre-

strained anchoring will need to be considered.  

 Since this is an ongoing research project, future changes to 

the described configurations and workflows might apply. 

Nevertheless, the results presented show the great potential 

of using 3D mobile laser scanning data for installation 

planning of fiber-optic cables in the underground space.  

CONCLUSION 

This paper presents the current state of the work done within 

the larger collaborative research project MOVIE with the 

aim of developing a digital twin of a 60 m long underground 

lab located in the FLB research mine in Freiberg (Germany) 

including real-time DFOS based temperature and strain 

measurements and visualization in VR. The installation 

planning of the fiber-optic cables was supported by SLAM 

based mobile laser scanning using a Z+F FlexScan 22 
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platform. The acquired 3D point cloud was successfully used 

to estimate the lengths of the fiber-optic strain and 

temperature cables to be installed for both a continuous 

measurement setup and additional temporary experimental 

setups. Additionally, a meshed version of the 3D point cloud, 

i.e., the geometrical model, was visualized in virtual reality 

using a Meta Quest 3 VR headset. Since no pre-existing 

structures are present in the underground lab, several gluing 

tests under dry and wet conditions using the epoxy resin glue 

Sikadur 31+ from Sika and the injection mortar FIS VS Low 

Speed 300 T from Fischer were conducted. Overall, the 

injection mortar outperformed the epoxy resin glue due to its 

shorter setting time and easier handling and application. 

Future steps in the project will include installation of the 

strain cables in a slit cut in the drift wall and subsequent 

gluing with the injection mortar, which will enable a safe 

installation of the cables. An additional 3D point cloud will 

be acquired to document the positions of the cables once 

installed. The results of the DFOS temperature and strain 

measurements will be used as boundary conditions for a 

coupled geomechanical and ventilation model, which is 

supported with an AI model to enable real-time visualization 

of changes in physical parameters. 
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ABSTRACT: Earthen geohydraulic structures, such as dams and river embankments, are vital for water resource management 

and flood control, especially as climate change and urbanization increase hydrological risks. Internal erosion, often triggered by 

seepage, remains a major failure mechanism and can cause sudden, catastrophic collapses. Traditional monitoring systems lack 

the spatial and temporal resolution needed for effective early detection. To address this gap, a novel Distributed Pressure Sensor 

(DPS) based on distributed fiber optic (DFO) technology has been developed by the University of Applied Sciences of Eastern 

Switzerland (OST). The DPS offers high spatial resolution and extended range, enabling precise measurement of distributed pore 

water pressure - key for early detection of internal erosion processes. Following successful laboratory validation, the DPS was 

deployed in a full-scale test embankment (84 m long, 39 m wide, 4 m high) at the AIPo Research and Technical Centre in Boretto, 

Italy. Preliminary results show that the DPS accurately captured pore pressure evolution, matching conventional piezometer 

readings while detecting localized variations and two-dimensional flow effects that point sensors could not resolve. These findings 

highlight the DPS system’s strong potential for improving early warning capabilities in geohydraulic structure monitoring. 

KEY WORDS: Dike Monitoring, Distributed Pressure Sensor, Distributed Fiber Optic technology. 

1 INTRODUCTION 

River dikes and earthen dams play a crucial role in water 

management, including energy production and flood risk 

protection. Following the catastrophic events in northern Italy 

of May 2023 [1] and the Rhone region of Switzerland in June 

2024 [2], the need for enhanced protection and monitoring of 

such structures has become evident. 

The primary failure mechanisms of these structures are 

overtopping and internal erosion [3]. Among them, internal 

erosion is often underestimated and typically not clearly 

detectable after failure [4]. 

Conventional monitoring systems, which rely mainly on 

point-based sensors, are limited in both spatial and temporal 

resolution. As a result, monitoring during flood events often 

still depends on visual inspections, sometimes involving 

hundreds of volunteers, which reflects an outdated approach 

[4]. 

In last decades, a promising monitoring alternative has 

emerged: the use of Distributed Fiber Optic (DFO) technology, 

which enables high-resolution measurements of temperature 

and deformation along the entire length of the installed sensing 

cable [5]-[6]. In this context, an innovative development within 

the DFO sensor family has been proposed by Höttges, et al. [7], 

who introduced a Distributed Pressure Sensor (DPS). This 

sensor is capable of measuring pore pressure with high 

sensitivity and accuracy, over distances of several kilometers. 

The DPS is designed to monitor seepage anomalies by directly 

measuring pore pressure within the structure, which can serve 

as an early indicator of internal erosion processes as pointed out 

by Fell, et al. [4]. 

The DPS has already been validated through extensive 

laboratory testing on model dikes (Höttges, et al. [7]; Höttges, 

et al. [8]). This paper presents a further step in the validation 

process of this novel sensor by reporting preliminary results 

obtained under full-scale field conditions, using a dedicated 

full-scale test embankment constructed at the AIPo Research 

and Technical Centre. The objective is to assess both the 

installation process and the sensor’s performance in a 

controlled field environment that closely replicates field 

operating conditions. 

2 DISTRIBUTED PRESSURE SENSOR - DPS 

The sensor was developed within the framework of the 

FIBRADIKE project [9], whose core objective was the 

development of a DPS based on DFO technology. The sensor, 

whose latest design has a diameter of 13 mm, consists of an 

optical fiber that is wound helically around a cylindrical, 

compressible central element (Figure 1). When the central 

element is subjected to hydrostatic pressure, it compresses, 

causing the helical fiber to deform accordingly. The hydrostatic 

pressure is then back calculated using a calibration coefficient 

(CP) that converts the measured radial strain of the fiber into 

corresponding pressure values. This coefficient is determined 

by laboratory testing under controlled pressure conditions. 

According to Höttges, et al. [8] the sensor can reach a 

sensitivity of 100 Pa and an accuracy of 15 % RD (relative 

deviation of reading) for a spatial resolution in the order of a 

few centimeters using the Rayleigh interrogation technique 

[10]. Additionally, the core of the central element is equipped 

with two single-mode fibers and two multi-mode fibers, loosely 

housed in a central tube (see Figure 1), which can be used for 

Distributed Temperature Sensing (DTS). This configuration 

enables simultaneous monitoring of pore pressure and 

temperature, enhancing the sensor's capability for detecting and 

characterizing seepage-related anomalies. Additionally, the 

inner part of the central element is filled with aramid yarns (see 
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A. Höttges1,2, 0000-0003-0315-2563, C. Rabaiotti1, 0000-0002-6217-5848, A. Rosso3 

1Institute for Building and Environment (IBU), Dept. of Architecture, Building, Landscape and Space (ABLR), Eastern 

University of Applied Sciences (OST), Oberseestrasse 10, 8640 Rapperswil, Switzerland  
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), Dept. of Civil Environmental and Geomatic Engineering (D-

BAUG), Swiss Federal Institute of Technology in Zurich (ETHZ), Rämistrasse 101, 8092 Zurich, Switzerland 
3Interregional Agency for the Po River, Strada Giuseppe Garibaldi 75, 43121 Parma, Italy  

 

email: alessio.hoettges@ost.ch/alessioh@student.ethz.ch, carlo.rabaiotti@ost.ch, alessandro.rosso@agenziapo.it 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-027 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 161 

Figure 1), which according to Höttges, et al. [8], can provide a 

tensile strength of up to 20 kN. This feature is particularly 

useful for installations requiring high tensile strength of the 

cable, such as pulling or trenching operations. 

The sensor was developed and calibrated for pressures up to 

200 kPa, specifically designed to operate within the typical 

pressure range found in river dikes. Although higher pressure 

ranges are possible, they were not tested in this study. The 

sensor demonstrates good repeatability and low hysteresis 

within the tested pressure range [7].  

 

 

Figure 1. Design of the DPS, adapted from [7]. 

3 FULL-SCALE TEST EMBANKMENT  

 Embankment design and construction 

The test embankment is constructed at the AIPo Research and 

Technical Centre situated in the municipality of Boretto - 

Province of Reggio Emilia (RE – Italy). The test embankment 

has a length of 84 m, 39 m wide and 4 m high with a slope 1:2 

[9], see Figure 2. The embankment is founded on 16 m thick 

clay layer and 16 m thick medium to coarse sand (aquifer), from 

which water is pumped to fill the reservoir. 

 

Figure 2. Test embankment with the 4 different sections. 

 

The test embankment was constructed using two different 

materials: a coarse soil typical of Swiss river dikes and a finer 

soil characteristic of the river dikes along the Po River plain. 

These two zones are referred to as Swiss (CH) and Italian (IT) 

sections, respectively. According to the Unified Soil 

Classification System (USCS), the IT-Material is classified as 

sandy clay (CM), while the CH-Material is classified as clayey 

sand (SC). The granulometric distribution of the two materials 

is shown in Figure 3. Based on in-situ permeability tests, the 

permeability 𝑘𝑚 is approximately 1 ⋅  10−5 𝑚/𝑠 for the CH 

and 2 ⋅  10−7 𝑚/𝑠 for the IT-Material. 

Two different sensor installation methods were also 

implemented, each applied to a different section. The first, 

referred to as "ex novo", simulates the sensor installation during 

the construction process. The second, referred to as "existing", 

involves the installation of the sensors after the construction of 

the basin has been completed, using the Horizontal Directional 

Drilling (HDD) technique [11].  

In total, four different zones were constructed, each 

representing a unique combination of material type and 

installation method (Figure 2). This paper focuses solely on the 

installation and results of the “ex novo” section.  

The test embankment was constructed using the described 

two different materials, placed in 30 cm thick compacted 

layers. Each layer was compacted using a roller compactor 

(about 6 passes per layer) with the optimal water content 

determined in the laboratory. The Swiss section was 

additionally equipped with a gravel filter, designed to prevent 

toe erosion failure. To prevent localized seepage 

inhomogeneities, the transition zone between the two materials 

(Figure 2) was constructed by interlayering both material types. 

 

Figure 3. Granulometry of CH-material and IT-material. 

 Experimental setup 

The DPS sensor was installed in the “ex novo” section during 

construction, arranged in a mesh pattern at three different 

elevations (z) from the bottom of the basin: z = 0.3 m (Layer 

01), z = 1.3 m (Layer 02), and z = 2.3 m (Layer 03). Figure 4 

illustrates the DPS cable mesh installed in Layer 01, showing 

two main orientations: the longitudinal (L) direction (x-axis) 

and the transversal (T) direction (y-axis). The longitudinal 

direction is defined as parallel to the assumed river flow, while 

the transversal direction is parallel to the seepage flow within 

the dike. The DPS was installed in two different configurations: 

as a free cable, and within saturable tubes (black rectangles in 

Figure 4) equipped with porous stones. These tubes are 

designed to protect the DPS from earth pressure variations and 

to ensure that only hydrostatic pressure is measured in those 

sections. 

 

Figure 4. Mesh installation of the DPS in Layer 01 of the “ex 

novo” section.  
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To validate the DPS measurements, 10 conventional 

piezometers were installed in two main cross-sections (T3 and 

T8) of the “ex novo” section in Layer 01 (indicated by yellow 

square in Figure 4). The piezometers are of the vibrating wire 

(VW) type, with a measurement range of 0-170 kPa and an 

accuracy of ±0.4% of full scale (FS). Figure 5 shows the 

installation layout of both the DPS sensors and the piezometers 

along the A–A cross-section indicated in Figure 2. 

 

 

Figure 5. A-A cross section of the installation.  

 Testing procedure 

The water level values recorded during the test are presented 

in Figure 6. Initially, the water level stood at 1 meter due to 

rainfall accumulation and was raised to 2.3 meters by pumping 

groundwater from the aquifer through an existing well (Phase 

1: Filling – about 5 h). After reaching the target level, the basin 

was allowed to drain naturally for approximately one week 

(Phase 2: Self-Drain – about 165 h). This was followed by a 

controlled, three-stage emptying process designed to reduce the 

risk of instability associated with rapid drawdown (Phase 3: 

Emptying – about 70 h). The water level was monitored using 

a piezometer installed at the water-side toe of the test 

embankment. 

 

 

Figure 6. Water level inside the basin during the test.  

The data from the DPS helical fiber were collected manually 

at approximately 30-minute intervals using a commercially 

available Rayleigh-based Optical Backscatter Reflectometer 

(OBR 4600, Luna Innovations [12]). Due to the manual 

acquisition process, measurements were limited to the initial 

filling Phase 1 and continued for approximately 12 hours of the 

Phase 2. The core temperature fiber was automatically 

interrogated using a Raman-based system (AP Sensing , DTS - 

N45 Series [13]), with an acquisition time of 4 minutes. 

Conventional instruments recorded data automatically every 15 

minutes. Temperature and piezometer measurements were 

recorded continuously until the end of the test, when the basin 

was fully emptied (after approximately 240 hours). 

 Data processing 

The data obtained from the DPS were post-processed using a 

spatial sampling interval of 10 cm and a spatial resolution of 10 

cm, with a reference that was updated after each measurement. 

This approach reduces noise that would otherwise accumulate 

if the initial measurement were used as a fixed reference 

throughout the test. The spectral shift values were then 

cumulatively summed after each iteration. 

Subsequently, artificial peaks were removed using the “peak 

prominence” method available in Python [14], which identifies 

local maxima by comparing each value to its neighboring 

points. Detected peaks were then replaced with the median 

value of their surrounding neighbors. The resulting data were 

then smoothed using a Savitzky-Golay filter [15]. 

The filtered values obtained were then converted to pressure 

using the pressure coefficient CP (described in section 2). 

The raw data from the DTS system were not post-processed, 

as the results provided by the instrument were already corrected 

through automatic calibration in loop mode. A sampling 

interval of 1 meter, a spatial resolution of 0.5 meters, and a 

measurement time of 1 minute were used. 

The piezometer data were not corrected, as both barometric 

and temperature corrections have minimal influence and were 

therefore neglected. 

 Preliminary Results 

Figure 7 illustrates the pore pressure measured with 

piezometers in Layer 01 (Figure 4) for the two different 

materials at four time intervals: at the start of the test, and after 

12, 24, and 60 hours (Figure 6). The corresponding water 

levels, shown in blue, are also reported in Figure 7, for these 

intervals. 

 

 

Figure 7. Piezometer measurements for the two soil materials 

at four time intervals (0h, 12h, 24h and 60 h) in Layer 01. 

Figure 8 presents the post-processed pressure variation 

measurements across all transversal sensor lines from T4 to T9 

in Layer 01 (Figure 4) for five different time: 1.6 h, 3.1 h, 4.2 

h, and 10.2 h. These results represent the distributed pressure 

data along the full fiber length (axial cable development), 

obtained from the DPS system after applying filtering and peak 

correction techniques, as described in section 3.4. The pressure 

variation is calculated cumulatively by changing the reference 

measurement taken from the beginning of the test when the 

water level in the tank was already 1 m high. The longitudinal 

segments of the transversal loop are referred to as the “wet 
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side” (WS) when the segment is on the water-facing side of the 

embankment, and the “dry side” (DS) when it is on the air-

facing side; see Figure 4. 

 

 

Figure 8. Pressure variation measured during the filling phase 

using the transversal DPS cables in Layer 01. 

It should be noted that the data from lines T2 and T3 

exhibited increased noise and irregularities, due to localized 

issues related to sensor splicer connections during the test. For 

this reason, these data were excluded from the results analysis. 

Figure 9 (a) shows a comparison between the vibrating wire 

piezometer sensors (VWPS) and the transversal DPS cable 

measurements at T4 (see Figure 4), while Figure 9 (b) presents 

the same comparison at location T8. The analysis was 

conducted at T4, which is also situated within the IT-Material 

section. Both figures show the results for the same time 

intervals as shown in Figure 8. 

 

 
(a) 

 

 
(b) 

Figure 9. Comparison between the DPS measurements and the 

vibrating wire piezometer sensors (VWPS) at different time 

intervals in the transversal direction: (a) T4 and (b) T8. 

Figure 10 shows a colormap of Layer 01 based on the 

transversal DPS measurements presented in Figure 8. The 

colormap was generated using bicubic interpolation of the 

transversal DPS data, with additional measurement from T1 

and T10, which were obtained from the longitudinal cable L1 

(see Figure 4). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

T4 

T8 
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(d) 

 

 
(e) 

Figure 10. Distributed temperature results for transversal 

section of Layer 01 at (a) 1.5 h, (b) 3.1 h, (c) 4.2 h, 6.6 h, and 

(d) 10.2 h after the start of the test. 

 

The absolute temperature distribution obtained by the core 

temperature fiber of the DPS cable is shown in Figure 11 at four 

time intervals: 1 hour, 12 hours, 24 hours, and 144 hours after 

the start of the test. Similar to Figure 10, the data are displayed 

as colormaps using bicubic interpolation, derived from both the 

longitudinal and transversal cable sections in Layer 01 (see 

Figure 4). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 11. Distributed temperature results for Layer 01 at (a) 1 

h, (b) 12 h, (c) 24 h, and (d) 144 h after the start of the test. 

4 DISCUSSION 

The initial pore pressure measurements (Figure 7) confirmed 

that the sensors installed in Layer 01 were already below the 

seepage line prior to the test, consistent with the 1 m water level 

maintained due to prolonged rainfall.  

The Swiss (CH) material, with its coarser granulometry and 

higher permeability, responded more rapidly to water level 

changes compared to the IT-Material, which had a finer particle 

distribution and lower permeability. This contrast is evident in 

both the vibrating wire piezometer sensor (VWPS) 

measurements (Figure 7) and the DPS readings (Figure 8 and 

Figure 9). In particular, the DPS captured a steeper and delayed 

pressure curve within the IT section, aligning with the expected 

slower hydraulic response. Additionally, a minor effect from 

the activation of the drainage filter in the Swiss section is 

observed, indicated by a slight decrease in pore pressure 

recorded by the piezometer and the DPS installed at that 

location. 

A good agreement was observed between the VWPSs and the 

DPS measurements (Figure 9). However, in the central part of 

the transversal section, the DPS shows slightly higher pore 

pressure variations compared to the VWPS. When comparing 

the time intervals, it is evident that the DPS system responds 

more rapidly than the VWPS particularly during the first 

interval at 1.5 hours. The DPS captures changes in pore 

pressure almost instantaneously, whereas the VWPS exhibits a 

slightly delayed response due to its mechanical components 

and different response time [16, 17] 

The effect of the saturable tube on the DPS cable is 

particularly noticeable in the CH-Material section, as shown in 

Figure 9 (b), where a region of constant pore pressure is 

observed at a distinct location. 

Colormap visualization (Figure 10) clearly delineates the 

transition between the CH and IT materials, demonstrating the 

DPS’s capability to resolve subtle spatial variations in pore 

pressure distribution. Moreover, the boundaries around sensor 

lines T1 to T10 exhibit signs of two-dimensional (2D) pore 

pressure effects within the plane of Layer 01, suggesting more 

complex flow dynamics in these regions that deviate from the 

assumed one-dimensional (1D) behavior. 

Temperature measurements (Figure 11) remained stable 

during the first 24 hours. Since the DTS cables were installed 

below the initial seepage line (see Figure 7), no significant 

temperature changes were expected during the test period, 

which is consistent with what was observed. A slight 

temperature increase was detected only after approximately 

144 hours, particularly in the CH section, which is consistent 

with the higher thermal conductivity expected in coarser soils. 
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Since the DPS data were collected within the first 17 hours - 

during which temperature variations were negligible - no 

temperature correction was applied to the pressure data. 

Approximately one year after installation and following the 

test results presented, some localized disturbances or breaks in 

the sensor signal were observed. These problems were probably 

caused by small mammals such as mice or beavers - and were 

related to the reduced mechanical robustness of the earlier DPS 

cable design, which was installed in the “ex novo” section and 

featured a thinner outer protective layer. This vulnerability 

highlighted a practical limitation in field applications. In 

response, newer DPS cable designs were developed with an 

enhanced outer protective layer to improve durability and 

mitigate such risks, thereby increasing long-term reliability in 

real-world conditions. 

5 CONCLUSION AND OUTLOOK 

The application of a novel Distributed Pressure Sensor (DPS) 

system was evaluated through field testing on a full-scale test 

embankment at the Research and Technical Centre of the 

Agency for the Po River (AIPo) in Boretto, Italy. Preliminary 

results, supported by comparisons with traditional piezometer 

measurements, confirm that the DPS system can be effectively 

deployed as a distributed pore pressure sensor. In contrast to 

point-based sensors, the DPS system provides high spatial 

resolution data, enabling the detection of localized phenomena 

- such as preferential flow paths or, as observed in the test 

embankment, changes in permeability due to variations in soil 

materials or their properties - that may be overlooked by 

discrete sensors. 

DPS systems offer significant advantages over traditional 

point-based instrumentation, particularly in terms of spatial 

resolution and potential cost efficiency. Although the initial 

cost of interrogation units is relatively high, the ability to 

continuously monitor pore pressure along the full length of the 

cable reduces the need for multiple point sensors. In terms of 

coverage efficiency, an approximate ratio of 1:10 can be 

considered - meaning that for every point sensor replaced, 

approximately 10 meters of DPS cable can be installed, 

providing continuous data across that distance. This estimate 

does not yet account for further cost savings from reduced 

installation time, simplified cabling, and fewer data loggers or 

interrogation devices. 

Overall, DPS systems show strong potential to provide 

substantial technical and logistical benefits, especially in large-

scale or long-term geotechnical and hydraulic monitoring 

applications. However, to further validate the long-term 

reliability of the DPS technology, future work should include 

extended monitoring campaigns to assess sensor drift, 

determine optimal calibration intervals, and develop 

standardized maintenance protocols. Although the DPS 

technology has not yet been extensively tested, several research 

projects are planned to explore its deployment in various 

environmental and structural settings, aiming to broaden its 

validation across different use cases, such as: 

• Application of DPS for detecting and monitoring 

backward erosion piping within the framework of the 

LIFE SandBoil project [18]; 

• Implementation of the DPS system in a real river dike 

section of the Rhone dike in the Canton of Valais, 

(Switzerland) [9]. 

• Large-scale testing of DPS for dynamic wave 

measurement, expanding upon previous work 

introduced by Höttges, et al. [19] 

These developments are expected to contribute significantly 

to the broader adoption of distributed sensing technologies in 

hydraulic and geotechnical engineering. 
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ABSTRACT: Distributed fiber optic sensors (DFOS) are extensively used for concrete crack monitoring in recent years, especially 

in scientific-related applications and laboratory testing. These mainly focus on Rayleigh scattering due to its high spatial resolution 

and strain resolution, but with significant limitations in the sensing range. This contribution introduces an enhanced laboratory 

test series, in which five individual test specimens were equipped with multiple installation setups and tested under well-known 

conditions. The sensing network was interrogated using four different sensing units based on high-resolution Rayleigh as well as 

Brillouin scattering. The resulting strain sensing profiles do not only allow an identification of the crack location itself, but also a 

quantification of the crack width. It can be demonstrated that Brillouin sensors are definitely capable of capturing reliable crack 

widths over long distances, despite their limitation in the spatial resolution. The outcomes are significantly important in practice 

as civil infrastructures often require monitoring over several kilometers. 

KEY WORDS: Distributed fiber optic sensing, crack sensing, concrete structures, structural integrity monitoring, laboratory 

testing

1 MONITORING OBJECTIVES & TEST SETUP 

In recent years, the capabilities of distributed fiber optic sensors 

(DFOS) for monitoring concrete cracks are demonstrated in 

various scientific-related projects and laboratory testing, which 

commonly utilize Rayleigh scattering (e.g. [1] or [2]). This 

sensing technique can provide measurements with high spatial 

and strain resolution, but with significant restrictions in the 

sensing range. Brillouin sensing is capable of monitoring large-

scale civil infrastructure as they can provide measurements 

over numerous kilometers, which however results in spatial 

limitations and therefore impedes the capabilities for strain-

based crack monitoring.  

This contribution analyzes the suitability of Brillouin 

interrogators for identifying and quantifying evolving cracks 

inside concrete. An enhanced laboratory test series including 

five individual test concrete specimens equipped with multiple 

installation setups was realized at Graz University of 

Technology (TU Graz, Laboratory for Structural Engineering). 

For applying the loading force during testing, one central 

reinforcement bar (diameter: 18 mm) was embedded in each 

concrete specimen (total length: 3000mm). Thin steel plates 

were attached to the formwork and cast into the concrete to 

weaken the cross-section at defined locations, which ensures a 

controlled cracking of the structure during loading. The five 

specimens vary depending on the number of crack locations, 

ranging from one to five defined cracks. 

The testing specimens were equipped with twelve different 

layers of fiber optic sensing cables per specimen, including 

tight-buffered optical fibers [3] as well as prefabricated sensing 

cables from numerous manufacturers [4–6]. The sensors were 

either glued to the reinforcement, directly embedded inside the 

specimens in different arrangements or glued to the outer 

surface using different adhesive after concreting. Each 

specimen was tested separately under controlled axial loading, 

where the rebar was fixed at the bottom and pulled apart at the 

top side (Figure 1) to initialize the crack opening along the 

specimen at the predefined locations.  
 

 

Figure 1. Practical realization of laboratory test setup  

with one defined crack location. 
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Loading for all specimens was performed in two steps with 

15 kN each up to the initial cracking, which was determined to 

be around 30 kN. Afterwards, the load was further increased in 

10 kN steps up until the ultimate failure of the specimen at 

around 100 kN and beyond. By applying the mechanical crack 

initiation steel plates, it could be ensured that primary cracks 

only open at well defined locations. 

The DFOS sensing network was interrogated by Brillouin 

interrogators from three different manufacturers utilizing the 

Brillouin Optical Time Domain Analysis (BOTDA) as well as 

the Brillouin Optical Frequency Domain Analysis (BOFDA) 

with a spatial resolution of 0.5 m at each load step. To verify 

the recorded Brillouin strain distributions, reference 

measurements were acquired using a high-resolution OBR 

from Luna Innovations Inc. (USA) based on the OFDR (Optical 

Frequency Domain Reflectometry). The load was kept constant 

for each load step to ensure identical loading conditions for all 

interrogators. Multiple distance transducers (DD-1) from HBM 

GmbH (Germany) were placed at the specimens’ surface to 

measure the true crack width. 

2 CRACK ANALYSIS & TESTING RESULTS 

The aim of the five sample test series is to analyze crack 

patterns with different spacing and crack widths. The analysis 

presented in this extended abstract focus on the crack 

localization and width derivation, which is why only one 

specimen with one defined crack location is discussed. The 

resulting strain sensing profiles along a concrete-embedded 

sensing cable [4] for all different interrogators are depicted in 

2. It must be noted that the data represents the raw measurement 

signal with a physical spatial resolution of 0.5 m, but with 

different spatial sampling and is not further processed or 

filtered. The high-resolution OFDR measurements (left) 

confirm the initial crack opening at the loading step of 30 kN, 

with a significant peak arising in the middle of the specimen 

(position: 1.5 m) over an area of approx. 200 mm. The 

Brillouin sensing techniques are not capable to visualize the 

initial cracking with such high resolution due to their spatial 

limitations, although interrogator B-02 also indicates cracking 

already at 30 kN. The peak width and magnitude is 

continuously increasing with each subsequent load step up to 

the maximum load of 130 kN applied for the actual specimen. 

Even if the strain peak appears over a larger area, Brillouin 

interrogators B-02 and B-03 can represent the OFDR technique 

well for loads higher than 30 kN. The B-01 signal, however, 

only represents major strain events for the last three load steps.  

The strain distribution for Brillouin sensors is usually 

derived by determining the mean Brillouin frequency for each 

position along the optical fiber using curve fitting methods (e.g. 

Lorentzian fitting). In order to optimize the strain sensing 

results for B-01, comprehensive data reprocessing has been 

performed by low-pass filtering of the full Brillouin spectrum 

before curve fitting. The resulting strain profiles depicted in 

Figure 3 demonstrate that the data can be significantly 

optimized to reproduce the strain peak due to the developing 

crack similar to other Brillouin interrogators. 

The crack width derivation itself may be performed by 

numerical integration of the measured strain sensing values 

over the area of interest, i.e. the strain peak area. The 

integration length, or rather the start and end point of the crack 

induced area along the signal, can be practically determined by 

analyzing the strain gradient at each side of the peak. These 

points are identified as the locations, at which the strain 

variation does not exceed a certain threshold within a defined 

number of subsequent data points. For further information and 

details on the determination principle reference is given to [7]. 

The crack widths derived for all DFOS technologies and the 

reference distance transducer are listed in Table 1. The results 

of the Brillouin interrogators are in good agreement with those 

of the high-resolution OFDR, with maximum deviations lower 

Figure 2. Strain profiles recorded by various DFOS interrogators during load test: Rayleigh OFDR  

and Brillouin B-01/B-02/B-03 (left to right). 
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than 0.1 mm at loads of up to 90 kN or rather a width of approx. 

0.6 mm. Cracks in reinforced concrete structures are usually 

controlled under service in a range of 0.2 to 0.4 mm [8], which 

can be obviously determined for all sensors. The distance 

transducers mounted on the surface also confirm the absolute 

accuracy for load steps up to 90 kN. Higher loads indicate 

minimal local slippage between the sensing cable and the 

concrete or even the different sensing cable layers at the crack 

location, which is why the width derivation using numerical 

strain integration seems to be no longer applicable. 
 

 

Figure 3. Strain sensing profiles of Brillouin interrogator B-01 

before (left) and after spectrum filtering (right). 

It must be noted that the quality of the crack width derivation 

is strongly related to the parameter settings for the integration 

length. These vary depending on not only the sensing technique 

but also the installation technique of the optical sensing cable. 

The dedicated test series is capable of providing an essential 

lookup table to appropriately perform the integration length 

determination for different configurations for future monitoring 

applications. 

Table 1. Crack widths derived from various DFOS 

interrogators and measured by conventional distance 

transducers at different load levels. 

load [kN] 
crack width [mm] 

DD-01 OFDR B-01 B-02 B-03 

15 0.00 0.00 0.05 0.00 0.00 

30 0.28 0.22 0.20 0.18 0.00 

40 0.38 0.30 0.27 0.25 0.26 

50 0.39 0.35 0.30 0.30 0.32 

60 0.40 0.41 0.36 0.34 0.37 

70 0.46 0.48 0.43 0.40 0.46 

80 0.53 0.57 0.55 0.52 0.52 

90 0.61 0.66 0.67 0.56 0.60 

100 0.72 1.10 1.21 1.08 1.11 

110 1.24 1.81 1.88 1.77 1.77 

130 1.57 2.68 2.85 2.79 2.87 

3 CONCLUSIONS & OUTLOOK 

This extended abstract discussed the suitability of numerous 

Brillouin interrogators for localizing concrete cracks and 

quantifying their corresponding width. An enhanced test series 

with five individual specimens equipped with multiple DFOS 

installation setups was realized to investigate crack opening 

under well-known laboratory conditions. The crack location 

along the resulting strain profiles could be well captured by all 

interrogation units and enabled the derivation of crack widths 

for different load levels using numerical integration. The 

derived values correspond well with reference measurements 

from the distance transducer mounted at the surface for all 

tested Brillouin interrogators, with maximum deviations of 

approx. 0.1 mm within the usual service range for reinforced 

concrete structures. 

It could also be demonstrated that the original data 

processing might fade out local deficiencies like cracks in the 

strain sensing profiles. This limitation may be overcome in this 

specific case by applying appropriate filtering to the raw 

Brillouin spectrum data. 

The presented research focused on the traditional strain-

based data analysis. In addition, initial tests for crack width 

determination using a feature extractor based on a CNN 

(Convolutional Neural Network) autoencoder, which was 

applied to the raw Brillouin spectrum along the sensing 

network [9]. This artificial intelligence (AI) approach will be 

further investigated and optimized to provide more 

comprehensive methods for analyzing concrete cracks along 

civil infrastructure. 
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ABSTRACT: Due to bridges’ critical role in transportation networks, the assessment and maintenance of existing bridges have 

become a priority. Prestressed concrete bridges constitute a significant portion of Europe’s transportation network, yet many no 

longer meet today’s technical requirements. This is primarily due to two factors: (i) the unforeseen increase in heavy goods traffic, 

and (ii) insufficient experience with early reinforced and prestressed concrete construction methods, coupled with inadequate 

regulations, which resulted in design weaknesses and structural deficiencies. One critical failure mechanism, identified when 

recalculating existing bridges based on updated guidelines, is insufficient shear load-bearing capacity, which has prompted the 

premature demolition of numerous bridges. A thorough understanding and rigorous monitoring of shear behavior is essential since 

neglecting this problem could lead to notable consequences, especially for aging infrastructure. In this paper, a distributed fiber 

optic sensor (DFOS) based monitoring system, inspired by shear detection concepts, is tested. A decommissioned prestressed 

concrete bridge girder was equipped with a DFOS grid, allowing for detailed monitoring of crack width, location, and shape. 

Preliminary test results confirm the successful installation and early detection of cracks, highlighting the system’s potential to 

identify microcrack formation, monitor crack growth, and support maintenance strategies. 

KEYWORDS: Structural Health Monitoring; Distributed Fiber Optic Sensors; Microcracking; Crack Growths; Load Testing; 

Prestressed Concrete. 

1 INTRODUCTION 

Concrete serves as the cornerstone of contemporary 

infrastructure, valued for its adaptability, strength and 

longevity. Nonetheless, despite its formidable exterior, 

concrete exhibits inherent material characteristics that, if 

neglected, may result in structural failures. Among these, shear 

forces are a critical and complex failure mechanism, due to the 

brittle behavior. Improper management of shear stresses may 

lead to abrupt, severe cracking, endangering the service life and 

safety of infrastructures such as bridges. One of the reasons for 

this is that these aging bridges were originally designed for 

lower traffic loads, and this issue is intensified by the absence 

or insufficient shear reinforcement [1], [2]. Modern codes 

surpass traditional visual inspections in terms of objectivity, 

repeatability, and sensitivity, imposing higher safety margins, 

often revealing structural deficiencies when existing bridges 

are recalculated for shear strength.  

Unlike flexural failures, which can be predicted with relative 

precision using established theoretical frameworks, shear-

related issues lack a universally accepted conceptual model [1]. 

Ductile failure provides a clear warning signal, such as plastic 

deformation, while brittle failure occurs suddenly, offering 

minimal warnings. This distinction is crucial because, under 

shear forces, concrete exhibits rapid crack development 

without the gradual yielding seen in flexural failures. With the 

growing demands on bridge structures due to increasing traffic 

loads, particularly from heavy goods vehicles, the need for 

advanced monitoring and assessment techniques are expected 

to intensify in the coming years [3]. Current methods for shear 

monitoring rely mostly on visual inspections, which are labor-

intensive, subjective [4], and not effective when surface 

damages are not present in the structure.  

As shear load-bearing behavior remains a challenging aspect of 

structural evaluation, innovative monitoring technologies such 

as distributed fiber optic sensors (DFOS) offer promising 

solutions to ensure the safety, durability, and sustainability of 

critical infrastructure. To improve the efficiency and precision 

of crack detection, integrating continuous strain monitoring 

systems like DFOS can provide real-time, comprehensive data 

on damage states [4]. DFOS can accurately measure small 

strain changes during the linear elastic state, an advantage that 

surpasses traditional visual inspections in terms of objectivity, 

repeatability, and sensitivity. Although the application of fiber 

optic sensing in construction is relatively recent, the technology 

is rapidly evolving and has shown potential in various 

infrastructure applications [5]–[8]. Low-cost optical fibers that 

serve as sensors can be retrofitted onto existing structures or 

embedded into new constructions, providing a convenient 

approach for distributed structural health monitoring. 

Inspired by the shear monitoring concepts [2], [9]–[13], this 

paper presents an application of a DFOS grid for crack 

monitoring in a prestressed concrete girder. The aim is to 

further investigate the potential and to assess the effectiveness 

of surface-bonded DFOS for microcrack detection, formation, 

and the sensor placement for short-term monitoring. A two-

dimensional DFOS grid was designed and applied to the 

surface of a prestressed concrete bridge girder, which was 
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subsequently tested under load. Following a brief state-of-the-

art review in Chapter 2, the experimental setup and 

corresponding results are presented. 

2 SHEAR BEHAVIOR AND DIAGNOSTICS 

 Critical shear behavior 

Concrete bridges, especially those older than 30 years old, were 

designed under shear-reinforcement rules now known to be 

insufficient for modern traffic loads, and routinely exhibit 

calculated shear deficits, which raise significant concerns about 

their long-term structural performance [14]. The shear failure 

is governed by diagonal cracking: when inclined tensile 

stresses (highest near supports) exceed the concrete’s tensile 

strength, a rapid chain of web‐shear cracks propagates toward 

loading areas and supports, often with little warning [15], [16]. 

When a beam is subjected solely to pure bending, tensile 

stresses that exceed the concrete’s tensile strength will cause 

vertical cracks to form and extend up to the neutral axis. 

However, when shear forces are present, they cause the flexural 

cracks to rotate, resulting in flexural-shear cracks, which are 

typical in slender reinforced concrete girders subjected to shear. 

In flanged girders, deep girders, and prestressed ones, the 

dominant shear failure mode is web-shear cracking. Cracks 

initiate at the beam’s centroid where the principal elastic tensile 

stress exceeds the concrete strength, and then extend toward 

both the loading area and the supports [16].  

Concrete shear resistance arises from aggregate interlock, 

dowel action of longitudinal bars, and, in deep members, arch 

action. Geometry (shear‐span/depth ratio) and reinforcement 

ratios critically govern which mechanism dominates [15]. 

Moreover, large members display a pronounced size effect, 

failing more abruptly. Analytical frameworks, such as strut‐

and‐tie models, compression field theory, and critical 

shear-crack theory, seek to capture these phenomena, but each 

has limitations when applied to prestressed girders, where axial 

compression and anchorage stresses further complicate shear 

behavior [1], [17]. This sudden and complicated failure mode 

underscores the need for continuous monitoring systems, such 

as DFOS grids, to detect microcrack initiation and propagation 

before diagonal crack development. 

 Need for shear monitoring 

Following the bridge recalculation and assessment guideline 

(May 2011), Fischer et al. [18] performed the statical 

recalculation of 115 bridges’ superstructure that required shear 

reinforcement, and 57% of them exhibited low shear capacity. 

Notably, it is the case that some of these structures do not 

display visible shear cracks. This highlights the need to 

implement a monitoring system that measures the development 

and long-term performance of these structures, to accurately 

estimate the remaining service life and ensure the safety of the 

infrastructure [2], [4], [16]. Critical shear behavior is primarily 

marked by the development of diagonal cracks, which present 

challenges in early detection. These cracks, which form at 

inclined angles relative to the beam’s axis and do not align with 

the reinforcement, are inherently more unpredictable than 

flexural cracks. The heterogenous nature of concrete, diagonal 

cracks’ orientation, and variable crack width introduce 

significant uncertainties in early crack detection and crack 

propagation [19], [20]. Consequently, effective shear 

measurement systems are essential for reliable structural 

analysis and monitoring of shear failures [15]. 

Currently, shear monitoring predominantly relies on visual 

inspection of the concrete surfaces [4]. While this approach can 

reveal surface-level damages, it is labor-intensive and 

susceptible to human error, potentially leading to missed early 

signs of deterioration [4].  

Developing a robust measurement concept for shear monitoring 

in real-world bridge applications is a challenging problem. 

While controlled laboratory conditions allow for predetermined 

critical sections and failure locations, practical 

implementations face challenges such as limited sensor 

measurement range, harsh environmental conditions, and 

economic constraints. These factors increase the risk of missing 

critical zones during monitoring. To overcome these 

challenges, there is a clear need for an innovative, autonomous, 

and robust measurement system, potentially leveraging 

advanced techniques like DFOS and digital image correlation 

(DIC), to accurately reflect the evolving structural state and 

enhance long-term infrastructure safety [4]. 

 Distributed fiber optic sensing (DFOS) 

Fiber optic measurement has evolved remarkably over the 

recent decades. Initially developed for telecommunications 

[21], its adoption in structural health monitoring (SHM) within 

the construction industry has surged, particularly for concrete 

structures [22]. They offer a unique advantage by providing 

continuous, high-resolution strain data over entire structural 

elements, an attribute that is very valuable for monitoring 

complex damage patterns associated with shear failure. 

Because of the relatively recent application of fiber optics in 

concrete construction, the field is developing dynamically in 

both research and industry [23].  

Unlike conventional sensors, which provide data at discrete 

points, DFOS capture the full strain distribution along their 

length with high resolution, enabling the early detection of 

microcracks and the tracking of crack initiation, propagation, 

and width changes [24]. By continuously mapping strain across 

large areas, DFOS can reveal subtle changes in crack patterns 

that might otherwise remain undetected. 

DFOS can be integrated into new structures during construction 

or retrofitted onto existing bridges. When embedded, they offer 

immediate insights into load-bearing behavior, prestressing 

levels, and deformation characteristics [25], [26]. Whether 

surface-bonded in retrofit scenarios or embedded during 

construction, DFOS provide real-time strain data to validate 

structural models and support continuous, long-term 

performance monitoring. In retrofit applications, bonding 

DFOS to the concrete surface also enables the direct 

identification of strain hotspots for targeted inspections. 

Advanced techniques even allow the derivation of 2D strain 

images from 1D strain curves, which can be used to get a direct 

understanding of the situation and stress/strain-state [27]. 

Given that diagonal cracking is a defining feature of shear 

failure, a complex and unpredictable 2D phenomenon, 

employing DFOS is a highly promising approach for SHM. 

Because of their ability to monitor the crack pattern over large 

areas, several research groups [2], [9]–[13] have investigated 

the possibility of utilizing DFOS for creating a shear monitor 

concept. DFOS are arranged in a mesh-like manner and 

installed on the concrete surface to compute 2D strain 
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measurement in the critical shear force zone (as shown in 

Figure 1). A key advantage of DFOS over other measurement 

techniques, like DIC, is that they do not require a direct line of 

sight to the shear-affected area, allowing measurements to be 

carried out regardless of lighting conditions. By contrast, DIC’s 

noise floor and measurement accuracy are highly sensitive to 

both the spatial resolution of the images and the size of the 

measurement field. 

 

Figure 1. 2D sensor arrangement for shear monitoring 

The skew angle of the cracks must be taken into account to 

evaluate the crack widths, since the traditional integration 

approach that is effective for bending cracks perpendicular to 

the sensor fails for skewed cracks. In [4], [28], the fundamental 

process of DFOS-based shear force measurement is explained. 

A method that incorporates the skew angle into the crack width 

calculation has been proposed and experimentally validated in 

[28]. The suitability of DFOS to be used for monitoring shear 

forces has been confirmed by both laboratory and practical 

applications. In existing structures, DFOS sensors are typically 

bonded to the concrete, as demonstrated by Rodriguez et al. 

[12], [27]. Additionally, Poldon et al. [10] successfully 

installed DFOS on both longitudinal and transverse 

reinforcement to track the development of shear and flexural 

cracks in reinforced concrete beams, a method further validated 

by practical case studies [9], [13].  

Although the initial results are promising, they also highlight 

the need for further testing and research to rigorously validate 

the DFOS grid concept's reliability, not only in monitoring 

shear-induced cracking, but also for tracking the development 

and precise localization of general bending cracks, to fully 

determine its practical applicability in real bridge monitoring. 

3 TEST AND MEASUREMENT CONCEPT 

 Test specimen and test setup 

For this experiment, a prestressed concrete girder from a 

decommissioned road bridge near Ljubljana, Slovenia, was 

selected for its representative characteristics and historical 

modifications. Spanning the Kamniška Bistrica River, the 

bridge measures 52.60 m in length and 8.2 m in width, with five 

spans ranging from 9 m to 13 m supported by thin wall 

intermediate supports (Figure 2). Notably, the bridge 

underwent widening in 1989 to accommodate pedestrians and 

cyclists by adding prefabricated prestressed reinforced concrete 

T-girders and an interconnected reinforced concrete slab. The 

girders and deck were designed with concrete grades MB40 and 

MB30, which correspond to Eurocode classes C30/37 and 

C20/25, respectively, in accordance with EN 206-1 and 

EN 1992-1-1. Prestressing cables with a strength of 

1840/2090 MPa were used, while other types of 

reinforcements, including smooth and ribbed rebars as well as 

mesh reinforcement, ranged from 240 MPa to 500 MPa. 

Six girders were extracted from the structure for laboratory 

bending and shear tests (see Figure 2). To investigate the 

girder's behavior under a damaged state, it was deliberately 

damaged before testing by cutting one of three prestressing 

layers comprising of six tendons, thereby providing an 

opportunity to monitor the resulting changes in structural 

behavior using the DFOS grid. 

 

Figure 2. Schematic bridge representation 

 Sensor placement and experimental procedure 

In the damaged girder, the DFOS grid (as shown in Figure 1) 

was applied to the web's concrete surface to capture continuous 

strain data. The DFOS grid consisted of two sensors, with 

lengths of 12 m and 13 m, respectively. The first sensor 

(DFOS 1) was arranged in both horizontal and vertical 

orientations: initially, it was installed horizontally in three 

parallel layers of 1.6 m segments with a 0.165 m spacing 

between layers to obtain distinct horizontal strain readings; 

subsequently, the remaining fiber was configured vertically 

into 0.33 m segments spaced 0.2 m apart. The second sensor 

(DFOS 2) was installed diagonally, with each diagonal segment 

measuring 0.52 m. Additionally, the intersection points of the 

sensors were aligned as closely as possible, ideally converging 

at a single point, to enhance data precision and ensure optimal 

strain transfer. This configuration formed a comprehensive 

sensing grid capable of capturing crack formation across sensor 

length, thereby providing a complete strain field of the targeted 

area. A schematic representation of the sensor layout and test 

setup is presented in Figure 3. 

The fibers employed were single-mode (SM) fibers with a tight 

buffer made of Hytrel and an overall diameter of 900 µm. 

Measurements were carried out with an Optical Distributed 

Sensor Interrogator (ODiSI) 6100 series from LUNA 

Innovations. This technology leverages the principles of 

Rayleigh scattering and optical frequency domain 

reflectometry, providing high-resolution local strain data. The 

ODiSI was operated in full-optimization mode, delivering a 

spatial resolution of 0.65 mm and a per-channel measurement 

rate of 3.13 Hz. 

Ensuring optimal bonding to the concrete surface is important 

for accurate strain measurements. Since the girder was 

prefabricated, it possessed a smooth finish that required only 

dust and debris removal. The installation process involved 

initially fixing the sensor pointwise at predetermined intervals 

with a fast-curing cyanoacrylate adhesive (CYN), followed by 

the application of a two-component injection mortar along its 

entire length. This high-viscosity mortar rapidly hardens and is 
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suitable for bonding sensors on vertical surfaces. At the 

intersection points, the sensors overlap three times, introducing 

bending and less reliable results. Figure 3 depicts the DFOS 

sensor grid configuration and its precise mounting locations on 

the prestressed concrete girder. 

 

Figure 3. Test setup and cross-section representation (in cm) 

 

Figure 4. Sensor bonding procedure on concrete 

After applying the grid, the surface was painted to facilitate 

DIC measurements. However, the DIC evaluation is beyond the 

scope of this paper. 

 

 

Figure 5. DFOS grid covered with DIC speckle pattern 

The girder was simply supported on rollers and subjected to 

three-point bending. The loading test spanned two days and 

involved cyclic loading and sustained constant load conditions 

to replicate diverse operational states and observe the crack 

initiation and propagation phases. In the initial cutting stage, a 

hole of 10 cm in diameter was drilled to induce damage in the 

specimen (Figure 6). A full drill-through was performed to cut 

the bottom layer of tendons, thereby deliberately weakening the 

girder. This intervention was carried out at a location 70 cm 

from the loading point, providing a controlled site to monitor 

the ensuing changes in structural behavior using the DFOS 

grid.  

 

Figure 6. Test initiation with the cutting procedure 

4 PRELIMINARY RESULTS 

 Load-displacement behavior 

Loading was applied under force control at a rate of 1 kN/s 

(phases P1 to P3), and then under displacement control at a rate 

of 0.1 mm/s (phases P4 to P6) with a maximum load of 428 kN. 

Figure 7 shows the load-displacement behavior, where the 

vertical displacement was measured with a displacement 

transducer located in the middle of the girder. 

 

Figure 7. Force-displacement behavior of the girder 

The load was gradually increased in six distinct phases, P1–P6, 

with each phase consisting of two loading–unloading cycles. 

After the second unloading cycle of each phase, the girder was 

put to rest for 20 minutes under ambient vibration conditions. 

Upon completing phase 3 on the first test day, the girder was 

brought to the phase 3 peak load (369 kN) and maintained at 

this constant level overnight. On the following day, the load 

was released (unloading phase) before initiating phase 4, 

creating three stages between phases 3 and 4: loading, constant 

force, and unloading. 

The graph in Figure 7 illustrates a progressive stiffness 

reduction and the onset of plastic deformation with increasing 

load. In the early phases P1-P2, the steep force–displacement 

slope denotes the girder’s high initial stiffness, with visual 

crack initiation occurring during the first cycle of phase 2 (P2-

C1) in the damaged zone. As loading advances into phases P3-

P4, the slope diminishes, reflecting stiffness loss from crack 

propagation and the commencement of permanent 

deformations. In the final phases P5-P6, approaching the 

ultimate capacity of 428 kN, the response becomes distinctly 

nonlinear, marked by successive crack formation and partial 

yielding of the reinforcement. 

In Figure 8 below, the crack patterns on the face of the girder 

opposite to where the DFOS grid was installed, overlaid with a 
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schematic representation of the sensor layout for comparison, 

are shown. At the peak load of phase 5, multiple cracks are 

visible, with crack openings marked directly on the concrete 

surface during the test. In the region corresponding to the 

DFOS grid, the first signs of cracking appeared as early as 

loading phase 3, indicating that the sensor network would have 

detected these strain concentrations in real time. 

 
Figure 8. Crack pattern from the other side of the girder at 

load phase 5 (418 kN) 

 Framework and labeling 

The data from the DFOS grid was analyzed using the 

fosanalysis framework (available at https://github.com/TUD-

IMB/fosanalysis/) developed at TU Dresden, which enables a 

streamlined workflow from data parsing and preprocessing to 

crack detection and crack width estimation [24]. This approach 

yielded excellent agreement between measured and calculated 

crack widths across different loading stages, indicating the 

robustness of both the DFOS system and the analysis 

framework [29]. 

The preprocessing procedure within the fosanalysis V0.4 

framework involves a series of steps designed to enhance the 

quality and interpretability of the raw strain data obtained from 

DFOS. Initially, the so-called Strain Reading Anomalies (SRA) 

are removed using the Global Threshold Method (GTM), where 

a strain threshold of 300 µm/m is applied to eliminate extreme 

or unphysical values. Following this, data recorded during 

phases of constant load are aggregated over time by computing 

the median value of several consecutive readings, thereby 

reducing short-term fluctuations and improving stability. Data 

dropouts, instances where sensor readings are missing or 

corrupted, are linearly interpolated. To further enhance the 

signal quality, a sliding mean filter with a window radius of 2 

is applied, which smooths the strain profile by averaging 

adjacent values. A detailed explanation of each method and its 

implementation is provided in [30]. 

Figures 9 and 10 plot the peak strains recorded along the DFOS 

1 and DFOS 2 sensors at the maximum load of each phase, 

confirming that a surface-bonded sensor grid, installed without 

surface grooving, can reliably capture strain evolution under 

short-term loading. On the horizontal axis of the graphs in 

figures 9 and 10, sensor lengths are shown; the vertical axis 

displays strain with maximum peaks of around 3500 µm/m and 

4000 µm/m, respectively. High strain peaks started to appear 

during load phase 3, corresponding well with crack initiation 

marked with red in Figure 8. During phase 5 of the loading test, 

the highest strain peaks were recorded. It should be noted that 

some of the observed strain peaks are associated with sensor 

turns, and these locations must be carefully accounted for in the 

analysis, not to be addressed as crack indicators. The true 

regions of interest are listed in Table 1 below. 

 

Figure 9. Strain Profile from DFOS 1 

An important aspect to be noted is the documentation of the 

sensor installation, including the exact lengths of sensor 

segments, starting positions of the grid, and loop 

configurations. Such detailed records are essential for 

distinguishing between strain peaks arising from actual 

structural behavior and those that may result from sensor turns 

or installation artifacts. 

 

Figure 10. Strain profile from DFOS 2 

By defining segments and specifying the length range of strain 

readings, the analysis was divided into horizontal and vertical 

components for DFOS 1 and diagonal components for DFOS 

2. This allowed for accurate localization of areas of interest and 

targeted data cuts, thereby improving the reliability of crack 

detection and width estimation at different loading phases. 

 Segment cuts and crack detection 

Table 1 summarizes the segment crops analyzed for strain peak 

identification. For DFOS 1, three horizontal layers: bottom, 

middle, and top, were identified in the region surrounding the 

primary flexural crack at approximately 3.6 m, 4.0 m, and 7.0 

m along the fiber, as confirmed by the crack pattern in Figure 

8. Two vertical segments (segments 1 and 2) in DFOS 1 were 

also selected, with a prominent strain peak observed near the 

8.0 m mark. Strain readings were measured in the sensor length 

between 5 to 12 m for DFOS 2. Within this range, inclined 

segments labeled 7, 8, and 9 exhibited significant strain peaks 

and were therefore selected for detailed analysis.  
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Table 1. Cropped region summary 

Cropped Region Sensor Length Range (m) 

Bottom Crop (DFOS 1) 

Middle Crop (DFOS 1) 

1.98-3.76 

3.86-5.56 

Top Crop (DFOS 1) 5.64-7.28 

Vertical 1 (DFOS 1) 

Vertical 2 (DFOS 1) 

Inclined 7 (DFOS 2) 

Inclined 8 (DFOS 2) 

Inclined 9 (DFOS 2) 

7.42-7.77 

7.79-8.145 

9.335-9.855 

10.075-10.595 

10.865-11.3 

 

By using DFOS, early-stage strain peaks can be identified, 

allowing for the detection and measurement of potential crack 

widths. As shown in Figure 11, during phase 3 of the test, the 

horizontal parts of the sensor exhibit strain peaks ranging from 

80 µm/m (top segment) to 300 µm/m (bottom, vertical and 

inclined segment). These readings indicate a potential onset of 

crack formation, providing valuable insights into the early 

development of damage in the beam and allowing monitoring 

of the structures in the early stages. In the horizontal and 

inclined segment plots (a, c), the vertical axis denotes strain, 

while the horizontal axis indicates the sensors’ relative 

positions. For the vertical segment plot (b), the axes are 

swapped. 

 

Figure 11. Early-stage DFOS strain profiles indicating 

incipient crack formation (a) Horizontal, (b) Vertical, and (c) 

Inclined segments 

Building on these early observations, the evolution of strain 

profiles in three directions of the grid is analyzed.  In Figure 12, 

the measured strain profiles of the horizontal segments of 

DFOS 1 (top, middle, and bottom) reveal a clear bending 

response. The readings are shown in temporal order, starting 

with loading up to phase 3, unloading part, and then loading in 

phase 5. The top segment exhibits strain peaks up to 

2500 µm/m, while the middle and bottom segments reached 

peaks up to 3500 µm/m. Notably, prominent strain peaks at the 

bottom correspond to the initial bending crack detected in 

Figure 11 (a), which becomes more pronounced as load levels 

increase and the crack propagates further into the beam cross-

section. 

 

Figure 12 Horizontal strain profiles (a) Top, (b) Middle, and 

(c) Bottom for DFOS 1 

Progressing from the top to the bottom segment, an increase in 

strain magnitudes can be observed, indicating the development 

of a crack near the left side of the sensor grid, in the region 

between 1.2 m to 1.4 m from the origin (check Figure 3). These 

peaks remain even after the unloading phase, marking a 

potential crack opening, which is also identified in the 

corresponding image of the girder. Even after the unloading 

phase, notable strain remains, indicating the presence of 

residual crack widths and partial permanent deformation in the 

beam. These peaks could also be detected by the diagonal and 

vertical segments, as will be seen in Figures 13 and 14 below. 

 

Figure 13. Vertical strain profiles (Vertical 1 and 2) from 

DFOS 1 

The measured vertical strain profiles (Figure 13), under the 

same load steps, correspond well with the expected structural 

response of the beam. The vertical axis represents the sensor 
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location in the z direction (check Figure 3), while the horizontal 

axis shows strain in µm/m. Vertical segment 1, located along 

the left side of the beam, exhibits strain variations indicative of 

localized stress redistribution. In these regions, negative strains 

reflect compression, while positive strains indicate localized 

tensile effects. The strain readings in this segment, although 

only in a few µm/m, can suggest an interaction between 

bending and shear forces, likely influenced by crack 

propagation near the sensor grid. 

The vertical segment 1 remains within ±30 µm/m, indicating a 

low-stress or compression zone near the neutral axis. As the 

load increases, the strain peaks in segment 2 become more 

noticeable (up to 2500 µm/m) in the region between 0.2 m to 

0.3 m in z direction. This peak is also an indicator that a crack 

has been formed in this region, similar to the horizontal 

readings from the DFOS 1, which detected crack initiation from 

an early stage (Figure 11) and propagation in both directions. 

Figure 14 presents the strain profiles measured along three 

diagonally oriented segments (labeled inclined 7, 8, and 9, 

check Table 1) under the same load steps as for DFOS 1. The 

horizontal axis denotes the relative sensor position in the x 

direction (origin at x = 0), and the vertical axis shows strain 

measurement. In these diagonal segments, located within a 

region of potential crack formation, distinct differences in 

strain behavior were observed. 

 

Figure 14 Strain profiles in diagonal segments 7-9 from DFOS 

2 

Segment 7 displayed a steady increase in strain with loading 

but showed no pronounced peaks (up to 120 µm/m), suggesting 

that no major crack crossed this particular sensor path. In 

contrast, segments 8 and 9 exhibited prominent strain peaks 

under higher loads (between 2500 µm/m to 3500 µm/m), 

especially segment 8, where two distinct peaks of 2700 µm/m 

and 3400 µm/m were observed. This suggests a concentration 

of cracking or stress in a relatively confined zone. The 

difference in peak heights for various load steps also 

demonstrates how the crack opening widens under load and 

partially closes upon unloading. 

The prominent peaks in each plot correspond to localized 

cracking, which was successfully detected and quantified by 

the DFOS grid. Furthermore, strain readings in vertical 

(vertical 2) and inclined sections (inclined 8) reveal the 

presence of two distinct strain peaks, which may be attributable 

to crack branching phenomena. 

Despite initial expectations to capture diagonal cracking, such 

cracks were not observed within the grid region. However, the 

DFOS grid effectively captured and localized vertical cracks 

from early stages, confirming its potential as a robust tool for 

structural health monitoring (SHM). The experimental results 

indicate that for short-term measurements, good bonding 

between the optical fiber and the concrete surface can be 

achieved without the need to mill a groove. However, for long-

term monitoring under varying environmental conditions, 

DFOS installation in grooves is recommended. Notably, as 

observed in the research [23], DFOS sensors installed without 

grooves can capture higher strain peaks. 

Overall, the DFOS-based monitoring proved effective in 

capturing the strain behavior of the prestressed bridge beam. 

The results validate the early detection of cracks, well before 

they become visible to the human eye, similarly to previous 

research [24] and provide a detailed understanding of crack 

evolution under varying load conditions. The observed strain 

peaks could be partially validated through experimental 

visualization, as evidenced by the crack pattern visible on the 

opposite side of the beam. Early registration of cracks, 

especially shear cracks, can be critical, as the development of 

small shear cracks in large critical regions can, with increasing 

load, precipitate a sudden shear collapse of the entire reinforced 

concrete structure.  

5 CONCLUSION 

The experimental investigation demonstrates that the surface-

bonded DFOS grid can be reliably installed without grooving 

and delivers effective short-term monitoring of prestressed 

concrete girders. Its high spatial resolution enabled the early 

detection of microcracks and captured the subsequent growth 

and spatial pattern of vertical cracks. Strategic sensor 

placement proved essential for localizing damage zones. These 

promising results lay the groundwork for advanced structural 

health monitoring of concrete bridges. Future work at the 

openLAB Research Bridge in Bautzen, Germany [26], will 

further validate and refine this DFOS-based monitoring 

concept. 
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ABSTRACT: Railways are one of the fundamental modes of transportation, dating back centuries. They allow for the movement 
of people and goods across hundreds and thousands of kilometres. Such a large system relies on precise timing and excellent 
organization. Any incident or failure can result in losses amounting to millions of euros and cause unacceptable delays. Monitoring 
the condition of the railway is necessary to ensure safety and system effectiveness, but it is challenging due to the long distances 
that need to be monitored. Conventional sensors can provide high-quality data, but they do not offer a complete picture of the 
railway’s state, and local defects can be overlooked. A great solution for railway monitoring is DAS. A fibre optic sensor integrated 
with the structure can be used to obtain information about strain and vibration, with a fine resolution of even down to 1 metre, 
over tens of kilometres of track. Installing the sensor in the railway substructures can be challenging and exposes the sensor to 
potential damage. Another approach discussed in the article is to attach the sensor directly to the rail. Long sections of track can 
be covered with monitoring within a few hours using automated machine, enabling direct measurement of the rail’s condition. 
This paper presents the results of such installation, showing the potential of synergizing monolithic distributed fibre optic sensors 
with DAS technology to increase the safety and reliability of rail transport. 

KEY WORDS: rail, railway, DAS, strain-rate, monolithic sensors, dynamic measurement. 

1 INTRODUCTION 
Research presented in the paper is mostly driven by the goal 

of improvement of safety in railway transport. We live in the 
times when due to galloping climate changes, sustainable ways 
of transportation, like railways may be one of the key ways of 
slowing down the global temperature from increasing [1]. 
However, there are challenges that have to be overcome to 
increase sustainability level of rail transport. The development 
is eagerly promoted due to its considerably lower emission 
rates than other modes of transportation. However, greenhouse 
gas emission is not the only environmental threat coming from 
transport industry. Another factors worth consideration are 
noise pollution and direct threats to wild animals [1]. Rail 
tracks run through the whole countries and continents. Their 
paths all possible zones, cities, wildlands and rural areas. The 
span between the stations reaches tens of kilometres’, which 
makes it extra-ordinarily difficult to control and limit threats. 
Additionally, railway structures are prone to experience local 
damages due to deterioration. During the operation time, 
railways are exposed to harsh weather conditions, rapid 
temperature changes, uneven substrate settlement and massive 
vertical loads of passing trains. Exposition to such conditions 
may cause change of the track geometry. Damaged tracks may 
influence not only comfort of the passengers but also their 
safety. In most extreme case the train may fall of the track. Such 
an accident may be a huge environmental or urban catastrophe. 
Fixing is difficult, slows down or even completely blocks other 
trains and causes large costs and labour consumption [2, 3].  

Following risks may be significantly limited or even 
completely avoided by proper monitoring the railway. 
Effective solution for such an application is Distributed 

Acoustic Sensing (DAS). The DAS technology is subpart of the 
Distributed Fibre Optic Sensing (DFOS). All the DFOS 
technologies utilise optical fibre as an array of sensors. Sensing 
device - optical interrogator - divides the fibre into set of 
aligned segments. As a result of the measurement, each 
segment (gauge) is represented as a discrete data point in result 
array. Value of each data point is a mean value of a measured 
physical quantity in all the points located in specific gauge [4, 
5]. The DAS interrogators divide the fibre into dense set of 
overlapping channels (gauges) providing full continuity of the 
measurement along the fibre path. The distributed nature of this 
sensing technique allows continuous recording with multiscale 
grid of virtual unit gauges. Virtual placement of the gauges 
allows free manipulation on their arrangement without 
necessity of rearranging the setup. All the changes can be 
introduced by proper tuning of the interrogators [6,7]. Crucial 
part of system designing is proper placement and installation of 
the sensor. Industrial practice is to install the sensor in the 
trackside or to use already installed telecom cables [8, 9]. 
Installation of the sensors in the ballast layers of the railway 
may be challenging due to the complexity of the structure, 
traffic and law regulations. Moreover, such installation method 
requires placing additional cable duct which disturbs strain 
transfer mechanism. Another unfavorable phenomenon 
occurring in soil mechanic is non-elastic behavior of gravel 
ballast layers. Rocky, non-expansive soils as gravel used for 
sub-track construction do not transfer tensile forces. In such 
configuration only vibrations can be measured. More 
comprehensive solution is to attach the sensors directly to the 
track. This way system can measure direct strain of the element 
to give more information about the actual track condition [10]. 
Nevertheless, DAS interrogators have limited dynamic range. 

Proposed approach for direct rail state monitoring  
with distributed acoustic sensing DAS 

Szymon Długosz1, 0009-0005-1626-366X, Tomasz Howiacki1,2, 0000-0002-6833-7203, Rafał Sieńko2, 0000-0002-2751-7558,  
Łukasz Bednarski3, 0000-0002-5404-9921,  

1SHM System / Nerve-Sensors, Libertów ul. Jana Pawła II 82A, 30-444 Kraków, Poland 
2Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland  
3Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology in Kraków,  

Mickiewicza 30, 30-059, Krakow, Poland 
email: sd@shmsystem.pl, th@nerve-sensors.com, rafal.sienko@pk.edu.pl, lukaszb@agh.edu.pl 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-030 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 179 

Strong, high amplitude vibration may lead to saturation effect 
occurrence. This may lead to the substantial data loss [11]. 
Correct configuration of interrogator settings and adoption of 
sensor properties is crucial for proper operation of the 
measurement system. In this paper, authors propose the 
solution for direct rail track monitoring, allowing dynamic 
measurements of high-speed trains, passing with velocity of up 
to 250km/h, alongside with the long-term static strain 
measurements. The solution was tested during full-scale field 
experimental sessions, proving the feasibility and correctness 
of such an approach. 

2 DISTRIBUTED ACOUSTIC SENSING PRINCIPLES  

 Rayleigh backscattering application in DAS 
Rayleigh backscattering can be effectively used for precise 
strain and temperature measurements in both silica and 
polymer fibres. Two main approaches of Rayleigh 
phenomenon can be distinguished: Optical Time-Domain 
Reflectometry (OTDR) and Optical Frequency Domain 
Reflectometry (OFDR). OTDR-based measurements are 
usually much faster and can be performed on significantly 
longer sections of the fibre than OFDR [12]. DAS interrogators 
operate on OTDR combined with phase control coherency (φ-
COTDR) in order to deliver high-quality information about the 
rate of the strain change (strain-rate), along the fibre. 
Distribution of the reflected light intensity in the fibre for 
COTDR is random. 

Regardless this randomness nature of the signal, it varies 
harmonically, as shown in Fig. 1. This way, with application of 
phase control approach, the phase information can be revealed. 
Whereas the phase angle is directly proportional to the strain 
change along the fibre axis [13], creating the opportunities for 
practical applications in civil engineering and geotechnics. 
 

 
Figure 1.  Intensity changes are irregular along distance but 

harmonic along phase shift axis [13]. 

 Dynamic range of DAS interrogators 
Dynamic range of acoustic sensing device (interrogator) is the 
magnitude of the strain change between two time samples that 
can be accurately unwrapped. Due to harmonic behavior of the 
intensity, only certain magnitude of strain change can be 
measured accurately. Because of that, DAS interrogators 
differentiate the strain in time domain in order to obtain strain-
rate, using the following equation: 

 
µ𝜀𝜀
𝑠𝑠

= 𝜕𝜕µ𝜀𝜀
𝜕𝜕𝜕𝜕

 (1) 

where 
µ𝜀𝜀
𝑠𝑠

 is strain rate given in microstrains (µε) per second and  
𝜕𝜕µ𝜀𝜀
𝜕𝜕𝜕𝜕

 is a derivative of strain in time-domain. 
Use of strain-rate allows to measure wider range of strain by 

measuring small changes and then stitching them together, by 
phase unwrapping in order to obtain whole picture, as shown in 
Fig. 2 [13].  

 

 
Figure 2. Wrapped and unwrapped differential phase. 

As the value of the strain change can be both positive and 
negative, the dynamic range of any DAS interrogator is limited 
between <- π ; π >. Return signal is always within this range, 
even if the input strain in the time dt would move outside the 
limit [14]. 

 

 
Figure 3. Phase angle change in complex coordinate system. 

The phase angle change between the two following samples 
should not exceed |π|. If so, φ𝑡𝑡2 is non-distinguishable from 
φ𝑡𝑡3. The exceeding the limit due to the high vibration 
amplitude during recording is being called saturation effect. 
Dynamic range can be improved with higher sampling 
resolution or shorter gauge length. Due to higher sampling 
frequency, time distance dt is shorten, allowing to observe the 
events of higher dynamics (higher amplitude change in time). 
Shortening the gauge length limits the part of the fibre from 
which energy is being acquired (averaged) from.  

Exact effect of the gauge length value can be observed in the 
relation between the angle phase shift and strain [15]:  

 𝑑𝑑𝑑𝑑 = 4𝜋𝜋𝜋𝜋𝜋𝜋
𝜆𝜆

ε (2) 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-030 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 180 

Where dφ is a phase angle shift, G is gauge length, 𝜁𝜁 is opto-
elastic scaling factor, 𝜆𝜆 is the operational optical wavelength in 
vacuum and ε is the strain. Based on the equation (2), we can 
conclude that the relation between gauge length and phase 
angle shift is linearly proportional.  

3 PROPOSED APPROACH FOR DAS-BASED DIRECT 
RAIL TRACK STATE MONITORING 

 System design 
The system in question was deployed on a railway line in south-
central Poland to monitor its technical condition and enable the 
maximum speed of trains to be increased to 250 km/h.  

A key objective of the system was to enable multiple fibre 
optic measurement techniques using a single sensor, making it 
adaptable to various sensing methods beyond just DAS. This 
flexibility allows to use other interrogation schemes 
simultaneously (including for example Brillouin-based strain 
sensing DSS and Raman-based temperature sensing DTS). In 
the designed system, it was decided to install two sensors on 
the side surface of the rail web (Figure 4) in order to add 
Distributed Displacement Sensing (DSS) functionalities to the 
system. Knowing the spacing between the sensors, measuring 
strain distributions over the entire length and assuming relevant 
boundary conditions, both local curvatures and vertical 
displacements (shape changes) can be calculated. 

 

 
Figure 4. Cross-section of rail with sensors’ location. 

The sensor integrated into the system is an adjusted version 
of the EpsilonFlat – the monolithic solution from Nerve-
Sensors family. Unlike the standard EpsilonFlat, which utilises 
two sensing fibres, this modified version employs four fibres, 
as shown in Figure 5. Table 1 summarises selected mechanical 
properties of the sensor. 

 
Figure 5. Cross-section of the sensor used in the system. 

Table 1. Selected mechanical parameters of the EpsilonFlat 

Parameter Value 
Strain range ±4% 

Elastic modulus 3 GPa 
Bending radius 100 mm 

 
The monolithic core of the sensor, coupled with its flat cross-

section, ensures the best possible strain transfer mechanism, 

resulting in precise and high-quality readings [16]. Low elastic 
modulus of the sensor itself combined with the elastic glue 
causes minimal, negligible influence of the sensor on the 
mechanical parameters of the rail. This design effectively 
captures and transmits strains with minimal distortion, 
guaranteeing the accuracy and reliability required for 
monitoring the rail’s performance over time. 

Additional fibres within the sensor cross-section allowed for 
the world-unique approach in system configuration. his 
adjustment enhances the sensor’s versatility, providing 
additional configuration possibilities to meet the unique 
challenges of the project. Sensors were delivered on site in 50 
m long sections. Two fibres were spliced together creating one 
long loop to be measured with long-distance interrogators. 
However, two additional fibres allow for connection of high-
spatial resolution interrogators to scan shorter sections with 
higher precision, if necessary (Figure 6). Is shows, that various 
measurement devices do not have to compete with each other, 
but can be used synergistically to expand the diagnostic 
capabilities of the entire system. While maintaining high-
resolution data acquisition capabilities, it is also possible to 
offer a cost-effective and versatile solution for large-scale 
monitoring applications. 

 
Figure 6. Scheme of the measurement path. 

The sensors were arranged in a 2 x 250-metre-long loop, 
featuring two continuous sensing paths and independent, 
shorter 50-metre-long sections. Every 50 metres, the sensor 
paths passed through connection wells, where the necessary 
connections were made – Figure 7. 

 

      
Figure 7. Connections between segments of the sensors during 

installation and the view of the protective well. 

This configuration ensured that the system maintained 
optimal functionality across the entire loop, allowing for 
continuous monitoring while facilitating easy maintenance and 
troubleshooting through strategically placed connection points. 
The segmentation of the fibres into shorter paths also enhanced 
the flexibility of the system, accommodating long-distance 
spans without compromising signal integrity or performance. 
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Chosen arrangement allowed simultaneous acquisition of 
dynamic and static measurement data. 

 Sensor installation 
The installation of the sensor required initial pre-sanding of the 
rail's side, aimed at achieving proper grip. The goal was to 
exfoliate only a thin layer of loose corrosion, ensuring minimal 
impact on the rail's mechanical parameters. This effect was 
successfully achieved using a water under pressure, a method 
that provided the necessary surface preparation without 
compromising the rail's integrity. The selection of materials for 
the bonding process was critical to the success of the 
installation. High durability, a low elastic modulus, excellent 
corrosion resistance, and strong adhesion were essential to 
ensure the sensor’s secure attachment. To meet these 
requirements, epoxy-based adhesives were employed for 
gluing the sensor to the rail. The selection of the glue was 
preceded by research into various solutions in the laboratory.  

To guarantee precision and time effectiveness of the 
installation, a specialised piece of equipment was designed and 
developed specifically for this project (Figure 8). The cart 
system utilises electric motors and pneumatic glue dispensers 
to ensure an even and consistent application of adhesive. The 
electric motors power the movement of the carts, enabling 
precise control over the positioning and alignment during 
installation.  

 

 
Figure 8. Semi-automatic rail cart used for sensors’ effective 

installation along the rail. 

This technology allows for a highly efficient, repeatable, and 
controlled gluing process, contributing to the overall success 
and reliability of the sensor installation. Before the final 
application within the operate railway line, the solution was 
tested on an experimental section of the rail (Figure 9) to better 
understand on-site challenges and minimise the risk of errors. 
The success of the installation in Poland allowed for the 
commercialisation of the cart in Germany and UK.  

 

  
Figure 9. EpsilonFlats after test installation. 

The combination of innovative installation technology, high-
quality materials, and specially designed sensors resulted in 
a gluing speed of up to 120 metres per hour. This makes the 
approach an excellent solution for km-long sections, where 
conventional manual bonding is very difficult, if not impossible 
to achieve. In the current project, the total length of 2,200 
metres of sensors was installed directly to the rail surface. 

 Spatial survey 
Chosen configuration of the sensing path, despite of multiple 
benefits, is also connected with some challenges. Complicated 
layout requires the proper selection of the active sensing 
segments (excluding loops, patchcords and pigtails) within the 
whole optical path. DAS-based interrogators usually operate on 
spatial resolutions of not less than 1 m. In this scale, it is 
challenging to clearly distinguish the measurement part of the 
fibre from the connecting part.  

The proposed solution to the problem was to use pigtails 
(connecting cables between the segments) with different fibre 
properties, causing the clear differences in the Brillouin signal. 
To make a detailed documentation of the sensing path, the 
hybrid Rayleigh & Brillouin interrogator Neubrex NBX-7031 
(Figure 10) was used with its backscattering-based mode.  

 
Figure 10. Neubrex NBX-7031 hybrid interrogator. 

Brillouin backscattering allows direct fibre parameters 
identification without necessity of providing reference reading. 
The Brillouin shift, quantity linearly connected with absolute 
strain of the fibre [17], allows to clearly distinguish between 
the measurement sections glued to the rail and free connecting 
patchcords. – Figure 11.  

 

  
Figure 11. Brillouin Shift measurement results. 

Brillouin survey provided very precise information about the 
exact length of the measurement path components. Proper 
tuning of the optical device reflection coefficient ROI=1.468 
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with the coefficient used in DAS interrogator resulted in 1:1 
translation of measurement path between the fibres. In the cases 
where standard methods for spatial surveying may be not 
efficient enough, shown approach is an ideal solution for self-
survey of the sensor. 

 Used DAS interrogator and measurement settings 
Observing a highly dynamic event, such as the high-speed 
passage of a train, demands both the highest possible sampling 
frequency and the shortest achievable gauge length. Achieving 
this balance is crucial for capturing rapid changes in strain 
distribution along the fibre optic sensor. There are multiple 
ways to enhance gauge length, both at the sensor and 
interrogator levels. For example, one approach involves 
implementing weak Fibre Bragg Gratings (weak-FBGs) along 
the entire fibre, which can improve spatial resolution and 
measurement precision. However, this method is often costly 
and not universally compatible with all interrogator devices, 
making it less practical for certain applications. Alternatively, 
gauge length optimisation can be achieved through advanced 
signal processing techniques and the use of appropriate 
interrogation technology. 

In the project, the Febus A1 DAS interrogator (Figure 12) 
was deployed – a device that utilises Phase-Sensitive Coherent 
Optical Time-Domain Reflectometry (φ-COTDR) to enhance 
reading quality. Unlike the classical DAS approach, where the 
injected light pulse is a simple impulse, the Febus A1 leverages 
optimised coding and signal processing algorithms to improve 
sensitivity and spatial resolution. This advanced approach 
ensures reliable interrogation over fibre optic paths exceeding 
100 km, while mitigating the risks of signal fading and 
significant Signal-to-Noise Ratio (SNR) degradation. 

 

 
Figure 12. FEBUS A1 interrogator. 

A key advantage of φ-COTDR in the Febus A1 is its ability to 
achieve a gauge length as short as 1 metre, a spatial resolution 
that is typically unattainable with standard interrogators. 
Conventional DAS systems often struggle to maintain short 
gauge lengths due to limitations in pulse-based interrogation 
methods, which can lead to reduced spatial resolution and 
increased noise. By employing optimized signal processing, the 
system effectively enhances precision without compromising 
signal integrity. This feature is particularly valuable for 
applications requiring highly localised strain and vibration 
measurements, such as high-speed train monitoring, where 
detecting rapid structural changes with fine spatial granularity 
is crucial. This makes the device a perfect choice for railway 
dynamic monitoring.  

For the in-situ testing, it was decided to measure the dynamic 
passages of the trains using combination of the parameters 
summarised in the below table. 

Table 2. Used DAS acquisition parameters. 

Parameter Value 
Gauge length 2 m 

Sampling frequency 40 kHz 
Channel (gauge) spacing 20 cm 

 Methodology of the experiment 
To evaluate the performance of the monitoring system in a real-
world high-speed scenario, an experiment was conducted using 
a Pendolino ED250 train. The location of the measurement 
section was a long, mostly straight section of the railway track. 
During the experiment, multiple train passages were recorded 
under varying speeds to assess the system’s capability in 
detecting and analysing strain signals associated with different 
train dynamics. To minimise the influence of temperature 
fluctuations on the readings and provide maximally stable 
conditions, all DAS measurements were conducted at night. 
The railway traffic was suspended for the duration of the 
experiment, ensuring an undisturbed testing environment. The 
measurement crew maintained constant communication with 
train operators to ensure that the train traveled at the predefined 
speeds. A total of four test runs were performed at velocities of 
200, 220, 240, and 250 km/h within a single night. The time 
interval between consecutive passages was determined by the 
necessary stopping, reversing, and re-accelerating of the train 
to the target speed, with a minimum of 45 minutes between the 
runs. This ensured that the rails had sufficient time to fully 
stabilise after each passage, preventing residual strain effects 
from influencing subsequent measurements. As a reference 
technique, heavy-duty accelerometers with dynamic range of 
50 G and frequency range from 5 to 2000 Hz were employed.  

4 RESULTS AND PROCESSING 

 Raw data: strain-rates 
The raw data recorded by the device is a strain-rate array 
(Figure 13) at discrete points located in the centers of 
predefined gauges. Each discrete value represents an average 
of the rate of strain change along the single gauge length. As 
the fibre is interrogated as whole, initial processing (or post-
processing) has to be introduced in order to cut-out 
measurement sections from the entire path.     

 
Figure 13. Example strain-rates recorded by the bottom sensor 

during train passage with 250 km/h speed. 
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A recorded image provides high-quality insights into 
dynamic processes existing in the railway structure during 
high-speed train passage. Three main zones of the signal may 
be distinguished. In the bow-zone, a para-seismic wave 
travelling through the rail may be observed. In the main part of 
the signal – the train-zone – signal is complex. Eight skew lines 
on the map represents the moments in time where the wheel 
bogies of the train were in specific locations along the rail. 
Number of the lines correspond with number of the bogies. 
Empty spaces between the lines represents the spans of every 
carriage between the subsequent bogies. Last zone of the signal 
is a zone o tail waves, the ones lasting in the structure for some 
time after the train passage [18].  Overall check at the signal 
allows to assume that used acquisition parameters, combined 
with dedicated monolithic-core of fibre optic sensors, resulted 
with non-saturated, high-quality signal, recorded in extra-
ordinary proximity to the strong vibration source. 

 Spectral analysis 
Distributed Acoustic Sensing can be used as a network of 
virtual, unit-like channels, each functioning akin to a geophone, 
measuring strain or displacement at various points along the 
fibre-optic sensor. The system output can thus be understood as 
an array of time-series recorded by specific virtual gauges 
positioned along the fibre, capturing the strain dynamics of the 
monitored structure. Due to this nature of the signal, any 
method of classical digital signal processing is valid, allowing 
for a wide range of analytical techniques to be applied to the 
DAS data. 

 

 
Figure 14. Spectrogram of the single time-series of strain-rate 

recorded in the middle of measurable section. 

The example data presented in Fig. 14 clearly reflects the 
direct influence of train passage, with distinct frequency 
components corresponding to the mechanical events. Notably, 
the spectrogram reveals a predominant contribution from low-
frequency waves. This phenomenon is likely linked, inter alia, 
to a rapid rise in temperature within the rail due to its loading 
by the passing train, coupled with a relatively slow heat 
dissipation rate from the rail. The thermal effects associated 
with the train passage thus become embedded in the strain 
measurements, manifesting as low-frequency trends. 

Given the dynamic nature of the observed event, the authors 
opted to mitigate the influence of these thermal effects by 
applying a low-cut Butterworth filter of the third order. The 
chosen cut-off frequency of 5 Hz serves to effectively attenuate 
the low-frequency components, which are primarily 
attributable to temperature-induced strain. This filtering step 
not only reduces the trend-like behaviour often observed in the 

integrated strain signal but also compensates for the 
confounding effects of temperature variations, enabling 
a clearer view of the mechanical strain caused by the train 
passage.  

This approach illustrates how DAS measurements supported 
with proper sensors, can be refined to focus on the relevant 
mechanical signals, removing the thermal noise that may 
otherwise obscure the true nature of the event under study. 
While reference measurements using accelerometers were also 
employed, it is worth noting that these sensors primarily 
capture signals from 5 Hz and above, aligning with the chosen 
filtering approach but playing a less central role in addressing 
the low-frequency thermal effects observed in the strain data. 

Deeper understanding of the signal can be achieved by 
application of the Frequency Band Energy (FBE) analysis. This 
approach allows for comparison between energy levels in 
specific frequency bands. The energy E of the discrete, finite-
time signal, denoted as x is sum of the signal’s absolute value 
square in proper time t boundaries (3).  

 𝐸𝐸 =  ∫ |𝑥𝑥(𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑡𝑡2
𝑡𝑡1  (3) 

Since the total energy remains conserved between the two 
domains, it is possible to analyse the distribution of the energy 
across different frequency components by examining the 
squared magnitudes of the Fourier coefficients. Hence, by 
summing the squared magnitudes of a specific portion of the 
Fast Fourier Transform (FFT) coefficients, denoted as X, one 
can determine the energy contained within a particular 
frequency f band [19] using equation (4).  

 𝐹𝐹𝐹𝐹𝐹𝐹 =  ∑ ∑ |𝑋𝑋(𝑡𝑡)|2𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

 (4) 

From the Distributed Acoustic Sensing (DAS) perspective, 
such a method provides the capability to monitor the 
occurrence of different frequencies along the entire fibre length 
and provide neat visualisation. This ability is particularly 
valuable for analysing dynamic changes in the recorded signal 
and distinguishing specific patterns based on their spectral 
characteristics. By integrating this approach with the Short-
Time Fourier Transform (STFT), it becomes possible to not 
only categorise signals by their frequency components but also 
track their temporal evolution, offering deeper insight into 
underlying phenomena. 

In the presented research, the authors conducted STFT 
analysis twice, utilising two distinct window lengths to 
maximise the level of detail in signal examination. The first 
calculation employed a longer window, consisting of 8129 
samples – chosen as the eightfold multiple of 1024 – which was 
specifically applied to the first six bands corresponding to the 
lowest frequencies. This selection was made to enhance 
frequency resolution in the low-frequency domain, where finer 
spectral details are often crucial for accurate interpretation. For 
the remaining higher-frequency bands, a window of 1024 
samples was determined to provide optimal results, balancing 
time and frequency resolution to ensure a comprehensive and 
precise analysis of the recorded signal. 

Presented results of FBE were calculated from the signal after 
low-cut filtration introduced previously.  
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  Figure 15. Comparison of energy levels within specific frequency bands.  
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When a train travels along the track, various phenomena 
generate acoustic noise in addition to mechanical changes. The 
primary sources of this noise include the train’s machinery, 
braking system, and, most significantly, the interaction 
between the wheels and the rail. Most of these acoustic noises 
are concentrated at frequencies above 500 Hz [20]. 

However, noise-induced mechanical vibrations consist of 
low-amplitude waves with high attenuation, meaning they do 
not significantly affect the mechanical state of the rail. The 
authors empirically analysed the entire frequency spectrum and 
determined that the range of <0; 2.5> kHz is the most relevant, 
either due to its contribution to overall strain rates or the 
information it carries. The frequency bands for calculation were 
selected to maximise information and comparability while 
ensuring proper coverage within the chosen range. Since 
energy levels decrease across subsequent bands, the bands were 
gradually widened to maintain sufficient values for 
comparison. 

The data exhibits a clear pattern, showing that the majority 
of the signal is concentrated in the low-frequency range, up to 
50 Hz. Higher frequencies, up to 600 Hz, contain relatively low 
energy. A significant portion of the signal consists of acoustic 
noise. Above 600 Hz, the energy level progressively increases, 
peaking between 1.1 kHz and 1.5 kHz. In this range, a highly 
visible noise band appears, particularly around the third and 
fourth carriages. According to the technical documentation of 
the Pendolino ED250, this high-noise area corresponds to the 
placement of traction transformers within the train. These 
findings highlight the direct relationship between onboard 
equipment and noise influence on the measurements. Noise-
carrying frequency bands in this case are clearly separated from 
the valuable parts of the signal. With this informations authors 
decided to apply additional Butterworth low-pass filter of the 
3rd order, with cut-off frequency of 1kHz.  

Characteristics of the FBE maps allow assumption that wide 
frequency distribution is connected with wide frequency range 
of an event rather than with saturation effect occurrence. 

 Spectral coherence check 
To ensure high-quality measurements, the fibre signal must not 
be saturated. To verify that clipping due to exceeding the 
dynamic range does not occur, spectral coherence between 
collocated channels should be calculated. Authors estimated 
spectral coherence by the following equation: 

 𝛾𝛾2(𝑓𝑓) = |𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)|2

𝐺𝐺𝑥𝑥𝑥𝑥(𝑓𝑓)𝐺𝐺𝑦𝑦𝑦𝑦(𝑓𝑓)
 (5) 

where 𝐺𝐺𝑥𝑥𝑥𝑥(f) is the cross-spectral power density, and  𝐺𝐺𝑥𝑥𝑥𝑥(f) 
and  𝐺𝐺𝑦𝑦𝑦𝑦(f) are the spectral power densities of either signal. 
High coherence (𝛾𝛾2 ≈ 1) signifies a strong correlation between 
DAS signals with synchronous recording, while low coherence 
suggests a weaker correlation or the possible presence of noise 
caused by signal clipping (saturation) [11].  

 
Figure 16. Side by side comparison of the raw strain rate (left) 

with the calculated signal spectral coherence (right). 

Spectral coherence had been calculated between all the 
following DAS channels with window length of 103 samples 
and presented in Fig. 16. Values on the diagram represent 
spatial mean coherence from each set of windows. Results 
show high spectral coherence, mostly > 0.7. High magnitude of 
spectral coherence between adjacent channels indicates that 
signal has not been saturated. 

 Strain-change and reference check 
All DAS interrogators measure the strain change in time. If 
properly recorded, the strain-rate signal can be integrated over 
time to reconstruct the train change – a quantity that is more 
intuitive from engineering perspective and easier interpreted in 
comparison to direct strain rate signal. Moreover, when 
considering the Bernoulli hypothesis – which assumes that 
plane sections remain plane and perpendicular to the neutral 
axis after deformation – it follows that vertical displacements 
and longitudinal strains are intrinsically linked. 

In the case of steel rails with expected very small 
displacements (< 1.5 mm), this assumption is especially valid, 
also due to the high stiffness of the steel and its homogeneity. 
Consequently, accelerometer measurements, which capture 
vertical motion, can serve as a reliable reference for strain-
based calculations. This interrelation reinforces the validity of 
using accelerometer data to compare with DAS measurements. 

Accelerations a measured by accelerometers were integrated 
twice in time t to obtain vertical displacements in specific 
points. 

 𝑑𝑑(𝑡𝑡) = ∬𝑎𝑎(𝑡𝑡)𝑑𝑑𝑑𝑑 (6) 

As the quantities to be compared are known to be 
proportional, but exact coefficient of proportion is unknown, 
only the tendencies were compared. For that sake, values has 
been normalised and presented in Figure 17. 
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Figure 17. Comparison of DAS-measured strains (blue)  

with displacements from accelerometers (orange). 

The compared data clearly show the expected correlation. 
Since the sensor is positioned in the bottom zone of the rail, its 
strain behaviour reflects its location relative to the neutral axis 
of the rail. In a downward displacement of the rail, the bottom 
sensors experience positive strain (tension). Conversely, during 
upward displacement, the same sensors are compressed, 
resulting in negative strain. 

5 CONCLUSION 
The study briefly discussed in the article demonstrates a robust 
approach for direct rail state monitoring using Distributed 
Acoustic Sensing (DAS) and specially designed monolithic 
sensors. By directly attaching the sensors to the rail surface, the 
system is capable of simultaneously capturing both dynamic 
and static strain data over very long distances using various 
types of interrogators, including those with high spatial 
resolution. Experimental results from high-speed train passages 
validate that the measured strain signals align with classical 
beam theory: fibres located at the bottom of the rail exhibit 
positive (tensile) strain during downward displacement and 
negative (compressive) strain during upward displacement. 
Furthermore, advanced signal processing techniques, including 
spectral analysis and energy band evaluations, effectively 
isolated the mechanical strain effects from thermal influences, 
thereby ensuring reliable data assessment and interpretation. 
The innovative semi-automatic installation method 
significantly enhanced deployment speed and consistency, 
making the solution both scalable and cost-effective. Overall, 
the proposed DAS-based monitoring system offers a promising 
tool for real-time railway infrastructure assessment, leading to 
improved safety, optimised maintenance strategies, and 
enhanced operational reliability in rail transportation. 
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ABSTRACT: Fiber optic sensors (FOS) offer compelling advantages for Structural Health Monitoring (SHM). However, their 

application in timber structures remains underexplored. This article reviews the state-of-the-art use of FOS in timber structures 

and presents an experimental study conducted at the Universitat Politècnica de València. A 3-meter-span timber beam was 

subjected to a four-point bending test and instrumented with long-gauge strain FOS. The measured strains were used to derive 

stresses, which were then compared to theoretical values. The results highlight the potential of FOS for accurate stress monitoring 

in timber elements and contribute valuable insights to the advancement of SHM in sustainable construction. 

KEYWORDS: Timber structures; Historic structures; Fiber optic sensors; Strain monitoring; Stress. 

1 INTRODUCTION 

The built environment is responsible for approximately 39% of 

global energy-related CO₂ emissions, of which about 11% 

arises from embodied emissions—those generated during the 

production, transportation, and installation of building 

materials [1]. Shifting towards a Circular Economy model is 

increasingly recognized as essential to mitigate this impact. 

Among the strategies, the rehabilitation and reuse of existing 

structures plays a critical role. Among the different potential 

construction materials, timber stands out as a sustainable 

material due to its low carbon footprint, high recyclability, and 

significant cultural value, especially in heritage buildings (see 

e.g. Figure 1). 

 

 

Figure 1. Timber beams at “Estació del Nord”, a train station 

in Valencia, Spain. 

Structural Health Monitoring (SHM) is a key enabler of 

sustainable rehabilitation strategies. SHM techniques provide 

continuous insights into the condition of built structures, which 

helps to optimize maintenance, supports resource-efficient 

interventions, and extends service life. Within this context, 

fiber optic sensors (FOS) present compelling advantages over 

traditional electrical sensors, offering immunity to 

electromagnetic interference, high sensitivity, and multiplexing 

capabilities [2]. Despite growing interest in sustainable 

rehabilitation methods, the application of FOS in timber 

structures remains limited and underexplored. Most existing 

SHM studies have focused on concrete and steel, with 

relatively few addressing timber. This research seeks to fill that 

gap by experimentally evaluating the performance of long-

gauge FOS in monitoring strain and stress distributions in a 

timber beam subjected to bending. The main objective is to 

assess the feasibility and accuracy of using FOS for SHM in 

timber structures, particularly in heritage or rehabilitated 

buildings. 

The paper is structured as follows: Section 2 briefly reviews the 

state of the art in fiber optic monitoring of timber structures. 

Section 3 describes the experimental setup and testing 

procedure. Section 4 presents the experiment results and 

Section 5 discusses the performance of FOS in timber. Finally, 

Section 6 summarizes the main findings and outlines directions 

for future research. 

2 REVIEW OF THE CURRENT STATE OF THE ART  

Early explorations of fiber optic sensing in timber structures 

began with Sargent (2009) [3], who used Fabry–Perot 

interferometric FOS to monitor temperature during the kiln 

drying of radiata pine boards, confirming the method’s 

accuracy but also highlighting sensor fragility under extreme 

conditions. Marsili et al. (2017) [4] applied Fiber Bragg 

Gratings (FBGs) to both small specimens and historic timber 

beams (before and after carrying out a strengthening operation), 

successfully measuring strain and damping, and demonstrating 

the potential of FBGs for both laboratory and field applications. 

Expanding on structural monitoring and reinforcement 

assessment, Li et al. (2018) [5] instrumented Chinese 

traditional timber structures, including mortise-tenon joints, 

using FBGs to effectively track beam deflections and column 

inclinations under load. Further advancing this line of research, 

Helmer-Smith et al. (2021) [6] tested a scaled timber Warren 

truss monitored with distributed fiber sensors (DFOS), 
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successfully capturing strains, and highlighting the capabilities 

of FOS in truss systems. 

More recently, advanced applications have focused on 

distributed sensing and bond-slip monitoring. Ernewein and 

Woods (2023) [7] used DFOS to study glued-in steel rods 

within glulam elements during pull-out tests, capturing detailed 

strain distributions and bond-slip behavior that surpassed the 

resolution of traditional strain gauges. Extending DFOS 

application, Felicita et al. (2024) [8] instrumented timber 

foundation piles and monitored the stress distribution along 

their length, validating DFOS accuracy and showcasing its 

potential for buried timber elements. 

3 EXPERIMENT DESIGN 

 Loading Set-Up 

To evaluate the capability of FOS in monitoring the behavior 

of timber beams under bending, a four-point bending test was 

conducted, as shown in Figure 2. A sawn timber beam, graded 

as C18 according to the Spanish code [9], was placed on two 

hinged supports to simulate a simply supported condition The 

dimensions of the steel plates at the supports that were in direct 

contact with the timber beam were 180x180x40 mm. The load 

was applied using a hydraulic jack placed at the center of a 

rectangular steel spreader beam, which transferred the force to 

two loading points spaced 1 meter apart. Steel plates measuring 

85 mm in width and 3 mm in thickness were placed on the top 

surface of the timber beam at these two points to facilitate 

uniform load application. The total length of the tested beam 

was 3400 mm, with a span of 3000 mm. The beam had a depth 

(h) of 202 mm and a width (b) of 75 mm. 

 Equipment installed 

The beam's vertical displacements were recorded using two 

linear variable differential transducers (LVDTs). Additionally, 

five long-gauge strain sensors were installed on the beam using 

brackets screwed into the timber. Table 1 provides the detailed 

positions of these sensors. The gauge length of the FOS was 

500 mm. Figure 3 shows the position of the sensors installed 

for the test, both LVDTs and FOS. Figure 4 shows a detail of 

the elements used to distribute the load to the beam, while 

Figure 5 and Figure 6 provide a detailed view of the long-gauge 

sensors installed at sections S1 and S2.  

 

 

Figure 2. Loading set-up. Position of the monitored cross 

sections. 

 

 

Figure 3. Sensors installed in the tested beam. 

 

Table 1. Specifications for the sensors installed. 

Sensor ID 
Measuring 

units 

Related 

section 
 Position 

LVDTS2 mm S2 Mid-span  

LVDTS1 mm S1 1 m from 

mid-span 

LGS2TF microstrains S2 27.88 mm 

from the 

beam’s top 

face 

LGS2BF microstrains S2 26.58 mm 

from the 

beam’s 

bottom 

face  

LGS2MID microstrains S2 57.54 mm 

from the 

beam’s 

bottom 

face  

LGS1TF microstrains S1 30.48 mm 

from the 

beam’s top 

face  

LGS1BF microstrains S1 30.05 mm 

from the 

beam’s 

bottom 

face 

 

 

 

Figure 4. Central segment of the tested beam showing the 

loading elements. 
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Figure 5. FOS installed in Section S2. 

 

Figure 6. FOS installed in Section S1. 

4 RESULTS 

This section presents the results obtained from monitoring the 

timber beam during the bending test. A step-loading protocol 

was employed, in which the load was incrementally increased 

to predefined thresholds and then held constant to allow for 

stabilization. Displacement control was displacement-driven, 

with a constant loading rate of 0.05 mm/s. 

Figure 7 displays the force applied by the hydraulic jack over 

time, along with the displacements recorded by the LVDTs, 

plotted on a secondary vertical axis. The curves follow the same 

trend, showing that the displacements increase proportionally 

with the applied force. The number of steps in the displacement 

curves corresponds exactly to the loading steps of the applied 

force. The maximum recorded force was 11.19 kN, which 

resulted in LVDT displacements of 7.18 mm at Section S2 

(LVDTS2) and 4.99 mm at Section S1 (LVDTS1). 

 

Figure 7. Force and LVDT displacements over time during the 

bending test. 

Figure 8 and Figure 9 display the strain curves recorded by each 

long-gauge sensor throughout the test. Sensors installed below 

the geometric centroid of the beam cross section are expected 

to record tensile strains (negative values), while those 

positioned above the geometric centroid should register 

compressive strains (positive values). As expected, sensors 

LGS1TF and LGS2TF, both located above the geometric 

centroid, measured compressive strains and sensors LGS1BF, 

LGS2BF and LGS2MID measured tensile strains. 

A comparison of the curves also shows that, as expected, the 

further a sensor is from the geometric centroid of the cross 

section, the greater the strain it experiences. Additionally, 

sensors positioned at the mid-span of the beam experienced 

higher strain levels than those located at Section S1, which is 

nearer to the support. 

More specifically, the maximum recorded compressive strain 

at Section S2 was 590 µε, while the maximum tensile strain 

reached 502 µε. Sensor LGS2MID, located closer to the 

geometric centroid recorded a maximum strain of 277 µε. 

LGS2BF recorded a strain 1.81 times greater than that of 

LGS2MID. 

In contrast, the FOS located at Section S1 recorded 

significantly lower strain values, with a maximum compressive 

strain of 269 µε and a maximum tensile strain of 155 µε. This 

notable difference highlights the effect of the bending moment 

distribution along the beam. Since Section S2 is in the segment 

of the beam where the bending moment is at its maximum, 

higher strain values are expected and observed. Conversely, 

Section S1, being nearer to the supports where the bending 

moment is lower, experiences lower strain levels.  
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Figure 8. Strain curves for the long-gauge fiber optic sensors 

installed at S2. 

 

Figure 9. Strain curves for the long-gauge fiber optic sensors 

installed at S1. 

5 DISCUSSION 

 Determination of the modulus of elasticity 

To validate the use of fiber optic sensors (FOS) in this test, 

experimental stress values are compared to their theoretical 

counterparts. 

Theoretical stresses are calculated using Equation 1, while 

experimental stresses are derived from Equation 2. In both 

equations, σ represents the tensile or compressive stress (in 

N/mm²). In Equation 1, M is the bending moment at the cross-

section (N·mm), I is the moment of inertia of the cross-section 

(mm⁴), and y is the vertical distance (mm) from the location of 

the strain measurement to the geometric centroid of the cross-

section. In Equation 2, ε is the strain measured by the FOS, and 

Em,g is the timber modulus of elasticity (in N/mm²). 

 

 𝜎  =  
𝑀

𝐼
𝑦 (1) 

                                                                                         

 𝜎  =  𝜀 𝐸𝑚,𝑔 (2)                                                                                                                        

 

The modulus of elasticity Em,g can be obtained either from the 

Spanish code  CTE-DB-SE-M, based on the timber strength 

class, or measured experimentally according to UNE-EN 

408:2011+A1 [10], using the expression shown in Equation 3: 

 𝐸𝑚,𝑔  =  
3𝑎𝑙2− 4𝑎3

2𝑏ℎ3(2
𝑤2−𝑤1

𝐹2−𝐹1
−

6𝑎

5𝐺𝑏ℎ
)
 (3)                                                                                                                        

 

The parameters in this equation are defined as follows: 

• a: the distance from a loading point to the nearest 

support (1 m in this test), 

• l: the span between supports (3 m), 

• b and h: the width and height of the timber beam, 

respectively (provided in Section 3), 

• F₂ and F₁: two load values within a linear portion of 

the force–displacement curve (with a correlation 

coefficient ≥ 0.99), 

• w₂ and w₁: the corresponding displacements for forces 

F₂ and F₁, 

• G: the transverse modulus of elasticity, taken from the 

code for class C18, with a value of 560 MPa. 

Using the following values: 

• F₂ = 10990 N, 

• F₁ = 3200 N, 

• w₂ = 7.14 mm, 

• w₁ = 1.66 mm, 

the calculated value of Em,g is 14577 MPa. 

 Stresses at section S1 

Experimental stresses calculated for section S1 were compared 

to their theoretical values, as shown in Figure 10 . The 

difference between the experimental and theoretical value for 

LGS1TF accounts for 0.10 MPa, which is negligeable. 

However, the difference for LGS1BF is 1.59 MPa. More 

specifically, theoretical calculations provided greater values of 

tension, but lower compression stress than those obtained from 

the monitored strains. The maximum theoretical stress values 

are 3.83 MPa (at the location of the top sensor) and 3.85 MPa 

(at the location of the bottom sensor), which suggest the exact 

same stress at the tensioned fibers and at the compressed fibers, 

and it is justified by the 0.31 mm difference at the installation 

position in relation to their respective extreme face (top face or 

bottom face of the beam). However, experimental results of 

maximum stresses for LGS1TF and LGS1BF locations are 3.93 

MPa and 2.26 MPa respectively. These values denote a clear 

dominance of compression over tension along the length where 

the sensors are installed for section S1.  

At this point it is worth noting that the calculations assumed 

several hypothesis. Stress calculated with Equation 1 assumes 

that the material is homogeneous and linear elastic. As it is 

known for timber, this constitutes a simplification, since it is a 

heterogeneous material, with varying properties in each 

direction. Local defects, such as the presence of knots, where 

the density of the timber grain is higher, and some variability 

in the direction of the timber fibers can also influence the 

behavior of the beam under loading, leading to differences 

between the compression and the tension stresses. Minor 

differences in the installation of the sensors to the beam can 

also lead to differences in the results, such as the distance from 

sensor LGS2TF’s axis to the top face of the beam, which is 

27.88 mm, while for LGS2BF is 23.54 mm. Accuracy during 
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the installation should be as precise as possible to reduce 

variability.  

 

Figure 10. Theoretical stress versus experimental stresses at 

section S1. 

 Stresses at section S2 

As shown in Figure 11, differences can be observed between 

the experimental and theoretical stress values for each long-

gauge sensor installed at section S2. These differences are more 

evident when comparing the stress values at the final loading 

step (Step 6) of the test. 

For sensor LGS2TF, located in the compression zone of the 

beam, the experimental stress at Step 6 is 0.68 MPa higher than 

the theoretical value, representing an 8% difference. In the 

tension zone, for sensor LGS2BF, the theoretical stress exceeds 

the experimental value by 1.07 MPa, resulting in a 12.75% 

difference. Similarly, for sensor LGS2MID (also in tension), 

the theoretical stress is 0.66 MPa greater than the experimental, 

corresponding to a 14.12% difference. These discrepancies 

highlight the complexity of comparing real-world 

measurements with simplified analytical predictions, 

particularly in anisotropic materials such as timber. In addition,  

comparing sensors LGS2MID and LGS2BF — both located in 

the tension zone but at different distances from the centroid — 

further illustrates the consistency of the results. The maximum 

recorded strain at LGS2MID was 277 µε, while LGS2BF 

registered 502 µε, yielding an experimental strain ratio of 1.81 

as detailed in Section 4. Using Equation 1 and considering the 

sensors' relative positions and the maximum applied force of 

11.19 kN, the corresponding theoretical stresses are 4.61 MPa 

for LGS2MID and 8.24 MPa for LGS2BF — a ratio of 1.79. 

This close agreement between theoretical and experimental 

ratios supports the validity of the strain measurements and 

suggests a good correlation between sensor position and 

measured mechanical response. 

To provide a more comprehensive comparison, Table 2 

presents the absolute values of experimental and theoretical 

stresses for loading steps 3 and 6, along with the corresponding 

percentage differences. All long-gauge sensors were installed 

within the region of constant bending moment, as defined by 

the four-point bending configuration, ensuring that there is no 

uncertainty regarding the bending moment acting on the 

segment of the beam being analyzed 

To ensure the accuracy of theoretical stress calculations, key 

geometric parameters were precisely measured. The vertical 

distances (y) from each sensor to the beam’s geometric centroid 

were verified using a digital caliper, and the cross-sectional 

dimensions of the timber beam were also recorded with high 

precision. The modulus of elasticity, used to derive 

experimental stress values from strain measurements, was 

obtained through an independent experimental procedure 

following standard guidelines [10]. Therefore, it is not 

considered a source of significant error in the comparison. 

The observed differences are more likely attributed to the 

natural anisotropy and heterogeneity of timber, including the 

presence of knots, cracks, grain deviations, or localized density 

variations. These factors can influence the mechanical response 

at specific cross-sectional locations and lead to deviations from 

the idealized behavior predicted by classical bending theory. 

Table 2. Comparison of stresses at section S2 for loading steps 

3 and 6. 

 LGS2TF LGS2BF LGS2MID 

Experimental stress at 

step 3 (MPa) 

3.52 3.08 1.73 

Theoretical stress at 

step 3 (MPa) 

3.61 3.82 2.14 

Difference (%) 2.49 19.37 19.15 

Experimental stress at 

step 6 (MPa) 

8.54 7.26 4.01 

Theoretical stress at 

step 6 (MPa) 

7.78 8.24 4.61 

Difference (%) 8.90 11.92 13.99 

 

Figure 11. Theoretical stress versus experimental stress at 

section S2. 

6 CONCLUSIONS AND FUTURE RESEARCH 

This study focused on monitoring key parameters of a classified 

timber beam subjected to a four-point bending test, enabling a 

comparison between stresses derived from strain measurements 

and theoretical values based on classical strength of materials 

principles. The following conclusions can be drawn: 

• Fiber optic sensors (FOS) are effective tools for 

monitoring the strain behavior of timber structural 

elements. The results obtained during testing showed 

strong agreement with the expected behavior under a 

step-loading protocol. FOS provided high-resolution 

strain data, from which stress was reliably derived 
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using appropriate mechanical models and material 

properties. This capability highlights their value in 

structural health monitoring (SHM) applications. 

• FOS have the potential to detect localized anomalies 

in material behavior. For example, sensor LGS1TF-

Exp exhibited a 58.7% deviation from its theoretically 

derived stress value, a difference which cannot be 

overlooked. Possible explanations include the 

presence of defects—such as knots or abrupt grain 

deviations—that alter local strain behavior. 

Installation-related issues may also have contributed 

to the anomaly. 

• Precision in FOS installation is critical. The accuracy 

of strain measurements is highly dependent on proper 

sensor alignment, bonding quality, and the 

technician's skill. Even with optimal procedures, a 

certain level of uncertainty is inevitable due to the 

high sensitivity of these sensors (on the order of 2 µε), 

underscoring the importance of meticulous 

installation and calibration. 

• Further research is needed to systematically explore 

the causes of large deviations between measured and 

theoretical stress values. The nearly 59% error 

observed at the location of sensor LG-S1-BF is too 

large to be attributed solely to timber’s natural 

variability—such as knots, fiber misalignment, or 

moisture content—though these factors do influence 

strain-stress correlation. It is therefore likely that some 

form of installation or operational error occurred. 

Future work should include defect mapping, and 

improved sensor validation protocols to try to isolate 

and quantify these effects. 
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ABSTRACT: This study investigates an innovative pi-bracket sensor system integrating distributed fiber optic sensing with 

Brillouin Optical Time Domain Analysis to detect cracks in bridge girders near stiffeners. The system is designed to overcome 

challenges in crack detection at these critical locations. Experimental validation was conducted on a 3-meter steel beam featuring 

a welded stiffener positioned 25mm from a simulated crack. An aluminum pi-bracket served as a mounting device for the fiber 

optic sensor. Comparative analysis between experimental measurements and finite element simulations demonstrated the system's 

ability to detect crack openings as small as 0.2mm. Abaqus Finite Element Analysis predicted strain values of 145µɛ, while 

laboratory experiments recorded 129µɛ, a discrepancy of approximately 11%. Strain concentrations were localized to the regions 

where the pi-bracket was in direct contact with the beam. The strong correlation between computational models and empirical 

data substantiates the efficacy of the proposed sensing system. These findings highlight the system's potential for structural health 

monitoring of bridge infrastructure, particularly for detecting and quantifying cracks near stiffeners. 

 

KEY WORDS: Structural health monitoring; Crack detection; Fiber optic sensing; Brillouin optical time domain analysis. 

1 INTRODUCTION 

Short and medium span bridges are critical components of 

national transportation networks, significantly contributing to 

economic activity. As these structures age, they become 

increasingly vulnerable to structural deficiencies such as 

reduced load-bearing capacity, accidental damage, material 

deterioration, fatigue cracking, and foundation problems. Of 

particular concern is the formation and propagation of cracks 

in steel bridge girders, which can severely compromise 

structural integrity [1, 2, 3]. 

Steel girders, typically constructed from web plates with 

welded flanges, are fundamental to bridge design, however, 

they are prone to cracking. These cracks often arise due to 

cyclic stresses caused by vehicular traffic and environmental 

factors. Early detection is critical to prevent unexpected service 

disruptions and mitigate associated economic losses [4, 5]. 

Advancements in distributed fiber optic sensing (FOS) 

systems have significantly enhanced the monitoring of bridge 

structures. However, a critical limitation of this technology is 

its inability to reliably detect cracks that form near stiffeners, 

components that are especially susceptible to crack initiation 

and propagation due to residual stresses, geometric 

discontinuities from welding, and stress concentrations arising 

from restricted deformation under repeated loading cycles [8]. 

Because the FOS is distributed, it is often left unattached in the 

vicinity of stiffeners, resulting in unmonitored zones extending 

5-10 inches on either side of the stiffener, as illustrated in 

Figure 1. Furthermore, these unattached portions of the FOS 

lack the support and protection provided by the surrounding 

structure, rendering them more vulnerable to mechanical 

damage. These limitations raise concerns regarding the 

reliability of current monitoring systems in ensuring the 

structural integrity of steel bridges [1]. 

 

 

Figure 1. Steel girder with welded stiffener and DFOS in 

current monitoring system 

This study seeks to address these challenges by evaluating a 

pi-bracket fatigue sensor integrated with FOS technology and 

Brillouin Optical Time Domain Analysis (BOTDA) for crack 

detection in steel girders. The pi-bracket serves as protective 

housing for the FOS, preventing mechanical damage while 

enabling crack detection near stiffeners. Conventional 

Structural Health Monitoring (SHM) practices often avoid 

attaching FOS near stiffeners due to fiber bending constraints, 

limited space, or risks of mechanical damage during 

installation. 

This research aims to evaluate the pi-bracket sensor system’s 

ability to accurately detect and monitor cracks in critical areas 

of a simulated bridge girder and compare its performance with 
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Finite Element Analysis (FEA) predictions. Ultimately, this 

study aims to advance the development of more reliable SHM 

systems, promoting enhanced safety, proactive maintenance, 

and extended service life for bridge structures. 

2 METHODOLOGY AND EXPERIMENTAL SETUP 

 FEA Model 

A three-dimensional finite element model was developed 

using ABAQUS to simulate the experimental setup (Figure 2). 

The model consisted of three main components: the steel 

girder, aluminum pi-bracket, and steel stiffener, all modeled as 

deformable planar shell elements with thicknesses 

corresponding to experimental dimensions (8.9mm for girder 

web, 15.7mm for girder flanges, and 3.175mm for pi-bracket). 

Two distinct material properties were incorporated: steel and 

aluminum. The simulation focused on the linear elastic 

behavior within the elastic region of the elastic-plastic 

relationship, defining only Young's modulus and Poisson's 

ratio for both materials. Aluminum was characterized by a 

Young's modulus of 69000 MPa and a Poisson's ratio of 0.33, 

while steel was defined by a Young's modulus of 210000 MPa 

and a Poisson's ratio of 0.3. 

 

Figure 2. FEA model of the beam with the stiffener crack and 

pi-bracket. 

The connections in the ABAQUS model between the FOS, 

pi-bracket, and beam were modeled as rigid interfaces using tie 

constraints. This modeling approach enforces identical 

displacements and rotations at the interface, effectively 

simulating a completely rigid bond between the connected 

components. Although this represents an idealized scenario, it 

is sufficient for the purposes of this study, which focuses on the 

ability to detect the initiation of cracks. 

Regarding fiber rupture concerns, our detection system 

targets very small crack openings, significantly below 

thresholds that would risk fiber damage. Even in the unlikely 

event of rupture due to extreme crack propagation, the 

distributed nature of the FOS (with its dense sampling points) 

would instantly identify the failure location, enabling 

immediate inspector dispatch for visual assessment. This aligns 

with the research objective: developing a continuous 

monitoring system for early crack detection to support timely 

intervention and maintenance. 

To simulate a simply supported 3-meter steel girder, 

appropriate boundary conditions were applied to each end of 

the beam. A pinned support at one end restricted U1, U2, U3, 

UR2, and UR3, while a roller support at the other end allowed 

axial displacement. The crack was explicitly defined as a 

stationary geometric discontinuity using a face partition at the 

beam's midspan web location, extending 57mm vertically from 

the bottom edge of the web. The crack was defined as a contour 

integral, with the crack extension direction specified by 

selecting q-vectors. The singularity was modeled as a collapsed 

element side with a single node, with the mid side node 

parameter set to 0.3 to accurately capture the stress singularity. 

The simulation employed displacement-controlled loading 

(crack opening 0.1mm and 0.2mm), with concentrated forces 

applied at the midspan of the beam. The applied displacement 

was defined as the relative movement between two nodes 

located at the same height as the pi-bracket, on either side of 

the crack. This approach does not imply that the entire crack 

opens uniformly by the prescribed amount. Instead, the 

displacement at the crack tip remains zero, while the maximum 

opening occurs at the bottom of the web, between the flanges. 

For example, when a 0.2 mm displacement is specified the 

actual opening at the crack tip is zero, and the opening at the 

bottom of the web is larger. 

The model was primarily meshed using Quad 4-node shell 

elements (S4R), with Tri 3-node shell elements (S3) used in 

areas surrounding the crack. The S4R element is a general-

purpose quadrilateral element suitable for large-strain analysis, 

featuring six degrees of freedom per node with bilinear 

interpolation. 

This FEA model configuration enables accurate simulation 

of the beam's behavior under specified loading conditions, 

allowing detailed analysis of stress distributions and 

deformations, particularly in critical regions surrounding the 

crack and pi-bracket. The objective was to assess the pi-bracket 

sensor system's ability to detect strain changes resulting from 

crack formation, aligning with the study's focus on evaluating 

sensor performance for SHM applications. 

 Experimental Setup 

The test configuration used a W250x67 (W10x45) structural 

steel beam in a simply supported arrangement spanning 3 

meters to replicate typical in-service conditions (Figure 3). A 

controlled crack was introduced at midspan through precision 

machining, extending through the bottom flange and vertically 

57 mm into the web from the beam’s underside. 

 

Figure 3. Beam - Section. 

To simulate realistic bridge girder geometry, a transverse 

stiffener was welded to the beam 25 mm from the crack edge 

on one side. This asymmetric design was chosen to generate 

asymmetric stress distributions characteristic of operational 

bridge environments, and to allow a comparative assessment 

between stiffened and non-stiffened regions.  

The pi-bracket assembly was installed at a vertical offset of 

35 mm above the bottom flange’s upper edge, with its central 

axis aligned to the stiffener position (Figure 4). This spatial 

Pi-bracket 

Stiffener 

Beam 
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configuration was optimized to facilitate sensor routing while 

maintaining proximity to critical stress zones, enhancing 

detection sensitivity to crack-induced strain fields. The 

geometry of the stiffener, crack location, and pi-bracket 

placement were designed to emulate common failure scenarios 

observed in aging bridge infrastructure. 

 

 

Figure 4. Pi-bracket geometry. 

 Instrumentation 

The primary sensing technology used in this study was the 

DiTeSt SMARTape II fiber optic sensor, developed by 

Smartec. This high accuracy distributed strain sensor, 

comprising a single continuous optical fiber, was adhered to 

both sides of the beam using epoxy adhesive. On the front face, 

the sensor was routed over the simulated crack using the Pi-

Bracket, which acted as a protective harness (Figure 5a). In 

contrast, on the rear face, the sensor was directly bonded to the 

surface of the beam, passing through the crack region (Figure 

5b). Fiber continuity was ensured by routing it back at one end 

of the beam to transition from the front to the rear face. 

  

                       a)                                              b) 

Figure 5. a) SMARTape on the front face; b) SMARTape on 

the rear face. 

The termini of the SMARTape sensor were fusion spliced to 

extension fiber optic cables and connected to a Data 

Acquisition (DAQ) system, enabling real-time monitoring and 

data collection throughout the experiment. Various 

configurations of the Neubrescope NBX-6050 DAQ system 

were tested to identify optimal parameters prior to this 

experiment. The optimal configuration utilized a 5 cm sampling 

interval and a 10 cm spatial resolution. This system used 

BOTDA technology to achieve high-resolution strain 

distribution measurements along the length of the FOS. 

In the context of steel bridges, critical fatigue cracks are 

typically considered to be those with widths in the range of 0.1 

mm to 0.3 mm, as cracks within this interval are generally 

regarded as significant for early intervention and maintenance 

[10]. According to the manufacturer's specifications, the DiTest 

SMARTape II fiber optic sensor can detect cracks as small as 

0.2 mm, and we anticipated that the proposed pi-bracket system 

would achieve comparable performance. It is important to note 

that the objective of this study is to evaluate the ability of the 

pi-bracket sensor system to accurately detect and monitor the 

presence of cracks, rather than to quantify their exact widths. 

The primary goal is to determine whether the system can detect 

the initiation of a crack and enable the immediate intervention 

of an inspector for further evaluation. This approach supports 

proactive maintenance and timely intervention, which are 

critical for ensuring the safety and longevity of bridge 

infrastructure. 

 Fiber Optic Sensor Calibration 

The initial strain measurements lacked sufficient resolution 

to clearly identify the positions of the beam and pi-bracket 

along the FOS, as shown in Figure 6. 

 

Figure 6. Initial calibration strain profile. 

To address this limitation, a thermal localization method was 

used to enhance spatial resolution and accurately determine key 

positions. This involved applying localized heat to specific 

points on the beam, including both ends and the pi-bracket 

apex. The resulting strain response was recorded and compared 

to the initial unheated strain profile to isolate the thermal effect. 

Thermal localization was employed to precisely determine 

the positions of the beam faces and the pi-bracket along the 

FOS strain profile (Figure 7). In the experimental setup, a 

single, continuous SMARTape sensor was routed from the 

front to the rear face of the beam, enabling comprehensive 

strain measurements across the entire structure. By applying 

thermal localization, the locations of key structural features, 

such as the front face, back face, and the pi-bracket, were 

accurately mapped onto the strain profile. Specifically, Sensor 

S1 corresponded to the portion attached to the front of the 

beam, spanning from 5.75 meters (A) to 9.35 meters (C) along 

the sensor length, with the pi-bracket located at 7.55 meters (B). 

Sensor S2 referred to the segment affixed to the rear of the 
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beam, extending from 10.25 meters (D) to 13.25 meters (E), 

with the crack opening situated at 11.75 meters. 

 

Figure 7. Thermal localization of FOS segments. 

Figure 8 provides a comprehensive schematic representation 

of the entire FOS configuration, illustrating the spatial 

relationships between the SMARTape II sensor and the pi-

bracket. 

 
 

Figure 8. Schematic diagram of fiber optic sensor. 

 Experimental Procedure 

The experimental protocol was designed to rigorously assess 

the efficacy of the FOS and pi-bracket for crack detection and 

monitoring. This process involved a sequence of executed 

stages, beginning with initial configuration and calibration. The 

experimental apparatus, comprising the beam, pi-bracket with 

attached FOS and pi-gauge, was interfaced with the DAQ 

system. The Neubrescope NBX-6050 was adjusted to its 

optimal parameters, and the FOS was calibrated to ensure 

measurement accuracy. 

According to the manufacturer's specifications, the DiTest 

SMARTape II fiber optic sensor can detect cracks as small as 

0.2 mm [6]. We anticipated that the proposed pi-bracket system 

would achieve comparable performance. The static load 

experiment was conducted under controlled laboratory 

conditions at an ambient temperature of 19.8°C. The crack 

opening was controlled by a pi-gauge (PI-5-100, Tokyo Sokki 

Kenkyujo) with a resolution of 0.001 mm and an accuracy 

within ±1% according to the manufacturer, which was installed 

at the same height as the pi-bracket to ensure precise crack 

width [9]. Strain data from the SMARTape sensor were 

collected for the no-crack condition (referred to as the “initial 

crack”), as well as for crack opening widths of 0.1 mm and 0.2 

mm, with baseline readings taken before load application.  

A hydraulic actuator applied midspan loading to induce crack 

opening. The experiment used displacement control, pausing at 

a 0.1 mm crack width to record load and beam displacement 

data (Table 1). Strain measurements were taken at this point. 

The load was then increased to achieve a 0.2 mm crack width, 

where additional readings were obtained. Multiple 

measurements were taken and averaged to generate strain 

profiles for each crack opening width. 

3 RESULTS AND DISCUSSION 

 FEA Results 

The FEA model developed in Abaqus was used to simulate 

the experimental setup and to investigate the strain behavior of 

the pi-bracket sensor system under controlled crack opening 

conditions. This modeling enabled a detailed examination of 

strain patterns along the FOS. 

Two distinct strain profiles were analyzed, as shown in 

Figure 9. The first strain profile (blue line in Figure 9) 

represents a scenario without the pi-bracket, reflecting current 

SHM practices where a continuous FOS is left unattached near 

stiffeners, resulting in an unmonitored zone of about 10 cm on 

each side due to installation constraints. This profile serves as 

a baseline for comparison, illustrating the strain distribution in 

the absence of the pi-bracket’s influence. 

The second profile (red line in Figure 9) incorporates the pi-

bracket, capturing strain measurements continuously along the 

entire beam span, including the areas near stiffeners. The green 

vertical lines in Figure 9 identify the position of the pi-bracket 

along the strain profile, providing spatial reference points for 

interpreting the sensor configuration. 

To match the DAQ averaging from the experiment, strain 

profiles were averaged between two points along the path. 

 

Figure 9. FEA strain profiles for 0.2mm crack: Comparison of 

Beam with and without Pi-Bracket. 

Figure 9 demonstrates that the pi-bracket allows for 

uninterrupted strain monitoring across the region near the 

stiffener and crack, effectively eliminating the unmonitored 

gaps seen in the baseline scenario. Specifically, the region 

between 1.3 m and 2.2 m along the sensor corresponds to the 

segment of the FOS routed through the pi-bracket for the 

second modeled scenario. In contrast, for the first scenario 
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without the pi-bracket, the strain profile is interrupted to reflect 

current practice where the FOS is left unattached to the surface 

near stiffeners and therefore does not register any strain in these 

regions. 

 

Figure 10. FEA strain profile of Pi-Bracket for 0.2mm crack: 

Identification of contact and non-contact Pi-Bracket regions. 

Figure 10 further isolates the strain response of the pi-bracket 

section from the overall profile shown in Figure 9, again for a 

0.2 mm crack opening. In this figure, black vertical lines 

indicate the portions of the pi-bracket that are not attached to 

the beam, while the areas marked by green vertical lines on 

either side represent the sections of the pi-bracket that are glued 

to the beam. This distinction is important for interpreting the 

strain distribution, as the attached and unattached regions of the 

pi-bracket exhibit different mechanical behaviors due to their 

interaction with the beam. 

For further clarification, Figure 11 provides a schematic of 

the pi-bracket, highlighting the attached and unattached regions 

relative to the beam, which aids in interpreting the strain 

profiles in Figures 9 and 10. 

 

Figure 11. Pi-bracket – part identification 

These FEA results demonstrate the effectiveness of the pi-

bracket in capturing and distributing strain from the crack 

region, allowing for continuous monitoring even near critical 

features such as stiffeners. This provides a valuable reference 

for comparison with the experimental data. 

 Experimental Results 

The experimental phase of this investigation yielded 

extensive strain data collected by the SMARTape FOS system. 

These measurements provide valuable insights into the 

performance of the pi-bracket sensor configuration under 

controlled crack propagation conditions. Figure 12 displays the 

averaged strain profiles derived from multiple measurements, 

showing the sensor's response to progressive crack opening 

widths of 0.1 mm and 0.2 mm, as well as the initial state with 

no crack for direct comparison before and after crack initiation. 

The green vertical lines in Figure 12 identify the strain 

segments S1 and S2: S1 corresponds to the front face of the 

beam, where the FOS is routed via the pi-bracket, and S2 

corresponds to the back face of the beam, where the FOS is 

attached directly over the crack (since there was no stiffener on 

this side). This setup, with the stiffener welded to one side only, 

allows for a direct comparison of the strain profiles between 

both regions. 

 

Figure 12. SMARTape averaged strain profiles. 

Figure 13 presents the strain profiles obtained by subtracting 

the initial strain profile (no crack condition) from those 

measured at 0.1 mm and 0.2 mm crack openings. This approach 

isolates the strain response resulting specifically from crack 

widening, eliminating any residual or pre-existing strains 

within the FOS. The data indicates a significantly higher strain 

value (2382.1 µɛ) recorded by the sensor section S2, which was 

directly bonded over the crack, compared to the maximum 

strain recorded by sensor section S1, distributed over the pi-

bracket (129.1 µɛ). All the results are summarized in Table1. 

 

Figure 13. SMARTape strain profiles isolating crack-induced 

strain. 
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Table 1. Experiment and FEA Results. 

Experiment FEA Simulation 

Crack width 
[mm] 

Load [kN] 

Beam 

displacement 

[mm] 

S1 Strain 
max. [µɛ] 

Strain Pi-

Bracket 

Crown [µɛ] 

S2 Strain 
max. [µɛ] 

Strain Pi-

Bracket 

Crown [µɛ]  

Strain Pi-

Bracket max. 
[µɛ] 

Strain Beam 

no bracket 

max. [µɛ] 

0 0 0 0 0 0 0 0 0 

0.1 15.9 -1.26 60.6 -8.3 1402.9 -5.4 72.95 73.7 

0.2 31.9 -2.38 129.1 -11.04 2383.1 -10.8 145.14 146.6 

 

 

Figure 14. Detailed strain profiles for Section S1. 

Figure 14 presents a detailed analysis of the strain profiles 

for section S1, which includes the pi-bracket at its center. 

The green vertical lines indicate the position of the pi-

bracket along the strain profiles. Although the data exhibits 

some residual noise, the overall trends in the strain profiles 

demonstrate the sensor's capacity to detect strain changes 

induced by crack opening, even when mediated by the pi-

bracket. Potential sources of noise include environmental 

vibrations and temperature fluctuations. The data from S1 

provides insights into how the pi-bracket influences strain 

distribution compared to the direct measurement at the crack 

location (S2). 

 Comparison 

This section presents a comparative analysis of 

experimental results obtained from SMARTape sensor 

measurements and FEA predictions, evaluating the efficacy 

of the pi-bracket sensor system for crack detection near 

stiffeners. The comparison focuses on strain measurements 

at critical locations, specifically the pi-bracket and crack-

adjacent regions (Figures 15, 16).  

FEA simulations predicted a maximum strain of 145.1 µɛ 

in the pi-bracket at the location of direct beam attachment 

for a 0.2 mm crack opening. Experimentally, the maximum 

strain recorded by sensor section S1, distributed over the pi-

bracket, was 129.1 µɛ for an equivalent crack opening 

(Figure 15). Again, the green vertical lines indicate the 

position of the pi-bracket along the strain profile. This 

represents an approximate 11% discrepancy between the 

FEA prediction and the experimental measurement. The 

observed level of agreement suggests that the numerical 

model adequately predicts the strain behavior of the pi-

bracket under the applied loading conditions. 

 

Figure 15. FEA vs Experiment comparison for 0.2mm 

crack. 

Figure 16 presents the same strain results as Figure 15 but 

focuses exclusively on the strains within the pi-bracket for 

both the FEA simulations and laboratory experiment at a 0.2 

mm crack opening.  

 

Figure 16. FEA vs Experiment comparison of Pi-Bracket 

for 0.2mm crack. 
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Figure 16 illustrates the separation of the unattached 

central region of the pi-bracket from the beam by blue 

vertical lines, distinguishing it from the attached areas on 

either side. The FEA predicted a maximum strain of -10.8 µɛ 

at the crack tip for a 0.2 mm crack opening. Experimentally, 

the SMARTape sensor section S1 recorded a strain of -11.04 

µɛ at the pi-bracket crown (Figure 15), demonstrating close 

agreement with the FEA results. 

Although the strain magnitudes at the pi-bracket crown 

were relatively small compared to those measured directly 

over the crack (2383.1 µɛ), the SMARTape sensor affixed to 

the beam-bonded portions of the pi-bracket successfully 

detected the crack, registering strains of 129.1 µɛ versus 

145.1 µɛ predicted by FEA. This 11% discrepancy validates 

the numerical model’s capability to simulate the pi-bracket’s 

behavior under crack propagation while highlighting the 

sensor system’s sensitivity. 

Key Findings: 

Validation of Computational Framework: The strong 

correlation between experimental strain measurements (129 

µɛ) and FEA predictions (145 µɛ) confirms the reliability of 

the numerical model in representing the pi-bracket response 

to crack-induced strain. 

Strain Gradient Localization: Elevated strain values were 

predominantly localized at the crack interface, with sensor 

section S2 (directly over the crack) showing significantly 

higher strains than section S1 (pi-bracket region). This 

confirms the influence of geometric discontinuities on strain 

distribution. 

Detection Validation: The pi-bracket sensor system 

demonstrated sufficient sensitivity to detect crack initiation, 

with strain magnitudes large enough to be readily observed. 

Pi-Bracket Efficacy: The pi-bracket functions effectively 

as both a strain-transfer mechanism and a protective 

interface for the fiber optic sensor, supporting its potential 

integration into SHM systems. 

The observed 11% difference between experimental and 

simulated strains can be attributed to simplifications in the 

FEA model, real-world experimental factors such as sensor 

performance and data acquisition variability, and mesh 

density limitations imposed by the software version used. 

Despite these factors, the overall agreement substantiates the 

pi-bracket sensor system’s effectiveness for crack detection 

in bridge girders. 

Despite these discrepancies, the overall agreement 

between the experimental results and FEA predictions 

validates the effectiveness of the pi-bracket sensor system 

for crack detection in bridge girders. The observed 11% 

discrepancy suggests that simulation captures experimental 

behavior with reasonable accuracy, as expected. 

 Advantages of the Pi-bracket Sensor System 

The pi-bracket sensor system provides improved accuracy 

in detecting cracks near stiffeners, which are typically 

challenging to monitor. It functions as a protective harness, 

shielding the continuous FOS from mechanical damage, a 

common issue when sensors are left unattached around 

stiffeners due to bending limitations. This design enables 

uninterrupted and direct strain measurements along the 

entire length of the girder, including critical regions near 

stiffeners. 

By integrating BOTDA technology, the system simplifies 

data acquisition and demonstrates strong alignment with 

FEA predictions. This combination offers a reliable and 

efficient approach for validating computational models and 

facilitating proactive bridge maintenance strategies. 

 Real-World Applicability, Limitations, and 

Capabilities 

The findings of this study highlight the potential of the pi-

bracket sensor system for practical application in bridge 

infrastructure, particularly for monitoring high-risk areas 

near stiffeners. The system is recommended for use in both 

new bridge construction and retrofitting existing structures 

to enable targeted monitoring of these critical regions. Its 

localized measurement capability allows for deployment in 

areas prone to cracking, while the pi-bracket serves as a 

protective harness for the FOS. 

It should be emphasized, however, that the authors do not 

recommend the use of this system for monitoring existing 

cracks. Given the higher cost of FOS compared to 

conventional methods such as strain gauges, it is not cost-

effective for short-term monitoring where the sensor would 

be installed, the crack repaired at some point, and then the 

sensor removed or replaced. Instead, this system is best 

suited for long-term, continuous monitoring, where the FOS 

is permanently attached to the surface of the girder. This 

makes it particularly advantageous for bridges that are 

approaching or have exceeded their intended service life, 

especially in cases where local authorities lack the financial 

resources for comprehensive retrofitting or replacement. In 

such scenarios, the pi-bracket sensor system provides a cost-

effective solution for ongoing structural health monitoring, 

enabling proactive maintenance and extending the 

operational lifespan of critical infrastructure. Furthermore, 

the system is well-suited for deployment immediately 

following crack repair, to monitor the repaired region and 

prevent recurrence. 

It is important to recognize that this system has certain 

limitations. The installation process can be complex, and 

environmental factors may influence performance. 

Additionally, the initial cost of implementation may exceed 

that of traditional methods, although the long-term benefits 

could outweigh these expenses. Furthermore, experimental 

validation was limited to a single beam, necessitating further 

testing on larger-scale structures to confirm its effectiveness. 

Despite these constraints, the pi-bracket sensor system 

offers several advantages, including accurate crack 

detection, quantitative strain measurement, remote 

monitoring capabilities, and integration with FEA models. 

Its protective design enhances sensor durability and 

reliability. These attributes make it a valuable tool for 

improving crack detection in bridges, contributing to 

enhanced safety, reliability, and longevity of critical 

infrastructure. 

While the initial cost of the pi-bracket FOS system may 

exceed that of traditional methods, its long-term benefits 

provide significant value. The system enables continuous, 

real-time monitoring of strain and crack development, 

allowing for early detection and timely maintenance 

interventions that enhance structural safety and reliability. 

This proactive approach helps extend the service life of 
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bridges by preventing severe damage and delaying costly 

retrofits or replacements. Additionally, continuous 

monitoring reduces the need for frequent manual 

inspections, lowering maintenance costs and minimizing 

traffic disruptions. The protective design of the pi-bracket 

also improves sensor longevity, reducing replacement 

frequency. 

It is essential to emphasize that the primary objective of 

this study was not to investigate fracture mechanics or crack 

interaction phenomena but rather to evaluate the pi-bracket 

sensor system's ability to detect early-stage cracks. This 

capability facilitates preventative measures against potential 

structural failures in bridge infrastructure. 

Given the limitations of existing inspection protocols [3, 

7], which rely heavily on periodic manual assessments, this 

system offers a continuous real-time monitoring solution. It 

enables immediate crack detection and automated alert 

generation, allowing for timely deployment of inspectors for 

detailed visual examination and initiation of necessary 

repairs. 

To address challenges associated with fatigue loading and 

environmental variations in real-world conditions, future 

implementations could incorporate frequent data acquisition 

(e.g., every five minutes). By subtracting consecutive strain 

measurements, the system could isolate strain changes 

attributable solely to crack formation while minimizing the 

influence of dynamic bridge responses or environmental 

factors. Further investigation is needed to validate this 

differential approach under complex loading scenarios. 

Additionally, research should explore the effects of 

temperature fluctuations and determine optimal averaging 

times to enhance accuracy and reliability. 

 Recommendations for Future Research 

Future research should refine the FEA model with higher-

resolution meshing to better match experimental results. The 

pi-bracket system also requires testing under dynamic and 

fatigue loading, ideally on full-scale bridges, to evaluate 

durability and real-world performance. Laboratory testing at 

a constant 19.8°C does not account for temperature 

variations; therefore, it is recommended to assess 

temperature effects to distinguish them from crack-induced 

strains. Additionally, future work should address detection 

threshold quantification and evaluate false-alarm rates. 

Developing standardized mounting protocols, including 

adhesive choice and bracket alignment, will improve field 

deployment consistency. Finally, cost-benefit analyses 

comparing system costs to savings from early crack 

detection are essential to support practical adoption. 

4 CONCLUSIONS 

This study demonstrates the efficacy of the pi-bracket 

sensor system as a viable method for crack detection near 

stiffeners in bridge girders, exhibiting reliable detection 

capabilities for crack opening widths of 0.2 mm. The FOS 

distributed over the Pi-bracket recorded a strain of 129 µε at 

a 0.2 mm wide crack opening. Comparative analysis 

between FEA and laboratory experiments utilizing a FOS 

provided significant insights into the pi-bracket sensor's 

performance. The concordance between experimental 

results and Abaqus simulations corroborates the system's 

effectiveness and reliability, illustrating the robustness of 

both the sensor and the modeling approach employed for 

design optimization. 

The pi-bracket configuration successfully addresses the 

challenge of monitoring traditionally inaccessible areas near 

stiffeners, while the integration of BOTDA sensing 

facilitated reliable distributed measurements along the beam 

length. These findings indicate that the pi-bracket sensor 

system presents a promising and practical solution for SHM 

of bridge infrastructure, particularly in critical regions 

susceptible to fatigue cracking. 

Future research directions may include comparative 

analysis of girder strain profiles under two loading 

conditions, first resulting in crack openings of 0.2 mm, 

versus the same load applied to an uncracked girder. The 

primary objective would be to isolate and quantify the strain 

variations attributable solely to crack formation. To achieve 

this, the strain profile of the uncracked girder to be 

subtracted from that of the cracked girder under identical 

loading conditions. This approach effectively eliminates the 

influence of the applied load, revealing the strain signature 

specific to the presence and severity of the crack. 
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ABSTRACT: Monitoring represents an effective approach for addressing the diverse challenges associated with the maintenance 

of civil engineering structures. It contributes to improving both the availability and safety of these structures. By increasing the 

amount of information available about the structure, monitoring supports better-informed decisions regarding its preservation. 

Due to the complexity of monitoring applications, specific use cases are outlined. A key advantage of these use cases is that new 

technologies can be tested within well-defined and limited scopes. The use cases “monitoring of known, localized damage,” 

“monitoring of known deficits identified through reassessment or resulting from outdated design procedures” and “monitoring 

aimed at assessing traffic loads and their effects” currently account for the majority of implemented monitoring measures. Their 

practical implementation is demonstrated through case studies from the Brandenburg State Road Authority. Additional use cases, 

such as “monitoring to support structural inspections” - for example through the use of imaging techniques - and “monitoring of 

major structures,” such as large viaducts, are gaining importance, with initial practical examples already present in Europe. Future 

applications reveal potential for expanded use, particularly in the context of “monitoring to support predictive lifecycle 

management.” This will become increasingly important in the implementation of digital twins, as announced in the national BIM 

master plan. Furthermore the concept of a “Birth Certificate” is intended to establish a reference state of the structure prior to 

commissioning, which can then be used for comparison with future measurements over time. The integration and interaction of 

these individual use cases pave the way for the implementation of digital twins. 

KEY WORDS: STRUCTURAL HEALTH MONITORING, USE CASES, BRIDGES, DIGITAL TWIN 

 

1 INTRODUCTION 

Currently, the maintenance management of civil engineering 

structures is characterized by a reactive approach, where 

interventions are only initiated once visible damage has 

occurred. The introduction of a predictive lifecycle 

management strategy offers considerable potential to 

fundamentally improve the reliability, resilience and long-term 

availability of infrastructure systems. 

Today’s civil engineering structures are confronted with a 

growing set of challenges — including aging infrastructure, 

significant maintenance backlogs, rising traffic loads, and a 

shortage of qualified personnel to plan and carry out necessary 

maintenance activities. 

These challenges are contrasted by advancements in the field 

of digitalization. Examples include planning with Building 

Information Modeling (BIM), data analysis using artificial 

intelligence (AI) methods, the implementation of digital twins, 

and the use of augmented or virtual reality (AR/VR) for 

periodic condition assessment as part of structural inspections. 

These technologies -including the use of monitoring systems as 

highlighted in this article - can contribute significantly to 

supporting the objectives of structural maintenance. By 

combining these various methods, a holistic evaluation of 

digitally available information becomes possible, paving the 

way for more efficient, proactive, and integrated infrastructure 

management. 

2 CURRENT USE OF MONITORING ON FEDERAL 

HIGHWAYS 

This article follows the definition of monitoring provided in the 

DBV (German Concrete and Construction Technology 

Association) guideline. According to this definition, 

monitoring describes the overall process of recording, 

analyzing, and evaluating structural responses and/or loads 

using a measurement system over a representative period of 

time (i.e., temporal development of the measured variable; 

continuous, periodic, or event-based measurements, either 

global or local) [1].  

Monitoring is currently limited to addressing existing 

damages and deficits, as shown by a survey conducted by the 

German Federal Ministry for Digital and Transport (BMDV) 

among state road authorities and the Federal Highway 

Company. The survey, conducted in 2020, identified 

approximately 100 monitoring applications, which primarily 

involved bridges built between 1960 and 1980. The main 

reason for implementing monitoring was to capture structural 

responses, typically using deformation and temperature sensors 

[2]. 

There are several reasons why the use of monitoring on 

bridges along federal highways remains relatively limited. One 

major factor is the lack of specialized knowledge regarding the 

implementation of monitoring. This gap can be addressed 

through the development and application of standardized 

guidelines such as the DBV leaflet “Monitoring: Planning, 

Monitoring of civil engineering structures – current and future use cases 
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Contracting, and Operation,” the DGZfP (German Society for 

Non-Destructive Testing) leaflet B 09 “Continuous Monitoring 

of Structures,” and the pre-published report “Guidelines for 

Strategic Monitoring of Structures” [1; 3; 4].  

Professional training, along with the involvement of 

engineering firms and specialist consultants for the various 

aspects of monitoring, can also provide valuable support. 

Another key barrier is the difficulty in demonstrating the 

economic benefit of monitoring. The methodology presented in 

the research project “Economic Analysis of Monitoring 

Measures” for evaluating the cost-effectiveness and added 

value of monitoring can help encourage broader adoption [5]. 

The high complexity of the topic - particularly regarding the 

planning, implementation, and evaluation of monitoring 

measures - is another limiting factor. In this regard, the use of 

defined application cases and the step-by-step introduction of 

new technologies within clearly defined and manageable 

scopes can provide effective support. 

3 USE CASES MONITORING 

The implementation of use cases is a strategy to increase the 

use of monitoring. Use cases can be derived from project 

objectives and represent processes for achieving those 

objectives [6]. The advantage of use cases is that the use of new 

technologies can be tested in defined and limited areas, 

allowing obstacles to be overcome. The monitoring use cases 

existing in the federal highway sector are shown in Figure 1. 

 

 

Figure 1. Monitoring use cases. 

 Common use cases 

The use cases of monitoring of known localized damages, of 

known deficits from reassessment or resulting from outdated 

design procedures and using monitoring to determine loads and 

loads effects representing the most common use cases in 

Germany. These use cases are employed to address specific 

questions regarding the civil engineering structures, their 

condition, and its development over time. Starting from known 

damages or deficits, a monitoring concept is developed that is 

tailored to the structure and the specific question at hand. 

Monitoring of known localized damages: 

In this case, a local monitoring system is typically deployed. 

This local monitoring provides a good opportunity for 

monitoring the progression of damage. By monitoring the local 

condition, an estimation of further local developments can be 

made. This approach serves to extend the remaining service life 

and increase safety. 

 

 

Figure 2. Bridge over the DB AG facilities along the B1 in 

Brandenburg an der Havel. 

This use case is implemented on the bridge over the facilities 

of the Deutsche Bahn AG (DB AG) along the B1 in 

Brandenburg a der Havel (Figure 2). The structure was built in 

1971 and is a single-span bridge with a span length of 47 

meters. Separate, parallel superstructures carry the two traffic 

lanes. Their cross-sections are nearly identical and consist of 

two steel box girders and an orthotropic deck plate. 

Numerous damages were identified on the structure during 

the structural inspection. These include, among others, cross-

sectional reductions due to corrosion, fatigue cracks in the 

deck, and an abnormal positioning of the roller bearings. An 

object-specific damage analysis (OSA) demonstrated that the 

bearing positions are due to misalignment of the abutments 

caused by settlement. Geodetic measurements of the abutments 

showed that this process has not yet stabilized, indicating that 

further tilting is to be expected. Since the deformation capacity 

of the roller bearings is already highly stressed, permanent 

monitoring of the bearing movements is required. 

 

 

Figure 3. Monitoring system on the bridge bearing. 

This monitoring task is realized by installing inductive 

displacement transducers on each roller bearing (Figure 3) [9]. 

This allows for the monitoring of the remaining available 

bearing travel to ensure it is not exceeded. To identify long-
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term trends, the measurement data from the temperature 

monitoring system of the superstructure are also used. Over the 

years, a nearly linear relationship between bearing movement 

and temperature has been observed (Figure 4). Changes in the 

regression relationship between temperature and bearing 

movement can serve as an indicator of a system change. 

 

 

Figure 4. Evaluation of measurement data for one year. 

Monitoring of known deficits from reassessment or resulting 

from outdated design procedures: 

This use case is relevant when deficits in structures are 

identified during reassessment or when similar deficits are 

found in comparable constructions. Often, there are no visible 

damages yet, and the type or location of potential damage is 

unknown. Global monitoring enables the monitoring of the 

deficient structure. Global monitoring is designed to capture 

and evaluate global parameters of a structure that may indicate 

damage. A significant change in the global stiffness of the 

structure is generally required to enable precise system 

response measurements via global monitoring. 

These parameters can be determined from the system 

response, for example, by measuring acceleration or 

deformation. The measurements serve to capture changes that 

develop in the structure over time. Provided the structure 

behaves in a ductile manner with failure warning signs, the 

basis for global monitoring of system reactions is that impacts 

and damages significantly affect the system stiffness, thereby 

having a direct influence on the load-bearing behavior of the 

structure. The various methods of global structural monitoring 

are based on the assumption that damages in the structure can 

be detected by changes in its global load-bearing behavior. 

Through measurements of these parameters and subsequent 

evaluation, conclusions can be drawn about the nature and 

location of the damage [10; 11]. 

Alternatively, global monitoring can be designed to detect 

the cause of the damage. For this, an acoustic emission 

monitoring system could be used, for example, to detect strand 

wire fractures in pre-stressed concrete structures [12] or fatigue 

crack formation in orthotropic deck slabs [13]. With a 

sufficiently large monitoring system, all areas where the deficit 

was identified can be monitored. The monitoring system 

detects and localizes any damage that occurs from the start of 

the monitoring.  

The use of local monitoring can be applied, for example, in 

the case of fatigue in the coupling joint during recalculation 

deficits or shear force recalculation deficits, such as in the local 

monitoring of shear areas to detect the formation of shear 

cracks. 

 

 

Figure 5. Bridge over the Havel along the B96 in 

Fürstenberg/Havel. 

The measure for the bridge over the Havel River along the 

B96 in Fürstenberg/Havel serves as an example of this use case 

(Figure 5). The structure was built in 1968 as a single-span pre-

stressed concrete slab with a span of approximately 16 meters. 

Hennigsdorf pre-stressing steel was used, which is now 

classified as being at risk of stress corrosion cracking. As part 

of the object-specific investigations to verify the failure 

warning behavior, samples of the pre-stressing tendons were 

taken. Broken tendons were already identified during the 

sample extraction. Laboratory tests confirmed that the tendons 

did not meet the required fracture elongation or tensile strength. 

The fracture patterns show significant initial cracks due to 

stress corrosion cracking. 

Due to the importance of the structure for traffic, closure to 

traffic is only permissible in extreme cases. Therefore, a 

monitoring system using acoustic emission was installed on-

site. The measurement system consists of 12 acoustic emission 

sensors, each positioned outside the navigation channel of the 

Havel River. Since its commissioning, a total of 10 tendon 

fractures have been recorded at the structure by the end of 2022. 

Each tendon fracture triggered an event-based structural 

inspection. 

Monitoring aimed at assessing traffic loads and their effects 

The actions on the structure can include direct effects from 

external loads (e.g. dead loads, traffic loads, wind or snow 

loads) and indirect effects due to restrained deformations 

(thermal stresses) caused by climatic influences (temperature) 

or settlement differences.  

Climatic influences such as humidity and temperature can be 

measured through weather stations. The impact of temperature 

on the structure is measured using temperature sensors within 

and on the structure. Determining the temperature plays an 

important role in compensating for the temperature effect on 

measurements. In certain use cases (e.g., monitoring of 

coupling joints), temperature is a significant influencing factor 

for the assessment. Traffic and the composition of traffic are 

also of great importance for capturing the relevant effects on 

bridge structures. The use of Bridge Weigh-in-Motion (B-

WIM) systems can, for example, determine the actual current 

traffic loads [14].  
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Figure 6. Bridge over the Spree along the L35 in 

Fürstenwalde/Spree. 

In the State Road Agency, a study was conducted to 

realistically capture object-specific target load levels. 

Monitoring systems were installed on individual structures to 

accurately record the respective boundary conditions [15]. One 

example is the bridge over the Spree River along the L35 in 

Fürstenwalde/Spree. The Spree crossing consists of a main 

bridge and a bridge over a side branch of the river (Archen arm) 

(Figure 6). The main bridge is a pre-stressed arch bridge with a 

span of 67 meters. The bridge over the Archen arm was 

constructed as a composite structure with a steel girder deck 

and concrete deck plate. It has individual spans of 25.5 meters, 

28 meters, and 29 meters. 

The determination of the target load level is relevant because 

there is a comparatively high traffic load and congestion due to 

junctions before and after the structure.  

 

 

Figure 7. Measuring system on the bearing shelf/seat of the 

abutment. 

To capture the effect, strain gauges were used, and 

temperature sensors were deployed to compensate for the 

measurement values' temperature influence. Temperature 

compensation in this use case is carried out in two steps: first, 

real-time compensation during measurement using a 

Wheatstone bridge; second, calibration of the recorded values 

by determining a baseline load level for a specific time series. 

The measurement system was installed on the bearing shelf 

of the abutment (Measurement system on the bearing shelf/seat 

of the abutment, Figure 7). The verification of the measurement 

results was carried out through camera recordings of the 

ongoing traffic. The measurement took approximately two 

years. As a result, it was demonstrated that the target load level 

BK30/30 can be justified for the structure. The subsequent 

recalculation revealed deficits in the fatigue performance. 

However, the available measurement data allows for the 

derivation of an object-specific fatigue load model to optimize 

the verification process. This step is still pending. 

 Use cases with initial practical examples 

"Monitoring to support structural inspection" and "Monitoring 

of major structures" are use cases where initial implementations 

are present in practice, but further research and support for 

implementation are still necessary. 

Monitoring to support the structural inspection: 

As part of the structural inspection according to [8], monitoring 

can be used to provide supplementary information that cannot 

be obtained through conventional inspections. The use of 

monitoring is possible at various stages in the structural 

inspection process. One option is the use of instrumented 

components to assess the behavior. For example, instrumenting 

bridge deck expansion joints and measuring performance 

parameters offers the advantage that these components are 

repaired based on actual loading. Instrumented components 

provide information on existing damage to the relevant parts 

and, if necessary, allow the prediction of future developments 

[16]. By now this use case is not aligned with DIN 1076 and is 

currently under discussion in the relevant standardization 

committees. 

An alternative is the use of image-based monitoring, where 

structural images are automatically captured, and the 

georeferenced 3D geometry of the structure is subsequently 

determined. This allows the identification of areas of the 

structure that should be further examined during the structural 

inspection.  

The image data can also be used for AI-supported analysis to 

automate the detection of cracks, spalling, or changes [17; 18]. 

Extracting damage information and locations, such as cracks 

from the captured image datasets, parallels the system 

identification methods of sensor-based monitoring [19]. Parts 

of traditional hands-on inspections can be enhanced and 

improved through digital tools.  

Alternatively, Virtual and Augmented Reality (VR/AR) can 

also be used in the context of structural inspections. In this case, 

image-based techniques are also applied, where image data is 

georeferenced and linked to an existing 3D model. 

Monitoring of major structures: 

Monitoring of major structures refers to structures whose 

failure would have a large impact on the transportation 

network. Examples of such structures include major viaducts or 

river crossings. For these structures, the use of monitoring can 

be a useful addition to ensuring availability, even when no 

damage or deficits are currently known. To implement this use 

case, identification of the relevant structures is necessary. Their 

significance can stem from traffic-related or structural reasons. 

Traffic-related reasons include the importance of the structure 

for network availability or high traffic volumes. Structural 

reasons arise from the size and location of the structure, 

considering any limited options for providing short-term 

replacement. For this use case, global monitoring is relevant. In 

contrast to the use case "Monitoring with known deficits," no 
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deficits need to be known in this case. This use case can apply 

to both new and existing structures. 

Monitoring of major structures is more widespread abroad, 

as demonstrated by the monitoring of the Ponte da Lezíria 

bridge built in Portugal in 2007 [20]. The bridge was equipped 

with an extensive monitoring system to measure static and 

dynamic parameters. This system supports the structural 

inspections, and the asset owner has continuous access to an 

assessment of the structure's condition [20].  

Similarly, at the bridge in the Digital Test Field Highway, the 

embedded sensors and the aggregation of the measured data 

provide the asset owner with continuous access to the current 

condition of the bridge, allowing for quick and effective 

decision-making when changes in the condition are detected 

[21]. The benefits of using preventive monitoring for bridges 

without existing damage have been demonstrated in [22]. 

 Potential future use cases 

The use case "Monitoring to support a Predictive Lifecycle 

Management" will gain significant importance in the context of 

implementing Digital Twins, which are announced in the BIM 

Master Plan [23]. Initial steps and ideas for implementing this 

use case were outlined in [19].  

The potential of monitoring arises from the ability to monitor 

structures over long periods and detect changes. The potential 

lies in determining the structural condition and quantifying the 

reliability of the structure, characterizing the behavior of the 

structure with the goal of anomaly detection, and securing the 

remaining service life [19].  

Monitoring data can provide information, for example, about 

damage mechanisms. This information can then serve as the 

basis for determining performance indicators in combination 

with other data. This approach aims to reduce uncertainties in 

the condition assessment and identify appropriate maintenance 

measures [19]. 

The use case "Birth Certificate" aims to establish a reference 

condition of the structure before commissioning, providing a 

basis for interpreting the impact of later changes and making 

statements about the expected behavior of the structural and 

equipment components. This reference condition can be 

compared with subsequent measurements, thus providing a 

decision-making foundation for determining the timing of 

necessary measures, such as permanent monitoring. For 

clarification the single measurement as mentioned above does 

not constitute monitoring in the classical sense, which generally 

implies continuous data acquisition. 

The performance of a baseline measurement, including a 

proof load test, is mandatory in Switzerland, Italy, and France 

[24–26]. In [17], the performance of a baseline measurement at 

the Hochmosel Bridge is described. Here, in addition to 

vibration and strain measurements to determine the behavior of 

the bridge, imaging techniques were also used, among other 

things, to determine the 3D geometry. 

4 INTEGRATION OF USE CASES 

The interaction of the individual use cases can be envisioned 

through the implementation of Digital Twins. A Digital Twin 

can be understood as a digital representation of the real road 

infrastructure, which interacts with the real structure, records 

all properties throughout the entire lifecycle, and generates 

information for decision support from the data [27]. Figure 8 

provides a schematic representation of a bridge's digital twin, 

highlighting the various data sources and the role of monitoring 

within the system. 

 

 

Figure 8. Monitoring as part of the digital twin according to 

[28]. 

Monitoring and the information and insights gained from it 

are essential foundations for the development and use of Digital 

Twins. The monitoring data provides insight into the current 

condition of the structure and serves as input data for 

determining future behavior. Therefore, the use of monitoring 

is fundamental to the processes of monitoring, analysis, 

prediction, and control that occur within the Digital Twin. 

5 CONCLUSION 

The use of monitoring on engineering structures of the federal 

highways is still not widely spread, but it is gaining in 

importance. Through the use cases, there is the opportunity to 

demonstrate the potential of monitoring and overcome barriers 

to its implementation. Currently, monitoring is of great 

importance in supporting the availability of engineering 

structures and, in particular, ensuring the remaining service life. 

A wealth of experience is already being gathered in these use 

cases today, which can be beneficial in the long term for the 

introduction of Digital Twins. Initial results, within the 

framework of Digital Shadows, can already demonstrate the 

potential on a smaller scale. 

The benefits resulting from the application of monitoring 

measures can be quantified in monetary terms – for example, 

through savings on inspections, extended service life or early 

damage detection. In contrast, the benefits of the digital twin 

cannot yet be expressed in concrete figures, but they can be 

described qualitatively – such as improved decision-making, 

increased transparency regarding the structural condition and 

long-term potential for process optimization. 

In conclusion, monitoring and the demonstrated use cases 

help bridge the gap between the physical structure and its 

digital representation.  
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ABSTRACT: This paper presents a vision for next-generation Artificial Intelligence (AI) based structural health monitoring 

(SHM) systems through the lens of DREAM-SHM: a framework comprising Dynamic, Real-time, Evaluative, Adaptive (AI-

based), Modular, Self-diagnostic, Holistic, and Multi-sensory principles. The aim is to enable smart infrastructure that can sense, 

and evolve corresponding to structural behaviour, material degradation, environmental effects, and changing operational or 

economic constraints. The paper reviews current SHM technologies, highlighting the strengths and limitations of contact-based 

sensors, such as accelerometers, strain gauges, fibre optic sensors, and non-contact approaches including vision-based systems, 

infrared thermography, radar, and ultrasonic techniques. Emphasis is placed on their integration with wireless sensor networks, 

Internet of Things (IoT) platforms, and Artificial Intelligence (AI) for advanced data fusion, anomaly detection, and predictive 

analytics. The computational aspects underpinning SHM systems, such as cloud-edge processing, machine learning, and multi-

modal sensor data integration, are described to enable timely and informed decision-making. In addition, the paper situates 

DREAM-SHM within the context of sustainability, demonstrating how adaptive and intelligent SHM systems support the goals 

of circular economy and net-zero carbon by prolonging asset life, reducing maintenance burdens, and improving environmental 

responsiveness. This work outlines a pathway toward structurally intelligent and resource-efficient infrastructure. 

KEYWORDS: Structural Health Monitoring (SHM), Intelligent infrastructure, Sustainable infrastructure, Multi-modal sensing, 

Contact-based sensing, Non-contact sensing, Internet of Things (IoT). 

1 INTRODUCTION 

The infrastructure of the future should be smart, adaptive, and 

capable of responding to both operational and environmental 

challenges in real-time. As urbanisation continues to accelerate 

and infrastructure ages, ensuring safety, efficiency, and 

longevity of our built environment has never been more crucial. 

Traditional methods of structural inspection and maintenance, 

though important, are often time-consuming, costly, and prone 

to human error. The Structural Health Monitoring (SHM) 

paradigm offers an innovative solution to these challenges, 

enabling continuous, non-destructive assessment of structural 

integrity and performance [1-3]. SHM aims to detect and 

diagnose faults early, ensuring that any issues are addressed 

before they escalate into catastrophic failures. It involves 

assessing factors such as structural loads, damage status, defect 

localisation and quantification, growth rate estimation, future 

performance prediction, and remaining life estimation [1, 4, 5]. 

In an ideal SHM system, these evaluations are performed in 

real-time, providing global insights into the health of a structure 

as it operates [3]. 

At its core, SHM involves several essential components, 

including sensing, load identification, damage detection, 

damage characterisation, and future performance prediction[1, 

6]. SHM systems incorporate continuous or periodic sensing 

and data collection, allowing for the real-time monitoring of 

structures under various operational and environmental loads. 

Sensors, whether passive or active [7], are integrated into the 

structure during manufacturing or retrofitted for ongoing 

monitoring. These sensors can be classified as contact-based 

(e.g., accelerometers, strain gauges, fibre optic sensors, Linear 

Variable Differential Transformers (LVDT), and 

thermometers) or non-contact-based (e.g., vision-based 

systems, infrared thermography, and radar). Both types of 

sensors capture critical data about the structure's behaviour, 

environmental conditions, and operational status, transmitting 

this information to storage systems or cloud-based servers for 

analysis and decision-making [8, 9]. 

Contact-based sensors offer high accuracy but often require 

direct attachment to the structure, periodic maintenance, and 

replacement, resulting in increased operational costs. 

Moreover, critical measurement points may be difficult or 

impossible to access, leading to incomplete or inaccurate 

data[10, 11]. To address these challenges, non-contact sensors 

provide an alternative by enabling wide-area and mobile 

sensing. These sensors operate without requiring direct 

attachment to structures and are typically positioned at a 

distance. They capture optical images and videos using 

technologies such as digital cameras, high-speed cameras, and 

synthetic aperture radar from satellite sensors. Smartphone-

based sensing technologies are also increasingly integrated into 

SHM systems, expanding their capabilities [9]. By utilising 

mobile platforms such as unmanned aerial vehicles (UAVs), 

automobiles, trains, and boats, fly-by, drive-by, tram-by, or 

sail-by monitoring systems can be deployed, enhancing spatial 

coverage and reducing data gaps. This more efficient approach 

enables broader monitoring capabilities across large 

infrastructure networks, offering a more comprehensive 

assessment of structural health over time. 

As infrastructure becomes more interconnected and 

intelligent, the need for adaptive, dynamic systems that respond 
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in real time to changing conditions is greater than ever. This is 

where DREAM-SHM as a novel Structural Health Monitoring 

framework offers a transformative solution. By integrating 

contact-based and non-contact sensors, Internet of Things (IoT) 

platforms, and Artificial Intelligence (AI), DREAM-SHM 

enables structures to not only monitor their health but also 

adapt dynamically to both environmental and operational 

changes. The system continuously collects data from sensors 

and uses AI-driven algorithms to analyse this information, 

allowing the structure to respond in real time to conditions such 

as temperature fluctuations, humidity, material stress, and even 

operational demands. By optimising these factors, DREAM-

SHM can maintain both the structural integrity of the building 

and the comfort of its occupants, while also reducing energy 

consumption and lowering carbon emissions. Moreover, this 

integration can help address issues such as overcrowding or 

traffic congestion by adjusting building operations based on 

real-time data. 

This paper explores the concept of DREAM-SHM, detailing 

how its combination of advanced sensors, IoT networks, and 

AI technologies unlocks the next generation of intelligent 

infrastructure. It reviews the different sensor technologies used 

in SHM, both contact-based and non-contact, and presents a 

discussion of the computational aspects that enable DREAM-

SHM to adapt to changing conditions. This paper explores the 

potential of these technologies to revolutionise infrastructure 

monitoring and maintenance, highlighting their ability to 

optimise not just structural health but also the environment 

within and around the infrastructure. 

2 SENSOR TECHNOLOGIES FOR STRUCTURAL 

HEALTH MONITORING 

SHM systems depend on sensor technologies to collect 

continuous or periodic data from infrastructures under 

operational and environmental conditions. These sensors are 

typically classified into contact-based and non-contact types, 

each with unique advantages and limitations [12]. A thorough 

understanding of both categories is essential for developing a 

more adaptive and intelligent SHM framework. 

 Contact-Based Sensors 

Contact-based sensors are physically attached to the structure 

to capture direct measurements of parameters such as strain, 

stress, acceleration, displacement, and temperature. These 

sensors have traditionally formed the backbone of SHM 

systems, especially in critical and high-risk infrastructure. 

2.1.1 Strain Gauges 

Strain gauges are widely used to measure strain resulting 

from applied loads. They are typically bonded to the surface of 

structural elements and detect minute changes in length as 

electrical resistance variations. Despite their accuracy, they are 

susceptible to environmental degradation and require careful 

installation and protection[13-15]. 

2.1.2 Accelerometers 

Accelerometers are essential in dynamic monitoring, 

capturing vibrations, modal properties, and transient responses 

during events such as traffic loading or seismic activity. They 

can be deployed in arrays across a structure to identify changes 

in stiffness or detect anomalies associated with damage [10, 16-

18]. 

2.1.3  Fibre Optic Sensors 

Fibre optic sensors, including Fibre Bragg Gratings (FBGs), 

are capable of long-range, high-resolution measurements of 

strain and temperature. Their immunity to electromagnetic 

interference and ability to multiplex multiple sensing points 

along a single fibre make them highly suitable for harsh 

environments and large-scale infrastructures[19-21]. 

2.1.4 Linear Variable Differential Transformers (LVDTs) 

LVDTs are used to measure displacement and deformation 

with high precision. These sensors are commonly applied in 

laboratory tests and long-term monitoring of joints, cracks, and 

bearing movements in bridges and buildings [22]. 

2.1.5 Thermocouples and Thermistors 

These sensors measure temperature variations, essential for 

understanding thermal loading effects on structural behaviour. 

They are often used in combination with other sensors to 

decouple environmental influences from structural responses. 

2.1.6 Limitations of contact-based sensors 

Despite their reliability and accuracy, contact-based sensors 

have several drawbacks, such as installation and maintenance 

can be labour-intensive and costly. Sensor failure due to 

environmental exposure requires frequent inspection and 

replacement. Coverage is often limited to selected points, 

leading to sparse spatial resolution [23]. 

 Non-Contact Sensors 

Non-contact sensors offer remote sensing capabilities and are 

particularly valuable for large-scale structures where full-field 

contact-based monitoring is impractical[24]. These sensors can 

be deployed on stationary platforms or mobile carriers such as 

UAVs, vehicles, or boats to conduct “fly-by”, “drive-by”, or 

“sail-by” inspections. 

2.2.1 Vision-Based Methods 

Vision-based SHM systems use digital or high-speed 

cameras to capture visual data from structures[25]. Techniques 

such as Digital Image Correlation (DIC) [26] and 

photogrammetry allow for the measurement of displacement, 

deformation, and surface cracking [27, 28]. These methods are 

enhanced through artificial intelligence (AI), particularly deep 

learning algorithms that automate defect detection and 

characterisation [29]. 

2.2.2 Infrared Thermography (IRT) 

IRT detects subsurface anomalies such as delamination and 

voids by capturing thermal patterns on a structure’s surface. It 

is non-invasive and efficient for inspecting large areas. 

However, it is sensitive to environmental conditions and often 

requires post-processing with deep learning models to reduce 

false positives[30-38]. 

2.2.3 Ultrasound-Based Techniques 

Air-coupled ultrasound techniques use high-frequency waves 

to detect micro-cracks and internal flaws. These are particularly 

useful in metallic and composite materials where internal 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-034 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 211 

defects may not be visible externally. Non-contact ultrasound 

methods allow remote application, reducing the need for 

physical access[24]. 

2.2.4 Radar Vibration-Based Methods 

Microwave and millimetre-wave radar systems can remotely 

monitor structural vibrations and dynamic responses with sub-

millimetre accuracy. These non-contact methods are 

particularly effective for tall, slender, or otherwise inaccessible 

structures such as towers, bridges, and wind turbines. They 

offer robust performance in challenging environmental 

conditions, as they are less affected by lighting, fog, or 

moderate precipitation compared to optical techniques. Radar-

based monitoring enables real-time displacement and modal 

analysis without requiring physical sensor installation on the 

structure[24]. 

2.2.5 Magnetic-Based Techniques 

Magnetic-based methods such as Magnetic Flux Leakage 

(MFL) and magnetostrictive sensors are used to detect stress 

concentrations, cracks, corrosion, and other anomalies in 

ferromagnetic materials. These techniques work by measuring 

disturbances in the magnetic field when it encounters defects or 

discontinuities within the material. They are particularly 

valuable for monitoring pipelines, prestressed cables, steel-

reinforced concrete, and metallic bridge components, offering 

a non-destructive means of assessing structural integrity in 

inaccessible or high-risk environments [24]. 

2.2.6 Wireless Sensor Networks (WSNs) 

WSNs use embedded or surface-mounted sensors that 

wirelessly transmit structural data to remote data acquisition 

systems. This reduces installation complexity and allows for 

scalable deployment across large infrastructures. Integration 

with energy harvesting solutions enhances their long-term 

viability [24, 39]. 

2.2.7 Hybrid and Mobile Monitoring Approaches 

Combining multiple non-contact methods or integrating them 

with mobile platforms (e.g., UAVs or autonomous ground 

vehicles) provides comprehensive spatial and temporal data. 

These systems are especially useful for structures with limited 

accessibility or under high traffic loads [9]. 

2.2.8 Advantages of Non-Contact Sensors 

These sensors enable full-field and remote monitoring, reduce 

maintenance and installation costs, improve safety for 

inspectors and increase spatial coverage and flexibility. 

2.2.9 Challenges of Non-contact Sensors 

Environmental conditions (e.g., lighting, humidity, wind) can 

affect the accuracy of these sensors. Data processing 

complexity increases with large-scale visual or radar datasets. 

These sensors are high dependent on robust algorithms for data 

interpretation. 

 Summary and Considerations 

The combined application of contact and non-contact sensor 

technologies can provide complementary insights into 

structural integrity. While contact sensors offer high accuracy 

for localised measurements, non-contact sensors excel in wide-

area and remote assessments. The integration of AI and the 

Internet of Things (IoT) further enhances data acquisition, 

fusion, and interpretation capabilities [40, 41]. 

A future-forward SHM system, such as DREAM-SHM, 

should not only integrate these sensors intelligently but also 

enable self-reflection and prediction, adapting its sensing 

strategies based on structural performance, environmental 

changes, and user demands. This vision sets the stage for the 

next generation of intelligent, adaptive, and sustainable 

infrastructures. 

3 DREAM-SHM: TOWARDS INTELLIGENT, AND 

ADAPTIVE STRUCTURES 

The future of civil infrastructure depends on its capacity to 

sense, adapt, and evolve, and attributes central to the next 

generation of intelligent systems. In this context, this paper 

suggests the DREAM-SHM framework: a novel approach to 

Structural Health Monitoring that is Dynamic, Real-time, 

Evaluative, Adaptive (AI-based), Modular, Self-diagnostic, 

Holistic, and Multi-sensory (Figure 1).  

 

 

Figure 1. Elements of DREAM-SHM framework 

Dynamic

• Utilises mobile platforms (e.g., drones, vehicles) for flexible 
and wide-area structural monitoring.

Real-time

• Enables instantaneous data capture, processing, and 
response to changing structural and environmental 
conditions.   

Evaluative

• Continiously assesses structural performance, damage 
progression, and maintenance priorities. 

Adaptive 
(AI-based)

• Learns from data to refine monitoring strategies and improve 
predictive accuracy through AI techniques.

Modular

• Allows easy integration and reconfiguration of sensors and 
components for scalable deployment. 

Self-
diagnostic

• Detects fault or anomalies in its own sensing, 
communication or analysis function. 

Holistic

• Considers structural, environmental, operational and human 
factors in health assessment. 

Multi-
sensory

• Integrates diverse sensing modalities, including contact and 
non-contact technologies, for richer data insight. 
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Rather than functioning as static systems for passive data 

collection, DREAM-SHM envisions infrastructure as active 

learning, self-reflective, and responsive entities, capable of 

anticipating change, optimising performance, and supporting 

lifecycle decisions with unprecedented insight and autonomy. 

The DREAM-SHM system is inherently computational, 

relying on advanced data processing, predictive algorithms, 

machine learning, and cloud computing to support its highly 

adaptive and intelligent functionality. It operates through a 

robust digital backbone that enables the processing of vast 

amounts of real-time data, the prediction of future conditions, 

the optimisation of structural health, and the dynamic 

adjustment of environmental parameters. 

 

 From Traditional to Dreaming Structures 

Conventional SHM systems provide snapshots of structural 

conditions based on sensor data. In contrast, DREAM-SHM 

envisions a system that continuously "dreams." That is, it 

reflects on past data, analyses current performance, and 

simulates future outcomes. Much like human brain 

consolidates information during sleep [42, 43], DREAM-SHM 

uses advanced analytics, AI, and IoT integration [44] to 

consolidate multisource data and learn structural behaviour 

patterns over time. This cognitive leap transforms 

infrastructure into living digital twins, constantly updating their 

condition, adapting to changes in the environment, and 

providing valuable feedback to engineers and designers. 

 Integrating Contact and Non-Contact Sensors with IoT 

and Data Processing Fusion 

In a DREAM-SHM framework, both contact and non-contact 

sensors are integrated into a broader Internet of Things (IoT) 

ecosystem. IoT enables sensor networks to communicate, 

synchronise, and share real-time data through cloud computing 

or edge processing devices. Contact-based sensors (e.g., strain 

gauges, accelerometers) provide high-fidelity, localised data 

critical for detecting internal stress, fatigue, or localised 

failures, while non-contact sensors (e.g., vision systems, 

thermography, radar) expand coverage, capture surface 

conditions, and enable remote inspections. 

 

These sensors generate large, multidimensional datasets that 

require careful processing and alignment to create a coherent 

and reliable model of the structure’s condition. Advanced data 

fusion algorithms are applied to integrate multimodal data from 

multiple sources, resolving discrepancies caused by noise, 

sensor faults, or varying environmental conditions[39]. 

Techniques such as Kalman filtering, Bayesian inference, and 

decision tree models [45] enhance the accuracy of the fused 

data by accounting for uncertainties and interdependencies 

across sensor inputs. 

 

IoT platforms facilitate seamless connectivity between 

sensors, edge devices, data storage, and decision-making 

systems, enabling real-time alerts, remote diagnostics, 

distributed data storage, cloud analytics, and cross-sensor data 

fusion and redundancy to reduce uncertainty. The fusion of 

contact and non-contact sensor data within this infrastructure 

supports a comprehensive, context-aware SHM system capable 

of interpreting data as part of a broader ecosystem influenced 

by environmental, operational, and human factors [44]. 

 The Role of AI in Creating Self-Adaptive Structures 

 

AI lies at the core of the DREAM-SHM system, functioning as 

the central engine that empowers intelligent data interpretation, 

autonomous decision-making, and adaptive system behaviour. 

By leveraging machine learning (ML) and deep learning (DL) 

techniques, the system can extract meaningful patterns, detect 

anomalies, and respond dynamically to evolving structural and 

environmental conditions [46]. 

 

Deep learning models, particularly Convolutional Neural 

Networks (CNNs) [12, 46-48], are instrumental in analysing 

visual inputs from vision-based sensors or thermal imagery 

from infrared cam eras. These networks can automatically 

classify and detect structural anomalies such as cracks, 

deformations, corrosion, or delamination, significantly 

reducing the reliance on manual inspections. This automation 

increases the speed and accuracy of damage detection while 

minimising human error. 

 

AI algorithms are trained on historical and real-time sensor data 

to enable predictive maintenance, allowing the system to 

forecast when and where damage is likely to occur. In addition 

to supervised learning, unsupervised learning approaches are 

used to uncover previously unseen patterns or emerging failure 

modes, enhancing the system’s adaptability and sensitivity over 

time. 

 

AI also plays a critical role in fusing data from multiple sensor 

modalities, including thermal, acoustic, visual, and vibration 

sources. By integrating these diverse inputs, AI improves fault 

detection accuracy and reduces false positives. Furthermore, AI 

enables the autonomous operation of robotic inspection 

platforms, such as UAVs, which can plan flight paths, adjust 

actions in real time, and focus on areas of concern based on live 

feedback. 

 

Reinforcement learning techniques further enhance the self-

adaptive capabilities of the DREAM-SHM system. Through 

continuous learning, the system can optimise its monitoring 

strategies, improving how it prioritises sensor data, allocates 

resources, and adapts to changing structural and environmental 

conditions. 

 

 Dynamic, Self-Reflective, and Adaptable Systems 

The DREAM-SHM system represents a significant evolution 

in how infrastructure is designed, operated, and maintained. At 

its core, it enables dynamic, self-reflective, and adaptable 

behaviour through the seamless integration of cloud 

computing, the IoT, and AI. By combining real-time sensor 

data with intelligent analytics, the system continuously 

monitors, analyses, and responds to both internal structural 

health and external environmental conditions. 

 

IoT-enabled sensor networks form the backbone of this 

intelligent infrastructure. These networks connect contact and 

non-contact sensors, environmental monitoring devices, and 
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operational systems, allowing continuous data transmission to 

cloud-based platforms. Cloud computing provides the scalable 

computational resources needed to handle large volumes of 

sensor data across wide geographic areas, making it possible 

for engineers, facility managers, and maintenance teams to 

access up-to-date structural health reports, plan maintenance, 

and respond to safety concerns in real time. Edge computing 

ensures that critical decisions can be made locally and rapidly, 

particularly when immediate intervention is required. For 

example, structural anomalies detected by sensors, such as 

sudden changes in strain or temperature, can trigger instant 

responses without needing to wait for centralised cloud 

processing. 

 

This intelligent system also extends to the optimisation of 

internal environments. By monitoring temperature, humidity, 

and occupancy levels, DREAM-SHM can automatically adjust 

heating, ventilation, air conditioning (HVAC), or 

dehumidification systems. These adjustments not only enhance 

occupant comfort but also protect structural materials from 

accelerated degradation, such as corrosion in steel or cracking 

in concrete, caused by unfavourable environmental conditions. 

 

Moreover, the system adapts to changing operational 

demands. If a room becomes highly occupied, ventilation can 

be increased, or air conditioning fine-tuned to maintain air 

quality and comfort. By learning usage patterns, tracking 

external weather forecasts, and recognising early signs of 

material fatigue, AI within the system can anticipate and 

prepare for future operational needs. This may include 

adjusting HVAC schedules ahead of temperature drops, 

deploying shading systems in response to sunlight exposure, or 

activating safety protocols in anticipation of extreme weather 

or seismic activity. 

 

Ultimately, DREAM-SHM goes far beyond traditional 

monitoring. It creates an intelligent feedback loop where data, 

environment, and structural health are interwoven, enabling 

buildings and infrastructure to adapt in real time. This not only 

preserves structural integrity and enhances user wellbeing, but 

also significantly reduces energy consumption and carbon 

emissions, contributing to more sustainable and resilient built 

environments. 

 Designing for Longevity Through Predictive 

Intelligence 

 

One of the transformative aspects of the DREAM-SHM 

system is its ability to influence future design practices, 

material selection, and lifecycle strategies through predictive 

insight. By collecting and analysing long-term structural health 

monitoring data, the system enables the refinement of design 

codes based on actual performance under diverse 

environmental and loading conditions. This data-driven 

feedback loop allows engineers to make informed decisions, 

enhancing structural reliability and efficiency over time. 

Machine learning algorithms are central to this predictive 

capability. Trained on historical and real-time data from contact 

and non-contact sensors, such as accelerometers, infrared 

thermography, and ultrasound, the system detects early signs of 

damage and estimates future deterioration, fatigue, and failure. 

Time-series forecasting models, including autoregressive 

integrated moving averages (ARIMA) and recurrent neural 

networks (RNNs) [49, 50], leverage trends in sensor data to 

guide proactive interventions that extend the service life of the 

structure. 

Supervised learning techniques, including decision trees and 

support vector machines (SVM), classify structural conditions 

into actionable states, while reinforcement learning enables 

continuous model improvement as new data is acquired. By 

integrating predictive models with real-time monitoring, the 

system enhances structural safety, minimises operational costs, 

and maintains optimal performance. 

This fusion of predictive analytics with adaptive control 

transforms infrastructure into self-reflective and intelligent 

systems. DREAM-SHM further supports generative design 

processes, where artificial intelligence proposes optimised 

structural forms and materials tailored to specific 

environmental and operational conditions. Such insight enables 

the design of modular, reconfigurable structures that can evolve 

over time in response to predictive indicators. In doing so, 

DREAM-SHM contributes to a new generation of 

infrastructure that is sustainable, resilient, and energy-efficient, 

with a significantly reduced carbon footprint. 

 

 Unlocking the Next Generation of Intelligent 

Infrastructure 

The implementation of DREAM-SHM signifies a 

fundamental shift from static to living structures. These 

infrastructures think through artificial intelligence and 

predictive modelling, feel through extensive and multimodal 

sensor networks, communicate through Internet of Things 

platforms and edge computing, and adapt based on 

environmental conditions, user demands, and system health. By 

integrating advanced sensing, communication, and 

intelligence, future infrastructures will no longer be passive 

assets, but active participants in their maintenance and 

evolution. 

In doing so, they offer immense societal benefits, including 

enhanced safety and reliability, reduced maintenance costs and 

downtime, improved energy efficiency and user comfort, and a 

deeper understanding of structural behaviour over time. The 

DREAM-SHM paradigm represents not merely a technological 

upgrade, but a philosophical reimagining of what infrastructure 

can be, structures that not only endure but evolve, guided by 

the very data they produce. 

4 DREAM-SHM, CIRCULAR ECONOMY AND NET 

ZERO GOALS 

The transition towards smarter infrastructure must be 

harmonised with global imperatives such as the circular 

economy and the pursuit of net zero carbon emissions. The 

DREAM-SHM framework, defined as Dynamic, Reflective, 

Evaluative, Adaptive, Modular, Self-diagnostic, Holistic, and 

Multi-sensory naturally aligns with these objectives by 

enabling more efficient, resilient, and sustainable infrastructure 

systems throughout their entire lifecycle. 

  Enabling Resource Efficiency and Longevity 

One of the primary pillars of the circular economy is resource 

optimisation through prolonged material use, reusability, and 
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reduced waste [51]. DREAM-SHM contributes to this by 

allowing structures to continuously evaluate their health, detect 

minor degradations before they escalate, and schedule 

maintenance proactively. Such real-time diagnostics reduce the 

need for premature demolition or over-conservative 

replacement strategies. The modular and adaptive attributes of 

DREAM-SHM also support retrofitting and component-based 

upgrades, enabling structures to evolve without complete 

reconstruction, an essential strategy in circular design. 

 Data-Driven Lifecycle Decision-Making 

DREAM-SHM’s use of AI and IoT technologies facilitates 

whole-life performance monitoring. This continuous data 

stream allows engineers, asset managers, and policymakers to 

make informed decisions that extend beyond first costs, 

incorporating embodied energy, operational efficiency, and 

end-of-life recyclability. For example, the system can inform 

decisions about optimal repair versus reuse, estimate embodied 

carbon for design alternatives, or determine the feasibility of 

adaptive reuse of ageing infrastructure. 

 Supporting Carbon Emission Reduction 

Smart structures equipped with DREAM-SHM do not only 

monitor their mechanical performance, they also track 

environmental parameters such as energy use, indoor 

temperature, humidity, and CO₂ levels. These insights enable 

buildings and infrastructures to dynamically adjust internal 

conditions to optimise comfort and reduce energy 

consumption, especially under varying occupancy patterns or 

extreme climate conditions. Integration with renewable energy 

sources and smart energy grids can further reduce reliance on 

fossil fuels, directly supporting net zero building operations. 

Moreover, DREAM-SHM facilitates operational carbon 

tracking, where the carbon cost of maintenance activities and 

material replacements can be quantified in real-time. This 

capability encourages low-carbon interventions, the use of 

environmentally friendly materials, and the minimisation of 

transport or logistical carbon footprints. 

 Designing for a Regenerative Future 

The holistic nature of DREAM-SHM, combined with its 

dynamic and evaluative features, can help shift the 

infrastructure sector from a linear to a regenerative model[52]. 

Rather than just sustaining performance, future structures can 

be designed to learn, evolve, and regenerate over time. By 

treating structures almost like living systems, ones that sense, 

learn, and adapt, DREAM-SHM lays the foundation for self-

regulating and self-improving built environments. 

This continuous evolution aligns with the vision of net 

positive design, where buildings not only minimise harm but 

actively contribute to ecological and social value. For instance, 

a bridge equipped with DREAM-SHM could dynamically 

coordinate traffic to reduce congestion-related emissions or 

monitor its own runoff water quality and feed data back into 

environmental management systems. 

 Digital Twin Synergies 

Another key synergy lies in the integration of DREAM-SHM 

with digital twins[53, 54], creating a real-time, data-enriched 

virtual model of the structure. These twins can simulate 

environmental impacts, forecast degradation under climate 

stressors, and test low-carbon renovation scenarios before 

implementation. This predictive capability enhances resilience 

planning and supports sustainability certification and reporting 

frameworks. 

 Energy Efficiency and Sustainable Power Supply 

For DREAM-SHM to be deployed at scale and operate 

autonomously, it must also be energy-conscious. The system 

leverages low-power wireless sensor networks (WSNs)[55], 

which minimise energy usage through efficient communication 

protocols and duty cycling. Where possible, sensors and edge 

computing units are powered by renewable sources, including 

solar panels mounted on structures and wind energy 

microgenerators integrated into exposed components. 

Additionally, the framework supports energy harvesting, 

converting ambient vibrations, thermal gradients, or even 

electromagnetic noise into small but continuous power sources 

for embedded sensors. This self-sufficiency allows long-term 

deployment without frequent battery replacements, reducing 

both maintenance burdens and electronic waste. By embedding 

energy-awareness into its architecture, DREAM-SHM aligns 

itself with net-zero goals not only in terms of what it monitors 

but how it functions, enabling smarter, cleaner, and more self-

reliant infrastructures. 

 Example of potential performance of a DREAM-SHM 

system 

To demonstrate the potential of the DREAM-SHM 

framework, imagine a long-span bridge operating under 

extreme weather conditions and subject to cyclical loading. 

During a sudden windstorm, real-time data from 

accelerometers, fibre optic strain sensors, and vision-based 

surface monitoring systems are synchronised through the IoT 

layer and processed at the edge. The AI engine identifies 

anomalous vibration patterns that signal early-stage fatigue in 

a critical joint. At the same time, thermal imaging highlights 

abnormal heat signatures associated with bearing friction. The 

digital twin continuously simulates the structural state and 

projects the need for a targeted inspection as conditions 

stabilise. In response to predictive outputs, the system 

autonomously modifies traffic flow and delivers a real-time 

alert to maintenance teams. Concurrently, environmental 

control systems within nearby infrastructure are adjusted to 

reduce energy use due to temporary low occupancy. This 

scenario illustrates how the DREAM-SHM framework 

functions as an adaptive, multi-sensory, and context-aware 

system, supporting decision-making under dynamic 

operational demands. 

 

5 CONCLUSION 

This paper presents a conceptual perspective for a future 

SHM system: DREAM-SHM as summarised in Figure 2.  
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Figure 2. Schematic of the layers of FREAM-SHM 

framework 

 

This system represents a significant leap forward in structural 

health monitoring and management. By combining advanced 

sensor technologies, AI, IoT, and predictive analytics, it 

provides a comprehensive solution for real-time, adaptive, and 

sustainable infrastructure management. The computational 

framework driving the system ensures it can process vast 

amounts of data, predict future structural performance, and 

optimise operational conditions dynamically. 

While the DREAM-SHM framework offers transformative 

potential, its implementation at scale presents several 

challenges primarily rooted in interdisciplinary coordination. 

Successful deployment requires the integration of diverse 

expertise across structural engineering, data science, sensor 

technologies, and artificial intelligence, which demands not 

only cross-disciplinary collaboration but also specialised 

training to bridge gaps in knowledge and practice. From an 

ethical standpoint, careful consideration must be given to the 

types of human and operational information shared with the 

system, particularly in contexts involving surveillance, usage 

patterns, or sensitive infrastructure behaviour. In addition, 

maintaining cybersecurity and the resilience of communication 

networks becomes critical, as the framework relies on 

distributed sensing, edge processing, and cloud-based 

integration. Despite these challenges, the practical realisation 

of DREAM-SHM remains promising. The system unlocks the 

next generation of intelligent infrastructure, where structures 

are not only monitored but also able to self-adapt and self-

maintain. By doing so, DREAM-SHM promotes safety, 

efficiency, and sustainability in the built environment, while 

also providing a unifying platform that encourages 

collaboration between academia and industry. It serves as a 

compelling motivation for advancing research, developing 

standards, and forging partnerships that can help turn this 

vision into reality. 
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ABSTRACT: As global infrastructure ages and demands on new and existing structures increase, effective monitoring programs 

are essential for managing risk and public safety. This paper provides a practical guide for practitioners to design and implement 

structural health monitoring (SHM) systems, leveraging the combined expertise of the authors, who have extensive experience 

with leading equipment manufacturers. 

Building on the 10 Steps of Data Acquisition System Design, the paper outlines best practices for developing robust monitoring 

systems tailored to bridges, dams, and other critical infrastructure. These steps include defining objectives, selecting appropriate 

sensors, communications design, data acquisition (DAQ) system design, power system considerations, civil works and mounting 

structures, installation, and managing data effectively. 

A significant focus is placed on sensor and DAQ selection, exploring their critical roles in SHM system performance. The paper 

covers practical techniques for selecting, installing, maintaining, calibrating, and verifying sensors across traditional analog, 

frequency, and digital technologies. Examples from large channel count wired systems and distributed wireless monitoring 

systems are shared to illustrate diverse applications. 

This paper aims to deliver actionable insights and practical wisdom, equipping attendees with the tools to overcome real-world 

challenges and achieve reliable, scalable, and long-lasting SHM implementations. 

KEY WORDS: Structural Health Monitoring (SHM); Data Acquisition System Design; Sensor Selection;  Critical Infrastructure 

Monitoring; Risk Management; Monitoring System Implementation; Wireless and Wired Monitoring 

1 INTRODUCTION 

Improvements and technological developments in sensors, data 

acquisition systems, and software in recent years have enabled 

engineers to implement advanced monitoring solutions on 

critical Structural Health Monitoring (SHM) projects 

worldwide. These systems often comprise hundreds or even 

thousands of sensors, delivering real-time performance data 

through synchronized acquisition platforms and intuitive 

visualization tools. 

These developments, coupled with a rising demand for timely 

and reliable data, often exceed the capability of that which can 

be manually collected or interpreted, and thus necessitates the 

need for robust automation for real-time monitoring to detect 

potential hazards in advance. 

Today, automated monitoring systems are far more cost-

effective, reliable, and user-friendly than ever before, making 

them feasible not only for large projects with many sensors, for  

a more comprehensive assessment of structural behavior, but 

also for smaller-scale projects which, until recently, were rarely 

considered for, or enjoyed the benefits of automation.  

There are also those projects, which started out as being 

manually read, but later moved to automated systems because 

of one or all the following: being unable to find enough 

qualified staff to read all the instruments, being unable to safely 

access the instruments to read them manually and being unable 

to obtain reliable data through manual readings. 

While automated monitoring systems help reduce the burden 

on project owners by enabling reliable and timely data 

collection without interfering with ongoing construction 

activities. They also facilitate the early identification of 

potential issues, allowing for prompt implementation of 

corrective measures. Moreover, the development of wireless 

network technologies has made it easier to expand or 

reconfigure monitoring systems quickly, with minimal 

disruption to both the existing setup and the construction 

process.  To support this progression from concept to 

implementation, Figure 1 illustrates a logical sequence of 

design steps that guide the development of a robust SHM 

system. 

 

Best Practices for Data Acquisition System Design: Practical Wisdom for Engineers 

and Practitioners  
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Figure 1: An overview of the SHM design process. 
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2 MONITORING OBJECTIVES 

The success of any SHM project, whether automated or 

manual, hinges on meticulous planning, precise execution, and 

the development of an action plan (or plans) to address the 

findings based on the collected data. Peck’s Observational 

Method laid the foundational philosophy for most monitoring 

programs, which Dunnicliff further enhanced with a detailed, 

systematic approach.  

Essentially, Peck emphasized the importance of defining the 

geotechnical questions that need to be answered and then 

selecting the appropriate instruments and their placement to 

help answer those questions; stating, without a question, there 

is no need for instrumentation. Dunnicliff expanded on this by 

underscoring the necessity of defining the purpose of the 

instrumentation, asserting that it should only be used if there is 

a valid, defensible reason. 

 Define the Appropriate DAS 

Before the Data Acquisition System (DAS) is designed, 

consideration should be given to the present (and future) scope 

of the monitoring system, with a bias on starting simple, using 

systems that are easily scalable as the project needs grow, and 

only implemented when required, after the initial system is 

functioning and is well understood. 

Other considerations should determine the choice between site 

vs cloud hosted platforms, subscription vs capital expenditures 

(CAPEX), the ultimate sensor, DAS, and software suppliers, 

the maintenance requirements and who will be ultimately 

responsible for operation of the DAS the over the life of the 

project, When these decisions have been made, we can then 

start to look at sensor selection and DAS design in earnest. 

 Stakeholders and their Interests 

Structural Health Monitoring (SHM) projects often involve a 

wide range of stakeholders, each with distinct objectives, 

responsibilities, and perspectives on data utility. Key 

stakeholders typically include project owners, engineers, 

contractors, regulators, insurers, asset operators, and in some 

cases, the general public. Project owners and developers are 

primarily motivated by risk reduction, cost control, and 

regulatory compliance, often seeking early warnings to avoid 

catastrophic failure and unplanned downtime. Engineers use 

monitoring data to validate design assumptions, assess 

structural behavior under real-world conditions, and guide 

adaptive decision-making during construction or operation. 

Contractors may rely on SHM data to sequence work safely, 

protect temporary works, or defend against claims. Regulators 

and permitting authorities seek assurance that infrastructure 

meets safety and environmental standards, with SHM 

providing a traceable, defensible record of performance. 

Insurers may view monitoring as a tool to reduce liability and 

claims exposure by demonstrating proactive asset 

management. Operators and maintenance teams use SHM 

systems to prioritize interventions, plan maintenance 

efficiently, and extend the life of the structure. Finally, for high-

visibility projects, community stakeholders and the public may 

demand transparency and accountability—especially when 

safety is a concern—making clear, visual communication of 

monitoring data essential. Understanding these varied 

motivations is crucial in designing a system that delivers the 

right data to the right people at the right time. 

 

3 SENSORS 

Sensors general definition, sensors are devices that detect and 

respond to physical input from the environment in which they 

are installed. Inputs may include parameters such as 

temperature, strain, pressure, deformation and inclination, or 

other environmental or structural conditions. Sensors then 

convert their input into signals that can be read by an observer, 

with a portable readout instrument, or with an electronic 

system, such as a computer or DAS. 

The choice of any sensor is determined, for the most part, by 

the application and the environment in which they are to be 

deployed. As they must function satisfactorily, often under very 

harsh conditions, throughout the life of the project, they should 

be as simple in concept as is consistent with their function (with 

respect to accuracy, repeatability and response time).  

Additionally, they should be robust and reliable, to be durable 

under the environmental and operating conditions in which 

they will be deployed and, ideally, have a satisfactory (well 

proven) performance history. Moreover, the sensors should 

provide optimum cost benefit ratios to deliver acceptable 

performance throughout the life of the project considering the 

sum of purchase, installation, maintenance and monitoring. 

For critical applications, and/or at primary monitoring 

locations, consideration should be given to adopting back-up 

instruments, maybe of a different technology to corroborate the 

measurements provided and/or to substitute in the event of 

primary sensor failure or damage. 

 Sensor Selection 

In keeping with the intent of this paper, with respect to best 

practices and practical wisdom, it is appropriate, at this point, 

to remind ourselves of the systematic approach to designing 

monitoring systems as defined by John Dunnicliff in his 

renowned book, “Geotechnical Instrumentation for Monitoring 

Field Performance” published in 1988. In this context he 

identified 25 important steps to be considered and, wherein, the 

selection of the sensors comes in at step number 8, after steps 

addressing; the project conditions, mechanisms which control 

behavior, the purpose of the instrumentation and the parameters 

to be measured, the predicted magnitudes of change, the 

remedial action to be made and the responsibility of the various 

stakeholders. Readers are encouraged to read more on this 

subject in Chapter 26 of the aforementioned reference. 

When selecting a sensor, several factors need to be considered 

to ensure it meets the requirements of your application. 

Following are some key factors: 

Type of Measurement - The primary consideration is to choose 

a sensor which can detect the measurand, i.e. the specific 

physical quantity, object or property to be measured (e.g., 

temperature, pressure, strain, load etc.). 

Environmental Conditions – Consider factors such as 

temperature, humidity, chemicals and electromagnetic 

interference which can affect the sensor performance. Keep in 

mind too, not only any limitations of the sensor in adverse 

environments, but also and associated cabling or conduits. 
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Durability and Lifespan - For harsh or long-term applications, 

sensor ruggedness and reliability are critical, check with the 

manufacturer for compatibility and compliance. 

Measurement Range - Ensure the sensor's measuring range 

aligns with the physical range of the application to obtain 

precise readings. While choosing a sensor with a range greater 

than that which is likely to be measured may be considered safe, 

be mindful of any corresponding loss in accuracy and 

resolution. 

Accuracy and Precision - Ensure the sensor provides the 

necessary accuracy (how close a measurement is to the true or 

actual value) and precision (how close repeated measurements 

are to each other) for your application 

Resolution/Sensitivity – Understand what the smallest change 

in measurand is that the sensor can deliver and check to 

determine that the DAS to which the sensor will be connected 

can discriminate such changes (see also Measurement Range 

above)  

Response Time – As some applications (esp. real-time systems, 

and where dynamic measurements are required) often need 

sensors with fast response times, ensure that the selected sensor 

can satisfy same or, with the appropriate DAS, be readily 

converted from one taking static measurements to dynamic 

measurements.  

Excitation and Power Consumption – Is especially relevant in 

battery-powered or remote systems, therefore it is necessary to 

ensure the DAS can deliver the required excitation and, at the 

same time, not introduce any errors into the measurements. 

Output Type and Signal Conditioning – Understand whether 

the sensor outputs analog or digital signals, or communicates 

via protocols like I2C, SPI, etc. and if the associated DAS 

requires protection circuits and signal conditioners to minimize 

electrical noise and errors. (Digital sensors are often preferred 

over analog sensors as they can reduce errors during data 

conversion)  

Size and Mounting Constraints – It is important to understand 

the physical dimensions and weight of the sensor, and how and 

where it will be installed. Make sure adequate space is available 

for installation and that any fixtures required for mounting will 

not affect sensor operation or performance.  Ensure that the 

physical size or weight of the sensor does not negatively impact 

the environment being measured. 

Calibration and Maintenance – Understand any calibration and 

maintenance requirements required for the sensor to continue 

to deliver according to its stated accuracy or, where sensor 

access and recalibration is not possible, opt for sensors with 

proven long-term stability (See also Section 3.3) 

Price and Availability – Does the price of the sensor meet the 

budget and is it readily available for deployment according to 

the project schedule and/or in the event replacements are 

needed. Consideration might also be given to the budget for 

more costly (reliable) sensors for long-term applications where 

replacement is not possible. 

Careful consideration of these factors will help you choose a 

sensor that is efficient, reliable, and cost-effective for your 

specific needs. 

 Sensor Installation 

Sensor performance is often only as good as the way in which 

it was installed. Therefore, it is critical that the correct 

installation procedures are followed and documented. Of 

course, installation methods will vary according to sensor type 

but adhering to the following guidelines will help deliver 

reliable performance and accurate data. 

 

Plan Installation Procedures (Dunnicliff) 

• Prepare written step-by-step procedures well in 

advance of scheduled installation dates 

o Including a detailed listing of required materials 

and tools 

• Prepare installation record sheets  

• Plan staff training  

• Coordinate installation plans with the construction 

contractor  

• Plan access needs and any protection of the installed 

instruments from damage/vandalism 

• Prepare installation schedule consistent with the 

construction schedule. 

 

Pre-Installation Tests (Dunnicliff) 

• Check the Documentation 

o Check, by comparing with procurement 

document,  

o That model, dimensions, and materials are correct 

o That quantities received correspond to quantities 

ordered 

 

• Check the Instruments 

o Check the cable length(s) 

o Check tag numbers on instrument & cable 

o Verify that all components fit together in the 

correct configuration 

o Check all components for signs of damage in 

transit 

 

• Check Data Provided by the Manufacturer  

o Examine factory calibration curve & tabulated 

data, to verify completeness 

o Examine manufacturer’s final quality assurance 

inspection checklist, to verify completeness 

 

• Function Checks 

o Connect to readout & induce change in parameter 

to be measured 

o Make and remake connectors several times, to 

verify correct functioning  

 

• Calibration Checks (Note: This is an approximate 

check only) 

o Check 2 or 3 points if possible 

o Allow sensors to come to thermal equilibrium 

o Check Zero reading 

o Calibrate any Readout Instruments (used during 

installation and troubleshooting) regularly 

 Sensor Calibration & Maintenance 

Where accuracy, reliability and consistency are required it is 

particularly important that sensors are calibrated correctly and 

in accordance with internationally recognized standards.   

Accuracy – Certain sensors may drift over time and, if not 

regularly calibrated, can report biased data. Calibration 
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guarantees that the sensor output is traceable to a known 

standard or reference which is critical when taking trustworthy 

measurements for confident decision making. (Where sensors 

are inaccessible after installation consider using types with 

proven long-term stability). 

Consistency – Where different sensors are used in any one 

project, calibration allows data from each device to be 

compared over time. For example, two temperature sensors, 

from the same batch, may read slightly differently unless 

calibrated. 

Safety and Compliance – It goes without saying that incorrect 

readings can lead to safety hazards including loss of reputation, 

asset and or life. Therefore, it is common practice for regulatory 

standards to require periodic calibration to maintain 

certification and indemnity.   

System Performance – In digital twins, where historical data is 

integrated with, and relies upon, updates from sensors in DAS 

to represent near real time status, it is of paramount importance 

that sensors are properly calibrated as small inaccuracies can 

propagate and degrade the system’s overall performance or 

decision-making. 

Cost Savings - Accurately calibrated sensors help prevent 

inaccurate data from causing false conclusions, resource waste, 

and or project failures and delays. 

Similarly, sensor maintenance is equally important as it 

contributes to ensuring accuracy, reliability, and longevity, all 

of which are critical for making informed decisions, 

maintaining asset quality, complying with safety standards, and 

avoiding costly downtime or repairs. 

 

4 DESIGN - DATA ACQUISISTION SYSTEM 

A DAS—also referred to as a DAQ, ADAS, or ADAQ—is the 

electronic backbone of any SHM program. It serves to collect, 

condition, log, and transmit sensor data from the field to the 

end user or database. Effective DAS design must align with the 

sensor types and quantities, sensor placement, measurement 

timing requirements, communication protocols, and site-

specific environmental constraints. Additionally, DAS 

architecture should anticipate future scalability, integration 

with other systems, maintenance access, and power 

availability. 

 System Architecture & Scalability 

DAS architectures for SHM systems typically fall into two 

categories: centralized (wired) and distributed (wireless). In 

practice, hybrid approaches are often adopted to best suit 

varying site conditions, sensor layouts, and project phases. 

 

Centralized (Wired) System – Often built using a 

customizable datalogger or modular components, a centralized 

system offers the flexibility and expandability to read a wide 

variety of sensors and can often be expanded to be a high 

channel count or high speed system.   

Advantages include: 

• Easier serviceability and diagnostics via a single 

access point 

• Superior time synchronization across measurements 

• Suited for real-time or safety-critical applications 

• Flexibility in supporting advanced measurements and 

redundancies 

• Robust power backup options 

Additional considerations or challenges may include: 

• Longer sensor cable runs may increase cost 

• Higher initial setup time and effort 

 

Distributed (Wireless) DAS – These involve smaller, self-

contained DAS nodes placed closer to sensor clusters and 

typically use radio, LoRa, or cellular protocols for data 

transmission. 

Advantages include: 

• Reduced cabling complexity 

• Modular installation  

• Natural electrical isolation (air gap) for surge 

protection 

Additional considerations or challenges may include:  

• Requires management of wireless networks and data 

synchronization 

• Battery-powered nodes may limit lifespan or require 

frequent servicing 

• Multiple access points for maintenance 

 

Scalability – A good DAS design should accommodate 

changes in monitoring scope over time. Scalability should 

include:  

• Additional sensor capacity (via modularity or spare 

channels) 

• Upgradeable communications infrastructure 

• Data routing to multiple stakeholders or databases 

• Power system upgrades (e.g., larger solar arrays, 

battery banks) 

• Lifecycle support—ensure vendors provide long-term 

maintenance and part availability over the next 1, 5, or 

10 years. 

 System Timing 

Time management is central to a reliable monitoring program, 

understanding the different timing intervals is needed to ensure 

that the system operates as intended.  Pro-Tip: just because you 

can collect data fast doesn’t necessarily mean that you should.  

Timing considerations may include: 

• Sampling Rate: Frequency of raw sensor 

measurements 

• Recording Interval: Frequency of data logging, 

which may include statistical reduction 

(min/max/avg) 

• Transmission Interval: Frequency of data being sent 

to the database/user 

• Measurement Synchronization: How critical it is for 

measurements from different sensors or systems to 

be time-aligned. This becomes increasingly 

important—and potentially more complex—when 

multiple data acquisition devices are deployed 

across a site, especially when correlating events 

across a site. 
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 Data Collection  

The frequency of data collection and transmission should align 

with the decisions that rely on that data. Data must be 

transmitted—and reviewed—at intervals no longer than the 

maximum time allowed to respond to undesirable system 

behavior. For instance, a safety monitoring system may require 

data transmission every second to enable timely alarms that 

protect personnel. In contrast, a system used for regulatory 

reporting might only need to collect data monthly or quarterly, 

often in conjunction with manual site inspections.  

 Communications 

Communications are typically considered in two layers: onsite 

communication between sensors, loggers, and gateways; and 

offsite communication from a device to the cloud, server, or 

database. Each layer offers various communication methods, 

but these can generally be categorized into two types—wired 

and wireless—each with its own set of considerations.  

Wired-Onsite: Ideal for permanent installations, wired 

onsite systems offer high reliability and noise immunity but 

require protected cable routing and can be more costly initially 

but may have a lower total cost of ownership (lower 

maintenance).  Onsite wired systems may use a combination of 

copper or fiberoptic cables to address communication distance 

or electrical noise interference challenges.  A wired onsite 

system is generally built for the specific and exclusive needs of 

the monitoring system. 

Wireless-Onsite: Enable fast, modular deployment in 

difficult locations but require careful planning for power, 

interference, and network management.  Generally built using 

radios that offer a point-to-point or mesh network 

communication.  Wireless performance and protocols used are 

based on the selected wireless technology. 

Wired-Offsite: Wired offsite connections deliver secure, 

consistent performance but is reliant on existing network 

infrastructure or it may need to be added.  Typically, this taps 

into an existing ethernet network that is already existing or 

needs slight improvements to accommodate the needs and 

connection points of the monitoring system. 

Wireless-Offsite: Wireless offsite communication provides 

flexible, trench-free connectivity for remote sites, but it 

depends on external networks and typically requires a 

subscription. Most often, this involves using a cellular or 

satellite network managed by a third-party provider, accessed 

through a compatible modem and associated service plan. 

Pro Tip: When considering a communication option, 

consider seasonal conditions, for example, a radio network 

installed in the winter/spring may work great but the added 

vegetation in the summer could significantly impact onsite 

radio performance or give consideration to winter conditions 

where deep snow may cover communication antennas. 

 System Power: Power Budgeting & Backup 

The power system is the backbone of any remote data 

acquisition system and is often a primary point of failure if not 

properly designed. Power configurations can range from 

simple, single-use batteries that require periodic replacement to 

advanced systems incorporating solar panels, charge 

controllers, and rechargeable batteries—ideal for long-term or 

high-demand deployments. Self-contained DAS units often 

favor compact, non-rechargeable batteries for their simplicity 

and reliability, while modular or scalable systems typically use 

rechargeable batteries paired with external charging sources 

such as solar or AC power. Because total power consumption 

depends on design decisions—like sensor type and duty cycle, 

logging hardware, communication method (e.g., radio, cellular, 

satellite), and data collection frequency—the power system 

should be specified last. When designing it, account for worst-

case scenarios such as reduced battery performance in cold 

temperatures, limited sunlight during winter months, and 

extended outages caused by events like snow-covered solar 

panels. 

 Installation Considerations 

A successful installation requires careful planning and 

thorough verification of sensor operation, wiring, 

communication links, and power systems—both in the office 

and in the field. Equipment should be securely mounted in 

enclosures designed to withstand environmental challenges. 

When selecting cabinets or enclosures, consider factors such as 

humidity, temperature extremes, corrosive environments (e.g., 

seawater or acidic mine conditions), lightning protection, and 

the need for secure mounting. A site visit before installation is 

essential to assess available utilities, site conditions, cable 

routing, and required structures for a quality setup. As with any 

project, qualified personnel are crucial to ensure proper 

handling, installation, and operation verification. 

Comprehensive documentation is key to a quality installation, 

outlining system operations, wiring, equipment labeling, and 

data access. Since deployed equipment often transitions 

through multiple field staff over time, well-documented and 

carefully executed installation practices help ensure the 

system’s longevity, beyond the tenure of any individual staff 

member.   

 

5 MAKING SENSE OF THE DATA 

The objectives of a monitoring system must be clearly defined 

at the start of any project. The data produced should directly 

address the specific questions that need to be answered. The 

value of any monitoring system’s data depends on its 

interpretability, reliability, and ability to be transformed into 

actionable insights for key stakeholders.   

 Data Interpretation 

Interpreting sensor data depends on the type of measurement 

and the reference baseline used for comparison. Measurements 

with clear reference points—such as water level (relative to 

elevation) or tilt (relative to gravity)—are easier to understand, 

and thresholds can easily be established based on design 

specifications or comparing to other sensors. However, 

measurements like strain may be more relative and require 

establishing a baseline at installation or during an initial project 

event. Regardless of the sensor type, engineers must interpret 

data within the context of the monitored structure, considering 

sensor placement, behavioral characteristics, environmental 

conditions, and long-term performance trends. 

 

Questionable Data & Anomalies 

All monitoring systems will generate data that raises questions 

at some point. Questionable data may stem from external 
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factors, such as environmental changes or nearby construction 

activities, or issues within the measurement system itself, such 

as sensor interference from electromagnetic noise, damaged 

cables, or inadequate power supply. Additionally, stakeholders 

might question data when it contradicts project schedules or 

crew activities, often to avoid disruptions. 

When data is questioned, a useful first step is to ask: "Is what 

I’m seeing possible, or am I dealing with a faulty 

measurement?" In cases where the data could impact safety or 

project costs, the system should incorporate redundant 

measurements using different technologies to quickly verify 

whether the reported data reflects actual site conditions. While 

anomalies may initially appear alarming, they can often 

become part of the normal dataset as understanding of the 

system’s behavior improves over time. Caution is needed when 

dismissing outliers as anomalies, as this could result in missing 

genuine early warnings. If a sensor consistently generates 

unreliable data, further investigation is necessary to address the 

root cause. 

 Reporting & Visualization 

Data that cannot be easily understood or communicated 

effectively will not be used. The key question in determining 

how to report or visualize data is: who will use this data, and 

what format will best help them understand it? Technical users, 

such as engineers and scientists, may prefer raw data, like 

simple tables, for further analysis. In contrast, data intended for 

the general public should be presented visually, with clear 

indicators of what the data represents, where it’s installed on 

the structure, and what thresholds exist and what to do if those 

thresholds are met. Many SHM projects involve multiple 

audiences, so data presentation should evolve to meet the needs 

of different stakeholders throughout the project’s lifecycle. 

 

6 CONCLUSION 

Over the past ten years or so, modern DAS has played a key 

role in supporting site decisions that enhance the health and 

safety critical projects, and those working on them, all the while 

delivering significant time and cost savings during construction 

and operation and providing input for safer and more cost-

effective designs.  

Advances in sensor technology, data acquisition systems, and 

cloud computing have resulted in many monitoring programs 

involving a greater number of instruments than previously 

used, all of which collect data at much higher frequencies and 

generate vast volumes of information.  

Thus, it is purported that a well-designed data acquisition 

system (DAS) will offer several key benefits, especially on 

projects which involve a large number and variety of sensor 

types: 

Data Integration Across Sensor Types - Seamlessly collects and 

unifies data from diverse sensors (e.g., geotechnical, structural, 

environmental), enabling holistic analysis and reduces the need 

for manual aggregation or format conversions. 

Real-Time Monitoring and Alerts - Enables high-frequency 

data collection and real-time transmission, which facilitates 

immediate alerts when thresholds are breached, thereby 

improving safety and responsiveness. 

Improved Data Quality and Reliability - Minimizes data loss, 

signal noise, and errors through appropriate filtering, 

calibration, and validation, thus ensuring accurate and 

consistent data across all sensor types. 

Scalability and Flexibility - Supports the addition of new 

sensors and or sensor types or locations without re-engineering 

the entire system and adapts to evolving project needs, whether 

during construction or long-term monitoring. 

Centralized Data Management - Consolidates data into a single, 

accessible platform, reducing fragmentation and enhancing 

collaboration among engineers, analysts, and decision-makers. 

Efficient Data Processing and Visualization - Supports 

automated analysis, dashboards, and trend detection, reducing 

time spent on manual review and enabling timely insights to 

inform decision-making. 

Reduced Operational Costs - Lowers labor costs associated 

with manual readings and data handling, while minimizing 

downtime and damage through proactive maintenance. 

Enhanced Regulatory Compliance and Reporting - Provides 

traceable, well-documented data logs to meet legal, 

environmental, or safety standards, and simplifies reporting for 

stakeholders and authorities. 

In closing, the authors wish to remind readers that it still 

remains appropriate, that no matter how well an 

instrumentation DAS and monitoring program is designed, it 

will ever replace the need for site surveys and visual 

inspections.  While monitoring can check specific points 

continuously, and alert if alarm conditions are exceeded (in a 

timely manner), site surveys and visual inspections (although 

less frequent) allow for “macroscopic” observations to be 

made, that a network of instruments could quite easily miss; be 

warned. 
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ABSTRACT: This paper presents the implementation of a structural health monitoring (SHM) system for a suspension bridge 

approaching the end of its service life. Constructed in the 1960s with a 220-meter main span, the bridge is the sole vital link to a 

region hosting key socioeconomic industries. Over time, heavy traffic—with vehicles often exceeding 80 tons—has led to 

pronounced fatigue issues. Throughout its operational life, extensive repairs—such as the addition of a cantilevered pedestrian 

lane, modifications to the bearing system, and hanger replacements—have been undertaken. More than a decade of monitoring 

via over 50 sensors has yielded comprehensive data that both ensures safety and informs maintenance strategies. A sophisticated 

finite element (FE) model, developed in 2023 and calibrated using real-time data, improved the correlation between simulated 

and actual performance. Following this, a streamlined near-real-time monitoring framework was established in early 2024 to 

promptly identify structural anomalies. Designed for adaptability, the SHM system can be implemented on various structures. 

This study highlights the importance of clear data presentation in enabling informed decisions that optimize infrastructure 

management and enhance operational safety. 

KEY WORDS: SHM, suspension bridge, fatigue, data-informed decision making, safety, reliability, FEM, predictive 

maintenance, sustainability 

1 BACKGROUND AND MOTIVATION 

Ensuring the safety and longevity of aging infrastructure is 

increasingly challenging as many critical bridges worldwide 

approach or exceed their intended service life. Traditionally, 

structural integrity is assessed via periodic inspections—

typically every three to six years—which may overlook 

gradual deterioration. Historically, bridge monitoring data has 

been analyzed on a case‐by‐case basis, a fragmented approach 

that hinders a comprehensive understanding of structural 

behavior over time. A shift toward a structured and 

standardized methodology is essential to interpret monitoring 

results more effectively, optimize sensor placement, reduce 

instrumentation costs, and fully leverage the rich datasets 

available. Grounded in big data principles, such an approach 

can transform stored information into actionable insights. 

Constructed in the 1960s, the case bridge is the sole 

transportation route serving a region with vital socioeconomic 

industries. Unlike modern bridges, it was designed based on 

historical traffic load models that did not anticipate today’s 

heavier vehicles and increased traffic density. Heavy trucks, 

often exceeding 80 tons, regularly traverse the structure, 

introducing forces well beyond the original design 

assumptions. Although various repairs have been undertaken 

over the years, concerns regarding progressive material 

fatigue and overall structural performance persist. 

In response to these challenges, an SHM system was 

implemented to deliver real-time insights into structural 

behavior—facilitating early anomaly detection, proactive 

maintenance, and a reduction in the risk of sudden failures. By 

integrating continuous monitoring with analytical tools, this 

system represents a significant advancement in managing 

aging infrastructure. 

 

Figure 1. The case bridge. 

 

2 CHALLENGES IN MAINTAINING AGING BRIDGES 

A significant portion of the bridge network was constructed 

over 50 years ago, using traffic load models that are no longer 

representative of current conditions. At the time of design, 

fatigue considerations were not always fully incorporated into 

design practices, leading to unforeseen long-term issues. 

Suspension bridges, such as the case bridge, face particularly 

complex challenges. Increased traffic loads exacerbate non-

linear deformations and amplify fatigue effects, contributing to 

localized failures. 

 

Traditional periodic inspections suffer from significant blind 

spots. Critical issues such as fatigue cracks and unforeseen 

deformations can evolve and propagate well between scheduled 

evaluations, resulting in missed opportunities for early 

intervention. This limitation underscores the urgent need for 

continuous, data-driven monitoring to capture dynamic 

structural behaviors in real time. 

 

While periodic inspections provide valuable assessments, they 
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often fail to capture detailed long-term behavioral trends. 

Undetected fatigue cracks, excessive displacement, or gradual 

load redistribution may develop between inspections, 

increasing the risk of structural failure. This growing need for 

a proactive approach has driven the development of Structural 

Health Monitoring (SHM) systems. By continuously tracking 

critical parameters, SHM provides timely insights into bridge 

performance, allowing for early interventions and more 

informed maintenance decisions. 

3 KEY STRUCTURAL CHALLENGES AND REPAIRS 

OF THE CASE BRIDGE 

One of the problems detected has been the formation of fatigue 

cracks in the wind bracings, which has altered the bridge’s 

behavior. In some cases, these changes have been noticeable 

under traffic loads, with visibly increased vibrations and 

unexpected movement patterns. However, assessing whether 

the main load-bearing components have also been affected 

remains a challenge. 

 

Another significant concern was the corrosion of the hangers, 

particularly the shorter ones. Due to their positioning, these 

hangers experienced greater angular movements as the main 

cable deformed under traffic loads. This fluctuation in stress 

accelerated wear, leading to localized material deterioration. 

In 2020, a heavily corroded hanger was removed and 

subjected to laboratory testing, which provided crucial 

insights into the remaining safety margins of the hangers. The 

results confirmed that the less-corroded hangers were still 

within operational limits. 

 

Figure 2. Corroded hanger 

 

Figure 3. Installation of temporary hanger bars. 

Additionally, the ongoing construction of a new cable-stayed 

bridge to the west of the case bridge has introduced further 

challenges. The transportation of construction materials over 

the existing bridge has led to increased loads, while related 

activities—such as the drilling of large-diameter steel piles and 

controlled blasting—have induced minor disturbances. The 

continuous monitoring system has furnished real-time insights 

into the bridge’s condition, thereby ensuring its safe operation 

throughout these construction activities. 

 

These challenges illustrate the limitations of relying solely on 

periodic inspections. Although past repairs addressed specific 

damage, they did not provide a comprehensive picture of the 

bridge’s evolving condition. This underscores the critical need 

for continuous monitoring to detect subtle structural changes 

before they escalate into major failures. 

 

4 DESIGN AND IMPLEMENTATION OF SHM SYSTEM 

The case bridge is equipped with over 50 sensors, including 

strain gauges, displacement sensors, accelerometers, as well 

as temperature and wind sensors. These instruments provide a 

comprehensive dataset for assessing the bridge’s structural 

behavior under varying conditions. Over its lifespan, 

additional sensors were installed to monitor specific concerns, 

such as localized fatigue-prone areas; however, until recently, 

data analysis was performed sporadically and primarily in 

response to observed anomalies. 

In 2023, the construction of a new bridge adjacent to the case 

bridge prompted a shift toward a more structured and 

systematic data analysis framework. The client required 

assurance that the existing bridge could safely serve its final 

years of operation while construction was ongoing. 

Consequently, a daily evaluation system was introduced to 

track changes in load distribution, deformations, and stress 

concentrations over time. 

This transition from sporadic analysis to continuous 

monitoring has provided deeper insights into the bridge’s 

behavior, significantly enhancing the ability to detect subtle 

structural changes before they escalate into critical issues. By 

integrating real-time sensor data with analytical tools, the 

monitoring framework has evolved from a reactive assessment 

method into a proactive instrument for infrastructure 

management. 

5 FINITE ELEMENT MODEL CALIBRATION 

Before beginning the more detailed structured data analysis 

phase, a state-of-the-art nonlinear finite element (FE) model of 

the case bridge was developed. This model was designed to 

replicate the bridge’s actual behavior under modern traffic 

loads, using sensor data for validation. However, early 

comparisons between the model and real-world measurements 

revealed significant discrepancies, indicating that the first 

iteration did not fully capture the actual structural response. 

 

This phase was crucial in enhancing the understanding of the 

bridge’s performance. Iterative refinements identified 

previously overlooked structural traits, leading to a more 

accurate representation of the bridge’s behavior. To ensure 

reliable comparisons, known heavy vehicles with documented 
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axle weights were used as test loads during operation, allowing 

for direct validation of the model against real-world conditions. 

 

 
Figure 4. 3D visualization of the FE model. 

 

For example, calibration provided insights into the behavior of 

the elastomeric bearings between the deck structure (a concrete 

slab with longitudinal steel girders) and the main steel truss. 

The bridge deck was observed to move unpredictably in both 

longitudinal directions, raising concerns until the behavior was 

computationally verified and found to be harmless, given the 

bridge’s remaining service life. 

 

 
 

Figure 5 deck structure supported by the steel cross truss by 

elastomeric bearings. 

 

This movement had not been anticipated; the elastomeric 

bearings had deteriorated to such an extent that their response 

was no longer elastic and, therefore, not linear. Instead of 

behaving elastically, the bearings acted as fixed supports until 

the friction between the rubber and steel was overcome, 

causing them to slide. This resulted in residual movement, 

which initially caused confusion until it was successfully 

captured in the FE model and understood. A comparison of 

monitoring results and the FE model (depicting the movement 

of the concrete slab relative to the cross beam) is shown in 

Figures 6 and 7. 

 

 
Figure 6. relative displacements while a vehicle crossing the 

bridge (monitored results). Staggered displacements showed 

the friction exceeded on the bearing leading to residual 

displacement at the end. 

 

 
Figure 7. Analysis results of the differential displacement 

between the deck and the cross truss. Elastic bearings (left) vs 

nonlinear (sliding) bearings. 

Another complex aspect addressed was the behavior of the 

replaced hanger. The original corroded hanger, consisting of a 

pair of spiral cables arranged perpendicular to the bridge axis, 

was replaced with two steel bars. Unlike the cables, the new 

steel bars run along the bridge axis, allowing for their 

installation before dismantling the existing hangers. However, 

this configuration complicates load distribution predictions. 

Additionally, the longitudinal steel bars are susceptible to 

bending, particularly when the superstructure sways in the 

bridge’s longitudinal direction. A refined analysis helped 

define the expected range of stress variations and identify 

conditions requiring closer monitoring—such as instances 

when a hanger comes into contact with the edge of its recess. 
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Figure 8 compares the monitoring readings in 4 strain gauges 

to the FE model under service loads. 

 

 
Figure 9. Hanger arrangement resulting in bending stresses 

due the superstructure longitudinal movement, 

 

Figure 10. Hanger arrangements in the FE model. 

 

Most of the main elements were easier to model; as an example, 

Figure 11 shows the typical behavior of main truss stresses and 

Figure 12 shows the typical behavior of the stresses in cross 

beam diagonals. 

 

 

Figure 11. Main truss stresses (measured/modelled). 

 

 

Figure 12. Cross beam diagonal stresses (measured/modelled). 

 

The calibration of the FE model against monitoring results 

provided assurance that the behavior of the bridge is well 

understood, enhancing the potential for data-driven decisions. 

 

6 REAL-TIME MONITORING FRAMEWORK 

To manage the vast amounts of sensor data efficiently, an 

automated preselection of loading events was introduced. This 

system relies on a designated "trigger sensor"—in the case 

bridge, the maximum deflection of the main span. Each day, 

the ten most severe loading events are identified, ensuring that 

comparisons are made based on similar traffic conditions. 

 

Once trigger events are selected, a full one-minute dataset is 

retrieved for all sensors, ensuring that both immediate effects 

and short-term recovery behaviors are captured. To establish a 

reference point for long-term monitoring, the first 30 days of 

operation were designated as the baseline, against which all 

subsequent readings are compared. 

 

For comparative analysis, stress and displacement fluctuations 

under traffic loads were selected. These results provide insights 

into structural response variations and were also utilized for 

fatigue analysis of critical details.  

 

The real-time monitoring system is accompanied by a 

standardized dashboard, which presents weekly summaries of 

key indicators. This allowed the Client to easily track trends 
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without needing to analyze raw data manually. While the 

current monitoring system does not yet fully utilize advanced 

AI tools, its structured approach has already demonstrated 

reliability, providing trustworthy insights that inform safety 

decisions. 

The work done in the calibration of the FE model offered such 

detailed insights into the bridge’s behavior that it significantly 

enhanced our interpretation of the monitoring results, enabling 

us to differentiate between normal operating patterns and 

potential anomalies. 

Figures 13 to 15 illustrate the primary views of the dashboard, 

which facilitates the detection of both long-term trends and 

short-term changes in the bridge’s behavior. The dashboard is 

engineered to emulate the analytical interpretations of an 

experienced structural engineer, significantly reducing the 

time required for data interpretation while still necessitating 

periodic expert review—an achievement made possible by 

advances in AI. Notably, the fatigue view has spurred a spin-

off project aimed at developing comprehensive fatigue 

assessment software applicable to any structure monitored by 

the system, including preliminary studies on HFMI-treatment 

in line with the forthcoming second-generation Eurocodes. 

 

 

Figure 13. Summary view of the dashboard. 

 

Figure 14. Detailed sensor-view of the dashboard. 

 

Figure 15. Fatigue-view of the dashboard. 

 

The dashboard will provide clear alarms when anomalies are 

detected, offering users the ability to explore the data further. 

Each meaningful event can be visualized as needed, enabling a 

deeper understanding of the bridge's condition and facilitating 

informed decision-making. 

 

In addition to these dashboard views, a largely automated 

weekly report and other analytical insights are provided. The 

implementation of this system reduces the active expert time 

required from hundreds of hours to single-digit hours per 

report. Naturally, any detected changes in behavior can trigger 

more in-depth studies. 

 

7 EXAMPLES OF ABNORMALITIES DETECTED 

WITH THE INSTALLED SHM-SYSTEM 

The new hangers have occasionally exhibited higher stress 

values, indicating that relative motion is occurring between 

the hangers and the deck. This behavior is likely driven by 

temperature-induced movements of the main cables, although 

displacements from heavy traffic loads are also contributing—

especially if the deck does not fully return to its original 

position after loading. As a result, this relative motion may 

cause the hanger bars to contact adjacent structural 

components, leading to elevated strain gauge readings. Since 

the hanger bars are designed with considerable built-in safety 

factors, these modest increases (occasionally up to 50%) in 

sensor readings do not presently signify an immediate 

structural risk; however, if not adequately addressed through 

maintenance, they could eventually evolve into more critical 

issues. 

The changes in the behavior are well seen when the fatigue 

accumulation for the hanger bars is plotted for each week (see 

Figure 16), from week 47/2024 the Fatigue accumulation 

increases strongly.  

Following the removal of a cover plate (see Figure 17), stress 

levels temporarily decreased, only for similar patterns to re-

emerge a few weeks later. Although the current stress levels 

are not critically hazardous, the repeated contact between the 

hanger bars and adjacent structural elements could eventually 

lead to fretting fatigue cracks. As a precaution, immediate 

repairs to widen the openings around the bars were 
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recommended. These stress increases were quickly detected 

by the dashboard, which employs AI algorithms with accuracy 

comparable to that of a human expert, ensuring that such 

anomalies are reliably flagged. 

 

Figure 16. Sudden increase in fatigue accumulation of new 

hanger bars 

 

Figure 17. Contact of the hanger bar and cover plate 

 

 

Additionally, significant deflections and stress variations were 

detected sporadically, often coinciding with instances when 

heavy vehicles failed to comply with the new restrictions. 

Camera footage confirmed that two—or sometimes even 

three—heavy vehicles crossed the bridge simultaneously (see 

Figure 18). Although the occurrence of multiple heavy 

vehicles clearly violates the established restrictions, these 

restrictions remain essential, as frequent violations could have 

a much more detrimental impact than isolated incidents. 

 

Figure 18. Two heavy vehicles at main span 

 

8 BROADER APPLICATIONS OF THE SHM SYSTEM 

The development of the SHM dashboard was carried out in 

close collaboration with the Client responsible for the bridge’s 

safety. Their involvement ensured that the system presented 

clear, actionable information, making it easier to interpret 

monitoring data without requiring specialized expertise. As a 

result, the dashboard became a practical tool for real-time 

decision-making, rather than just a data visualization platform. 

 

Bridging the gap between large-scale monitoring efforts and 

local stakeholders is crucial. Often, local communities must 

place their trust in decisions made at a national or corporate 

level. By bringing monitoring tools closer to end clients and 

asset owners—through transparent, standardized, and 

analytically robust dashboards—we empower them with the 

insights needed for informed decision-making. This approach 

not only enhances transparency but also fosters a culture of 

shared responsibility and improved safety at the local level. 

 

Due to its successful implementation, the system was designed 

with scalability in mind, allowing it to be applied to other 

projects with minimal modifications. The fundamental 

approach—selecting relevant loading events, establishing a 

baseline, and tracking deviations—can be adapted to any bridge 

or infrastructure type. In fact, this methodology extends beyond 

bridge SHM and can be used in any time-series data analysis 

application where there is a need to detect long-term trends or 

sudden changes in any monitored metric.  

 

Furthermore, a deep understanding of the bridge’s structural 

behavior enables the optimization of sensor placement. This 

refined design not only enhances data quality but also reduces 

the number of sensors required, thereby lowering the overall 

costs of individual monitoring projects. 

 

Recognizing this potential, developers began shifting focus 

toward building a next-generation standardized SHM analysis 
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dashboard. The next iterations will incorporate AI-assisted 

automated damage detection and advanced pattern recognition, 

allowing engineers to identify anomalies without needing to 

manually go through raw data. Importantly, all collected data 

has been stored in a structured format, ensuring that future 

enhancements—such as machine learning-based predictive 

maintenance—can be integrated without requiring a complete 

system overhaul. 

 

Even in its current form, without full AI-driven analysis, the 

SHM system has proven reliable and trustworthy, providing the 

data necessary for the Client to make informed maintenance 

decisions. As computational power increases, real-time 

monitoring will continue evolving, allowing asset owners to 

shift from reactive to fully predictive maintenance strategies, 

ultimately reducing costs and improving safety across critical 

infrastructure networks. 

 

9 CONCLUSIONS AND FUTURE PERSPECTIVES 

Effective infrastructure management relies not just on data 

collection but on extracting meaningful insights from vast 

amounts of sensor information. To make data-informed 

decisions, monitoring systems must filter out irrelevant 

readings while capturing every critical structural event. In this 

project, a trigger-based system was implemented to identify the 

most relevant high-load situations per day, ensuring that 

engineers could track changes in bridge behavior over time 

without being overwhelmed by excessive data. 

 

The high-flying promise of adopting a structured and analytical 

approach in SHM lies in transforming ‘known unknowns’ into 

‘known knowns.’ By systematically standardizing data 

analysis, we can significantly enhance the reliability of our 

decision-making processes. This increased understanding 

naturally leads to improved safety, cost reductions, and 

substantial socioeconomic benefits. Ultimately, a more data-

informed framework will pave the way for more predictive and 

preventative maintenance strategies. 

 

Future iterations of the system will incorporate more trigger-

sensors, improving detection accuracy and allowing for a more 

detailed understanding of how different parts of a structure 

respond to varying loads. Additionally, with advancements in 

automated data processing and machine learning, monitoring 

systems will not just detect anomalies but ultimately also 

predict future deterioration trends, enabling truly proactive 

maintenance strategies. 

 

For long-term viability, monitoring frameworks must remain 

scalable and adaptable, allowing new technologies to be 

integrated without major system overhauls. Greater emphasis 

should also be placed on load testing and FE-model calibration, 

ensuring that monitoring data is interpreted within a robust 

engineering framework. 

 

As SHM systems become more mainstream and data handling 

becomes more systematic, there is a significant opportunity for 

transfer learning. By systematically analyzing results from a 

diverse range of structural configurations, it will be possible to 

enhance the understanding of different structural behaviors. 

This transfer learning process has the potential to greatly 

amplify the benefits of SHM in the future, enabling more 

accurate predictions and more efficient maintenance strategies 

for a wide variety of infrastructure types. 

 

We are confident that soon, extremely cost-efficient real-time 

SHM systems will become a standard part of infrastructure 

management, allowing asset owners to make fully data-driven 

maintenance decisions. This shift will significantly reduce 

long-term costs while improving the safety and reliability of 

critical infrastructure worldwide. 
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ABSTRACT: The use of monitoring for bridges on federal highways is currently not widespread. Monitoring is primarily used 

when damage is already present or when deficits resulting from the recalculation or which occur due to the design. The potential 

of monitoring to support maintenance towards a predictive lifecycle management approach is not being fully utilized. 

As part of the exchange with the structure managers in Germany and a literature search, it has been shown that the challenges 

lie in the lack of standardization, insufficient expertise, and missing fundamental principles. To address these challenges, various 

research projects have been planned and carried out. These include the “Documentation on Monitoring of Bridge Structures,” the 

“Guideline – Strategic Use of Monitoring for Civil Engineering Structures,” the “Birth Certificate for Bridge Structures,” and the 

project on “Standardized Data Models.” 

This article aims to present the challenges and initial solution approaches from these projects. The goal is to illustrate support 

options for the increased and targeted use of monitoring in bridge structures on Germany’s federal highways. Additionally, the 

article provides a classification of these challenges within the European context. 

 

KEY WORDS: monitoring, road bridge, standardization  

 

1 INTRODUCTION 

The bridges on federal highways face a variety of challenges. 

The main causes include the significant increase in traffic, 

especially in freight transport, the advanced age of the bridges, 

and a backlog of maintenance measures. Monitoring offers a 

way to address these challenges. It can be used effectively to 

ensure availability by detecting, assessing, and tracking safety 

reserves, changes, and weaknesses, thereby enabling 

predictions of future behavior. Additionally, monitoring allows 

for the recording of actual loads and impacts. 

The data obtained through monitoring can support and 

optimize maintenance management, as it enables a more 

precise assessment of the current condition and better 

forecasting of condition changes. This, in turn, helps gain 

valuable time for necessary repair measures or replacement 

constructions. 

However, the full potential of monitoring has not yet been 

realized. This article discusses the use of monitoring in 

Germany, as well as challenges in Europe, and particularly 

Germany. It serves as a foundation for identifying necessary 

developments and projects that can promote a more extensive 

and targeted application of monitoring. 

2 MONITORING – CURRENT STATUS 

 General 

Monitoring refers to the overall process of recording, 

analyzing, and evaluating structural responses and/or impact 

factors using a measurement system over a representative 

period. This includes tracking the temporal development of the 

measured variable through continuous, periodic, or event-based 

measurements, both on a global and local scale [1].  

The effective use of monitoring encompasses the entire 

process, from the "definition of the research question" to the 

"evaluation." This process ensures that monitoring contributes 

to answering open questions related to a structure. [1; 2].  

The goal of monitoring is to obtain additional information 

about the condition of the structure. This information serves as 

a basis for describing the current state and deriving forecasts 

for future behavior. The results can then be used to make 

maintenance decisions on a more informed basis.  

 

 Current use of monitoring 

A survey conducted by the Federal Ministry of Transport in 

2020 revealed that the use of monitoring for bridges on federal 

highways is limited to existing damage and deficits. The 100 

monitoring measures identified in the survey primarily focused 

on bridges built between 1960 and 1980 and reflected the 

typical distribution of bridge types on federal highways, with a 

particular emphasis on prestressed concrete bridges (Figure 1 

and Figure 2). The monitoring measures were mostly carried 

out to capture the structural response using deformation and 

temperature sensors [3]. 
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Figure 1: Age of the structures with monitoring 

 

Figure 2: Material of the bridges with monitoring 

The potential that monitoring offers to support maintenance 

decisions through additional information is not being utilized. 

Decisions are made on a case-by-case basis, relying on the 

individual knowledge of the structure managers and their 

supporting teams. 

 

 Cost-benefit of monitoring 

Compared to other compensatory measures such as traffic 

restrictions, the use of monitoring is applied significantly less 

frequently. However, the benefit-cost ratio of using monitoring 

as a compensatory measure is very high. Monitoring allows for 

the continued operation of a structure under traffic. Alternative 

traffic-related compensatory measures would include speed 

limits, the closure of individual lanes, or even entire bridges. 

Reference [4] demonstrates that alternatives to monitoring have 

significant economic impacts. These impacts include, for 

example, congestion costs and detour costs, which in turn lead 

to increased environmental pollution and loss of travel time. 

Increased use of monitoring can therefore also have positive 

effects on the economy, the environment, and social aspects. 

 Use cases of monitoring 

To enable a structured analysis of the previous case-by-case 

decisions regarding monitoring measures, the existing 

application examples were categorized according to the reasons 

for implementing monitoring. The goal was to enable a 

standardized assessment. During the evaluation of the previous 

monitoring applications, it became evident that a systematic 

approach can be derived in relation to individual use cases. Use 

cases are known from the BIM methodology and are derived 

from the project goals [5]. 

The following commonly used use cases can be derived: 

"Monitoring of known locally identified damages," 

"Monitoring for deficits from recalculations and construction," 

"Monitoring for determining loads and impacts," and 

"Construction-related monitoring." (Figure 3) [6; 7].  

 

Figure 3: common use cases of monitoring (Modified 

according to [6]) 

Monitoring of known locally identified damages is used 

when structural inspections reveal damages such as corrosion 

or fatigue cracks. Typically, a local monitoring system is 

employed to track the progress of damage. The goal is to extend 

the remaining service life and ensure adequate safety. 

Monitoring for known deficits arising from recalculations or 

due to construction-related factors is used when deficits are 

identified in a structure or in structures with a similar design. 

However, visible damage does not necessarily need to be 

present at this stage. In this case, a global monitoring system 

can be used to capture the overall structural response, or a local 

monitoring system can be employed to monitor critical areas. 

Examples of this use case include structures with stress 

corrosion cracking or joint connection issues. 

Monitoring for determining impacts is used to capture 

external factors such as traffic loads or climatic conditions. For 

instance, Bridge-Weigh-in-Motion (B-WIM) systems can be 

used to determine actual traffic loads. This information is 

particularly useful in the recalculation of bridges starting from 

recalculation stage 3 [8]. 

Monitoring during construction is used to track the 

performance of structures in real-time while they are being built 

or if construction work is taking place directly next to the 
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structure. This type of monitoring allows for immediate 

identification of issues such as unexpected deformations or 

material behavior, enabling timely adjustments. It helps ensure 

that the structure is being constructed according to design 

specifications and that any potential risks are mitigated early in 

the process. Examples include monitoring during the 

construction of new bridges or during major rehabilitation 

projects. 

In addition to the common use cases, it is also possible to 

derive use cases with initial use examples, such as the 

monitoring of special structures or future use cases such as the 

certificate of birth. However, these applications currently play 

a subordinate role in the maintenance of structures. 

 

 Challenges in the use of monitoring 

The reasons for the limited use of monitoring on federal 

highway bridges so far are diverse. Figure 4 provides an 

overview of the challenges that arise throughout the entire 

process, from planning to evaluation. The main causes include 

a lack of standardization, insufficient expertise, and missing 

fundamental principles [9]. 

 

 

Figure 4: challenges in the use of monitoring  

One challenge in the use of monitoring is the lack of 

standardization. Currently, monitoring is decided on a case-by-

case basis, and there are no standardized guidelines for 

tendering, awarding, evaluating, or selecting a monitoring 

system. Defining use cases [6], describing individual 

monitoring methods [10], or outlining processes and 

stakeholders [1; 2] could help address this issue. In this context, 

templates for tender documents could, for example, provide 

valuable support. 

Another crucial aspect of the lack of standardization is the 

absence of an established regulatory process. Currently, the use 

of monitoring is neither mandated nor recommended in any 

official guidelines. As a result, a key challenge is demonstrating 

the economic benefits of monitoring. In cases where damage or 

deficits are already present, the necessity is usually 

straightforward to justify, as all alternatives involve 

compromises in safety or availability. However, if monitoring 

is to be used proactively as a basis for better maintenance 

decisions in the future, the cost-effectiveness of the measure 

must be evaluated. This requirement has led to only sporadic 

use so far. Approaches from projects such as the “Economic 

Feasibility Study of Monitoring” offer valuable solutions but 

are rarely applied in practice [4]. The establishment of 

standardized processes is still pending. However, with the 

revision of DIN 1076, monitoring can be integrated into the 

structural inspection and maintenance process [11; 12]. This 

step is crucial for a more widespread and targeted use of 

monitoring. Additionally, incorporating monitoring aspects 

into existing guidelines, such as the “Manual for the Awarding 

and Execution of Freelance Services in Road and Bridge 

Construction” (Handbuch für die Vergabe und Ausführung von 

freiberuflichen Leistungen im Straßen- und Brückenbau - HVA 

F-StB), could further support the standardization process [13]. 

Another important aspect is the lack of expertise. Monitoring 

involves a high level of complexity, for example, in preparation 

of a monitoring plan, selecting the appropriate monitoring 

concept from various offers, or evaluating the results in terms 

of their significance for structural maintenance. The acquisition 

of the necessary expertise is not a standard part of the training 

for those responsible for infrastructure. Therefore, it is essential 

to either obtain this knowledge independently or compensate 

for gaps by involving specialized personnel, such as 

engineering office. The lack of expertise also results in an 

absence of confidence in applying monitoring effectively, 

making it difficult to recognize its benefits for structural 

maintenance. 

In some areas, fundamental principles for the use of 

monitoring are still missing. This is particularly evident in data 

management. Efficient data collection, reduction, analysis, and 

storage, as well as the development of user-friendly solutions 

for all stakeholders, are crucial. At the same time, data security 

and ownership must be ensured, especially when granting 

usage rights to third parties. Additionally, integrating 

monitoring data with structural models and embedding them 

into maintenance management systems to derive relevant key 

performance indicators is another essential step toward the 

broader and more targeted application of monitoring. 

 

3 PROJECTS TO SUPPORT THE TARGETED USE OF 

MONITORING 

 General 

At present, various fundamental principles for the targeted and 

standardized use of monitoring are available. The currently 

existing foundations include:  

• DBV Guideline: "Monitoring: Planning, Tendering, and 

Operation" (DBV-Merkblatt - Monitoring: Planung, 

Vergabe und Betrieb“) [1] 

• DGZfP Guideline B 09: "Continuous Monitoring of 

Structures" (DGZfP-Merkblatt B 09 

„Dauerüberwachung von Bauwerken“) [14] 

• Directive SE05: "Detection of Tendon Wire Breaks 

Using Acoustic Emission Analysis (Richtlinie SE05: 

Detektion von Spanndrahtbrücken mit 

Schallemissionsanalyse) [10]  

In addition to these guidelines, several projects have been 

initiated with the goal of promoting the more widespread and 

targeted use of monitoring, thereby addressing various 

challenges. The following research projects have been initiated, 

conducted, or supported by the Federal Highway and Transport 
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Research Institute (Bundesanstalt für Straßen- und 

Verkehrswesen BASt):   

• Documentation: "Monitoring in Bridge Structures" 

(Erfahrungssammlung “Monitoring bei 

Brückenbauwerken”) [15] 

• Guideline: Strategic Use of Monitoring for Engineering 

Structures (Leitfaden – Strategischer Einsatz von 

Monitoring für Ingenieurbauwerke) [2] 

• "Birth Certificate" for Bridge Structures 

(Geburtszertifikat für Brückenbauwerke) [16] 

• Documentation on the Application of Innovative 

Methods in Condition Assessment, with a Focus on 

Standardized Data Models (Erfahrungssammlung über 

die Anwendung innovativer Verfahren in der 

Zustandserfassung insbesondere bzgl. standardisierter 

Datenmodelle) [17] 

The following sections introduce these projects and illustrate 

how they contribute to developing solutions for existing 

challenges. 

Table 1 consolidates the challenges and current projects of 

BASt. It assesses the extent to which these projects are suitable 

for addressing the existing challenges. The results presented in 

Table 1 are further elaborated in the chapters discussing each 

individual project. 

  

Table 1: Consolidation of Challenges and Current Projects 

  

 Documentation: "Monitoring in Bridge Structures"  

In recent years, documentations have been created on several 

topics commissioned by the BASt. These serve to compile and 

systematize the experiences gained so far in specific areas [15; 

18]. As such, they represent an initial step in preparing a topic 

for practical application. The documentations have always been 

structured in an analogous manner, with examples of 

applications related to bridges being compiled after an initial 

categorization. 

The documentation on monitoring is divided into two main 

sections: one focuses on the state of the art in monitoring, and 

the other presents a collection of examples of monitoring 

measures carried out in Germany [15]. 

The main section "State of the Art in Monitoring of 

Structures" defines the monitoring objectives, which primarily 

focus on capturing various structural responses, such as 

deformations or crack developments. The measurement 

techniques applied in practice are assigned to the respective 

measurement objectives. Additionally, information about the 

functioning and performance of the measurement technology, 

as well as the information gained, is provided. Notes on the 

limitations of monitoring and quality assurance supplement this 

section. 

The second main section contains a collection of examples of 

selected monitoring measures. The categorization in this part is 

based on the monitoring objectives developed in the first main 

section. Building on this, specific monitoring projects and their 

results are described. The reasons for monitoring, relevant 

structural features, measurement goals, employed 

measurement technology, responsibilities in the monitoring 

process, information gained, and data management are detailed. 

Additionally, statistical evaluations on tenders, awards, and the 

responsibilities of the stakeholders in the monitoring process 

are presented. 

The documentation, with its structured and uniform 

presentation of examples, provides a good entry point into the 

topic and can contribute to building the necessary expertise in 

this field. 

 

 Guideline: Strategic Use of Monitoring for Engineering 

Structures  

The Guideline - Strategic Use of Monitoring for Engineering 

Structures was developed based on the requirements of 

infrastructure managers [2]. The goal of the guideline is to 

provide a practical guide for the targeted use of monitoring in 

engineering structures, particularly bridges. The project aims to 

support infrastructure managers throughout the entire process 

of planning, implementing, and evaluating monitoring 

measures. 

The research project combined literature reviews, expert 

interviews, online surveys, and workshops to compile 

challenges and essential foundations for the strategic use of 

monitoring. The report defines use cases for monitoring, 

ranging from monitoring localized damage to the use of digital 

twins for predictive lifecycle management, and describes the 

project participants and the process from defining the issue to 

evaluating the monitoring. Furthermore, the guideline includes 

practical recommendations for tendering, awarding contracts, 

contract design, economic analysis, and is supplemented by 

checklists to support infrastructure managers. 

Another key topic is data management; client data 

requirements were developed to ensure structured storage and 

analysis of monitoring data. 

A key reason for the limited use of monitoring by 

infrastructure owners is the lack of expertise and standardized 

procedures. The project can help by providing standards and 

presenting fundamental principles. Additionally, it plays a 

significant role in building expertise to address the complexity 

of the topic. With standardized use cases, a defined process, and 

potential support services, this project can address these 

challenges. This also applies to the missing fundamental 

principles in data management. The development of client data 
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requirements has made a first step toward creating foundations 

in this area. 

 

 Birth certificate for bridge structures 

The research project aims to develop a comprehensive concept 

for a "birth certificate" for bridge structures and the foundations 

for a prototype implementation on a real bridge [2]. The birth 

certificate serves as the basis for condition monitoring and 

maintenance planning throughout the entire lifecycle of a 

structure. Central to this concept is the so-called zero 

measurement, where the initial condition of the structure – 

immediately after completion and before being opened to 

traffic – is captured in detail and systematically using various 

parameters. This reference state will later serve as a basis for 

comparison to detect, document, and evaluate changes and 

damages at an early stage. 

The concept defines a wide range of parameters: Physical 

parameters such as material strains, displacements, as well as 

natural frequencies and modes provide insights into the load-

bearing behavior, while chemical aspects such as chloride 

content, carbonation depth, and moisture content of the 

concrete offer essential information about durability. 

Additionally, the geometric properties of the bridge are 

recorded – for example, through a georeferenced 3D structural 

model created photogrammetrically or by scanning methods. 

This model allows precise localization of all recorded 

parameters and forms the foundation for future deformation 

analyses and damage-focused condition assessments. 

The birth certificate will be created in a standardized, easily 

accessible form as a PDF document, containing references to 

all data sets, models, and measurement data, which will then be 

stored in the SIB-BW infrastructure database. Furthermore, all 

information related to the birth certificate will be located within 

the 3D model, and the data will be linked. This will provide a 

foundation for supporting predictive lifecycle management 

through Digital Twins. This represents a crucial step toward 

more sustainable and efficient use of infrastructure resources. 

The project constitutes an important effort to lay the 

groundwork for the targeted use of monitoring. With the birth 

certificate, a comprehensive overview of the structural 

behavior before the opening to traffic is provided. This captures 

a reference state that will serve as the basis for future 

deviations. As a result, the acceptance of monitoring can be 

increased, and a valuable contribution to the standardization 

and development of expertise in this field can be made. 

 

 Foundations for data management in structural 

maintenance 

A workshop with infrastructure managers, the necessary 

foundations for data management in structural maintenance 

were developed. It became clear that standardized data models 

and defined interfaces are essential. 

As a first step, a project on "Documentation on the 

Application of Innovative Methods in Condition Assessment, 

Particularly Regarding Standardized Data Models" was 

initiated. 

The success and utility of innovative methods, such as the use 

of monitoring, strongly depend on structured and standardized 

data management. A relevant foundation of data management 

consists of data formats and models. The data model here refers 

to a model of the data to be described and processed in 

structural maintenance and their relationships with each other. 

Data models help in structuring, presenting, and understanding 

data, and serve as a plan for organizing, connecting, and storing 

the data. For all datasets used and generated in the context of 

maintenance, including planning and construction, data models 

and their metadata are required. The goal is to determine 

structured and standardized data formats, data models, and 

metadata for the data collected during structural maintenance. 

This project aims to establish the missing foundations in the 

field of data management and standardization. 

 

4 IMPLEMENTATION OF MONITORING IN THE EU 

The use of monitoring in Europe is not harmonized, as 

demonstrated by the Horizon 2020 project “IM-SAFE.” The 

main goals of IM-SAFE include the development of new 

European standards for the monitoring, maintenance, and 

safety of transport infrastructures. This aims to enable well-

founded decisions regarding maintenance needs and optimized 

maintenance strategies [19].  

The following technical and organizational challenges were 

identified during the project [20]: 

• Different national regulations and standards complicate 

the creation of unified European standards. While some 

countries focus on preventive maintenance, others 

prioritize reactive measures after damage has occurred. 

• Technological advancements require continuous 

adaptation, but it is complex to incorporate rapid 

technological changes into standardization processes. 

As a result, implementations often lag current 

technological possibilities. 

• Heterogeneous responsibilities and interests between 

public and private infrastructure operators may exist. 

• Standardization of data formats and protocols is 

necessary to enable interoperable use of collected 

information. 

• The implementation of standardized monitoring and 

maintenance procedures requires significant 

investments. 

Despite these challenges, there are efforts to achieve greater 

harmonization in standardization. These include initiatives at 

the European level, as well as the development of new technical 

solutions that enable more flexible and efficient adaptation to 

existing standards. 

Other European countries already have regulations for the 

standardized use of monitoring: 

    In Austria, the RVS 13.03.01 guideline on the monitoring 

of bridges and other civil engineering structures allows for 

special inspections (e.g., monitoring) to assess damage. 

Monitoring does not replace structural inspections but can be 

used as an additional objective method. Monitoring objectives 

could include the measurement-based documentation of 

structural conditions or the early detection of critical structural 

conditions [21]. 

    In Switzerland, the guidelines for the monitoring and 

maintenance of civil engineering structures mandate the use of 

monitoring within the framework of zero and control 

measurements [22]. 
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    Lombardy, in its newly developed bridge monitoring 

guidelines, has set the following objectives: increasing safety, 

efficient maintenance strategies, standardized monitoring, and 

integrating innovative technologies. To achieve these goals, 

sensor-based monitoring with various sensor technologies will 

be used for the continuous collection of key structural 

parameters. Furthermore, real-time data analysis through the 

implementation of digital platforms and AI-supported decision-

making will be introduced to automate pattern recognition in 

sensor data for the identification of potential damage. The 

monitoring will support periodic inspections, and the data will 

be integrated into existing maintenance strategies. 

Additionally, the creation of digital twins, including for 

scenario simulation, is planned. This approach is currently 

being implemented in nine pilot projects [23]. 

 

5 CONCLUSION 

The use of monitoring in federal highways is currently limited 

to a few applications. In all cases, it is a case-by-case decision. 

To promote and target the use of monitoring to support 

structural maintenance, ways must be found to address the 

current challenges (lack of standardization, insufficient 

expertise, and missing fundamental principles). An overview of 

the challenges and monitoring use in Europe shows that similar 

challenges exist here as well. Initial solutions, foundations, and 

new projects are available, but they still need to be 

implemented on a larger scale. 
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ABSTRACT: Due to recent extreme weather conditions, there have been many reports of damage to infrastructure. For 

example, two power transmission towers collapsed due to landslides in 2022. The landslides may not only cause the tower 

collapse but also cause the base displacement. The base displacement of only a several millimeters can generate secondary 

stress, resulting in member deformation and insufficient strength of the steel tower members. Therefore, the towers that are 

at risk of landslides are surveyed once a year to investigate the progress of base displacement. However, the on-site 

investigation creates other risks, such as delays in detection and accidents during the travel to the site. So, the authors have 

been developing the tilt monitoring system of the power transmission towers. In the tilt monitoring system, one tilt sensor 

is installed on each of the four main members of the tower. The progress of base displacement is monitored by checking 

whether the observed tilt change exceeds a set threshold. In the current system, the threshold value is tentatively set to be 

0.05 degrees. This system has already been installed to about one hundred towers in the field. In this study, a full-scale 

experiment is newly conducted to examine the optimal installation location of the tilt sensors to monitor the base 

displacement. In this experiment, ten tilt sensors are placed on each of the four main members, and the sensitivities to the 

base displacement are examined in detail. 

 

KEY WORDS: Transmission towers; Base displacement; Remote monitoring; Tilt sensor 

1 BACKGROUND AND OBJECTIVE 

Due to abnormal weather in recent years, there have been many 

disasters in Japan, such as landslides and river flooding caused 

by heavy rain. The heavy rains of July 2021 caused a large-

scale mudslide on the embankment of Atami City, which is still 

fresh in our memory.  At the time of the disaster, an observation 

station in Atami City, which was relatively close to the disaster 

site, recorded an accumulated rainfall of 488mm, the highest 

rainfall ever recorded in July in the local history [1]. This 

mudslide disaster led to revisions of fill regulations to ensure 

safety of fills and effective penalties. In addition, when heavy 

rainfall and flood warnings are issued, the Japan 

Meteorological Agency has begun to issue detailed evacuation 

information, but even so, many lives have still been lost.  

Power transmission towers have also been damaged by heavy 

rains and landslides. Two transmission towers collapsed in 

2022 due to landslides caused by heavy rainfall. Although there 

was no direct loss of life at that time, approximately 120,000 

households experienced large-scale power outages. Damage 

caused by landslides on transmission towers also includes 

displacement of tower bases due to landslides in the vicinity of 

the towers. This base displacement of only a few millimeters 

can cause secondary stress from the base, resulting in member 

deformation and insufficient strength. If this base displacement 

is detected too late and progresses, the member will buckle, 

requiring large-scale repair work or reconstruction. 

The management of towers where landslides are a concern is 

conducted once a year to check the progress of base 

displacement by surveying. However, there is a risk of on-site 

attendance and delay in detection. Therefore, the authors 

propose tilt monitoring to remove these risks. Figure 1 shows 

the operational image proposed by the authors. In the proposed 

method, tilt sensors are installed on the four legs of a 

transmission tower and single pipe piles driven near the 

collapsed soil surface, and the measured values are monitored 

remotely. When an abnormality is detected, an alert is sent out 

and the risk is assessed by analyzing the observed data. 

Study on the suitable sensor locations for tilt monitoring of power transmission tower 

T. Kurihara1, M. Saeki2 
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Figure 1. Operational image diagram 
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This system is already in use on about 100 transmission 

towers in the real field. A provisional threshold value of 

0.05deg is proposed based on the results of a full-scale test 

conducted previously. This value of 0.05deg corresponds to the 

allowable base displacement described in the non-statutory 

standard JEC-5101-2022 [2]. The allowable base displacement 

is defined by Equation (1), (2). In the equation, 𝑉  is the 

allowable vertical base displacement, 𝐵 is the distance between 

legs, and 𝐻 is the allowable horizontal base displacement. 

𝑉[𝑚𝑚] = 𝐵[𝑚𝑚] 1200⁄   (1) 

𝐻[𝑚𝑚] = 𝐵[𝑚𝑚] 800⁄  (2) 

Equation (1), (2) is not a legal requirement of the “Ministerial 

Ordinance Establishing Technical Standards for Electrical 

Equipment and Interpretation Thereof”. The equations are used 

as a control standard value for safety purposes [3]. 

In the test results previously conducted to calculate the above 

threshold values, the three tilt sensors installed on the same 

member had different sensitivity to tilt change [4]. This 

suggests that the sensitivity of tilt change may differ depending 

on the installation location, even for the same member. In this 

study, the number of tilt sensors was increased and retested, and 

the results indicated the best locations for observation. 

2 PREVIOUS TEST RESULT 

 Overview of the test tower 

The results of the previous test are presented here. Figure 2 (a) 

shows a full-scale test steel tower. This steel tower is made of 

L-shaped section steel, with a tower height of 28.20 m, a 

distance between legs of 6.08 m, and a tower weight of 10.3 

tons. Generally, a transmission tower consists of main 

members, belly members, and support members. The main 

members and belly members are structural members, and the 

support members are designed as buckling stiffeners. For 

convenience of explanation, the legs of the tower are 

designated as leg a to leg d, as shown in the lower part of the 

photograph in Figure 2. The coordinate system xyz is set up 

with the center of the four legs as the origin, the x axis parallel 

to the ab plane (in the line orthogonal direction), the y axis 

parallel to the ad plane (in the line direction), and the z axis 

points upward perpendicular to the ground. Figure 2(b) shows 

the installation of the tilt sensor on one member, where all four 

legs are installed in almost the same way. The section from the 

ground to the connection between the horizontal members and 

the main member is called the bottom panel, and the section 

sandwiched between the belly members is called the panel. 

Since the influence of base displacement is generally 

 
Figure 2. A full-scale test steel tower and test overview 
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considered to be limited to the third panel from the bottom, ten 

tilt sensors were installed per main member leg from the bottom 

to the third panel [5]. Since structural eccentricity due to joints 

may affect the tilt change at the lowest section, tilt sensors were 

installed at three locations to check. The tilt sensors near the 

member intersections could not be installed until a short 

distance from the intersections, so they were installed 10 cm 

lower from the intersections. The sensors measured tilt in the 

x-axis and y-axis directions with a measurement interval of 1 

minute and a resolution of 0.0035 deg. The tilt sensor was glued 

to the member, and the top and bottom of the sensor were fixed 

with stainless steel bands. 

 Forced base displacement method 

The three legs except leg c are completely fixed. Only leg c is 

a movable leg; leg c has vertical upward displacement and 

horizontal displacement at an angle of 45 degrees to the inside 

and outside of the tower. Figures 2(c) and 2(d) show how the 

forced base displacements were given. As shown in Figure 2(c), 

the fixed point is located approximately 2 m from the movable 

leg in the outward direction of the tower. A turnbuckle was 

fixed between that fixed point and the movable leg to provide 

 
Figure 3. Relationship between tilt change and base displacement 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-038 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 240 

horizontal base displacement inward and outward. The 

horizontal displacement surface is not vertically constrained, so 

when the leg c is displaced horizontally, it may also be 

displaced vertically. As shown in Figure 2(d), vertical 

displacement was displaced by hydraulic jacks. The boundary 

of the legs is housed in a box-like frame that allows vertical 

movement but does not allow horizontal movement.  

The allowable vertical base displacement was 5 mm, and the 

allowable horizontal base displacement was 7 mm, calculated 

from the formula for allowable base displacement. Tilt changes 

at base displacements of 10 and 15 mm were also observed. 

 Tilt change due to base displacement 

The results of the test are shown in Figure 3. The top row of 

Figure 3 shows the results of vertical displacement, the middle 

row shows the results of horizontal displacement outside the 

tower, and the bottom row shows the results of horizontal 

displacement inside the tower. The vertical axis is the 

installation height of the tilt sensor, and the horizontal axis is 

the vector composite change in tilt angle. Unfortunately, leg d 

was the furthest away from the data logger, so some data was 

missing due to poor radio communication. 

Figure 3 shows that when leg c is displaced vertically upward 

by 5 → 10 → 15 mm, the overall change in tilt angle at each 

measurement point becomes larger. Focusing on legs a, b, and 

c, the amount of change in tilt angle was greater at the top than 

at the bottom panel. During allowable vertical displacement, 

the three sensors installed on the same member at the lowest 

section differ in tilt change by a maximum of 0.02 deg. Also, 

leg c shows that the member is bent. 

Next, the results for horizontal displacement are shown. As 

in the case of vertical displacement, the change in tilt angle 

increases with the increase in base displacement. However, the 

amount of change for main members other than leg c, which is 

subjected to forced displacement, is considerably smaller than 

that of leg c by approximately 30 % or less. 

During allowable horizontal displacement, the three sensors 

installed on the same member of the lowest section show that 

the tilt change differs by a maximum of 0.04 deg. In particular, 

a large tilt change can be seen in the movable leg at the time of 

horizontal displacement outside the tower, even though it is the 

same component. 

3 ANALYSIS MODEL AND RESULTS 

The change in tilt of the lowest part due to base displacement 

be confirmed by analysis. The analytical model was created 

using ADINA (ver. 9.4). The analytical model created is shown 

in Figure 4 (a). The analytical model was made up of nodes at 

the member intersections and a beam element between the 

nodes. The analytical model was subjected to the same forced 

base displacements as in the test, and the member stresses, 

displacements of the member nodes, and member tilt were 

calculated and compared with the test results. The test tower 

 
Figure 4. Analysis Model and Results 
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has only one movable leg (leg c). When the leg c was displaced 

horizontally, the vertical displacement was fixed and rotations 

were free as the boundary condition. On the other hand, the 

boundary conditions were free for vertical displacement and 

rotation in all directions when the vertical displacement was 

given to leg c. 

The tower used for the full-scale test did not have any electric 

cables. Therefore, an analytical model without the weight of the 

wires and tension loads was used in the analysis. Bolt slippage 

model [6] was considered in the analytical model. The steel 

tower consists of members joined by bolts. Since there is a bolt 

clearance of 1.5 to 2.0 mm, the bolts may slip when base 

displacement occurs. To account for the deflection of the main 

column members identified in the test results, the main column 

members were divided into the bottom to the fourth panel of 

horizontal members. In addition, a model was also created to 

account for the cross-sectional area of the overlapping joints of 

the main column members and the eccentricity of the joints of 

the main column members. Tilt changes were compared in 

these models. 

The above analytical model was used to perform the analysis, 

and Figure 4 (b), (c) shows a comparison of the analytical and 

experimental results at the allowable base displacement. The 

vertical axis is the steel tower height, and the horizontal axis is 

the vector composite change in tilt angle. Figure 4(b) shows 

that the eccentric model has the smallest error of 0.001 degrees 

in the range of 1.5 m to 1.9 m from the lowest point of the 

analytical model. Figure 4(c) shows the comparison results for 

the horizontal displacement outside the tower. As with the 

vertical displacement, the eccentricity model had an error of 

0.004 degrees at 1.5 m to 1.9 m from the lowest point. Both 

vertical and horizontal displacements showed a large change in 

tilt and sensitivity at the lowest point. This analytical model is 

a simplification of the actual structure. Therefore, the accuracy 

of the model should be improved by refining the model in 

accordance with the actual situation. In this model, it can be 

said that the experimental data can be almost explained by 

refining the model up to the joints of the main column 

members. However, the model was not able to represent 

changes in tilt near the bottom of the tower. This is due to the 

shape of the base of the tower. As shown in Figure 4(d), there 

are areas near the base of a transmission tower in actual 

operation where only the main member is present. This area is 

called the bottom main leg. In general, the bottom main leg of 

a transmission tower in actual operation is about 300 mm. In 

contrast, the bottom main leg of the test tower was conducted 

is indicated as 500 mm on the drawing. In addition, the test 

tower has no concrete base. Therefore, the boundary between 

the tower and the base is ambiguous, and the length of the 

bottom main leg is also ambiguous. From the above, the authors 

believe that the difference in tilt change near the ground is due 

to the effect of the bottom main leg.  In addition, a comparison 

of the case in which the eccentricity of the main column joints 

and the cross-sectional characteristics of the main column 

joints were taken into account showed that the maximum 

difference in tilt change was only 0.004deg. 

4 RETEST RESULT 

 Test overview 

The results of previous tests and analyses reveal that the bottom 

tilt change is highly sensitive to the sensor location. Therefore, 

a full-scale test was conducted again to investigate the 

sensitivity of the tilt change of the lowest section. The target 

tower was the same as in the previous test (Figure 2). In this 

experiment, 10 tilt sensors were installed on the main member 

of the legs as shown in Figure 5. Note that all four legs were 

installed in almost the same manner. However, the 

measurement interval of the tilt sensors was changed to 20 

seconds to obtain more detailed data. 

The base displacement was targeted at the allowable base 

displacement of 5 mm vertically and 7 mm horizontally. As in 

the previous test, vertical displacement was performed with 

hydraulic jacks and horizontal displacement was performed 

with turnbuckles. 

 Test result 

Figure 5 shows the change in tilt of all sensors at the allowable 

base displacement. The horizontal axis is the tilt change along 

the x-axis and the vertical axis is the tilt change along the y-

axis. From left to right: vertical displacement, horizontal 

displacement outside the tower, and horizontal displacement 

inside the tower. Purple dots indicate leg a, green dots indicate 

leg b, blue dots indicate leg c, and yellow dots indicate leg d. 

The one square interval in the figure indicates 0.05deg, and the 

red circle indicates the threshold value. The leg c of Id3 has no 

data because the sensor has failed. Also, the Id10 of leg c has 

too large tilt changes (-0.109, 0.144) to display the dots on the 

figure when the horizontal displacement outside the tower is 

given. The dots are plotted in the hidden upper left corner of 

the figure. The findings from Figure 5 are summarized below. 

The threshold value was exceeded only in the leg c where the 

base displacement was given. 

The leg a has a larger tilt change from the top to the bottom. 

The leg b has the same tilt change at all points, but there is a 

twisting movement to the right in the upper to lower tilt change. 
The leg c subjected to base displacement showed a greater tilt 

change toward the top. The direction of the tilt change at Id10 

was inverted from that of the other sensors. The threshold value 

was exceeded at any point when the height was 130 cm or more 

from the ground (Id6 or more). The leg d has the same tilt 

change at all points, but there is a twisting movement to the left 

in the upper to lower tilt change. 

Except for leg c, the tilt change was very small at all 

locations. The tilt change was greater toward the lower part of 

leg c. Tilt change exceeding the threshold was observed below 

150 cm from the ground (Id5 or less). Except for leg c, the tilt 

change was the same at all locations. The amount of tilt change 

was larger than the horizontal displacement outside the tower 

and was about the same as the vertical displacement. In leg c, 

the tilt change was greater toward the bottom. In addition, the 

tilt change occurred in the opposite direction to the other legs. 

Tilt changes that exceeded the threshold were observed when 

the leg was less than 150 cm from the ground (Id5 or less). 

From the above, the recommended location for the tilt sensor 

is in Id 5 and 6. In addition, only the base displacement leg 

exceeded the threshold when the allowable base displacement 

was loaded. Therefore, the leg that exceeds the threshold value 
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may be considered the leg where base displacement occurred. 

The direction of base displacement is determined by the total 

tilt change of the four legs. 

Vertical displacement: Total tilt change of the 4 legs > 

Maximum tilt change of 4 legs 

Horizontal displacement outside: Total tilt change of the 4 

legs ≒ Maximum tilt change of 4 legs 

Horizontal displacement inside: Total tilt change of 4 legs < 

Maximum tilt change of 4 legs 

This test confirmed that the tilt change varies with base 

displacement, even for the same member. Therefore, care 

should be taken in the installation position when conducting 

actual monitoring. 

It is easy to check the direction of inclination in more detail 

by checking the difference between ID2 and ID9. Vertical base 

displacement is larger for ID2 at the top when comparing ID2 

and ID9. Horizontal base displacement is larger for ID9 near 

the ground when comparing ID2 and ID9. Thus, if several 

sensors can be installed, the direction of base displacement can 

be easily ascertained. 

 Re-comparison with analysis 

The results of the analysis presented in Chapter 3 were 

compared with the results of the present measurement. The 

 
Figure 5. Test result 
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results are shown in Figures 6(a) and 6(b). In Figures 6(a) and 

6(b), the vertical axis is the steel tower height and the horizontal 

axis is the tilt change. The tilt change was assumed to be a 

vector in the line direction and in the direction orthogonal to 

the line. Figure 6(a) shows the comparison results of vertical 

base displacement and Figure 6(b) shows the comparison 

results of horizontal base displacement outside the tower. The 

black dots are the results of the previous test, the green line is 

the results of the analysis, and the purple line is the results of 

the latest test. 

Figure 6(a) shows that the trend of tilt change was consistent 

with the previous test results. However, there was a difference 

of about 0.01deg at 2.0m. The retest was conducted two years 

later. Therefore, the authors consider it to be the effect of rust 

and other factors that were not present last time. Also, the last 

test was in October and the current test was in May. The 

difference in temperature may have affected the expansion of 

the materials. Compared to the analysis results, the overall 

trend was similar, but the height directions did not match. 

However, the locations between 1.4 m and 1.6 m were in 

general agreement with the analysis. 

Figure 6(b) shows that the overall tilt change was smaller 

than the previous result, but the trend of tilt change was 

consistent. The trend was consistent with the analysis results. 

The factors contributing to the overall small change in tilt are 

considered to be the same as for the vertical displacement. 

From the above, it was found that the trend of tilt change due 

to base displacement was generally consistent for the 1.4 to 1.6 

m point.  

5 CONCLUSION 

As a result of the full-scale test, only the displacement leg had 

a large tilt change that exceeded the threshold value for vertical 

displacement. In the horizontal displacement, the tilt changes 

also exceeded the threshold value only for the displacement leg. 

This indicates that base displacement is most likely to occur at 

the leg with the greatest change in tilt. The recommended 

location is between 1.4 m and 1.6 m, which was in high 

agreement with the analytical calculations. 

Horizontal displacement and vertical displacement can be 

determined by comprehensively checking the tilt changes of the 

four legs. The direction of base displacement can be determined 

by the sum of the tilt changes of the four legs as follows. 

Vertical displacement: Total tilt change of the 4 legs > 

Maximum tilt change of 4 legs 

Horizontal displacement outside: Total tilt change of the 4 

legs ≒ Maximum tilt change of 4 legs 

Horizontal displacement inside: Total tilt change of 4 legs 

< Maximum tilt change of 4 legs  

If the direction of base displacement is to be determined in 

more detail, it is desirable to install the sensor near the base in 

addition to the recommended position of 1.4 m to 1.6 m. The 

reason for this is that the closer to the ground, the greater 

change in inclination can be observed due to horizontal 

displacement, so by checking the difference in inclination from 

the recommended position, the direction of base displacement 

can be determined more clearly. 

The results of this test showed that by installing tilt sensors 

on the four legs at the recommended locations, it is possible to 

determine the leg where base displacement occurred and the 

direction of base displacement. 
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Figure 6. Re-comparison with analysis 
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ABSTRACT: Physics-informed structural health monitoring, which integrates realistic physical models of material behavior, 

structural response, damage mechanisms, and aging processes, offers a promising approach to improve monitoring capabilities 

and inform operation and maintenance planning. However, the associated technical challenges and model requirements are 

context-specific and vary widely across applications. To illustrate the relevance and potential of the topic, two application 

examples are presented. The first focuses on monitoring the modal characteristics of a prestressed road bridge, where strong 

sensitivity to temperature variations limits the diagnostic capabilities of conventional vibration-based global monitoring. The 

discussion highlights how environmental influences can obscure structural changes, and emphasizes that purely data-based 

approaches are inherently limited to detecting anomalies and do not enable comprehensive condition diagnostics. The second 

example explores a physics-informed monitoring approach for prestressed concrete bridges affected by hydrogen-induced stress 

corrosion cracking. By combining acoustic emission data with a calibrated acoustic model of the structure, it is possible to detect 

and localize wire failures. As an outlook, the integration of mechano-electro-chemical models for stress corrosion cracking is 

discussed, enabling predictive assessments of the strand condition. 

KEY WORDS: Physics-informed SHM; Diagnostics, Prognostics, Structural Assessment, Structural Integrity Management 

1 INTRODUCTION 

Civil engineering structures are subject to damage, aging and 

deterioration processes such as fatigue, corrosion, shrinkage, 

creep, and scour – all of which can affect their safety and 

serviceability. Additionally, they are exposed to environmental 

and operational variations. In particular, fluctuating structural 

temperature distributions caused by changing environmental 

conditions may alter structural behavior and, in some cases, 

even impact structural capacity. Moreover, structures may 

experience rare and extreme events during their service lives – 

such as storms, floods, fires, explosions, earthquakes, extreme 

traffic loads or ship impacts – which can also impair safety and 

serviceability. Some structures may even already exhibit 

damage, which could progress to a critical state, affecting 

structural performance. 

To effectively manage the structural safety and serviceability 

of engineering structures, owners and operators require 

information on loads and their effects, environmental 

influences, operational conditions, and the structural condition. 

This information forms the basis for assessing and forecasting 

structural performance, thereby enabling informed decisions on 

operation and maintenance. 

Structural health monitoring (SHM) – in the sense of 

monitoring the condition of a structure – is intended to support 

diagnostics, prognostics, structural assessment, and 

maintenance planning. Diagnostics involves inferring the 

current condition or changes in structural characteristics from 

measurements or observations that are indirectly related to 

them. In this process, environmental and operational variability 

must typically be taken into account, as their impact on 

structural behavior can alter the measured signals, thereby 

potentially masking the presence of damage. 

Ideally, the diagnostic information obtained through SHM is 

used to predict the future structural condition and to 

quantitively assess structural safety and serviceability.  

Research in SHM for engineering structures has a long 

history [1]. While significant progress has been made in the 

field, in practice, SHM is primarily used to measure loads and 

their effects, collect structural response data as a basis for 

calibrating structural models, and monitor known damages 

locally [2]. SHM-informed diagnostics, prognostics, structural 

assessment, and maintenance planning for engineering 

structures remain an evolving field. 

This contribution discusses the potential and challenges of 

integrating physical modelling into SHM to enhance these 

tasks. At its core, physics-informed SHM couples physical 

models that describe the processes influencing structural 

condition and capacity with models of the structural 

performance, and continuously updates them with inspection 

and monitoring data from the actual system [3]. Within this 

framework, physical models are also employed to link 

measurements and observations to the structural condition and 

damage states, thereby providing an indirect connection to the 

processes driving deterioration and structural damage. 

The paper is organized as follows: Section 2 provides a more 

detailed discussion on the motivation for adopting a physics-

informed approach in SHM, drawing from our group’s long-

term monitoring experience of a road bridge in Berlin. 

Section 3 than explores the potential and challenges of applying 

physics-informed SHM to extend the lifetime of prestressed 

concrete bridges subject to stress corrosion cracking. Finally, 

Section 4 provides concluding remarks. 

On potentials and challenges of physics-informed structural health monitoring for 

civil engineering structures 
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2 THE MOTIVATION BEHIND PHYSICS-INFORMED 

SHM: THE WESTEND BRIDGE EXPERIENCE 

 Westend Bridge 

Our group's research related to SHM began in 1994 with the 

continuous monitoring of the Westend Bridge. This example is 

also used because the bridge is currently being demolished. The 

30-year measurement project is likely to be one of the longest 

in the world. The Westend Bridge in Berlin, which has been 

carrying heavy traffic for several decades, had suffered a 

number of damages since its construction. Strengthening work 

was repeatedly required to ensure adequate load-bearing 

capacity in the long term. Figure 1 shows the normal operating 

conditions at the start of the monitoring measure. Figure 2 and 

Figure 3 are recent photos taken shortly before and during 

disassembly respectively. 

 

 

Figure 1. Westend Bridge in service. 

 

Figure 2. Westend Bridge in recent years, featuring 

implemented safety measures. 

 

Figure 3. Demolition of the Westend Bridge, April 2025. 

Among other things, it was found that the coupling joints of 

the bridge deck had opened. Under the influence of external 

loads and temperature changes, significant changes in joint 

width were observed during inspection and finally monitored 

by measurement. It was found that above a certain temperature, 

the crack width of the joint increased disproportionately under 

traffic load.  

Westend Bridge is or was a prestressed concrete box girder 

bridge, commissioned in (1965) with full prestressing. It has 7 

spans and a total length of 237m. The cross-sections of the 

bridge proved to be problematic: The flat three-cell box girder 

has a tendency to high residual stresses due to temperature, but 

also a significant influence of the asphalt layer on the structural 

behavior and a significant influence of the nominally non-

structural components (rails and caps) was identified. The 

effect of temperature variations in the structure has not been 

considered in the design. 

The prestressing tendons are coupled at couplers. Shear 

reinforcement and concrete cover (chloride ingress) have been 

shown to be inadequate. In addition, the bridge is subject to 

heavy traffic. As a result, the bridge has been strengthened 

several times.  

The bridge reacts non-linearly due to temperature changes 

and high traffic loads. The coupling joint has opened due to 

traffic loads at high temperatures, resulting in increased fatigue 

demands on the prestressing tendons. Temperature variations 

affect the stiffness of the asphalt, change the stress/strain state 

within the section and lead to longitudinal cracking in the webs 

and base plate. 

From a detailed modelling perspective, the degree of fixation 

between the columns and the box girder is unknown, as is the 

degree of fixation between the columns and the foundation. 

The management of the structural data is similar to that of a 

normal existing bridge: Data and information about the bridge 

is recorded and stored in printed documents and drawings. 

Minimal or no as-built documentation is available. There is no 

information on actual physical parameters (e.g. material 

properties). The lack of physical information in the 

documentation and the lack of digitization of the data are a 

major obstacle to the introduction of a SHM system. 

 

 SHM Installation and global damage detection 

An SHM system has been installed for the purpose of 

identifying damage or changes in structural characteristics 

based on data indirectly related to these damage/changes in 

structural characteristics.  

At the beginning, an experimental modal analysis was carried 

out with a hydraulic shaker from EMPA. The bridge was then 

equipped with geophones, temperature sensors and local strain 

gauges in one section for a continuous monitoring.  

At the time of initial installation, the aim was to identify 

structural changes based on a shift in natural frequencies. This 

initial diagnostic idea quickly proved to be flawed, as the bridge 

has a strong dependence of its natural vibration behavior on the 

structural temperatures (Figure 4). Possible approaches to 

understanding the temperature dependency were subsequently 

analyzed in a diploma thesis [4]. A major influence for this 

bridge is attributed to the significant stiffness contribution of 

the asphalt at low temperatures. 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-039 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 247 

 

Figure 4. Dependence between natural frequency and 

temperature (or changes in structural behavior due to 

temperature effects). 

Detection of damage or changes in structural properties has 

been further explored using signal processing techniques for 

dynamic data in [5]; This attempt provides a feature that is 

sensitive to global and significant structural damage/changes in 

structural properties. The procedure eliminates the effect of 

temperature-dependent periodic variations by normalizing the 

vibration data. 

 

Figure 5. Statistical damage indicator derived with the novelty 

detection method [5]. 

In this example, the global damage identification can 

optimally show that there is a change in the measurement data 

and possibly in the building response. Such an anomaly would 

generally be recognizable after a few measurement intervals 

(e.g. 10-minute intervals), see Figure 5. It would then be 

possible to start a diagnosis as to whether there is a 

measurement error or whether a change in the structure is 

actually the cause of the changes in the measurement signal. As 

no information about the size and location of the damage can 

be determined, further damage diagnosis is only possible on 

site and, depending on the structure, involves considerable 

effort. 

 

 

 

 

 Physical modelling  

It is not possible to infer the structural safety and service ability 

from variations in the natural frequency alone. 

The SHM at Westend bridge as previously outlined lacks 

information on damage location, damage size and damage 

evolution. One of the most serious problems, however, is that 

it is not clear whether and to what extent the structural changes 

represent damage relevant to structural safety.    

 

 

Figure 6. Influence of temperature on structural components. 

As shown in Figure 6, a load-bearing contribution of the 

asphalt layer is not relevant to safety. However, if cracks open 

in the reinforced concrete under temperature, a temperature 

load represents real damage to the load-bearing structure. In 

reality we see a combination of both mechanism which have to 

be separated in a structural assessment. 

In order to enable a more precise analysis, it is usually 

necessary to switch from a model-free data analysis to a model-

based data analysis. Figure 7 shows a general scheme. 

Identifying a structural model is a necessary step that must be 

accompanied by an assignment of physical material and 

component properties. 

 

 

Figure 7. Updating scheme for SHM that accounts for 

temperature fluctuations, which may mask structural damages. 
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Figure 8. left: Vibration mode identified from measurements 

(top) vs vibration mode determined via finite element 

modelling (bottom). right: Identified and numerical natural 

frequencies 

Various detailed FE models were created for the Westend 

Bridge and adapted to reality by means of experimental modal 

analyses. The models make a significant contribution to 

understanding the structural behaviour. The updated model is 

good, see Figure 8, but unfortunately not very sensitive to 

severe damage when compared to environmentally induced 

changes. The general lack of a link between the modal 

parameters and the (local) strength properties continues to 

prevent a substantial structural assessment. 

 

 What can be learned from Westend bridge 

The key findings from the Westend Bridge monitoring can be 

summarised as follows: 

• Data management: Construction documents are available 

in paper form. These are primarily planning data (not as 

built, no material parameters). The data storage is not 

linked to ongoing digital data management. 

• A global damage detection has been successfully 

implemented. However, the detection of a specific damage 

or of changes in structural characteristics was not possible. 

Global damage detection provides incomplete diagnostic 

information, no information on type, location and size of 

damage. 

• To obtain complete diagnostic information based on SHM 

data it is necessary couple data with physical models. A 

physical model should consist of a structural model and its 

physical parameters describing local strength and 

deterioration characteristics.   

• The Westend Bridge has many weak structural points, but 

specific hot spots are difficult to identify. What becomes 

apparent is that a scenario-free monitoring is extremely 

difficult. A monitoring task becomes easier the more 

clearly the potential damage scenarios can be described. 

This is particularly the case when disturbances such as 

temperature fluctuations mask changes in the structure’s 

condition.  

→ Chapter 3 presents a scenario-orientated approach for a 

physics-based SHM procedure. 

3 PHYSICS-INFORMED SHM OF BRIDGES SUBJECT 

TO STRESS CORROSION CRACKING 

Numerous incidents in Germany have shown that concrete 

bridges containing prestressing steel susceptible to hydrogen-

induced stress corrosion cracking experience a characteristic 

deterioration process [6-8]. Damage typically initiates during 

the construction phase due to a mechanical-electrochemical 

mechanism triggered by aggressive ambient conditions. As the 

bridge enters its operational phase, and the prestressing ducts 

are grouted, damage continues to develop due to fatigue crack 

growth caused by dynamic traffic loads and temperature 

fluctuations. Over time, this can result in the failure of 

individual prestressing wires, each of which emits acoustic 

signals upon breaking. If a critical number of wires fail, the 

structural integrity of the bridge can be severely compromised, 

potentially leading to substantial damage or even collapse. In 

this context, the following section discusses the challenges and 

potentials of physics-informed SHM to extend the lifetime of 

bridges identified as vulnerable to this specific deterioration 

process. 

A fundamental prerequisite for SHM-informed, model-based 

integrity management of bridges is the implementation of a 

consistent digital data management. Such a system must 

provide storage and access to all relevant physical information 

across the design, construction, and operational phases of a 

bridge’s lifetime. It must be able to handle heterogeneous data 

objects, including design reports, quality control protocols, 

inspection records, sensor data, and assessment results. 

Furthermore, the system should support automated workflows 

that integrate this diverse data with model-based methods to 

enable accurate diagnosis and prediction of structural 

condition, as well as assessment of structural safety. 

The first step in developing a physics-informed strategy for 

monitoring and managing the structural integrity of concrete 

bridges susceptible to stress corrosion cracking is to thoroughly 

analyze the potential failure modes resulting from the loss of a 

significant number of prestressing wires. It is crucial to ensure 

that the bridge possesses sufficient structural redundancy so 

that the failure of prestressing strands does not lead to sudden, 

catastrophic collapse. This redundancy is typically provided 

through reinforcement, which allows for large deformations 

after strand failure – acting as warning signs before failure and 

preventing brittle, unannounced collapse. Furthermore, it must 

be demonstrated that observable indicators accompany 

significant damage to prestressing strands. Examples of such 

indicators include horizontal longitudinal cracks in the webs of 

box girders or beams [6]. The appearance of these signs 

suggests advanced damage and necessitates immediate action, 

including bridge closure for detailed assessment, reinforcement 

measures, or potential decommissioning. 

If the previously discussed conditions are fulfilled—in 

addition to the requirements that the bridge is intact, shows no 

signs of significant damage to the prestressing tendons, and 

retains sufficient load-bearing capacity (potentially confirmed 

through a proof load test)—then a dedicated monitoring 

strategy can be implemented. In this case, the evolution of 

stress corrosion cracking, specifically the failure of individual 

prestressing wires, can be monitored using acoustic emission 

techniques. Following the detection of a tendon failure event, a 

detailed visual inspection of the bridge has to be carried out to 

check for any newly developed visible indicators of advanced 

damage. 

The primary aim of acoustic emission monitoring is to detect 

failures of prestressing wires in time and space [9, 10]. This 

identification problem is currently approached by utilizing pure 

data-based signal processing methods. However, by adopting a 
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physics-informed strategy—combining physical modeling of 

the acoustic wave propagation from wire failures with 

measured data—the accuracy of rupture identification can be 

significantly improved. In this approach, data and modeling of 

wire failures are brought together by identifying the model 

prediction that best explains the measured acoustic signal, 

either through optimization or Bayesian updating. Research has 

been initiated at BAM to develop and validate this combined 

methodology [11]. 

The first step in a physics-informed approach to diagnosing 

wire failures from acoustic emission signals is the development 

of an acoustic reference model that accurately captures the 

acoustic properties of the structure. This model can be 

established and refined using data collected during in situ 

reference tests. A valuable source of such data comes from the 

sampling of prestressing wires, which emit acoustic signals 

when cut. These samples, typically taken to check for defect 

initiation and perform material testing, provide relevant 

emission characteristics that support model development. 

Within a physics-informed approach to SHM, the reference 

model is a central component of a reference certificate or birth 

certificate, if created at the beginning of the structure’s lifetime, 

as outlined in the upcoming revision of DIN 1076 [12]. The 

reference certificate contains all information required to 

develop and describe the reference model, including the 

underlying assumptions, the data used for its calibration and 

validation, as well as calibration and validation results. It is 

incorporated into the structure’s data management system to 

ensure traceability and long-term use. 

The first major application of the calibrated reference model 

is the optimization of sensor placement for the acoustic 

emission monitoring system. Sensor locations are selected to 

maximize the system’s ability to perform the intended 

diagnostic tasks. This can be achieved, for example, through 

model-based value of information (VoI) analysis [13]. 

As an outlook, a physical model of the deterioration process 

can provide a basis for predicting the condition of prestressing 

tendons. The initiation of stress corrosion cracking during the 

construction phase may be described using mechano-electro-

chemical principles [14], while crack propagation during the 

operational phase can be modeled through fracture mechanics 

[15]. Material properties and data on the initiation and 

evolution of the deterioration process from laboratory tests can 

be used to calibrate the model. Fatigue demands resulting from 

traffic loads and temperature variations are incorporated via 

models of the respective actions and a structural model to 

simulate the evolution of damage over time. Capturing the 

stochastic nature of the deterioration process is essential to 

ensure realistic predictions. By coupling the deterioration 

model with diagnostic information from acoustic emission 

monitoring and visual inspection, predictions can be 

continuously updated. Furthermore, integrating the 

deterioration model with a structural model allows for 

assessments of safety and serviceability throughout the 

structure’s extended lifetime [16]. 

Currently, BAM is developing a physics-informed SHM 

procedure within the research project ReSKoMB, aimed at 

enabling the safe extension of the service life of prestressed 

road bridges suspected to be affected by stress corrosion 

cracking. The procedure is being developed using the 

Baumgarten Bridge near Potsdam as a reference structure 

(Figure 9).  

 

 

Figure 9. Baumgarten Bridge near Potsdam. 

A key element of the procedure is the collection of 

prestressing wire samples taken directly from the bridge, 

providing essential information about the current condition of 

the wires (Figure 10).  

 

 

Figure 10. Sampling of prestressing wires from an existing 

road bridge for material testing (source: LS Brandenburg). 
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These material samples are subject to various tests, including 

non-destructive testing to detect defect initiation. Additionally, 

laboratory experiments are conducted to study the onset of 

damage through stress corrosion cracking and the subsequent 

growth of fatigue cracks under cyclic loading (Figure 11).  

 

 

Figure 11. Fracture surfaces of two prestressing wires after a 

fatigue test. Green: pre-existing defects, red: crack propagation 

during the fatigue test, light gray: residual fracture surface [6].  

A physical model of the damage processes is then developed 

based on these tests, allowing for predictions of the time to wire 

failure. To enhance these predictions, object-specific traffic 

load models are developed for the bridge. As part of this 

modeling, traffic loads are classified based on vibration 

measurements, enabling a more accurate representation of the 

actual loading conditions (Figure 12). This work builds on a 

project funded by the German Research Foundation within the 

Priority Programme "Hundred Plus" [17] 

 

 

Figure 12. Classification of vehicles crossing a road bridge 

using machine learning techniques. The classification is based 

on acceleration signals [17]. 

Further, diagnostic information from acoustic emission 

monitoring, enhanced with physical modeling of acoustic wave 

propagation from wire failures, is used to update the predictions 

(Figure 13). This work is being performed as part of a parallel 

project at BAM called SimAS, which focuses on acoustic 

modeling techniques to improve the diagnosis of wire failures 

based on acoustic emission data [11]. 

As an alternative to acoustic emission methods, the project is 

also exploring the potential to detect wire failures using 

acceleration signals recorded with MEMS sensors, a method 

which has been successfully used in a previous project with 

progressive severing of prestressing wires (Figure 14). 

Additional information on visible indicators of critical 

damage, such as horizontal longitudinal cracks in the bridge 

webs, is obtained through automated UAS-based inspections 

[18], which is triggered by continuous monitoring of 

prestressing wire failures. 

 

 

Figure 13. Simulation of acoustic wave propagation from a 

prestressing wire fracture in a box girder bridge. 1) Numerical 

mesh. Different material properties for concrete and wires (e.g., 

sound speed, density, damping) can be assigned to the 

elements. 2) Side view of the bridge with a simulated wire 

failure and several point evaluations of the simulated sound 

emission. [11]. 

 

Figure 14. Accelerations measured with MEMS sensors on a 

bridge during progressive severing of prestressing wires [6]. 

4 CONCLUDING REMARKS 

As outlined in this contribution, physics-informed SHM holds 

significant potential to enhance diagnostics, prognostics, 

structural assessment, lifetime evaluation, and planning of 

operation and maintenance activities. By incorporating 

physical models into the SHM process, this approach offers a 

promising way to account for operational and environmental 
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variations that typically challenge conventional diagnostic 

methods. 

However, the effectiveness of physics-informed SHM 

ultimately depends on the inherent sensitivity of the monitoring 

system to damage. These methods cannot compensate for a lack 

of sensitivity in the underlying measurement technique – rather, 

they can only leverage and enhance existing capabilities. Thus, 

careful consideration must be given to the selection and design 

of monitoring systems. 

Implementing physics-informed SHM approaches requires 

proper digital data management to enable automated and 

scalable workflows. It is also associated with substantial 

modeling effort, making it essential to assess the return on 

investment for each application context. 

These challenges and opportunities will be discussed further 

with the community at the upcoming CSHM-10 workshop in 

2026, to be held in Berlin. As a dedicated forum for experts in 

SHM and non-destructive evaluation (NDE), CSHM-10 will 

provide an ideal platform to explore how physics-based models 

and monitoring data can be effectively combined to improve 

the safety, resilience, and efficiency of civil infrastructure 

systems. 
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ABSTRACT: Anchored structures are an essential part of infrastructure corridors, as they enable high cuts and the 

reinforcement of existing structures. As pre-stressed elements, anchors allow for economical construction with low-deformation, 

making them critical components for ensuring stability. Consequently, comprehensive monitoring is often required alongside 

inspections, especially when the reliability of the load-bearing elements is in question - e.g., due to creep or corrosion of 

metallic components. Based on research activities due to the ageing of such structures, several options have been investigated to 

retrofit load measurement devices to already installed pre-stressed anchors. In addition to different types of coupling methods, 

this paper presents first results from a trial in which, through the retrofitting of an external thread to strands, a new method for 

load monitoring is investigated. These methods are particularly useful when information about the current anchor load is 

lacking, as they provide better insight into the condition of the tension elements and, furthermore, the overall behavior of the 

structure. The paper shows some approaches already in use and the results of an initial test series, in which the potential of a 

new approach to amend a load measuring device to an already installed pre-stressed anchor is investigated and validated. 

 

KEY WORDS: Anchor testing, Load monitoring, Existing structures, Asset management, Retrofitting. 

1 ANCHORED STRUCTURES 

Due to their ability to transfer large tensile forces into deeper 

or more competent strata, anchored structures using tension 

elements are often an economical design option in geotechnical 

engineering. Grouted anchors [1] & [2]], in particular, can be 

used to reduce deformations, allowing for more compact and 

slender geometries. Examples of such structures include newly 

constructed anchor and pilaster walls (Figure 1), as well as 

structures that have been subsequently anchored during 

refurbishment or repair (Figure 2). 

 

 

Figure 1. Anchored pilaster wall. 

 

Figure 2. Pre-stressed anchors used for the remediation of a 

cantilever retaining wall. 

Over the designed service life of up to 100 years, such 

technically demanding structures require increased inspection 

and maintenance. In Austria, the specifications for structure 

operators are defined in the FSV guidelines [2]. The inspection 

procedure for anchored structures is identical to that for non-

anchored retaining structures. On the one hand, the focus is on 

the surrounding terrain, drainage system and structural 

Retrofitting load measurement devices on existing anchored structures 
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components, which are typically made of reinforced concrete. 

On the other hand, anchors undergo a more intensive 

assessment to determine their state of preservation. Inspections 

(or checks) are generally carried out every 3 to 6 years and must 

be performed manually and visually during on-site activities. 

In addition, the special inspection of tension elements and 

anchored structures is described in detail in a separate working 

paper [5]]. The aim of these activities is not only to determine 

the current condition of the structure, but also to detect changes 

in the state of preservation or the development of damage 

patterns on the tendons, in order to assess their impact on safety 

and reliability. 

At the end of such an inspection, and in addition to the 

assessment, recommendations for necessary measures are 

provided. Alongside the suggestion to carry out special 

inspections, this may include advices on implementing 

monitoring systems for the structure. The aim is, on the one 

hand, to gain a better understanding of the structure’s behaviour 

, and on the other hand, to integrate these systems into alarm 

and warning plans - especially for severely damaged structures 

- in order to enable early response to potential or imminent 

failure. 

2 INSPECTION AND DAMAGE IDENTIFICATION ON 

ANCHORED STRUCTURES AND TENDONS 

As a structure ages, the requirements for inspection and 

maintenance increase in order to ensure an accurate and 

conclusive assessment of its condition. The regular 

performance of inspections [6]] enables the early detection of 

defects and thus forms the basis for a long-term, continuously 

optimized maintenance strategy. The scope of [2]] covers all 

structures in which anchorages [1]] have been installed. 

Therefore, this guideline includes a wide range of applications 

- from anchored retaining structures (see [5]]) to pier footings 

and anchored bridge abutments, as well as retrofitted anchored 

structures ([7]]). For inspection purposes, a distinction has to 

be made between the structure itself and the relevant structural 

components. In this context, the term "structure" also includes 

the adjacent terrain at the head or base of the structure. 

Relevant structural components of anchored structures 

cannot be completely examined during inspections (i.e. they 

can only be examined to a limited extent). This is, on the one 

hand, due to the apparent free length and the bond length (see 

Figure 3) of a pre-stressed anchor, which are located in the 

subsoil and thus not accessible. On the other hand, for many 

structures, the anchor heads were sealed during construction 

and are therefore not directly visible. 

As with other structures, damage or an increase in damage 

can also be observed over time on anchored structures and the 

installed tendons. In addition to damage to the structural 

components (e.g. concrete elements and shells), corrosion 

damage to the metallic components of pre-stressed anchors is 

particularly critical. For permanent anchors with a designed 

service life of up to 100 years, corrosion protection for all 

components must be ensured. When it comes to tension 

elements and anchored structures, a general distinction can be 

made between two types of corrosion. 

Oxygen corrosion refers to a chemical process in which iron 

and steel materials oxidize when they interact with oxygen and 

an electrolyte (e.g. water). The product of this process is 

commonly referred to as rust. This rust layer is generally very 

porous and, in contrast to other reaction products (e.g. the 

pyrolysis layer of burned wood), provides little or no protection 

against the progression of the process. The corrosion can only 

be halted by removing one of the reaction partners (oxygen or 

water) or by passivating the surface. In contrast to oxygen 

corrosion, stress corrosion cracking typically occurs in pre-

stressed steel elements under prolonged tension. These stresses 

can result either from an externally applied load or from 

internal constraints. Additionally, hydrogen atoms, which may 

be produced from oxygen corrosion, penetrate the metal lattice. 

This slight disturbance in the metal’s microstructure forms a 

crack capable of growth under the influence of tensile stresses. 

These chemical reactions and processes can occur in pre-

stressing steels, which are sensitive to such damage. In the case 

of high-strength steels, commonly used for tendons, the process 

is referred to as hydrogen-induced stress corrosion cracking. In 

contrast such a process generally does not produce any 

significantly recognizable damage pattern during propagation, 

and can therefore not be clearly identified by the reaction 

products. 

 

 

Figure 3. Parts of a pre-stressed anchor. 

 

In the absence of corrosion protection and when 

environmental conditions are conducive to corrosion, uniform 

surface corrosion can affect the entire cross-section. This is 

mainly observed on exposed steel components, strands and bars 

with insufficient corrosion protection. In contrast to uniform 

surface corrosion, pitting corrosion occurs at points where the 

corrosion protection is absent or inadequate in certain areas of 

the cross-section. This corrosion phenomenon is typically 

found in improperly manufactured or cracked grout bodies. In 

chloride-contaminated environments (e.g. de-icing agents), 

such phenomena are also more likely to occur. This process 

begins in a relatively small area on the surface and spreads 

relatively quickly into the interior, significantly reducing the 

cross-section locally. 

As mentioned above, corrosion damage to anchored 

structures and tendons mainly occurs in unprotected or 

inadequately protected areas of the structure. Some of these 

areas are a result of the design itself, while others stem from the 

manufacturing process or associated weaknesses and 

deficiencies. 
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Figure 4. Corroded tension elements of the external parts of 

strand anchors. 

 

Corrosion damage to insufficiently protected outer surfaces 

of the anchor (Figure 3 area A) can lead not only to a visual 

impairment of the anchored structure but also to a loss of load-

bearing capacity of individual tendons or even the failure of an 

entire anchor over time. However, due to the often rather 

massive design of the anchor head components, some reserves 

remain. Improperly filled anchor head niches or protective 

covers often lead to increased corrosion, which can manifest as 

the release of reaction products or visible rust plumes. As 

shown in Figure 4, exposed components of the anchor, which 

are subjected to weathering and environmental conditions, are 

particularly susceptible to corrosion. Such damage can usually 

be detected by a visual inspection of the anchor head. 

The most critical point is found in the section directly behind 

the anchor head (Figure 3 area B). Defects in the inner anchor 

head can occur during construction, but also due to ageing or 

volatilization of the corrosion protection material. The absence 

of corrosion protection at the anchor head (see Figure 5) can be 

considered severe damage to both the tendon and the anchored 

structure. 

In addition to the two types of damage in the anchor head 

area, corrosion processes can also occur along the entire anchor 

length. Likewise, ageing effects on the grout material can occur 

along the entire apparent free length, potentially leading to 

corrosion of the tension element (Figure 3 area C). Due to the 

load transfer from the tendon into the underground along the 

bond length and the associated tensile stresses in the grout 

body, cracks may develop. These cracks create damaged areas 

in the corrosion protection (Figure 3 area E), serving as 

potential sources for corrosion. Especially in the transition zone 

between the apparent free length and the bond length (Figure 3 

area D), cracks occur more frequently due to the strong increase 

of the stresses in the grout body [8]]. 

 

Figure 5. Corroded strands within the anchor head area. 

 

Furthermore, if design documents or long-term monitoring 

data are available, the inspection of the structure can usually be 

carried out by trained personnel without major difficulties. 

However, if no or only limited geological, geotechnical and 

structural information is available at the time of inspection, a 

more detailed investigation is required to make a reliable 

assessment of the structure’s condition. 

3 MONITORING OF ANCHORED STRUCTURES 

As already mentioned, it is often necessary to implement 

appropriate monitoring measures during the maintenance phase 

of a structure, especially if significant defects are identified. In 

addition to deformation monitoring, the pre-stressing force is a 

key parameter for anchored structures. Throughout the service 

life of an anchor, the anchor load can either be observed with 

installed monitoring systems, or assessed by performing lock-

off-tests. While a monitoring system, such as load cells, offer 

the possibility to survey the anchor load over a longer period 

(depending on the monitoring interval), a lock-off-test only 

determines the load acting on the anchor at the time of testing. 

3.1 Anchor Lock-Off-Testing 

Regarding the safety assessment of anchors and anchored 

structures in Austria (e.g. [7] & [9]), the normative rules of EN 

1537 [1] are supplemented by the requirements outlined in the 

RVS guidelines [3] and a Working Paper [4]. To ensure the 

capability of an anchor or the functionality of a preliminary 

anchor system design, three different test types - namely, 

investigation, suitability and acceptance tests - are performed. 

A lock-off-test solely indicates the load currently applied to an 

anchor. In general, the anchor load depends on a variety of 

factors and can be influenced by daily and seasonal fluctuations 

(e.g. temperature, groundwater), but can also vary due to 

damage (e.g. corrosion) or creep effects. Taking these factors 

into account, however, a lock-off test can provide an accurate 

assessment of the anchor’s condition and functional efficiency. 

Research (e.g. [10] & [11]) and the results of safety 

assessments on anchors have shown that anchors, especially the 

anchor head, are often exposed to de-icing agents and salt, 

making them highly susceptible to corrosion damage. Such 

damage is usually not detectable through the results of lock-off 

tests. Therefore, in addition to a lock-off-test, endoscopic 

examinations [12] can provide valuable insights into the 
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condition of an anchor. Especially the visual inspection of the 

anchor head area can help to detect manufacturing defects or 

corrosion damage in the anchor head. 

Besides – mostly durability related – damages to an anchor 

(e.g. [10] & [13]), an increasing number of corrosion damages 

to reinforcement elements (e.g. [11]] & [14]]) can be observed. 

The result of an anchor lock-off test can be seen in Figure 6. 

This load-deformation-diagram illustrates the compression and 

slippage of the test setup (green line) alongside with the elastic 

elongation of the anchor strand. The intersection point, marked 

by the two equalisation lines in Figure 6, represents the point 

where the anchor head lifts off the anchor plate (or the 

structure), which defines the currently applied anchor load. 

 

 

Figure 6. Deformation-load-diagram of an anchor lock-off 

test. 

In comparison to the test loads in a suitability or acceptance 

test of anchors (e.g. [1], [15] & [17]), the determine of the lock-

off load is not described in normative or design regulations. As 

this load reflects the current state of the anchor and is therefore 

subject to change over time, making it therefore often necessary 

to define the lock off load PA in advance based on knowledge 

and experience. The number of strands or the diameter of the 

bar, for example, can provide information on this and define the 

limits and boundaries for such tests in combination with a 

preceding endoscopic surveillance of the anchor head and a 

stepwise load increase during the testing process. 

3.2 Anchor load monitoring 

By monitoring the anchor forces, any changes (both decreases 

and increases) in the anchor force and their resulting effects on 

the structure, or the potential failure of the anchor, should be 

recorded in a timely manner. This is necessary to comply with 

the requirement of Eurocode 7 [17], Chapter 8.3, which states 

that ‘the effects of anchor failure must be taken into account’, 

even though there are limited specifications in terms of 

standards and calculation methods (see [18], [19] & [20]) for 

how this requirement should be addressed. 

For this purpose, anchor load measuring devices are used, 

typically installed during the construction of the structure. In 

addition to electrical force measuring devices (e.g. eddy 

current) or traditional systems based on strain gauges, hydraulic 

measuring devices as shown in Figure 7 are commonly used. 

Such measuring devices are usually installed at the anchor 

head and are equipped with analogue reading devices. 

However, the accuracy of these readings is often limited, 

influenced by factors such as viewing angle and accessibility. 

Additionally, these measuring devices are usually exposed to 

weathering, ranging from temperature changes, rain and wind 

to harsh environmental conditions like snow, frost and the 

effects of de-icing agents used during winter maintenance. 

 

 

Figure 7. Anchor load plate installed during the construction 

of the structure. 

4 RETROFITTING LOAD MEASUREMENT DEVICIES 

ON PRE-STRESSED ANCHORS 

If assessing the state of preservation, the results of a lock-off 

test or the need for more comprehensive information on the 

behaviour of an anchor require it, digitising existing measuring 

equipment or installing force measuring devices may become 

necessary. 

The following sections present various approaches for 

implementing such measures, as well as the key considerations 

related to planning, execution and data interpretation. 

4.1 Digitalization of load measurement devices 

Force measuring devices installed on structures, such as shown 

in Figure 7, usually feature only an analogue reading, limiting 

their ability to provide close-meshed time series or assess 

temperature-related behaviour of the structure. To address this 

limitation, the digitalisation and real-time collection of 

measurement data have therefore been increasingly used for 

such existing elements. 

Although force measuring devices can already be digitised 

during installation - i.e. during the production of the anchorage 

- this was often not done, or the technology was not yet 

available at the time the anchorage was installed. In the 

following, however, the digitalisation of already installed 

anchor load plates is briefly discussed - a possibility to add 

digital data acquisition to almost all installed and still 

functional devices. 

Figure 8 shows an example where an existing anchor load 

plate with an analogue reading device was upgraded with a 
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digital data acquisition unit. The exact implementation steps 

involved are listed in [21]]. In addition to digitising the anchor 

load measurement, environmental factors such as the outside 

temperature, humidity and structural temperature at different 

depths should also be recorded to gain a comprehensive 

understanding of the structure’s behaviour. 

 

 

Figure 8. Digitization of an already installed anchor load 

plate. 

 

This type of digitisation process, combined with the 

installation of both analogue and digital data acquisition 

systems, can offer significant added value for the structure and 

inspection personnel. While the analogue reading allows for a 

fast check of functionality and a direct determination of the 

anchor force, the digital interface enables the collection of 

comprehensive time series data on the behaviour of the anchor. 

An example of this is shown in Figure 9. 

 

 

Figure 9. Time series of digitized anchor load cells in relation 

to temperature. 

The diagram shows the recorded anchor loads of three 

anchors (M1 to M3) alongside the measured air temperature 

(from -10°C to +13°C) over an observation period not further 

defined here. A clear correlation between changes in air 

temperature and the recorded anchor loads can be observed. 

Furthermore, the anchor load responds almost immediately to 

changes in temperature, suggesting that these variations are 

largely attributable to the thermal expansion of the measuring 

device or the structural elements of the wall. 

4.2 Retrofitting load measurement devices on anchor heads 

If no load measurement devices are present on a structure, or 

if additional pre-stressed anchors are to be equipped with such 

systems, several retrofitting options are available. If the anchor 

head offers a thread (either internally in the wedge plate or 

externally), a force measuring device can be retrofitted 

relatively easy - enabling a short-circuit setup similar to a lock-

off test. Alternatively, the existing tendon overhang can be used 

for attaching a measurement device. However, this is rarely 

feasible with existing anchorages in Austria, necessitating the 

exploration of alternative solutions. Two such approaches are 

briefly described below. 

Figure 10 shows the first retrofitting possibility, which 

involves attaching an additional press chair to facilitate the 

subsequent lifting of the anchor head via two threaded rods. 

This enables the creation of a load short circuit through the 

installation of a new anchor load plate. However, this design is 

only possible if suitable contact points are available on the 

anchor head (e.g. free strand holes, internal threads, bayonet at 

the wedge plate) that allow the anchor head to be properly 

engaged. In this particular case, the approach was possible 

because only two strands were installed in a four-strand wedge 

plate, leaving two free strand holes. Threads were cut on-site 

into these unused holes to accommodate the threaded rods. 

 

 

Figure 10. Example of retrofitting an anchor load plate on a 

partially occupied anchor head. 

The figure below shows a special type of anchor known as a 

wire anchor. Its distinctive feature is that the wires within the 

drill hole are bundled by a rod attached in the centre. This 

system, referred to as a PZ anchor [22], allows for relatively 

straightforward attachment of a new load short circuit and the 

retrofitting of an anchor load plate, due to the presence of a 

fine-threaded rod at the anchor head. 

Both options share a common factor in that they involve 

considerable effort. Sufficient expansion paths must be 

available to enable a load short circuit and the geometric 

requirements for attaching an anchor load plate must also be 

met. It should also be noted that such interventions, such as the 

on-site installation of threads in installed wedge plates, 

represent a significant impact on the system. This may raise 

concerns not only regarding liability but also with respect to 

durability and integrity. Nevertheless, in cases where 
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significant changes in anchor loads are suspected, the added 

value of enabling anchor load measurement typically 

outweighs these concerns and becomes the primary focus of 

such investigations and considerations. 

 

 

Figure 11. Example of retrofitting an anchor load plate for 

tensile elements or anchor heads with threaded component. 

4.3 Retrofitting load measurement devices on anchor 

strands 

Often, there is insufficient strand overhang, the wedge holes of 

an anchor head are occupied and other structural components 

required to create a force-locking connection are unavailable. 

As a result, the options listed in Chapter 4.2 for retrofitting an 

anchor load plate to existing pre-stressed anchors may not be 

feasible. Nevertheless, to accurately assess the behaviour of the 

structure, it would be beneficial to obtain information about any 

potential changes in the pre-stressing force. 

One possible option is to cut an external thread on the 

existing strand overhang. From a practical point of view, this 

section of the tendon is usually 15 - 20 mm long, which may 

allow a fine thread to be screwed on and subsequently a 

threaded nut to be fitted. An example for testing purposes is 

shown in Figure 12 and Figure 13. A fine thread M16x1 (core 

diameter 14.92 mm) was screwed onto a strand with an outer 

diameter of 15.6 mm. The manufacturing test demonstrated that 

even with low pre-stressing forces on the strand and a resulting 

small wedge bite, the thread could still be successfully 

installed. 

 

 

Figure 12. External thread retrofitted to a pre-stressed anchor 

strand. 

The embossed thread on the strand overhang allows for the 

creation of a force-locking connection between the strand, 

which would otherwise only be gripped by friction, and other 

structural elements. An example of this can be seen in Figure 

13, where two nuts were screwed onto the embossed thread of 

the strand to facilitate a tensile test. 

 

 

Figure 13. External thread used for the application of a 

threaded nut on an anchor strand. 

The result of a series of tests showed that a force-locking 

connection can be achieved by installing an external thread 

onto the overhang of already installed anchor strands. 

Obviously, the amount of load that can be transmitted depends 

on the length of the thread, the pitch and the condition of the 

strand. More detailed investigations are currently underway. 

Nevertheless, this first series revealed the following points: 

• It is possible to emboss an external thread onto the 

overhang of already installed, pre-stressed anchor strands; 

• There is no unacceptable mechanical damage to the high-

strength steel strands due to cold forming during the 

cutting process; 

• With sufficient strand overhang, it is possible to achieve a 

force-locking connection; 

• An externally applied thread on strands can be used to 

attach threaded nuts for force input or transmission. 

 

This approach therefore enables the creation of a subsequent 

force-locking connection with the individual strands of a pre-

stressed anchor. This can facilitate the installation of threaded 

rods to extend the strands, simplifying the execution of lock-

off testing or enabling the retrofitting of force measuring 

devices, as shown in Chapter 4.1 and 4.2. 

Furthermore, innovative and new measuring devices, such as 

the e-Bolt [23]], could also be implemented in anchor 

technology. This system consists of a nut that, in addition to 

securing and transmitting loads, also serves as a measuring 

device. Such systems are already used in various measurement 

applications, for example to measure the pre-load force of 

dynamically stressed objects like noise barriers along railways. 

Beyond retrofitting force measuring devices, this technology 

could also enable the digitization of anchor force measurement. 

5 CONCLUSIONS & SUMMARY 

There are several methods to assess the condition of anchored 

structures, particularly the condition of the tension elements. In 

addition to traditional structural inspections, monitoring data is 

often used. Typically, geodetic surveys, readings from existing 

measuring devices and, if necessary, special tests to determine 

the material properties are used to record any changes regarding 

the state of preservation of anchors and anchored structures. 

Since lock-off testing is associated with higher personnel 

costs and potential restrictions, such as road closures or other 

impacts on the availability of infrastructure, it is usually 
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conducted on a limited number of anchors and at periodic 

intervals. If such tests are not possible, for example due to the 

shape and type of anchorage, or if a continuous time series of 

the currently applied anchor load is required, retrofitting a force 

measuring device may be an appropriate solution. 

One of the most common options is to attach anchor load 

measurement devices directly to the anchors under 

consideration. However, this is only possible if such provisions 

have already been accounted for during the planning stage. 

These measuring elements can be enhanced with continuous 

data acquisition by digitising the measuring devices, providing 

comprehensive information on the behaviour of the structure. 

In addition to possible seasonal influences such as temperature, 

monitoring can also be implemented in order to detect damage 

processes or imminent failure of single elements or the 

anchored structure itself. 

Current investigations and research activities in this area 

indicate that, in addition to various methods of coupling to the 

anchor head construction of pre-stressed anchors, it is also 

possible to retrofit anchor load measurement equipment by 

subsequently cutting threads onto the strand overhang. This 

approach allows for the use of a force-locking mechanism to 

attach measurement devices or to enable additional lock-off 

testing. 

This article has attempted to compile a comprehensive 

overview of the available options for retrofitting anchor load 

measurement solutions. Given the decline in the state of 

preservation of anchored structures and tension elements, along 

with their frequent use in geotechnical engineering, such 

retrofitting solutions are expected to receive increasing 

attention in the future. 
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ABSTRACT: Structural health monitoring (SHM) is a key method for assessing the condition of civil infrastructure, detecting 

and localizing damage through continuous data acquisition. Damage detection methods are divided into physically based 

approaches, using finite element (FE) models, and data-driven approaches, relying on signal processing. A key challenge in SHM 

is the lack of data from the damaged state, which complicates the validation of the technique. However, the successful deployment 

of SHM systems on real civil infrastructure depends mainly on their reliability. For non-destructive testing (NDT) systems, the 

Probability of Detection (POD) is an accepted approach for quantifying reliability. In contrast to NDT, there is no generally 

applicable procedure to assess the reliability of SHM systems.  

This study addresses this gap by evaluating SHM reliability with POD models and data generated from calibrated FE models. 

These FE models are calibrated through Bayesian inverse methods. To manage computational challenges, generalized Polynomial 

Chaos Expansion (gPCE) surrogate models are employed. These methods are tested using vibration-based measurements on a 

laboratory-scale four-degree-of-freedom (4-DOF) wood frame. The results highlight the use of MAPOD and limitations of the 

method, emphasizing their potential to enhance SHM reliability and enable smarter infrastructure systems. 

KEY WORDS: MAPOD; SHM; Bayesian inverse methods; vibration-based measurements. 

1 INTRODUCTION  

Structural Health Monitoring (SHM) is a key method for 

assessing the condition and integrity of civil infrastructure 

through continuous or periodic data acquisition. By deploying 

sensor networks, SHM systems are capable of detecting and 

localizing damage of structures, thereby enhancing 

maintenance strategies and extending service life. Damage 

detection methods in SHM are typically categorized into two 

major classes: physics-based methods, which utilize for 

example finite element (FE) models to simulate structural 

behavior; and data-driven methods, which rely on signal 

processing, statistical analysis, and machine learning [1]. 

A major challenge in SHM is the lack of damaged-state data, 

which complicates the validation and benchmarking of 

diagnostic techniques. This issue becomes critical when aiming 

to ensure the operational reliability of SHM systems in real 

civil infrastructure applications. While Non-Destructive 

Testing (NDT) technologies benefit from standardized 

reliability assessment procedures such as the Probability of 

Detection (POD), the SHM community is still developing a 

generally applicable methodology for quantifying SHM system 

reliability. 

POD is a metric used to evaluate the performance of 

Inspection system of NDE. POD quantifies the likelihood that 

a flaw of a given size will be reliably detected by the inspection 

system NDE. POD curves have been widely applied in the 

aerospace and nuclear power industries to ensure structural 

safety [2–4]. The conventional approach for estimating POD 

curves as used in the aerospace industry is based on empirical 

testing as outlined in MIL-HDBK-1823A [2]. This approach 

requires the generation of a sufficiently large and representative 

data set covering a range of flaw sizes. Two primary techniques 

are commonly used: the Hit/Miss method and the â vs. a 

(response vs. flaw size) method. These procedures form the 

foundation of standardized POD analysis in NDE.  

In contrast, the Model-Assisted Probability of Detection 

(MAPOD) approach integrates physics-based model 

simulation for estimating POD. MAPOD aims to extend and 

complement the basic MIL-HDBK methodology by reducing 

(though not eliminating) the need for physical testing samples.  

The application of MAPOD has been investigated in several 

studies [7–9]. Smith et al. [8] successfully conducted a fully 

model-assisted POD validation for immersion ultrasonic 

inspection targeting embedded flat-bottom holes. Their results 

demonstrated equivalence to those obtained using the 

conventional MIL-HDBK-1823 approach.  

Knopp et al. [7] explored a MAPOD approach for evaluating 

crack detection in a two-layer airframe structure with 

countersunk fasteners using Eddy Current Testing (ECT). The 

study involved 171 fasteners, including 38 with known cracks, 

with crack lengths ranging from 0.69 mm to 4.29 mm. Physical 

models were calibrated with experimental data, and 5000 

synthetic data points were generated via Monte Carlo 

simulation for MAPOD estimation. The results showed 

excellent qualitative agreement between the empirical and 

simulation-based POD curves, although uncertainties in the 

input parameters were not explicitly addressed. 

By leveraging FE models or numerical simulations, MAPOD 

can significantly lower the time, cost, and logistical complexity 

of traditional POD studies [7]. This numerical simulation-based 

method has great potential in evaluating the reliability of SHM 

systems, where empirical data is often limited or difficult to 

obtain. 

This study proposes a framework for evaluating the 

reliability of SHM systems using POD and MAPOD models. 

The framework is enhanced by simulated data generated from 
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finite element (FE) models, which are calibrated in the 

reference/undamaged state using Bayesian inverse methods to 

capture uncertainties and improve prediction accuracy based on 

experimental observations. As a result, simulations of 

parametric variations, such as the initiation and progression of 

damage, can be conducted with higher accuracy, thereby 

improving the predictive capability and overall reliability of the 

SHM system.  

To address the computational demands of FE simulations, 

surrogate models based on generalized Polynomial Chaos 

Expansion (gPCE) theory are employed. 

The calibration of the FE model is performed by applying a 

Polynomial Chaos Expansion-based Kalman Filter (PCE-KF). 

This method is validated using a laboratory-scale experiment 

involving a four-degree-of-freedom (4-DOF) wooden frame 

subjected to vibration-based measurements. The measurements 

are performed under both reference and changed states, where 

the changes are introduced through controlled mass variations. 

The results demonstrate the feasibility of applying MAPOD 

techniques within the SHM context and provide insight into the 

limitations and practical considerations of this approach. 

Ultimately, this work contributes to the development of reliable 

SHM systems for civil infrastructure. 

 

2 METHODOLOGY  

The overall workflow proposed for the MAPOD construction 

is illustrated in  Figure 1, while a detailed explanation of each 

component is provided in the subsequent sections.  

 

 

Figure 1. MAPOD model building process 

 Experimental Setup   

A laboratory-scale four-story wooden frame structure is 

designed to simulate the response of four degrees of freedom 

system. To achieve this, the column dimensions are carefully 

adjusted to ensure that the stiffness in one translational 

direction is significantly greater than in other translational or 

rotational directions. The column cross-section is 300 mm by 

6.4 mm. The total height of the wooden frame is 1000 mm, with 

a width of 500 mm. Each story has a height of 250 mm. The 

beam cross-section is 60 mm by 60 mm. The columns are 

constructed from laminated wood sheets, while the beams are 

made of solid wood. The mass of each structural element is 

determined by weighing the components prior to assembly. The 

frame is instrumented with triaxial accelerometers to record its 

vibration response under random excitation induced by a 

handheld rubber hammer. A data acquisition system from 

Dewesoft and MMF KS903B100 triaxial accelerometers are 

used in this experiment. The experimental setup is illustrated in 

Figure 2, and the structural geometry and mass is summarized 

in Table 1. 

Table 1. Structural geometry and mass 

Geometry [mm] Mass [gr] 

Column  

cross-section 
300x6.4 

Column 1 

Column 2 

885 

915 

H, Height 1000 Beam 1st Floor 1122 

  Beam 2nd Floor 1060 

Beam cross-section 60x60 Beam 3rd Floor 1046 

L, Length 500 Beam 4th Floor 1020 

  
Triaxial 

Accelerometer 
11 

 

 

 

Figure 2. Experimental setup 

The measurements are conducted under both reference 

(undamaged) and changed (damaged) states. The changed state 

is simulated by incrementally adding mass to the fourth floor 

of the structure. For each state, vibration responses are recorded 

for 90 seconds at a sampling rate of 1000Hz, with each test 

repeated at least 15 times to ensure statistical consistency. The 

experiments are performed over several days, from March 24th 

to March 29th 2025, to ensure sufficient data collection and to 

capture a broader range of variability even under stable 

environmental conditions.   

All experiments are conducted under constant room 

temperature ranges and humidity conditions. This experimental 

setup serves as the basis for validating the MAPOD analysis 

compared to real physical test data. Details of the measurement 

set and repetition are provided in Table 2.  
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Table 2. Measurement set 

Measurement 

Set 

Added 

Mass [gr] 

[%] to the 

Mass of 4th 

floor 

 Repetition  

Reference 0 0 267 

Mass 1 25 2,4 % 69 

Mass 2 51 4.9 % 55 

Mass 3 75 7.3 % 20 

Mass 4 102 9.9 % 70 

Mass 5 153 14.8 %  66 

Mass 6 204 19.8 % 55 

Mass 7 255 24.7% 15 

 

 Finite element model and Bayesian updating 

A three-dimensional finite element (FE) model of the four-

story wooden frame structure is developed in Ansys to simulate 

its modal dynamic response. The model geometry reflects the 

actual dimensions of the physical structure, incorporating 

column and beam cross-section. Shell elements are used to 

represent the thin column sections, while beam elements are 

used to represent beams. The beam-column connections are 

assumed to be rigid. The boundary conditions simulate fixed 

line support at the base, consistent with the physical setup. 

Material properties are initially assigned based on measured 

values. The material density is then calculated as the ratio of 

mass to volume for each element. The elastic modulus is 

unknown and is treated as random variable in wood properties. 

In addition to the elastic modulus, the thickness of the columns 

is also modeled as a random variable, accounting for 

imperfections in the thickness of the wood elements. The 

elastic modulus and column thickness are then treated as input 

random parameters in the Bayesian model updating. 

Meanwhile the natural frequencies and mode shapes obtained 

from modal analysis are used as output (observed) parameters 

for the Bayesian model updating.  

 Polynomial Chaos Expansion based Kalman Filter 

A Bayesian model updating approach is applied to minimize 

discrepancies between the outputs of the FE model and the 

experimental measurements. The uncertain parameters, such 

elastic modulus and thickness of columns, are treated as 

random input parameters 𝑸 ∈ ℝ𝑁𝑛 where 𝑁𝑛 is the number of 

input parameters, modeled as Gaussian independent variables 

  

𝑸 =  𝒩(𝝁𝑄 , 𝑪𝑄) 

 

(1) 

where 𝝁𝑄 ∈ ℝ𝑁𝑛  is the vector of mean values and 𝑪𝑄 ∈

ℝ𝑁𝑛×𝑁𝑛  is the covariance.  

The system random inputs are transformed by a forward 

model operator ℳ into the outputs 𝒀 = ℳ(𝑸) ∈ ℝ𝑁𝑚 where 

𝑁𝑚 is the number of measured outputs. The measurement 𝒁 ∈
ℝ𝑁𝑚 is affected by an error 𝑬 ∈ ℝ𝑁𝑚, which follows a normal 

distribution and combines linearly with the measured output 

 

𝒁 = ℳ(𝑸) + 𝑬, 𝑬 =  𝒩(0, 𝑪𝐸) 

 

(2) 

where 𝑪𝐸 ∈ ℝ𝑁𝑚×𝑁𝑚 is error covariance. The scope of the 

Bayesian updating is to improve the estimation of the random 

input 𝑸 given output measurements 𝒛. An efficient approach to 

Bayesian updating consists in applying the linear Bayesian 

Filter 

𝑸′  = 𝑸 + 𝑲(𝒛 − 𝒀) 

 

(3) 

where 𝑸 are prior parameter estimates, 𝑸′ are the posterior, 𝒛 

are output measurements, 𝒀 are measured system outputs and 

𝑲 is the Kalman Gain 

 

𝑲 = 𝑪𝑸𝒀(𝑪𝒀 + 𝑪𝑬)−𝟏 (4) 

 

where 𝑪𝒀 is the system outputs covariance, 𝑪𝑬 is the error 

covariance and 𝑪𝑸𝒀 is the covariance between system inputs 

and outputs. 

The application of the linear Bayesian filter requires to assess 

the above mentioned covariances. This process is not 

straightforward in the case of implicit and/or non-linear 

forward model operators. To speed up the uncertainty 

propagation process and the application of the linear Bayesian 

filter, it is possible to represent each random variable in 

polynomial chaos expansion (PCE) form 

 

𝑸̂ = ∑ 𝒒̂𝜶𝓘 𝜱𝒒,𝜶,   𝒀̂ = ∑ 𝒚̂𝜶𝓘 𝜱𝒚,𝜶,  

 𝑬̂ = ∑ 𝒆̂𝜶𝓘 𝜱𝒆,𝜶,   𝒁̂ = ∑ 𝒛̂𝜶𝓘 𝜱𝒛,𝜶 

 

(5) 

where 𝒒̂𝜶, 𝒚̂𝜶, 𝒆̂𝜶, 𝒛̂𝜶 are coefficients, 𝜱[∙],𝜶 multi-variate 

orthogonal polynomials for the quantity [∙], and 𝓘 represents 

the set of multi-indices 𝜶 truncated to the polynomial order p. 

In this case, the linear Bayesian filter takes the following form 

 

𝑸̂′  = 𝑸̂ + 𝑲(𝒛̂ − 𝒀̂) (6) 

 

and the covariances required to calculate the Kalman Gain can 

be analytically computed by the expansion coefficients. 

Detailed information about the polynomial chaos expansion 

based Kalman filter (PCE-KF) can be found in Rosic et al. 

(2012) and Rosic et al. (2013). 

 POD estimation and reliability metrics 

The POD curve in this study is estimated using the â vs. a 

approach. The â vs. a model POD is a technique used in NDT 

to quantify the capability of a detection system based on 

continuous damage indicators. Unlike hit/miss POD methods, 

which rely on binary detection outcomes, the â vs. a model 

POD utilizes a continuous detection metric â that reflects 

measurable differences in the system's response between 

undamaged and damaged states. This approach allows for an 

assessment of detection performance, particularly in systems 

where subtle changes in dynamic characteristics, such as 

natural frequencies or mode shapes, are used to infer damage. 

In vibration-based monitoring, such metrics are often derived 

from modal parameter shifts or other features sensitive to 

structural changes.  

The â vs. a model involves fitting a linear function to the 

response feature, â, as a function of the parameter of interest a, 

𝒂̂ = 𝛽0 + 𝛽1𝒂 + 𝝐 

 

(7) 

where β0 and β1 are parameters that are estimated by 

performing a fit to the data and ϵ is a noise term, ϵ∼𝒩(0, σ2). 

The noise term ϵ is assumed to follow a normal distribution. 

The aforementioned parameters β0, β1 and σ are estimated in 
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the usual way by deploying ordinal least squares. We can 

ignore the more elaborated Tobit regression modeling from 

MIL-HDBK-1832A [2], because the observed â values (see 

below) are far away from their natural bounds. 

When multiple response features are available, a 

representative scalar value is needed to consolidate the relevant 

information into a single damage-sensitive metric. To address 

this, the Mahalanobis distance (MD) is employed as a fault 

indication metric. The Mahalanobis distance is a multivariate 

measure that accounts for correlations between variables, 

providing a statistically normalized distance of an observation 

from a reference distribution. For an observation vector 𝒙𝑖  

(e.g., the measured eigenfrequencies of a structure at a specific 

time or condition), and a reference data set (e.g., the average 

eigenfrequencies in the undamaged state) characterized by 

mean vector μ and covariance matrix Σ, the Mahalanobis 

distance is defined as 

 

𝐷𝑀(𝒙𝑖) = √(𝒙𝑖 − 𝝁)𝚺−1(𝒙𝑖 − 𝝁) (8) 

 

To determine the statistical decision threshold for damage 

detection, the confidence interval approach based on the Chi-

squared distribution is employed. Since the Mahanlaobis 

distance 𝐷𝑀  follows follows a Chi-squared distribution with 

degrees of freedom equal to the number of variables  𝑑, the 

decision threshold is defined as:  

𝑻 = √𝝌𝟏−𝜶,𝒅
𝟐  

 

(9) 

 Where 𝝌𝟏−𝜶,𝒅
𝟐  denotes the critical value from the Chi-

squared distribution at a confidence level of 1 − 𝛼, and 𝑑 is the 

dimensionality of the feature. For example, at a 99.9% 

confidence level and 𝑑 = 3, the threshold is 𝜒0.999,3
2 = 16.27, 

corresponding to a Mahalanobis distance threshold of 𝑇 =

√16.27 ≈ 4.03. This captures the upper 0.1% of the reference 

distribution and yields a very strict false alarm rate.  

The Probability of Detection (POD) as a function of damage 

size 𝑎 is expressed as: 

 

𝑷𝑶𝑫(𝒂) =  𝚽 (
𝒂 − 𝝁𝒂

𝝈𝒂

) 
(10) 

 

Where Φ(∙) is the cumulative distribution function of the 

standard normal distribution, and 𝜇𝑎 and 𝜎𝑎 are suitable 

parameters controlling the shape of the POD curve. These 

parameters are derived from the linear regression model, with  

𝜇𝑎 = (𝑇 − 𝛽0) 𝛽1⁄  and 𝜎𝑎 =  𝜎 𝛽1⁄ , where β0, β1 and σ are the 

model parameters. The threshold corresponding to a 90% 

detection probability, a90 with POD(a90) = 0.9, is then 

calculated as 𝑎90 = 𝜇𝑎 + 1.645 ∙ 𝜎𝑎. To account for the 

uncertainty in this threshold, the value a90/95, representing the 

damage size for 90% POD with 95% confidence bounds, is 

computed using the Delta method referred to MIL-HDBK-

1832A [2]. These performance metrics are used to assess and 

compare the detection capabilities of the SHM system. 

Following the same methodology, the Probability of Detection 

(POD) is also calculated using data generated from the 

calibrated finite element (FE) model.  

 

3 ANALYSIS  

 Data Analysis/Operational Modal Analysis   

The recorded vibration data are analysed using operational 

modal analysis (OMA) to identify the dynamic parameters of 

the wooden frame. OMA is chosen because it enables the 

extraction of modal parameters under ambient or operational 

conditions without requiring controlled excitation forces. 

Using Artemis Modal Pro 7.2 software, the OMA is performed, 

and the natural frequencies (f), damping ratios (ς), and mode 

shapes of the structure are estimated. Based on the analysis 

results, four resonance frequencies are identified, 

corresponding to the four translational modes of the wooden 

frame. Figure 3 illustrates the identified mode shapes of the 

wooden structure in the reference state.  

 

 
f1= 6.36 Hz 

 
f2 = 20.21 Hz 

 
f3 = 36.22 Hz 

 
f4 = 50.27 Hz 

Figure 3. Mode shapes and frequency of wooden frame in 

reference state 

OMA is also performed for all added mass configurations. 

Modal tracking is carried out to identify the mode similarities 

between each configuration to the reference state, with the 

Modal Assurance Criterion (MAC) threshold set to greater than 

80%. The tracked resonance frequencies across all data sets are 

presented in Figure 4.  

 

 
Figure 4. Tracked frequency (MAC > 80%) for the reference 

state and various added mass configurations 
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From Figure 4, it can be observed that the addition of mass 

on the fourth floor affects the dynamic response of the 

structure, particularly the resonance frequencies. As the added 

mass increases, the natural frequencies tend to decrease, which 

is consistent with the theoretical expectation that an increase in 

mass leads to a reduction in the system's stiffness-to-mass ratio. 

In addition to the frequency shifts, the damping ratios of the 

structure were also examined; however, no clear trend was 

observed in relation to the parameter changes. Furthermore, the 

first four dominant mode shapes remained largely unchanged, 

indicating that the modifications had minimal influence on the 

modal characteristics. 

The results of the Operational Modal Analysis in the 

reference state, as shown in Figure 3, are used as the baseline 

data for calibrating the FE-model through a Bayesian model 

updating approach. An overall Operational Modal Analysis, as 

shown in Figure 4,  is used to compute the empirical Probability 

of detection.  

 Bayesian model updating   

A finite element (FE) model of the structure is developed using 

Ansys Mechanical, based on the given structural conditions. 

The FE model is then calibrated through Bayesian updating to 

estimate random model parameters. In this study, two key 

parameters are considered: the elastic modulus of the columns 

and the column thickness, as previously described. The FE-

Model in Ansys is illustrated in Figure 5. 

 
Figure 5. FE-Model in Ansys Mechanical 

 

Initially, the prior distributions of the uncertain model 

parameters defined by their mean (μ) and standard deviation (σ) 

are established based on engineering judgment and available 

data. The Bayesian model updating is performed using the 

generalized Polynomial Chaos-based Kalman Filter (gPC-KF) 

approach. These methods incorporate measurement 

uncertainties to update the parameter distributions, resulting in 

posterior distributions (μ′, σ′) that reflect improved estimates 

conditioned on the observed vibration data. The summary 

statistics of both prior and posterior distributions are presented 

in Table 3 and the resulting posterior approximation 

distribution is shown in Figure 6. 

The results of the Bayesian updating process show a 

reduction in the standard deviations of the posterior 

distributions, indicating improved parameter certainty in a 

model calibration. To assess the accuracy of the updated FE 

model, its predicted mean resonance frequencies – computed 

using the mean values of the parameters from the posterior 

distributions – are compared against those obtained from 

Operational Modal Analysis (OMA) in the reference state, as 

detailed in Section 3.1. The relative difference between the 

simulated and experimental frequencies observed for the four 

modes is 0.54%, which is well within the maximum relative 

error of 0.6% in reference data. This close agreement confirms 

the reliability of the Bayesian-updated model.  

Table 3. Prior and posterior of random parameters 

Parameter Elastic 

Modulus 

of Column 

Thickness  

of Column 

Prior  

Mean value,  

standard deviation  

(μ, σ) 

4000, 400 

[MPa] 

σ = 0.1μ 

6.4, 0.32 

[mm] 

σ = 0.05μ 

measurement error 0.6 % 

  

Posterior 

Mean value,  

standard deviation  

(μ’, σ’) 

3800, 316 

[MPa] 

σ’ = 0.083μ’ 

6.18, 0.18 

[mm] 

σ’ = 0.29μ’ 

relative difference 

𝜖𝑖 =
|𝑓𝑖_𝐹𝐸 𝑚𝑜𝑑𝑒𝑙

− 𝑓𝑖_𝑂𝑀𝐴
|

𝑓𝑖_𝑂𝑀𝐴

 

0.54 % 

 

 
Figure 6. Results from updating with Bayesian model 

updating approach 

 

Table 4. Comparison of resonance frequencies between the 

updated finite element (FE) model and experimental 

measurements from Operational Modal Analysis (OMA) 

 

Mode 

No. 

Frequency  

FE-Model 

Frequency  

OMA 

relative 

difference 

[%] 

MAC 

[%] 

1 6.39 6.40 0.21 97 

2 19.91 19.81 0.53 90 

3 36.16 35.97 0.54 90 

4 50.81 50.56 0.10 98 

 

Following the successful calibration of the FE model in the 

reference state, a Monte Carlo simulation is performed to 

generate modal frequency data for various added mass 

configurations. Based on the posterior distributions of the 

elastic modulus and column thickness, combined with discrete 
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added mass values to simulate different structural states, 120 

samples of frequencies are generated for each state. The 

additional masses varied from 0 to 200 grams in increments of 

25 grams. The resulting dataset is then used as the input for 

computing the Model-Assisted Probability of Detection 

(MAPOD), providing a statistical basis for assessing the 

detection performance under varying conditions. 

 Simulation of Model-Assisted Probability of Detection 

This section presents a comparative analysis between the 

experimental Probability of Detection (POD) and the Model-

Assisted POD (MAPOD) derived from the simulations. The 

comparison aims to validate the simulation framework and 

assess its capability to replicate detection performance 

observed in physical experiments. The observed strategy is 

based on changes in modal frequencies associated with varying 

levels of added mass, simulating structural changes/damage.  

Figure 7 illustrates the comparison of resonance frequencies 

identified from OMA experimental data measurements and 

those predicted by the calibrated FE model, demonstrating 

good agreement and confirming the effectiveness of the model 

updating process. Modes 1 and 2 are highly sensitive to the 

added mass, showing noticeable shifts in frequency. In contrast, 

Mode 3 exhibits only minor changes, while Mode 4 shows the 

least response to mass variation. This behavior is to be 

expected, as higher-order modes typically require more energy 

to be effectively excited and are thus less influenced by 

localized changes in structural mass [16,17]. Therefore, only 

Modes 1, 2, and 3 will be considered for further POD 

estimation, as they exhibit measurable sensitivity to the added 

mass and are thus more suitable for damage detection analysis. 

To evaluate the consistency between the experimental POD 

and the MAPOD derived from simulated data, Mahalanobis 

distances from the 1st ,2nd and 3rd modes are computed and 

plotted against the corresponding flaw sizes, as shown in Figure 

8. Finally, the POD curves are presented in Figure 9, comparing 

the empirical POD derived from experimental data with the 

MAPOD computed from the simulation results.  

 

 

 
Figure 7. Added Mass-Frequencies comparison from OMA experimental data and FE-Model 
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Figure 8. a vs â for OMA experimental data and FE-Model 

 

 
Figure 9. POD OMA experimental data and FE-Model simulation data  

 

From Figure 9, the experimentally derived a₉₀/₉₅ value from 

the POD curve is 77.81 grams, while the simulated MAPOD 

yields an a₉₀/₉₅ of 71.42 grams, representing a relative 

difference of 8.2%. This a₉₀/₉₅ value corresponds to 7,0% of 

the total mass of the fourth floor. These results indicate that 

the POD derived from the calibrated FE model in the reference 

state provides sufficient predictions of the structural response 

to varying added mass conditions on the fourth floor. The 

alignment between the experimental and simulated POD 

curves demonstrates that the simulation-based MAPOD can 

approximate the experimental detection, supporting its 

application for scalable and cost-effective SHM reliability 

assessments. 

4 CONCLUSION AND OUTLOOK  

This study presents a framework for evaluating the reliability 

of Structural Health Monitoring (SHM) systems using 

Probability of Detection (POD) and Model-Assisted POD 

(MAPOD) approaches. A laboratory-scale 4-DOF wooden 

frame structure was used as a case study, with varying mass 

configurations to simulate structural changes. Experimental 

modal data were collected using Operational Modal Analysis 

(OMA) and used to calibrate a Finite Element (FE) model 

through Bayesian updating. The updated FE-Model served as 

the basis for generating simulated response/modal data 

through Monte Carlo simulations under various mass 

configurations, enabling the construction of MAPOD curves. 

The comparison between experimental POD and MAPOD 

simulation data shows the relative difference with less than 

10% deviation in key detection metrics such as a a₉₀/₉₅. The 

MAPOD approach can effectively supplement physical 

testing by providing scalable, repeatable reliability 

assessments with reduced experimental effort. 

Outlook: 

Future research should aim to extend the MAPOD framework 

by incorporating more complex damage scenarios—such as 

sequential cracking or cross-sectional area reduction leading 

to structural stiffness degradation—exploring a wider range of 
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SHM sensing techniques and expanding the set of observed 

response features beyond the four considered in this study. 

Furthermore, integrating environmental and operational 

variability into the model could further enhance its predictive 

robustness. Finally, applying this method to real-scale 

structures will be a crucial step toward broader 

implementation in practical SHM deployments. 
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ABSTRACT: Structural Health Monitoring (SHM) is vital for ensuring the safety and longevity of infrastructures, utilizing various 

sensor-based techniques to detect damage, assess performance, and monitor long-term deterioration. Traditional methods, such as 

visual inspections, lack precision and are prone to human error, whereas more advanced techniques like vibration-based 

monitoring, acoustic emission, strain gauges, and GNSS offer real-time damage detection and millimeter-level precision but often 

require complex planning and high costs. The presented 6D sensor, developed for infrastructure monitoring, accurately measures 

complex displacements and rotations, offering enhanced precision through a combination of machine learning and mathematical 

algorithms. When paired with low-cost, high-precision GNSS systems, it provides comprehensive real-time data on both localized 

and large-scale structural movements, improving insights into infrastructure behavior under various environmental conditions and 

loads.This paper explores the integration of 6D sensors with GNSS technology, discussing the advantages of real-time monitoring 

for predictive maintenance and presenting insights from ongoing project results. 

KEY WORDS: IoT, Sensors, AI, SHM, 6D, GNSS 

1 INTRODUCTION 

Structural Health Monitoring (SHM) is essential for ensuring 

the safety and longevity of bridges, employing various 

techniques to detect damage, assess performance, and monitor 

deterioration over time. Traditional methods, such as visual 

inspection [1], are widely used due to their simplicity and cost-

effectiveness but often lack precision and are prone to human 

error. More advanced techniques include vibration-based 

monitoring [2], which identifies global structural changes 

through dynamic responses, and acoustic emission [3] methods 

that detect stress waves from internal cracks. Both offer real-

time damage detection but vary in sensitivity and applicability. 

Strain gauges and fiber optic sensors (FOS) [4]-[6] provide 

localized measurements of stress and deformation with high 

accuracy. FOS excels in long-term durability and precision but 

comes with higher installation costs. Laser scanning and 

LiDAR [7] are effective in capturing surface deformations and 

creating detailed 3D models but can be limited by weather 

conditions. GNSS [8][11] is used in infrastructure structural 

health monitoring to provide high-precision, real-time 

measurements of large-scale displacements and deformations, 

enabling accurate tracking of structural movements over time 

for enhanced safety and maintenance planning. 

Emerging technologies like wireless sensor networks (WSN) 

[9],[12] enable real-time data collection of multiple physical 

measurement parameters reduced costs, but allowing data 

fusion and better remote data interpretation. 

2 TECHNOLOGY OVERVIEW 

 Magnetic 6D-Sensor 

The continuous monitoring of the structural integrity of 

transportation infrastructure requires precise and reliable 

measurement methods.  

The 6D sensor from SuessCo is based on a magnetic field 

sensor array that measures position and rotation relative to a 

permanent magnet with high accuracy [13]. The system 

captures movements in all six degrees of freedom (X, Y, Z as 

well as roll, pitch, and yaw) and achieves a repeatability of ±50 

µm in the translational axes and ±0.1° in the rotational axes. 

This is accomplished through a combination of machine 

learning and mathematical algorithms that allow precise 

recalculation of the measured values in real time. The high 

precision and easy installation make these sensors particularly 

suitable for monitoring critical infrastructure components such 

as bridge bearings.  

Using an array of magnetic field sensors for position 

determination offers significa1nt advantages, particularly due 

to the overdetermined nature of the system, which enhances 

accuracy and reduces the impact of external influences. With 

multiple sensors, the system collects redundant data, allowing 

it to cross-reference measurements and filter out 

inconsistencies caused by magnetic stray fields, interference 

from electrical fields (such as those from power lines), and 

thermal fluctuations. The overdetermined setup enables 

compensation for temperature-induced changes in the magnetic 

field, ensuring that the sensors remain accurate even in varying 

thermal conditions. This redundancy improves robustness, 

compensates for local anomalies, and results in more precise 

and stable position determination. 

Self-diagnostic feature ensures that the sensor operates 

reliably by detecting potential faults, calibration drift, or 

performance degradation in real time. As a result, the system 

can immediately alert operators to any issues, reducing the risk 

of inaccurate data or sensor failure. 

Therefore, accurate recalculation of the position is performed 

on a webserver to allow the usage of low performance 

microprocessors. Transmitting the sensor data is possible via 
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Wi-Fi or LTE-M allowing worldwide usage. For the 6D sensor 

also an external antenna is used to increase RF performance. 

An external battery pack with cable connection allows long 

time measurements with measurement frequencies down to 15 

minutes and sending intervals of 1h. The Battery pack can be 

placed where they can be reached easily. The sensor itself has 

dimensions of 170 mm x 100 mm x 45 mm for a 60 mm x 

30mm x 20mm measurement range allowing direct installation 

inside bridge bearings for example. This design features a 

physically separated sensor array and reference point. Unlike 

traditional systems, where precise alignment between 

components is often required, the 6D sensor allows the sensor 

array and reference magnet to be installed independently of 

each other. Traditional systems often require meticulous 

positioning to ensure accurate data collection, which can be 

labor-intensive and time-consuming. This flexibility is 

especially beneficial in challenging environments, such as 

bridges or large infrastructure, where precise alignment may be 

difficult to achieve. Additionally, a separated system is more 

adaptable to various structural configurations, improving 

scalability and reducing the risk of installation errors. 

Additionally, a 3D version of this sensor type is available. It 

has internal antennas and batteries further reducing the 

footprint by sacrificing the euler angle values. 

 Low-cost high-precision GNSS 

Both commercially available systems and in-house 

developments have demonstrated reliable measurement 

performance in various studies [11][12][14]. For comparison, 

3D polar measurements from tachymetric monitoring systems 

were used as a reference. In recent years, a range of GNSS 

multi-frequency OEM boards with corresponding antennas has 

become available [15]. Before deploying GNSS technology for 

automated monitoring, it is crucial to evaluate its performance, 

particularly its 3D accuracy and long-term stability. Optimal 

results are generally achieved through the analysis of 24-hour 

session averages [11][12][14], which can also be evaluated on 

an hourly basis by incrementally extending the evaluation 

window. However, this approach introduces latency, which 

reduces the system's responsiveness. 

An alternative method involves RTK-GNSS for direct 

deformation measurements, with some OEM boards supporting 

a measurement frequency of up to 100 Hz. Manufacturers have 

integrated carrier-phase ambiguity resolution algorithms into 

GNSS boards, and through efficient transmission of RTCM 

correction data via NTRIP, these receivers can deliver RTK 

positions in standardized NMEA format. Additionally, 

affordable antennas are now widely available, and their impact 

on measurement accuracy has been thoroughly investigated in 

several studies [8],[10],[15]. On-site data is transferred to a web 

service where the Wa2 module [15] computes, analyzes, and 

adjusts each baseline combination. However, this method is not 

suited for large-scale network extensions due to its inherent 

limitations. 

Further testing with the open-source software RTKLib [16] 

has shown comparable accuracy, with ambiguity fix rates 

ranging from 95% to 100%. Using this approach, the GNSS 

system was implemented and tested in various pilot projects. In 

one such project, GNSS measurements provided results 

comparable to those from tachymetric systems. GNSS is 

particularly effective in tracking absolute deformation trends 

over extended periods in outdoor environments, offering 

greater insights than a four-week total station measurement. 

This capability enhances safety on construction sites. Although 

GNSS systems can operate independently of other monitoring 

systems, their high-power consumption remains a limitation for 

long-term, battery-powered applications. Addressing this issue 

is a key focus of future developments. 

 Installation and mounting 

The 6D sensors are mounted directly on or inside the bridge 

bearings to precisely detect movements and rotations. This type 

of installation is particularly suitable for monitoring thermally 

induced displacements caused by temperature changes. The 

sensors can be configured to detect even the smallest changes 

in bearing position, which may indicate structural issues. 

The 6D sensors are designed to be installed even in hard-to-

reach areas, such as bridge bearings or expansion joints. The 

physical separation between the sensor array and the reference 

magnet allows flexible installation without requiring precise 

alignment of components. In many cases, the sensors can be 

mounted directly in polymer or roller bearings using magnets. 

However, depending on the complexity of the bearing 

structure, detailed planning in advance is necessary. For this 

purpose, creating a digital model of the bearing is 

recommended to precisely design the mounting structure and 

ensure optimal sensor placement. This approach minimizes 

installation errors and allows for perfect integration, especially 

in bearings with complex geometries. 

For monitoring large-scale displacements, particularly of 

bridge piers and foundations, GNSS systems are used. These 

systems detect movements in the sub-centimeter range and are 

especially effective in open, unobstructed environments. When 

installing GNSS systems, the cable length to the antenna is 

limited. To bridge longer distances, expensive signal amplifiers 

are often required. Therefore, it is important to define during 

the planning phase where the GNSS antenna and the processing 

unit should be positioned to minimize signal loss. 

To simplify the installation of GNSS antennas, we have 

developed a custom 3D-printed component that allows the 

antennas to be mounted directly onto standard satellite dish 

brackets. These mounts are not only stable and widely available 

but also easy to install, offering a cost-effective solution for 

most standard applications. 

For more complex requirements, it may be beneficial to 

develop custom mounts specifically tailored to local conditions 

to ensure the optimal performance of the GNSS systems. 

3 SENSOR INTEGRATION AND DATA FUSION 

 Combining 6D-Sensors and GNSS 

The combination of using high precision 6D sensors to measure 

bridge bearings, along with advanced GNSS technology, 

provides a comprehensive solution for monitoring and 

quantifying the behavior of bridges under various conditions. 

The 6D sensors, capable of capturing movements in all six 

degrees of freedom, three translational (X, Y, Z) and three 

rotational (pitch, yaw, roll)—offer precise insights into the 

thermal expansion and contraction of bridge structures. 

Thermal movements, which occur due to temperature 

fluctuations, can cause significant structural shifts, particularly 

in bridge bearings. With the 6D sensors, it becomes possible to 
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detect and quantify these minute thermal movements, 

providing engineers with real-time data to assess how the 

bridge reacts to environmental changes. 

In addition to thermal movements, the 6D sensors can also 

capture the influence of external loads, such as wind pressure 

or traffic. The dynamic load exerted by vehicles crossing the 

bridge, combined with the fluctuating forces of wind, can cause 

stress and movement within the structure. By continuously 

monitoring these factors, the sensors help assess how well the 

bridge is handling daily operational stresses. This data is crucial 

in predicting potential issues and mitigating risks, allowing for 

proactive maintenance and increased safety. 

When paired with a GNSS system, such as a high-precision 

multi-frequency GNSS module, the monitoring system 

becomes even more powerful. GNSS technology provides sub-

centimeter accuracy in measuring the movement of the bridge’s 

supporting pillars. While the 6D sensors offer detailed data on 

the local movements at the bearings, the GNSS system can 

monitor the larger-scale displacements of the bridge's 

foundations or pillars. This combined approach enables a 

thorough understanding of whether observed movements are 

due to thermal expansion of the bridge deck or are indicative of 

potential structural issues with the bridge’s pillars or 

foundations. 

For example, if the sensors detect movement at both the 

bearings and the pillars, the GNSS system can help differentiate 

between the natural thermal expansion of the bridge deck and 

actual shifts in the foundation. This distinction is crucial 

because movements caused by thermal expansion are usually 

temporary and reversible, whereas foundation movements 

could signal more serious issues, such as settlement or 

structural fatigue. 

Moreover, the integrated system can operate continuously, 

providing real-time data on the structural health of the bridge. 

Such monitoring is essential for infrastructure located in areas 

subject to environmental stresses like fluctuating temperatures, 

high winds, or heavy traffic. By combining these two advanced 

technologies, engineers gain a better understanding of the 

bridge’s behavior under various conditions, leading to more 

informed decision-making regarding maintenance schedules 

and potential reinforcements. In the long run, this can help 

extend the lifespan of critical infrastructure while ensuring the 

safety of its users. 

This integration of 6D sensor technology with GNSS 

monitoring is part of a broader trend toward smart 

infrastructure, where real-time data is leveraged to optimize 

performance and prevent catastrophic failures. The ability to 

continuously monitor both short-term factors, such as thermal 

expansion, and long-term movements of the bridge’s pillars 

offers a level of detail previously unavailable through 

traditional surveying methods alone. With further 

developments, especially in reducing power consumption for 

GNSS systems, the future of bridge monitoring promises even 

more efficient, reliable, and autonomous systems. 

 Communication and data transmission 

The presented sensors use state-of-the-art encryption to protect 

the data during transmission. When data is sent from the 

sensors to the webservice, it is encrypted to prevent any 

unauthorized access or tampering while it's in transit. Data 

transmission is provided as an integrated service, eliminating 

the need to manage SIM cards, mobile plans, or network 

connectivity. This streamlined approach allows for effortless 

deployment and continuous monitoring with minimal technical 

oversight. The used LTE-M [17] standard is part of the 4G 

standard leading to nearly global coverage without any 

additional checks, only 4G coverage needs to be present. LTE-

M normally uses lower frequencies with lower data rate leading 

to more penetration and coverage than 4G. Most countries offer 

detailed LTE-M coverage maps, allowing users to accurately 

check reception in advance and ensure reliable connectivity in 

the deployment area. 

Wi-Fi serves as an additional, efficient method for providing 

internet connectivity to the sensor, particularly in environments 

where LTE-M coverage may be unavailable, such as tunnels, 

mine shafts, or lower basement floors. This alternative 

communication method is advantageous in settings where the 

penetration of cellular signals is limited due to physical 

obstructions or underground conditions. By utilizing existing 

Wi-Fi networks, the sensor can maintain reliable data 

transmission in these challenging environments. 

High data transfer rates, provided by Wi-Fi connections, are 

particularly beneficial for transmitting large datasets or high-

frequency measurement updates in real time. In industrial or 

remote monitoring applications, utilizing Wi-Fi ensures 

continuous sensor operation without the reliance on extensive 

cellular infrastructure. This capability is especially valuable in 

areas where stable, high-speed communication is critical for 

maintaining data integrity and operational efficiency. 

The use of Wi-Fi [18] in such scenarios is further supported 

by modern advances in mesh networking and extended-range 

Wi-Fi technologies, which improve coverage and signal 

stability even in hard-to-reach areas. For example, industrial-

grade Wi-Fi routers and repeaters can be used to strengthen 

signals and extend network coverage to areas that would 

otherwise be unreachable by standard Wi-Fi systems. Wi-Fi's 

adaptability, combined with robust encryption protocols, 

ensures secure data transmission and minimizes the risk of loss 

or interference, making it a suitable solution for reliable 

infrastructure monitoring in challenging environments. 

 Webservice with dashboards 

SuessCo developed and provides a web service as an 

infrastructure solution providing the ability to collect, process, 

visualize, and manage data from connected devices, such as 

sensors. It is commonly used for integrating various sensors 

and IoT devices, enabling real-time data monitoring and 

control. Web services support data collection through different 

protocols like MQTT, CoAP, and HTTP, and can process this 

data using custom logic for actions and alerts. Target 

applications are remote monitoring and control of IoT devices 

in sectors like infrastructure monitoring, smart cities, and 

agriculture. 

While this web service provides robust data processing 

capabilities, it is also possible to configure it for collecting 

sensor data without relying on any specific platform’s native 

dashboard or visualization tools. In this case, the sensors would 

send their data via a web service instead of using a predefined 

interface, allowing them to manage the data independently. 

This approach offers more flexibility in terms of integrating 

with alternative visualization platforms or custom-built 

solutions. Users can access, analyze, and display data from 
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their sensors in a more customizable manner, enabling a variety 

of applications such as advanced data analysis or machine 

learning. 

4 CASE STUDIES 

The following chapter presents and analyzes various case 

studies involving bridges, buildings, and other infrastructure. 

These projects provide valuable insights into the practical 

applications of monitoring technologies and the findings 

related to structural integrity. At the request of the involved 

clients, the projects have been anonymized to ensure 

confidentiality. 

The values in the following chapter are zeroed by subtracting 

the initial measurement, allowing for the detection of relative 

displacements and ensuring comparability. 

 Bridge bearings influenced by unintentional 

manipulation, surface treatment and flood disaster 

The first pilot project, which was successfully transitioned into 

an ongoing monitoring project and has now been running for 

over four years, involves the monitoring of a steel-element road 

bridge. Initially, it was unclear whether the end elements at the 

abutment were impacting, which is why the sensors were first 

installed there. However, once it was proven that this was not 

the case, the sensors were subsequently relocated to the 

bearings of the central pier in the river over the course of the 

project. 

Since July 1, 2022, the sensors have been operating at their new 

position and have been continuously monitoring the bridge — 

including during the flood event in 2024, which provided 

valuable data on structural integrity. 

The following section includes both an analysis of the effects 

of unintended sensor displacement during bridge renovation 

work (see Figure 4 and Figure 5) and a detailed evaluation of 

the measurement data collected during the 2024 flood. 

The diagram in Figure 2 shows, in the upper part, the sensor's 

positional displacements along the x-axis (blue), y-axis (green), 

and z-axis (red). The lower part of the diagram displays the 

internal temperature of the sensor. The measurements, recorded 

at 15-minute intervals, are presented here as daily average 

values. 

As expected, significant fluctuations can be observed along 

the x-axis due to the thermal expansion of the bridge element. 

In October 2022, a sharp and abrupt change is visible, which 

can be attributed to a mechanical shift in the sensor setup (see 

Figure 1, right). During this period, the sensor was also 

sandblasted, but this had no relevant impact on the 

measurement results. 

A disruption in sensor data in March 2023 was caused by 

wildlife damage—specifically, pigeons pecking at the cable. In 

December 2023, the sensor failed due to a hardware defect, 

which has already been resolved in the new hardware version 

of the sensor. Aside from these events, the data shows a very 

good correlation with the expected thermal expansion and only 

minor movements along the y- and z-axes. 

The diagram in Figure 3 consists of three subplots showing 

the positional displacements of a sensor along the x-, y-, and z-

axes (∆X₀, ∆Y₀, ∆Z₀) as a function of temperature. The 

measured data points are displayed as blue violin plots with 

error bars, illustrating the distribution of values at different 

temperatures. The number of measurements per temperature 

interval is indicated along the bottom of the x-axis. A different 

sensor is used in Figure 3 than in Figure 1 and Figure 2. The 

Sensor in Figure 3 is mounted on a polymer bearing and 

summarizes historical data from the year 2021. 

Top subplot (∆X₀ position): Shows a strong linear 

correlation between temperature and displacement along the x-

axis. The linear fit (orange line) has a slope of 0.75 mm/°C, 

indicating thermal expansion of the monitored bridge element, 

which also aligns well with the expected values. The data 

spread is relatively small, indicating consistent thermal 

expansion. 

  

Figure 1. Images of the Monitored Roller Bearing: Left: 

Condition at installation with corresponding axes; Right: 

Sensor after maintenance work, displaced and sandblasted 

Figure 2. Measurement data for monitoring a roller bearing: 

effects of unintended displacements during maintenance work 

and wildlife damage 
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Middle subplot (∆Y₀ position): No significant correlation is 

observed between temperature and displacement along the y-

axis. The data shows high scatter, indicating non-systematic 

influences, possibly due to mechanical impacts or disturbances. 

The fit is nearly flat, suggesting that no temperature-induced 

movement is expected along this axis. 

 

Bottom subplot (∆Z₀ position): A slight correlation between 

temperature and displacement along the z-axis is evident; 

however, the effect is much weaker than along the x-axis. The 

linear fit shows a small but consistent displacement, indicating 

minimal thermal movement in the vertical direction. The data 

scatter is moderate, and the amplitude is significantly smaller 

compared to the other axes, suggesting lesser influences in this 

direction. 

The diagram in Figure 4 illustrates how the bridge responds 

to seasonal temperature fluctuations and simultaneously shows 

the impact of exceptional events such as the flood disaster in 

September 2024. Monitoring data is essential for assessing the 

structural integrity of the bridge during such extreme situations. 

The diagram presents the positional displacements of the sensor 

along the x-axis (blue), y-axis (green), and z-axis (red) 

throughout the year. The x-axis shows significant variation, 

with displacements increasing up to 30 mm, indicating thermal 

expansion of the monitored bridge element. In contrast, the y- 

and z-axes show only minimal movement, suggesting that the 

bridge remains largely stable in those directions. 

The lower subplot shows the temperature trend over the 

course of the year. A clear seasonal pattern is visible, with 

temperatures falling below 0°C in winter and rising above 20°C 

in summer. 

From September 13 to 20, 2024, the bridge was affected by a 

flood disaster, yet no significant anomaly is visible in the 

measurement data. The diagram clearly shows that while the 

displacements along the x-axis temporarily dropped during the 

flood event, the behavior was consistent with previous 

temperature fluctuations. Even after the flood, no significant 

changes in the measurement values were observed. This 

indicates that the bridge did not suffer any lasting damage from 

the flood and that its structural integrity remained intact. 

 

 

Figure 5. Same Bearing as in Figure 4, but with Detailed Data 

at 1-Hour Intervals for the Month of September. 

This example highlights the importance of continuous 

monitoring at bridge bearings: On one hand, continuously 

collected data allows for immediate response to unexpected 

deviations; on the other hand, it enables the assessment of 

changes before and after exceptional events such as flooding. 

This makes it possible to detect potential damage early—during 

and after such events—and to take targeted action, significantly 

improving the long-term safety of the infrastructure. 

In Figure 5, the data for September is shown at the actual 

measurement interval of one hour. Even at this higher temporal 

resolution, no unexpected movements are visible. Even during 

the flood disaster from September 13 to 20, 2024, the 

measurements display stable behavior consistent with the 

typical pattern of thermal expansion. Furthermore, the peak 

temperature recorded here is significantly higher than the air 

temperature, as the sensor housing is exposed to direct sunlight. 

  

Figure 4. Daily Average Values Independent of the Sensor’s 

Measurement Interval in Figure 1. The data shown is from the 

year 2024 and includes a flood event in September. 

Figure 3. Representation of the Thermal Dependence of 

Positional Displacement Based on Historical Data. 
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 Bridge bearing with transverse displacement 

In another bridge project, measurements were conducted at 

multiple points along a curved bridge located on a creeping 

slope. The results (Figure 6 and Figure 7) showed that 

individual bearings exhibited consistent but slow displacement 

along the y-axis—that is, transverse to the roller bearing’s 

intended direction of movement. 

 

 

Figure 6. A 6D sensor installed on a roller bearing of a 

railroad bridge 

This motion leads to wear on the bearing's retaining plates. It 

has not yet been conclusively determined whether the bearings 

reach a point at which they can no longer compensate for the 

movements, which could result in unanticipated stresses within 

the bridge structure. 

 

 

Figure 7. Measurement Results of the Roller Bearing on a 

Curved Bridge Showing Increased Y-Axis Movement Leading 

to Wear of the Bearing's Retaining Plates. 

Notably, these displacements could not be detected using 

conventional measurement systems such as total stations or rail 

surveying; only the wear itself had previously been observed. 

The precise and multi-axis sensors enabled more detailed 

detection that was not possible with other methods and thus 

provided valuable insights into the maintenance strategy. 

 

 Measurement of crack formation on a natural stone 

railway viaduct 

In this project, several sensors were installed on different 

cracks of a natural stone railway viaduct. The cracks either ran 

directly through the stones or along the joints between them. 

The sensors were strategically placed to monitor both types of 

cracks and to analyze potential differences in deformation 

behavior. 

 

 

Figure 8. Mounting of the Sensor Above a Crack in the 

Natural Stone of a Railway Viaduct. 

The goal was to monitor the behavior of the cracks: Are they 

stable, or do they show dependencies on temperature and 

humidity fluctuations? presents the results from one of these 

sensors, whose position is shown in Figure 8. In this project, 

the sensors and reference points could be mounted directly 

using stone screws or bonded threaded rods, without the need 

for additional mounting materials. This method enabled a 

secure and stable attachment directly to the natural stone, 

allowing for efficient and durable installation. 

 

 

Figure 9. A significant and irreversible change is visible along 

the y-axis (green). However, the amplitude of this 

displacement is only about 0.4 mm, indicating a very small 

but still measurable change. 

In Figure 9, only very small changes can be observed overall, 

as the total amplitude range on the y-axis is just about 1 mm. 

Nevertheless, a significant and irreversible displacement is 

evident starting in April 2023. Compared to the measurement 
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data from the bridge bearings, the values recorded here differ 

considerably, confirming the thermal stability of the sensor. 

This crack exhibits the most active movement among all 

measured points; however, it was determined that most cracks 

are generally stable. Therefore, it was decided to reduce the 

measurement interval to one hour in order to maximize battery 

life. If necessary, the interval can be remotely adjusted again. 

 Crack measurement in a building with supplementary 

GNSS measuring points 

As part of the subway construction works in Vienna, the 

groundwater level had to be lowered, which led to significant 

cracking in surrounding buildings even before the actual 

tunneling began. For this project, several 3D and 6D sensors () 

as well as GNSS measurement points were installed on the 

exterior walls of the affected buildings. The GNSS system  

[11],[12] used in this project (Figure 10) was developed in 

collaboration with Werner Stempfhuber. The 3D and 6D 

sensors were easily mounted using conventional screws, while 

the installation of the GNSS brackets on the building facade 

had to be carried out by specialized personnel. 

 

By combining these two measurement systems, it was 

possible to precisely monitor the relationship between the 

cracks and the surrounding walls, while the absolute GNSS 

system additionally allowed for the detection of potential 

subsidence of the entire building or individual sections. This 

approach increases the significance of the measurements and 

provides the private property owner with reliable data to 

demonstrate to the construction client any potential effects of 

the construction work on their property. At the same time, 

monitoring enables early warning in the event of sudden 

significant movements, allowing the developer to intervene in 

time to prevent further structural damage. 

Positive feedback also came from the residents of the 

building, who now feel somewhat safer due to the continuous 

monitoring of the visible cracks in the structure. 

In Figure 10, the sensor is located inside the building, as 

indicated by the significantly more stable temperature profile 

compared to previous case studies. Notably, a jump along the 

z-axis (red) is visible in September (high amount of rain). 

Although the initial change in September measured only 0.6 

mm over a period of about two weeks, it marked the beginning 

of a continuous increase in movement. By February 2025, the 

sensor recorded a total displacement of up to 2.3 mm. This 

deviates significantly from the crack's previous behavior and 

indicates a structural issue. 

 

Figure 11. The change in z-axis behavior (red), of the Sensor 

shown in Figure 10, observed in September 2024, was 

triggered by heavy rainfall and led to a structural damage 

event in February 2025. 

A different 3D sensor shows even greater displacements (see 

Figure 12), starting in September 2024 and peaking at up to 10 

mm along the x-axis in February 2025. This increased 

movement is likely due to the sensor's alternative mounting 

configuration.  

 

Figure 12. Even higher x-axis peak in February of 2025. 

Similar behavior has also been observed in other 3D sensors 

throughout the building, suggesting that the structural 

movement is not limited to a single location but affects the 

entire structure. This indicates a widespread response of the 

building to external influences, likely requiring a 

comprehensive structural assessment.  

However, these observations were not limited to the 3D 

sensors inside the building—four GNSS sensors installed at 

each corner of the structure also exhibited similar behavior. The 

GNSS points are numbered clockwise, starting from the 

southeast corner of the building. 

  

Figure 10. Left: Mounted GNSS antenna on the exterior 

wall of the residential building. Right: 6D sensor mounted 

in a building corner near the GNSS antenna. 
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Figure 13. GNSS Point 1 in the south east corner of the 

building. 

 

 

Figure 14. GNSS Point 2 in the south west corner of the 

building. 

 

 

Figure 15. GNSS Point 3 in the north west corner of the 

building. 

 

 

Figure 16. GNSS Point 4 in the north east corner of the 

building. 

For the initial monitoring period (July 2024 to early February 

2025), all sensors exhibited only minor fluctuations within a ±5 

mm range across all axes. This behavior is consistent with 

expected seasonal thermal expansion and contraction, as 

confirmed by the relatively stable and slowly varying 

temperature profile. Unfortunately due to a power fault there is 

missing data from beginning to mid-January.  

However, a significant and abrupt shift in the displacement 

data was observed across all GNSS sensors starting in early 

February 2025. This event was not associated with any 

comparable temperature anomaly and is thus interpreted as a 

non-thermal structural movement. The magnitude and direction 

of the displacements varied by sensor location: 

GNSS 1 (Southeast Corner, Figure 13): Displacements of 

approximately −30 mm in the north direction and −20 mm in 

height were recorded, accompanied by an increase of +25 mm 

in the east direction. 

GNSS 2 (Northeast Corner, Figure 14): This sensor 

registered the largest displacements, with −40 mm in the north, 

and the vertical direction, and +20 mm in the east. The scale of 

movement suggests significant subsidence and lateral 

displacement. 

GNSS 3 (Northwest Corner, Figure 15): Moderate 

movement was recorded, particularly to the north with −30 mm 

and east +20 mm directions. But height stays very stable 

compared to all other sensors. 

GNSS 4 (Southwest Corner, Figure 16): Displacements at 

this location were also substantial, with movements of 

approximately −20 mm in the vertical axis and +20 mm in the 

east direction.  

The synchronized onset and consistent directional trends of 

the displacements across all sensors strongly suggest a global 

response of the building structure, likely triggered by high rain 

period in September of 2024 and leading to a massive structural 

movement in February 2025. Given the known construction 

activities related to subway excavation in the vicinity, it is 

plausible that the observed displacements are a direct 

consequence of these works. 

The GNSS and 3D position data thus provides reliable and 

high-resolution evidence of structural movement, which is 

essential for assessing building integrity and potential damage 

progression. This type of sensor-based monitoring offers a 

valuable basis for initiating countermeasures, engaging with 
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responsible parties, and supporting claims for damage 

compensation. 

5 CONCLUSIONS 

The multi-year investigations clearly demonstrate the 

advantages of combining 6D sensors with GNSS measurement 

systems for monitoring the structural integrity of infrastructure 

and buildings. This integrated approach offers a significantly 

enhanced perspective on structural motion detection: while 6D 

sensors enable detailed analysis of local displacements across 

all degrees of freedom, GNSS systems provide highly accurate 

measurements of absolute positional changes. The synergy 

between these two technologies not only increases the 

informative value of the measurements but also improves the 

monitoring of structures under variable environmental 

conditions, such as temperature fluctuations or groundwater 

drawdowns—factors that present particular challenges in urban 

settings. 

The deployment of these systems in the presented projects has 

resulted in a robust data foundation, allowing stakeholders to 

produce well-founded evidence of potential structural impacts 

caused by construction activities or environmental influences. 

Continuous data acquisition supports the early detection of 

damage risks and contributes significantly to the safety and 

longevity of the monitored structures. Particularly noteworthy 

is the real-time monitoring capability enabled by the integrated 

system, which allows for immediate response to unexpected 

structural movements and thereby minimizes the risk of 

significant damage. 

Looking ahead, the focus will be on further optimizing the 

energy efficiency of the deployed sensors and expanding the 

integration of AI-assisted anomaly detection. These 

developments will further enhance the precision and 

operational efficiency of monitoring systems while reducing 

maintenance costs. The insights and experiences gained from 

the current projects provide a solid basis for future 

advancements aimed at improving the reliability and 

sustainability of monitoring solutions in demanding 

infrastructure environments. 
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ABSTRACT: This work presents an evaluation of promising 

sub-structuring and machine learning SHM approaches suitable 

for high-rise buildings, based on real data from an 18-story 

steel-moment resisting framing building, tested at an E-

Defense facility in Japan. This building is instrumented with a 

relatively dense set of sensor arrays and is subjected to different 

excitation levels until full collapse. The main contribution of 

this study is to demonstrate the practical feasibility of the 

proposed sub-structuring approach in conjunction with 

machine learning when relying on different levels of response 

measurements. The study assesses the accuracy and reliability 

of the estimates of the dominant modal features of the structure 

and can subsequently provide a probabilistic measure of 

confidence in the extent and location of changes/damage if an 

anomaly is detected, as well as the propagation of damage 

throughout the structure's life span. Due to the minimal 

computational resources needed to implement the sub-

structuring approach, it is shown to be quite efficient for near-

real-time applications where important structures need to be 

continuously monitored for sustainability as well as resiliency 

requirements. 

KEY WORDS: Parametric identification; Nonparametric 

identification; Damage detection; Structural health monitoring; 

Condition assessment; High-rise building. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) and condition 

assessment of high-rise buildings through vibration signature 

analysis have been extensively studied over time. SHM 

approaches for damage detection and condition assessment are 

generally classified into two main categories: local and global 

methods. Local methods focus on analyzing specific, limited 

areas of a structure using localized measurements. In contrast, 

global methods provide a comprehensive understanding of the 

system's condition by utilizing data from a distributed network 

of sensors. The selection of an appropriate method depends on 

several factors, including the problem's scope, the sensor 

network's configuration, the structural topology, and the level 

of detail required for the assessment. 

 

Recent advancements in dense sensor networks, capable of 

collecting extensive data, have enabled the application of 

advanced data processing algorithms. These algorithms can 

effectively identify, localize, classify, and quantify changes or 

damages in civil infrastructure, including high-rise buildings, 

which are the primary focus of this study. 

Prior to utilizing the identified vibrational signature of a 

structure for health monitoring, it is essential to comprehend 

the dynamic behavior modeling of high-rise buildings. This 

modeling is inherently complex due to various factors, 

including uncertainties in geometrical characteristics, material 

properties, nonlinear material behavior, foundation modeling, 

and soil effects. Therefore, integrating experimental and 

numerical data analysis enhances methods for identifying and 

localizing damage or changes within structural systems. 

 

Extensive research in damage and change detection, as well 

as system identification for linear structural systems, has 

yielded numerous sophisticated global approaches based on 

vibration data analysis in both the time and frequency domains 

[13-15]. However, there is a notable lack of studies that 

leverage the topological features of the target structure to 

improve the detectability of minor changes. By employing 

appropriate substructuring techniques, these methods 

demonstrate superior sensitivity to small variations in the 

structural characteristics of the system under observation 

compared to global system identification methods. 

 

In this study, one-third full-scale 18-story high-rise building 

was developed and instrumented with state-of-the-art 

instrumentation, installed on each floor and operated by E-

Defense in Japan. This detailed testbed facilitated the creation 

of various data-driven, input-output, reduced-order models 

based on nonparametric identification approaches presented in 

[1-6], which have been successfully applied to both analytical 

and experimental data [7-8]. The approach discussed here does 

not require prior knowledge of the system characteristics (i.e., 

linear versus nonlinear) and is applicable to linear, nonlinear 

nonhysteretic, and hysteretic systems, without restrictions on 

the type of probing signal used for identification. However, it 

is limited to structures with chain-like topology, as will be 

subsequently explained in the study. 

 

Several damage configurations in the building's lateral load-

resisting system were investigated using data from base 

excitation dynamic tests performed on the building. The 

processes of damage detection, localization, and quantification 

were conducted by examining the variability in the primary 

features of the developed reduced-order models. It is important 

to note that in this study, the identification approaches were 

applied deterministically. The effects of variability in 

environmental or operational conditions, as well as 

uncertainties in modeling, measurement, and data analysis 

Structural damage detection, localization, quantification for high-rise buildings 

under earthquake excitations based on machine learning and sub-structuring 

approach 
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processes, were not considered in the identified change-

sensitive features (i.e., stiffness-like parameters and modal 

parameters) of the structures.  

2 FORMULATION CHAIN-ID 

Consider a multi-degree-of-freedom (MDOF) system with a 

chain-like topology, as illustrated in Figure 1. This system 

comprises n lumped masses, each with a magnitude mi, 

subjected to base excitation and/or directly applied forces Fi. 

The lumped masses are interconnected by linear elements, 

whose restoring forces are primarily dependent on the relative 

displacement and velocity between the masses. The equations 

of motion for this system can be expressed as described by [9]. 

 
where G(i)(zi,𝑧𝑖

.̇ ) is the mass-normalized restoring force function 

of the element connecting mi and mi-1; xi is the absolute 

acceleration of the mass mi; zi the relative displacement 

between two consecutive masses; and 𝑧𝑖̇ the relative velocity 

between two consecutive masses. Equation (1) can be rewritten 

in more compact form as follows: 

 

 

where 𝑚𝑖𝑗 =  
𝑚𝑗

𝑚𝑖
 represents the ratio between the lumped 

masses mj and mi. This approach assumes that the acceleration 

time responses 𝑥𝑖̈ are available from observations, along with 

the applied forces Fi and/or the base excitation, as well as the 

values of the lumped masses mi. 

In addition, each of the estimated restoring force functions 

can be converted to a power series of the form 

 

 

(3) 

 

3 BUILDING DESCRIPTION AND 

CONFIGURATION 

To evaluate the fundamental characteristics and validate the 

proposed methodology for earthquake responses and damage 

assessment in high-rise buildings, the data obtained from the 

shaking table test conducted at E-Defense in Japan are 

analyzed. E-Defense, operated by the National Research 

Institute for Earth Science and Disaster Resilience (NIED), is a 

3D full-scale earthquake testing facility featuring the world's 

largest shaking table. The testbed is an 18-story moment-

resisting frame structure, measuring 25.3 meters in height and 

weighing approximately 4179 kN, scaled down to one-third of 

a full-scale building [12]. Figure 2 and Figure 3 provide an 

overview and outline of the test specimen, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) (b) 

 

Figure 1. Modeling of the 18-story building used in this 

study: (a) reduced order representation (mathematical model), 

and (b) experimental setup. 

 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-043 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 279 

 

Figure 2. Overview of testbed. 

 
(a) 

 
(b) 

Figure 3. Outline of test specimen (a) floor plan and (b) 

structural framing elevation. 

The floor plan measures 2000 mm by 3 spans in the 

longitudinal X-direction and 5000 mm by 1 span in the 

transverse Y-direction. The structure consists of moment-

resisting frames with box-shaped steel columns measuring 200 

mm by 200 mm, and H-shaped steel beams measuring 270 mm 

by 85-95 mm in the X-direction and 250 mm by 125 mm in the 

Y-direction. Servo-type three-axis accelerometers are installed 

at the corners of the X1 and Y1 bay on each floor of the test 

building. Measurement records from all floors and roof, 

totaling 18 accelerometers, are utilized for response estimation 

and damage evaluation in this study. The sensor signals are 

sampled at 200 Hz. The test specimen was subjected to a 

uniaxial excitation in the X-direction, with a first natural period 

of approximately 1.15 seconds in the X-direction. 

 

The earthquake input motion is an artificially created Tokai, 

Nankai, and Tonankai consolidated-type earthquake occurring 

at the Nankai Trough, assumed to be recorded at Tsushima, 

Aichi Prefecture, Japan (Takahashi et al., 2013). Its peak 

ground acceleration (PGA) is about 300 cm/s², with a velocity 

response spectrum value (pSv) of approximately 110 cm/s for 

periods between 0.8 and 10 seconds, and a duration of about 

460 seconds. In the shaking table test, the input motion was 

scaled down to one-third of the original form to match the scale 

of the test specimen. The maximum excitation levels are set to 

various levels and applied to the test specimen multiple times.  

 

Figure 4 shows the acceleration time history of the input 

motion to the testbed. Figure 5 illustrates the root mean square 

(RMS) for absolute acceleration, velocity, and displacement 

time-history for all floors in x- direction for the testbed.  Figure 

6 shows computed for relative displacement, relative velocity, 

and restoring force time-history for all floors in x-direction 

based on Equations 1 and 2.   

 

 

Figure 4. Acceleration time history of input motion for 

pSv=110cm/s.  
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Figure 5. Computed RMS for absolute acceleration, velocity, 

and displacement time-history for all floors in x- direction. 

4 DAMAGE IDENTIFICATION  

 Sample Data Processing 

The acceleration responses were acquired from each floor of 

the testbed at a sampling frequency of 200 Hz. Corresponding 

velocity and displacement time histories were obtained through 

digital signal processing and numerical integration. 

Additionally, it was assumed that the building slabs were rigid; 

therefore, the available acceleration measurements 

corresponded to the acceleration response of the structure at 

each slab's geometric center. It is important to note that the 

experimental data contains all sources of measured uncertainty 

as the data was recorded from a real physical structure. To 

create a set of data, the time-history record for each structural 

state/configuration was partitioned into 40 ensembles with 20% 

overlap (i.e., in a sliding window of 30-second duration). Each 

ensemble includes more than five fundamental periods of the 

system.  

 Decomposition Approach  

The building structure was utilized to demonstrate the results 

of implementing the proposed approach detailed in the second 

section of the paper, aimed at constructing a reduced-order 

model for the building structure. The decomposition approach 

for restoring force identification was executed using a third-

order polynomial in both normalized variables zi and 𝑧𝑖
.̇   for all 

floors in the building structure. The selection of a third-order 

polynomial was intentional to illustrate that the nonparametric 

identification approach discussed is capable of autonomously 

detecting whether the system is linear or nonlinear. 

 

Once the relative displacements and velocities were 

computed, the ChainID identification approach was applied to 

develop the associated nonparametric representation for each 

floor in the 18-story building structure by calculating the 

corresponding restoring force coefficients for each floor in the 

reference structural configuration. Figure 7 illustrates sample 

time-history plots for the relative displacement zi, relative 

velocity 𝑧𝑖
.̇   and measured mass normalized restoring force G(14)  

between the 14th and 13th floors, in the x-directions. 

 

 

Figure 6. Computed RMS for relative displacement, relative 

velocity, and restoring force time-history for all floors in x-

direction.  

 

The analysis of the identified restoring force 

coefficients (i.e., power series coefficients 𝑎𝑞𝑟
(𝑖)

 for all building 

floors indicated that the linear term associated with relative 

displacements in the nonparametric representation (i.e., 𝑎10
(𝑖)

) 

had the most significant contribution to the restoring force G(i), 

while the nonlinear terms were negligible. Figure 8 summarizes 

the identified mean of mass-normalized stiffness-like 

coefficient (𝑎10
(𝑖)

 ) for all floors in x-direction.  

 

For brevity, only the identification results computed for the 

14th floor will be presented and discussed in this section. The 

power series coefficients 𝑎𝑞𝑟
(14)

 of the nonparametric 

representation for the 14th floor are summarized in Table 1. It 

is evident that the mass-normalized stiffness-like 

coefficient 𝑎10
(14)

   was the dominant term in the nonparametric 

representation.  

 

It can be seen from Table 1 that only the linear terms in the 

identified model are found to be dominant. However, for the 1st 

floor, nonlinear terms had more contribution due to the 

presence of plastic hinges at the damaged location, as will be 

discussed in the upcoming section. It is important to mention 

that the same control parameters were used to perform the 

analysis without making any assumptions regarding the 

presence or absence of nonlinear response features. Figure 9 

illustrates the time-history of the measured (experimental data) 

and reconstructed (after the application of ChainID approach) 

mass-normalized restoring forces for the 14th floor in the 

reference configuration in the x-direction. The two curves are 

essentially identical, indicating that the reduced-order model 

was able to replicate the dominant behavior of the 14th floor.  
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Figure 7. Sample relative displacement zi and relative velocity 

𝑧𝑖
.̇  computed between the 14th and 13th floors. The third row 

presents the measured restoring force time-history for 

element G(14). 

  

 

Figure 8. Identified mean of mass-normalized stiffness-like 

coefficient (𝑎10
(𝑖)

 ) for all floors in x-direction.  

 

Table 1. Identified mass-normalized restoring force 

coefficients 𝑎𝑞𝑟
(14)

 for the 14th floor.  

q\r 
X-direction 

0 1 2 3 

0 0.00 2.10 -0.13 0.00 

1 2276 0.90 0.20 0.00 

2 12.30 3.20 0.00 0.00 

3 78.00 0.00 0.00 0.00 

 

 

Figure 9. Comparison of measured and estimated restoring 

forces G(i) for 14th floor in x-direction. Solid lines correspond 

to measured restoring force time-history; and dotted lines 

correspond to reconstructed restoring force time-history.  

 Damage Detection 

To visualize the primary dynamic features of the system, the 

experimental phase plots (blue line) and the reduced-order 

representation using the ChainID approach (dotted red line) as 

well as the restoring force surface, are compared for the 14th 

and 1st floors, as shown in Figure 10. 

 

It can be seen from Figure 10 (a), the reconstructed reduced-

order model successfully captured the dominant linear dynamic 

characteristics of the 14th floor. Similarly, the reconstructed 

restoring force surface is planar, despite the use of a third-order 

expansion in both state variables (i.e., relative displacement and 

relative velocity) to characterize the dynamics of the 14th  floor. 

The actual restoring force measurements are plotted as a point 

cloud, as shown in the second row of Figure 10 (a). 

 

It is important to note that the data set under discussion was 

obtained from the testbed, where significant damage was 

observed on the 1st floor. This damage was characterized by 

the formation of plastic hinges at several columns, indicating a 

localized failure mechanism. The presence of plastic hinges 

suggests that the columns experienced substantial stress and 

deformation, leading to a reduction in their load-bearing 

capacity. This observation is crucial for understanding the 

structural behavior and integrity of the building under dynamic 

loading conditions. 

 

The presence of plastic hinges and damage in the columns of 

the 1st floor led to the anticipated nonlinear behavior of the 

floor. This nonlinear response is indicative of the significant 

stress and deformation experienced by the columns, restoring 

forces G(i) versus relative displacements zi for the 1st floor and 

corresponding estimated restoring force surface for the 1st floor 

in the x-direction. In the first row, solid lines correspond to 

phase plot for the measured restoring force, and dotted lines 

correspond to reconstructed restoring force. In second row, 

actual restoring force measurements were plotted as a point 

cloud. which compromised their structural integrity and load-

bearing capacity. The formation of plastic hinges is a critical 

factor in understanding the overall dynamic performance and 

failure mechanisms of the building under applied loads. 
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Figure 10(b) illustrates that the presence of nonlinearity can 

be visually inspected from the reconstructed restoring force for 

the 1st floor (G(1)), compared to the restoring force plot for the 

14th (G(14)) floor under the same excitation. The effects of the 

nonlinear element in the response of the 1st floor are evident in 

both phase plots of the restoring force when compared to the 

reference condition, as shown in Figure 10 (b). In the phase plot 

of restoring force and relative displacement, the change in the 

restoring force slope indicates a pinching effect in the 

introduced nonlinearity. This pinching effect is observed on 

both sides of the restoring force, as the introduced damage is 

symmetric.  

 

Additionally, a nonlinear effect in the restoring force surface 

can be seen in the plot of restoring force versus relative 

displacement and relative velocity, which is a typical signature 

of damage features. It is important to note that the 

nonparametric reduced-order representation using the ChainID 

approach successfully captured the dominant features of the 

dynamics at the correct location within the modules where the 

damage elements occurred. This demonstrates the effectiveness 

of the ChainID approach in accurately identifying and 

characterizing the nonlinear dynamic behavior resulting from 

structural damage. 

5 MODAL IDENTIFICATION USING GLOBAL 

IDENTIFICATION  

In addition to the local identification of the dynamic 

properties of each floor in the building, the modal identification 

(i.e., modal parameters) of the building was accomplished 

using the identified restoring force coefficients, as detailed in 

[10]. The estimated modal parameters were compared to those 

directly identified by implementing the natural excitation 

technique (NExT) in combination with the eigensystem 

realization algorithm (ERA) [11] a global identification 

technique. 

 

The estimated values for the modal parameters (i.e., natural 

frequencies and damping ratios) for the first four mode shapes 

in x- directions are summarized in Table 2. It is noteworthy that 

the natural frequencies estimated from the reduced-order 

models developed in this study closely align with those 

computed using the NExT/ERA approach. As shown in Table 

2, the estimated damping ratios computed using the two 

different approaches are similar for the first mode shape; 

however, damping was not identified for the remaining modes. 

This discrepancy is attributed to the varying contributions of 

the different modal constituents in characterizing the restoring 

forces. 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

Figure 10. Phase plot of (a) restoring forces G(i) versus relative 

displacements zi for 14th floor and corresponding estimated 

restoring force surface for 14th floor in x-direction; and (b) 

restoring forces G(i) versus relative displacements zi for the 1st 

floor and corresponding estimated restoring force surface for 

the 1st floor in x-direction. In first row, solid lines correspond 

to phase plot for measured restoring force, and dotted lines 

correspond to reconstructed restoring force. In second row, 

actual restoring force measurements were plotted as a point 

cloud.  
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Table 2. Summary of natural frequencies and damping ratios 

for the first four lateral modes in the x-directions of the 18-story 

building structure, identified from the reduced-order model 

developed using ChainID and NExT/ERA approaches.  

Mode 
Chain ID NExT/ERA 

ω [Hz] ζ [%] ω [Hz] ζ [%] 

1st mode 0.38 1.78 0.48 1.75 

2nd mode 0.81 - 0.82 0.40 

3rd mode 1.19 - 1.16 0.20 

4th mode  1.65 - 1.79 1.00 

 

6 SUMMARY AND CONCLUSIONS 

In this study, a one-third full-scale model of an 18-story high-

rise building, developed under the E-Defense project, was 

constructed and instrumented to investigate the damage on 

individual floors. Sample results from these damage scenario 

models were used to evaluate the effectiveness and reliability 

of employing reduced-order models to detect, locate, and 

quantify changes or damages in a physical building structure. 

 

Input-output data from the 18-story building under base 

excitation were used to develop reduced-order models for 

different floors. Two approaches were implemented: the 

nonparametric chain-like system identification approach 

(ChainID), which is the focus of this study, and a global 

identification approach (NExT/ERA). The results 

demonstrated that significant changes identified in the 

reconstructed restoring forces of the reduced-order models built 

using the ChainID approach could be correlated to the presence 

and location of the actual physical changes or damages, even in 

the presence of modeling, measurement, and data processing 

errors. 

 

The initial findings of this study demonstrate that the 

structural health monitoring methodology presented is capable 

of accurately detecting, locating, and quantifying structural 

changes or damage in monitored systems, provided the 

necessary data set is available. 

The presented work is part of an ongoing effort. Future 

developments will focus on evaluating the algorithm's 

sensitivity and effectiveness by analyzing multiple earthquake 

events with varying magnitudes. This will help assess the 

approach's capability in detecting, locating, and quantifying 

different levels of structural damage. Additionally, further 

studies aim to enhance the model's ability to predict potential 

structural failures under diverse seismic conditions. 
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Abstract: Specially, when it comes to such risky construction projects as the Changshui Airport Railway Tunnel, the ground 

settlements surrounding the structure will be observed and evaluated. This case study is a combination of advanced machine learning 

algorithms, which are augmented with MATLAB to reinterpret, visualize and analyze settlement trends based on real – world tunnel 

monitoring data. The research starts with some of the time – series data that had been registered in the tunnel (settlement, factors 

that impact settlement, temperature, etc.). K – means clustering and hierarchical clustering are used to classify the settlement patterns 

and the clustering result indicates the difference in settlement monitoring points. Finally, we have used the feature importance 

analysis to explore the most significant factors that affect settlement decisions and to know more about the settlement processes in 

tunnels. The discussion of the Random Forests, Gradient Boosting and Artificial Neural Networks regression models is provided to 

predict settlement patterns to enable predictive risk. Heatmaps, time – series graphs and scatter plots are some of the comprehensive 

visualizations constructed to convey the discovery and help in decision making. The indicators to assess the model performance are 

R2, RMSE, MAE and the findings show how to forecast settlements in the most optimal manner. Besides presenting the utility of 

machine learning tunnel surveillance, the case study also provides data driven decision making framework in underground 

engineering projects. 

Keywords: Tunnel Monitoring, Ground Settlements, Machine Learning, Data Visualization, Changshui Airport Tunnel, 

Underground Infrastructure 

1. Introduction 

Tunnel monitoring is a highly significant element of safety 

and life of underground infrastructure, especially in high – 

stakes projects, like airport tunnels(Bao et al., 2018). The 

geotechnical and environmental forces that control the 

settlement behavior of these structures are complex and may 

undermine the structural integrity of these 

structures(Muhammed et al., 2019). Monitoring is thus 

essential in the realization of the impacts and of the 

excavation works on the surrounding ground and structural 

stability. The conventional approaches, however, despite 

their usefulness, are time – consuming and prone to errors 

because they involve a lot of manual analysis that may need 

human interpretation(Hua et al., 2021). Monitoring systems 

generate a lot of data in the course of a tunnel project life 

cycle because of the technology development(Wang et al., 

2020). It is also difficult to analyze such datasets to draw 

conclusions, identify trends and discover impact factors. 

Nevertheless, the existing practices fail to capture this 

information in a manner that would allow proactive 

maintenance and safety decision – making. 

The given Case study examines the application of machine 

learning approaches that have been adopted in the MATLAB 

environment to solve the above – mentioned issues. Using the 

data of Changshui Airport Tunnel Monitoring, it aims to 

interpret, visualize and analyze settlement behavior using 

clustering algorithms, feature importance analysis and 

regression models, thus determining patterns, whether to fill 

or settle and which factors have a significant impact on 

ground activity. The introduction of machine learning based 

systems into the tunnel monitoring process is a paradigm 

shift, since such methods enable quicker and more precise 

analyses due to automation of the extraction of complex 

datasets(Jin-miao et al., 2022). The results of the study can 

thus be used to make improved decisions, improve predictive 

maintenance and support the safety and efficiency of 

underground structures. The power of this study shows its 

ability to use the existing computational tools to produce 

engineering solutions that can have a significant real – life 

effect. 

2. Settlement Monitoring and Prediction 

Figure 1 is a summary of the settlement monitoring and 

prediction process, its challenges and developments. 

Settlement monitoring is an important aspect of safety and 

life of underground infrastructure in high-risk projects like 

airport tunnels(Jin-miao et al., 2022). The construction 

induced behaviors such as boring induced stresses, change in 

ground water level and geological heterogeneities are some 

of the causes of ground settlement(Ayasrah et al., 2020). 

These deformations can be hazardous and in case they are not 

identified or misinterpreted, they can result in structural 

instability, which can result in catastrophic failures(Ayasrah 

et al., 2020). Monitoring of landslides is achieved by surface 

and subsurface movements which are traditionally monitored 

by geodetic surveys, inclinometers and extensometers.  

Figure 1 represents the key areas of monitoring of 

settlements, including the traditional and contemporary 

approaches, and the utilization of the advanced instruments 

like machine learning and visualizations, to analyze large 

amount of data. It has been increasingly possible to obtain 

continuous deformation data, as newer forms of 

instrumentation have been developed well, including 

automated total stations, satellite-based InSAR 

(interferometric synthetic aperture radar) and fiber optic 

sensors, all modern(Karamvasis & Karathanassi, 2020). 
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Monitoring therefore plays a role beyond detection to 

mechanisms of settlement(Martins et al., 2020). 

2.1. Machine Learning in Civil Engineering 

Machine learning (ML) is easy to use and understand 

complex data and predict structural behaviors in civil 

engineering(Marsella & Scaioni, 2018). Various clustering 

techniques (E.g.: K-means clustering, hierarchical clustering, 

etc.) are increasingly being used in settlement monitoring to 

classify settlement patterns as well as to detect spatially 

heterogeneous risks(Vadyala et al., 2021). To illustrate, 

showed that clustering had the potential to significantly 

increase the ability to distinguish settlement behavior at up to 

eight monitoring sites and could be applicable in the 

implementation of sector-specific mitigation measures(Zhou 

et al., 2020).  The most important machine learning 

techniques of settlement monitoring are clustering and 

regression models, which allow identifying patterns and 

predicting trends in ground deformation, as illustrated in 

Figure 1. All regression models, including RF, GB, and ANN, 

had better predictive performance and modeled settlement 

trend than statistical methods(Jin-miao et al., 2022). This type 

of models is particularly applicable when there are non-linear 

relationships and high dimensional data as is the case in 

geotechnical applications. Other related fields where ML can 

be applied, i.e. SHM and anomaly detection(Mousavi & 

Beroza, 2022). The former includes clustering methods which 

have been applied to identify deformation anomalies in 

bridge structures and regression models are widely applied to 

predict loads in buildings(Jasmine & Arun, 2021). 

2.2. Advanced Data Integration and Visualization 

The capability to successfully integrate the heterogeneous 

data, which are position, deformation, temperature and 

environmental parameters in a single effective mechanism 

has been one of the most remarkable issues in tunnel 

monitoring(Zhao et al., 2021). MATLAB, which has a vast 

array of tools to conduct machine learning and visualization, 

is a perfect candidate to conduct such workflows(Ma et al., 

2021). Settlement dynamics can be shown in time-series 

plots, and areas with high-risk levels can be shown in 

heatmaps(Yan et al., 2019). Together with clustering and 

regression analyses, these visualizations may give a complete 

image of the behavior of ground and in responsivity. 

2.3. Research Gap and Addressing 

Although the ML techniques have shown promising progress 

in geotechnical engineering, studies have been mainly 

focused on specific tasks(Marcher et al., 2020). As far as the 

authors are aware, few studies have attempted to develop a 

coherent framework to interpret and visualize settlement data 

that include clustering, feature importance analysis, and 

regression modeling(Chen et al., 2022). The literature also 

shows evidence of the need of domain-specific adaptations in 

ML algorithms. Or, feature engineering based on site 

condition, geological and environmental driven feature 

engineering could be used in settlement prediction 

models(Fan et al., 2019). These methods, however, offer 

more access and utility of data, yet there is no standard 

workflow to those adjustments, and thus, the overall use of 

these models becomes cumbersome(Merghadi et al., 2020). 

We suggested a machine learning pipeline that included 

clustering, feature importance, regression, and application of 

that regression with clustering to provide a general analysis 

framework (as illustrated in Figure 1) to be used in tunnel 

monitoring. 

3. Data Preprocessing 

Monitoring of settlement is an important process in the safety 

of high-risk infrastructure projects like tunnels during 

construction and long-term prevention and remedial 

maintenance of the infrastructure after construction(Tan et 

al., 2019). These techniques offer optimal solutions to capture 

high-resolution spatial-temporal trends but the traditional 

settlement monitoring methods (geodetic surveys, 

inclinometers) are time-consuming, subject to human error, 

and do not capture such trends(Wang et al., 2020). In this 

section, a step-by-step data-driven framework of the analysis 

of the settlement behavior in the Changshui Airport Tunnel 

will be discussed. Figure 2 gives a general description of the 

proposed framework. 

3.1. Data Preprocessing 

The pre-processing of data is performed to clean, standardize 

and prepare the data to be utilized in future machine learning 

activities. Using MATLAB workspace, we can see that our 

original data has 13 columns and 10,704 rows. The notable 

variables are dated Measurement Time, Cumulative 

Settlement, Relative Settlement, Settlement Rate, Geological 

Grade, and Distance from Start. The selection of these 

variables reflects the time and space aspects of the settlement 

monitoring which constitutes the basis analysis of any type of 

settlement monitoring. 

a. Standardization of Time Intervals: The time interval of 

data collection is not of regular nature (Time Interval 

Days) and is recorded in Measurement Time. Time 

matching functions in MATLAB where timestamps are 

converted to fixed equidistant time (e.g. 0.5 days, 1 day) 

to provide uniform time-based monitoring of settlement 

patterns. 

b. Missing Values: Handling Missing Values in Missing 

Values: Interpolated Settlement Rate and Relative 

Settlement with the fill missing () function in MATLAB. 

Linear interpolation maintained the trends of time in the 

data to avoid bias. 

c. Normalization of Variables: Cumulative Settlement, 

Settlement Rate, and Geological grade were normalized 

by the min-max scaling by using the normalize () 

function of MATLAB. This process minimizes the 

differences between the applications of different systems 

that improve the performance of the machine learning 

models. 

d. Detect and Remove Outliers: The sensor errors and 

environmental disturbances that caused the sudden 

anomalies in the settlement rates were detected by using 

the Z-scores to detect statistical outliers and examine 

sudden spikes by plotting time-series data. 
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3.2. Clustering Analysis 

Settlement behaviors were used to mine, which was done 

through clustering analysis. This step exposes spatial 

settlement patterns and points out areas of intervention. 

Clustering Techniques: 

a. K-Means Clustering: The variables such as Settlement 

Rate, Cumulative Settlement, Geological Grade were 

used as inputs. Elbow Method was used to determine the 

best number of clusters using within-cluster sum of 

squares (WCSS). The MATLAB assigned the 

monitoring points to various clusters using the K – means 

() function. 

b. Hierarchical Clustering: The results of K-means were 

confirmed through the hierarchical clustering which 

provided a hierarchical view of settlement behaviors. 

The hierarchical relationships between the settlement 

points were visualized with the help of the linkage () 

function in MATLAB that produced a dendrogram. 

c. Clustering Results: Cluster 1: Monitoring points outside 

structural elements (i.e. tunnel border), i.e. the address 

which was above the maximum settlement value; Cluster 

2: intermediate settlement rates -> transitional zones; 

Cluster 3: Stable regions with thin layers. 

3.3. Feature Importance Analysis 

The feature importance analysis shows the most important 

factors in the determination of settlement behavior(Oh et al., 

2021). This procedure increases the interpretability of the 

predictive models and follows the geotechnical principles. 

The following is the outline of feature importance analysis: 

a. Supervised Learning Models: To rank predictor variables 

Random Forest (RF) and Gradient Boosting (GB) 

models were applied. Dependent Variables: Settlement 

Rate, Cumulative Settlement Predictor variables: 

Geological Grade, Distance from Start, Monitoring Point 

Elevation and Time Interval Days 

b. Feature Importance Ranking: The RF and GB models 

provided feature importance scores of all the predictors. 

The strongest features were: Geological Grade: The main 

factor that affects settlement, which means the effect of 

soil properties; Distance from Start: Settlement is not 

evenly distributed along the length of the tunnel; Time 

Interval Days: Settlement behavior varied greatly 

depending on the time of year. 

3.4. Predictive Modeling 

Predictive modeling was also carried out to forecast 

settlement patterns in order to carry out proactive 

maintenance. It entailed a split of the data into 80 percent 

training and 20 percent test and the models were ranked based 

on their capacity to predict Cumulative Settlement. 

a. Training and Testing: Single supervised machine 

learning models were trained and tested: Random Forest 

(RF): It is interpretable and robust; Gradient Boosting 

(GB): Very accurate iterative model; ANNs: Can capture 

potential non-linear relationships and required tuning up; 

The robustness was achieved by cross-validation. 

b. Evaluation Metrics: Models were tested on R2: R2 is a 

measure that compares the predicted values with the 

actual values in the training data; RMSE (Root Mean 

Square Error): How large is the error of the prediction; 

MAE (Mean Absolute Error): A measure to normalize 

the error of the prediction. 

4. Graphical Analysis and Data Interpretation 

Some of the visual outputs and the interpretation applied in 

this section include Feature Importance, Predictive Modeling, 

and other statistics that are used to monitor and predict on 

settlements. Dataset Summary: The target variable 

Cumulative Settlement was initially analyzed statistically and 

then feature importance analysis was done. The most 

important statistics are: 

Rows in Dataset: 10,704; Missing Values: 841 (preprocessing 

step); Minimum Settlement Value: 0; Median Vela Value: 

14.1412; Settlement Value Max: 2,064.6; Average 

Settlement Value: 940.1619; Standard Deviation: 1,019.7 

Following data cleaning, 9863 rows remained to be used in 

train and evaluation. Such preprocessing steps were followed 

to ensure data reliability in the execution of the following 

model. 

4.1. Analysis of Feature Importance 

The results are displayed graphically with measures Table 1. 

Numerical Insights from ANN Feature Importance.. Figure 3 

below is a bar chart that indicates the importance of each 

feature (e.g. Time Interval Days, Distance from Start, 

Monitoring Point Elevation, Relative Settlement) to the 

prediction of settlement rates using Random Forest (RF) 

model. As we observe, Monitoring Point Elevation is the 

most influential predictor with an importance of 50, which 

dwarfs the other features. Monitoring Point Elevation 

remains the most influential predictor in the List of Features 

in Gradient Boosting with an importance by value of more 

than 10,000 as in Figure 4. With the permutation-based 

importance, the ANN indicates that the most important 

predictor of settlement rates is Monitoring Point Elevation 

with an importance score of approximately 1,000 as indicated 

in Figure 5. The importance score of Monitoring Point 

Elevation is overwhelmingly high (1,028.8246). The 

architecture of ANN employed in the prediction of settlement 

in Changshui Airport Tunnel is shown in Figure 6. The model 

has an input layer that has the four main predictors of interest, 

which are Time Interval Days, Distance from Start, 

Monitoring Point Elevation, and Relative Settlement, which 

cover the effects of time, distance, and elevation on 

settlement, and the effects of relative settlement. 

Random Forest Figure 3 – Monitoring Point Elevation is the 

most important, and all others (Time Interval Days, Distance 

from Start, Relative Settlement) are practically 0. Gradient 

Boosting Figure 4 - The importance score of Monitoring 

Point Elevation is about 10,000, which again confirms its 

importance. ANN Figure 5 The permutation-based analysis 

of ANN shows that Monitoring Point Elevation has an 

extremely high importance score of 1,028.8246, which is far 

higher than any other feature. Temporal (Time Interval Days) 

and spatial (Distance from Start) features were of moderate 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-044 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 287 

importance in all models: Random Forest Figure 3 – Time 

Interval Days and Distance from Start are rather 

insignificantly contributing yet still distinguishable compared 

to Relative Settlement. Gradient boosting Figure 4 in this 

case, these features have small but distinctly visible impact. 

4.2. Analysis of Model Performance Metrics 

Figure 7 shows that the random forest (RF) model possesses 

a good prediction power (R2 close to 0.90). Similarly, the 

Root Mean Square Error (RMSE) is also very small, implying 

that the difference between the actual value and the predicted 

value is less. Thus, we can say that RF is very efficient when 

it comes to this dataset. The MAE (Mean Absolute Error) 

indicates the average absolute error between the predicted 

and actual values and as it can be seen, it is very low and 

hence RF can make accurate predictions. In Figure 8, 

Gradient Boosting (GB) has similar R2 values (~0.90) to RF, 

which means that it performs well in predicting. 

In Figure 9 it reflects the data non-linearities more than RF 

and GB since the third ANN model has the greatest degree of 

accuracy in the terms of R2. RMSE of ANN is slightly greater 

than GB but in general ANN is more able to capture the 

patterns but that can also be a sign of ANN overfitting or high 

variance in localized predictions. The grouped bar chart 

Figure 10 in Figure 7, Figure 8, Figure 9 gives a summary of 

the performances of the model in terms of R2, RMSE, and 

MAE of the RF, GB, and ANN. The three models are 

remarkable in accuracy (R2 close to 0.90). However: ANN 

does get a bit better in R2, so it is now the most successful 

model in the sense of understanding complex interactions. 

The RMSE of GB is lower than other models, which means 

that the predictions of GB are better in magnitude, especially 

in the pleasant regions. These results in Figure 10 showed that 

the choice of the model depends on the application, ANN is 

better to work with highly non-linear data, GB is the preferred 

method to minimize catastrophic errors, and that RF is a 

universal and interpretable solution. 

4.3. Residual Analysis 

The residual plot of RF Figure 11 indicates that the residuals 

are between -60 and +60. The majority of them are clustered 

at the zero line, which shows that the accuracy of many of the 

predictions was reasonable, but the dispersion of residuals, 

particularly at higher values, provides a clue as to how this 

model performed poorly on some of the cases where the 

predictions were relatively too distant to the actual value. 

Figure 12 The range of residuals is -2 to +2 in Gradient 

Boosting, which is much narrower, showing much higher 

precision compared to RF. The Figure 13 ANN shows the 

least range of residuals, -1.2 to +0.2 residuals that are tightly 

clustered around zero. This means that it is the most accurate 

in predicting among the models, and it has the fewest errors 

and excellent generalization abilities. Based on Figure 14 

these findings are pointing out that ANN is the most effective 

in capturing complex relationships in the data and therefore it 

would emerge as the most accurate model in predicting 

settlement. Combined Residual Plot - RF, GB and ANN The 

combined residual plot displays residuals of RF, GB, and 

ANN. RF has the broadest scope of residuals between -60 and 

+60, thus performing the worst in the minimization of 

prediction error. ANN residuals are the closest to each other, 

and they are well within the range of -1.2 to +0.2, which is 

exceptionally precise. 

4.4. Settlement Risk Analysis 

The Actual Settlement and the RF, GB, and ANN model 

predictions of spatial settlement risks are shown in Figure 15 

below. Actual Settlement (Top Left) The baseline 

comparison is provided by this heat map because it indicates 

the settlement values that actually took place. It demonstrates 

the actual pattern of settlement risk by subterrains as reflected 

by the data recorded in Figure 15. However, at the higher risk 

regions at Figure 15, there are minute differences. This means 

that RF will only capture the overall trend and will not be in 

a position to follow the minor details, particularly in cases 

where the values of settlements are extreme. GB Predicted 

Settlement (Bottom Left) The gradient boosting heat map 

would see it to be in good fitness to real settlement. ANN 

Predicted Settlement (Bottom Right): ANN is the most 

accurate model among RF and GB and it gives the closest 

resemblance to the actual settlement. All the heatmaps show 

that ANN gives the most accurate approximation of spatial 

settlement risks, then Gradient Boosting, and then Random 

Forest. It also agrees with the results that were obtained 

previously that ANN is more accurate overall, especially on 

complex data, GB is moderately accurate; RF is less accurate 

in extreme cases as indicated in Figure 15. 

4.5. Error Distribution Analysis 

Figure 16 Error Histogram (RF, GB, ANN) The histograms 

of RF, GB, and ANN give a detailed statistic of the accuracy 

errors of the three models. The Errors variance is very broad 

in RF & a range of approximately -60 ~ +60 is essentially 

eminent. When the value of minimum is high, it means that 

the model is not as precise as other models. The GB histogram 

range is lower, with a range of mostly between -2 and + 2, 

which means that it minimizes errors and is more stable in 

performance. The distribution of errors is the most 

concentrated in ANN and the errors are near -0.01 and +0.01 

and this indicates that ANN predicts settlement values more 

accurately than other networks. Figure 17 Grid density plot 

of Errors RF, GB and ANN The mixed density plot indicates 

the variations in the distribution of the various errors of these 

three models to indicate the difference in performance. This 

Figure 17 graph therefore reinstates the ability of ANN to 

generalize complex patterns and to be highly accurate in the 

predictions. 

4.6. Clustering Analysis 

The Elbow Method to validate the number of the optimal 

clusters in the K-Means clustering analysis(Schubert, 2023). 

The y-axis indicates the within-cluster sum of squares that is 

an indicator of the compactness of the clusters and the x-axis 

indicates the number of clusters. Figure 18, The decrease in 

WCSS as k = 1 to k = 2 means that the variance can be 

explained by two clusters only to a reasonable extent. WCSS 

begins to flatten out after k=2, the returns to adding more 

clusters are getting small. K mean clustering k=2, frequencies 

of prevailing settlement patterns in the data set. X: The 

following scatter plot presents the outcome of K-Means 

clustering of the settlement data. The data are shown as color-
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coded clusters: red = Cluster 1, green = Cluster 2, blue = 

Cluster 3. In these two axes, the x-axis (Feature 1) would 

show something like Time Interval Days and the y-axis 

(Feature 2) could show Distance from Start. The clusters 

indicate spatial settlement patterns: Cluster 1 (red): The 

regions of maximum movement, most probably in the area of 

structural features or ground disturbance. 4465 points, Cluster 

2 (green): The regions of transition with average settlement 

rates and medium stability. 1341 points, Cluster 3 (blue): 

Stable areas, where there are few changes in the settlement, 

corresponding to less vulnerable areas. 4057 points. The 

Euclidean distances between clusters are plotted on the y-axis 

and the data points (e.g., monitoring locations) on the x-axis 

Figure 20. The vertical lines are also branched vertically on 

the height of the dendrogram where the significant 

differences are found and this is another evidence that there 

are three main groups that are identified in the hierarchy. 

Table 4. Feature Importance of Each Cluster Model. 

5. Results 

A detailed analysis of the Changshui Airport Tunnel based on 

various state-of-the-art machine learning algorithms- 

Random Forest (RF), Gradient Boosting (GB), and Artificial 

Neural Networks (ANN) was conducted to analyze and 

predict the settlement behaviors. we are presenting the results 

with performance metrics and feature importance of all the 

models. Model Performance Metrics Table 2. Model 

Performance Metrics for Each Model summarizes 

quantitative performance metrics of each model, presented in 

Figure 7. Performance Metrics – RF.. These results indicate 

that ANN model is more accurate in predicting the settlement 

behavior, which proves its strength and reliability in 

predicting the settlement behavior more accurately than the 

other models. Table 3. Feature Importance of Each Model 

below shows the importance of each feature to the respective 

models. The importance scores enable us to know the values 

of features that are most closely associated with model 

predictions. In addition, the significance scores are also 

graphically illustrated in Figure 3, Figure 4, Figure 5, which 

indicates that Feature 3 is dominant in all models, which is a 

significant environmental or geotechnical factor. The total 

residuals are presented in Figure 14, which indicates that 

ANN has predicted very little wrong. The heatmap plots of 

the actual and predicted settlement were very similar, and this 

fact proved that the ANN predictions are the closest to the 

actual ones, and the predictions of GB and RF were the 

second. This spatial disaggregation plays an important role in 

the proper depiction of risk distribution. The error distribution 

in each model is described and shown in Figure 16, which 

shows the frequency of the prediction errors that have been 

observed in some ranges. Elbow Method determines the 

number of clusters as illustrated in Figure 18. In order to get 

a meaningful segmentation of settlement patterns the elbow 

plot indicates that the optimal number of clusters is three. The 

outcome of the clustering can still be visualized, which is K-

means clustering of data points in Figure 19 and the 

dendrogram of hierarchical clustering in Figure 20, which 

confirm the segmentation results based on hierarchical 

relationships between individual points of settlement. 

6. Discussion 

The study demonstrates that geotechnical monitoring can be 

enhanced considerably with the assistance of deep analysis 

based on ML to process complicated data sets(Ritter & 

Frauenfelder, 2021). The concentration of monitor location to 

some clusters that depict characteristics assists in the 

development of particular place of resident behaviors. In 

general, Cluster 1 had 4,465 points (marked as RESILIENT / 

STABLE on the map) and we can use these areas as reference 

areas, or even a baseline of comparison of how we can 

improve and others areas came out as Cluster 2, which had 

1,341 points and marked as THREATENED on the maps, 

which are transitional or Undeveloped areas, which need 

more care and attention with interventions more proactive. 

These clusters are consistent with the predictive data of 

machine learning models (ANN, GB, etc.) that showed 

Monitoring Point Elevation as the most correlated parameter, 

which confirms that the higher settlement was observed in the 

sites of well locations that were in Cluster 2. The clustering 

results give the necessary information and confirmations to 

help in maintenance planning and resources allocation 

besides confirming the model predictions. 

6.1. Analysis of Improved Model Effectiveness, 

Interpretation and Consequences 

The ANN is the solution to risk prediction and mitigation in 

tunnel scenarios because of its excellent capacity to 

comprehend complex, non-linear relationships in 

geotechnical data(Ramezanshirazi et al., 2019). On the other 

hand, GB and RF were good alternatives, and GB reduced 

prediction errors by iterative refinement and RF was easy to 

interpret. The elevation of the monitoring point was also 

identified as a critical factor in all the models since the feature 

significance analysis revealed the critical importance of the 

elevation changes in influencing the tunnel settlements(Apoji 

et al., 2022). According to this conclusion, the influence of 

the elevation changes on the stress distribution and the 

following settlement patterns is considerable, which is 

consistent with the geotechnical principles (Figure 3, Figure 

4, and Figure 5). 

Both models possessed some advantages within the context 

of geotechnical data, Random Forest: It was very robust and 

provided interpretable results and therefore it can be applied 

to problems where the impact of a specific feature is of 

interest. Gradient boosting was very good in minimizing the 

prediction error and managing the interaction between 

features. This meant that it was suitable in the modeling of 

the non-linear dynamics of the settlement data. Artificial 

Neural Networks: Have proven to be very accurate in 

handling complex data structure, but they are very demanding 

in terms of processing power and they need to be fine-tuned 

to avoid overfitting. 

6.2. Prospective Research Directions 

The proactive management of infrastructure is being 

embraced by integrating machine learning (ML) in tunnel 

monitoring(Plevris & Papazafeiropoulos, 2024). Machine 

learning enhances tunnel safety and life by identifying 

potential danger zones early enough due to its ability to 

process and analyze large volumes of data. Nevertheless, the 
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indictment also points to areas that should be further 

investigated, to enhance the effectiveness of machine 

learning in the area of tunnel monitoring: These are the 

incorporation of real-time data inputs to enable adaptive 

responses to environmental deviations, and a data-driven 

dynamic update of predicted models as part of a real-time 

processing solution(Zhang et al., 2020). Cross-Project 

Validation: experiments are conducted on a number of tunnel 

projects to determine the generalizability of the models to 

standardize ML applications in civil engineering. 

7. Conclusion 

Further use of machine learning methods in this field may 

assist us in getting nearer to the realization of the role of 

different parameters in the monitoring of tunnel (as a part of 

Geotechnical Engineering) and the qualitative side of 

Geotechnical engineering as perceived through the eyes of a 

geotechnical engineer. This paper was restricted to the 

monitoring of tunnel in Changshui and the monitoring system 

is comprehensive to monitor the deformation patterns of 

Changshui. Security aspects of Geotechnical Engineering 

Which are likely to be messages of improved predicting 

performances and functional profitability of the Geologist 

economical relevant hazard mapping linked with geological 

changes(Wu et al., 2021). Therefore, Random Forests, 

Gradient Boosting Machines, and Artificial Neural Networks 

have been applied effectively in enhancing the accuracy and 

reliability of settlement predictions, which is essential to the 

stability, as well as sustainability, of tunnel 

infrastructures(Yan et al., 2019). This was the main area/work 

in the investigation of the possibilities of these models, 

where, as they have a good understanding of complex and 

nonlinear data interactions, in the sense of the higher R2 and 

lower RMSE and MAE on the Artificial Neural Network, the 

best results were obtained. These excellent results 

demonstrate the potential of sophisticated ML models to 

become a disruptive technology to traditional geotechnical 

monitoring practices that allow the risk assessment and 

mitigation plans to go much deeper than ever before. The 

effective use of these technologies can also be extended to 

other geotechnical events that are high risk(Wang et al., 

2021). Moreover, the use of machine learning methods must 

be applied to various project scenarios in other studies, which 

will allow a better idea of whether/what algorithms can be 

used in different construction conditions in real time. 

8. Mind Maps, Figures and Tables 

 

Figure 1. Mind map of settlement monitoring in high-risk 

tunnels. 

 

Figure 2. Mind Map of Proposed Data-Driven Framework 

for Settlement Monitoring and Prediction 

 

Figure 3. Feature Importance – RF. 
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Figure 4. Feature Importance– GB. 

 

Figure 5. Feature Importance – ANN. 

 

Figure 6. Architecture of ANN. 

 

Figure 7. Performance Metrics – RF. 

 

Figure 8. Performance Metrics – GB. 

 

Figure 9. Performance Metrics – ANN. 
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Figure 10. Performance Metrics – RF, GB, ANN. 

 

Figure 11. Residual Plot – RF. 

 

Figure 12. Residual Plot – GB. 

 

Figure 13. Residual Plot – ANN. 

 

Figure 14. Residual Plot – Rf, GB, ANN. 

 

Figure 15. Spatial Settlement Risk – Combined Heatmaps of 

RF, GB, ANN. 
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Figure 16. Error (Actual – Predicted) RF, GB, ANN. 

 

Figure 17. Density Combined Error (Actual – Predicted) 

RF, GB, ANN. 

 

Figure 18. Elbow Method for Optimal k. 

 

Figure 19. K-Means Clustering Results. 

 

Figure 20. Hierarchical Clustering Dendrogram. 

Table 1. Numerical Insights from ANN Feature Importance. 

Feature Permuted 

MAE 

Importance 

Score 

Interpretation 

Time 

Interval 

Days 

0.0038008 0.0016423 Temporal 

variations 

moderately 

affect 

settlement. 

Distance 

From Start 

0.003671 0.0015125 Distance 

influences 

settlement 

slightly 

Monitoring 

Point 

Elevation 

1028.8267 1028.8246 Elevation 

dominates as 

the most 

critical factor 

Relative 

Settlement 

0.0021976 0.00003908 Minor impact 

on model 

predictions 

Table 2. Model Performance Metrics for Each Model 

Model R² MAE RMSE 

RF 0.92 0.002 0.031 

GB 0.94 0.0015 0.025 
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ANN 0.96 0.001 0.02 

Table 3. Feature Importance of Each Model 

Feature RF 

Importance 

GB 

Importanc

e 

ANN 

Importance 

1 0.23432 0 0.0078671 

2 0.24303 0 0.004688 

3 50.255 10396 987.70 

4 0.085561 0 0.00029713 

Table 4. Feature Importance of Each Cluster Model 

Cluste

r 

Point

s 

Featur

e 1 

Featur

e 2 

Featur

e 3 

Featur

e 4 

Cluster 

1 

4465 0.0018 0.0249 2.0613 0.0004 

Cluster 

2 

1341 4.6088 60.327

0 

12.856

8 

0.3447 

Cluster 

3 

4057 1.4209 11.926

7 

12.834

6 

0.4621 
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ABSTRACT: Physics-Informed Neural Networks (PINNs) seamlessly integrate the predictive capabilities of neural networks with 

established physical principles. By integrating constraints such as displacement and force boundary conditions alongside 

governing equations, PINNs can generate digital twins of physical systems and processes. This fusion allows for more accurate 

modelling and simulation of complex physical phenomena, bridging the gap between data-driven approaches and traditional 

physics-based methods. Nevertheless, the practical implementation of PINNs remains challenging, primarily due to numerous 

influential hyperparameters and the complex nature of modelling the governing physics through partial differential equations 

(PDEs). This challenge becomes especially critical in the context of dynamic loads, where higher-order PDEs encompassing both 

spatial and temporal domains, alongside relevant structural parameters and generalised (distributed) load’s function, must be 

carefully optimised during the PINNs training process. This study presents a novel application of PINNs model, developed, 

trained, and validated using real-world bridge monitoring data, for the inverse problem of predicting structural parameters of a 

girder subjected to moving loads. Two case studies are considered. In the first, PINNs model is utilised to estimate the structural 

parameters of a bridge girder under varying levels of noise in the data. In the second, the model is trained with actual field 

monitoring measurements to estimate structural parameters while predicting girder deflection and other internal forces. The 

findings advance the existing body of knowledge in structural health monitoring (SHM) by demonstrating a practical PINNs-

based solution for bridge girders under moving loads.  

KEY WORDS: PINNs; Inverse problem; Parameter identification; Neural networks (NNs); SHM. 

1 INTRODUCTION 

Bridges are critical components of transportation infrastructure, 

and ensuring their safety and longevity through structural health 

monitoring (SHM) is a top priority [1]. Over time, bridges are 

subjected to environmental deterioration and repetitive traffic 

loads that can induce damage or stiffness degradation, 

potentially reducing their service life [2]. A key aspect of SHM 

is structural parameter identification – determining properties 

such as stiffness (flexural rigidity) – which enables the 

assessment of a structure’s condition [3].  

Recently, physics-informed neural networks (PINNs) have 

emerged as a promising tool for tackling inverse modelling 

problems [4], [5]. PINNs are a type of deep learning framework 

that embeds physical laws—often expressed as partial 

differential equations (PDEs)—into the neural network’s 

training process. Instead of relying solely on labelled input-

output pairs, PINNs are trained to predict outputs that both fit 

observed data and satisfy governing physics. This is achieved 

by incorporating physics-based constraints, such as PDE 

residuals, into the loss function alongside data-fitting terms [6]. 

For instance, PINNs have been employed to enforce structural 

dynamics and damping evolution equations while matching 

measured responses [3]. 

In the context of inverse problems, the primary objective of 

PINNs is to estimate unknown parameters within partial PDEs 

based on observed data. PINNs have been applied to various 

domains, including fluid dynamics, where they determine 

density, velocity, and pressure fields for one-dimensional Euler 

equations from observed density gradient data [7]. Rasht et 

al.[8] utilised PINNs for seismic imaging, estimating wave 

speed from observed data in full waveform inversions. Current 

advancements have further extended the application of PINNs 

to SHM, particularly in civil engineering structures such as 

bridges and beams. For example, in the context of railway 

bridges, PINNs have been employed for structural analysis and 

monitoring, addressing challenges such as load distribution 

modelling, SHM, and failure prediction under dynamic train 

loads [9]. Moreover, studies have demonstrated the ability of 

PINNs to predict structural response from sparse sensor data, 

even in the presence of noise for Kirchhoff–Love plates under 

static loads [10]. These applications highlight the capability of 

PINNs to integrate data fidelity with physical consistency, 

making them particularly suitable for SHM tasks, where field 

measurements are often limited. 

However, a key challenge lies in applying PINNs to identify 

structural parameters of beams subjected to moving loads using 

real-world data. This research aims to address this challenge by 

proposing a novel approach that integrates physics-based 

modelling with real-world monitoring data to improve the 

accuracy and reliability of structural parameter identification. 

The main contributions of this study are as follows: 

• The development, training, and validation of PINNs to 

solve the problem of a bridge girder subjected to a 

moving load. In doing so, this work addresses the 

challenge of incorporating higher-order PDEs 

spanning both spatial and temporal domains.  
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• Demonstration of how PINNs can predict structural 

parameters, alongside other outputs such as deflection 

and its derivatives. 

• A thorough examination of the PINNs’ performance 

and predictive accuracy under varying levels of data 

noise. By testing the models across a range of signal-

to-noise ratios, the study evaluates their robustness, 

providing insights into their reliability and resilience 

in practical settings where data imperfections are 

common. 

• An investigation of the PINNs’ adaptability and 

generalisation capabilities when trained on real-world 

monitored data from a bridge.  

This paper is organised as follows: Section 2 introduces the 

problem definition and outlines the methodology. Section 

3 provides discussions on Case Studies 1 and 2, along with 

their respective results. Section 4 presents the conclusions 

and recommendations for future research. 

2 METHODOLOGY 

This section considers the architecture of a fully connected 

feedforward neural network and describes the PINNs setup for 

inverse problems. Specifically, it includes an explanation of 

PINNs model hyperparameters and the loss function terms for a 

bridge girder with a moving load. The analysis includes a 

detailed discussion on the training of PINNs, as well as the 

investigated and selected hyperparameters of the neural 

networks. 

 Neural networks Architecture  

The network consists of hidden layers (H), each formulated to 

process inputs recursively.  For each hidden layer h, where h 

ranges from 1 to H, the output f(h) is determined by Equation 

(1): 

𝑓(ℎ) = σ(𝑊(ℎ)𝑓(ℎ − 1) + 𝑏(ℎ)) (1) 

Here, 𝑓(0) signifies the initial input to the neural network. 

The function σ(⋅) denotes the nonlinear activation function, 

which is crucial for enabling the network to model complex 

patterns. The weight matrix 𝑊(ℎ) and the bias vector 𝑏(ℎ) 

pertain to the ℎ −th hidden layer respectively [11]. 

The output of the neural network, denoted as 

𝑢 (𝑖. 𝑒. , 𝑏𝑒𝑎𝑚′𝑠 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛), is derived from the last hidden 

layer’s output through the Equation (2): 

𝑢 = 𝑊(𝐻 + 1)𝑓(𝐻) + 𝑏(𝐻 + 1) (2) 

In this formulation, 𝑊(𝐻 + 1) and 𝑏(𝐻 + 1) represent the 

weight matrix and bias vector of the output layer, respectively. 

The entire set of parameters within the network, which includes 

all the weights and biases for each layer, is collectively denoted 

by (θ) as listed in Equation (3):  

  

θ = {𝑊(1), 𝑏(1), … , 𝑊(𝐻), 𝑏(𝐻), 𝑊(𝐻 + 1), 𝑏(𝐻 + 1)} (3) 

 

This parameter set  θ  encapsulates all elements necessary for 

the neural network’s function, facilitating a unified approach to 

training and adjustment during the learning process. 

The structure of this neural network combines linear 

operations and nonlinear activation functions. Utilising 

activation functions that are infinitely differentiable, such as 

hyperbolic functions, the architecture enables the calculation of 

derivatives of any order for the output relative to the input of 

the neural network via automatic differentiation [4], [5]. These 

derivatives are instrumental in incorporating basic physical 

principles into the loss functions used in PINNs. 

 

 Framework of PINNs for inverse problems  

PINNs presents an approach for addressing forward and inverse 

problems in partial differential equations (PDEs) across various 

systems [4]. A typical inverse problem for a simple beam 

(girder) subjected to a moving can be described by the following 

formulation: 

1. Governing Equation: The Bernoulli-Euler beam theory [12] 

is widely used to describe beam behaviour under bending. This 

theory neglects shear deformation and rotational effects [13], 

which are typically minor in mostly bending conditions. 

Previous studies [14], [15] have numerically modelled bridges 

using this theory, focusing on moving loads that simulate 

vehicular traffic. Therefore, this paper briefly presents only the 

essential PDE needed for developing PINNs.  

For a linearly elastic beam, the vertical deflection, 𝑢(𝑥, 𝑡) 

along the z-direction satisfies the PDE shown in Equation (4) 

[14], [16]:  

𝐸𝐼
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑃𝛿(𝑥 − 𝑣𝑡) (4) 

Where: 
𝜕4𝑢(𝑥,𝑡)

𝜕𝑥4  is the beam’s curvature under bending, EI is 

the flexural rigidity, 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2  represents beam acceleration due to 

vibration, 𝜇  is the constant mass per unit length, 𝑃 is the moving 

load magnitude, 𝑣 is the load's constant speed, 𝛿 is the Dirac 

delta function modelling the instantaneous position of the 

moving load. 

This paper employs a Gaussian-based approach to 

approximate the Dirac delta function, leveraging its smoothness 

and regularity [17]. The approximation is defined by Equation 

(5): 

𝑃𝛿(𝑥 − 𝑣𝑡) ≈
1

𝛽√𝜋
𝑒

−
(𝑥−𝑣𝑡)2

𝛽2 𝑎𝑠𝛽 → 0 (5) 

Where 𝛽 the regularisation parameter governs the 

approximation’s smoothness and accuracy. The 𝑣𝑡 term 

specifies the vehicle’s position as the product of speed and time 

since it entered the structure. 

2. Initial (IC) and Boundary (BC) conditions: The beam is 

assumed to be at rest initially. This is given in mathematical 

form in Equations (6) and (7). Equation (6) indicates that 

vertical deflection 𝑢(𝑥, 𝑡) is zero along the whole length of the 

beam at T = 0, while Equation (7) indicates the beam is perfectly 

still, experiencing no vibration, at T = 0 [14], [16]. 

𝑢(𝑥, 𝑡) = 0  𝑓𝑜𝑟 𝑥 ∈ [0, 𝐿], 𝑇 = 0 (6) 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑡) = 0  𝑓𝑜𝑟  𝑥 ∈ [0, 𝐿], 𝑇 = 0 (7) 
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For a simple beam supports at its two ends. The beam cannot 

move vertically but is free to rotate about y-axis at these 

locations, namely at x = 0 and x = L. The latter necessitates that 

the corresponding force quantity - the bending moment, which 

is directly proportional to the beam curvature and computed as 

the second derivative of 𝑢(𝑥, 𝑡), must always be zero at x = 0 

and x = L. Equations (8), and (9) mathematically represent these 

boundary conditions. 

𝑢(0, 𝑡)  =  0, 𝑎𝑛𝑑  𝑢(𝐿, 𝑡)  = 0,   𝑓𝑜𝑟  ∈ [0, 𝑇]       (8) 

𝜕2𝑢

𝜕𝑥2
(0, 𝑡)  =  0, 𝑎𝑛𝑑 

𝜕2𝑢

𝜕𝑥2
(𝐿, 𝑡)  = 0, 𝑓𝑜𝑟 𝑡 ∈ [0, 𝑇] (9) 

3. Loss function: In this study, we develop PINNs to predict 

structural parameters and internal forces—such as deflection 

and moment—in a bridge girder under a moving load of known 

magnitude and constant speed. Unlike traditional neural 

networks, which minimise the mean squared error (MSE) using 

training data, PINNs incorporate additional loss terms to 

enforce the governing partial differential equation (PDE), initial 

conditions, and boundary conditions, ensuring physically 

consistent predictions [18]. Accordingly, let us assume that  𝛾 

represents parameters related to the physics of the system—

some or all of which may be unknown and must be estimated in 

inverse problems.  To achieve this, PINNs are trained to 

minimise a composite loss function (ℒ), which can be expressed 

as in Equation (10).  

𝐿(𝛩) = 𝛼𝑓𝐿𝑓(𝛩) + 𝛼𝑖𝐿𝑖(𝜃) + 𝛼𝑏𝐿𝑏(𝜃) + 𝛼𝑑𝐿𝑑 (𝜃) 

 
(10) 

Where Θ = {𝜃, 𝛾}, with 𝜃 as neural network parameters 

defined in Equation (3) and  𝛾 as unknown physical parameters 

to be estimated (EI, flexural rigidity), ℒ𝑓 for the PDE, ℒ𝑖 for the 

initial conditions, ℒ𝑏 for the boundary conditions, and ℒ𝑑 for 

the measured data. Each term is scaled by a corresponding 

weight—𝛼𝑓 , 𝛼𝑖, 𝛼𝑏 , and 𝛼𝑑. With prediction of PINNs, 

𝑢(𝑥, 𝑡;  𝜃) , the individual loss terms are expressed by Equations 

(11-15): 

ℒ𝑓(𝛩) =
1

𝑁𝑓

∑‖𝐹[𝑔(𝑥𝑖 , 𝑡𝑖; 𝜃); 𝛾]‖2

𝑁𝑓

𝑖=1

 (11) 

𝑔(𝑥𝑖 , 𝑡𝑖; 𝜃) = 𝐸𝐼
𝜕4𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑡2

− 𝑃𝛿(𝑥𝑖 − 𝑣𝑡𝑖) 

(12) 

ℒ𝑖(𝜃) =
1

𝑁𝑖

∑ ‖𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃) +
𝜕𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑡
‖

2
𝑁𝑖

𝑖=1

 (13) 

                            

ℒ𝑏(𝜃)  =  
1

𝑁𝑏

 ∑ ‖𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃) +
𝜕2𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)

𝜕𝑥2
‖

2

   

𝑁𝑏

𝑖=1

 (14) 

ℒ𝑑(𝜃) =
1

𝑁𝑑

∑‖𝐷(𝑥𝑖 , 𝑡𝑖; 𝜃) − 𝑢(𝑥𝑖 , 𝑡𝑖; 𝜃)‖2

𝑁𝑑

𝑖=1

 (15) 

Where 𝑁𝑓 , 𝑁𝑖 , 𝑁𝑏 , and 𝑁𝑑 are the number of data points 

(collocation points) in training datasets:   

• PDE residual: {(𝑥𝑖 , 𝑡𝑖) ∶  0 ≤ 𝑖 ≤ 𝑁𝑓 ,   0 ≤ 𝑥𝑖 ≤ 𝐿, 0 ≤

𝑡𝑖 ≤ 𝑇} 

• Initial condition: {(𝑥𝑖 ,   0) ∶  0 ≤ 𝑖 ≤ 𝑁𝑖 , 0 ≤ 𝑥𝑖 ≤ 𝐿}, 

• Boundary condition:{(0, 𝑡𝑖)𝑎𝑛𝑑(𝐿, 𝑡𝑖): 0 ≤ 𝑖 ≤ 2𝑁𝑏 , 0 ≤

𝑡𝑖 ≤ 𝑇}, and 

• Data points: {(𝑥𝑖 , 𝑡𝑖) ∶  0 ≤ 𝑖 ≤ 𝑁𝑑 , 0 ≤ 𝑥𝑖 ≤ 𝐿, 0 ≤

𝑡𝑖 ≤ 𝑇}, respectively.  

The minimiser of ℒ (Θ) can be expressed by Equation (16): 

𝛩∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛩

ℒ (𝛩) (16) 

where 𝛩∗  =  {𝜃∗, 𝛾∗} with 𝜃∗ and 𝛾∗ being the optimal 

parameters and the estimated unknown parameters, 

respectively, and arg min (·) is the arguments of the minimum.  

 

Figure 1.Physics-informed neural networks (PINNs) 

Schematic for an inverse problem of a beam with moving 

loads. 

 Training of PINNs 

Figure 1 presents a schematic overview of the PINNs 

framework configuration. The setup consists of a fully 

connected feed-forward neural network (NN) that takes spatial 

and temporal inputs (x, t) to predict the solution u (x, t)—

representing the expected deflection at a given location and time 

on the bridge’s girder—and to estimate unknown physical 

structural parameters (γ). The training process is guided by the 

composite loss function defined in Equation (10) and optimised 

as shown in Equation (16). The training of the PINN is guided 

by the combined loss function given in Equation (10) and 

optimised as showed in Equation (16). Training the PINNs 

involves careful tuning of various hyperparameters, including 

the number of hidden layers, the number of neurons per layer, 

the choice of activation functions, the number of collocation 

points in the training dataset, optimiser configurations, and loss 

weighting factors.  

Table 1 provides a summary of these hyperparameters, 

detailing their respective ranges and final selected values. The 

NN architecture, comprising five hidden layers and 64 neurons 

per layer, was chosen after testing various configurations. The 

Tanh activation function was selected due to its non-linear 

characteristics, outperforming others such as ReLU, SiLU, and 

Sigmoid. The collocation points, set at 2500 for the PDE, 2000 
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for the boundary conditions, and 1000 for the initial conditions, 

provide a balance between computational efficiency and the 

resolution needed to accurately enforce the underlying physics. 

Adam optimiser was employed for its reliable convergence 

characteristics, and the learning rate was scheduled to decrease 

quadratically with epochs, starting from an initial value of 10-2. 

Additionally, an adaptive loss-weighting strategy was used to 

balance the various terms, scaling each component relative to 

the smallest observed loss. Furthermore, the number of training 

iterations (epochs) was chosen to be 60,000, from a tested range 

of 10,000–100,000, to achieve robust convergence and accurate 

results.  

The code presented in Table 2 is written in Python [19] and 

leverages PyTorch [20], a robust deep learning library. The 

PINNs in this implementation employ the 32-bit single-

precision floating-point (FP32) format, which serves as 

PyTorch’s default precision. The training process takes place on 

a computer system featuring an NVIDIA RTX A4000 GPU and 

an Intel Core i9-14900K processor. 

Table 1.  Hyperparameters for PINNs: Tuning ranges and 

selected values. 

Hyperparameter Range Chosen Value 

No. of Layers 3-9 5 

No. of Neurons 32-186 64 

Activation 

function 

ReLU, SiLU, Sigmoid, 

Tanh 
Tanh 

Collocation 

points 

PDE: 1500-3000 

BC: 1200-2400 

IC: 600-1200 

2500 

2000 

1000 

Optimiser 
SGD, Adam, L-BFGS-B, 

Adagrad 
Adam 

Optimiser 

Learing rate 

Decays quadratically over epochs, based on 

the following scheduler: 

𝜑0 =  10−2, 𝜑1  =  0.70𝜑0 

𝜑𝑖 =  (1 − (
𝑖

𝑁
)

2

) 𝜑0  + (
𝑖

𝑁
)

2

𝜑1, 𝑖 =  0, … , 𝑁 

N being the number of epochs. 

loss weighting 

factors 

An adaptive weighting strategy is used [18]:  

𝛼𝑓  =  
ℒ𝑓

ℒ𝑚𝑖𝑛

 , 𝛼𝑖  =  
ℒ𝑖

ℒ𝑚𝑖𝑛

, 𝛼𝑏 =  
ℒ𝑏

ℒ𝑚𝑖𝑛

, 𝛼𝑑  =  
ℒ𝑓

ℒ𝑚𝑖𝑛

,  

ℒ𝑚𝑖𝑛    𝑖𝑠 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑎𝑚𝑜𝑛𝑔 ℒ𝑓 , ℒ𝑖 , ℒ𝑏 , ℒ𝑑 .  

Iterations 

(Epochs) 
10,000-100,000 60,000 

3 CASE STUDIES 

The Bascule Bridge in Exeter, as shown in Figure 2, is 

investigated in this study. The bridge features a 17.28-metre 

simply supported lifting span, a 6.7-metre-wide carriageway, 

and a 2-metre-wide footway along the parapet. Its structural 

configuration includes two longitudinal girders, 17 cross beams, 

and a composite aluminium deck. This research focuses on the 

east girder, where sensors measure vertical stiffness. Since the 

girders are pinned at both ends, each can be approximated as a 

simply supported beam. The cross beams, bolted to the vertical 

web stiffeners, primarily transfer shear forces and provide 

lateral resistance, contributing little to the girders’ vertical 

stiffness. Parameters in Equation (4), outlined in Table 3, are 

based on section properties derived from structural drawings 

supplied by Exeter City Council, Devon, UK, as described in 

[21]. 

Table 2.  PINNs Pseudo-code for the identification of 

structural parameters in a beam under moving loads. 

Algorithm  

Input: Spatial and temporal collocation points and 

measured data (xi, ti). 

Output: Optimal parameters 𝜃∗ and estimated unknown 

parameters 𝛾∗ ∶  𝛩∗  =  {𝜃∗, 𝛾∗}.  

Initialisation:  

1: Initialise neural network architecture parameters 𝜃  

2: Generate random dataset for Nf, Ni and Nb  

3: Prepare the measured data points Nd  

4: Define the total loss functions:  ℒ(𝛩) = 𝛼𝑓ℒ𝑓(𝛩) +

𝛼𝑖ℒ𝑖(𝜃) + 𝛼𝑏ℒ𝑏(𝜃) + 𝛼𝑑ℒ𝑑 (𝜃) 

5: Initialise the loss weights:  𝛼𝑓 , 𝛼𝑖 , 𝛼𝑏 𝛼𝑑 

6: Initialise the structural parameters 𝛾 

Training: 

7: Set the optimiser: Adam.  

8: Set N:  Define the maximum number of training 

iterations  

9: WHILE converge not reached DO 

9.1: FOR k = 1 to N DO  

9.2:    FOR each batch of points in Nf, Ni, Nb, Nd DO 

9.3:         Compute loss function: 

⎯ ℒf(Θ): PDE residual at Nf 

⎯ ℒi(θ): Initial condition at Ni 

⎯ ℒb(θ): Boundary condition at Nb 

⎯ ℒd (θ): Measured data mismatch at Nd 

9.4:          Update loss function weights 𝛼𝑓 , 𝛼𝑖 , 𝛼𝑏 𝛼𝑑 

9.5:      END FOR 

9.6:      Compute the total loss  ℒ(𝛩) 

9.7:      Update parameters 𝛩 =  {𝜃, 𝛾} using Adam 

optimiser based on the gradient of ℒ(𝛩) 

9.10:   END FOR 

9.11: END WHILE  

10: Save the trained model: Store the optimised 

parameters Θ∗  =  {θ∗, γ∗}  

11: Deploy the model: Use the trained PINNs to predict 

the structural response. 

Table 3.  Dimensions and properties of the Bascule bridge 

main girder (symmetrical I-section). 

Dimensions  Value Properties  Value 

Length  17.28 m  Elastic 

Modulus (E1) 

205 GPa 

Depth  926.60 

mm 

Moment 

inertia (I) 

50.40×108 

mm4 

Flange width 307.70 

mm 

Mass per unit 

length (µ) 

289 kg/m 

Flange thickness  32 mm   

Web thickness 19.50 mm   
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Figure 2. Bascule bridge, constructed in 1972, carrying the 

A379 over the Exeter Canal in Devon, England, UK.  

 

 Case Study 1 

In this case study, PINNs are trained to model the effects of a 

37 kN axle load, representing the front axle of a truck. This axle 

load magnitude corresponds to those used in a controlled 

loading test previously conducted on the Bascule Bridge, as 

detailed in [22]. The truck’s total load consisted of front axles 

weighing 67.20 kN and rear axles weighing 89.80 kN each. 

Axle spacing was 2.00 metres between the first and second 

axles, 3.10 metres between the second and third, and 1.40 

metres between the third and fourth. During the test, the truck 

crossed the bridge in 3.342 seconds, travelling in the lane 

closest to the east girder, which was estimated to bear 

approximately 55% of the total load. For the time configuration, 

the front axle is estimated to take a total of 2.43 seconds to cross 

the bridge. This timing reflects the sequence and delay with 

which each of the four axles engages with the bridge as 

observed during the field tests. Based on these observations, the 

first front axle enters the bridge at t = 0, and the fourth rear axle 

exits at t = 3.342 seconds. The truck’s speed is calculated using 

the span length of the bridge (17.28 m), the distance between 

the first and fourth axles (6.50 m), and the total crossing time of 

3.342 seconds. This yields a vehicle speed of 7.115 m/s. Using 

this speed and the known axle spacings, the times at which the 

first front axle entered and exited the bridge are determined. 

 Synthetic data under varying signal-to-noise ratios  

In this case study, the objective is to estimate the bridge’s main 

girder flexural stiffness (EI), deflection, and its derivatives. This 

requires generating training data for the PINN model, as 

described in Section 2. To achieve this, we developed a finite 

element (FE) model comprising 10 beam elements in ANSYS 

APDL [23]. The model was solved using a transient analysis 

with 1,000-time steps, providing the synthetic data needed for 

training. A total of 100 points were randomly selected across 

the spatial and temporal domains to represent the deflection 

solution. However, SHM data often contain noise due to 

environmental and operational factors, such as temperature 

fluctuations, variable live loads, and sensor inaccuracies. To 

reflect these real-world conditions, we introduced white 

Gaussian noise into the simulated data. Incorporating this noise 

increases the fidelity of the synthetic data, making it more 

representative of the challenges encountered in real-world SHM 

data analysis. In addition to estimating the girder’s stiffness and 

deflection, another objective of this study was to assess the 

adaptability and performance of PINNs when trained with and 

without noise. 

Various noise levels are evaluated by considering different 

signal-to-noise ratios (SNRs). White Gaussian noise is added to 

the deflection data generated by the finite element (FE) model, 

as defined by Equation (17): 

𝑢𝑛𝑜𝑖𝑠𝑒 = 𝑢 + 𝒩(0, 𝜎2) (17) 

Where 𝑢 is the true deflection predicted by the FE model, 

and 𝒩(0, 𝜎2) represents white Gaussian noise with a mean of 

zero and a standard deviation 𝜎 determined by the target SNR. 

The SNR in decibels (dB), is given by Equation (18): 

𝑆𝑁𝑅(𝑑𝐵)   =  10 𝑙𝑜𝑔10 (
𝑆𝑖𝑔𝑛𝑎𝑙 𝑃𝑜𝑤𝑒𝑟

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟
) 

(18 ) 

In this study, four SNR levels—10, 20, 30, and 40 dB—are 

considered and are illustrated in Figure 3. A lower SNR, such 

as 10 dB, indicates significant noise levels, making the 

prediction task more challenging. In contrast, a higher SNR, like 

40 dB, suggests that noise has only a minor effect. 

 

Figure 3. Influence of signal-to-noise ratio (SNR) on 

deflection data quality.  

 Results and discussion of Case Study 1 

The results presented in Tables 4 and 5 highlight the 

performance of the PINNs in predicting the flexural rigidity (EI) 

and internal forces (deflection and moment) of a Bascule bridge 

girder under various signal-to-noise ratio (SNR) conditions. The 

analysis assesses prediction accuracy using relative error 

percentages (Re%) for EI, as well as Root Mean Square Error 

(RMSE), Coefficient of Variation (CV%), and Normalised 

Mean Bias (NMB%) metrics for deflection (u) and moment 

(Mx) at different time instances.  Table 4 indicates that PINNs 

can provide accurate estimates of EI even in noisy conditions. 

When using clean data, the relative error is only 0.24%. As 

noise increases, the error rises slightly, reaching 0.96% at 10dB. 

However, the PINNs still demonstrate strong robustness, with 

errors staying below 1% even under the lowest SNR conditions. 

For higher SNR levels, such as 30dB and 40dB, the errors drop 
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to 0.34% and 0.29%, respectively. This trend confirms that the 

PINNs can effectively handle varying noise levels, maintaining 

a high degree of accuracy in estimating the bridge girder’s 

flexural rigidity.  

Table 5 examines deflection and moment predictions at 

different time instances under varying SNR conditions. As 

expected, lower SNR values lead to higher RMSE, CV, and 

NMB percentages, reflecting the impact of noise on prediction 

accuracy. For instance, at 10dB, deflection RMSE ranges from 

0.161 mm to 0.178 mm, and CV percentages are as high as 

8.26%. In contrast, under a better condition (30dB and 40dB), 

these values are significantly reduced, with RMSE as low as 

0.036 mm and CV percentages dropping to around 1.45%–

2.05%. The moment prediction metrics follow a similar pattern, 

showing that as SNR improves, RMSE and CV percentages 

consistently decrease. The results of this case study demonstrate 

that PINNs can accurately predict both flexural rigidity and 

internal forces in a bridge girder, showing robustness against 

noise and the potential for practical application in SHM tasks.  

Furthermore, Figure 4 illustrates the ability of the PINN 

trained with data of 40 dB SNR to accurately predict both the 

beam’s deflection and its internal forces, including moments. 

The data presented in the figure corresponds to a specific time 

instance, t = 1.22 seconds. Although this example focuses on a 

single time point for demonstration purposes, the PINN 

methodology can similarly generate deflection and its 

derivatives at any chosen moment. 

The results displayed in the figure highlight an agreement 

between the PINN predictions and the FE results. The PINN 

accurately reproduces the deflection and moment profiles along 

the beam, aligning closely with the established FE data. This 

consistent match provides further validation of the PINN’s 

reliability and effectiveness. 

Table 4.  PINNs predictions of flexural rigidity (EI) for a 

Bascule bridge girder across varying SNR. 

SNR EI Actual 

(N.m2) 

EI predicted 

(N.m2) 

Re% 

Clean 1,033,610 1,036,091 0.24 

10dB === 1,043,533 0.96 

20dB === 1,041,879 0.80 

30dB === 1,037,124 0.34 

40dB === 1,036,607 0.29 

 

 Case Study 2  

In this case study, a PINN model is used to predict the flexural 

rigidity and structural behaviour of a girder, informed by strain 

measurements from sensors installed on the bridge’s main 

girder during a truck crossing. The objective is twofold: to 

examine the PINN’s ability to represent real-world structural 

behaviour and to assess how measurement data influences its 

accuracy and generalisation. Four weldable strain gauges were 

installed, two on the top flange (S1 and S2) and two on the 

bottom flange (S3 and S4), to measure bending strains along the 

girder’s longitudinal axis as shown in Figure 5. These sensors, 

featuring a 5.84 mm active grid length and a resistance of 120 

Ω, were deployed and documented as detailed in [12]. The 

strain data were collected at 2000 Hz, then baseline-adjusted 

and smoothed. Figure 6 illustrates the strain time histories 

recorded by sensors S1 to S4, confirming that the truck took 

approximately 3.342 seconds to cross, consistent with Case 

Study 1.[22].  

Table 5. PINNs predictions metric errors of deflection and 

moment for a Bascule bridge girder across varying SNR and 

different time instances. 

SNR 
Time 

(Sec) 

Deflection (u) Moment (Mx) 

RMSE 

(mm) 

CV 

% 

NBM 

% 

RMSE 

(kN.m) 

CV

% 

NBM 

 % 

Clean 

0.60 0.013 0.62 -0.02 3.06 4.07 -0.89 

1.22 0.017 0.57 -0.27 2.94 2.94 -0.18 

1.82 0.014 0.67 -0.32 3.19 4.30 0.37 

10dB 

0.60 0.161 7.51 7.52 2.75 3.66 -0.13 

1.22 0.178 5.91 5.90 2.90 2.91 0.56 

1.82 0.175 8.26 8.24 3.09 4.16 0.99 

20dB 

0.60 0.055 2.56 2.13 3.83 5.10 -2.35 

1.22 0.050 1.67 1.09 3.50 3.51 -1.13 

1.82 0.038 1.81 1.51 3.42 4.62 -1.12 

30dB 

0.60 0.096 4.49 4.44 3.16 4.21 -1.00 

1.22 0.087 2.91 2.84 3.12 3.12 -0.24 

1.82 0.059 2.80 2.74 3.29 4.44 -0.28 

40dB 

0.60 0.036 1.67 1.52 2.97 3.96 -0.57 

1.22 0.044 1.45 1.29 2.88 2.89 0.25 

1.82 0.044 2.05 1.98 3.29 4.43 0.81 

 

 
 

 

 
 

Figure 4: Case Study 1 – comparing PINNs predictions to finite 

element (FE) results: (a) beam deflection and (b) moment 

distribution at t = 1.22 seconds. 

(a) Beam deflection (u, mm) 

(b) Moment distribution (Mx, kN.m) 
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Unlike Case Study 1, which trained the PINN on a single axle 

load, this case study models the effect of the entire truck. The 

truck is represented as four axle loads, spaced at known 

intervals. The combined load function is approximated as a sum 

of Dirac delta functions, 𝛿𝑗, which are expressed in Equations 

(19) and (20). The load (P) due to all axles is formulated as: 

𝑃 = ∑ 𝑝𝑗

4

𝑗=1

∙  𝛿𝑗(𝑡𝑗, 𝑣, 𝐿)         
(19) 

 

Where 𝛿𝑗(𝑡𝑗 , 𝑣, 𝐿) is defined as:  

𝛿𝑗(𝑡𝑗, 𝑣, 𝐿)  =  
1

𝛽√𝜋
𝑒

−
(𝑥−𝑣(𝑡−𝑡𝑗))

2

𝛽2
 

(20) 

      

The parameters are: 𝐿, the beam length; 𝑣, the vehicle speed; 

𝑝𝑗, the load for the j-th axle; 𝛽, the regularisation parameter of 

the Gaussian approximation for 𝛿𝑗; and 𝑡𝑗, the time lag for the 

j-th axle relative to the first. Incorporating this Dirac delta 

approximation into the governing PDE yields Equation (21):  

𝐸𝐼
𝜕4𝑢(𝑥, 𝑡)

𝜕𝑥4
+ 𝜇

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= ∑ 𝑝𝑗

4

𝑗=1

∙  𝛿𝑗(𝑡𝑗, 𝑣, 𝐿) (21) 

In addition, the PINN training process includes a data loss 

term, ℒ𝐷 as defined in Equation (15), which quantifies the 

discrepancy between sensor measurements and the PINN’s 

predicted strains.  The strain 𝜀 is linked to the beam’s 

curvature  
𝑑2𝑢(𝑥,𝑡)

𝑑𝑥2 , as shown in Equation (22):   

𝜀 =  −𝑦
𝑑2𝑢(𝑥, 𝑡)

𝑑𝑥2
          

(22) 

Here, 𝑦 is the distance from the neutral axis. This relationship 

allows ℒ𝐷 to be computed by comparing measured and 

predicted strains. The formulation of ℒ𝐷 is given in Equation 

(23):  

ℒ𝑑(𝜃) =
1

𝑁𝑑

∑ ‖−𝑦
𝑑2𝑢(𝑥𝑖 , 𝑡𝑖;  𝜃)

𝑑𝑥2
− 𝜀(𝑥𝑖 , 𝑡𝑖; 𝜃)‖

2𝑁𝑑

𝑖=1

 (23) 

ℒD is then incorporated into the overall loss function 

(Equation 10) to guide the PINN’s training and improve its 

alignment with the observed data.  

 

Figure 5. Illustration depicting the positions of weldable strain 

gauges on the main girder (side view) of a bascule bridge. 

 

Figure 6. Raw strain measurements from sensors S1 to S4 on 

the main girder of a bascule bridge as a truck crossed. 

 Results and discussion of Case Study 2 

The results presented in Table 6 highlight the impact of 

incorporating real-world strain measurements on the accuracy 

of PINN predictions for the bridge girder’s flexural rigidity (EI). 

When trained without sensor data, the PINN predicted an EI 

value that deviated from the actual parameter by over 14%, 

underscoring the limitations of relying solely on physics-

informed constraints. In contrast, the inclusion of strain data 

from only one sensor S2 reduced the relative error to 

approximately 1.6%, demonstrating a substantial improvement 

in predictive performance. This outcome suggests that 

integrating field measurements enables the PINN to capture the 

structural behaviour more effectively, enhancing its 

generalisation and reliability. The ability of PINNs to leverage 

sparse sensor data offers advantages for SHM applications, 

providing engineers with more precise estimates of key 

structural parameters. Additionally, Figure 7 demonstrates the 

predictive efficacy of the PINN trained with measured data. The 

model was trained utilising strain data from sensor S2, with the 

sensor’s location and strain time profile shown in Figures 5 and 

6, respectively. The displayed results indicate the model’s 

prediction at the position of sensor S4.  Accordingly, the results 

underline the potential for PINNs, when combined with real-

world data, to serve as robust tools for both assessing current 

structural performance.  

Table 6.  PINN predictions of flexural rigidity (EI) for a 

Bascule bridge girder with and without sensor Data. 

Strain data EI Actual 

(N.m2) 

EI predicted 

(N.m2) 

Re% 

No 1,033,610 1,178,315 14.16 

Yes === 1,050,458 1.63 
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Figure 7. Comparison of strain time history predicted by PINN 

and measurements from sensor S4.  

4 CONCLUSIONS 

This study demonstrates the application of a physics-informed 

neural network (PINN) framework to accurately predict both 

structural parameters — flexural rigidity (EI) — and structural 

responses (e.g., deflections and moments) of a bridge girder 

under a moving load. The investigation is based on two case 

studies that evaluate the PINN’s performance, accuracy, and 

generalisability, offering valuable insights into its practical 

application for SHM.  In Case Study 1, the PINN was trained 

under varying levels of synthetic noise to assess its robustness. 

In Case Study 2, the PINN’s ability to integrate real-world strain 

measurements was explored. Using field measurements, the 

model achieved significant improvement in prediction 

accuracy. 

The following points summarise the key outcomes from this 

study: 

1. The PINN maintained reasonable accuracy even at low 

signal-to-noise ratios (SNRs), with predictions 

becoming increasingly reliable as noise levels 

decreased. The study revealed that at higher SNRs, the 

PINN effectively captured the bridge’s flexural 

rigidity, achieving relative errors below 1% and 

confirming its capacity for precise parameter 

estimation. 

2. In Case Study 2, the PINN trained without sensor data 

overestimated the girder’s flexural rigidity. 

Incorporating field measurements reduced the relative 

error from 14% to approximately 1.6%. This 

demonstrates the value of integrating field data into the 

PINN framework, enabling more accurate reflection of 

real-world structural behaviour. 

3. The study showed that even a limited number of strain 

sensors could provide sufficient constraints to enhance 

the PINN’s generalisation and performance, 

reinforcing its practical utility. 

4. The findings show that integrating field measurements 

not only enhances the accuracy of the flexural rigidity 

estimation but also allows the model to reflect actual 

structural behaviour. This demonstrates the PINNs’ 

potential as a practical tool for SHM.  

 

Overall, this research illustrates a novel application of PINNs 

and contributes to the existing body of knowledge in structural 

health monitoring (SHM) by introducing a PINN-based 

approach for estimating the structural parameters of bridge 

girders. Future work will focus on extending the use of PINNs 

to damage detection scenarios and integrating multiple PINNs 

to model more complex structural systems comprising 

assemblies of discrete elements. 
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ABSTRACT: The inspection, maintenance and monitoring of existing infrastructure are critical aspects for ensuring a proper 

structural performance during their lifespan, also guaranteeing their capacity vs. the ultimate limit state. The use of structural 

health monitoring systems has become increasingly important for managing infrastructural assets, not only to detect structural 

damages and degradation phenomena but also to evaluate the performance of structures subjected to retrofit interventions. This is 

achieved using signal processing techniques that integrate statistical methods and machine learning algorithms within the 

framework of statistical pattern recognition. The proposed framework introduces a novel statistical analysis framework aimed at 

characterizing the normal behaviour of structures, detecting potential damage development. The method is applied to a suspended 

steel truss healthcare facility, demonstrating its effectiveness in characterizing its typical structural behaviour, detecting any onset 

of possible structural decay. While the method is demonstrated on a specific case study, it is designed to be adaptable to a wide 

range of structural systems. The ultimate objective is to develop a reliable analysis tool for the early detection of damage, thereby 

enhancing the efficiency of maintenance strategies and ensuring long-term structural safety. 

KEY WORDS: Structural health monitoring, statistical pattern recognition, damage detection, data analysis. 

1 INTRODUCTION 

Infrastructure systems play a crucial role in modern society, 

making it essential to ensure their functionality under both 

normal and extraordinary loading conditions. Maintenance, 

inspections, and structural monitoring are fundamental for 

preserving resilience [1]. In recent decades, traditional 

inspection systems have been increasingly replaced by 

structural health monitoring (SHM) systems, particularly for 

structures that are highly exposed to atmospheric actions and 

external loads, such as bridges and wind turbines [2], but also 

for historical buildings [3], [4]. SHM has been introduced to 

support owners and authorities to find optimal life-cycle 

management solutions and, ultimately, to prevent structural 

failures. This is achieved through a damage identification 

strategy, which encompasses the detection, diagnosis, and 

prognosis of damage [5]. 

These systems rely on the implementation of a monitoring-

based strategy, which includes real-time measurement of 

structural responses and data analysis to identify anomalies 

and/or damage at an early stage [6]. In this context, damage is 

defined as any alteration in the material and/or geometric 

properties of bridge components that negatively affect the 

bridge’s current or future service performance and safety [5]. 

Another significant application of SHM systems involves the 

assessment of retrofit interventions on existing structures. 

Specifically, SHM can be used to determine the most suitable 

intervention strategy, evaluate the structural response after the 

intervention, and monitor the structure’s behaviour throughout 

the different phases of the intervention [7], [8]. 

This study proposes a robust framework for processing SHM 

data from existing infrastructure, with the goal of enabling 

early detection of structural anomalies or damage. The 

proposed methodology combines time series modelling using 

statistical algorithms for the characterization of normal 

structural behaviour, filtering out environmental influences—

such as temperature—and identifying deviations indicative of 

potential structural issues.  

The manuscript is structured as follows: Section 2 describes 

the case study and presents the initial analyses conducted on the 

structure; Section 3 introduces the SHM data and provides 

preliminary evaluations; Section 4 details the proposed data 

analysis framework and its application to the case study; 

finally, Section 5 presents the conclusions and outlines 

directions for future research. 

2 DESCRIPTION OF THE CASE STUDY 

The analysed structure is a suspended steel truss that serves 

as the roof of a strategic infrastructure located in northern Italy. 

The building was completed in 2008. This structure is 

particularly complex because, as illustrated in Figure 1, the 

truss system supports the upper three floors through steel 

columns subjected to tensile stresses. The roof is directly 

connected to continuous concrete walls that extend from the 

foundations to the roof. 

The building, and specifically its roof, underwent a retrofit 

intervention aimed at enhancing the strength of the connections 

within the roof structure. Following the retrofit process, the 

installation of a SHM system was defined with the objective of 

assessing the effectiveness of the strengthening interventions, 

monitoring the real time safety conditions of the structure, and 

supporting infrastructure owners in identifying optimal life-

cycle management solutions. 
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 Operational modal analysis of the case study 

Before the design of the SHM system an operational modal 

analysis (OMA) was performed with the aim of identify 

dynamic parameters of the steel truss structure and better 

understand the complex behaviour of the entire steel structure. 

This type of analysis is commonly performed on various types 

of structures like bridges [9], historical buildings [10], and 

timber structures [11]. 

The OMA was performed by installing eight piezoelectric 

monoaxial accelerometers in different positions and 

configurations on the roof, resulting in a total of 33 

measurement locations. The results of the modal identification 

are presented in Figure 2.  

 

  
1.616 Hz 1.947 Hz 

  
2.539 Hz 5.078 Hz 

Figure 2. First mode shapes of the structure 

These results indicate that the longitudinal and transverse 

modes exhibit a behaviour involving the overall structure, 

whereas vertical modes are related to individual truss elements, 

without demonstrating a global structural response.  

Table 1 presents the modal frequencies and the corresponding 

complexity of the mode shapes obtained from the OMA 

analysis. The analysis was conducted using the frequency 

domain decomposition method with Artemis Modal Pro 

software. 

 

 

 

Table 1. Principal vibration frequencies 

Mode type 
Frequency 

[Hz] 

Complexity 

[%] 

1st Longitudinal 1.66 0.899 

1st Transversal 1,953 1,741 

2nd Transversal 2,539 5,886 

1st Vertical 5,078 18,075 

2nd Vertical 16.992 6.052 

3rd Vertical 17.969 19.657 

 Description of the monitoring system 

The SHM system was installed in 2021 to monitor both static 

and dynamic parameters, enabling the acquisition of the 

structure's modal characteristics and the evaluation of stress in 

the most heavily loaded elements of the truss roof. 

Additionally, thermocouples and ambient temperature sensors 

were implemented to assess the environmental conditions of 

the site, as temperature is one of the primary sources of 

variability in structural systems [12]. The setup for the analysis 

of vibration characteristics was based on the results of the 

OMA analysis reported in section 2.1. In this context, 11 

uniaxial piezoelectric accelerometers were installed on the steel 

truss elements.  

Ambient temperature sensors were installed in two different 

locations to assess variations in ambient temperature and 

humidity within the roof structure. Additionally, a wind sensor 

was used to investigate potential interactions between this 

external load and the structural behaviour of the building.  

The data acquisition system selected for the monitoring 

system is structured around a primary acquisition unit (master), 

which is connected to the infrastructure’s LAN for remote data 

transmission. This master unit is linked to two subordinate units 

(slaves) via a backbone running along the extrados of the roof, 

which, in turn, are connected to both static and dynamic 

sensors. Figure 3 shows the configuration of the SHM system 

implemented for the case study. 

The evaluation of stresses was conducted through the 

installation of 24 vibrating wire strain gauges on the truss 

elements, equipped with an internal temperature sensor, 

complemented by 4 steel thermocouples to assess the influence 

of temperature on the steel elements. Both types of sensors 

were welded onto the steel elements of the roof structure, as 

shown in the configuration presented in Figure 4. A relevant 

Figure 1. Schematic representation of the structure 
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number of sensors was installed on the vertical steel elements 

connecting the lower floors to the roof, as these components are 

critical to the floor stability. 

 

 

Figure 3. Configuration of the SHM system 

 

 

Figure 4. Typological configuration of vibrating wire strain 

gauges and thermocouple sensors in the truss structure 

3 ANALYSIS OF THE MONITORED DATA 

In this paper, only the data related to the static sensors are 

presented, with a particular focus on the analysis of strain 

sensor measurements.  

Figure 5 illustrates the strain behaviour over a three-year 

period for five sensors. In some of that, such as VW.01 and 

VW.03, strain variations closely follow seasonal temperature 

fluctuations. Conversely, in other cases, such as VW.02, the 

strain behaviour appears independent of temperature 

variations.  

This observation is further emphasized by analysing the 

correlation between strain sensor data and temperature 

variations. In Figure 6 the strain measurements are plotted 

against ambient temperature fluctuations to assess the extent to 

which thermal effects influence structural behaviour. This 

comparative analysis helps distinguish temperature-dependent 

responses from other potential factors affecting strain 

variations. 

 

 

Figure 5. Strain sensors behaviour – block A 

 

 

 Figure 6. Representation of the strain observation against the 

temperature value 

The behaviour of some sensors exhibits a linear correlation 

with temperature, whereas others do not show this dependence, 

as observed in the cases of VW.02 and VW.06. Noticeably, 

VW.02 appears to be completely uncorrelated with 

temperature; however, distinct patterns can still be identified. 

Specifically, its behaviour reflects a horizontal translation of an 

inclined line along the horizontal axis. 

This pattern is influenced by temperature variations 

occurring during specific periods of the year. When analysing 

the behaviour of an individual sensor in relation to temperature, 

with measurements categorized by month (Figure 7), it 

becomes evident that each period of the year corresponds to a 

distinct structural state of the element. Furthermore, after one 

year, the sensor's behaviour tends to return to a state similar to 

that of the previous year, indicating a recurring annual trend. 

After an on-site inspection, it was found that this behaviour 

was likely caused by friction grip bolted connections which, 

due to possible loss of preload, converted into standard shear 

connections. As a result, the structural elements exhibited a 

different behaviour compared to the expected response of roof 

elements subjected to daily and seasonal temperature 

variations. It emerged that some sensors exhibited a typical 

linear relationship with temperature variations, while others 

displayed a distinct behaviour characterized by multiple linear 

trends that were temperature dependent.  
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Figure 7. Representation of strain sensor respect to external 

temperature, divided by period 

4 STATISTICAL ANALYSIS OF THE STATIC SENSORS 

The adopted methodology consists of several phases. First, a 

data-cleaning process is performed on the raw data and the 

entire timeseries was divided in three different groups: train 

dataset, covering two years, in which the statistical algorithm 

was trained; validation dataset, spanning in the next ten months, 

used to define the warning and the alarm boundaries for the 

control chart; and the test dataset consisting on thirty days, 

using to validate the entire statistical process. In this phase also 

an under sampling was performed and the median of each four 

hours was assumed like the values. 

Then, for each sensor, a time series model is estimated to 

capture the natural variations in the data while accounting for 

daily and seasonal cycles. By employing this approach, the 

estimated model effectively represents the expected sensor 

behaviour under normal operating conditions. Additionally, the 

model enables the removal of the influence of steel 

temperature, from the signal. 

The developed monitoring system is designed to track real-

time prediction errors generated by each estimated model. 

Specifically, a control chart is implemented for each sensor, 

based on a statistical control metric and equipped with alert and 

alarm thresholds. The control chart triggers an alarm when 

deviations from the expected behaviour are detected. 

Furthermore, it is designed to differentiate between temporary 

anomalies and structural anomalies, as specified in the system 

requirements. 

 Statistical model development 

The forecasting methodology used in this study is based on 

the seasonal autoregressive integrated moving average with 

exogenous variables (SARIMAX) model. This class of 

autoregressive models is extensively applied in SHM to detect 

structural anomalies, particularly in time series data analysis for 

damage identification [5], [13]. By leveraging past 

observations and incorporating external influencing factors, 

SARIMAX models effectively characterize the expected 

behaviour of a system over time [14].  

In this application, temperature readings from thermocouples 

served as exogenous inputs. The autoregressive (AR) 

components define the present response as a function of 

previous observations, while the moving average (MA) 

components refine predictions by accounting for past errors. To 

enhance accuracy, the model also integrates seasonal 

components to capture periodic fluctuations occurring on both 

daily and annual scales. The generalized formulation of this 

model is expressed as: 

(1 − 𝐵)𝑑(1 − 𝐵)𝐷𝑦𝑡

= 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝

+ Φ1𝑦𝑡−𝑠 + Φ2𝑦𝑡−2𝑠 + ⋯
+ Φ𝑃𝑦𝑡−𝑃𝑠 + θ1𝜖𝑡−1 + θ2𝜖𝑡−2

+ ⋯ θ𝑞𝜖𝑡−𝑞 + Θ1𝜖𝑡−𝑠 + Θ2𝜖𝑡−2𝑠

+ ⋯ Θ𝑄𝜖𝑡−𝑄𝑠 + 𝜖𝑡 + 𝛽𝑋𝑡 

(1) 

Where: 

▪ B is the lag operator, such that: 

(1 − 𝐵)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 
(1 − 𝐵𝑠)𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−𝑠 

(2) 

▪ 𝜙1, …, 𝜙𝑝 are the autoregressive parameters. 

▪ 𝜃1, …, 𝜃𝑞 are the moving average parameters. 

▪ Φ1, …, Φ𝑃 are the seasonal autoregressive 

parameters. 

▪ Θ1, …, Θ𝑄 are the seasonal moving average 

parameters. 

▪ 𝜖 represents an error term, assumed to follow a 

Gaussian distribution. 

▪ 𝑋𝑡 represents the temperature recorded by the 

temperature. 

The selection of the model, including the determination of 

the parameters p, d, q, P, D, Q, as well as the subsequent 

estimation of model coefficients, was guided by the second-

order Akaike information criterion. This criterion was 

employed to optimize model selection by balancing goodness-

of-fit and complexity, ensuring an optimal trade-off between 

model accuracy and overfitting.  

The results of the models for the sensor VW.01 are presented 

in Figure 8 were the entire time series was reported, and in 

Figure 9 were only the results for the test dataset is presented. 

The figures show the relatively low and uncorrelated behaviour 

of the residuals that’s denotes the good behaviour of the 

algorithm for this type of analysis. 

 

Figure 8. Representation of the results of the SARIMAX 

model for the entire time series for sensor VW.01 

-40

-30

-20

-10

0

10

20

30

40

50

60

[µ
ε]

[ ºC ]

Vibrating wire strain gauge - VW.02

6/2021 7/2021 8/2021 9/2021 10/2021 11/2021 12/2021 1/2022 2/2022 3/2022 4/2022 5/2022

6/2022 7/2022 8/2022 9/2022 10/2022 11/2022 12/2022 1/2023 2/2023 3/2023 4/2023 5/2023

6/2023 7/2023 8/2023 9/2023 10/2023 11/2023 12/2023 1/2024 2/2024 3/2024 4/2024

train validation test

train validation test



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-046 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 308 

 

Figure 9. Representation of the SARIMAX model for the test 

dataset for sensor VW.01 

In Table 2, different metrics are presented to compare the 

model’s performance for the analysed sensors. The used 

metrics include root mean square error (RMSE), mean absolute 

error (MAE), median absolute error (MedAE), and the 

coefficient of determination (R²) for the test dataset residuals. 

The model's performance demonstrates generally strong 

predictive capability, with high R2 values in most cases. A 

subset of three sensors exhibits optimal performance, 

characterized by minimal error metrics and an R2 of 0.99, 

indicating an excellent model fit. Another group of ten sensors 

shows good performance, with moderate error values yet 

maintaining high R2, suggesting the model effectively captures 

underlying patterns. However, five sensors present higher error 

values, with some displaying lower R2, particularly those with 

RMSE exceeding 2, which may indicate limitations in the 

model’s predictive accuracy for these cases. 

Table 2. Residuals metrics values 

Sensor RMSE MAE MedAE R2 

VW.01 0.81 0.63 0.52 0.86 

VW.02 0.94 0.69 0.55 0.99 

VW.03 0.93 0.71 0.56 0.92 

VW.04 1.35 0.98 0.73 0.94 

VW.05 0.62 0.42 0.25 0.99 

VW.06 0.60 0.38 0.25 0.99 

VW.07 1.08 0.85 0.70 0.99 

VW.08 1.17 0.83 0.61 0.99 

VW.09 2.26 1.74 1.36 0.97 

VW.10 2.68 1.95 1.41 0.77 

VW.11 0.37 0.29 0.23 0.99 

VW.12 1.08 0.78 0.51 0.95 

VW.13 2.64 1.90 1.47 0.88 

VW.14 2.02 1.48 1.08 0.93 

VW.15 1.53 1.20 1.01 0.99 

VW.16 1.03 0.75 0.61 0.99 

VW.17 1.31 0.97 0.68 0.88 

VW.18 1.25 0.95 0.74 0.80 

VW.19 1.77 1.30 0.81 0.96 

VW.20 0.69 0.52 0.40 0.99 

 

 Control chart development 

For the monitoring phase, an adaptive exponentially 

weighted moving average (AEWMA) control chart is proposed 

[15], [16]. This type of control chart integrates exponential 

smoothing with an adaptive mechanism that allows for a faster 

response to significant changes. As a result, the control statistic 

is dynamic and adjusts based on observed variations.  

The mathematical formulation of this adaptive statistic is 

given by: 

 

𝑆𝑖 = 𝑆𝑖−1 + 𝜑(𝑥𝑖 − 𝑆𝑖−1) (3) 

 

Where 𝜑 is defined as: 

 

𝜑(𝑒) = {
𝑒 + (1 − 𝜆)𝑘      𝑠𝑒 𝑒 < −𝑘
𝜆𝑒                𝑠𝑒 − 𝑘 ≤ 𝑒 ≤ 𝑘
𝑒 − (1 − 𝜆)𝑘         𝑠𝑒 𝑒 > 𝑘

 (4) 

 

The advantage of this generalization lies in its ability to 

enable the control statistic to respond more rapidly to abrupt 

and high-intensity deviations, specifically when |e| > k. In this 

case the values used for the analysis are λ = 0.1 e k = 3 [15]. 

By incorporating exponential smoothing, the AEWMA 

control chart is able to detect anomalies that develop gradually 

over time. However, its adaptive nature also allows for the 

identification of sudden, unexpected deviations. 

This adaptability will later be leveraged to distinguish 

transient anomalies, which return to a normalized operational 

state within a short time frame. In essence, this type of control 

chart enables differentiation between structural anomalies, 

which persist over time, and transient anomalies, which resolve 

naturally after a brief period. 

 Definition of warning and alert boundaries 

To determine the warning and alarm thresholds associated 

with the control statistic described in the equation (3), a 

statistical approach is employed based on the concept of mean 

time to false alarm. Specifically, the average run length (ARL₀) 

represents the expected number of observations that occur 

before a false alarm is triggered. 

The selection of alert thresholds is carried out by specifying 

a predefined ARL₀ value. Once this value is established, the 

corresponding threshold can be determined using statistical 

simulation techniques. 

In particular, the thresholds are computed to ensure 

compliance with the ARL₀ criterion through the bisection 

method, as discussed in Qiu (2013) [17]. This approach ensures 

that the alarm system maintains a controlled balance between 

sensitivity and reliability. 

 Results of the analysis 

In this section the results for the application of the AEWMA 

control chart for different sensors are shown. Figure 10 reports 

the results of the AEWMA control chart and the boundaries 

definition for the test dataset of the sensor VW.01. It shows a 

good behaviour that has value around zero, even if in the last 

part the behaviour of the control chart denotes a linear trend 

that is contained into the defined boundaries elsewhere. 
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Figure 10. Control chart for VW.01 test dataset 

In Table 3 the boundaries for all the vibrating wire sensors 

are reported. It shows that the value of the boundaries is 

different one to each other and, clearly, the higher value is 

related to the timeseries that shows more difficulties for the 

model to fit the data and determine higher residuals value also 

in Table 2. But, caused by the limits were defined with the same 

ARL₀, we aspect that the resilience of the control chart is the 

same for all the sensors. 

 

Table 3. Evaluation of the boundaries of each sensor 

Sensor RMSE MAE MedAE R2 

VW.01 0.607 1.156 0.607 1.156 

VW.02 3.735 8.950 3.735 8.950 

VW.03 1.258 2.729 1.258 2.729 

VW.04 8.620 10.540 8.620 10.540 

VW.05 0.878 6.292 0.878 6.292 

VW.06 0.318 1.150 0.318 1.150 

VW.07 4.264 5.465 4.264 5.465 

VW.08 15.821 35.360 15.821 35.360 

VW.09 5.335 7.336 5.335 7.336 

VW.10 7.513 20.983 7.513 20.983 

VW.11 0.372 0.542 0.372 0.542 

VW.12 1.624 3.294 1.624 3.294 

VW.13 11.633 16.041 11.633 16.041 

VW.14 7.964 9.995 7.964 9.995 

VW.15 6.237 8.872 6.237 8.872 

VW.16 5.176 9.579 5.176 9.579 

VW.17 3.223 7.446 3.223 7.446 

VW.18 21.752 37.891 21.752 37.891 

VW.19 7.421 10.413 7.421 10.413 

VW.20 3.031 6.434 3.031 6.434 

 

 Manual introduction of external perturbations 

This paragraph analyses the behaviour of the control chart 

when different outliers appear in the time series.  

In this case, an outlier was manually introduced into the test 

measurements. The variation was added at observation number 

50 in the test dataset, with a value equal to twice the standard 

deviation of the validation dataset (12.0με). The control chart 

(Figure 11) shows two consecutive outliers at the point where 

the anomaly was introduced, indicating an isolated change in 

sensor behaviour. 
 

 

Figure 11. Control chart found with introduction of instant 

changing of the timeseries 

 

Instead, if a constant shift or a linear trend occurs at the same 

point in the time series, the variation in the control chart differs 

from the previous case. In Figure 12 a constant shift equal to 

twice the standard deviation of the validation dataset was 

introduced. Notably, in the subsequent observation of the time 

series, there is no opposite variation in the values. 

 

Figure 12. Control chart found with introduction of shift in the 

observations  

This analysis demonstrates how different types of anomalies 

can be detected using this statistical approach and how 

variations in the control chart can help distinguish between 

them. Specifically, it allows for the differentiation between 

instantaneous sensor variations and constant offsets or linear 

trends in the time series. These distinctions can differentiate 

appropriate maintenance strategies for both the structure and 

the SHM system itself. 

Moreover, this type of control, associated with the first data 

cleaning phase, makes it possible to differentiate issues related 

to data acquisition—such as corrupted signals—which may 

result in uncorrelated spikes within the time series. These 

anomalies can be separated from other types of perturbations, 

such as constant shifts, linear trends, and correlated spikes, 

which are more likely to be associated with structural 

phenomena.  

5 CONCLUSIONS 

This article proposes a statistical approach for continuously 

evaluating data collected from SHM systems, supporting 

infrastructure authorities in making informed decisions for the 

life-cycle assessment of their assets. The proposed framework 

individually analyses static sensors along with their associated 
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external variables—in this case, thermocouples—to define the 

system's normal behaviour.  

A SARIMAX model is applied to identify both long-term and 

short-term patterns in the sensor measurements, assess 

correlations with external variables, and filter out their effects 

from the data. Subsequently, the residuals are monitored using 

an AEWMA control chart, which does not only consider the 

current residual value but also accounts for deviations from 

previous residuals. This method further enables the 

differentiation of various types of anomalies.  

The control chart within the proposed framework enables the 

differentiation of various types of signal perturbations 

associated with different forms of structural degradation. 

Additionally, the data cleaning process and the control chart 

allow for the distinction between these structural anomalies and 

those arising from data acquisition issues. 

For this case study, the framework demonstrated effective 

performance. The next phase of this research involves 

extending the framework to groups of sensors, ensuring that 

potential sensor-specific issues do not trigger unnecessary 

alarms or warnings for infrastructure authorities, thereby 

improving the robustness of the monitoring system. In the 

future, it will also be necessary to apply this type of control to 

various types of structures to verify and confirm its 

effectiveness under different conditions and with varying input 

parameters. This will help assess the system's reliability and 

adaptability across various structural and environmental 

scenarios. 
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ABSTRACT: The use of computer vision supported by artificial intelligence methods is growing in popularity for solving 

problems concerning the assessment of building and civil engineering structures. At the same time, SHM-class systems allow for 

the collection of large amounts of data. Despite the rapid development of machine learning and the increasing number of solutions 

supporting the process of technical condition diagnosis of objects, the amount of damage that can be detected in images using 

these algorithms is significantly limited. At the same time, due to the lack of publicly available datasets that can be used to train 

AI algorithms, the actual support of the civil engineer's work with these algorithms is limited to a few of the most common 

problems. This paper presents the current applicability of artificial intelligence methods for damage detection of buildings and 

engineering structures based on images. At the same time, the authors focus on showing the limitations for the development of 

artificial intelligence algorithms due to the lack of publicly available datasets. The paper identifies a research gap related to the 

lack of datasets for damage, pointing out the types of damage, types of damaged materials and solution classes not covered in 

research on the application of deep learning to the diagnosis of the technical condition of buildings and civil engineering structures. 

 

KEY WORDS: SHMII-13; Extended Abstract; Deep learning; Dataset; Damage; Technical condition. 

1 INTRODUCTION 

The rapid development of artificial intelligence (AI) 

algorithms, including deep machine learning (DL), means that 

these methods are more and more often being used as tools to 

support the assessment of the technical condition of building 

and engineering structures. At the same time as SHM-class 

systems are adopted more widely, they facilitate the gathering 

of data on structural behavior, suitable for deep machine 

learning analysis. [1], [2]. The authors understand SHM-class 

systems as those that collect data about the structure's 

condition, analyze these data, and provide information when 

limit values are exceeded. This allows for early response to 

potential threats (e.g., informing about excessive strain in a 

structural element, which could lead to a reduction in load 

capacity) and supports the development of predictive 

maintenance strategies. 

Researchers are implementing deep learning-based solutions 

for a wide range of data types. Satellite images [3], [4], Ground 

Penetrating Radar images [5], measurements from 

inclinometers and strain gauges [1], signals from devices 

passing over bridge structures [6], XCT images [7], damage 

images [8], video data [9] are being used.  

The assessment of the technical condition of building and 

engineering structures can be carried out both on a global level 

(e.g., classification of damaged buildings after disasters [3], 

detection of ground deformations [4]) as well as with regard to 

building components (e.g., crack detection in brickwork 

masonry [8]), down to the level of detecting internal damage 

within materials (e.g., corrosion of reinforcement bars in 

concrete elements [7]). 

This paper explores the current capabilities of applying deep 

learning and computer vision techniques to the damage 

detection in buildings and engineering structures using image 

data. For the purposes of this study, the term “image” is defined 

specifically as a photograph depicting damage, as opposed to 

general raster data derived through digital processing of 

alternative data sources - such as structural vibrations 

transformed into spectrograms with Digital Signal Processing. 

Moreover, it should be noted that satellite images [3], [4], 

Ground Penetrating Radar images [5], XCT images [7] are not 

discussed here. The article particularly highlights limitations in 

the development of artificial intelligence algorithms due to lack 

of publicly available datasets. A research gap is discussed 

regarding the absence of damage datasets, in terms of damage 

types and types of damaged materials. 

 Neural network architectures and their associated 

performance are not the subject of this discussion. However, it 

should be mentioned that a likely solution to the problem of 

limited datasets for construction-related data may be the 

adaptation of architectures dedicated to Embedded Vision 

Systems. 

2 OVERVIEW OF SOLUTION.  DEVELOPMENT AND 

AVAILABILITY OF DATASETS 

The application of deep learning in the assessment of the 

technical condition of buildings and engineering structures 

based on image data involves addressing tasks such as damage 

classification, detection, and segmentation. Researchers are 

using deep learning for the classification of damage such as  

paint deterioration [10], vegetation [10], cracks [10], [11], [12], 

[13], corrosion [10], [11], [12], spalling [11], [12], 

efflorescence [11], exposed bars [11], [12]. Object detection is 

used, among others, for problems such as cracks [14], [15], 

[16], spalling [14], [15], [17], pop-out [14], exposed rebar [14], 

Is it possible that AI can help us detect all damage in structural assets? A discussion 

on the scope of applicability of DL methods for diagnosis of the construction assets’s 

technical condition 
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efflorescence [17]. Segmentation helps to solve problems such 

as cracks [16], [18],  corrosion [19], mildew [19], ponding [19], 

exposed rebar [20], [21], delamination [20], [21], steel fatigue 

crack [22]. 

The development of deep learning algorithms is strongly 

dependent on the availability of data that can be used to train 

these models. Despite the wide range of damage types for 

which deep learning-based solutions have been developed, as 

described above, the number of open datasets (i.e., those 

available for download without the need to contact the author) 

remains significantly limited. As demonstrated by the research 

conducted by the authors of this publication [23], in the case of 

bridge structures, out of more than 120 identified damage types 

that may occur, yet open training datasets are available for only 

10 of them. The lack of openly accessible datasets is a 

significant factor constraining the progress of deep learning 

algorithm development. In the lack of shared data, subsequent 

researchers are compelled to create new solutions from scratch, 

rather than refining or building upon existing methods. 

Among the various research problems addressed in the field, 

crack detection - particularly in concrete and asphalt elements 

- emerges as the one for which the largest number of open 

datasets is available. Datasets have also been developed for 

components made of brick and structural steel. However, it is 

important to emphasize that, from an engineering point of view, 

the characteristics of cracks - especially their shape and size - 

differ significantly depending on the material. A considerable 

number of datasets are also available for issues related to the 

corrosion of concrete and reinforcing steel. 

When categorized by material type, most identified datasets 

refer to damage in concrete and asphalt structures. In contrast, 

datasets concerning damage in timber and stone elements 

remain limited. 

It is important to emphasize the existing imbalance between 

the range of damage types addressed in proposed solutions and 

the availability of corresponding datasets that have been made 

publicly accessible by the research community. A notable 

example is the detection of honeycomb defects, which, 

although investigated in scientific publications [24], [25]. In 

both cited cases, the datasets used in the experimental studies 

were not disclosed, and this specific type of defect is not 

represented in any existing public datasets. This situation 

highlights that, at present, the detection of honeycomb-related 

damage is only possible within individual research groups that 

maintain proprietary datasets, thereby limiting the broader 

applicability and scalability of deep learning methods for 

structural diagnostics. 

To enable meaningful progress in this area, particularly 

regarding the development and refinement of algorithms 

targeting such defects, the creation and dissemination of open-

access datasets is an essential prerequisite. Only then can the 

research community effectively train and improve deep 

learning-based diagnostic tools for widespread engineering 

applications. 

For datasets, the following aspects should be noted [23]: 

• Some of the open datasets are described in a not very 

detailed way and do not contain information relevant for 

the engineers (for example, the damage size). 

• Some of the open datasets are shared in unusual locations 

(e.g., via the author's cloud storage, rather than on 

dedicated data sharing websites like Zenodo, GitHub, 

kaggle, Mendeley Data). 

• For many damage types, available open datasets were not 

identified. As important, there are datasets in which 

different damage types are labeled as a single damage type 

class. Re-labeling them, using classes dedicated to specific 

damage types, could increase the applicability of DL 

methods for diagnosis of the construction asset's technical 

condition. 

• It should also be taken into account that a large number of 

datasets for a particular damage type does not mean yet 

that the problem of damage detection has been solved. 

Often, the developed solutions allow only to detect damage 

of a certain size or occurring on a surface with a similar 

appearance. 

An essential aspect of applying deep learning methods for the 

assessment of a construction asset’s technical condition is the 

manner in which datasets are prepared. Most publicly available 

datasets contain damage labels that are purely geometric in 

nature. Based on these annotations, it is possible to localize 

pixels within an image that correspond to a specific damage 

type. However, such data is strictly visual and lacks critical 

contextual information necessary for a comprehensive 

engineering assessment - such as expert evaluation, 

georeferencing, the material type of the damaged element, or 

the date of damage detection. 

Consequently, solutions developed using such datasets 

primarily address visual recognition tasks and enhance the 

visibility of defects in imagery, but they do not resolve 

engineering-level diagnostic challenges. 

Data should comply with the FAIR principles [26] – that is, 

they should be Findable, Accessible, Interoperable, and 

Reusable. The datasets should be hosted in a permanent way on 

servers and be accessible to train deep learning models at any 

time, interoperable between different systems and replicable 

for different construction structures. 

The datasets used for training should pass technical 

validation and have a high level of rawness. They should not be 

processed before training, in particular, it is not good practice 

to collect a small amount of data and then augment the data to 

present this as a dataset. Augmentation - if it is planned to be 

executed - should be implemented as part of the model training 

process. In particular, it should be considered that for 

engineering problem solving, inadequate planning of the data 

augmentation process can result in the loss of information 

relevant to structural engineers, such as the direction of damage 

or its size. 

3 CONCLUSION 

The conducted analysis has demonstrated that algorithms based 

on deep learning and computer vision are a frequent subject of 

research. Although the solutions presented by researchers 

address the detection of a wide range of defects in concrete, 

steel, brick, and asphalt components, the number of publicly 

available datasets for training deep neural networks is 

significantly smaller. 

This situation considerably limits the potential for 

developing deep learning algorithms for the assessment of a 

construction asset’s technical condition. Moreover, the time 

that researchers must dedicate to creating their own datasets - 
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due to the lack of publicly available ones - could instead be 

allocated to improving the robustness or computational 

efficiency of deep learning algorithms. 

However, in order to develop solutions that address 

engineering-level challenges (e.g., classification of the degree 

of damage), rather than solely visual tasks (e.g., identifying the 

damage area through pixel-wise prediction), it is necessary to 

establish guidelines for dataset creation. These datasets should 

include not only visual information but also metadata relevant 

from the perspective of structural and civil engineers. 
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ABSTRACT: Vision-based vibrational monitoring aims to extract the modal parameters of civil structures—such as natural 

frequencies—from recorded video data for Structural Health Monitoring (SHM) purposes. The use of drones for vision-based 

vibrational monitoring is particularly promising, as drones can access vantage points for video recording that may otherwise be 

difficult to reach. However, certain drawbacks exist, including potential limitations in resolution, stability, and environmental 

sensitivity. This paper explores the capabilities, opportunities, and limitations of using drones for vision-based vibrational 

monitoring. To evaluate technological limits, a target with controlled displacement is used to test various combinations of target 

distances, displacement amplitudes, and displacement frequencies. Additionally, factors such as environmental conditions and 

drone hardware are considered. The study defines the practical limits of this approach, aiming to determine the minimum 

displacement of a vibrating bridge that can be detected by drones. Case studies from the literature are used as benchmarks to 

identify the dynamic properties of different types of bridges. 

KEY WORDS: drones, structural health monitoring, computer vision 

1. INTRODUCTION 

The deterioration of transportation infrastructure and the 

limited availability of resources have made Structural Health 

Monitoring (SHM) essential for supporting bridge 

management. Within the framework of SHM, vibrational 

monitoring relies on the global dynamic response of a structure 

—typically extracting modal parameters such as natural 

frequencies and mode shapes— to identify damage [1]. 

Traditionally, vibrational monitoring is performed using fixed 

systems installed on structures. However, the high cost of 

components and maintenance makes this approach viable only 

for a limited number of bridges [2] . Therefore, there is a 

growing demand for affordable, reliable, portable, and reusable 

SHM instrumentation to reduce monitoring costs. Among 

emerging sensing technologies, commercial devices such as 

smartphones, cameras, drones, and robotic sensors present 

promising applications [3]. For instance, smartphones can 

gather vibrational measurements with embedded 

accelerometers [4]. Moreover, advancements in computer 

vision techniques enable the extraction of displacement and 

vibrational data from videos recorded by commercial 

smartphone and drone cameras [5]. While smartphones and 

fixed cameras need the physical presence of an operator to 

record videos close to the target point, drones can be controlled 

remotely and can reach vantage viewpoints without 

compromising operator safety [6]. Moreover, in addition to 

vibrational measurements, drones can gather 2D images of 

multiple bridge components during the same inspecting 

session. When combined with advanced computer vision and 

machine learning techniques, these images can enable a fast 

and efficient system for surface damage and crack detection 

[7], [8] However, being flying objects, drones experience in-

flight vibrations and unwanted movements (referred as 

egomotion) that may interfere with their ability to record small 

structural vibrations of the bridge. As highlighted in [9], there 

is still the need to assess the field of applicability of commercial 

drone technology for bridge dynamic identification. The goal 

of this study is to evaluate the capabilities and limitations of 

drone-based vision systems for vibrational monitoring. The 

final scope is to define the practical limits of their application 

in identifying the dynamic behavior of bridges. Two stages are 

involved. Firstly, a literature survey identifies the typical range 

of frequencies and displacements for bridges with different 

materials, structural typology and span. Secondly, 

experimental tests are performed to assess the limits of 

applicability of vision-based approach using drones. The 

results of the tests are compared with the displacement and 

frequency range exhibited by real-scale bridges. 

This paper is structured as follows. Section 2 describes the 

typical range of vibrational displacements and frequencies for 

different types of bridges. These ranges are then compared in 

section 3 with drone vision-based system capabilities 

determined with laboratory tests. Results are critically 

discussed in section 4 while  section 5  presents conclusions. 

The overall flowchart is shown in Figure 1. 

 

 

Figure 1: flowchart of the paper. 
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2. LITERATURE SURVEY 

This section reviews existing literature to evaluate the typical 

behavior of bridges in terms of deflections and natural 

frequencies. This preliminary analysis, combined with the 

results presented in Section 3, will support the assessment of 

the feasibility of a vision-based approach using drones. Table 1 

presents displacement and frequencies data for various types of 

bridges, including pedestrian bridges, masonry bridges, 

concrete bridges, and cable-stayed bridges. The row of the table 

are organized in ascending order based on the length of the  

Table 1. Vibrational displacements and frequencies of different types of bridges, ordered by main span length. 

Reference Bridge Type 

and main 

span [m] 

Load type Static 

deflection 

[mm] 

Dynamic 

deflection 

[mm] 

First natural 

frequency 

[Hz] 

and mode 

type 

Second 

natural 

frequency 

[Hz] and 

mode type  

Measurement type 

[10] 

 

Masonry Arch 

Bridge, 7.7   

Train (weight 

of each boogie 

34 ton) 

< 1 n.a. n.a. n.a. Fibre Bragg Grating 

cables and Digital 

Image Correlation 

[11] Concrete 

bridge, first 

span 13.7  

2-axle truck a 

3-axle bus 

0.25 (truck) 

and 0.45 

(bus)  

< ±0.05 n.a. n.a. Fiber Optics and 

camera 

[12] Steel-concrete 

bridge, 19 

32-ton truck 3  < ±0.04 n.a. n.a. LVDT and 

accelerometers 

[13] Pedestrian 

bridge, 23 

Pedestrians 

(single jump) 

n.a. ± 2 3.86  5.87  Vision-Based on drone 

[14] Steel road 

bridge, 25 

Heavy trucks 6 ± 1.5 3 n.a. Vision-Based fixed 

[15] Pedestrian 

bridge, 27 

Single person 

jumping 

n.a. ± 2 2.98 

(bending) 

3.70 (torsional) Vision-Based 

[16] Concrete, 32  Heavy trucks < 5 ±1 3.48  n.a. Vision-Based 

[17] Continuous 

steel-concrete 

bridge, 40+40  

40-ton truck  < 41 ±1 2.7 (not 

specified) 

4.7 (not 

specified) 

Vision-Based, on 

drone, corrected with 

on-camera 

accelerometers 

[18] Continuous 

steel bridge, 

4x45 

30-ton and 40-

ton truck 

<5  < ±0.5 Between 2 

and 3 

n.a. Vision-Based 

[19] PC railway 

bridge, 50  

High-speed 

train 

1.5 < ±0.2 3.19 

(symmetric 

bending) 

3.87 (torsional) Laser velocity 

displacement 

transducer (LVDT) 

[6] Suspended 

pedestrian 

bridge, 67  

Pedestrians 

(jumping) 

n.a. ±15mm n.a.  0.5  Vision-Based on drone 

 

[20] Concrete 

Bridge, 110  

8-ton truck 5.65  n.a. n.a. n.a. Vision-Based on drone 

[21] Single tower 

suspension 

bridge, 248  

Heavy truck 40  n.a. n.a. n.a. Vision-Based 

[17] Cable-stayed 

railway bridge, 

432  

High-speed 

train and 

freight train 

30 (high-

speed) and 

75 (freight) 

<±3 0.336 

(vertical 

bending) 

0.764 (vertical 

bending) 

Vision-Based, 

corrected with on-

camera 

accelerometers, 

distance 150 m 

[22] Suspended 

bridge, 1410 

(main span) 

2x heavy 

trucks 

200  n.a. n.a. n.a. Vision-Based fixed 

camera 

 

 

main span. Deflections are divided into static and dynamic: 

static deflections are caused by the quasi-static presence of the 

load (for instance a truck when the truck itself is on the bridge), 

while dynamic deflections are the residual free-vibration 

amplitudes experienced around the static deflection baseline 

and once the load is released. This distinction is important 

because static deflections are typically an order of magnitude 

larger than dynamic deflections, making them easier to 

measure. However, static deflections are not suitable for the 

dynamic characterization of the bridge (i.e., extraction of 

natural frequencies). For this purpose, dynamic deflections 

during the transient period after unloading are typically used. 

In Table 1, static deflections are presented with a positive sign, 

meaning they are pointing downwards, while dynamic 

deflections are reported with the ± sign, referring to their 

oscillation around the static deflection. It is possible to observe 
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the significant variation of the displacement range (from <1 

mm to ≈200 mm) for different combinations of span and 

stiffness. All the deflections are caused by defined forcing 

loading conditions (for instance a truck or a train). Conversely, 

vibrations caused by environmental solicitations are generally 

too small to be detected by a vision-based system [23]. This 

poses a challenge for dynamic extraction, as the time frame 

valid for the extraction of modal parameters is just limited 

within a few seconds after the excitation. Moreover, the loading 

itself may present some peculiar periodicity that is not related 

to the bridge, therefore affecting the result with spurious peaks 

in the spectral content. This is the case of trains passing over a 

bridge, where the periodicity is given by boogies passing over 

the sampling point [19], or of people walking over a pedestrian 

bridge, where walking has specific frequency. 

Table 1 also presents the first two identified frequencies, when 

available. The peaks of the bridge frequency spectrum should 

be compared with the dominant peaks of the drone egomotion 

spectrum. If the bridge frequency peak overlaps with the drone 

egomotion peak, it becomes more difficult to accurately capture 

the dynamic behavior of the bridge using drones. 

From Table 1, it emerges that, when a conventional load such 

as a heavy truck passes, static deflections are between 1/20000 

and 1/5000 of the bridge span, while dynamic deflections are 

between 1/50000 and 1/10000 of the bridge span. These 

estimates provide a useful reference for the expected vibration 

amplitudes of a bridge and help define the range of applicability 

of the vision-based approach using drones presented in Section 

3.  

3. LABORATORY TESTS 

The laboratory tests were conducted using a commercial DJI 

MINI 2 drone, which was directed at a moving target oscillating 

vertically. Two experimental setups were tested. In the first 

setup, the moving target was simulated on a screen, 

representing a concrete-like surface with a sinusoidal 

displacement time history in the vertical direction, controlled 

by user-defined displacement amplitude and frequencies. In the 

second setup, the target was a physical point subjected to 

vertical sinusoidal displacement driven by a pre-programmed 

shaker, see Figure 2. The tests aim to determine under which 

conditions the input (known) oscillation frequencies can be 

identified from the resulting time-domain and frequency-

domain plots. For the video-target case, displacements ranged 

from ±0.25 mm to ±10 mm, with frequencies between 0.5 Hz 

and 15 Hz. For the physical-target case, displacements ranged 

from ±0.5 mm to ±2.5 mm, with frequencies between 1 Hz and 

5 Hz. In both cases, the drone, with its camera recording the 

target, was flown at varying distances between 1.5 m and 10 m. 

Different video lengths were tested, ranging from 10 to 60 s. 

Videos were recorded in 4K resolution (3840 × 2160) at 30 

frames per second (fps). Tests were conducted both indoors and 

outdoors, yielding similar results. Under outdoor conditions, 

the increased drone oscillations caused by gentle wind gusts 

were compensated for by more accurate positioning provided 

by the Global Navigation Satellite System (GNSS). In both 

cases, also a fixed target was tracked for the sake of measuring 

the drone egomotion. 

From the recorded video, a script using Kanade-Lucas-Tomasi 

tracking [24], [25], was employed to extract the time history of 

vertical and horizontal displacements. From these displacement 

data, velocities and acceleration were also computed. Finally, 

the Fast Fourier Transform (FFT) algorithm was applied to the 

displacement, velocity, and acceleration data to analyze their 

frequency content. 

Figure 2 presents the results of a test conducted in the second 

setup. In the test, the drone was flown at a distance of 10 m, 

recording the vertical oscillation of the target, which had an 

amplitude of ± 2.5 mm (total range 5 mm) and a frequency of 

3 Hz. In Figure 3, time histories of displacements, velocities 

and accelerations of a fixed reference target (orange) and the 

oscillating target (blue) are shown, in both horizontal (X) and 

vertical (Y) direction. The displacement of the fixed target is 

exclusively due to drone egomotion. The low-frequency  

 

 
Figure 2. Experimental setup: (a) Drone and targets; (b) Detail of targets. 
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Figure 3. Time histories for a point with 5 mm / 3 Hz oscillation; drone camera at 10 m distance. Time histories of: 

displacement, (a) x direction and (b) y direction; velocity, (c) x direction and (d) y direction; acceleration, (e) x direction and (f) 

y direction.

 

oscillations, especially in the X direction, are due to drone 

egomotion. Conversely, high frequency vibrations of the 

moving target are due to the shaker user-defined vibrations. 

Figure 3 shows spectra of displacement (a), velocity (b) and 

acceleration (c) in horizontal and vertical direction, for the time 

histories shown in Figure 2. In Figure 3, a prominent peak in 

the frequency spectrum of the vertical acceleration and velocity 

corresponds to the shaker's oscillation frequency. 

 

Results from all the tests provide valuable insights. In 

particular, some quantities have proven more effective for 

analyzing the results. Spectra of acceleration and velocity are 

less sensitive to low-frequency disturbances, resulting in sharp 

and easily detectable peaks. Conversely, spectra of 

displacement tend to present less distinct peaks near the 

frequency of interest. As the frequency of the input excitation 

increases, the spectrum of acceleration becomes clearer, while 

the spectrum of velocity becomes less distinct. As a general 

rule, if the spectrum of acceleration does not allow for 

capturing the peak, the spectra of velocity and displacement are 

unlikely to succeed either. For this reason, the spectrum of 

acceleration is used as the primary means for identifying the 

frequency of interest.  

The results are summarized in presence of moderate noise, yet 

low enough to avoid missing real and distinguishable peaks. 

Results confirm that for the range of frequency above 3 Hz the 

performance of vision-based tracking is optimal, and sub-

millimetric displacements can be captured. On the other hand, 

at lower frequencies, the drone non-compensated egomotion 

(which typically falls within the 0–2 Hz range) negatively 
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affects the results. In this low-frequency range, only 

displacements with larger amplitudes are detectable if 

egomotion compensation are applied. Drones with better optics 

might have a wider range of detectable displacements, while 

heavier drone might suffer less from egomotion disturbance. 

Table 2, where the comparison is shown for a distance of 1.5 

m, that is a compromise between optical precision and safety 

distance to avoid collision, using data from both setups. For 

simplicity, the results have been categorized into two groups: 

Yes (Y) when the peak in the acceleration spectrum was clearly 

visible, and No (N) when the identification was uncertain. 

There are several criteria for peak detection [26]. In this study, 

the criterion used to distinguish between Yes and No involved 

calculating the ratio between the peak value and the average 

signal in the spectrum. If the ratio exceeded 5, the result was 

marked as Yes; otherwise, it was marked as No. The threshold 

of 5 was selected because it is high enough to allow clear 

identification of the peak even in the 

 

Figure 4. Spectra of (a) displacement, (b) velocity, (c) 

acceleration, for horizontal (X) and vertical (Y) displacement, 

calculated using FFT algorithm, for a point with 5 mm / 3 Hz 

oscillation; drone camera at 10 m distance. 

presence of moderate noise, yet low enough to avoid missing 

real and distinguishable peaks. Results confirm that for the 

range of frequency above 3 Hz the performance of vision-based 

tracking is optimal, and sub-millimetric displacements can be 

captured. On the other hand, at lower frequencies, the drone 

non-compensated egomotion (which typically falls within the 

0–2 Hz range) negatively affects the results. In this low-

frequency range, only displacements with larger amplitudes are 

detectable if egomotion compensation are applied. Drones with 

better optics might have a wider range of detectable 

displacements, while heavier drone might suffer less from 

egomotion disturbance. 

Table 2. Range of detectability of frequencies. 

 
Frequency [Hz] 

0.5 1 2 3 7 10 13 

D
is

p
l.

 [
m

m
] 

±0.25 N N N Y Y Y Y 

±0.50 N N N Y Y Y Y 

±0.75 N N N Y Y Y Y 

±1.00 N N Y Y Y Y Y 

±5 N N Y Y Y Y Y 

±10 N Y Y Y Y Y Y 

 

4. CRITICAL DISCUSSION 

The results obtained in section 3 can be critically compared 

with the data presented in section 2. When a heavy load passes 

over a bridge, the resulting static displacement is typically a 

few millimeters; once the load is released, the amplitude of free 

vibrations usually falls below 2-5 mm. In a controlled 

laboratory test, a low-cost drone demonstrated the ability to 

detect the dynamic behavior of vertically oscillating targets 

even for oscillations of less than 1 mm, provided that the free 

vibration frequency is above 2 Hz — allowing for the 

decoupling of drone egomotion from target vibrations. Based 

on these findings, drones might be capable of identifying the 

first frequency of selected bridges, provided that (i) the bridge 

is loaded by a heavy vehicle, (ii) the bridge is sufficiently 

flexible, and (iii) its first natural frequency does not coincide 

with the dominant frequencies of the drone's egomotion. Given 

those constraints, bridges that might be suitable for the 

capability of the existing drone technology are: 

• Pedestrian bridges spanning more than 20 m, as those 

presented in [13], [15]; 

• Slender mid-span concrete and steel bridges, spanning  

more than 40 m, as those presented in [16], [17]. 

Conversely, short-span bridges and arch bridges of all materials 

are typically too stiff to exhibit significant displacement. 

Moreover, long-span suspended and cable-stayed bridges 

typically have low frequency modes that overlap with drone 

egomotion peaks, hindering vision-based dynamic 

identification with drones. It must be remarked that results from 

Table 2 are based on a controlled environment with sinusoidal 

oscillations; in contrast, the free vibrations of real bridges are 

less regular and, therefore, more challenging to be captured. 

It must also be noted that the experiment was performed using 

an entry level commercial drone, weighing less than 250 g and 

costing less than 500€. Using a superior category drone could 

improve the results for three key reasons: (i) higher quality 

camera,  (ii) reduced oscillations due to increased weight, and 

(iii) more stable hovering with enhanced gimbal stabilization. 

A list of suitable drones with their specifications is provided in 

Table 3. It must be remarked that drone weighting less than 250 
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grams can be flown with less restrictions in European Union, 

while heavier drones typically require pilot training.  

 

Table 3. Commercial drone specifications. 

Model Year Weight 

(g) 

Camera Obstacle 

Avoidance 

Cost (€) 

DJI 

Mini 2 

2020 249 12 MP, 

4 K/30 fps 

Downward ~450 

DJI 

Mini 4 
Pro 

2024 249 48 MP, 

4 K/60 fps; 
HDR 

Omni-

directional 

~800 

Autel 

Evo 
Nano + 

2023 249 50 MP, 

4 K/30 
 fps 

Forward/ 

Backward 

~800 

Potensic 

Dreamer 

Pro 

2022 745 12 MP, 

4 K/30 fps 

None ~500 

DJI Air 3 2023 720 24 MP wide + 

5 × tele 

Omni-

directional 

~1,100 

DJI 

Mavic 3 
Pro 

2022 895 4/3″ 20 MP + 

tele + wide 

Omni-

directional 

~2,100 

 

Results could be improved by applying inertial-based 

egomotion compensation using data from accelerometers [6] or 

vision-based egomotion compensation using external reference 

points, such as background features [27]. However, most 

commercial drones, including the DJI MINI 2, do not allow 

access to accelerometric data, making inertial-based egomotion 

compensation unfeasible. 

 

5. CONCLUSIONS  

This study presented a comparison between bridge dynamic 

behavior and capabilities of drone vision-based dynamic 

monitoring. The literature review assessed the typical dynamic 

displacement ranges of bridge with varying length, material and 

static scheme. Laboratory tests validated the usage of vision-

based dynamic monitoring on drones for vibrations happening 

with frequencies above 2 Hz and displacement ranges above 1 

mm. These values match with properties of pedestrian bridges 

and of slender mid-span concrete and steel bridges. Further on-

field tests should be conducted to verify the applicability to real 

cases. Improving egomotion compensation is expected to 

enhance the accuracy of dynamic identification using drones.  

The need to perform dynamic monitoring, with the constraint 

of the presence of a passing vehicle, introduces new challenges, 

such as the need to perform vibrational monitoring using very 

short and transient time histories, which falls outside the 

traditional framework of operational modal analysis.  
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ABSTRACT: Although recent advances have been widely gained in UAV-based visual inspection for bridges, the accuracy and 

generalization ability of recognition model highly rely on sufficient, complete, and high-quality annotations. Current damage 

segmentation models are often trained in a fragmented manner based on substantial pixel-level labels for specific structural 

components and damage types, lacking universality and robustness under real-world open scenarios. This study establishes a 

universal unsupervised image segmentation model of multi-type component and damage for vision-based autonomous UAV 

inspection of bridges using a teacher-student network architecture. The inputs are unlabeled image pairs after data augmentation 

including random clipping, rotation, illumination transformation, and color transformation. The pre-trained backbone of original 

DINO is adopted as frozen image feature extractor to obtain high-level feature representations, and a CNN-based segmentation 

head with learnable parameters is designed to generate dense segmentation maps with strong point-wise correlations. A synthetic 

loss function, comprising a correlation loss and a contrastive loss, is proposed for model training. The proposed method is validated 

on a unified multi-scale imageset including various structural components and surface damage for cable-supported bridges and 

concrete bridges. The recognition accuracy, generalization ability, and robustness under complex background are demonstrated. 

KEY WORDS: UAV Bridge Inspection; Universal Unsupervised Segmentation; Teacher-Student Network; Cross-level Feature 

Alignment; Contrastive Learning. 

1 INTRODUCTION 

Maintaining safe operation throughout the entire life cycle of 

bridge structures is crucial. Timely and accurate identification 

of surface damage (such as cracks, corrosion, etc.) not only 

provides a basis for scientifically formulating maintenance 

strategies but also effectively prevents structural performance 

degradation, significantly reducing major safety risks like 

collapse and instability. For decades, bridge inspection has 

primarily relied on manual methods. However, this approach is 

not only time-consuming and labor-intensive but also 

susceptible to inspector experience, environmental conditions, 

and fatigue factors, resulting in issues such as strong 

subjectivity, low efficiency, and poor consistency, making it 

difficult to ensure reliability and timeliness in practical 

applications [1]. 

In recent years, computer vision technology has 

demonstrated significant advantages in image-based structural 

health monitoring and damage identification, providing an 

efficient and reliable alternative to traditional manual 

inspection methods. By integrating digital image processing 

with machine learning algorithms, computer vision enables 

automated identification and quantitative analysis of structural 

surface damage. Early research mainly focused on traditional 

image processing methods like edge detection and threshold 

segmentation, but their performance heavily relied on manual 

parameter tuning and showed limited generalization capability 

for damage features in complex environments. With 

breakthroughs in deep learning, data-driven methods 

represented by convolutional neural networks (CNNs) have 

exhibited outstanding performance in automatic feature 

extraction and damage pattern recognition, greatly improving 

the accuracy and adaptability of structural health monitoring 

systems. However, these methods still depend on manually 

designed features as input and face challenges in robustness 

across complex real-world scenarios and generalization across 

different damage types [2]. 

Deep learning achieves end-to-end automatic mapping 

between images and object annotations through deep neural 

networks, with CNNs as multi-level feature extractors being the 

most extensively studied [3-5]. Existing structural damage 

identification methods are typically developed based on 

specific datasets covering only limited damage types and 

application scenarios, resulting in constrained generalization 

capability for new damage categories or under disaster 

conditions [6-7]. Moreover, these methods often require large 

amounts of annotated data to achieve ideal performance, but the 

nonlinear and sparse nature of structural damage makes high-

quality annotated data difficult to obtain in practice [8-9]. 

Consequently, identification accuracy is easily affected by 

sample size, class balance, and damage diversity. However, 

real-world engineering applications demand models that 

maintain good generalization across diverse scenarios while 

achieving high-precision identification performance on 

unannotated data [10-11]. To overcome the limitations of 

existing methods trained separately on different datasets, it is 

necessary to develop a universal visual recognition model for 

structural damage that can accurately identify multiple damage 

types while maintaining stable performance in complex 

backgrounds and multi-scale real-world scenarios [12]. 

In the field of structural health monitoring, unsupervised and 

self-supervised learning paradigms are gradually becoming key 

technological pathways to address few-shot damage detection 
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challenges [13-14]. Currently, although contrastive learning-

driven unsupervised semantic segmentation methods have 

shown potential in general computer vision domains, their 

adaptation to bridge UAV visual inspection scenarios faces 

significant bottlenecks: on one hand, there is a need to develop 

a universal segmentation framework adapted to Transformer 

architectures; on the other hand, the challenge of pixel-level 

damage parsing in real-world environments with massive 

unannotated data must be overcome (although certain few-shot 

learning algorithms have been proposed [15-17], a proper 

number of samples with pixel-level annotations should be 

required in advance). To address these challenges, this study 

proposes a large vision model for universal structural damage 

segmentation. The main scientific contributions are 

summarized as follows: 

 (1) We propose an unsupervised structural damage 

segmentation method based on teacher-student network 

knowledge distillation, using unlabeled augmented image pairs 

as input. The dual-branch architecture incorporates pre-trained 

frozen Transformer backbones and fine-tunable CNN 

segmentation heads. 

(2) We design a dual-strategy collaborative mechanism 

combining cross-level self-supervised correlation learning and 

cross-network contrastive learning. The former achieves 

feature alignment through point-to-point correlations between 

high-level features and dense segmentation maps, while the 

latter maintains instance similarity and separability through 

feature vector comparison between teacher-student networks. 

(3) We construct a joint optimization objective integrating 

correlation loss and contrastive loss. The student branch is 

rapidly updated via gradient descent, while the teacher branch 

is stably adapted through momentum-based exponential 

moving average, achieving end-to-end fine-tuning of the 

segmentation head. 

The remainder of this paper is organized as follows. Section 

2 introduces the network architecture of the proposed universal 

unsupervised damage segmentation model. Section 3 describes 

the investigated imageset of multi-scale multi-type structural 

components and surface damage. Section 4 presents a series of 

test results to demonstrate the effectiveness, robustness, and 

generalization capability of the established model under real-

world inspection scenarios with complex background 

disturbances for cable-supported bridges and concrete bridges. 

Finally, Section 5 concludes this paper. 

2 METHODOLOGY 

The architecture of the proposed universal structural damage 

segmentation model is illustrated in Figure 1, employing an 

unsupervised learning paradigm based on collaborative 

optimization of teacher-student networks through an end-to-

end self-supervised knowledge distillation mechanism for 

effective feature learning. Distinct from conventional 

approaches dependent on manual annotations, our framework 

integrates three fundamental components: a data augmentation 

module, a Transformer-based frozen feature extraction 

backbone, and a tunable CNN segmentation head. A specially 

designed hybrid loss function combining feature-space 

correlation loss with instance contrastive loss enables the 

network to autonomously identify essential damage 

characteristics in unsupervised settings. During deployment, 

input images undergo sequential processing through the frozen 

feature extraction backbone, optimized segmentation head, and 

semantic clustering-based post-processing module to generate 

pixel-accurate structural damage segmentation results, with the 

complete pipeline demonstrating enhanced robustness for 

practical engineering applications. This integrated approach 

effectively bridges the gap between unsupervised learning and 

precise damage identification in complex real-world scenarios 

while maintaining computational efficiency throughout the 

segmentation process. 

 

Figure 1. Model architecture for universal unsupervised 

segmentation of multi-type structural component and damage. 

 

For each individual instance of input image, feature maps 

with the same dimensions of channel, height, and width are 

obtained before and after the segmentation head. For each 

branch of student and teacher networks, spatial points on 

feature maps before the segmentation head are noted as 𝑓𝑐ℎ𝑤 

and 𝑔𝑐ℎ′𝑤′ , while spatial points on feature maps after the 

segmentation head are noted as 𝑠𝑐ℎ𝑤  and 𝑡𝑐ℎ′𝑤′ , respectively. 

The feature correspondence 𝐹ℎ𝑤ℎ′𝑤′  between 𝑓𝑐ℎ𝑤 and 𝑔𝑐ℎ′𝑤′  

and segmentation correspondence 𝑆ℎ𝑤ℎ′𝑤′  between 𝑠𝑐ℎ𝑤  and 

𝑡𝑐ℎ′𝑤′  are obtained by calculating the point-wise cosine 

similarity as 

 𝐹ℎ𝑤ℎ′𝑤′ =
∑ 𝑓𝑐ℎ𝑤×𝑔𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒇ℎ𝑤‖2×‖𝒈ℎ′𝑤′‖2

 (1) 

 𝑆ℎ𝑤ℎ′𝑤′ =
∑ 𝑠𝑐ℎ𝑤×𝑡𝑐ℎ′𝑤′
𝐶
𝑐=1

‖𝒔ℎ𝑤‖2×‖𝒕ℎ′𝑤′‖2

 (2) 

For N input images within an input batch, the feature 

correspondence tensors and segmentation correspondence 

tensors could be denoted as 𝐹1, … , 𝐹𝑁 ∈
ℛ𝐻×𝑊×𝐻×𝑊; 𝑆1, … , 𝑆𝑁 ∈ ℛ𝐻×𝑊×𝐻×𝑊  with four-dimensional 

elements of 𝐹ℎ𝑤ℎ′𝑤′  and 𝑆ℎ𝑤ℎ′𝑤′ . 

The dense semantic correlation loss L_corr is calculated 

based on feature correspondence tensors and segmentation 

correspondence tensors by 

𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 = 𝐹ℎ𝑤ℎ′𝑤′ −

1

𝐻𝑊
∑ 𝐹ℎ𝑤ℎ′𝑤′ℎ′,𝑤′  (3) 

𝐿𝑐𝑜𝑟𝑟 = −∑ (𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶 − 𝑏)𝑚𝑎𝑥⁡(𝑆ℎ𝑤ℎ′𝑤′ , 0)ℎ,𝑤,ℎ′,𝑤′  (4) 

where 𝐹ℎ𝑤ℎ′𝑤′
𝑆𝐶  denotes the feature correspondence tensor after 

spatial centralization, b is a hyperparameter to avoid model 

collapse and ensure a positive correlation loss value for loss 

descending. 
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The contrastive loss between the teacher-student networks is 

defined as 

𝐿𝑐𝑜𝑛𝑡 = −∑ 𝑙𝑜𝑔 {
𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘+)/𝜏]

∑ 𝑒𝑥𝑝[𝑆𝑖𝑚(𝑞𝑖,𝑘𝑗)/𝜏]
𝐾
𝑗=1

}𝑁
𝑖=1  (5) 

where Sim denotes the cosine similarity between two vectors, 

𝑞𝑖  denotes the ith query feature vector obtained from the 

student branch for the ith image in a batch, 𝑘+  denotes the 

feature vector obtained from the teacher branch as the positive 

sample of the corresponding query image, N denotes the batch 

size, 𝑘𝑗 denotes the jth referenced feature vector in the feateure 

dictionary, K denotes the queue length of the preset feateure 

dictionary, 𝜏 denotes a temperature hyperparameter to enhance 

an exponential amplification effect. 

The synthetic loss function is defined by a weighted sum of 

correlation loss and contrastive loss as 

𝐿𝑜𝑠𝑠 = 𝛼𝐿𝑐𝑜𝑟𝑟 + (1 − 𝛼)𝐿𝑐𝑜𝑛𝑡  (6) 

where 𝛼 denotes the weight coefficient of the correlation loss.  

Upon completion of training, the system can directly 

generate predicted segmentation results for new test images 

using the frozen visual backbone network and optimized 

segmentation head. As shown in Figure 2, the prediction 

network incorporates a semantic clustering post-processing 

module consisting of K-means clustering and fully connected 

Conditional Random Field (CRF). Based on predefined label-

category mapping relationships, the system automatically 

associates pixel-level annotations with specific categories 

including structural components, surface damage, and 

background. For newly added categories, only a single 

annotated sample is required to update the label mapping table. 

It should be noted that as standard post-processing modules for 

unsupervised image segmentation, the specific 

implementations of K-means clustering, fully connected CRF, 

and label alignment can be referenced in existing literature. To 

highlight this study's core contribution - the construction of a 

large-scale model for universal structural damage segmentation 

- the relevant implementation details are omitted here for 

brevity. 

 

 

Figure 2. Schematic of prediction network structure with post-

processing of semantic clustering. 

3 IMPLEMENTATION DETAILS 

This study addresses the key scientific challenge of 

unsupervised semantic segmentation for multiple types of 

structural damage under complex engineering conditions, 

proposing an integrated analytical framework that combines 

multi-source environmental interference factors with intrinsic 

structural features. Specifically, by fusing multi-dimensional 

key characteristics—including environmental background 

noise interference, macro-structural morphological features, 

micro-component texture details, and spatial distribution 

patterns of cable systems—we developed a dedicated scene 

model for damage detection in typical bridge structures such as 

cable-stayed bridges and concrete bridges. As illustrated in 

Figure 3, representative damage samples from the two-level 

structural damage image database constructed in this study are 

presented. 

 

Figure 3. Representative images of hierarchical structural 

damage with multi-scale information for cable-supported and 

concrete bridges. 

A total of 20K images with varying resolutions were 

standardized to a uniform resolution of 1,024 × 1,024 pixels. 

Each resized image was subsequently partitioned into 224 × 

224 patches using a sliding window approach with a 100-pixel 

stride, thereby generating an extensive collection of image 

patches while circumventing potential feature degradation 

associated with direct downsampling. From this collection, 128 

patches were randomly sampled to constitute the input batches 

for the proposed methodology.  

It must be particularly emphasized that implementing 

traditional supervised CNN-based semantic segmentation 

models on such large-scale image patches inevitably 

encounters multiple computational challenges. Specifically, the 

exponential growth in computational complexity caused by 

high-resolution input space, coupled with the enormous manual 

annotation costs and time resources required for pixel-level 

labeling, constitutes two fundamental bottlenecks. These core 

limitations fundamentally undermine the feasibility of 

traditional supervised learning paradigms in the current 

application scenario, thereby significantly diminishing their 

practical value. 

Through extensive experimental validation and parameter 

tuning, this study has ultimately determined the 

hyperparameter configuration scheme for model training as 

shown in Table 1. It is particularly important to note that while 

the current parameter settings may not represent the global 

optimal solution, empirical research demonstrates that this 

configuration ensures the large vision model for general 

structural damage segmentation achieves satisfactory 

segmentation accuracy, maintains excellent robustness against 

complex background interference, and exhibits strong 

generalization capability for new scenarios. Based on this, the 

primary objective of this research is not to pursue the optimal 

combination of hyperparameters, but rather to systematically 

validate through experiments the technical feasibility and 

practical effectiveness of the proposed large vision model in 

achieving general structural damage segmentation in real-

world detection scenarios. 
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Table 1. Configurations of key training hyperparameters. 

Hyperparameter Variables Values 

Number of images included in each batch 128 

Dimension of feature representation after 

patch embedding 
512 

Length of query, key, and value vectors in 

attention mechanism 
64 

Number of multiple attention heads 8 

Number of stacked transformer blocks 6 

Dimensions of extracted feature maps by 

frozen visual backbone 
16, 16, 8 

Length of query and referenced feature 

vectors in preset feature dictionary 
64 

Number of feature queue size 12,800 

Positive parameter to avoid model collapse 

in correlation loss 
0.18 

Weight coefficient of correlation loss 0.67 

Temperature coefficient of contrastive loss 0.07 

Learning rate in stochastic gradient descent 

updating of student network 
5e-4 

Momentum in exponential moving average 

updating of teacher network 
0.999 

Number of training iterations 5,000 

 

To obtain quantitative evaluation metrics for semantic 

segmentation, a set of test images are pre-labelled with pixel-

level annotations, and the following pixel accuracy (PA), mean 

intersection-over-union (mIoU), and frequency-weighted 

intersection-over-union (FWIoU) are calculated by 

 PA
ii

i

ij

i j

p

p
=



 (7) 
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 (9) 

where ijp  denotes the number of pixels in the ith class (actual 

category) classified to the jth class (predicted category), the 

total number of pixel categories equals CN  + 1, including 1 for 

the background and CN  for the foreground, and CN  is 

determined by actual label categories of selected test images. 

The proposed large vision model for universal structural 

damage segmentation is trained and tested under the software 

environment of PyTorch 1.8 and Python 3.7 on a 48G GPU of 

NVIDIA RTX A6000, and the average training time with the 

reported hyperparameter configurations is about 48 hours to 

obtain a well-trained model. 

4 RESULTS AND DISCUSSION 

Figure 4 shows some representative prediction results on 

coarse-grained segmentation of main bridge structures: (a) for 

cable-supported bridges and (b) for concrete bridges. The test 

PA, mIoU, and FWIoU are 97.17%, 91.47%, 94.64% for cable-

support bridges and 92.72%, 82.46%, 86.98% for concrete 

bridges. The results show that main components of pylon, 

cable, girder, deck, and pier can be generally identified from 

entire images of bridge structures. 

 

    

    

    

    

 

Figure 4. Representative predictions on coarse-grained 

segmentation of main bridge structures. 

 

Figure 5 shows some typical prediction results of fine-

grained damage segmentation on bridges, including concrete 

cracks, spalling, exposed rebar, seepage, salt damage, rebar 

fatigue cracks, coating peeling, and corrosion. Table 2 lists the 

evaluation metrics. The results show that this method can 

effectively detect various bridge damages from close-range 

images. Moreover, it can distinguish between combined 

concrete spalling and rebar exposure, as well as separate severe 

and slight corrosion areas. 
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Figure 5. Representative predictions on fine-grained multi-

type structural damage for bridges. 

Table 2. Evaluation metrics for multi-type structural damage 

segmentation of bridges. 

Bridge structural 

damage type 
PA mIoU FWIoU 

Concrete crack 96.19% 69.85% 93.35% 

Concrete spalling/rebar 

exposure 
98.97% 74.12% 98.30% 

Water seepage/saltpetering 88.28% 75.15% 79.21% 

Steel fatigue crack 96.21% 68.07% 94.69% 

Coating spalling/steel 

corrosion 
91.07% 75.39% 84.83% 

Fire burning 95.85% 76.22% 93.02% 

 

Figure 6 shows some representative prediction results on new 

bridge components and ship collision damage, and Table 3 

shows the corresponding evaluation metrics. The results 

suggest that the proposed method have achieved generalization 

capacity on unseen categories of bridge components and 

damage apart from the existing structural components and 

surface damage included in the training imageset. Figure 12(a) 

shows that despite some misrecognitions of background boats 

with similar color to cable clamp, key components of cable-

suspension bridges such as cable, suspender, cable clamp, and 

bolts on steel plate can be individually recognized. Figure 12(b) 

demonstrates that even for a never-appeared emergency of ship 

collision, the deck scratch, buckling and deformation of steel 

plate, coating spalling, and handrail failure fragments could be 

generally identified. It should be noted that some 

misrecognitions have been observed between the cable plane 

and distant background and that spurs-like pixels occur along 

the boundary of damage regions. Possible reasons might 

attribute to similar material and morphological features with 

indistinguishable member edges. Geometrical constraints of 

different component and damage regions would be further 

considered to address these issues in future study. 
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Figure 6. Representative predictions on new bridge 

components and ship collision damage. 

Table 3. Evaluation metrics for segmentation of new bridge 

components. 

New bridge component 

type 
PA mIoU FWIoU 

Bolt 81.39% 63.88% 70.97% 

Steel plate 82.25% 69.24% 70.21% 

Cable 96.23% 78.87% 93.84% 

Suspender 96.70% 81.51% 94.37% 

Cable clamp 95.19% 61.46% 90.96% 

 

Furthermore, the effectiveness and necessity of the proposed 

method are demonstrated via performance comparisons 

between the proposed model and SCSegamba [18], a recently-

reported supervised structural damage segmentation model. 

The model architecture of SCSegamba is shown in Figure 7. 

The core architecture incorporates a structure-aware visual 

state space (SAVSS) module and a multi-scale feature 

segmentation (MFS) head. The SAVSS captures continuous 

textures of multi-directional cracks through an innovative 

structure-aware scanning strategy and dynamically enhances 

crack features using a lightweight gated bottleneck convolution 

(GBC). Meanwhile, the MFS integrates multi-scale 

information to generate refined segmentation maps. Using a 

unified dataset (containing both concrete cracks and 

spalling/exposed reinforcement damages), we trained 

SCSegamba for 100 epochs using the default training setups 

and selected the optimal model (with minimal validation loss) 

for evaluation. Quantitative results demonstrate that our 

method outperforms SCSegamba across all three metrics (PA, 

mIoU, and FWIoU) for both crack and spalling/rebar exposure 

damage types (see detailed values in Table 4). 

Figure 8 presents typical comparative results between the 

proposed method and SCSegamba in structural damage 

segmentation. The experimental results demonstrate that 

compared to the blurred boundaries and missed reinforcement 

detections generated by SCSegamba, our method can more 

accurately capture fine crack branches and complex boundary 

contours of spalling areas. Particularly in the identification 

tasks of concrete spalling and exposed reinforcement damage, 

the proposed teacher-student network architecture effectively 

enhances recognition robustness in weak-texture regions 

through the synergistic optimization mechanism of feature 

distillation and contrastive learning. Experimental results 

indicate that this method can precisely capture edge 

irregularities in spalling areas while maintaining high 

sensitivity to exposed reinforcement textures in low-contrast 

environments, ultimately achieving pixel-level precision in 

damage segmentation. 

 

Figure 7. Model architecture of SCSegamba as comparative 

validation (reproduced from [18]). 

Table 4. Performance comparison with supervised crack 

segmentation model SCSegamba on multi-class damage. 

Method 
Bridge structural 

damage type 
PA mIoU FWIoU 

SCSegamba 

[18] 
Concrete crack 

96.11% 65.20% 92.77% 

Ours 96.19% (↑) 69.85% (↑) 93.35% (↑) 

SCSegamba 
[18] Concrete spalling/ 

rebar exposure 

82.38% 60.47% 85.43% 

Ours 95.19% (↑) 61.46% (↑) 90.96% (↑) 

 

Input Ours SCSegamba [18] 

   

   

Figure 8. Some representative comparative results of 

structural damage segmentation between the proposed method 

and SCSegamba. 
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5 CONCLUSIONS 

This study proposes an unsupervised structural damage 

semantic segmentation framework based on relational learning 

and contrastive learning. By constructing a cross-scale feature 

interaction mechanism and a dynamic negative sample mining 

strategy, the framework achieves robust recognition and pixel-

level localization of multiple types of structural damage in 

complex engineering scenarios without manual annotation. It 

effectively addresses the strong dependency of traditional 

supervised segmentation paradigms on large-scale fine-grained 

annotated data and the resulting limitations in model 

generalization. The main research conclusions are as follows: 

(1) Based on a teacher-student network knowledge 

distillation framework, a unified semantic segmentation 

architecture for multiple types of structural components and 

surface damages was constructed. Each branch of the teacher-

student network contains a pre-trained Transformer visual 

backbone and a fine-tunable CNN segmentation head. 

(2) Using randomly augmented unlabeled image pairs as 

input, a pre-trained DINO backbone is employed as a frozen 

feature extractor to generate high-level feature maps. A CNN 

segmentation head with learnable parameters is designed to 

produce dense segmentation maps that maintain strong point-

wise correlations with the high-level feature maps. 

(3) Proposed an inter-layer correlation learning strategy 

between high-level feature maps from the frozen backbone 

network and dense segmentation maps from the fine-tuned 

segmentation head, achieving cross-level feature alignment for 

different structural components and damage regions within a 

single image. Developed a contrastive learning module with 

normalized feature aggregation between teacher-student 

branches to quantify intra-instance similarity and inter-instance 

discriminability across different images. 

(4) A synthetic loss function comprising a correlation loss 

and a contrastive loss is designed. The segmentation head is 

efficiently fine-tuned by fastly optimizing the student network 

with direct error backpropagation by gradient descent and 

stably adapting the teacher network with exponential moving 

average by momentum updating. 

(5) This study constructs a multi-scale image dataset 

encompassing various types of bridge structures and their 

damage patterns. Through systematic comparative experiments, 

the proposed model has demonstrated outstanding 

segmentation accuracy, strong generalization capability, and 

excellent robustness under complex background interference. 

The experimental results indicate that the large-scale visual 

model developed in this study has successfully achieved deep 

visual understanding of unlabeled bridge component damage 

images and effectively mastered their unsupervised learning 

mechanism. 
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ABSTRACT: Civil structures inevitably experience anomalies and damage, especially during disasters like earthquakes, tsunamis, 

and hurricanes, causing performance degradation or even collapse. Identifying such anomalies plays an extremely critical role in 

the maintenance and life extension of civil structures. This study proposes a novel approach based on video data due to its 

accessibility and rich temporal-spatial information for anomaly detection in large-scale civil structures by integrating transfer 

learning (TL) techniques with optical flow. Given the low importance of structural Region-of-Uninterest (RoU) like windows and 

doors, TL with BEIT+UPerNet pre-trained models identifies them. The extended node strength network then leverages video data 

to focus on structural components and detect disturbances in the nonlinearity vector field. The approach was validated using open 

video data from E-Defense, capturing two large-scale structural shaking-table tests that featured both pronounced shear cracks 

and tiny cracks. The detection and quantitative analysis results confirmed the method’s effectiveness in detecting structural 

anomalies and improved computational efficiency by approximately 10%, with a positive correlation observed between this 

efficiency gain and the proportion of structural RoUs in the video. This study advances anomaly detection in large-scale structures, 

offering a promising approach to enhancing safety and maintenance practices for critical infrastructure. 

KEY WORDS: Anomaly detection; Optical flow; Transfer learning; Video data; Node strength network; Shaking-table test 

1 INTRODUCTION 

Engineering structures often sustain damage throughout their 

service life, deteriorating over time due to various 

environmental and mechanical factors. Both immediate and 

prolonged damage contribute to the aging of structures and a 

subsequent reduction in their service life, highlighting the 

importance of the structural health monitoring (SHM) process 

[1].  

In recent years, the traditional reliance on manual inspection 

and scheduled maintenance has evolved with the integration of 

advanced imaging technologies and machine learning (ML) 

[2]. For instance, Ji et al. [3] proposed vision-based 

measurement methods for deformation estimation and cracks 

identification and demonstrate much higher efficiency and 

provide more useful information than the traditional 

measurement techniques. Wu et al. [4] developed an improved 

algorithm based on YOLOv5s which made mAP@0.5 (mean 

Average Precision when IoU equal 0.5) values improve by 

around 10%. Furthermore, Xiong et al. [5] proposed a novel 

computer vision model based on YOLOv8 for automated 

concrete bridge crack detection. Structural cracks, as a 

representative form of anomaly event, can serve as indicators 

of the deterioration in structural service performance. 

The authors previously conducted research on anomaly event 

detection, focusing on nonlinear occurrences, and validated the 

efficiency of their proposed methods through a small-scale 

frame model shaking table test [6]. This method detects 

nonlinearity in structural vibrations using video data, with 

feature extraction performed via optical flow techniques. 

However, a significant challenge persists across the field: the 

high computational costs associated with the analysis process. 

Addressing this issue is crucial for advancing SHM 

technologies and methodologies. 

This study introduces a novel method for detecting anomalies 

due to structural nonlinearity in video data, validated through a 

3-D full-scale shaking table test conducted by NIED. The 

method involves extracting nonlinear disturbances from 

anomaly events in the velocity vector field estimated by optical 

flow, constructing an extended node strength network, and 

applying a morphological opening operation for feature 

extraction and enhancement. This study presents two key 

advancements for applying the method to general video data. 

First, the developed algorithm, which was previously applied 

only to small-scale experimental models, is now tested on 

large-scale engineering structures to assess its effectiveness in 

real-world scenarios. Second, to address the challenge of 

excessive computational time, we integrate a transfer learning 

(TL) algorithm to initially identify and filter out the Region-of-

Uninterest (RoU), thereby enhancing identification efficiency. 

The remainder of this extended abstract is organized as 

follows: Section 2 presents the framework of the proposed 

algorithm, while the detailed mathematical formulations are 

omitted due to the page limit of the extended abstract. Section 

3 describes the 3D large-scale shaking table tests, including 

concrete and wooden building tests, followed by the 

identification results of TL for structural RoU. It also compares 

visualization results before and after anomaly events 

(pronounced shear cracks and tiny cracks) to demonstrate the 

feasibility of the proposed method. Additionally, a 

morphological opening operation is introduced to enhance 

features and denoise visualization results. Computational 

efficiency, with and without TL, is also compared in Section 4. 

Finally, conclusions are presented in Section 5. 

2 METHODOLOGY 

The proposed method for detecting structural anomaly events 

during earthquakes, relying solely on video data, integrates TL 

with an extended node strength network. Figure 1 illustrates the 

framework of this method and the flowchart detailing the 

subsequent steps. 
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Figure 1. Flowchart of the proposed method 

 

 Transfer learning for RoU identification 

Recently, Transformer-based models have gained attention for 

image recognition as alternatives to Convolutional Neural 

Networks (CNN). Transformers excel at capturing long-

distance dependencies, which partly accounts for their superior 

performance compared to CNN. However, Transformers 

generally require large amounts of training data. TL addresses 

this issue by allowing models trained on extensive datasets to 

perform effectively on specific tasks with smaller datasets. 

Consequently, BEiT [7], a transformer-based model, was 

employed, leveraging TL to segment the RoU components. 

BEiT utilizes the BERT approach [8], a widely used 

transformer-based model in natural language processing, for 

image recognition. BEiT treats images as sequences of words 

and learns to extract features through a masked part-prediction 

task.  

 
Figure 2. The overview of pre-training BEiT 

 

After pre-training BEiT using Masked Image Modeling 

(MIM) as shown in Figure 2, the BEiT+UPerNet model, pre-

trained for semantic segmentation, was further trained to 

segment the RoU, specifically targeting windows and doors. 
An example of RoU recognition for removing the window parts 

of a building using NIED video data is shown in Figure 3. 

These images depict the frames before and after RoUs 

recognition. In the detected area, pixel values are set to zero, 

allowing for the removal of these pixels in the subsequent 

anomaly event detection process. By successfully identifying 

the structural RoUs, video data that exclusively contains 

structural component information is utilized, thus improving 

the computational efficiency of the feature extraction process. 

       
(a)                                            (b) 

Figure 3. An Example for structural RoUs identification based 

on TL (a) original frame (b) processed frame  

 Anomaly events detection by proposed extended node 

strength network 

The anomaly event detection method for video data, as detailed 

in [6] is summarized here and shown in Figure 4. The method 

comprises three main steps: (1) estimating the velocity field 

using Farneback optical flow, (2) extracting anomaly features 

with the extended node strength network, and (3) enhancing 

features through a morphological opening operation. This 

approach allows for the visualization of the timing and location 

of anomalous events, which result from local disturbances in 

the vector field caused by nonlinear structural vibrations. 

 
Figure 4. Flowchart of the anomaly events detection method 

 

3 ANOMALY EVENT DETECTION FOR 3D SCALED 

SHAKING TABLE TEST 

In this section, the proposed method is validated using two 

cases from a full-scale shaking table test conducted by the 

National Research Institute for Earthquake Science and 

Disaster Resilience (NIED) in Hyogo, Japan. The test included 

a 1/3 scale model of a six-story Reinforced Concrete (RC) 

building and a three-story full-scale wooden house. The 

example frames for the two cases are shown in Figure 5. 

  
(a)                                          (b) 

Figure 5. Example frames for (a) RC building (b) wooden 

house  
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TL is first applied to identify the RoUs and the results are 

represented in the black area of Figure 6. Then, Farneback 

optical flow is employed to estimate the velocity field, the 

results for the damage frame of the two cases are shown in 

Figure 6. The length of the arrows represents the instantaneous 

velocity of the pixel points, while the direction of the arrows 

indicates the velocity direction. In Figure 6(a), It is observed 

that the occurrence of shear cracks caused a distinct nonlinear 

change in velocity within the affected area. However, Figure 

6(b) reveals that only short arrows are present in the area of the 

tiny crack, making it difficult to identify the crack solely by 

evaluating the velocity field. This limitation is due to the fact 

that changes in velocity cannot uniquely identify anomalous 

events, as other regions, such as window edges and areas 

around wires and bolts, also show velocity variations. 

     
(a)                                          (b) 

Figure 6. Results of velocity field estimation: (a) RC building 

(b) wooden house  

To represent the anomaly event and enhance its features, an 

extended node strength network, and a morphological opening 

operation are utilized. After feature enhancement, as illustrated 

in Figure 7, nearly all noise areas are effectively removed and 

only the highlighted area near the crack is retained. The results 

demonstrate the occurrence of anomalous events and indicate 

improved detection effectiveness. 

      
(a)                                     (b) 

Figure 7. Results of anomaly detection: (a) RC building (b) 

wooden house  

 

4 DISCUSSION FOR COMPUTATIONAL EFFICIENCY 

In this study, a key advantage of combining TL is the 

improvement in computational efficiency. Early identification 

and removal of RoUs reduce the number of input pixels needed 

for subsequent node strength network construction. Table 1 

compares computational efficiency before and after employing 

TL for structural RoU identification. Additionally, we 

expanded our dataset for comparison by incorporating data 

from the 4-story steel structure shaking-table test mentioned in 

Figure 3. Table 1 illustrates a positive correlation between 

improvements in computational efficiency and the proportion 

of structural RoUs. The selected test cases demonstrate an 

average efficiency improvement of approximately 10%. In 

practical applications, analyzing cases with a larger proportion 

of structural RoUs results in greater efficiency gains. 

 Table 1. Comparison of computational efficiency after using 

TL. 

 

5 CONCLUSIONS 

This study proposed a novel anomaly detection algorithm that 

focused on nonlinearity occurrence by combining deep learning 

techniques with an optical flow-based extended node strength 

network. The approach stems from the observation that such 

events cause nonlinear disturbances in the velocity vector field, 

which can be estimated from video data. Additionally, 

structural RoUs, such as doors and windows, are often not the 

primary focus of structural health monitoring. Pre-identifying 

these areas before initiating damage detection can significantly 

enhance the efficiency of the process.  
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Case 

Computing time 

sec/frame Improve-

ment ratio 

RoU 

proportion 
Before  After  

Four-story steel 

building 
64 59 7.81% 8.59% 

Six-story RC 

frame building 
159 144 9.43% 9.66% 

Three-story 

wooden house 
249 224 10.04% 10.21% 
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ABSTRACT: This paper presents a novel wireless stereo vision system for 3D displacement monitoring of tall structures. The 

system uses two GNSS wireless camera nodes to capture images of a target and calculate its 2D displacement independently. Each 

node uploads its data to the cloud, where 3D displacement is reconstructed using a triangulation technique. This system has several 

advantages over traditional cable-based stereo vision systems for tall structures: 1) The distance between the two camera nodes is 

not limited, allowing flexible deployment to optimise measurement accuracy for structures of varying heights. 2) It avoids 

transmitting large volumes of image data between the cameras and the 3D image-processing computer, reducing the need for high 

network bandwidth. 3) It simplifies the stereo calibration process by eliminating the need for a checkerboard, which is often 

impractical to be positioned in the field of view of the cameras in tall structure applications. An outdoor test was conducted to 

validate the system, with the cameras placed about 200 m from the target and 100 m apart. The results showed a measurement 

accuracy of approximately 1 mm within the horizontal plane. 

KEY WORDS: Computer Vision, Structural Health Monitoring, Stereo Vision, Wireless Sensor, 3D Displacement Measurement. 

1 INTRODUCTION 

Vision-based systems provide a contactless alternative to 

traditional sensors. They enable the collection of structural 

displacement data for structural health monitoring (SHM). As 

a result, these systems have become popular in the SHM field. 

The imaging process projects objects in 3D space onto a 2D 

image plane [1]. Therefore, a single camera can only measure 

2D displacement unless special calibration patterns are used. 

To measure displacement in 3D, two cameras are combined 

into a stereo vision system. The depth information of objects is 

obtained through triangulation. Usually, both cameras are 

connected to a common controller computer via Ethernet 

cables. Before measurement, stereo calibration is performed to 

determine the essential matrix between the images from the two 

cameras. Next, the controller triggers and synchronizes the two 

cameras simultaneously to capture images. These images are 

then transmitted to the controller for processing, including 

stereo rectification, stereo correspondence, and 3D point 

reconstruction. Stereo vision systems have been successfully 

applied to measure the 3D displacement of structures such as 

wind turbines [2] and bridges [3]. 

However, measurement accuracy in depth decreases when 

the measurement distance increases if the distance between the 

two cameras (the baseline) remains constant. For tall structures, 

the distance between cameras and structures can be significant. 

To maintain measurement accuracy in depth, a baseline of 

potentially hundreds of meters is required. In such cases, 

conventional cable-based stereo vision systems become 

impractical. 

To address this limitation, cable-free stereo vision systems 

have been developed. Yang et. al [4] introduced a mobile stereo 

vision system with an adjustable baseline distance. Images 

from the cameras are transmitted wirelessly to a controller 

computer. Sumetheeprasit et .al [5] developed a stereo vision 

system using two drone-mounted cameras with a variable 

baseline. However, existing cable-free stereo vision systems 

mainly target short-term, offline measurements. Long-term 

online monitoring poses additional challenges, such as ensuring 

long-term synchronized image capture, managing the large 

bandwidth needed for wireless image transmission, and 

performing real-time stereo image processing. These 

challenges complicate the long-term online monitoring of tall 

structures. 

 This paper presents a novel wireless stereo vision system 

designed for long-term online monitoring of 3D displacement 

in tall structures. Figure 1 illustrates the overall workflow of 

this system: 

1) The left and right cameras are strategically positioned to 

target a common point on the structure. 

2) Stereo calibration is performed by measuring the relative 

geometrical relationship (the essential matrix) between the two 

cameras using GPS-RTK. A world coordinate system is 

established, with the origin located at the center of the left 

camera. The Z-axis extends from the center of the left camera 

toward the center of the right camera. The Y-axis points 

vertically upward, and the X-axis is defined according to the 

right-hand rule. This approach simplifies coordinate system 

transformation during 3D reconstruction. 

3) Both cameras are simultaneously triggered by 10 Hz 

pulse-per-second (PPS)-based signals to capture synchronized 

images. 

4) Reference images from both cameras are selected, and 

feature points are detected using the deep learning algorithm 

SuperPoint [6]. These detected points are matched using the 

LightGlue algorithm [7]. Bounding boxes around these 

matched point pairs serve as candidates for selecting a tracking 

target using the zero-normalized cross-correlation (ZNCC) 

algorithm. 

5) The cameras capture images every half hour or one hour 

to document illumination changes throughout the day. The 

ZNCC scores of candidate targets across these images are 

calculated, and the bounding box with the highest ZNCC score 

is selected for long-term tracking. 

6) Measurement begins, with each camera independently 

processing its captured images to determine the 2D pixel 

position of the selected target. 
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7) The extracted 2D data from each camera is automatically 

uploaded to Amazon Web Services (AWS) S3 for storage. 

8) AWS Lambda computes the 3D displacement using the 

uploaded 2D data from both cameras. 

 
Figure 1. The workflow of the wireless stereo vision 

system. 

2 WIRELESS STEREO VISION SYSTEM 

 Hardware 

The wireless stereo vision system consists of left and right 

camera nodes, each with identical hardware components. Each 

node includes a SONY IMX296 camera with a lens, two 

Raspberry Pi 4B computers, a GNSS board, a GNSS antenna, 

and a 4G module. The camera can be triggered by external 

signals. To wirelessly trigger both cameras simultaneously, 

PPS signals are used. Once the first Raspberry Pi receives the 

PPS signal from satellites, it generates a 10 Hz trigger signal to 

control the camera’s image capture. The PPS signal from the 

satellites occurs precisely at the start of every second, providing 

nanosecond-level accuracy. To ensure durability for long-term 

field operation, the hardware components of each camera node 

are enclosed in a CCTV camera housing. 

 
Figure 2. The hardware of the left/right camera. 

 software 

The software workflow for online 3D displacement monitoring 

is shown in Figure 1 and described in the Introduction. This 

section explains how 3D displacement is calculated from the 

2D data captured by the two cameras. 

In the proposed system, unlike conventional stereo vision 

systems, the left and right cameras are not permanently fixed 

during manufacturing. Instead, their relative positions can be 

adjusted according to different scenarios. Therefore, stereo 

calibration must be performed before each measurement. 

Stereo calibration determines the essential matrix, which 

describes the geometric relationship between the image planes 

of the two cameras. This essential matrix combines the intrinsic 

parameters of the two cameras and a fundamental matrix. 

Typically, the two cameras are placed far apart, with a large 

overlapping field of view (FOV), aimed at the top of the 

monitored structures. In this setup, using a calibration pattern 

to directly obtain the essential matrix is challenging. As a 

result, the intrinsic camera matrices and the fundamental matrix 

are calibrated separately. 

The intrinsic matrices of the two cameras, K_left and 

K_right,  can be obtained using Zhang’s calibration method [8]. 

The fundamental matrix is calculated using GPS-RTK, as 

shown in Figure 3. The calibration process for the fundamental 

matrix follows these steps: 

1) The coordinates of the left and right cameras, as well as 

the structure’s ground level, are measured using GPS-RTK. A 

world coordinate system is defined with the origin at the center 

of the left camera. The camera centers are adjusted to point 

toward the target, and the roll angles are set to zero. The yaw 

angles of both cameras are then calculated. The left camera is 

located at (0, 0, 0), and the right camera at (0, V, S). 

2) The target’s coordinates in the world coordinate system 

are determined based on structural drawings. The pitch angles 

of the cameras are then calculated. The rotation matrix from the 

left camera’s coordinate system to the world coordinate system 

is: R_left = R(Yaw_left) R(Pitch_left) R(Roll_left), where 

𝑅(Yaw_𝑙𝑒𝑓𝑡) = [
cos(Yaw_𝑙𝑒𝑓𝑡) − sin(Yaw_𝑙𝑒𝑓𝑡) 0

sin(Yaw_𝑙𝑒𝑓𝑡) cos(Yaw_𝑙𝑒𝑓𝑡) 0
0 0 1

] 

𝑅(Pitch_𝑙𝑒𝑓𝑡) = [
cos(Pitch_𝑙𝑒𝑓𝑡) 0 sin(Pitch_𝑙𝑒𝑓𝑡)

0 1 0
− sin(Pitch_𝑙𝑒𝑓𝑡) 0 cos(Pitch_𝑙𝑒𝑓𝑡)

] 

 

𝑅(Roll_𝑙𝑒𝑓𝑡) = [

1 0 0
0 cos(Roll_𝑙𝑒𝑓𝑡) − sin(Roll_𝑙𝑒𝑓𝑡)

0 sin(Roll_𝑙𝑒𝑓𝑡) cos(Roll_𝑙𝑒𝑓𝑡)
]. 

The translation vector from the left camera to the world 

coordinate system is T_left = (0, 0, 0). Similarly, the rotation 

matrix and translation vector for the right camera are: R_right 

= R(Yaw_right) R(Pitch_right) R(Roll_right) and T_right = (0, 

V, S). 

3) The fundamental matrix F between the left and right 

cameras is calculated by F = (R_right T_right)-1 (R_left T_left). 

Then the essential matrix E is obtained as E = (K_right)T F 

K_left. 
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Figure 3. The determination of the foundation matrix. 

3 VALIDATION TEST 

To evaluate the measurement accuracy of the system, an 

outdoor experiment was conducted. The experimental setup is 

shown in Figure 4. A vertical cantilever, 2 meters in height, was 

used as the measurement target. The left and right camera nodes 

were placed at long distances from the cantilever—189 meters 

and 195 meters away, respectively. The baseline distance 

between the two cameras was 93 meters. 

(a)  

(b) 

(c)  

Figure 4. The setup of the validation experiment. 

The stereo vision system measured the 3D displacement of 

an artificial target (concentric circles) placed at the top of the 

cantilever. For reference, the horizontal displacement was also 

measured using a separate 2D vision-based system. A 

chessboard target was used for this reference measurement. 

The results from the stereo vision system were compared 

with those from the 2D reference system, as shown in Figure 5. 

The average root mean square error (RMSE) between the two 

measurements was 1.02 mm. 

 
Figure 5. The measurement results of the validation 

experiment. 
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ABSTRACT: Visual inspection remains the most fundamental and widely used method for assessing the condition of bridges. 

This process involves observation of structural surfaces at a close distance to identify visible signs of deterioration such as 

cracking, spalling, corrosion, and delamination. Traditionally, human inspectors perform visual inspections manually. This labour-

intensive process is associated with many limitations, for example, subjectivity to an inspector’s interpretation, difficulty accessing 

structural components, management of large volumes of unstructured data and the lack of consistent historical records. Recent 

advancements in computer vision and artificial intelligence have enabled considerable progress toward automating visual 

inspections. However, the full automation of visual inspections in practical, real-world scenarios remains constrained by several 

challenges: (i) the continued need for human intervention, (ii) the limited availability of high-quality labelled datasets, (iii) the 

generalizability of existing models, and (vi) the lack of standardized inspection protocols. In this positioning paper, we present an 

overview of the current state of automated visual inspection for defects identification in bridges. It reviews key open-source 

datasets of defects and state-of-the-art deep learning models. We give our forward-looking perspective on fully automated defects 

identification systems that align with standardized visual inspection guidelines. 

KEY WORDS: Visual Inspection; Defects Identification; Condition Assessment; Automated Bridge Inspection; Computer Vision; 

Structural Health Monitoring (SHM); SHM at Local level.

1 INTRODUCTION 

Bridges are critical components of our transportation 

infrastructure. Rigorous and timely inspections are needed to 

ensure their long-term performance and operational safety, and 

to avoid catastrophic failures. In general, bridge inspections are 

classified as general, principal, and special inspections. Each 

type of inspection serves a distinct purpose, i.e., from basic 

visual checks, to more in-depth often involving touching 

distance examinations, to address specific concerns or unusual 

events such as accidents (e.g., collisions by heavy loads trucks) 

or natural disasters (e.g., earthquake, flooding) [1]. Among 

these, visual inspection is the most employed method, 

particularly during general and principal inspections. It 

involves systematic observation of the bridge’s surface to 

detect visible signs of deterioration such as cracking, corrosion, 

spalling, and delamination. These observable defects serve as 

initial indicators of potential structural issues and guide/suggest 

evaluation or maintenance actions. 

The traditional visual inspection, while primary for initial 

defects detection, is inherently labour-intensive and often 

requires close-proximity access to structural elements, which is 

frequently unfeasible in hard-to-reach locations [2]. The 

process is also highly subjective, relying heavily on the 

individual expertise and judgment of trained inspectors. 

Research indicates a substantial probability (approximately 

50%) of inconsistent classification of concrete defects when 

different inspectors evaluate the same defects [3]. This poses a 

significant challenge, as the availability of experienced 

personnel is steadily declining [4]. Inconsistencies often arise 

from the disconnect between the on-site surveyor and the off-

site expert who interprets and documents findings, leading to a 

potential mismatch between observed conditions and reported 

assessments. Also, inspections typically generate a huge 

amount of unstructured data, including images and reports. 

Historical inspection reports are rarely utilized in subsequent 

evaluations due to inadequate data organization and retrieval 

systems. This lack of continuity poses a challenge for 

inspectors to accurately visualize and locate previously 

identified defects, complicating re-localization of defects and 

trend analysis over time, which involves monitoring defects 

progression across inspections, identifying deterioration 

patterns, and anticipating future degradation or necessary 

interventions. These challenges collectively highlight the need 

for integrated, data-driven, and automated visual inspection 

workflows that improve consistency, traceability, and long-

term asset management of bridges.  

Recent advancements in computer vision (CV) and artificial 

intelligence (AI) have matured to a level that enables the 

enhancement and partial automation of visual bridge 

inspections [5], [6]. These technologies are promising for 

digitizing inspection workflows, making them significantly 

fast, reliable, and repeatable. By using AI-driven image 

analysis, defects identification, and data management systems, 

bridge visual inspections can be completely automated and 

independent of subjectivity. Previous literature reviews [7], [8] 

on CV and deep learning (DL) based bridge visual inspection, 

have provided foundational overviews of the field up to 2020. 

While valuable, these reviews have limitations that necessitate 

an updated perspective. For instance, [7] comprehensively 

covers structural health monitoring (SHM) with an emphasis 

on CV-based defects detection (e.g., cracks, spalling, 

delamination, rust, and bolt loosening). However, its scope is 
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restricted to datasets and algorithms available prior to 2020, 

thereby omitting crucial post-2020 advancements in both novel 

defect types and state-of-the-art AI-driven techniques. 

Similarly, [8] offers a broad exploration of DL-based SHM, 

encompassing CV, unmanned aerial vehicles (UAVs), 

vibration-based methods, and physics-informed approaches, 

effectively linking traditional machine learning with modern 

DL strategies. Nevertheless, it lacks critical discussion on the 

practicalities of real-world applications of visual inspection, the 

availability of experimental/test datasets, and open-source 

implementations, thus highlighting a significant gap in 

addressing deployment challenges and reliability of automated 

visual inspection. This collective gap highlights the urgent need 

for a contemporary position that re-evaluates automated visual 

inspections considering recent research advances and emerging 

trends, with a focus on improvements in the enrichment of 

defects dataset, DL-based defects identification algorithms, and 

practical deployment strategies. 

In this positioning paper, we critically evaluate the current 

state-of-the-art in available defects datasets and DL-based 

defects identification algorithms, systematically identify the 

principal barriers to real-world implementation, and propose a 

forward-looking perspective on the future development of 

automated visual inspection of defects for bridges. The rest of 

the paper is organized as follows: Section 2 describes the 

dataset utilized for bridge defects detection, including data 

sources and characteristics. Section 3 details the baseline 

algorithms and the proposed enhancements for defects 

recognition. Section 4 provides a perspective on the future 

overview of automated visual inspection. Finally, Section 5 

summarizes the overall position paper and draws conclusions. 

2 RELEVANT DEFECTS DATASETS 

Most highway bridges are reinforced concrete (RC) bridges [9]. 

While a reliable identification of RC defects is essential, 

existing datasets are often limited in size and class diversity, 

raising concerns about their real-world applicability and 

suitability as benchmarks. Over the past decade, significant 

progress has been made through datasets enabling binary 

classification [13, 23, 24, 25], multi-class classification [1, 7, 

26], multi-label classification [16], binary semantic 

segmentation [8, 27], and multi-label semantic segmentation 

[10, 28, 29]. Each dataset contributes to advancing defects 

assessment methodologies reviewed in this section. 

2.1 Binary-class classification 

The Cambridge Bridge Inspection Dataset (CDS) [10] 

combines two primary data sources to enhance defects 

recognition in RC structures. The first source comprises 21,284 

high-resolution images captured from 10 RC highway bridges 

in Cambridge. The focus is on critical structural elements such 

as decks, columns, piers, and abutments. Since these bridges 

are in good condition, the dataset lacks sufficient diversity of 

defects. To address this limitation, a second set of 22,121 

images was incorporated from the U.S. Federal Highway 

Administration and the Georgia Department of Transportation, 

enriching the dataset with a variety of examples of defects. All 

images are categorized into two classes “healthy” and 

“potentially unhealthy,” providing a foundational binary 

classification benchmark for structural condition assessment. 

This hybrid approach ensures broad applicability. SDNET [11] 

is also a large-scale binary annotated image dataset designed to 

train, validate, and benchmark AI-driven crack detection 

models for concrete structures. Comprising over 56,000 images 

of cracked and non-cracked surfaces of diverse structural 

elements such as bridge decks, walls, and pavements. The 

dataset captures a wide range of crack widths, from 0.06 mm to 

25 mm, enhancing its applicability to real-world scenarios. 

SDNET incorporates various challenging conditions such as 

shadows, surface roughness, scaling, edges, holes, and 

background debris, simulating shared challenges encountered 

in visual inspections. While the dataset covers many structural 

elements, its initial version suffered from labeling inaccuracies, 

which may require preprocessing or correction for reliable 

model training. Despite this limitation, SDNET remains a 

valuable resource for advancing automated structural defects 

assessment.  

The Image-based Concrete Crack Database (ICCD) [12] is 

developed using 1,455 high-resolution crack images captured 

via smartphone from suspension bridge towers and anchor 

chambers in Dalian, China. To ensure diversity, images were 

taken at varying distances (0.1 – 1.0 m) and under different 

lighting conditions (daylight, nighttime, direct sunlight, and 

shaded surfaces), simulating real-world inspection conditions. 

These images were then cropped into 256 × 256 px patches and 

manually labeled into two classes – cracked and uncracked 

concrete. Through data augmentation, the final dataset was 

expanded to 60,000 images, significantly enhancing its utility 

for training robust DL models in automated crack detection. 

This approach improves generalization and addresses 

variability in real-world visual inspection scenarios. The 

Bridge Crack Dataset (BCD) [13] is specifically designed for 

robust crack detection in bridge inspection scenarios. The 

original dataset consists of 2,068 images of bridge cracks, 

which were processed and augmented to generate 6,069 image 

patches, optimizing them for DL applications. To enhance real-

world applicability, the dataset intentionally includes 

challenging conditions such as bridge shading, water stains, 

and bright light reflections, common obstacles in field 

inspections. By incorporating these complexities, BCD serves 

as a valuable benchmark for developing generalizable and 

noise-resistant crack classification models, ensuring practical 

utility in automated visual inspection systems. While these 

datasets provide valuable benchmarks for binary crack 

detection, they suffer from critical limitations, for example, 

CDS [10] lacks natural defects diversity, SDNET [11] has 

labeling errors, ICCD [12] relies on artificial augmentation, and 

BCD’s [13] small scale and synthetic challenges may not 

reflect real-world complexity. 

2.2 Multi-class classification 

The Bearing Condition State Classification dataset [14] 

comprises 947 annotated images of structural bridge bearings. 

The annotations adhere to the condition state assessment 

guidelines outlined by the American Association of State 

Highway and Transportation Officials [21] and the Bridge 

Inspector's Reference Manual [22]. The dataset categorizes 

steel corrosion into four distinct condition states: good, fair, 

poor, and severe. Detailed annotation guidelines, along with 

explanatory examples, are provided to ensure consistent and 

accurate condition assessment. The dataset serves as a valuable 

resource for visual inspection and deterioration assessment of 
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bridge bearings. The Multi-classifier Dataset (MCDS) [3] 

consists of 38,408 annotated images capturing various 

deterioration patterns in concrete structures. Defects are 

classified into eight distinct categories including spalling, 

cracks, rust staining, efflorescence, scaling, abrasion/wear, 

exposed reinforcement, and general defects. This 

comprehensive taxonomy enables detailed analysis of concrete 

degradation assessment and supporting visual inspection. 

2.3 Multi-label classification 

COncrete DEfects BRidge IMage (CODEBRIM) dataset [16] is 

the largest and most realistic multilabel dataset for RC 

deterioration classification. The dataset categorizes defects into 

six distinct classes: crack, spalling, exposed reinforcement bar, 

efflorescence, corrosion, and background. The unbalanced 

version of CODEBRIM consists of 7,729 annotated image 

patches extracted from 30 bridges, selected to represent diverse 

deterioration levels, defects sizes, severity, and surface 

textures. High-resolution images were captured under different 

weather conditions and using multiple cameras at different 

scales. To address accessibility challenges, a subset of data was 

acquired via UAV for defects located at elevated positions. 

Despite its comprehensiveness, CODEBRIM present a key 

challenge for real-world transferability. The dataset is 

composed of cropped image patches, where original images are 

subdivided into rectangular segments based on maximum 

defects dimensions. This approach may disrupt contextual 

information, which is critical for holistic defects assessment. 

2.4 Binary-class semantic segmentation 

The UAV75 dataset [17] comprises 75 images featuring pixel-

wise manual annotations for binary semantic segmentation 

tasks. This dataset provides precise delineation of target 

features at the pixel level, enabling detailed analysis of 

structural characteristics. The fixed image dimensions and 

binary classification scheme facilitate consistent model training 

and evaluation, while the limited sample size positions this 

dataset as a specialized benchmark for targeted applications in 

structural assessment. Kulkarni et al. [18] introduced 

CrackSeg9k, currently the largest and most diverse binary crack 

segmentation dataset, comprising 9,255 images aggregated 

from ten preexisting sub-datasets including Crack500, 

Deepcrack, SDNET, CrackTree, GAPs, Volker, Rissbilder, 

Noncrack, Masonry, and Ceramic. The dataset addresses key 

limitations in individual source datasets (e.g., noise, distortion) 

through standardized preprocessing, while maintaining 

diversity in surface materials (concrete, masonry) and crack 

morphologies. Despite its focus on binary crack segmentation 

as shown in Figure 1, the dataset’s practical utility depends on 

recognizing at least nine distinct defect types. Notably, 

CrackSeg9k homogenizes acquisition conditions including 

camera pose, lighting, and hardware across sub-datasets to 

minimize confounding variables. This curation enhances its 

reliability for benchmarking semantic segmentation algorithms 

in visual inspection for RC defects applications. 

2.5 Multi-label semantic segmentation 

The Structural Defects Dataset (S2DS) [20] is the first multi-

class semantic segmentation dataset for RC defects analysis, 

containing 743 annotated images of RC bridges. It classifies 

five defect types: cracks, spalling, corrosion, efflorescence, and 

vegetation along with control points for georeferencing as 

shown in Figure 2. While the dataset is pioneering in enabling 

multi-class segmentation and features high-quality manual 

annotations by a trained expert, its limited size and diversity 

raise concerns about real-world applicability. The dacl10k 

dataset [5] represents the first large-scale benchmark for multi-

label semantic bridge defects segmentation, featuring 9,920 

annotated images sourced from bridge inspections in Germany 

between 2000 and 2020. Developed to support AI-assisted 

defects recognition and documentation, the dataset aligns with 

structural inspection guidelines, focusing on defects that can be 

legally assessed. It includes 19 classes as shown in Figure 3 

categorized into concrete defects, general defects, and objects, 

capturing complex real-world scenarios where multiple defects 

often overlap. The dacl1k dataset [19] addresses critical 

limitations in existing RC defects datasets by providing 1,474 

uncropped, real-world inspection images with multi-label 

annotations across five damage classes including Crack, 

Efflorescence, Spalling, Bars Exposed, Rust, and a No Damage 

category, derived from diverse sources including authorities 

and engineering offices. Unlike datasets such as CODEBRIM 

(which uses cropped patches) or MCDS, dacl1k preserves raw 

image heterogeneity varying in camera types, poses, lighting, 

and resolutions to better reflect real inspection challenges. 

However, while its diversity enhances practical applicability, 

the dataset's small size (1,474 images) and moderate label count 

(2,367 total labels) raise concerns about statistical robustness 

and class balance. Despite the shortcomings, dacl1k represents 

a step toward bridging the gap between controlled research 

datasets and actual field conditions, though larger-scale, more 

granular annotations and rigorous benchmarking remain unmet 

needs for reliable RC defects assessment. 

3 DFECTS IDENTIFICATION MODELS  

Dong et al. study [7] provide a detailed review of computer 

vision-based structural health monitoring at local level 

(CV‑SHM‑LL), outlining various applications and 

methodological approaches. The work scrutinizes a wide range 

of models designed for localized analysis, including both patch-

based and pixel-based techniques. Additionally, it discusses 

traditional methods alongside data-driven machine learning 

approaches. However, it is limited to approximately eight types 

of structural defects. Cha et al. [8] provides a broad overview 

of DL-based SHM techniques applied to various infrastructure 

systems, such as bridges, and different construction materials 

like concrete and steel. The study extensively reviews the 

historical development of DL architecture, as illustrated in 

Figure 4. However, it does not explore deeply into the precise 

 

Figure 1. CrackSeg9k's categorization of crack types [18] 
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application of visual inspection methods for bridges defects 

identification and their real-world implementation challenges.  

Hüthwohl et al. [10] proposed an automated method for 

detecting intact concrete areas using image segmentation and 

classification. By applying morphological operations to 

generate boundary masks, their approach filters out defects-free 

regions, optimizing inspection efficiency by concentrating 

analysis on potential damage zones. Dorafshan et al. [11] 

introduced SDNET dataset and benchmarked performance 

using AlexNet [23], validating the dataset's utility for algorithm 

development. Li et al. [12] developed a convolutional neural 

network (CNN) based crack detection method using an 

enhanced AlexNet [23], overcoming traditional limitations like 

noise sensitivity. Their model achieved 99.06% validation 

accuracy and was deployed as a smartphone app for real-world 

use. Xu et al. [13] developed an end-to-end CNN-based crack 

detection model. Achieving 96.37% accuracy without pre-

training, it outperformed traditional methods and showed 

potential as a versatile feature extraction module for other 

networks.  

Hüthwohl et al. [3] developed a three-stage multi-classifier 

system for concrete defects detection in bridges using fine-

tuned deep neural networks trained on multi-source inspection 

data. Their approach first identifies five defect types along with 

defects-free areas, then detects exposed reinforcement, and 

finally recognizes rust staining. The approach achieves 85% 

average classification accuracy. Mundt et al. [16] developed a 

meta-learning approach for automated CNN design targeting 

multi-defects concrete classification. Using their CODEBRIM 

dataset containing images with overlapping defects, they 

employed MetaQNN [24] and ENAS [25] reinforcement 

learning methods to generate optimized architectures. The 

resulting CNNs achieved higher multi-target accuracy than 

manually designed models while using fewer parameters, with 

validation accuracy serving as the reinforcement learning (RL) 

controller's reward signal. Benz et al. [17] presents 

CRACKNAUSNET, a transfer learning-based CNN for crack 

detection in unmanned aircraft system (UAS) imagery, 

 

Figure 3. dacl10k dataset and labels [5]. The font size of the caption has been adjusted for clarity. 
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Figure 2. S2DS Classes and Labels: crack (black), 

spalling (red), corrosion (orange), efflorescence (blue), 

vegetation (green), and control point (purple) [20] 
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adapting TernausNet [26] with VGG16's [27] first 16 layers as 

a pre-trained encoder. The model addresses UAS-specific 

challenges (low resolution, faint cracks, planking artifacts) 

using the novel UAV75 dataset, which includes a dedicated 

class to mitigate planking-induced false positives, where 

inspection planks were mistakenly identified as defects. While 

achieving 75% average accuracy on UAV75 outperforming 

existing approaches, the model's performance declined on 

external datasets, indicating dataset-dependent effectiveness.  

Kulkarni et al. [18] proposed an advanced crack 

segmentation framework combining YOLOv5 [28] for 

detection, DINO for unsupervised feature extraction, and FPN-

based models [29] for precise segmentation. Their approach 

utilizes self-supervised transformer attention to enhance CNN 

performance, overcoming challenges like crack variability and 

background noise. The method was validated on a newly 

compiled, meticulously annotated dataset demonstrating 

improved generalization across diverse crack types and 

surfaces.  

The study [20] proposed a hierarchical multi-scale attention 

(HMA) model for multi-label semantic segmentation using an 

HRNet-OCR backbone to oversee objects of varying sizes. The 

model employs contrastively learned attention maps to 

dynamically fuse multi-scale features, enhancing pixel-level 

and contextual representations through transfer learning from 

Cityscapes. A significant contribution is the line-based tolerant 

IoU metric designed specifically for crack detection, 

addressing the shortcomings of conventional area-based 

metrics (IoU/F1). The evaluation compared CNN-based 

architectures (DeepLabV3+, FPN with MobileNetV3 / 

EfficientNet encoders, some with auxiliary losses) and 

Transformer-based SegFormer (trained with Dice loss). All 

models used Adam optimization with cosine learning rate 

scheduling, ImageNet initialization, and 512×512 input 

resolution over 30 epochs, demonstrating the approach's 

effectiveness particularly for challenging crack segmentation 

tasks. 

The dacl-challenge [6] aimed to advance automated defects 

identification in bridges using its large, real-world dataset. It 

benchmarked CV models as shown in Figure 5 for accurate, 

detailed detection and classification of bridge defects and 

components. 

a) Baseline Model: The dacl-challenge baseline employed 

SegFormer [30] MiT-b1, pre-trained on ImageNet-1k [23]. 

This model features a multi-label segmentation head and a 

compact encoder with 13.1M parameters. For the 

challenge, SegFormer was trained for 10 epochs on the 

development set and 30 epochs on the final test set. 

b) First Place Approach (Sheoran): The top-performing 

solution by Sheoran utilized an ensemble of predictions 

from several models. Initially trained with 

MMSegmentation, the models were adapted to the 

segmentation-models-pytorch library for multi-label 

handling. The training process incorporated diverse 

augmentations and the RangersLars optimizer. Predictions 

from six distinct models were aggregated for specific 

classes, leading to enhanced overall performance. 

c) Second Place Approach (Bridge Protector): Bridge 

Protector's approach involved training the Mask2Former 

model [31] with an InternImage-H [32] backbone using the 

MMSegmentation framework. Pre-trained weights from 

the ADE20K dataset [33] were utilized. To address the 

multi-label nature of the data, the problem was divided into 

19 individual binary segmentation models, one for each 

class. The outputs of these 19 models were then combined. 

d) Third Place Approach (Winning Wieners): Winning 

Wieners combined a feature pyramid network (FPN) [29] 

with a multi-axis vision transformer (MaxViT) [34] as the 

backbone. MaxViT integrates convolutional blocks with 

the attention mechanism of vision transformers. The xlarge 

version of MaxViT, pre-trained on ImageNet, was used. 

The model was trained using a five-fold cross-validation 

strategy, resulting in an ensemble of five models. 

Prediction-level threshold optimization was performed for 

the final ensemble. 

Top-performing approaches heavily used transfer learning 

and adapted existing architectures, potentially limiting 

exploration of novel structural defects segmentation 

techniques. Their performance is more sensitive to training 

configurations than architectural innovation. While ensemble 

learning improved the results (see Figure 5) their computational 

cost warrants investigate efficient high-performance strategies. 

The bar chart presented here shows only the top performance 

values for defects (objects excluded), compared to the baseline 

performance. While many deep learning-based approaches for 

structural defects identification in bridge infrastructure achieve 

high accuracy using CNNs, transformers, and ensemble 

methods, their generalizability is often constrained by dataset 

dependency, high computational demands, and reliance on pre-

trained architectures. Future research should prioritize the 

development of specialized models and training strategies 

tailored to visual structural assessment, moving beyond generic 

transfer learning paradigms. 

4 FUTURE OVERVIEW OF VISUAL INSPECTION 

Over the past decade, different AI and CV-based 

methodologies have been proposed for the identification of 

 

 

Figure 4. Popular architectures of DL over the years [8] 
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local-level defects [7], [8], [36], [37], [38], [39], [40], [41]. 

However, despite promising results in controlled research 

settings, many of these solutions have not yet achieved the 

robustness or scalability approaches for deployment in real-

world environments. Most current approaches fall short of 

industrial standards and remain insufficient for fully 

automating visual inspections under diverse operational 

conditions. Thus, while foundational technologies are in place, 

further developments, validations, and standardizations are 

necessary to enable their widespread adoption in bridge 

inspection practices. 

Despite all current advancements, the complete automation 

of visual bridge inspection remains unrealistic at present. This 

is primarily due to the complexity of standardized inspection 

protocols such as NEN 2767 in the Netherlands [42], AASHTO 

in the United States [21], CS 450 in the UK [43], CSA-S6 in 

Canada [44], AS5100.7 in Australia [45]. These standards 

define a multi-layered assessment framework, spanning from 

general structural classification to detailed defects evaluation. 

For example, NEN 2767 organizes infrastructure assessment 

across five hierarchical levels. Figure 6 represents inspection 

levels with an example decomposition for a RC bridge. 

Level-1. Element Group (i.e., type of bridge such as 

reinforced concrete) bridge,  

Level-2. Elements (i.e., main parts of that bridge such as 

handrail),  

Level-3. Building Components (i.e., sub-parts of element such 

as the structural frame of a handrail and protective 

coating),  

Level-4. Materials (i.e., material type of each building 

component (e.g., steel for the structural frame and 

paint for the protective coating),  

Level-5. Defects (i.e., defect types of building component, 

like corrosion and rust in case of steel handrail, color 

peel off in case of paint coating).  

During visual inspection, inspectors primarily interact with 

bridge at material and defects levels. For each observed defect, 

the inspector manually assigns three critical parameters 

including severity, extent, and intensity. These judgments, 

informed by domain expertise, are used to calculate the 

condition score for each building component (Level-3), which 

are then aggregated to yield scores for Elements (Level-2) and 

the overall condition index for the entire Element Group 

(Level-1). In the NEN 2767 standard the condition score ranges 

from 1 (very good) to 6 (very poor). It quantifies the current 

condition of inspected components of the inspected bridge 

based on observed defects. 

While CV techniques have made substantial progress in 

defects identification (i.e., detection, localization, and 

classification of defects such as cracks, corrosion, or spalling), 

the current state of approaches are not yet capable of reliably 

performing the significant evaluation required by inspection 

standards. Specifically, automatic quantification of defects 

parameters (severity, extent, and intensity), contextual cause 

analysis, and risk assessment still require manual 

measurements and expert’s (e.g., inspector’s) interpretation. As 

a result, human oversight remains essential, and existing 

AI‑based inspection systems are best viewed as decision-

support tools rather than fully autonomous solutions. 

To fully understand the current limitations in automating 

bridge inspections, it is important to examine the fundamental 

challenges associated with defects identification across 

multiple levels. In SHM, first Rytter in 1993 [46] and then 

Worden et al. in 2004 [47] outlined hierarchical levels of 

damage identification including damage detection, 

localization, classification, assessment, and prediction. While 

damage refers to changes in structural properties that adversely 

affect performance, defects in the visual inspection refer to 

observable surface-level anomalies. An equivalent framework 

of object detection as previously highlighted in [48] and now in 

further extended form, as shown in Figure 7,can be applied to 

CV-based defects identification. The following levels for 

 

Figure 5. dacl-challenge: state-of-the-art performance achieved vs. baseline algorithm accuracy (% IoU) [6] 
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object (or defects, in this case) identification are defined: 

detection, localization, classification (or segmentation), 

quantification, and propagation. Currently, most CV-based 

approaches [6] in bridge inspection have achieved automation 

up to the classification (or segmentation) level, identifying and 

labelling regions of interest such as cracks or corrosion patches 

[7], [8]. However, progressing to quantification is essential to 

comply with inspection standards, which require precise 

evaluation of defects parameters (severity, extent and intensity) 

to calculate the condition score of a component (refer to Figure 

6). 

 

Figure 6. Decomposition and example of levels of inspection 

process in NEN 2767 standard 

 

 
Figure 7. An identification analogy between damage 

identification [24], [25] and object (or defects in this case) 

identification 

While limited success has been achieved in quantifying 

specific types of defects (e.g., crack width and length) [49], 

[50], [51], [52], [53], the methods are not generalized across the 

wide spectrum of defects encountered in practice. For instance, 

NEN standard alone defines approximately 128 distinct defect 

types relevant to bridge visual inspection, each with distinct 

characteristics and assessment criteria [42]. This diversity 

presents a significant challenge for developing universal 

quantification algorithms. Once automated systems can 

reliably assign defects-level (Level-5) condition scores as 

shown in Figure 6, this would enable near-complete automation 

of the visual inspection process and facilitate systematic and 

periodic data collection at the local (defects) level. 

To address these limitations and pave the way for practical 

CV-SHM implementation, this paper proposes an automated 

visual inspection system with a future direction, as 

conceptually illustrated in Figure 8. The proposed system is 

envisioned as a continuously evolving ecosystem, driven by 

progressive enhancements in defects identification capabilities 

and adherence to established inspection standards, such as the 

Dutch NEN2767 standard. It is initially trained on a 

comprehensive dataset synthesized by merging existing state-

of-the-art datasets, specifically curated to encompass a diverse 

range of defect types. A user-friendly application is developed 

in close collaboration with visual inspection experts to ensure 

seamless integration with current inspection workflows. Once 

it achieves a satisfactory level of performance, the system is 

deployed across various on-site inspection platforms, including 

mobile devices, tablets, drones, and augmented reality (AR) 

headsets. In its operational phase, the system functions as a 

semi-autonomous tool for human inspectors. It provides real-

time defects predictions, allowing inspectors to contribute their 

expertise through manual annotations and comments. All data, 

including system predictions and human input, are securely 

stored on a cloud platform, facilitating continuous expert 

evaluation and ongoing system refinement. Furthermore, the 

system integrates AR tools to analyze historical defects data, 

including location and characteristics, to predict future defects 

propagation over time. This predictive capability empowers 

initiative-taking maintenance strategies and enhances the long-

term sustainability of bridges and other civil infrastructures. 

5 CONCLUSION 

This paper reviews RC defects datasets for bridges and state-

of-the-art algorithms and proposes an automated visual 

inspection system for computer vision-based structural health 

monitoring at local level (CV-SHM-LL) that integrates deep 

learning methodologies with standardized inspection protocols 

and human expertise to advance bridge inspections. Addressing 

current limitations in data availability, holistic component-

level defects evaluation, and deployment feasibility, this study 

aims to translate theoretical advancements into practical 

solutions for enhanced SHM. The following conclusions can be 

drawn from this positioning paper:  

• To improve the reliability, robustness, and resilience of the 

inspection systems, it is necessary to utilize and integrate 

comprehensive and diverse datasets with unique types of 

defects, and state-of-the-art prediction models. 

• For the inspection system to be useful in real-world 

scenarios, it must be able to quantify defects by 

determining their extent, severity, and intensity. This will 

allow for a step-by-step approach to reach level of 

quantification as shown in Figure 7. 

       

              

       

        

       

                   

       

         

       

       

        

      

         

 
 
 
 
  
  
 
  
 
 
  

                                

          

               

        

                

     

         

            

    

             

                            

         

                              

                               

                        

            

                                  

                                   

              

                                  

                  

          

                                   

                    

          

                                   

                               

                                  

                                

                            

         

                                   

     

            

                              

                              

         

                             

                               

                                     

            

              

                               

                    

           

                                    

                                    

               

                                

               



 

13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-052 

 

CC BY 4.0  

https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 343 

 

• Inspection standards must be applied to connect surface-

level observations with a deeper understanding of overall 

structural behaviour. This will bridge the gap to achieving 

insights into global structural performance. 

Future research should focus on the deployment of 

lightweight neural networks and integration of augmented 

reality (AR) features on handheld edge devices. This interface 

should enable the visual overlay of previously identified 

structural anomalies onto the physical infrastructure. This 

capability would facilitate targeted inspection efforts and the 

identification of how defects propagate over time. By 

leveraging computational models, such an AR-enhanced 

system should aim to provide inspection personnel with 

intuitive, real-time data to enable efficient and comprehensive 

structural evaluations. 
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ABSTRACT: This study presents an integrated intelligent framework for bridge inspection that synergizes Mixed Reality (MR) 
technology, deep learning-based object detection, and domain-specific engineering knowledge. Utilizing Microsoft HoloLens 2 
as the hardware platform, the system captures real-time 3D bridge surface imagery and deploys the optimized YOLOv11n-ZY 
model—enhanced with a ZZ convolutional module, YY attention mechanism, and SPPF-LSKA fusion module—to automatically 
detect and classify multi-category defects including cracks, corrosion, and spalling. Detection results are visualized within an MR 
interface and dynamically assessed through embedded expert knowledge. Validated on a custom dataset containing 4,176 images 
of 12 defect types under complex backgrounds, the proposed model achieves 40.3% mAP50 at 60 FPS with only 2.87 million 
parameters, outperforming existing YOLO variants. Implementation at the case study bridge  demonstrates real-time defect 
localization, 3D model updating, and closed-loop maintenance functionality. The framework advances intelligent infrastructure 
management by establishing a scalable pipeline for accurate defect assessment and lifecycle-oriented bridge maintenance. 

KEY WORDS: HoloLens 2; Object detection; YOLOv11; Visualization interface; Intelligent bridge operation and maintenance. 

 

1 INTRODUCTION 
As a critical component of modern transportation 

infrastructure, bridges are essential for maintaining socio-
economic stability and ensuring public safety [1]. 
Consequently, their structural safety, stability, and health status 
are of paramount importance.  

At present, traditional inspection methods, while capable of 
detecting visible defects such as cracks and corrosion, are 
constrained by inefficiency, heavy dependence on specialized 
knowledge, and challenges in handling complex environments, 
limiting their application in modern bridge inspection [2]. 
However, with the rapid development of computer vision 
technologies, deep learning-based object detection algorithms 
(e.g., YOLO, Faster R-CNN) have gradually been introduced 
into industrial defect detection, achieving significant 
improvements in efficiency and accuracy. 

In the field of bridge defect detection [3], Mixed Reality 
(MR) technology has also provided novel solutions to 
traditional inspection approaches. Utilizing devices like 
HoloLens 2, 3D models can be projected into the real world, 
enabling engineering personnel to observe bridge surfaces from 
multiple angles and dimensions, thereby enhancing defect 
identification accuracy. For instance, certain Chinese bridge 
institutes have integrated 3D laser scanning with BIM 
technology to control modeling errors within ±2mm [4]; 
however, algorithm robustness in complex environments still 
requires further improvement. 

The integration of emerging technologies such as deep 
learning, augmented reality (AR), and mixed reality (MR) has 
rendered bridge defect detection more efficient, precise, and 
intelligent [5]. At the same time, machine learning approaches 
have been integrated for defect detection in concrete structures 

in the past few years [6]. Nonetheless, adaptability to complex 
environments and capabilities for lifecycle management still 
need enhancement to better meet practical operational 
demands. 

This study aims to develop an intelligent bridge defect 
detection system by integrating multiple technologies. The 
research focuses on two main objectives.  

First, HoloLens 2 is leveraged to develop a mixed reality 
system that enables 3D visualization, virtual-physical 
integration, and multi-dimensional defect observation.  

Second, the system combines real-time scanning data 
processed by YOLOv11 with pre-constructed 3D virtual 
models to create an innovative bridge inspection framework 
supporting long-term intelligent operation and maintenance. 

 

2 UNITY-BASED 3D BRIDGE MODEL AND 
HOLOLENS 2 DEPLOYMENT 

 Case Study Bridge Information 
This study selects the Wenxi Bridge (Figure 1) in Suijiang 

New County, Yunnan Province, China,as the exemplar bridge 
for the visualized intelligent bridge inspection platform. By 
leveraging the 3D scanning capabilities of HoloLens 2, 
comprehensive structural information of the bridge was 
collected. Through comparison with preliminary design 
drawings, discrepancies between the actual bridge structure and 
the original plans—caused by on-site construction adjustments 
or undocumented modifications—were effectively resolved, 
enabling the successful creation of a 3D model of the Wenxi 
Bridge bridge in Unity. 
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Figure 1. Case study bridge - Wenxi Bridge. 

 
The deck width of the case study Bridge is 9 m + 2×1.5 m 

(pedestrian walkways). The superstructure comprises 9×30 m 
prestressed concrete simply supported T-beams arranged in 
three-span continuous units. The substructure includes column 
piers, U-shaped abutments, and ribbed abutments, with 
foundation types consisting of spread foundations and pile 
foundations. 

 

 Characteristics of Mixed Reality (MR) Technology and 
HoloLens 2 

Mixed Reality (MR) technology digitizes physical 
environments and integrates them with virtual objects to create 
a visualized interactive space where physical and virtual 
elements coexist. Compared to Virtual Reality (VR) and 
Augmented Reality (AR), MR not only superimposes virtual 
entities into real environments but also achieves precise spatial 
mapping and real-time interaction between virtual objects and 
physical spaces, forming a spatially consistent mixed reality 
environment [7].  

Microsoft HoloLens 2 (Figure 2), the second-generation MR 
device released by Microsoft, demonstrates technical 
advantages in bridge defect detection [8].  
 

 
Figure 2. HoloLens 2. 

 
 
 
 
 

 Unity Model Deployment on HoloLens 2 
The mixed reality (MR) application development for 

HoloLens 2 is based on the following software and toolkits: 
Windows 10 SDK, Visual Studio 2023, HoloLens 2 Emulator, 
Unity 2022.3.53f1c1, Unity Hub, and MRTK 2.8. To ensure 
efficient development and deployment, the hardware 
configuration listed in Table 1 was adopted: 
 

Table 1. Computer Hardware Configuration. 

CPU GPU RAM Storage Display 
i9-
14900HX 

RTX 
4070 

64GB 3TB 
SSD 

2560x1600 
/ 240Hz / 
18-inch 

 
Deployment Workflow is described as follows. "Developer 

Mode" on both the host computer and HoloLens 2 within the 
Windows operating system is firstly enabled. And the 
following procedures are adopted.  

 
(1)Project Creation: 
Create a new project via the Unity Hub integrated 

development environment and access the Build Settings 
interface. Select Universal Windows Platform (UWP) and 
execute the "Switch Platform" operation. This process 
automatically performs platform compatibility checks and 
restructures project resource formats through the underlying 
engine to meet UWP-specific technical requirements. 

 
(2)MR Toolkit (MRTK) Integration: 
Import the Mixed Reality Toolkit using the Mixed Reality 

Feature Tool (MRFT). 
The core principle involves modifying 

the manifestation configuration file to guide the Unity engine 
in correctly identifying and loading MRTK modules. Upon 
returning to the Unity environment, the system automatically 
initiates dependency detection and resource loading. Compared 
to traditional methods, MRFT integration effectively avoids 
dependency conflicts [7], significantly reducing the complexity 
of managing mixed reality toolchains. 

 
(3)Unity Project Configuration: 
As mixed reality applications fall under the extended reality 

(XR) domain, activate Unity’s built-in XR framework. After 
configuring the Player module, navigate to the XR Plug-in 
Management section and install the plugin management 
component. Enable the "Initialize XR on Startup" parameter 
and activate "Windows Mixed Reality" to ensure precise 
hardware-software compatibility, laying the foundation for 
subsequent MR development. 

 
(4)Unity Project Export: 
Select the target scene file and configure parameters: (1) Set 

device compatibility to "Any Device" for universal platform 
support. (2) Select the x64 architecture for optimal runtime 
efficiency. (3) Optimize auxiliary parameters based on specific 
development requirements. Initiate the conversion of the Unity 
project to a Visual Studio solution via the Build button, 
establishing a standardized framework for application 
compilation and deployment. 
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(5)Deployment to HoloLens 2 Device: 
Open the completed project in Visual Studio 2023 and 

proceed to the deployment parameter configuration phase. 
Simultaneously, ensure that the host development environment 
and the target device are connected to the same wired or 
wireless local area network (LAN), with sufficient network 
bandwidth to meet real-time transmission requirements for 
application image files, thereby guaranteeing the validity of the 
deployment process. 

 
Within the Visual Studio integrated development 

environment (IDE), sequentially perform three critical 
configurations:(1) Program compilation using Debug mode;(2) 
Selection of the ARM64 instruction set architecture to align 

with the target device’s hardware specifications;(3) 
Configuration of remote computer deployment options. 

Subsequently, input the target device’s network IP address 
in the debugging parameters module and set the authentication 
protocol to Universal (Unencrypted) mode. After completing 
the above parameter configurations, initiate the compile-deploy 
automation process via the Start Debugging command.  

This mechanism synchronously executes the generation of 
application binary files, their transmission, and device-side 
loading, establishing a complete end-to-end deployment 
pipeline. Through the above workflow, the Unity-based 3D 
model of the case study Bridge was successfully deployed on 
HoloLens 2, achieving 3D visualization as demonstrated in 
Figure 3. 

 
 

 
Figure 3. 3D Model layout diagram of case study Bridge. 

 
To accurately simulate defect morphologies under real-

world conditions and enable interactive analysis of damage 
data within the HoloLens 2 digital model, high-fidelity defect 
simulations were integrated into the case study bridge model. 
Leveraging HoloLens 2’s augmented reality system, 3D defect 
visualization and spatial mapping were implemented [10]. This 
framework, combined with depth perception and multi-source 
data fusion algorithms, supports three critical technical 
requirements: on-site auxiliary defect diagnosis, remote 
collaborative structural assessment by experts, and dynamic 
coupling analysis of multidimensional human-machine 
interaction  

 

3 DATASET CONFIGURATION 
This work referenced and adapted the data collection 

standards of the VisDrone2021 [11] dataset, employing 
methods including web crawling, video frame extraction, and 
filtering of multiple publicly available bridge defect datasets 
[12]. Simultaneously, to enhance the model’s generalization 
capability and prevent overfitting, data augmentation 
techniques—such as random rotation [13], random occlusion, 
color jittering, Gaussian blur, and noise addition—were applied 
to the dataset [14], as shown in Figure 4.  
 
 
 
 
 

 

 
Figure 4. Defects on the bridge. 

 
 
 
 
 
 

  



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-053 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 348 

The experimental dataset for this study was ultimately 
compiled and generated, containing 4,176 images. Label files 
for the dataset were created using the labelimg tool, with a total 
of 32,201 annotated bounding boxes. These annotations 
encompass bridge defect information across multiple 
categories, including exposed reinforcement, spalling, 
corrosion, water seepage in wet joints, mold growth, and 
cracks, as illustrated in Figure 5. The dataset aligns with the 
simulated defect conditions previously generated on the Unity 
bridge model. 
 

 
Figure 5. Spalling & Exposed reinforcement. 

 

Distinct from traditional bridge defect datasets that focus on 
one or several common types of surface-level defects, the self-
constructed dataset employed in this study—"Small-Target 
Detection Dataset for Multi-Category Bridge Defects under 
Complex Background Interference"—simultaneously 
incorporates 12 bridge defect types, including those with low 
occurrence frequencies. To replicate real-world inspection 
scenarios and simulate the scanning and observational 
perspectives of inspectors wearing HoloLens 2 for subsequent 
comparative analysis and digital model superimposition tasks, 
no image or semantic segmentation [15] is performed on bridge 
defects in this dataset, preserving full panoramic small-target 
detection and recognition. Furthermore, unlike conventional 
small-target datasets, bridge defect images in real-world 
scenarios exhibit challenges such as blurred backgrounds, high 
inter-defect similarity, strong deceptive features, and extremely 

small defect targets. These characteristics lead to core technical 
detection challenges, including weak multi-scale target 
sensitivity, significant complex background interference, 
insufficient fine-grained feature representation, and high inter-
category similarity. Through the aforementioned diverse image 
augmentation methods, the dataset is further enriched and 
expanded to enhance robustness. The highly challenging 
"Small-Target Detection Dataset for Multi-Category Bridge 
Defects under Complex Background Interference" imposes 
greater demands on subsequent target detection and recognition 
tasks. 

  



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-053 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 349 

4 YOLOV11 ALGORITHM 

 YOLOv11 Model Introduction and Advantages 
Ultralytics recently released YOLOv11, designed as a detection 
model achieving state-of-the-art (SOTA) performance across 
multiple tasks. The architecture of previous models has been 
optimized, enabling YOLOv11 to attain cutting-edge 

performance in diverse tasks (object detection, segmentation, 
pose estimation). The overall network architecture is illustrated 
in Figure 6.  

 
 
 
 

 

 
Figure 6. Overall network architecture diagram of YOLOv11. 

 
 
 
Compared to YOLOv8, YOLOv11 reduces parameters by 

22% on the COCO dataset while achieving higher mean 
Average Precision (mAP), as shown in Figure 7. 
Simultaneously, its inference speed is approximately 2% faster 

than YOLOv10, reaching 60 frames per second (FPS), making 
it one of the fastest object detection models and providing 
enhanced support for real-time applications. 

 
 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-053 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 350 

 
Figure 7. Performance comparison diagram between YOLOv11 and previous versions. 

 
 

This study innovatively proposes the YOLOv11n-ZY model, 
an optimized and improved framework based on YOLOv11, to 
address core technical challenges in bridge defect detection 
tasks, including weak multi-scale target sensitivity, significant 
complex background interference, and insufficient fine-grained 
feature representation. 

By deeply integrating the new ZZ convolutional module, new 
YY attention mechanism module, and SPPF-LSKA fusion 
module, a collaborative optimization system is constructed. 
The model adopts a hierarchical feature processing 
architecture, embedding three innovative modules into the 
feature extraction layer, attention enhancement layer, and 
multi-scale fusion layer, respectively, thereby establishing a 
complete technical chain from microscopic feature analysis to 
macroscopic semantic correlation. The three modules achieve 
compatible deep integration through granular allocation of 
computational resources and functional positioning: The ZZ 
module focuses on enhancing multi-granularity extraction 
efficiency of low-level features. The YY module implements 
domain-adaptive calibration during feature transmission. The 
SPPF-LSKA module accomplishes complementary fusion of 
multi-level semantic features. These three components 
collectively establish a progressive optimization pathway of 
“feature encoding → attention enhancement →pyramid 
fusion.”  

At the parameter optimization level, the three modules 
respectively introduce learnable convolutional kernel scale 
ratios [17], dynamic attention weights [18], and large-kernel 
decoupled computation mechanisms. Through joint 
backpropagation, these components synergistically optimize 
the detection loss function. This hierarchically deployed 
collaborative paradigm provides a technical solution that 
combines theoretical innovation and engineering value for 
intelligent bridge defect detection. 

 

 Simulation Environment 
The simulation was conducted on a Windows 11 operating 
system with 3T memory and an RTX 4070 GPU (64GB 
VRAM). Python 3.8 was utilized, with the PyTorch framework 
(Torch 1.12.0 version). The YOLOv11n-ZY model was trained 

for 200 epochs with a batch size of 32 and a learning rate of 
0.01. 
To evaluate the comprehensive performance of the model, this 
experiment adopts the following quantitative evaluation 
metrics: parameter count, precision (P), recall (R), mean 
average precision (mAP), frame rate (FPS), and F1-score. 
These metrics collectively characterize the model’s robustness 
across detection accuracy, computational efficiency, and 
multiple confidence thresholds [16]. 
The mathematical definitions of precision and recall are given 
in Equations (1) and (2), where TP (True Positives) denotes the 
number of correctly detected positive samples, FP (False 
Positives) represents the number of positive samples 
incorrectly classified as negative, and FN (False Negatives) 
indicates the number of undetected positive samples. The F1-
score is defined by Equation (3), which is essentially the 
harmonic mean of precision and recall. In the field of object 
detection, mAP serves as a core evaluation metric, quantified 
through the weighted average of precision values across 
confidence thresholds, with its computational methodology 
detailed in Equations (4) and (5). 
 

 𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (1) 

 

 𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 (2) 

 

 𝐹𝐹1 = 2 ∙ 𝑃𝑃∙𝑅𝑅
𝑃𝑃+𝑅𝑅

 (3) 

 

 𝐴𝐴𝐴𝐴 = ∫ 𝑝𝑝(𝑟𝑟)𝑑𝑑𝑑𝑑1
0  (4) 

 

 𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑛𝑛
∑ 𝐴𝐴𝐴𝐴(𝑖𝑖) × 100%𝑛𝑛
𝑖𝑖=1  (5) 
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In the equations, the mAP reflects the balance between the 
detection precision and recall of the model across all categories 
(unit: %); mAP50 refers to the mAP value when the IoU is 0.5; 
APi is the average precision of the i-th category; and n is the 
total number of categories. 

 

4.2.1 Comparison Experiments 
To further validate the detection performance of the improved 
YOLOv11n-ZY model proposed in this paper, the algorithm is 
compared and analyzed with common algorithms in this field, 
and the results are shown in Table 2. 

 

Table 2. Comparative Experimental Results. 

Model mAP50/% P/% R/% Params/106 
YOLOv5s 33.8 37.0 39.7 7.82 
YOLOv8n 33.4 40.5 36.7 3.01 
YOLOv8s 35.1 40.7 39.1 11.13 

YOLOv11n 34.9 44.6 37.8 2.58 
YOLOv11s 36.3 43.0 41.1 9.41 

Ours 40.3 49.3 41.1 2.87 
 
 
 
According to the experimental results in Table 2, compared 

to the detection results of previous official Yolo series models 
(Yolov5s, Yolov8n, Yolov8s), the proposed Yolov11n-ZY 
algorithm in this study achieves significant improvements in 
mAP50 by 6.5%, 6.9%, and 5.2%, while reducing parameter 
sizes by 4.95 MB, 0.14 MB, and 8.26 MB, respectively. 
Compared to the baseline model YOLOv11n and its series 
counterpart YOLOv11s, the Yolov11n-ZY algorithm achieves 
accuracy improvements in mAP50 of 5.4% and 4%, 
respectively, despite a slight increase in parameter size. In 
summary, the proposed algorithm outperforms other methods 
in the accuracy of "multi-category bridge defect small target 
detection under complex background interference," including 
mAP50, precision (P), and recall (R), while maintaining real-
time performance and achieving an optimal balance in model 
size. 

5 VISUALIZATION INTERFACE DESIGN 
The visual interactive interface of the proposed detection and 

recognition system integrates the YOLOv11n-ZY model for 
bridge defect detection and recognition, featuring multi-modal 
input source processing capabilities (including static images, 
video streams, real-time camera capture, and batch file 
processing). A multi-threaded parallel processing mechanism 
is adopted to ensure real-time responsiveness of the human-
machine interaction interface. Detection results are visualized 
in real-time through the graphical interface, with dynamic 
parameter adjustment functions (confidence threshold, IoU 
threshold) and detection process control interfaces (start, pause, 
terminate detection, and result storage). The specific visual 
interface system is shown in Figure 8. 
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Figure 8. Visualization interface for bridge defect object detection. 

 
 
 
In the input source selection unit, specify the camera capture 

device or local file path; dynamically configure the confidence 
threshold (Conf) and Intersection over Union threshold (IoU) 
of the target detection model through slider controls. The 
background processing thread is automatically initialized upon 
configuration completion. 

The system routes the processing results to the main thread, 
transmitting bounding box-annotated detection images via 

the (send_detect_img) signal and category statistics via 
the (send_detect_info) signal. Finally, the streaming inference 
approach governs the actual inference loop, as illustrated in 
Figure 9, which includes: reading input sources (images, 
videos, camera streams, etc.), preprocessing, executing model 
inference, processing post-inference results, and transmitting 
final recognition outcomes to the visualization main interface 
through signals. 
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Figure 9. Flowchart of the visualization interface system operation. 

 
 

6 CONCLUSION 
Aiming at the bottleneck problems of low efficiency and 
insufficient accuracy in traditional bridge inspection methods, 
this paper proposes a “Comprehensive Visual Intelligent 
Bridge Inspection Platform” that integrates Mixed Reality 
(MR) technology, deep learning algorithms, and domain-
specific bridge engineering knowledge. By leveraging the high-
precision spatial perception capabilities of the HoloLens 2 
device, the optimized architecture of the YOLOv11n-ZY 
model, and multimodal human-computer interaction 
technologies, a bridge defect detection system with real-time 
inspection, dynamic visualization, and full lifecycle 
management functions has been successfully established. 
Experimental results demonstrate that the improved 
YOLOv11n-ZY model significantly outperforms existing 
mainstream algorithms in detecting multi-category small-target 
defects under complex background interference, achieving a 
detection precision (mAP50 of 40.3%). Simultaneously, the 
MR technology facilitates closed-loop management of defect 
localization, remote collaboration, and dynamic 3D model 
updating. This study not only provides an efficient and reliable 
technical pathway for intelligent bridge operation and 
maintenance but also offers theoretical support and practical 
exemplars for the deep integration of mixed reality and deep 
learning in infrastructure inspection. Future work will focus on 
optimizing the lightweight deployment capability of the model, 
further enhancing the precision of the algorithm, expanding 
multi-source sensor data fusion mechanisms, and exploring a  

 
digital twin-based predictive system for bridge performance 
throughout its lifecycle to advance the engineering application 
and standardized development of intelligent infrastructure 
inspection technologies. 
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ABSTRACT: In a Structural Health Monitoring (SHM) project, a hydro-dam's outlet tower in Northern Sweden required 

inspection and assessment. This was due to the lack of digital records regarding existing damage and the client's concerns about 

its progression. The tower's location in a lake made traditional inspection methods like scaffolding or skylifts extremely difficult. 

The concrete engineering expert hired for the evaluation was uncomfortable with rope access, making data collection an expensive 

and cumbersome task. The structure is significantly affected by fluctuating water levels in the lake, leading to suspicions of certain 

types of damage (e.g., freeze-thaw damage, erosion damage). 

For this project, a Phase One P3 camera was used to capture thousands of 100-megapixel images from every angle of the tower. 

Every inch of the concrete surface was covered by at least five different images. 

From these images, a 3D reconstruction was created using Spotscale's proprietary software pipeline1, which is specifically 

designed for high-resolution processing. Subsequently, each image was analyzed by Spotscale's machine learning algorithm to 

detect cracks, spalling, and visible rebar. For every pixel on the 3D model, all images that observed that pixel were analyzed, and 

this information was used to project the best possible representation of the damage onto the model, creating a 3D texture of the 

damage. 

The results revealed a distinct crack pattern, identified with a 98.7% confidence level when compared to human assessment of the 

same cracks. This provided the dam owner with a comprehensive understanding of the overall damage and an overview of the 

most severely affected areas. 

KEY WORDS: 3D reconstruction; Machine learning; Crack identification; 3D visualization. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) plays a crucial role 

in ensuring the safety and longevity of infrastructure. In 

this project, an outlet tower connected to a hydro-dam in 

Northern Sweden required inspection due to the absence 

of reliable digital records of past damage, combined with 

recent concerns about deterioration. The structure, 

situated in a lake and measuring approximately 30 meters 

in height, posed significant logistical challenges for 

traditional inspection techniques such as scaffolding, 

skylifts, or rope access. 

Figure 1. An overview of the tower structure  

Given these limitations and the client's need for high-resolution 

documentation, a remote sensing approach was adopted, 

enabling comprehensive data collection without direct human 

contact with the structure. 

 

2 DATA CAPTURING 

To achieve detailed visual coverage of the entire concrete 

surface, a PhaseOne P3 camera with an 80 mm lens was 

mounted on a drone platform. A total of 3,000 ultra-high-

resolution images (11664 × 8750 pixels each) were captured in 

a single day of fieldwork. The drone operated at a consistent 

distance of approximately 4 meters from the structure, resulting 

in a ground sampling distance (GSD) of 0.2 mm. This 

resolution ensured that even fine surface anomalies were 

detectable. 

 Every area of the structure was photographed from 

multiple angles, with at least five images covering each point 

on the surface, enabling robust 3D reconstruction and 

redundancy in damage analysis. 

High-resolution imaging using the PhaseOne P3 setup 

involves pre-planned flight paths or starting coordinates for 

drones or stationary setups for static structures. This ensured 

complete coverage and minimized data gaps. The image 

collection for the needed accuracy was  performed with a 

minimum of 80% overlap, with 7-10 meters distance to the 

object, ensuring that every defect was visible in at least 5 

different images from different angles. 

 

3D projection of AI-derived concrete cracks on a Hydro Dam outlet tower 

Ludvig Emgård1, SPOTSCALE
 

1Spotscale AB, Storgatan 42, 58223 Linköping, Sweden  

email: ludvig.emgard@spotscale.com 
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3 DATA PROCESSING 

The captured imagery was processed using Spotscale’s 

proprietary photogrammetry pipeline, optimized for handling 

high-resolution inputs and generating accurate 3D models. The 

resulting models are both metrically correct and visually 

intuitive, making them ideal for expert inspection and 

annotation. 

 Following model generation, Spotscale’s AI-based 

damage detection system was applied. This system analyzes all 

available views of each pixel on the surface to detect features 

such as cracks, spalling, and exposed rebar. The AI 

consolidates information from overlapping images to create a 

high-fidelity texture projection of damage across the entire 3D 

surface, producing a visual damage map with sub-millimeter 

precision. 

 

4 RESULTS 

The final output was a detailed 3D model textured with 

detected damage patterns. The AI identified a prominent and 

recurring crack pattern, which was verified with a 98.7% 

confidence level when benchmarked against expert human 

assessments. Figure 2 illustrates the resulting damage map, 

with clearly visible areas of cracking and localized spalling. 

The damage texture allowed for both global overview and 

close-up inspection, enabling prioritization of critical zones for 

further manual investigation or remedial work.  

By applying the AI interpretation, concrete experts 

can predict future decay such as concrete loss from the surface 

(spallings). The Spotscale software further enables the expert 

to measure depth on spallings that occurred in a sub-mm 

accuracy depth representation. 

 

5 CONCLUSION 

The combination of ultra-high-resolution imaging, advanced 

photogrammetry, and machine learning provided a complete 

and reliable overview of the structural condition of the outlet 

tower. The results were instrumental in helping concrete 

specialists understand the underlying causes of the damage, 

including environmental factors such as freeze-thaw cycles and 

water erosion. 

Beyond the immediate inspection, this methodology offers 

several benefits: it reduces inspection time and cost, minimizes 

safety risks, and produces a digital baseline for future 

comparisons. The success of this project demonstrates the value 

of remote sensing and AI-powered analysis in modern 

infrastructure monitoring. 

The AI algorithms are also able to detect and classify 

cracks based on predefined criteria, such as width and 

orientation. Each single crack can be interpreted as a separate 

object and represented either in projected raster on the 

geometry or as a 3D polyline along the center line (medial axis) 

of the crack (not performed on this specific project). To achieve 

this kind of geometry, the crack pixels are analyzed from 

several different viewpoints and compared before projected on 

the mesh. This analysis significantly enhances the robustness 

of the Spotscale approach. The ability to transform the pixels 

to 3D polylines (vectors) enables the possibility to 

automatically determine medium and max width over the crack 

length and establish the length in three dimensions. 

This innovative approach to non-destructive testing unlocks 

new possibilities in infrastructure monitoring, making it 

possible to conduct inspections with greater frequency, 

precision, and ease. Structures and areas that were previously 

inaccessible or hazardous to manually inspect—such as the 

undersides of bridges, confined spaces inside industrial 

facilities, or elevated constructions—can now be examined in 

high detail without requiring extensive scaffolding or safety 

interruptions. 

The ability to assess these components without disrupting day-

to-day operations or public life significantly broadens the 

application of this technology. For instance, critical assets like 

highway bridges, retaining walls, and overpasses can be 

inspected while traffic continues to flow, eliminating the need 

for costly detours or shutdowns. Similarly, energy and water 

utilities can maintain full operational output during inspection 

processes, reducing the risk of service interruptions and 

increasing overall efficiency. 

With more precise data on structural health, renovation efforts 

can be optimized both spatially and chronologically. Repairs 

can be strategically localized and planned based on the most 

urgent needs, which minimizes waste and maximizes the 

lifespan of concrete infrastructure. Over time, this data-driven 

approach contributes to a more sustainable and resilient built 

environment, where maintenance decisions are grounded in 

actual structural behavior rather than estimations or reactive 

measures. 

 

 

 

Figure 2. Resulting 3D projected AI interpretation of crack 

pattern 
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ABSTRACT: The dynamics and complexity of stochastic traffic flows play a crucial role in the management of infrastructure 

such as bridges. This study presents a computer vision-based method for random traffic flow identification and load estimation 

that integrates the YOLOv8 object detection model and the DeepSORT multi-target tracking algorithm. By utilizing high-

resolution bridge surveillance video, the method can accurately identify vehicle type, axle count, and traffic flow. A case study 

conducted on an actual bridge validates the effectiveness of the method. The results show that the accuracy of vehicle identification 

based on 24-hour video data is more than 93%, the statistical error is less than 10%, and the temporal distribution of traffic flow 

matches well with the actual situation. This study provides a new technical reference for AI-based bridge traffic management and 

low cost structural health monitoring solutions. 

KEY WORDS: Random traffic flow; Computer vision; Bridge monitoring; Object detection; Object tracking; Traffic flow 

statistical analysis. 

1 INTRODUCTION 

Stochastic traffic flow is one of the key research areas in traffic 

flow analysis, which is characterized by randomness and 

uncertainty in dynamic parameters such as vehicle arrival time, 

spacing, speed and type. In bridges and other critical 

infrastructures, the characteristics of random traffic flow can 

lead to irregular spatial and temporal load distributions, which 

can seriously affect the design safety and operational efficiency 

of the infrastructure. Stochastic traffic flow is equally crucial to 

understanding the performance of bridges under dynamic 

loading.  

Studies [1], [2] linked traffic-induced dynamic amplification 

factors to bridge fatigue life, while [3] emphasized bridge 

health monitoring under frequent heavy traffic flow. [4], [5] 

investigated the effect of random traffic flow on bridge 

dynamics under consideration of pavement roughness and 

proposed structural maintenance strategies. 

Therefore, accurate identification and statistical analysis of 

stochastic traffic flow is not only the basis for understanding 

traffic dynamics, but also an important tool for optimizing 

transportation systems and improving infrastructure 

performance. 

Traditional methods for stochastic traffic flow statistics 

usually rely on dynamic weighing systems or radar techniques. 

Although these methods can capture key traffic flow 

parameters to some extent, they face limitations such as lack of 

real-time performance, limited accuracy, and high cost. In 

recent years, with the rapid development of computer vision 

technology, its application in the field of intelligent 

transportation has become a focus of research. Deep learning-

based target detection and multi-target tracking technologies 

provide new solutions for real-time traffic flow information 

acquisition. By analyzing video streaming data, computer 

vision techniques can efficiently identify and quantify vehicle 

types, numbers, speeds, and lane distributions, providing the 

possibility of real-time monitoring of random traffic flows. 

However, how to improve the robustness of recognition and the 

accuracy of statistical analysis in complex and changing 

environments remains one of the main challenges in current 

research. 

The aim of this study is to develop an integrated approach for 

recognizing and statistically analyzing random traffic flows 

using computer vision to address the challenges in traffic flow 

research. The study integrates YOLOv8 object detection and 

DeepSORT multi-target tracking techniques to achieve real-

time monitoring and accurate characterization of traffic flow in 

complex dynamic environments. The practical applicability of 

the method in stochastic traffic flow statistics is verified 

through a case study.  

2 COMPUTER VISION-BASED FOR RANDOM 

TRAFFIC FLOW RECOGNITION 

2.1    Video data capture settings and processing  

High-resolution cameras are deployed on the bridge deck to 

capture real-time multi-lane traffic data, including vehicle 

types, counts, speeds, and directions. Data is collected across 

seasons and traffic conditions to ensure diversity. This non-

intrusive method improves accuracy and efficiency over 

manual monitoring, avoids physical interference, and reduces 

costs compared to sensor networks. 

Video data undergoes preprocessing (frame extraction, 

resolution normalization, and augmentation) to enhance model 

robustness. A labeled dataset of 12,000 images, annotated with 

vehicle types and axle counts, is split into training (75%), 

validation (15%), and testing (10%) sets for model 

development and evaluation. 

2.2    Traffic flow object detection and tracking principle 

This study employs an integrated approach combining 

YOLOv8 for vehicle detection and DeepSORT for multi-object 

tracking to analyze bridge traffic flows. YOLOv8, the latest 

iteration of the YOLO series, demonstrates superior speed and 

accuracy in vehicle detection. The algorithm processes images 

through a grid-based system (S×S), where each cell predicts 

bounding box coordinates (x,y,w,h) and classification 

probabilities via convolutional neural networks. Experimental 
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validation yielded a training loss of 0.9 and F1 score of 0.88, 

with vehicle detection precision reaching 93% for cars, 85% for 

buses, and 89% for trucks. 

DeepSORT enhances the system's capability by maintaining 

vehicle trajectory continuity across video frames. The 

algorithm integrates five key phases: (1) initial detection using 

YOLOv8 outputs, (2) feature extraction for appearance-based 

identification, (3) motion prediction via Kalman filtering, (4) 

data association through the Hungarian algorithm, and (5) state 

updates for refined tracking. This multi-stage process ensures 

reliable vehicle tracking in complex traffic scenarios while 

assigning persistent unique IDs to each vehicle.  

3 ACTUAL BRIDGE TRAFFIC FLOW 

IDENTIFICATION AND STATISTICAL RESULTS 

This study validates a computer vision-based stochastic 

traffic flow analysis method through a case study of an urban 

bridge in eastern China. High-resolution cameras were 

strategically deployed on the bridge for continuous 24/7 

monitoring over two weeks, capturing comprehensive traffic 

data including vehicle types, counts, speeds, and directions. 

The collected dataset enables evaluation of the method's 

performance in complex multi-lane environments, 

demonstrating its practical applicability for real-world 

traffic monitoring and analysis. 
Using the YOLOv8 and DeepSORT algorithms, all vehicles 

on the bridge over a 24-hour period were successfully identified 

and tracked, shown in Figure 1. Vehicles, along with their axle 

counts, were categorized into seven types: 2-axle passenger 

cars, 2-axle buses, 3-axle buses, 2-axle trucks, 3-axle trucks, 4-

axle trucks, and trucks with more than 4 axles. The recognition 

accuracy for each vehicle type was as follows: passenger cars 

94%, trucks 90%, and buses 89%, with an overall vehicle 

recognition accuracy exceeding 93%. The model demonstrated 

robust performance during both peak traffic periods and low-

traffic intervals. 

 

Figure 1. Vehicle identification results 

According to the statistics of one-day traffic flow, passenger 

vehicles accounted for the highest proportion of total traffic 

flow, which was 6,820 vehicles, accounting for 73.5% of the 

total traffic flow. In contrast, buses and trucks accounted for a 

relatively small proportion of 19% and 7.5% respectively, 

which is about 9.3% error compared with the actual total traffic 

flow on the bridge based on WIM data, proving its practical 

value in actual traffic monitoring and analysis. 

The results of the statistical analysis of the distribution of 

traffic flow on the bridge in 24 hours are shown in Figure 2. 

The 7:00-9:00 and 17:00-19:00 are the peak traffic flow, with 

more than 400 vehicles passing through every half hour 

respectively; the off-peak traffic flow is relatively stable. 

Nighttime traffic is significantly reduced. The proportion of 

trucks in the nighttime traffic has increased, and buses account 

for about 20% of the total traffic, which is mainly concentrated 

in the morning and evening peak hours. The time series analysis 

of the traffic flow reveals the fluctuation pattern of the traffic 

flow throughout the day, and the intensive traffic flow period 

corresponds to the peak commuting hours in the city, which 

provides intuitive data support for traffic management and 

bridge maintenance. 

 

Figure 2. Full-day vehicle distribution 

4 CONCLUSION 

This study combines YOLOv8 and DeepSORT algorithm to 

propose a computer vision-based method for random traffic 

flow recognition and analysis of bridges. The method can 

efficiently and accurately realize real-time monitoring and 

statistical analysis of traffic flow and provide technical support 

for structural health monitoring of bridges, with the advantages 

of low cost and easy deployment. In the future, the performance 

can be further optimized through efficient deep learning 

algorithms, multimodal data fusion and edge computing. 
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ABSTRACT: Traditional inspections of aged steel bridges rely primarily on visual assessment, often depending on qualitative 

analysis and requiring expert engineering judgement. Additionally, these methods are often labor-intensive, time-consuming, and 

costly, limiting their feasibility for widespread implementation. Accurate condition assessment, due to corrosion loss, remains a 

challenging factor in structural inspection, complicating the evaluation of its impact on bridge performance.  This paper presents 

a novel workflow that integrates smartphone-based photogrammetry and metal additive manufacturing (AM) to improve condition 

assessment and enable data-informed repairs.  High-resolution 3D models of a corroded decommissioned steel beam retrieved 

from a Chicago Transit Authority bridge were generated using a photogrammetry pipeline optimized for image quality and overlap.   

These models allowed for precise quantification of section loss and the design of custom-fit repair parts. A proof-of-concept repair 

component was fabricated using metal 3D printing and designed to restore the original geometry of a corroded flange section. 

While mechanical validation of the repair part is ongoing, this workflow demonstrates the potential for scalable, low-cost 

integration of digital imaging and AM in bridge maintenance. 

KEY WORDS: Photogrammetry, Additive manufacturing, Smartphone, Bridge inspection, SHM.

1 INTRODUCTION 

In the United States, there are more than 617,000 bridges, and 

42% of them are at least 50 years old. About 7.5% are in “poor” 

condition (or structurally deficient) [1]. Although these bridges 

are classified as being in poor condition, they are not 

considered unsafe. However, they require significant 

maintenance and rehabilitation and are at a higher risk of future 

closures and weight restrictions. Illinois has the third-largest 

bridge inventory in the U.S., with 2,405 bridges in poor 

condition, most of which are locally owned. This creates a 

significant maintenance backlog. To address this issue, the 

Illinois Department of Transportation has adopted a cost-

effective, continuous maintenance strategy to prevent the need 

for major rehabilitation [2]. 

These maintenance strategies rely on visual inspection 

methods, which require expert engineers and are often 

subjective, depending on the engineer's expertise. While some 

nondestructive evaluation (NDE) methods are used, more 

accurate NDE techniques are often very expensive and require 

trained personnel to collect and process the data. As a result, 

they are not widely implemented. A major issue that steel 

bridges face is corrosion, and quantifying corrosion becomes 

difficult when relying solely on visual inspections. 

Additionally, the current repair technologies for corrosion loss 

are not effective in the long run. The most common repair 

method for corrosion is reinforcing the affected area with built-

up shapes on both sides, which are either bolted or welded to 

the existing structure. While this 'sandwiching' method restores 

the cross-sectional area, it does not address the underlying 

corroded plate, which remains exposed. Corrosion damage can 

continue to grow, leading to earlier repair needs.  

The absence of a cost-effective, easy-to-use method for 

accurately assessing corrosion loss in steel bridges highlights 

the need for a more effective approach to documenting and 

evaluating bridge conditions, as well as for implementing better 

repair strategies. 

This study proposes a practical workflow that integrates 

smartphone-based photogrammetry and metal additive 

manufacturing (AM) to enhance the condition assessment and 

repair of corroded steel bridge components.  By utilizing high-

resolution 3D reconstructions generated from smartphone-

based photogrammetry, this approach enables precise 

quantification of section loss, improved visualization of 

deterioration patterns, and more data-driven repair 

recommendations for aged steel bridges. Additionally, it uses 

metal additive manufacturing to produce custom repair parts 

based on the 3D reconstruction models generated from the 

photogrammetry analysis. By directly translating detailed 

digital models of the deteriorated sections into precise, tailored 

components, this approach not only ensures a perfect fit but 

also improves the overall quality and efficiency of repairs. It 

reduces material waste by using only the necessary amount of 

material, minimizes labor by automating the production of 

repair parts, and shortens repair times by streamlining the 

manufacturing process. The goal of this proof-of-concept study 

is to evaluate the feasibility of this workflow as a scalable, low-

cost solution that can be incorporated into existing maintenance 

practices. 

2 BACKGROUND  

 Photogrammetry in structural health monitoring 

Photogrammetry has become a powerful tool in structural 

health monitoring (SHM), offering a non-contact, high-

precision method for assessing and documenting structural 

conditions. In a study by Valença et.al, photogrammetry was 

shown to be a reliable alternative to LVDT methods for SHM, 
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especially in inaccessible environments. They developed a 

methodology using photogrammetry to generate accurate 3D 

measurements on long-span beams and pedestrian bridges in 

Aveiro, Portugal. They were able to achieve an average 

accuracy in the displacement accuracy of 0.1 mm in steel 

connection tests, which focused on the 'strong 

beam/column/weak beam' connection [3]. 

Recently, Unmanned Ariel Vehicle (UAV) photogrammetry 

has been utilized to create high precision 3D models for dam 

monitoring to enhance the damage detection and emergency 

inspection capabilities [4]. In this study, researchers 

successfully generated detailed 3D models, achieving a Root 

Mean Square Error (RMSE) of 3.00 cm and 3.95 cm in the 

horizontal and vertical directions, respectively, when compared 

to the Ground Control Points (GCPs) [4]. 

Backhaus et. al combined UAV photogrammetry and 

structured light scanning to enhance the structural health 

monitoring of concrete bridges. UAV data was used for crack 

detection, while SLS scanning was used to obtain detailed 

measurements. The study found that UAV could detect cracks 

as small as 0.05 mm [5]. 

These studies demonstrate that photogrammetry is a reliable 

method for SHM, enabling accurate damage detection and 3D 

reconstruction. Its application has shown to improve the 

effectiveness of structural assessments which would enhance 

the safety and maintenance planning in the future.  

 Additive manufacturing in civil engineering 

Additive manufacturing is a process of joining materials layer 

by layer to create an object from a 3D model (ASTM Standard 

F2792-12a, 2012). Additive manufacturing enables greater 

geometric flexibility, allowing for the creation of complex 

shapes and structures [6-9]. In civil engineering, AM has been 

utilized in the optimization of connections such as the Nematox 

façade node [10] and lighting pole nodes [11]. Additionally, it 

has been utilized in the construction of steel and concrete 

bridges as well as houses and offices, more notably the MX3D 

metal pedestrian bridge, Castilla-La Mancha concrete bridge in 

Madrid, and Winsun houses and offices in Dubai [12-14]. 

Limited research has been conducted on utilizing AM as a 

repair technology except most recently in a study by Zhang et 

al, which investigated the effectiveness of laser additive 

manufacturing (LAM) for repairing corroded steel bridge 

beams. This study specifically focused on the mechanical 

properties and microstructural characteristics of the repaired 

materials were investigated [15].  The researcher found that the 

AM repair successful restored the mechanical properties of the 

defective specimen.  

3 METHODOLOGY 

This approach can be broken down into three main steps: 

image capturing, image reconstruction, and repair 

manufacturing. Further explanation of each of these steps is 

discussed next.  

 Image capturing  

Capturing high-quality images if the foundation of reliable 

3D reconstruction in photogrammetry. Several variables 

influence the accuracy and resolution of the resulting model. 

These variables include image resolution, image overlap 

percentage, and the camera setup. Image resolution depends on 

the camera specifications. For example, Agisoft Metashape—

used in this study—recommends a minimum resolution of 5 

megapixels to achieve suitable model detail. In this study, 

smartphone cameras were used to demonstrate a low-cost, 

accessible method for data collection. Another key factor is 

image overlap, which ensures that surface features are captured 

from multiple perspectives. A high overlap percentage allows 

the software to accurately identify and match common points 

between images. This is critical for generating a consistent and 

complete point cloud. 

 

 

Figure 1. Photogrammetry variables and camera setup. 

 

The overlap ratio is defined using the relationship between the 

field of view (β) and the camera rotation angle (α), as shown in 

Equation (1): 

 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑟𝑎𝑡𝑖𝑜 (%) =  
𝛽−𝛼

𝛽
 (1) 

In this equation, β represents the camera’s field of view, and α 

is the angular increment between successive images. A smaller 

α (i.e., closer spacing between photos) leads to higher overlap 

and better reconstruction accuracy. 

 

Camera orientation and distance to the object also influence 

data quality. For best results, the object should be captured 

from multiple angles (e.g., top, side, diagonal views), 

maintaining consistent lighting and focus. Figure 1 illustrates 

the recommended image acquisition setup and key 

photogrammetry variables. 

 

 Image reconstruction  

Once images have been captured, the photogrammetric 

reconstruction process is caried out using Agisoft Metashape. 

The first step is to upload and review all images, removing any 

that are blurry or do not contribute additional information about 

the object. This pre-processing step helps optimize both 

processing time and model quality. Next, the alignment step 

generates a sparse point cloud to estimate the camera positions 

based on the common features detected across the image set. 

Following alignment, a dense point cloud is generated using 

depth maps. Using a higher accuracy setting during this step 

helps preserve finer details.  
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After generating the dense cloud, Metashape constructs a 3D 

mesh that interpolates the point cloud data into a continuous 

surface. A confidence map is also produced, indicating the 

software’s certainty in reconstructing each part of the model. 

Areas with low confidence may correspond to regions with 

poor image coverage or lighting inconsistencies and should be 

reviewed to assess the need for additional images. 

 

Finally, a texture layer is applied to the model, projecting the 

original image data onto the 3D surface to create a realistic 

visual representation. At this point, the model can be exported 

for further analysis or used to design a custom repair part. 

 Repair manufacturing 

After the 3D model is finalized in Agisoft Metashape, it is 

exported to Autodesk Fusion for design of the repair 

component. The goal is to digitally reconstruct the missing or 

deteriorated geometry based on the scanned surface. 

 

To begin, a solid rectangular block is positioned over the 

corroded area in Fusion. This block is finely meshed to capture 

the geometry of the underlying surface with high resolution. 

The Modify → Intersect tool is then used to trim the repair 

block to match the corroded profile of the scanned model. The 

result is a 3D repair component that conforms precisely to the 

section loss, as illustrated in Figure 2.  

 

Figure 2. Reconstructed section of 3D model corroded section 

exported from Autodesk Fusion software. 

Once the repair part has been reconstructed, a model is create 

which can then be sent to an appropriate 3D metal printing 

system to print the part. After which, this part can be fixed to 

the corroded section using epoxy and welding. Epoxy will be 

used to bond the corroded section to the repaired part and fill 

any gaps that were not captured during the printing process. 

Welding will be applied around the edge of the part, to ensure 

the repair part and the existing structure act as one system and 

it reducing the likelihood of the repair part detaching under 

flexural loading.  

 

4 RESULTS AND DISCUSSION 

To evaluate the proposed workflow, a section of the bottom 

flange from a naturally aged steel beam—retrieved from a 

decommissioned bridge in Chicago—was selected for 

reconstruction. This section exhibited visible corrosion, 

making it a suitable test case for photogrammetry-based defect 

capture. Various configurations were investigated to determine 

the optimal case for on-site inspections. The linear 

configuration, which focuses on a localized section, proved to 

be the most feasible option given the limitation of the existing 

structures on site.  

This method was applied to a girder measuring 

approximately 1675 mm (5’-6”) in length. The bottom flange 

of the girder was because visible corrosion was detectable. The 

initial test used 6 images, and a test used 108 images. This 

model was also used to create the repair part, as shown in 

Figure 2. From these two tests, it is evident that the number of 

images impact the confidence of the Metashape software in 

accurately reconstructing the features with the given images. 

As shown in Figure 3, with 6 images, the confidence level in 

the middle of the section increases as the overlap increases.  

 

Figure 3. Reconstruction of bottom flange of aged steel beam 

using different number of images. 

To further validate the workflow, a prototype repair part was 

fabricated using PLA plastic, based on the 3D model generated 

from the 108-image dataset. The purpose of this prototype was 

to assess the feasibility of capturing fine geometric details 

required for accurate fitment during future metal printing. The 

PLA part aligned well with the corroded geometry, suggesting 

that the photogrammetric model is suitable for generating 

repair components, as illustrated in Figure 4. 

 

Figure 4. Reconstruction of bottom flange of aged steel beam 

using different number of images. 

While this prototype was not intended for mechanical testing, 

it serves as a low-cost validation of the model-to-manufacture 

transition. Future work will include metal AM fabrication and 

mechanical testing to assess structural performance and long-

term durability of the printed repair. 
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5 CONCLUSION 

This study presented a proof-of-concept workflow that 

integrates smartphone-based photogrammetry and additive 

manufacturing (AM) for the inspection and repair of corroded 

steel bridge components. The results demonstrate that high-

resolution 3D models can be generated from smartphone 

images, even under field-like conditions, and used to design 

repair components that closely match the original geometry. 

 

Initial tests using a naturally aged steel beam confirmed that 

image overlap and quantity significantly affect reconstruction 

quality. A prototype repair part was successfully fabricated in 

PLA based on the photogrammetry-derived model, supporting 

the feasibility of transitioning from image capture to repair part 

fabrication. 

 

While promising, this workflow is still in its early stages. 

Future efforts will focus on transitioning from proof-of-concept 

to full-scale implementation. This includes fabricating repair 

components using metal additive manufacturing processes and 

performing mechanical tests—such as tensile and flexural 

loading—to evaluate the structural integrity of the repaired 

sections. Additional research will assess the scalability of the 

workflow for larger or more complex bridge components, 

ensuring it can be applied to diverse geometries and field 

conditions. The impact of environmental factors on 

photogrammetric accuracy, such as lighting variability, surface 

reflectivity, and site accessibility, will also be explored. 

Finally, a quantitative comparison between this workflow and 

traditional repair methods will be conducted, evaluating 

differences in cost, material efficiency, labor requirements, and 

repair duration to better understand the practical advantages 

and trade-offs of the proposed approach. 

With further development, this approach has the potential to 

provide a cost-effective, accurate, and scalable tool for 

condition assessment and customized repair in routine steel 

bridge maintenance.  
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ABSTRACT: In response to the issues of high cost, limited monitoring accuracy, and susceptibility to environmental factors in 
traditional hydraulic structure displacement automation monitoring methods, a non-contact intelligent monitoring method based 
on machine vision image super-resolution reconstruction is proposed. This method uses artificial targets as markers and combines 
a high-order image degradation model with a camera to analyze real monitoring scenarios, carry out image data collection, and 
perform displacement calculation. It innovatively introduces a feature fusion attention mechanism to improve the Real-ESRGAN 
network and generator, enabling the reconstruction of image contours and fine details to enhance displacement calculation 
accuracy. Laboratory and field test results show that this method can effectively improve image resolution and clarity, achieving 
sub-pixel and millimeter-level precise monitoring of hydraulic structure surface displacement. Compared with traditional super-
resolution algorithms and target tracking methods, the improved Real-ESRGAN algorithm performs the best, with a coefficient 
of determination (R²) of up to 0.9975, an average absolute error (MAE) as low as 0.5552, and residual errors controlled within 
5mm. The edge contours and details in the images are successfully reconstructed, effectively improving the displacement 
monitoring accuracy of hydraulic structures based on machine vision. 

KEY WORDS:  Machine vision displacement monitoring; Image super-resolution reconstruction; Real-ESRGAN improvement; 
Feature fusion attention mechanism; Hydraulic structure safety monitoring.

1 INTRODUCTION 
As critical infrastructure in water resource management 
systems, hydraulic engineering projects play a pivotal role in 
ensuring water security and sustaining watershed economic 
development. Efficient and stable operation of these structures 
not only guarantees essential water supply for socio-economic 
sustainability but also serves as a vital safeguard for regional 
ecological security [1,2]. In the field of structural health 
monitoring (SHM), accurate surface displacement 
measurement forms the basis for safety assessment and early 
warning systems [3]. However, existing monitoring 
technologies exhibit notable limitations: traditional 
displacement measurement methods are not only costly but also 
susceptible to environmental interference, while demonstrating 
inadequate responsiveness to sudden structural risks [4-6]. 
A further complication arises from the multi-physics coupling 
effects (including hydraulic loads, thermal stresses, and 
mechanical vibrations) that hydraulic structures endure during 
service. These complex interactions induce nonlinear 
deformation behaviors, potentially leading to progressive 
damage or even catastrophic failure, posing dual threats to both 
structural integrity and economic viability [7]. Consequently, 
there is an urgent need to develop intelligent, automated 
displacement monitoring methods and establish digitalized 
smart monitoring systems to enhance lifecycle safety 
management of hydraulic structures. 
Current displacement monitoring techniques for hydraulic 
structures can be broadly categorized into contact-based and 
non-contact approaches [8]. Contact-based methods, such as 
strain gauges and fiber-optic sensors, suffer from complex 
installation and environmental sensitivity, making them 
unsuitable for long-term monitoring [9, 10].  

In the field of non-contact structural monitoring, laser 
displacement sensors[11][12], machine vision[13][14], total 
stations[15][16], and Global Navigation Satellite Systems 
(GNSS) [17][18] have emerged as critical technologies for 
deformation monitoring of large-scale hydraulic structures 
such as sluice gates and dams, owing to their non-invasive 
nature and operational flexibility.   
Laser displacement sensors employ optical triangulation 
principles, utilizing photoelectric receivers including position-
sensitive detectors (PSD), charge-coupled devices (CCD), and 
complementary metal-oxide-semiconductor (CMOS) sensors 
to achieve high-precision displacement measurements. 
However, the measurement accuracy of this technology 
exhibits an inverse correlation with monitoring distance due to 
the inherent limitations of laser reflection-based triangulation, 
significantly reducing its suitability for long-range monitoring 
scenarios. Furthermore, the installation requirements for 
reflective targets impose additional constraints on deployment 
flexibility, particularly for vertical displacement monitoring of 
hydraulic structures[19].  
GNSS technology has demonstrated robust capabilities in 
dynamic displacement monitoring for structural health 
monitoring (SHM) and seismic engineering applications. 
Nevertheless, its sampling frequency is constrained by satellite 
signal update rates, limiting its effectiveness in high-frequency 
vibration monitoring. Compared to conventional sensors such 
as accelerometers, GNSS also exhibits inferior measurement 
accuracy in the vertical direction[20].   
Total stations, as multifunctional surveying instruments, 
integrate high-precision distance measurement, angular 
measurement, coordinate acquisition, and elevation 
determination, making them widely applicable in engineering 
surveying and structural monitoring[15][16][21]. However, in 
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practical applications for dam displacement monitoring, these 
instruments face challenges such as unfavorable cost-benefit 
ratios, line-of-sight obstructions at measurement points, and 
operational complexity, which hinder their widespread 
adoption in large-scale engineering projects. 
To address these challenges, machine vision-based 
displacement monitoring enhanced by image super-resolution 
reconstruction has emerged as a promising solution. By 
employing deep learning algorithms to recover fine details 
from low-resolution images, this method overcomes the 
precision constraints of traditional vision-based measurements 
while avoiding the range limitations of laser displacement 
sensors and the environmental dependencies of drone-based 
remote sensing. Compared to fiber-optic sensing and 
conventional SHM systems, this approach offers superior 
flexibility, cost efficiency, and adaptability, providing a novel 
pathway for high-precision, automated displacement 
monitoring of hydraulic structures. 
Recent advances in computer vision have demonstrated its 
potential in SHM applications. such as the Harris corner 
detection method[22], the Lucas-Kanade (LK) optical flow 
matching algorithm[23], and template matching algorithms[24] 
are employed.For instance, Yoon et al. [23] combined Harris 
corner detection with the Lucas-Kanade (LK) optical flow 
algorithm to achieve high-precision displacement tracking in 
building structures. Brownjohn et al.[25] deployed a vision-
based monitoring system on the Humber Bridge, validating its 
engineering applicability. Bocian et al. [26] extracted modal 
parameters of cable-stayed bridges using template matching 
and sparse LK optical flow, enabling vibration characteristic 
analysis. Kohut et al.[27] applied digital image correlation 
(DIC) to measure structural deflection, providing intuitive 
deformation indicators. 
Algorithmic optimizations have further enhanced performance: 
Wu et al. [28] improved computational efficiency in template 
matching for real-time monitoring; Molina-Viedma[29] 
integrated phase-based motion magnification with digital 
image processing techniques [30] to identify the modal shapes 
of a cantilever beam, thereby overcoming the limitation of 
conventional digital image methods in accurately capturing 
high-frequency structural vibrations. Khuc et al. [22] refined 
Harris corner extraction with FREAK descriptors for sub-pixel 
matching accuracy. Guo et al. [31] leveraged projection 
correction to enhance displacement measurement under 
seismic conditions. 
Despite these advancements, machine vision-based monitoring 
for hydraulic structures—particularly gates and dams—
remains underdeveloped due to complex operational 
environments and stringent safety requirements. Existing 
systems still face data acquisition constraints, lacking a mature 
framework for deformation monitoring. 
This study proposes a non-contact intelligent monitoring 
method integrating machine vision with image super-resolution 
reconstruction to address the cost, precision, and environmental 
limitations of conventional techniques. The methodology 
employs artificial targets as fiducial markers, coupled with 
high-resolution imaging and higher-order image degradation 
modeling, to achieve precise displacement data acquisition. At 
the algorithmic level, we innovatively introduce a feature 
fusion attention mechanism to enhance the Real-ESRGAN 

network, specifically improving its contour detail 
reconstruction and texture recovery capabilities. This approach 
is expected to significantly elevate displacement calculation 
accuracy, offering a cost-effective, intelligent solution for 
hydraulic structure safety monitoring. 

2 DEEP LEARNING-BASED SUPER-RESOLUTION 
METHODS: OPTIMIZATION AND APPLICATION OF 
GENERATIVE ADVERSARIAL NETWORKS 

This study aims to transcend the limitations of conventional 
image resolution through deep learning techniques, thereby 
providing higher-precision machine vision measurement 
solutions for structural displacement monitoring in engineering 
applications.The following sections will focus on image super-
resolution algorithms based on Generative Adversarial 
Networks (GANs), offering in-depth analysis of their core 
principles, network architectures, and optimization strategies. 

 Image Super-Resolution Based on Generative 
Adversarial Networks 

The Super-Resolution Generative Adversarial Network 
(SRGAN) architecture primarily consists of two core modules 
engaged in adversarial competition: the Generator and the 
Discriminator, as illustrated in Figure 1. During model training, 
low-resolution (LR) images serve as input data to the generator 
network, which performs nonlinear transformations through 
deep neural networks to produce high-resolution (HR) images. 
Subsequently, both the generated super-resolution images and 
authentic HR images form the input sample space for the 
discriminator, which evaluates the authenticity probability of 
input samples through feature extraction and pattern 
recognition.Within this adversarial training framework, the 
generator optimizes its parameter space to minimize the 
distribution divergence between generated and real samples, 
aiming to produce super-resolution images with high visual 
fidelity. Concurrently, the discriminator continuously enhances 
its discriminative capability to maximize identification 
accuracy of generated samples. This minimax game process 
achieves dynamic equilibrium that ultimately enables the 
generator to produce super-resolution reconstruction results 
perceptually indistinguishable from genuine high-resolution 
images. 

Input Low-
Resolution Image Generator Generated Super-

Resolution Image

Real High-
Resolution Image

Discriminator

TRUE

FALSE

 
Figure 1. Architectural illustration of the Generative 

Adversarial Network framework 

 Image Super-Resolution Based on Generative 
Adversarial Networks 

The Enhanced Super-Resolution Generative Adversarial 
Network (ESRGAN) represents an advanced generative 
adversarial network for super-resolution that achieved state-of-
the-art performance in the field of image super-resolution at its 
time of introduction. This method primarily builds upon the 
aforementioned SRGAN architecture while implementing 
several key improvements. 
To enhance model stability and generalization capability while 
reducing computational complexity, ESRGAN eliminates all 
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batch normalization layers from the original SRGAN 
framework and replaces the basic residual blocks with 
Residual-in-Residual Dense Blocks (RRDBs). Each RRDB 
consists of three dense blocks, with each dense block 
comprising five convolutional layers. The RRDB architecture 
effectively combines the advantages of dense connections and 
multi-level residual networks while removing block 
normalization, thereby reducing computational overhead while 
simultaneously minimizing artifacts in generated images. 
ESRGAN further modifies the loss function to produce more 
realistic super-resolution outputs through two principal 
innovations: (1) replacing the original feature extractor with a 
VGG16 network, and (2) introducing a Relativistic average 
Discriminator (RaD) to substitute the conventional 
discriminator architecture.The BN-free residual block and 
Residual-in-Residual Dense Block (RRDB) structure are 
shown in Figure 2. 

 

 
Figure 2. The BN-free residual block and Residual-in-

Residual Dense Block (RRDB) structure 

 High-Order Image Degradation Model 
This study innovatively proposes a high-order degradation 
modeling approach that overcomes the limitations of traditional 
first-order models, enabling more accurate simulation of 
complex, multi-stage and multi-factor coupled image 
degradation processes in real-world scenarios. 
Through systematic analysis of interaction relationships among 
various degradation mechanisms, we extend the conventional 
first-order model to a more expressive second-order 
degradation model. This model achieves precise simulation of 
real degradation processes through the following innovative 
designs: 
Incorporation of temporal characteristics in the degradation 
process to simulate multi-stage degradation in practical 
imaging systems; 
Establishment of an adaptive coupling mechanism for 
degradation parameters to reflect nonlinear superposition 
effects of different degradation factors; 
Achievement of optimal balance between computational 
complexity and model accuracy through a carefully designed 
second-order approximation scheme. 
As illustrated in Figure 3, the constructed second-order 
degradation model generates low-resolution images that better 
approximate real-world scenarios through meticulously 
designed degradation path combinations. Training datasets 
synthesized based on this model effectively enhance the 
generalization capability of super-resolution networks under 
complex degradation conditions. Experimental results confirm 
that compared to networks trained with traditional degradation 
models, those trained with the second-order degradation model 

demonstrate significant advantages across various real-world 
test datasets. 
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Figure 3. Advanced-order image deterioration model 

 Generator Architecture 
The generator network begins with a primary feature extraction 
module, which takes the low-resolution (LR) image obtained 
from the high-order degradation model as input and extracts 
shallow features using a 3×3 convolutional layer. This process 
is formulated as: 

 Fprimary=Conv(ILR) (1)
 

The advanced feature extraction module, located at the core of 
the generator, serves as a bridge between shallow and deep 
representations. It extracts multi-level high-level features 
through stacked fundamental blocks for subsequent 
reconstruction. Based on the original Real-ESRGAN network, 
we improve this module by introducing:Coordinate Attention 
Residual-in-Residual Dense Blocks (CARRDBs),a feature 
fusion layer and a global spatial attention block. 
The CARRDB is an enhanced version of the original RRDB, 
incorporating a Coordinate Attention (CA) submodule after 
each Dense Block to refine local feature extraction. All 
activation functions use Leaky ReLU for faster convergence. 
The output of each CARRDB is fed into the next residual group 
for deeper feature extraction while being directly propagated to 
the feature fusion layer. 
The feature fusion layer aggregates all CARRDB outputs 
through channel-wise concatenation, followed by a 1×1 
convolution for dimensionality reduction: 

 𝐹𝐹𝐺𝐺𝐺𝐺 = 𝐻𝐻𝐺𝐺𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺1, … ,𝐺𝐺𝐷𝐷)) (2) 

The first component of this module is an upsampling layer that 
performs convolutional operations on Fhigh, followed by pixel 
shuffling to generate high-resolution feature maps from low-
resolution inputs. This process can be mathematically 
represented as: 

 𝐹𝐹𝑢𝑢𝑢𝑢 = 𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣(𝐹𝐹ℎ𝑖𝑖𝑖𝑖ℎ)) (3)
 

Where：Fprimary denotes the primary output features, ( )Conv ⋅

represents the convolutional operation, ILR indicates the input 
low-resolution image, FGF corresponds to the advanced fused 
features with output size of， ( )GFFH ⋅  stands for the 
convolutional operation, ( )Concat ⋅ signifies the feature 
concatenation operation, Gi refers to the output features of the 
i-th CARRDB (Cascaded Residual-in-Residual Dense Block), 
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Fup represents the upsampling output result, Shuffle() denotes 
the pixel shuffle operation. 

 
Figure 4. The architectural configuration of the conventional 

Real-ESRGAN generator 

 Attention Mechanism 
Building upon the Real-ESRGAN framework, this study 
incorporates two attention mechanisms—Coordinate Attention 
(CA) and Spatial Attention (SA)—to enhance the network's 
image reconstruction performance.The implementation details 
of these attention mechanisms are elaborated below. 
The Coordinate Attention (CA) mechanism  captures long-
range dependencies along two spatial directions while 
preserving precise positional information. This capability 
facilitates improved extraction of fine-grained features. 
Compared to alternative attention mechanisms, CA exhibits 
advantages such as fewer parameters and easier 
implementation. A schematic diagram of its structure is 
presented in Figure 5. 
The coordinate attention mechanism is implemented through 
two distinct computational stages. Initially, channel attention is 
decomposed into dual one-dimensional feature encodings 
along the orthogonal X-axis and Y-axis directions, thereby 
addressing the inherent limitation of conventional spatial 
pooling methods in preserving precise positional information. 
For an input feature map of dimensions C×H×W, directional 
average pooling operations are independently performed along 
each spatial axis, generating orientation-aware feature 
representations ( )h

cz h  and ( )w
cz w  , as formally expressed. 

Subsequently, the coordinate attention weights are generated 
through the following procedure: The output features from both 
directional encodings undergo concatenation, followed by 
channel dimensionality reduction via a 1×1 convolutional layer 
and nonlinear activation. These operations yield the 
intermediate feature representation m , formally expressed as: 

 𝑚𝑚 = δ(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑧𝑧ℎ , 𝑧𝑧𝑤𝑤]) (4) 
The intermediate feature m is then partitioned into two separate 
feature tensors, mh and mw, which subsequently undergo 
channel-wise dimensionality expansion via independent 1×1 
convolutional layers. These expanded features are activated 
using the Sigmoid function to generate coordinate-level 
attention weights. This process is formally expressed as: 

 �
𝑔𝑔ℎ = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ(𝑚𝑚ℎ)�
𝑔𝑔𝑤𝑤 = 𝜎𝜎�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑤𝑤(𝑚𝑚𝑤𝑤)�

 (5) 

Where：gh and gw denote the attention weight maps along the 
X-axis and Y-axis directions, respectively. By applying these 
weights to the input features, the calibrated output feature map 
is obtained as: 

 𝑦𝑦𝑐𝑐(𝑖𝑖, 𝑗𝑗) = 𝑥𝑥𝑐𝑐(𝑖𝑖, 𝑗𝑗)*𝑔𝑔𝑐𝑐
ℎ(𝑖𝑖) ∗ 𝑔𝑔𝑐𝑐𝑤𝑤(𝑗𝑗) (6) 

Where： ( , )cx i j  and ( , )cy i j  denote the values at coordinate 
( , )i j  in channel c of the input and output feature maps, 
respectively. 

 
Figure 5. Architectural illustration of the Coordinate Attention 

module 

The spatial attention mechanism captures critical spatial 
information within feature maps by dynamically weighting 
different regions of the image based on their relative 
importance. This enhances the model's ability to focus on 
semantically significant spatial locations, thereby improving 
the effectiveness of super-resolution reconstruction. The 
fundamental architecture of this mechanism is illustrated in 
Figure 6. 

 
Figure 6. Architectural illustration of the Spatial Attention 

Module 

For the input feature map X, a 1×1 convolutional layer is first 
applied to perform channel dimensionality reduction, yielding 
the output feature map X ′ , as formally expressed by: 

 𝑋𝑋ʹ = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) (7) 

Subsequently, a 7×7 max-pooling operation with stride 3 is 
applied to X’, followed by two 3×3 convolutional layers to 
extract spatial attention features. To restore the feature map to 
its original dimensions, bilinear interpolation Flinear is 
employed for upsampling. The resultant features are then 
element-wise summed with X’, yielding the intermediate 
feature representation Xmid, as mathematically formulated 
below: 

 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑋𝑋′)���� + 𝑋𝑋′

 (8) 

Finally, a 1×1 convolutional layer is employed to restore the 
channel dimensionality of the output features to match the input 
feature map, followed by activation via the Sigmoid function σ 
to generate the final spatial attention weights. These weights 
are then multiplied element-wise with the input feature map X 
to produce the output feature map Z, as mathematically 
formulated below: 
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 𝑍𝑍 = σ�𝐹𝐹(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)�⊙X (9) 

 Discriminator Architecture 
The high-order degradation model employed in this study 
exhibits significantly greater complexity than conventional 
low-order degradation models, inevitably leading to an orders-
of-magnitude increase in computational demands. To address 
the consequent challenges in discriminator design, we propose 
an innovative U-Net architecture with spectral normalization 
(SN) to replace traditional VGG-based discriminators (as 
illustrated in Figure 7). This architectural modification offers 
two key advantages: 
First, the spectral normalization technique effectively 
constrains the Lipschitz constant of network parameters, 
ensuring convergence within a predefined parameter space, 
thereby significantly enhancing training stability. Second, the 
U-Net's fully convolutional architecture enables pixel-wise 
discrimination, which maintains global semantic coherence 
while facilitating refined evaluation of local texture details, 
ultimately improving the visual realism of generated images. 
Experimental results demonstrate that the proposed design 
achieves substantial improvements in modeling fine-grained 
features without compromising overall image quality. 

 
Figure 7. Spectral Normalization-incorporated U-Net 

Structure 

3 CASE STUDIES AND ANALYSIS 

 System Configuration and Dataset Composition 
To address the lack of specialized image datasets for hydraulic 
structure displacement monitoring, this study employs a 
transfer learning strategy. The model is pretrained on DIV2K, 
a widely adopted benchmark dataset in computer vision. 
DIV2K contains 800 high-quality 2K-resolution images (see 
Figure 8), encompassing diverse texture features and edge 
structures. This dataset has been proven to exhibit strong 
generalization performance in image super-resolution tasks, 
ensuring that the model learns robust generic feature 
representations before fine-tuning for hydraulic structure-
specific scenarios. 

 

  
Figure 8. Representative high-resolution images from the 

DIV2K dataset 

The network training strategy of the proposed algorithm is 
largely consistent with the original Real-ESRGAN model, with 
minor adjustments made to certain training parameters. In 
terms of global settings, the HR patch size is set to 256, the 
batch size to 48, and the Adam optimizer is employed. The 
network training process consists of two distinct phases. 
Initially, a Real-ESRNet model is trained using the L1 loss 
function based on a pre-trained ESRGAN model, with the 
iteration number set to 1×106 and the learning rate to 2×10-4. 
Subsequently, the trained Real-ESRNet model is utilized as the 
generator initialization for the enhanced Real-ESRGAN, which 
is further trained with a combination of three loss functions: L1 
loss, perceptual loss, and GAN loss. In this phase, the iteration 
number is set to 4×104 and the learning rate to 1×10-4. 

 Image Super-Resolution Reconstruction Quality 
Evaluation 

The proposed algorithm is trained to achieve a 4× super-
resolution model, meaning it reconstructs input images at four 
times their original resolution. To evaluate the algorithm's 
performance, high-resolution (HR) images were first captured 
using a high-definition camera in several small- and medium-
scale hydraulic engineering machine vision displacement 
monitoring scenarios. These images served as the reference HR 
images. Artificial targets within the images were cropped and 
selected as regions of interest (ROIs) for super-resolution 
reconstruction. The cropped images were then subjected to a 
high-order degradation process to generate low-resolution (LR) 
images. Subsequently, the trained model was applied to 
perform 4× upsampling, producing super-resolution (SR) 
reconstructed images. 
To assess the quality of the super-resolved images, two metrics 
were employed: Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM). The definitions of these 
metrics are as follows: 
Peak Signal-to-Noise Ratio (PSNR) measures the ratio between 
the maximum possible signal power and the mean squared error 
(noise power). A higher PSNR value indicates less distortion 
and better image quality, with the unit expressed in decibels 
(dB). 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙 𝐹𝐹2

𝑀𝑀𝑀𝑀𝑀𝑀
 (10) 

Where: F denotes the maximum grayscale value of the image, 
MSE represents the mean squared error of the image. 
The Structural Similarity Index (SSIM) provides a 
comprehensive quality assessment by evaluating three key 
attributes: luminance, contrast, and structural fidelity. The 
SSIM metric is bounded within the range [0, 1], with higher 
values indicating better preservation of image integrity and 
lower distortion. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑙𝑙(𝑥𝑥,𝑦𝑦)𝛼𝛼 ∙ 𝑐𝑐(𝑥𝑥,𝑦𝑦)𝛽𝛽 ∙ 𝑠𝑠(𝑥𝑥,𝑦𝑦)𝛾𝛾 (11) 

Where： l(x,y) 、 c(x,y) 、 s(x,y) represent the luminance, 
contrast, and structural measure functions, respectively; 
α β γ、 、  denotes the adjustment parameter. 
To validate the superiority of the proposed method, five super-
resolution approaches - BIC, SRCNN, SRGAN, SRFBN, and 
Real-ESRGAN - were applied to the LR images for 
comparative performance evaluation, with the results 
illustrated in Figure 9. 
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(a) Scenario 1: Machine Vision Surveillance Imagery of a 
Control Gate 

 
(b) Scenario 2: Machine Vision Surveillance Imagery of a 

Reservoir 

 
(c) Scenario 3: Machine Vision Monitoring Image of a Ship 

Lock 

 
(d) Scenario 4: Machine Vision Monitoring Image of a 

Reservoir1 

Figure 9. Super-Resolution Reconstruction Results for the 
Four Scenarios 

The figure provides an intuitive comparison of the image 
reconstruction performance among different super-resolution 
methods. Among them, the interpolation-based BIC method 
performs poorly, merely enlarging the original low-resolution 
image without effectively restoring the texture and edge details 
of the target in the image. In contrast, several deep learning-
based methods yield significantly better results, though with 
notable variations in performance. While the four other 
algorithms (excluding the proposed method) can reconstruct 
the main contours of the image reasonably well, they still fall 
short in recovering fine textures and edge details.  
By comparison, the proposed algorithm demonstrates the best 
performance. When compared to the original high-resolution 
(HR) image, the super-resolved (SR) image generated by our 
method achieves a more realistic restoration in terms of both 
overall visual quality and fine texture details. Moreover, owing 
to the improvements in feature fusion and attention 
mechanisms, our approach delivers more refined edge and 
contour reconstruction.  
To further quantify the performance differences, the PSNR and 
SSIM evaluation curves of images reconstructed by different 

super-resolution algorithms are plotted in Figure 10. The results 
clearly indicate significant disparities among the algorithms, 
with the proposed method exhibiting superior performance in 
both metrics. 

 

(a) Image Quality Assessment for Scenario 1 

 
(b) Image Quality Assessment for Scenario 2 

 
(c) Image Quality Assessment for Scenario 3 
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(d) Image Quality Assessment for Scenario 4 

Figure 10. Quality validation of super-resolution reconstructed 
images across four distinct scenarios 

 Verification of Displacement Monitoring Accuracy 
Improvement 

The purpose of image super-resolution reconstruction is to 
compensate for insufficient resolution from an algorithmic 
perspective when the hardware capabilities of machine vision 
cameras are limited or the available image resolution is low, 
thereby improving displacement monitoring accuracy. 
Therefore, it is necessary to validate the effectiveness of image 
super-resolution through machine vision displacement 
monitoring experiments.   
To accurately quantify and analyze the improvement in 
displacement monitoring accuracy, this study selects an open-
source experimental dataset for investigation. In 2018, the 
University of California, San Diego conducted a series of shake 
table tests to study the lateral response characteristics of cold-
formed steel frame building structures. The related design 
schemes, test reports, videos, and data were all publicly 
released. This experiment provides comprehensive video 
recordings and measured data from various sensors, making it 
highly suitable for verifying displacement monitoring accuracy 
in this study.   
For this research, a specific shear wall specimen from the test 
series was selected, and its dynamic test video data under 
seismic loading were analyzed. The vibration input was scaled 
from the recorded ground motion of the 1994 Northridge 
earthquake in Los Angeles, USA, ensuring the specimen 
remained elastic throughout the test. The experimental setup of 
the shake table test is illustrated in Figure 11. Specifically:   
Displacement sensors were installed on the side of the load-
transfer beam at the top of the specimen to measure lateral 
displacements induced by horizontal loading.   
A machine vision camera** was positioned directly in front of 
the specimen to record the entire dynamic testing process.   
This configuration allows for a comparative evaluation of 
displacement measurements obtained from traditional sensors 
and machine vision-based methods, facilitating an assessment 
of the accuracy enhancement achieved through super-
resolution reconstruction. 

 
Figure 11. Overview of the Shaking Table Field Test 

The checkerboard-pattern artificial target installed on the load-
transfer beam at the top of the specimen served as the region of 
interest (ROI) for machine vision-based displacement 
monitoring. The specific geometry and dimensions of this 
target are illustrated in Figure 12.The sensor-measured 
displacement data recorded during the vibration test are 
presented in Figure 13. 

 
Figure 12. Shape and Dimensions of the Artificial Target 

 
(a) Accelerometer measurement data 

 
(b) Displacement sensor measurements 

Figure 13. Experimental sensor data recorded during vibration 
testing 

During the experimental testing process, the images were 
captured at close range using a high-quality camera, resulting 
in high-resolution footage that meets the requirements of 
machine vision-based displacement monitoring under normal 
conditions. Therefore, the actual captured monitoring images 
were treated as high-resolution (HR) images, and displacement 
monitoring was performed on the HR image sequence. The 
tracking target was a checkerboard-pattern artificial target, and 
the calculated results are presented in the following figures and 
tables. The results demonstrate that the machine vision-based 
displacement monitoring using high-resolution images 
achieved high accuracy, closely matching the measured 
displacement values from sensors, thereby validating the 
effectiveness of the machine vision approach. 
To evaluate the accuracy improvement effects of different 
super-resolution methods, the original HR images (120×120 
pixels) of the target region were first degraded according to the 
higher-order degradation model proposed in this study, 
generating corresponding low-resolution (LR) images (30×30 
pixels) as the baseline LR images for the accuracy enhancement 
validation experiment (all super-resolution algorithms were 
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applied to these LR images for enhancement). Subsequently, 
the bicubic interpolation (BIC) method was employed to 
perform 4× upsampling super-resolution reconstruction on the 
LR images, producing corresponding BIC super-resolution 
(SR) images (120×120 pixels) for comparative analysis with 
other super-resolution algorithms. The entire process is 
illustrated in Figure 14 below. 

 
Figure 14. Processing results of artificial target images 

For the low-resolution (LR) images, the proposed algorithm in 
this study was employed to perform super-resolution (SR) 
reconstruction, and the results were compared with those of 
other SR methods, as illustrated in the following figure. As 
shown in Figure 15, the visual differences among the outputs 
of different methods can be easily observed. Among them, the 
BIC and SRCNN super-resolution algorithms exhibited the 
poorest performance, with noticeable blurring visible to the 
naked eye. The other four algorithms achieved better 
reconstruction results, but the proposed method outperformed 
them all, achieving the highest scores in both PSNR and SSIM 
metrics. When comparing the super-resolved images generated 
by the proposed method with those obtained from the original 
Real-ESRGAN (before improvements), it is evident that the 
proposed method produces images with sharper edges and 
more detailed textures, demonstrating the effectiveness of the 
introduced feature fusion and attention mechanism 
enhancements. 

 
Figure 15. Super-resolution reconstruction results of the target 

region 

To further analyze the quality improvement effects of image 
super-resolution, corner detection was performed on different 
types of images using OpenCV’s goodFeaturesToTrack 
detector, followed by cornerSubPix refinement for sub-pixel 
accuracy. All detection parameters remained consistent 
throughout the process, and the resulting corner detection 
outcomes are illustrated in Figure 16. Given the noticeable 
differences in performance among the algorithms, the 
superiority of each method can be clearly determined based on 
the number and positional accuracy of detected corners. 
Taking the original high-resolution (HR) image as a reference, 
a total of 16 inner checkerboard corners and 5 outer corners 
were detected, with their positions precisely aligned to the 
edges and intersections of the checkerboard pattern. The 

comparison among different super-resolution algorithms 
revealed significant discrepancies. For instance, BIC and 
SRCNN exhibited evident corner misalignment and missing 
detections, failing to fully capture the expected number of 
corners. In contrast, the proposed method demonstrated the best 
performance, detecting the same number of corners as the HR 
image while maintaining accurate positional correspondence, 
further validating its effectiveness. 

 
Figure 16. Corner detection results for images reconstructed 

using different super-resolution methods 

Subsequently, target tracking and displacement calculation 
were performed on the reconstructed image sequences obtained 
from the aforementioned super-resolution methods, yielding 
the corresponding displacement time-history curves for each 
method, as illustrated in Figure 17. The results demonstrate that 
the low-resolution (LR) images without any processing 
exhibited degraded tracking performance due to substantial loss 
of effective information and noise contamination, leading to 
unsatisfactory displacement monitoring results. Specifically, 
the displacement curve of the LR images displayed significant 
fluctuations and drift phenomena, particularly in the 
intermediate segment with larger vibration amplitudes (as 
clearly observed in the zoomed-in subplot). The resulting errors 
substantially exceeded the acceptable threshold, rendering the 
displacement monitoring results unreliable. 
In contrast, the six curves derived from super-resolution-
processed images exhibited significantly improved 
performance, mitigating the accuracy degradation caused by 
image resolution reduction to varying degrees. Among these, 
the Bicubic Interpolation (BIC) algorithm demonstrated 
relatively inferior performance, while the proposed feature-
fusion-enhanced Real-ESRGAN algorithm with attention 
mechanisms achieved the best results. The displacement curve 
generated by the proposed method closely aligned with both the 
sensor-measured displacement curve and the vision-based 
measurement curve obtained from high-resolution (HR) 
images, outperforming even the original Real-ESRGAN 
algorithm. This comparative analysis further validates that the 
proposed model improvements contribute effectively to 
enhancing displacement monitoring accuracy. 
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Figure 17. Vibration displacement monitoring results using 
different super-resolution methods 

Finally, four evaluation metrics—Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean 
Square Error (RMSE), and the Coefficient of Determination 
(R²)—were employed for further quantitative assessment. The 
corresponding residual box plots and evaluation metric radar 
charts are presented in Table 1 and Figure 18, respectively. The 
results demonstrate that the proposed method consistently 
outperformed all other approaches across all evaluation 
metrics, achieving an R² value of 0.9975, which is remarkably 
close to the monitoring results obtained from the high-
resolution (HR) images. Although the proposed method cannot 
fully compensate for the degradation caused by image 
downsampling, it significantly mitigates the impact of 
resolution reduction compared to other methods, exhibiting 
superior performance. 
The residual box plots reveal that the monitoring results based 
on HR images exhibited the highest accuracy, with residuals 
fluctuating only within a very narrow range. Considering that 
this case involves large-amplitude vibration displacement, 
which inherently introduces error drift in target tracking, the 
BIC super-resolution algorithm displayed the largest residual 
fluctuations, while the residuals of other algorithms also 
exceeded 5 mm. In contrast, the proposed method effectively 
confined the residuals within 5 mm, demonstrating a substantial 
improvement in monitoring accuracy over competing 
approaches. 

Table 1 Displacement monitoring accuracy evaluation across 
different super-resolution methods 

Test Category MAE MAP
E RMSE R2 

Visual HR 0.101
6 

0.316
5 

0.233
0 

0.999
8 

Visual LR 3.822
2 

0.495
9 

6.697
7 

0.918
2 

BIC 1.954
9 

0.416
5 

3.355
9 

0.972
1 

SRCNN 1.488
2 

0.393
0 

2.522
1 

0.982
8 

SRGAN 1.114
9 

0.373
0 

1.856
8 

0.991
0 

SRFBN 0.928
3 

0.362
6 

1.525
4 

0.993
0 

Real-ESRGAN 0.741
8 

0.351
9 

1.195
9 

0.995
5 

Proposed 
Method 

0.555
2 

0.340
9 

0.870
1 

0.997
5 

 

Figure 18. Error evaluation visualization across different 
super-resolution methods 

4 CONCLUSION 
Departing from conventional approaches that rely on hardware 
upgrades (e.g., higher-resolution cameras, precision optical 
lenses) or subpixel algorithm refinement, this research 
innovatively explores image super-resolution (SR) 
reconstruction based on deep learning, proposing a software-
algorithm-level solution for breakthrough accuracy 
enhancement in displacement monitoring. The key research 
contributions and findings are systematically summarized as 
follows: 
A thorough analysis of image degradation processes and super-
resolution reconstruction principles was conducted. An SR 
reconstruction model was innovatively developed using a 
generative adversarial network (GAN) architecture. By 
establishing a multi-factor coupled higher-order degradation 
model, the study accurately simulates complex imaging 
processes in real-world engineering environments, 
significantly improving the algorithm's adaptability to various 
degraded images. 
The study innovatively integrates Coordinate Attention (CA) 
and Spatial Attention (SA) mechanisms into the Real-
ESRGAN framework, constructing a feature fusion attention 
network. The CA mechanism enables channel-space feature co-
optimization, while the SA mechanism enhances the 
representation of critical regions. Without modifying hardware 
configurations, this approach significantly improves target 
feature discriminability, providing a reliable foundation for 
high-precision displacement monitoring. 
The proposed method was rigorously validated through 
engineering case studies, assessing both image quality metrics 
and displacement monitoring accuracy. Comparative 
experiments with five state-of-the-art algorithms demonstrate 
the superior performance of the proposed method, which 
effectively restores edge and contour details in reconstructed 
images. Moreover, the displacement monitoring results derived 
from the SR-enhanced image sequences exhibit significantly 
improved accuracy, offering an innovative technical pathway 
to overcome the precision limitations in machine vision-based 
monitoring of hydraulic structures. 
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ABSTRACT: The structural integrity and safety of high-rise buildings rely heavily on effective deformation monitoring. Global 

Navigation Satellite System (GNSS) techniques are frequently utilized to monitor these deformations; yet, despite their great 

accuracy, they possess possible limitations due to high costs. Thus, this research investigates the potential of low-cost GNSS 

receivers for monitoring deformations in high-rise structures. The study focuses on incorporating low-cost GNSS receivers to 

capture slow motion movements caused by factors such as solar radiation and temperature fluctuations as well as dynamic 

movements induced by forces including wind loads and seismic forces. The performance of low-cost GNSS receivers is assessed 

against high-precision geodetic-grade GNSS receivers through a series of experiments conducted on a high-rise building under 

both slow-motion and dynamic conditions. The study primarily investigates the U-blox F9P dual-frequency GNSS receiver with 

Leica AS10, Tallysman TWI, and U-blox patch antennas. Results indicate that low-cost GNSS receivers demonstrate significant 

potential for capturing accurate and precise deformation measurements. The selection of GNSS antenna is found to significantly 

influence the overall quality of the GNSS data. However, the results indicate that with proper configuration, these low-cost 

receivers can be successfully integrated to develop an efficient and sustainable deformation monitoring system for high-rise 

buildings. 

KEY WORDS: High-rise buildings; geodetic monitoring; Low-cost GNSS

1 INTRODUCTION 

 

Structural Health Monitoring (SHM) is vital for ensuring 

safety, maintenance, and structural integrity of infrastructure.  

Structural Health Monitoring (SHM) facilitates continuing 

observation of structural performance, allowing for early 

problem detection, hence reducing the likelihood of failure and 

lowering maintenance costs.  The necessity to implement novel 

SHM systems becomes critical as rapid urban expansion leads 

to significant structural development across the world [1], [2]. 

 

 High rise buildings in particular, are exposed to both slow 

and dynamic deformations which necessitates for specialised 

monitoring techniques [3].  High-rise structures undergo 

continuous slow movements due to factors such as solar 

radiation and dynamic movements due to wind load and 

seismic activities. The conventional monitoring approaches for 

high-rise buildings require expensive installation efforts, along 

with other significant expenses and requirements such as time, 

physical and human resources [4]. 

 

Global Navigation Satellite Systems (GNSS) have emerged 

as a better option for deformation monitoring in recent decades, 

owing to advancements in high-quality GNSS receivers and 

effective processing techniques [5], [6]. GNSS-based 

monitoring systems now provide a precise system to observe 

both static and dynamic movements of structures [7], [8].  

GNSS acquires multiple satellite signals to determine accurate 

positional coordinates, thereby facilitating the effective 

collection of long-term deformations, while simultaneously 

monitoring real-time dynamic motions.  Modern geodetic grade 

GNSS receivers equipped with dual-frequency capability 

mitigate atmospheric errors and improve their accuracy in 

location measurement [9].  High-rate GNSS receivers provide 

data acquisition exceeding 10 Hz, hence enabling the 

observation of sudden structural displacements during events 

such as earthquakes and wind-related phenomena [10].  GNSS 

operates more effectively in conjunction with other sensors, 

such as accelerometers, as it enhances monitoring precision and 

accuracy. However, the significant high cost of a GNSS 

monitoring station which will allow mm level positioning, limit 

their application in deformation monitoring applications [9], 

[11], [12].  

 

Low-cost GNSS receivers have emerged as a viable 

alternative for structural monitoring. These receivers, 

considerably more economical than geodetic-grade 

alternatives, include dual-frequency functionality that 

improves positioning precision and reduce atmospheric errors 

[7], [9], [11]. Recent improvements in low-cost GNSS 

technology have resulted in the creation of multi-constellation 

receivers that employ signals from GPS, GLONASS, Galileo, 

and BeiDou to enhance positional precision and signal 

accessibility in urban settings [13]. The cost-effectiveness of 

these receivers, typically priced under £500, renders them a 

practical option for extensive implementation in structural 

monitoring applications. This is evidenced by the findings of 

several researchers who have utilized low-cost receivers for 

monitoring deformations of bridges and other infrastructure 

[9], [11], [14]. 

 

Experimental validation is essential to evaluate the feasibility 

of low-cost GNSS receivers for monitoring both slow and 

dynamic deformations in tall buildings. Prior research has 

illustrated the effective utilisation of low-cost GNSS for bridge 
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monitoring, emphasising its capability for monitoring 

structural displacements. Researchers have employed low-cost 

GNSS receivers to observe the deformation and oscillation of 

suspension and cable-stayed bridges, attaining sub-centimeter 

precision in both static and dynamic assessments. Recent 

studies indicates that employing suitable data processing 

methodologies, including Precise Point Positioning (PPP) and 

Real-Time Kinematic (RTK) corrections, enables low-cost 

GNSS to yield accurate displacement measurements equivalent 

to those from high-end geodetic GNSS receivers [7], [9], [11]. 

 

Despite considerable advancements in bridge applications, the 

accuracy of low-cost GNSS in high-rise structural health 

monitoring remains mostly unexamined. High-rise structures 

present additional obstacles, including multipath effects, signal 

obstructions, and dynamic loading conditions, requiring further 

investigation to evaluate the reliability and accuracy of low-

cost GNSS in this context [15], [16]. This study attempts to 

assess the performance of low-cost dual-frequency GNSS 

receivers in monitoring the deformations of high-rise buildings 

and to compare their findings with geodetic grade GNSS 

receivers and other traditional surveying techniques such as 

total station-based monitoring.                                                  

 

Thus, the ultimate objective of this study is to assess the 

feasibility of low-cost GNSS receivers in high-rise structural 

health monitoring, hence advancing the creation of low-cost 

and sustainable monitoring solutions. The results will offer 

significant insights into their precision, accuracy, and 

limitations supporting further developments in SHM 

technology. 

 

2 SLOW MOVEMENT SIMULATION 

This experiment aimed to assess the performance of a low-

cost GNSS system during periodic horizontal displacements. 

The Tallysman TWI low-cost GNSS antenna was evaluated 

using a low-cost receiver (U-blox F9P) through the experiment. 

 

The Tallysman TWI antenna is engineered to provide 

precise GNSS performance in low-cost applications. It has a 

compact, lightweight design and facilitates multi-constellation, 

dual-frequency signal reception, rendering it appropriate for 

high-precision positioning.  The durable design guarantees 

reliable signal quality and phase centre stability, crucial for 

applications necessitating precise and reproducible 

measurements [17], [18]. The U-blox F9P is a high-

performance, low-cost GNSS receiver that facilitates multi-

band and multi-constellation tracking, encompassing GPS, 

GLONASS, Galileo, and BeiDou. Engineered for accurate 

positioning applications, it provides real-time kinematic (RTK) 

functionalities. U-blox receivers has been incorporated for 

several deformation monitoring observations in the recent past 

[19], [20]. 

 

 The experimental set up comprised with a movement 

simulation device which was utilised to simulate 1 cm 

horizontal (along E-W axis) movements every hour. Dual 

frequency GNSS data were collected with 1 Hz sampling rate 

and the reference data were obtained through a Leica TS30 

Robotic Total Station. 

The experimental setup is depicted by figure 1. 

 

 

 

 

 

                                                 

 

 

Figure 1: Left- Tallysman TWI antenna and U-blox F9P 

receiver, Right: The movement simulation device  

 

Collected data were processed through RTKlib processing 

software. RTKlib is an open-source software which has been 

utilised and validated in many GNSS applications and research 

[7], [9]. The software has been included into the analysis of 

GNSS data within the context of Structural Health Monitoring, 

owing to its capacity to assess carrier phase and pseudo range 

residuals. This enables users to gain a thorough comprehension 

of the quality of GNSS data and fluctuations in noise [21], [22], 

[23]. The following GNSS processing parameters were utilised 

in the post processing of the experimental data. 

 

Parameter Value 

Processing mode  Kinematic (PPK) 

Elevation mask  7◦  

Filter Type Combined 

Ephemeris Broadcast 

Ionospheric Correction Broadcast 

Tropospheric Correction Saastamoinen 

 Analysis and Results  

 

This study highlights the horizontal and vertical movements 

recorded by the Tallysman TWI low-cost GNSS antenna with 

the U-blox F9P low-cost GNSS receiver against the movements 

recorded by the Robotic Total Station. In figure 2 and 3 is 

depicted the horizontal and vertical movement time series of 

the Tallysman antenna for different satellite combinations as 

GPS only, GPS and Galileo and GPS, Galileo and Beidou. 

 

 

Figure 2: Horizontal (E-W) movement recorded by the 

Tallysman TWI antenna connected to U-blox F9P low-cost 

GNSS Receiver for GPS only, GPS/Galileo, GPS/ Galileo and 

Beidou Satellite combinations. 
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Figure 3: Vertical movement recorded by the Tallysman TWI 

antenna connected to U-blox F9P low-cost GNSS Receiver for 

GPS only, GPS/Galileo, GPS/ Galileo and Beidou Satellite 

combinations. 

All satellite combinations follow a similar trend in both 

Horizontal and vertical movements. The vertical movement 

observations show a comparatively higher noise levels than the 

horizontal observations. The following mean errors have been 

obtained during each movement for the different 

configurations. 

 

Movement 

Error (mm) 

GPS GPS/GAL GPS/GAL 

BDS 

H 01 3.78 2.52 1.87 

H 02 0.92 1.09 0.9 

H 03 1.86 1.22 0.28 

H 04 3.49 2.84 4 

Mean 2.51 1.92 1.76 
    

V 01 2.46 3.91 5.92 

V 02 3.6 5.66 4.61 

V 03 3.81 2.94 4.69 

V 04 3.65 11.95 

(outlier) 

12.06 

(outlier) 

Mean 3.38 4.17 5.07 

 

For horizontal movements, the results were evident by the 

mean errors where the combination of GPS, Galileo and Beidou 

signals showed the best performance for the GNSS setup. This 

agrees with the findings of other studies where the use of 

multiple satellite systems increase the number of visible 

satellites and the satellite geometry thereby minimizing the 

noise [24], [25]. 

 

However, for the vertical observations the use of GPS only 

provided the best performance compared to the other 

combinations. This may result from enhanced signal stability, 

well-defined orbital characteristics, and advanced error 

modelling of GPS, especially in the vertical dimension. 

Furthermore, multi-GNSS integration may result in inter-

system biases and discrepancies in vertical positioning due to 

fluctuations in satellite elevation angles, hardware delays, and 

ionospheric delay modelling among various systems, thereby 

compromising vertical accuracy if not adequately corrected 

[26], [27], [28]. 

 

A Welch Power Spectral Density (PSD) analysis was 

conducted to further explain the noise characteristics of the 

GNSS set up. The Welch technique calculates a signal's power 

distribution by segmenting the data, applying a window 

function, and averaging the periodogram. In GNSS data 

analysis, Welch PSD is especially effective for identifying 

signal artefacts, multipath effects, or oscillator instabilities, 

which appear as frequency-specific abnormalities in the 

spectrum domain. The resultant spectrum discusses the 

fundamental noise structures, which is essential for enhancing 

the reliability and precision of satellite-based positioning 

systems [29], [30]. 

 

The Welch PSD of the Tallysman antenna for different 

satellite combinations as GPS only, GPS and Galileo Only and 

GPS, Galileo and Beidou for horizontal and vertical 

movements have been depicted in figures 4 and 5 respectively. 

 

 

Figure 4: Welch PSD for horizontal (E-W) movement recorded 

by the Tallysman TWI antenna connected to U-blox F9P low-

cost GNSS Receiver for GPS only, GPS/Galileo, GPS/ Galileo 

and Beidou Satellite combinations. 

 

Figure 5: Welch PSD for vertical movement recorded by the 

Tallysman TWI antenna connected to U-blox F9P low-cost 

GNSS Receiver for GPS only, GPS/Galileo, GPS/ Galileo and 

Beidou Satellite combinations. 

The PSD results further indicate that the integration of GPS, 

Galileo, and Beidou satellites will result in the least amount of 

noise. Thus, a combination of multiple satellite constellations 

is suggested for optimum results with Tallysman TWI low-cost 

antenna and the U-blox F9P low-cost GNSS receiver. 

However, further experimentation is necessary to assess the 

impact of atmospheric errors and multipath toward the low-cost 

antennas and further tests will be carried out to test different 

atmospheric models for a deeper performance and noise 

analysis. 
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3 DYNAMIC MOVEMENT SIMULATION 

A dynamic movement simulation test was conducted to assess 

the performance of Tallysman Antenna with the U-blox F9P 

receiver. This test was conducted through controlled vibrations 

of specific frequency range, incorporating the APS 113 shaker 

[31].  The APS 113 is a long-stroke, air-bearing electrodynamic 

shaker designed for the precise calibration and evaluation 

motion transducers. It delivers a force output of 133 N and a 

peak-to-peak displacement of 158 mm, operating within a 

frequency range up to 200 Hz. The air-bearing system ensures 

minimum friction, hence diminishing noise and distortion. 

Through the shaker a controlled vibratory platform was 

introduced to simulate a real-world oscillation [32]. 

 

The Tallysman TWI antenna was tested with the U-blox F9P 

receiver for vibrations at frequencies of 0.1 Hz and 0.25 Hz, 

produced by an analogue signal generator. The selection of 

low-frequency simulations aimed to recreate long-range 

oscillations, which are the primary vibrations of high-rise 

buildings caused by wind load. Three vibration amplitudes in 

the E-W direction (i) below 1 cm (ii) around 2-3 cm, and (iii) 

around 6-7 cm were manually introduced for 10 minutes. The 

accuracy of the GNSS data were determined through the E-W 

amplitudes compared against the measurements collected 

through LeicaTS30 Robotic Total Station. Same observation 

and processing parameters as the slow movement simulation 

test were utilised for this test. 

  
Figure 6: Left- The APS 113 shaker used for the experiment 

with Tallysman TWI, U-blox Patch and Leica AS10 Geodetic 

antennas. Right- U-blox F9P receivers connected to the 

antennas and Raspberry Pi devices to log the data. 

 Analysis and Results 

Displacement time series were obtained for the three 

introduced amplitude values. The exact oscillating amplitude 

cannot be controlled by the APS 113 shaker hence, the 

amplitudes were manually controlled and the RTS observation 

was taken as the reference amplitude [33]. 

 

 

 

Figure 7: The amplitudes recorded by the Tallysman TWI antenna connected to U-blox F9P low-cost GNSS Receiver for 

0.1 Hz shake table oscillation. 
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Figures 7 and 8 depict the displacement time series at 

frequencies of 0.1 Hz and 0.25 Hz, respectively. The results 

indicate that the Tallysman antenna closely replicates the 

displacement achieved by the RTS. Further, the mean errors of 

positive and negative peaks were determined to provide further 

insight into the noise levels. The overall absolute error recorded 

by the Tallysman antenna with U-blox receiver is 0.6 mm for 

0.1 Hz oscillation and 2.5 mm for 0.25 Hz oscillation. 

 

The mean error of each amplitude value can be summarised as 

follows: 

 Amplitude (mm) Absolute 

Error (mm) RTS 

(Reference) 

Tallysman 

(Observed) 

0.1 Hz 4.1 3.3 0.8 

17.0 16.4 0.6 

29.7 30.1 0.4 

0.25 Hz 5.0 7.8 2.8 

16.6 17.6 1.0 

27.1 30.6 3.5 

 

The mean amplitude values obtained from the Tallysman- U 

blox low-cost GNSS configuration validate the feasibility of 

utilising such systems for monitoring dynamic movements.  

4 CASE STUDY 

A preliminary case study was performed on a 220-meter-high 

residential building utilising a low-cost GNSS setup that 

included a Tallysman antenna and a U-blox F9P receiver. The 

building, a concrete-steel composite construction, serves as an 

effective testbed for structural monitoring because of its 

vulnerability to deformation under environmental pressures. 

 

In high-rise structures, the variations of solar radiations and 

wind forces are among the most significant factors influencing 

structural performance [1]. Thermal impacts induce differential 

expansion between concrete and steel, potentially leading to 

internal tensions and long-term deformations due to the 

disparity in thermal expansion coefficients [1], [34]. The 

impacts are particularly evident in composite systems, where 

restricted expansion can result in cracking or the accumulation 

of residual strain over time. Wind-induced lateral loads 

concurrently create building wobble and oscillations, which 

compromise structural stability and affect serviceability and 

 

 

 

Figure 8: The amplitudes recorded by the Tallysman TWI antenna connected to U-blox F9P low-cost GNSS Receiver for 

0.25 Hz shake table oscillation. 
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occupant comfort [35], [36], [37]. Comprehending these 

environmental factors is crucial for the advancement of 

resilient high-rise structures and facilitates the larger 

incorporation of low-cost GNSS as an effective instrument for 

structural health monitoring. 

 

Data for this case study were gathered using an 11-hour, 1 Hz 

GNSS data collection conducted on the building's rooftop. The 

reference data were acquired using a full geodetic GNSS 

configuration consisting of a Leica AS10 antenna and a Leica 

AS10 receiver. The rover stations were strategically positioned 

to minimize multipath interference, which is a common 

challenge in GNSS measurements due to signal reflection from 

nearby surfaces such as walls, windows, or metallic structures. 

To mitigate multipath errors, several strategies were 

implemented during the setup and data collection phases. First, 

the rooftop was chosen as the primary location to ensure a clear 

line of sight to the satellites and to minimize the presence of 

reflective surfaces in the vicinity. The GNSS antennas were 

mounted on the handrails of the building with sufficient height 

to reduce signal reflection from the ground.  

 

During the planning stage, satellite geometry and the 

surrounding environment were carefully analysed using 

software-based sky plots to select observation periods with 

optimal satellite visibility and reduced likelihood of low-angle 

reflections. The rover stations were placed at locations with 

minimal obstruction and reflective surfaces, avoiding 

proximity to glass façades or metallic rooftops that could 

induce strong signal reflections. While these strategies 

significantly reduced the impact of multipath interference, it 

should be noted that completely eliminating multipath is 

unfeasible in real-world settings, particularly in urban or semi-

urban environments. 

 

  
 

Figure 9: Tallysman TWI antenna connected to the handrail of 

the building rooftop. Right- U-blox F9P receiver connected to 

the antenna and Raspberry Pi device to log the data. 

 Analysis and Results 

The data were post-processed via a short baseline double 

difference solution through RTKlib software. The Base Station 

is a continuously operating reference station (CORS) equipped 

 
 

 

 

Figure 10: Easting, Northing and Height coordinate time series of the Low-cost system and fully geodetic system for GPS, 

Galileo and Beidou satellite combination. 
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with a full geodetic setup and a baseline distance of 5.1 km. 

A time series analysis is conducted for the GPS, Galileo and 

Beidou satellite constellations to identify the positional 

variations in Northing, Easting and Height components of the 

monitoring points.  As depicted by the time series in figure 10, 

the Tallysman antenna combined with the U-blox receiver 

demonstrates precision comparable to that of a full geodetic 

configuration. Although a dataset of 10 hours is inadequate for 

delivering comprehensive information into building 

movement, it sufficiently illustrates the potential of the low-

cost system. This is further demonstrated by the following 

standard deviation values. 

 

 Standard Deviation (mm) 

E N H 

Low-cost 4.50 8.50 11.31 

Geodetic 4.23 8.08 7.63 

Difference 0.27 0.42 3.68 

 

 

For the further understanding of the long-term variations in 

position, a moving average was calculated for a rolling window 

of 300s (5 minutes).  

 

 

 

Based on figure 11, it is evident that the low-cost GNSS setup 

share the similar trend as the geodetic setup. Adhering to the 

same trend suggests that the temporal variations and directional 

changes observable in the positional data of both configurations 

demonstrate similarly over time—indicating that, despite 

variation in accuracy, the low-cost setup can capture the 

same movement patterns and positional dynamics as the high-

precision geodetic reference. 

 

However, further testing on high-rise buildings is needed to 

assess the performance of low-cost GNSS systems over long-

term deployments. Short-term tests do not capture the gradual 

effects of component wear, thermal drift, or mounting stability 

issues that may reduce accuracy over time. Weather conditions 

such as heavy rain, snow, or high winds can also impact signal 

quality by causing attenuation, multipath reflections, or antenna 

 

 
 

 

 

Figure 11: Moving average variation of the low-cost system and fully geodetic system. 
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movement. In addition, variations in the ionosphere and 

troposphere can introduce delays that low-cost receivers may 

not correct effectively. Long-term studies under different 

weather and seasonal conditions are therefore essential to better 

understand noise levels and reliability, and to guide 

improvements in system design and calibration. 

5 CONCLUSION AND FUTURE DIRECTIONS 

 

This paper presented the results of control experiments 

testing Tallysman TWI low-cost GNSS antenna with U-blox 

F9P dual frequency low-cost GNSS receiver in slow moving 

conditions and dynamic motion conditions. It further presented 

results from an initial case study conducted on a high-rise 

building testing the low-cost system.  

 

The results indicate that the low-cost system can reach a 

comparable precision with the geodetic systems and can obtain 

sub-centemeter accuracy through rigorous observation and 

processing methods, such as the use of multiple satellite 

constellations for observations [7], [9]. The horizontal 

component can reach an accuracy of less than 5mm for both 

slow motion and dynamic motion conditions which depicts the 

potential of low-cost systems in achieving a sub-centimeter 

accuracy. The noise levels in the vertical component are 

generally higher than that of the horizontal movements, 

however, they are still less than a couple of centimeters.   

 

The case study on the building further demonstrates the 

efficiency of low-cost systems, since they exhibit comparable 

accuracy and precision to full geodetic configurations in 

practical scenarios when atmospheric and multipath challenges 

are not completely mitigated. The findings of this work align 

with the results of other research on the utilisation of low-cost 

GNSS systems for monitoring deformations in flexible 

structures, such as tall buildings and bridges [7], [9], [14]. 

 

This work is part of an ongoing study evaluating various low-

cost technologies under diverse atmospheric and environmental 

circumstances. Subsequent investigation will involve testing 

low-cost systems for long-term deformation observations 

across various environmental conditions and seasons. This will 

facilitate better understanding of the accuracy and precision of 

low-cost devices, as well as their suitability for long-term 

deployment. It will further evaluate the fluctuations in noise 

under various atmospheric circumstances, so facilitating the 

identification of methods to mitigate or minimise those errors. 
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ABSTRACT: The transport infrastructure is reaching in many cases the end of its effective life cycle. The present condition is 

attributable to a combination of ageing and progressive deterioration as traffic volumes continue to increase. However, it is 

possible that even recently constructed bridges may already have significant structural damage. Consequently, the maintenance 

management of existing bridges is becoming increasingly important. However, there is often a lack of up-to-date information on 

the actual condition of the structures. This is because measuring infrastructure is merely the final stage of the monitoring process, 

given that tactile sensors are extremely time-consuming and labour-intensive to use. Additionally, due to these principles, 

measurements can only be taken at a few selected points. The combination of these limitations offers great potential for the use of 

non-contact profile laser scanning (PLS) in the context of load testing of bridge structures. The structure is scanned with a high-

frequency laser beam without the necessity of entering the structure. The spatially distributed displacement measurements obtained 

in this manner provide a significantly higher density of spatial information about the structure than was previously feasible. Until 

now, dynamic investigations have been primarily conducted in the domain of profile scanning. This study primarily focuses on 

static load tests, where spatial resolution and measurement precision can be further enhanced. Two case studies are presented, 

illustrating non-contact PLS measurements for load testing: one example is on a 160 m arched railway bridge, and the other 

example is on a steel-concrete composite motorway bridge. It has been demonstrated that a precision of a few tenths of a millimetre 

can be attained with a spatial resolution in the centimetre range. 

KEY WORDS: profile laser scanning (PLS); displacement; bridge monitoring; load testing; SHM; SHMII-13; Full paper 

1 INTRODUCTION 

Against the background of an ageing infrastructure and the 

clear trend towards faster trains, higher track utilisation and 

increasing freight traffic on the roads, reports about the poor 

condition of the transport infrastructure, decaying bridges and 

the problems of steel or prestressed concrete bridges from the 

1960s and 1970s are becoming increasingly frequent. Damage 

to newer bridge structures is rarely reported [1], as the quality 

of planning and execution as well as testing and monitoring 

should generally ensure appropriate quality.  

In order to cover the entire spectrum, two completely 

different structures are considered in the following:  

A motorway bridge from the 1960s, which has basically 

reached the end of its life due to the enormous freight traffic on 

the Brenner motorway and the expansion to three lanes per 

direction. And a railway bridge that is only a few years old and 

has already suffered massive damage due to manufacturing 

defects. 

What both structures have in common is that assessing the 

condition of existing bridges is becoming an increasing 

challenge when important decisions have to be made about 

cost-intensive replacement or renovation measures, especially 

if these become necessary after just a few years. In this context, 

precise knowledge of the actual structural behaviour is a 

valuable tool for condition assessment, which in many cases 

can lead to an extension of the remaining service life and thus 

to considerable benefits for bridge owners and society. 

The actual structural behaviour is usually determined by 

experimental investigations, which may include measurements 

of accelerations, velocities, strains, inclinations and/or 

temperatures [2-4]. In addition, displacement measurements 

based on linear displacement transducers (LVDT) are used to 

determine relative displacements at abutments [2], between 

neighbouring superstructures of the same bridge [5] or the 

width of existing cracks. This type of displacement 

measurement is possible in principle, as a fixed reference point 

can be used for the installation of the sensor. 

Another important parameter of the structural behaviour 

would be the absolute vertical displacement of the bridge. This 

can provide direct information about the actual stiffness of the 

structure, which in turn can be used in the updating process of 

the structural model [6, 7]. 

However, the direct measurement of absolute displacements 

with classical LVDTs is usually very complex, if not 

impossible, due to the lack of fixed reference points [4] or 

because the bridge is simply too high. To close this gap, 

significant progress has been made in recent years in the field 

of non-contact displacement measurement. Corresponding 

sensors enable the measurement of structural displacements 

without the need to attach sensors to the structure. Suitable 

technologies for non-contact displacement measurements 

include terrestrial laser scanning (TLS) [8, 9, 10, 11, 12], laser 

vibrometer [13, 14], image-based total stations [15], and 

microwave interferometry [10, 16, 17, 18]. 

Compared to other non-contact measurement techniques, 

which only allow measurements at one point, TLS or profile 

laser scanners (PLS) can also be used to perform spatially 

distributed measurements. The spatial resolution offers the 

Potential of profile laser scanning (PLS) for the application in load tests 
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advantage that larger areas of the structure can be monitored 

with only one sensor, allowing a deeper understanding of the 

structural response in an efficient way. 

This study expands the application of PLS by demonstrating 

its capability for dense, high-precision deformation monitoring 

on two large-scale bridges under static loading. The novel 

aspects include the spatial resolution achieved, the scale of the 

structures examined, and a worst-case precision evaluation 

strategy, which has not been systematically addressed in 

previous studies. 

Before going into more detail on TLS and in particular its use 

as a PLS for dynamic and static load tests in section 3, the two 

investigated bridges are presented in section 2. 

2 INVESTIGATED BRIDGES AND PERFORMED 

LOAD TESTS 

As mentioned in Section 1, the following section presents load 

tests on two quite different bridges, which will first be 

discussed in more detail in this section. 

 Motorway bridge 

The Austrian Brenner motorway is part of the European route 

E45, which crosses Europe in a north-south direction from 

northern Finland to southern Italy. The Alpine crossing in 

Austria is an important part of the route and is also crucial for 

cross-border freight transport in Europe. The motorway route 

across the Alps was mainly built in the 1960s, and the bridge 

under investigation was also built during this period. 

 

Fig. 1: View of the motorway bridge: span 7. 

The bridge was originally designed for two lanes in each 

direction, but a third lane was added in the 1980s due to the 

increasing amount of traffic. However, the basic load-bearing 

structure of the bridge has remained essentially unchanged over 

the years. As an important part of a European transit route, the 

structure must therefore be carefully monitored. 

The structure itself consists of a steel-concrete composite 

construction and is designed as a 7-span continuous girder, with 

the outer spans having a length of 70 m and all other spans 

having a length of 84 m. The total length is therefore 560 m. 

Part of this monitoring strategy was a load test, which was 

carried out in May 2023. One direction of travel on the 

motorway bridge was temporarily closed in order to place two 

trucks, each weighing 50 tonnes, on the bridge to create 

different load scenarios. In addition, four quasi-static tests were 

carried out. 

The profile laser scanner measurements focussed on the 

outermost span (span 7) next to the southern bridge abutment, 

as shown in Figure 1. 

In addition to the profile scanner, 3D TLS [19, 20, 21], fibre 

optic sensors [19, 21, 22], dynamic and static total stations [19, 

20, 23], a terrestrial microwave interferometer, modular digital 

camera total stations [24], GNSS [21] and acceleration sensors 

[21] were used. 

 Railway bridge 

The railway bridge is a 370 m long double-track railway 

overpass designed as an arch bridge. The longest span is 

165 metres. The track is up to 71 m above the valley floor and 

is straight in the construction area at a design speed of 

300 km/h, see Figure 2. 

 

 

Fig. 2: View of the railway bridge. 

The bridge structure has only been under traffic for a few 

years and already shows significant construction-related 

damage. In the course of the structural inspection, structural 

defects and concrete spalling were initially recognised and 

appropriate repair measures were planned. During the repair 

work, it turned out that the gravel pockets and the severe 

segregation of the structure were not only localised, but 

affected large areas of several square metres, see Figure 3.  

 

 

 Fig. 3: Damaged area with heavily segregated concrete 

structure. 
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The damage is due to segregation and washing out processes 

during concreting. In order to determine the full extent of the 

damage, structural diagnostics were carried out on the entire 

arch bridge. The investigations confirmed the assumptions 

regarding the poor concrete quality of the arch concrete. The 

results raised questions about the serviceability and stability of 

the structure under traffic. 

As a mathematical analysis of the damage alone was not 

conclusive, the owner decided to carry out a load test. The static 

load test was carried out with five locomotives with a total 

weight of 550 tonnes in various load positions. In order to be 

able to determine the deformations under the applied load as 

simple and reliable as possible, a non-contact PLS was used. 

3 TERRESTRIAL LASERSCANNING (TLS) 

TLS such as the Z+F IMAGER 5016 make it possible to 

digitise the entire environment in a 360° panorama in the form 

of a 3D point cloud. During the scanning process, a high-

frequency rotating mirror deflects the laser beam and the TLS 

also rotates around its vertical axis. This sequential recording 

process produces a high-resolution point cloud of the visible 

environment, see Figure 4. 

The non-contact distance measurement of the Z+F IMAGER 

5016 works according to the AMCW method (Amplitude 

Modulated Continuous Wave). To obtain the absolute distance 

value, the phase shift between the reflected and emitted signal 

is used, which is induced by the light path in the intensity-

modulated periodic signal. To resolve the phase ambiguities 

and thus determine the absolute distance, several wavelengths 

are modulated onto the carrier wave. In addition, the user is 

provided with the amplitude (intensity), which represents the 

ratio of emitted to received energy, see grey scales in Figure 4. 

 

 

 Fig. 4: Extract from the 3D point cloud of span 7 of the 

motorway bridge. Intensity values are shown as grey scales. 

In principle, the measurement method is characterised by a 

very high spatial resolution, but in turn only allows a low 

temporal resolution. In addition, the single point precision is in 

the millimetre range and is therefore not sufficiently accurate 

for most monitoring applications. 

 Profile laser scanning (PLS) dynamic 

In contrast, a profile laser scanner (TLS in profile mode, 2D) 

[8, 10, 25, 26] only uses the high-frequency rotating deflection 

mirror, but there is no rotation around the standing axis, see 

diagram in Figure 5 and section of a profile in Figure 6.  

 

 

Fig. 5: Schematised representation of PLS. 

As special properties of the sensor are important for bridge 

monitoring applications, these are explained in more detail in 

the following. 

3.1.1 Measuring Frequency 

The usable measurement frequency for deformation 

monitoring of bridges with the Z+F IMAGER 5016 in profile 

mode depends on the rotation speed of the deflection mirror, 

which is up to 55 Hz. It should be noted that there is a 

relationship between temporal and spatial profile resolution: at 

the same laser measurement rate, doubling the measurement 

frequency halves the spatial resolution. 

3.1.2 Measurement Precision 

The precision of the measurement depends significantly on 

the energy reflected back from the structure and thus on its 

backscattering properties in the corresponding wavelength 

band, since the phase measurement precision is directly 

coupled to the signal-to-noise ratio (SNR) of the reflected 

signal [27].  

For the Z+F IMAGER 5016, as is common practice in the 

TLS field, the manufacturer provides range measurement 

standard deviations for different surface reflectivities and 

ranges. These are based on a fixed laser measurement rate of 

127 kHz and range from 0.2 mm to just under 10 mm. 

However, these accuracy specifications are not very 

meaningful in practice and only cover a very small range of 

applications: The specified reflectivity of the structure to be 

measured is usually not known and can also vary spatially. In 

addition, the measurement geometry plays a crucial role in the 

specification of realistic measurement uncertainties; it is partly 

responsible for the occurrence of predominant forward 

reflection, i.e. the shallower the angle of incidence, the greater 

the potential for forward reflection and low SNR. The 
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measurement geometry is also critical for the derivation of the 

projected vertical deformations. Furthermore, no reflectors are 

to be used in the application scenario considered, so an 

accuracy specification based on a defined reflector is not 

meaningful. 

For TLS in general, the stochastic modelling of the range 

measurement based on the registered intensities [28,29] is 

possible and allows a practical (insitu) determination of the 

range precision. This approach takes into account all effects 

affecting the measurement process (surface reflectivity, 

measurement geometry, atmosphere, etc.). 

3.1.3 Spatial Resolution 

With the Z+F IMAGER 5016 the range is part of the raw 

measurement. The range resolution is 0.1 mm and is defined by 

the size of the modulated fine scale used in combination with 

the implemented phase measurement.  

The actual spatial resolution of a profile scanner is defined 

by the rotation speed of the deflection mirror, the laser 

measurement rate and the divergence angle of the laser beam. 

The actual spatial resolution is usually lower than the angular 

resolution specified by the manufacturer for two reasons: 

• Depending on the choice of parameters, the laser spots 

of successive measurements overlap to a greater or lesser 

extent, which reduces the actual resolution on the surface 

of the structure. 

• The rotational speed causes an additional deformation of 

the laser footprint in the profile direction (elongation), as 

a corresponding angular range is always covered during 

the measurement time. This can be interpreted as a larger 

"true" divergence angle or as an increasing overlap of 

successive measurements according to [30, 31]. 

Another aspect when considering the spatial resolution 

actually available in practical applications is that the single-

point precision of a PLS is usually not sufficient for the 

requirements of the application scenario [8]. Therefore, in order 

to achieve the required precision, an averaging of neighbouring 

measurement points is performed (class formation), which 

further reduces the spatial resolution of the profile scanning in 

favour of a qualitatively better derivation of displacements. 

Two examples are given below to give an idea of the spatial 

resolution that can be achieved: 

• 20,000 points are measured per profile at a measurement 

frequency of 55 Hz, which corresponds to a theoretical 

angular increment of 0.018°. If 75 adjacent points are 

combined (class formation, see colour coding in Figure 

6), the actual available angular increment is reduced to 

1.35°, which corresponds to a spatial resolution of 

0.24 m at a distance of 10 m.  

• If the measurement frequency is reduced to 14 Hz, 

80,000 points are measured per profile and a spatial 

resolution of 0.06 m at a distance of 10 m is achieved. 

Depending on the measurement geometry, deformation time 

series with a precision in the sub-millimetre range can be 

derived from the spatially distributed time series generated in 

this way. 

Compared to other measurement techniques for monitoring 

applications, which only allow measurements at a single point, 

PLS thus also allow a spatially distributed recording of the 

structural response. The spatial resolution offers the advantage 

that larger areas of the structure can be monitored and verified 

with a single sensor, which enables a deeper understanding of 

the structural response in a very efficient way. 

 

Fig. 6: Extract from profile measurement, with coloured 

representation of class formation. 

3.1.4 Projection of displacements 

The purpose of using a PLS for deformation monitoring of 

bridges is to obtain deformations in a defined direction (usually 

vertical or horizontal). Therefore, the "raw" measurements 

need to be projected in the desired direction. For projection, it 

is usually assumed that the vertical displacement of a bridge is 

dominant, while possible horizontal components are 

considered negligible. Since the raw measurements of a profile 

scanner consist of distance and internal angle measurements, 

the projection of deformations is inherent and possible with 

high accuracy. The manufacturer specifies an angular accuracy 

of 0.004° for the Z+F IMAGER 5016. The horizon reference is 

provided by an internal dynamic compensator which operates 

in the same accuracy range as the angle encoders. The dynamic 

compensator also detects and corrects for low frequency 

movements of the sensor during the measurement. 

Up to this point, it has been assumed that there is only vertical 

displacement of the bridge structure due to an applied load. 

However, it is possible that there is an additional horizontal 

displacement component.  As the PLS is a 2D sensor, these can 

be measured directly at suitable locations (vertical areas) if the 

displacement is in the profile direction. 

 Profile laser scanning (PLS) static 

For use in static load tests, the temporal dimension plays a 

subordinate role, but in static profile laser scans the precision 

and spatial resolution can be further increased by additional 

temporal averaging during the load retention phases. 
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With a load retention phase of 5 minutes, at least 4,200 profiles 

are measured. This corresponds to 315,000 individual 

measurements in the example defined above with 75 points per 

class and profile that can be used for further derivation of the 

measured values, which enables a significant increase in 

precision. 

The major challenge in static load tests with profile laser 

scanners is to keep the external conditions constant so that, for 

example, no tilting of the tripod occurs, e.g. due to solar 

radiation or unstable ground. TLS, like almost all non-contact 

measuring sensors, are sensitive to atmospheric conditions, 

which in extreme cases, e.g. due to rain or fog, can completely 

prevent measurement. 

4 QUASI-STATIC LOAD TEST 

For quasi-static load tests, the speed at which the load (truck or 

locomotive) passes over the measurement object (bridge) is 

usually kept low in order to minimise dynamic effects that 

could falsify the result. This is in favour when using profile 

scanners, as the overall measurement rate of approximately 

55 Hz is not comparable with conventional sensors and the 

spatial resolution has to be reduced at higher repetition rates. 

Accordingly, it makes practical sense in these cases to use the 

lowest repetition rate of 14 Hz, as this allows up to 

80,000 points per profile to be measured and maximises the 

spatial resolution. 

For the two sample bridges, a quasi-static load scenario was 

only carried out for the motorway bridge, which is why this 

section focuses on the measurements at the Brenner Pass. 

The quasi-static load test was performed with two trucks of 

50 tonnes each, which crossed the entire bridge directly one 

behind the other at a speed of 5 and 30 km/h respectively. The 

position and speed of the two trucks were monitored using 

GNSS so that the resulting displacements could be 

synchronised with the position of the trucks. 

The measurements with the PLS took place in span 7, the 

scanner was located approx. 13 m below the bridge and a main 

girder was measured. As the bridge is located in a curve, the 

horizontal measuring range on the main girder was limited to 

approx. 50 m of the total span length of 70 m due to the 

curvature of the bridge.  

In this case, approx. 75 measuring points are averaged per 

class, so that ultimately 117 classes, i.e. 117 spatially 

distributed displacement time series can be derived, whose 

standard deviations are in a sector around 0.1 mm. The standard 

deviation tends to increase towards the edge due to the 

deteriorating geometry.  

Figure 7 shows a section of the measurement results for a 

crossing at 5 km/h. In the upper diagram, a time series 

approximately in the centre of the field is shown in black. In 

addition, three coloured markers show the times at which the 

two trucks are located in the middle of span 5 (blue), in the 

middle of span 6 (red) and in the middle of span 7 (yellow). The 

design of the bridge as a continuous girder is evident here, as 

the measured span (span 7) already reacts to the loads in the 

other spans and rises or falls accordingly. 

This representation as a time series based on just a single 

analysed class corresponds to the result that an LVDT would 

provide. 

In the lower diagram in Figure 7, the points in time marked 

in different colours (trucks on span 5, span 6, span 7) are shown 

in full spatial resolution with 117 classes in the corresponding 

colour. The PLS enables the evaluation of the bending line for 

the entire scanned field section at any point in time.  

The data gap in the centre of the diagram is caused by a 

combination of installed sensors (cabling) and a reinforced, 

heavily bolted area (see Figure 4 in the centre of the main 

girder). 

 

Fig. 7: Exemplary results of the evaluation of a quasi-static load test: In the upper diagram a simple pointwise time-displacement 

representation can be seen, while the lower diagram shows the potential of profile scanning, as a bending line can be analysed 

over the entire visible area at any point in time. 
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Fig. 8: Results of the evaluation of four static load tests: In the upper diagram, the bending lines of the two load positions are 

each shown twice. The lower diagram shows the differences between the respective tests and provides an estimate of the 

achievable precision of the measurements using profile scanning. 

 

 

Fig. 9: Results of the evaluation of three static load positions: The upper diagram shows the bending lines induced by the load 

positions. The lower diagram shows the differences between two independent zero measurements (bridge without load) before 

and after the actual measurements. 
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5 STATIC LOAD TESTS 

A static load test was conducted on both structures: This 

entailed the deployment of two trucks (with a total weight of 

approximately 100 tonnes) on the motorway bridge and five 

locomotives (with a total weight of approximately 550 tonnes) 

on the railway arch bridge. For each bridge different load 

configuration where tested and the structural response was 

measured using static profile laser scanning (PLS). 

As outlined in Section 3.2, the enhanced spatial resolution in 

static profile scanning enables a measurement point spacing of 

10 cm across the full scan range in both cases. This enabled the 

acquisition of over 400 spatially distributed displacement 

measurements on the motorway bridge and almost 1000 on the 

railway bridge (see upper diagrams in Figures 8 and 9). Those 

diagrams illustrate the measured displacements for the various 

load configurations, which are colour-coded according to the 

load configuration. As illustrated in Figure 7, analogous data 

deficiencies have been observed to occur due to external factors 

such as sensor interference or bolted connections. 

In comparison with previous PLS applications, this study 

introduces a significantly higher density of measurement points 

on large-scale infrastructure due to the use of static PLS and 

demonstrates the feasibility of applying PLS as a primary 

deformation measurement technique during full-scale static 

load tests. 

In order to provide further illustration of the precision 

potential of static PLS, two novel evaluation strategies were 

applied: For the motorway bridge (see Figure 8), a comparative 

analysis of repeated load positions was conducted (see lower 

diagram). For the railway bridge (see Figure 9), the evaluation 

is based on two independent zero measurements (see lower 

diagram). It is important to note that both approaches provide a 

conservative estimate of measurement precision under realistic 

test conditions. This is due to the fact that they account for 

potential systematic effects, such as slight variations in load 

positioning or residual structural deformations. 

Despite the presence of these influencing factors, the 

deviations between the individual tests for the Brenner 

motorway remain predominantly below 0.25 mm, with 

systematic offsets of 0.1 mm and 0.05 mm, respectively, as 

previously described. 

For the measurements at the railway bridge, a vertical 

precision of 0.5 mm was specified in the area of the piers                 

(-60 m to 60 m) that support the track on the arch. As illustrated 

in the lower diagram of Figure 9, this order of magnitude could 

be sustained. The deviations exhibit a slight increase towards 

the edge, a phenomenon that can be attributed to the substantial 

dimensions of the structure and the deteriorating measurement 

geometry towards the edge. Furthermore, a discernible residual 

systematic remains identifiable in the observed discrepancies, 

potentially attributable to residual deformation of the bridge 

arch. Irrespective of the underlying cause, this further distorts 

the precision estimate, thereby leading to the expectation of 

even better results. 

For the profile scanning and load retention phases, a duration 

of five minutes was deemed adequate for both bridges. 

Consequently, a test involving three load retention phases and 

double zero measurement could be conducted in approximately 

30 minutes under optimal conditions. However, it was 

necessary to deviate from this ideal procedure for the two static 

load tests. It was determined that load retention phases of 

10 minutes would be implemented on the Brenner motorway, a 

measure necessitated by the substantial deployment of 

individual sensors (see Section 2.1). 

In the case of the arch bridge, only profile scanning was used 

and a load retention phase of 5 minutes was planned, although 

this had to be extended in some cases due to fog passing 

through. 

6 CONCLUSION 

Compared to conventional sensors, PLS can be used to obtain 

a large number of spatially distributed measurements with just 

one sensor, which enables an extremely efficient measurement 

and also a previously unimaginable understanding of the 

structural reaction. 

Even for the quasi-static load test, it was possible to derive 

over 100 spatially distributed displacement time series over a 

range of almost 50 metres. The analysable range of the section 

was not limited by the sensor, but by the radius of curvature of 

the bridge. 

Implementing static load tests enhances spatial resolution by 

enabling the temporal averaging of additional measurement 

data. This assertion is substantiated by the case study of the 

railway bridge, in which the deformation of the entire 

160 metre arch was captured using almost 1,000 measurement 

points. Despite challenging environmental and structural 

conditions, sub-millimetre precision of up to 0.5 mm was 

achieved in the critical areas. 

Unlike previous PLS applications, this study uses static PLS 

as the primary measurement method for full-scale static load 

tests on large infrastructure. The high density of measurement 

points, over 400 on the motorway bridge and almost 1,000 on 

the railway bridge, enabled detailed, spatially resolved 

deformation analysis for various load configurations. To assess 

measurement precision under realistic conditions, two 

innovative evaluation strategies were employed. The first 

involved repeated load configurations on the motorway bridge 

and the second involved two independent zero measurements 

on the railway bridge. Both approaches yielded conservative 

estimates of precision, which is advantageous when accounting 

for systematic effects such as variability in load placement and 

residual deformations. 

The findings demonstrate not only the technical feasibility of 

static PLS in such scenarios but also its robustness under non-

ideal conditions, including sensor interference, structural 

complexity, and environmental influences such as fog. The 

study demonstrates the potential of static PLS for precise, 

efficient, and large-scale deformation monitoring in structural 

testing contexts. 
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ABSTRACT: This paper presents an integrated structural health monitoring (SHM) system combining multi-sensor networks with 

geospatial GNSS technologies to enhance infrastructure resilience. Developed by the authors, the system unites millimeter-

accurate TEXtant® GNSS monitoring with MSS® leak detection and environmental parameter sensing, all synchronized via the 

TEX-Sky Monitoring Cloud. Validation efforts included comparative field testing against International GNSS Service (IGS) 

standards at GFZ Potsdam, demonstrating millimeter-level positioning precision. Real-world deployments—including the 

Aquitaine Bridge (France), slope monitoring for mining operations (Germany), tank basin and catch basin monitoring at a chemical 

facility (Germany), and the first station of the cross-border Asia Minor GNSS Network—confirmed the system's operational 

robustness. Time-synchronized multi-sensor datasets enable predictive maintenance, early anomaly detection, and asset life 

extension. The modular and scalable system architecture adapts flexibly to diverse infrastructure contexts. Future integration with 

machine learning technologies is anticipated to enhance pattern recognition and anomaly detection. This work highlights the role 

of synchronized, multi-parameter monitoring as a foundation for next-generation infrastructure management and public safety. 

 

KEY WORDS: Structural Health Monitoring (SHM), GNSS, Multi-Sensor Systems, Autonomous GNSS Monitoring, TEXtant, 

TEX-Sky Monitoring Cloud, MSS Leak Monitoring, Big Data Analytics, Predictive Maintenance, Tectonic Monitoring 

 

1 INTRODUCTION 

The increasing age of global civil infrastructure, combined with 

escalating environmental stresses and rising usage demands, 

has highlighted critical vulnerabilities in bridges, tanks, basins, 

slopes, and other key structures. Traditional inspection 

practices—largely reliant on manual surveys and infrequent 

assessments—often fail to detect the early-stage, progressive 

deformations that precede catastrophic failures. Recent 

advancements in geospatial positioning, sensor 

miniaturization, and wireless data technologies offer 

unprecedented opportunities for real-time, high-precision 

structural health monitoring (SHM). Among these, Global 

Navigation Satellite System (GNSS) monitoring, capable of 

millimeter-level displacement measurements, has emerged as a 

core technology. When augmented with complementary 

sensing modalities—such as leakage detection, corrosion 

monitoring, and environmental parameter tracking—an 

integrated, multi-sensor SHM network becomes feasible. 

This paper presents the development, validation, and practical 

deployment of such an autonomous multi-sensor SHM system, 

rooted in high-precision GNSS science, geodetic surveying, 

and real-world engineering applications. Field-tested at critical 

infrastructure sites—including the Aquitaine Bridge in France, 

containment structures in the chemical sector in Germany, and 

a planned tectonic GNSS monitoring network across Asia 

Minor—the system demonstrates the viability of scalable, time-

synchronized, automated infrastructure health management. 

The system’s foundation lies in two core technologies 

developed in-house: the TEXtant® GNSS movement 

monitoring system and the MSS® Leak Monitoring system. 

Since 2011, the MSS® system has been successfully deployed 

in landfill and hazardous waste facilities, starting with the first 

permanent installation at a power plant in Eemshaven, 

Netherlands. Building upon this experience, the TEXtant® 

GNSS system introduces fully autonomous, millimeter-

accurate displacement monitoring without dependence on local 

reference networks. Both technologies are unified under the 

TEX-Sky Monitoring Cloud, a scalable, modular platform 

enabling synchronized multi-sensor integration, advanced data 

analysis, and future AI-assisted pattern recognition. 

The development of this platform addresses urgent needs for 

resilient, autonomous, and real-time infrastructure monitoring 

to enhance public safety, optimize maintenance strategies, and 

support sustainable asset management. 

2 SCIENTIFIC BACKGROUND AND MOTIVATION 

The urgent need for continuous, high-resolution monitoring of 

civil infrastructure becomes increasingly apparent as traditional 

inspection methods often fail to detect subtle but critical early-

stage deformations. As Ghaffarian et al. (2023) emphasized, 

aging structures and increased environmental stress demand 

real-time monitoring solutions. While several commercially 

available GNSS systems can achieve millimeter-level precision 

using base-rover configurations, they depend on local reference 

infrastructure and often require significant setup and must all 

be post-processed by experts. These constraints render them 

impractical for fully autonomous real-time PPP monitoring 
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across multiple or remote sites. Motivated by these challenges, 

the authors developed a new system architecture aiming to 

bridge the critical gap between high-precision monitoring and 

full automation.  

As Elsaid (2025) demonstrated, low-cost, multi-frequency 

GNSS receivers can achieve comparable accuracy to high-end 

systems when calibrated and combined with precise point 

positioning (PPP) software. PPP enables centimeter- to 

millimeter-level positioning accuracy by combining precise 

satellite orbits, clock corrections, and advanced error modeling, 

without reliance on local differential reference stations 

(Teunissen & Montenbruck, 2017).  

Moreover, a significant gap persists: there is a lack of fully 

autonomous GNSS-based SHM systems capable of delivering 

millimeter-level real-time accuracy without requiring expert 

recalculations. Traditional IGS stations, for example, do not 

recalibrate continuously, and thus their displacement data may 

not reflect real-time changes critical to detecting early-stage 

structural degradation. Millimeter accuracy is essential because 

slight, continuous movements—caused by temperature, 

dynamic loads, or tectonic effects—can serve as precursors to 

catastrophic failures such as bridge collapses, landslides, dam 

breaches or earthquakes. Monitoring vulnerable and aging 

infrastructure without such precision carries unacceptable 

risks. The collapse of the Carolabrücke in Dresden, Germany, 

in September 2024, illustrates the fatal consequences of 

undetected structural fatigue (City of Dresden, 2024).  

Therefore, the TEXtant® GNSS system was conceived with 

three key objectives: to provide continuous, unmanned, 

millimeter-accurate monitoring; to automate data processing 

and alarm generation without human intervention; and to 

support early hazard detection across a wide range of critical 

infrastructure types. It operates autonomously 24/7, with real-

time or daily processed datasets accessible through the TEX-

Sky Monitoring Cloud.  

The importance of rapid deployment and flexibility was 

highlighted when, just one month after the completion of the 

TEXtant® system’s one-year trial phase, a devastating 

earthquake struck Turkey and Syria in February 2023. 

Responding immediately, the first TEXtant® GNSS station for 

tectonic monitoring was donated to the city of Adana, Turkey, 

and installed in April 2023 atop the City Hall with support from 

Mayor Zeydan Karalar. The Adana station now delivers daily 

millimeter-level movement results to the TEX-Sky Monitoring 

Cloud, marking the first operational node of the Asia Minor 

GNSS Network project. 

Beyond GNSS-based monitoring, integrated multi-sensor 

networks further expand system resilience. Cawley (2018) 

highlighted the necessity of linking strain, acoustic, and 

environmental data streams to enhance the robustness of 

predictive analytics. Multi-sensor systems like TEXtant®, 

when combined with leak detection, corrosion monitoring, and 

environmental sensing, offer unprecedented opportunities for 

proactive, data-driven maintenance strategies. 

 

3 TEXTANT®  GNSS TECHNOLOGY: DEVELOPMENT 

AND VALIDATION 

 System Design and Autonomy 

The TEXtant®  GNSS system was developed by the authors as 

a modular, autonomous monitoring solution designed to meet 

the millimeter-accuracy requirements of geodetic infrastructure 

monitoring. The device architecture includes an energy-

efficient processing unit, solar power modules, and the capacity 

to host up to four GNSS antennas per station. The entire system 

is configured for fully autonomous operation, from data 

acquisition to daily processing, and network transmission via 

secure cloud protocols. 

 PPP Algorithm and Accuracy Optimization 

Building on the scientific foundation presented, the 

development of the GNSS-based monitoring solution centers 

on the integration of autonomous, low-cost multi-frequency 

receivers configured to operate without dependence on local 

reference networks. The approach leverages precise point 

positioning (PPP) as its core processing strategy, supported by 

algorithms specifically refined for structural health monitoring 

applications. 

In Elsaid’s doctoral research (Elsaid, 2025), the 

implementation of improved dynamic modeling within GNSS 

algorithms was shown to increase both stability and precision 

in real-world environments. The TEXtant® system developed 

through this research was subjected to rigorous field testing, 

including comparative validation with a conventional geodetic 

reference system. Results revealed a convergence between 

autonomous GNSS solutions and classical base-rover 

measurements, confirming the capability for millimeter-

accurate displacement tracking over long time periods. 

 

 Field Validation at GFZ Potsdam 

A pivotal phase in this validation process was conducted at the 

IGS station POTS, located at the German Research Centre for 

Geosciences (GFZ) in Potsdam, Germany. The developed 

TEXtant® system was connected in parallel to the existing 

geodetic Javad receiver at the GFZ, sharing the same GNSS 

antenna. This configuration enabled a direct comparison under 

identical atmospheric and signal conditions. 

 

 

Figure 1. Comparative analysis of the developed TEXtant® 

GNSS system (23-day dataset) and the GFZ reference system 

(90-day dataset), demonstrating consistent millimeter-level 

precision (Elsaid, 2025). 
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As detailed in Elsaid's thesis, a 23-day dataset collected from 

the TEXtant® receiver was compared against a 90-day 

reference dataset from the GFZ system. The comparative 

analysis yielded exceptional results: horizontal and vertical 

deviations remained within millimeter thresholds, and no long-

term drift or divergence was observed throughout the 

monitoring period (Elsaid, 2025).  

Elsaid emphasized that despite the economical and compact 

design of the TEXtant® device, the results demonstrated its 

capacity to meet professional-grade geodetic standards. The 

thesis further highlighted the device’s resilience under 

fluctuating atmospheric conditions and its reliable convergence 

behavior during daily sessions. 

 

 

 

Figure 2. TEXtant® GNSS station initiating autonomous 

operation and data processing upon activation. 

 

 Cross-Validation with Bernese and NRCan 

Further scientific credibility was added through collaboration 

with the Canadian Geodetic Survey (NRCan), where raw 

GNSS datasets from TEXtant® were submitted to the Natural 

Resources Canada PPP server for validation. The NRCan PPP 

analysis confirmed the integrity and reliability of the device’s 

positioning performance. Additionally, Bernese GNSS 

Software, a respected academic processing tool developed at 

the University of Bern, was used for post-processing, yielding 

comparable accuracy (Elsaid, 2025). 

Hardware-level accuracy was validated by comparison with the 

co-located IGS reference station at GFZ, equipped with a high-

grade Javad GNSS receiver. Despite its simplified electronics 

and energy-saving design, the TEXtant® system achieved 

millimeter-accurate results closely matching the IGS 

benchmark, demonstrating scientific and operational 

robustness. 

 
 

Figure 3. Satellite distribution improvement after antenna 

calibration and receiver tuning, highlighting enhanced 

tracking stability and reduced signal loss (Elsaid, 2025). 

 

 Deployment and Scalability of the TEXtant® System 

A critical innovation of the TEXtant® development is the 

deployment of solar-powered, autonomous GNSS stations 

requiring minimal maintenance. As highlighted by Liu et al. 

(2016), low-power GNSS configurations enable extensive, 

scalable monitoring across geographically distributed assets 

without compromising precision. 

TEXtant® units operate fully independently, automatically 

processing data and uploading daily results to the TEX-Sky 

Monitoring Cloud. Field deployments—including the 

Aquitaine Bridge and landslide-prone slopes in Germany—

validated the system’s capability to detect millimeter-level 

displacement, including thermal expansion effects and gradual 

settlement trends. 

These applications demonstrate the robustness and scalability 

of the TEXtant® concept, enabling broader use in earthquake-

prone regions, industrial facilities, and coastal infrastructure. 

Furthermore, the modular architecture supports integration of 

supplementary sensors such as accelerometers, leak detectors, 

and strain gauges, providing a comprehensive and expandable 

framework for structural health diagnostics. 

 

4 THE TEX-SKY MONITORING CLOUD 

ARCHITECTURE 

The TEX-Sky Monitoring Cloud represents the data 

infrastructure backbone of the multi-sensor SHM platform. 

Developed to support continuous, time-synchronized 

acquisition and correlation of high-frequency monitoring data, 

the cloud-based system functions as a central interface for real-

time infrastructure condition analysis. Its architecture enables 
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integration across multiple sensor nodes and locations, 

transforming raw data into accessible and actionable insights. 

Monitoring networks benefit significantly from centralized 

cloud-based storage and synchronized databases. As noted by 

Wu et al. (2018), cloud platforms offer scalability and 

interoperability, two essential features for long-term SHM in 

complex environments. Within this architecture, each GNSS or 

auxiliary sensor station independently uploads data via secure 

protocols, with redundant backups to ensure data integrity. The 

system maintains strict time-stamping and correlation rules 

across parameters such as displacement, leakage, temperature, 

or vibration, thereby enabling consistent multi-variable 

analysis. 

By enabling daily automated reports and long-term pattern 

visualization, the TEX-Sky Monitoring Cloud supports 

transition from reactive to preventive maintenance regimes. 

This shift aligns with Su et al. (2018), who emphasize that 

cloud-enabled SHM platforms foster predictive analytics 

through longitudinal data analysis. The TEX-Sky interface 

provides stakeholders with graphical dashboards, alarm 

notifications, and exportable analytics, tailored to engineering, 

operational, or regulatory needs. 

 

 
 

Figure 4. TEX-Sky interface displaying visualized GNSS 

results, including Gauss-Krüger and UTM coordinates. 

 

The TEX-Sky Monitoring Cloud was developed in-house to 

support flexible, scalable integration of diverse sensor types. Its 

modular database structure not only enables real-time SHM 

across multiple sites but also prepares the platform for future 

machine learning applications. By continuously expanding the 

database design, the system already allows seamless transfer of 

automatically generated monitoring data into AI-based 

anomaly detection tools, ensuring technological adaptability 

for evolving SHM needs. 

Dang et al. (2022) describe such systems as forming the 

foundation of Digital Twin implementations, enabling 

structures to be mirrored in real-time for deeper analysis. While 

such features remain under development, the system 

architecture already supports seamless upgrades. Collectively, 

the TEX-Sky Monitoring Cloud transforms raw sensor data 

into centralized knowledge—paving the way for more resilient, 

data-informed infrastructure management. 

 

5 MULTI-SENSOR NETWORK INTEGRATION 

An essential component of advanced structural health 

monitoring (SHM) is the ability to integrate various sensor 

types into a single, interoperable network architecture. The 

system developed by the authors merges geospatial GNSS data 

with time-synchronized readings from multiple environmental 

and structural sensors, including MSS® leak detection, 

humidity, temperature, corrosion, inclination, and 

accelerometers. The integrated network ensures comprehensive 

infrastructure monitoring across dynamic and static 

parameters. 

The two key pillars of this multi-sensor network are the 

TEXtant® GNSS system for precise movement tracking and the 

MSS® Leak Monitoring system for sealing integrity control. 

Since 2011, the MSS® leak monitoring system has been 

successfully deployed across a wide range of applications and 

several continents, including hazardous waste landfills, mining 

operations, and chemical containment basins, starting with its 

first major deployment at a power plant project in Eemshaven, 

Netherlands. 

The MSS® leak detection technology is central to monitoring 

the integrity of sealed systems, particularly for tank farms and 

containment basins. Its use of conductive cord networks and 

automated alerting mechanisms has proven effective in early 

detection of micro-leaks, contributing to environmental safety 

and regulatory compliance. As demonstrated in deployments 

such as the tank basins monitored since 2020, this technology 

reduces inspection effort while ensuring 24/7 leak monitoring 

capacity. 

The interoperability of all sensor modules relies on the 

synchronized timing and unified data architecture provided by 

the TEX-Sky Monitoring Cloud. Each sensor type, regardless 

of its function or installation context, transmits data tagged with 

precise timestamps, allowing multi-dimensional correlation 

and anomaly detection. The TEX-Sky Monitoring Cloud itself 

was independently developed by the authors to serve as a 

flexible, modular database architecture. It is designed for the 

long-term storage, processing, and visualization of 

synchronized SHM data, and it is continuously updated to 

remain compatible with machine learning (ML) techniques for 

anomaly detection and predictive analytics.  

Kazmierski et al. (2018) note that modular SHM architectures 

enhance adaptability, enabling sensor types to be added or 

removed depending on project-specific risks and requirements. 

This modularity is especially crucial for retrofitting existing 

infrastructure, where different physical layouts and constraints 

may exist. 

The integration strategy employed supports preventive and 

predictive maintenance practices by providing a more holistic 

view of structural conditions. Furthermore, combined datasets 

improve diagnostic confidence: for example, identifying 

correlated patterns between displacement, moisture ingress, 

and thermal expansion. 

With ongoing development, future sensor classes—including 

gas sensors, advanced corrosion probes, and customized client-
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specific sensors—may further extend this multi-sensor 

network’s diagnostic capacity. By consolidating diverse 

sensing modalities within a unified, scalable system, the 

platform demonstrates the technical feasibility and operational 

benefits of fully integrated SHM for modern infrastructure. 

 

6 FIELD DEPLOYMENTS AND CASE STUDIES 

This section presents the implementation of the authors’ system 

in diverse real-world environments to evaluate its performance, 

scalability, and scientific contribution to structural health 

monitoring (SHM). 

 

 Aquitaine Bridge Monitoring (France) 

The Aquitaine Bridge in Bordeaux, completed in 1967, is one 

of France's major river crossings and represents a landmark of 

civil engineering from the postwar period. Given its age and 

strategic importance, it was selected as an ideal candidate to 

validate the TEXtant® GNSS monitoring system under real-

world operational conditions. The bridge's susceptibility to 

thermal expansion, structural aging, and dynamic traffic loads 

provides a comprehensive environment to assess long-term 

monitoring technologies. 

 

 

Figure 5. GNSS antenna installation on the 90-meter-high 

pylon of the Aquitaine Bridge in Bordeaux, France. 

 

Since April 2022, an autonomous TEXtant® GNSS station has 

been continuously operating on one of the 90-meter-high 

pylons. The system collects millimeter-precise daily 

displacement data across the X, Y, and Z axes in the ECEF 

(Earth Center Earth Fixed) coordinate system, processed 

automatically through precise point positioning (PPP) without 

the need for local base stations. 

The monitoring initiative is carried out in cooperation with 

Cerema Sud-Ouest. Validation against conventional geodetic 

measurements confirmed the system's accuracy. As John 

Dumoulin, MA (Cerema), reported, the TEXtant® system 

reliably delivers absolute millimeter-accurate displacement 

values on a daily basis without requiring a fixed reference 

station (Dumoulin, 2025). 

Analysis of the time-synchronized monitoring data has 

revealed a clear correlation between structural displacement 

and ambient temperature variations. Specifically, movements 

along the X-axis exhibit a direct correlation with temperature, 

while displacements along the Y-axis are inversely correlated. 

These findings reflect thermal expansion and contraction 

effects acting asymmetrically on the bridge structure. The 

observed patterns provide insight into seasonal deformation 

behavior and demonstrate the utility of high-resolution GNSS 

data for capturing structural response under environmental 

loading.  

Future plans include the addition of temperature sensors and 

strain gauges to further enrich the TEX-Sky Monitoring Cloud 

database with synchronized multi-parameter datasets. 

 

 

 

Figure 6. Correlation between X-axis movement (green) and 

temperature variations (°C, red) from 2022–2024. 

 

 

 

Figure 7. Correlation between Y-axis movement (green) and 

temperature variations (°C, red) from 2022–2024. 

 

 

 

Figure 8. Correlation between Z-axis (height) movement 

(green) and temperature variations (°C, red) from 2022–2024. 

 

 Asia Minor Cross-Border GNSS Network 

The Asia Minor GNSS Network was initiated as a donation-

based scientific infrastructure project following the devastating 
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Turkey–Syria earthquakes in February 2023. The project aims 

to establish a cross-border tectonic monitoring and early 

warning system in one of the most geodynamically active 

regions worldwide. 

Tectonic complexity in the area is driven by the interaction of 

the African Plate, Arabian Plate, and Anatolian Block. Near the 

city of Adana, the northward motion of the Arabian Plate 

compresses the Anatolian Block, forcing it westward along the 

East Anatolian Fault. This geodynamic regime results in 

frequent high-magnitude seismic events, making the region a 

critical focus for real-time geodetic monitoring initiatives.  

The first TEXtant® GNSS station was successfully installed 

atop the City Hall in Adana in April 2023, with the support of 

the local administration. The GNSS station has been operating 

autonomously since then, delivering daily millimeter-precision 

displacement data in X-Y-Z axes. It reliably records both the 

gradual tectonic drift of the Anatolian Block and abrupt height 

anomalies associated with seismic events exceeding magnitude 

5. 

 

 

Figure 9. TEXtant® GNSS station in Adana (green), 

recorded earthquakes (black), and earthquakes >5M 

magnitude (red). 

 

 

Figure 10. Displacement tracking at the TEXtant® GNSS 

station in Adana: Easting (blue), Northing (green),  

and Height (red) changes. 

 

In collaboration with the CNRS National Center for 

Geophysics in Lebanon and the University of Jordan, 

preparations are underway for the installation of two additional 

TEXtant® GNSS stations. Discussions regarding station 

placement are ongoing, and the delivery and commissioning are 

scheduled for 2025. These installations mark the next steps in 

expanding the Asia Minor Network. 

The broader objective is to establish a cross-border GNSS 

infrastructure covering six countries—Turkey, Syria, Lebanon, 

Jordan, Egypt, and Saudi Arabia. All recorded data are 

automatically processed via PPP algorithms and archived 

within the TEX-Sky Monitoring Cloud, facilitating scientific 

collaboration, seismic risk research, and the future 

development of regional early warning systems. 

This initiative represents the first operational cross-border PPP-

based GNSS tectonic monitoring network in the Asia Minor 

region. 

 

 Landslide Risk Monitoring (Germany) 

In a geologically sensitive mining region in Germany, an 

autonomous TEXtant® GNSS monitoring network was 

deployed to monitor slope stability. The project area was 

characterized by historic mining activities, creating a 

heightened risk of slope destabilization and landslides over 

time. 

Two solar-powered TEXtant® GNSS stations, equipped with a 

total of six antennas, were installed on the potentially unstable 

slope. These stations operate autonomously and transmit daily 

displacement results in X, Y, and Z axes to the TEX-Sky 

Monitoring Cloud, where the time-synchronized datasets are 

automatically processed and archived. 

Previously, the slope was inspected at intervals by land 

surveyors, with weeks-long delays between measurements and 

data interpretation. The introduction of daily, continuous 

GNSS monitoring significantly enhanced the ability to detect 

subtle deformations at an early stage. Regular automated 

reports now document absolute movements in local coordinate 

systems, offering actionable insights into both spatial 

displacement and temporal trends. These visualized datasets 

are used to create detailed deformation maps, illustrating where 

and by how much the terrain is shifting. 

This deployment demonstrates how continuous GNSS-based 

monitoring provides superior resolution, frequency, and 

responsiveness compared to traditional manual surveying, 

contributing to improved risk mitigation strategies for 

landslide-prone areas. 

 

 
 

Figure 11. GNSS antenna connected to an autonomous 

TEXtant® station powered by a solar energy system. 
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 Industrial Multi-Sensor SHM (Germany) 

At an industrial site in Germany, a multi-sensor SHM system 

was implemented to monitor the structural integrity of critical 

containment infrastructure exposed to heavy operational 

loads, fluctuating groundwater conditions, and tidal forces 

from the nearby Elbe River. The aim was to reliably assess 

structural status, extend service life, and minimize costly 

manual inspections that disrupt operations.  

Since 2020, MSS® leak monitoring has been deployed across 

three containment structures: a storage tank, a concrete catch 

basin, and a reinforced concrete basin with a liquid liner. In 

total, 32 leak sensors were installed—eight around the tank, 

sixteen around the catch basin, and eight within the basin 

floor—embedded into both new and existing structures. Early-

stage leak detection during commissioning enabled targeted 

repairs, demonstrating the system’s preventive maintenance 

value. 

 

 
 

Figure 12. Leak monitoring system with eight sensors 

embedded around the perimeter of the monitored tank using 

mounting sleeves. 

 

In 2024, TEXtant® GNSS movement monitoring stations were 

added to the network, providing autonomous daily X-Y-Z 

displacement data with millimeter precision. This data is 

essential for detecting differential settlements and deformations 

linked to seasonal groundwater variations and river-induced 

soil dynamics. 

A corrosion monitoring system, featuring 64 embedded sensors 

across both original and newly built concrete walls, enables 

comparative degradation analysis. Additionally, moisture 

sensors were installed between double-wall structures to 

monitor water ingress risks via resistance measurements. 

All sensor modules are integrated into the TEX-Sky 

Monitoring Cloud, allowing centralized, time-synchronized 

data correlation and automated reporting. The system has been 

approved by TÜV-Nord, supporting regulatory compliance 

while optimizing inspection intervals. By reducing the need for 

frequent manual interventions, the multi-sensor SHM 

deployment contributes to enhanced operational reliability, 

environmental safety, and lifecycle cost savings. 

 

 

Figure 13. The monitoring computer sends all multi-sensory 

results (movement, leakage, corrosion) to the TEX-Sky 

Monitoring Cloud. 

 

These case studies demonstrate the adaptability, precision, and 

value of the authors’ multi-sensor SHM system in diverse 

structural contexts, from heritage bridges to critical industrial 

assets and geohazard zones. 

 

7 DISCUSSION: PREDICTIVE MAINTENANCE AND 

AI OPPORTUNITIES 

The integration of time-synchronized data streams from 

geospatial and structural sensors provides a foundation for 

advanced data-driven maintenance strategies. As infrastructure 

systems age and face intensifying environmental pressures, the 

transition from reactive to predictive maintenance becomes 

increasingly necessary. Long-term datasets derived from 

autonomous monitoring technologies enable trend analysis, 

anomaly detection, and system-wide diagnostics—laying the 

groundwork for intelligent decision support systems. 
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A core advantage of synchronized SHM networks lies in their 

ability to generate longitudinal datasets that capture subtle 

structural changes over time. As Razali et al. (2020) note, big 

data analytics applied to sensor data can enhance preventive 

maintenance by identifying hidden correlations and early-

warning indicators. The TEX-Sky Monitoring Cloud facilitates 

such analyses through automated reporting tools and 

correlation matrices spanning parameters like displacement, 

leak detection, inclination, and corrosion. 

Furthermore, the platform supports early-stage integration with 

machine learning frameworks. According to Wu et al. (2018), 

AI-enhanced SHM platforms can extract latent patterns from 

high-volume sensor streams, offering insights unattainable 

through manual evaluation. The cloud’s architecture, which 

time-aligns and stores multi-dimensional data across 

geographically distributed sites, enables the application of 

supervised learning algorithms for condition classification and 

anomaly detection. 

The evolution toward data-driven maintenance is also aligned 

with Digital Twin paradigms. Dang et al. (2022) describe 

Digital Twins as dynamic virtual replicas of physical 

infrastructure, continuously updated through real-time sensor 

inputs. In our framework, the combination of daily GNSS-

derived position data and environmental sensor feedback 

enables a similar mirroring of structural states, especially in 

applications like slope monitoring and tank basin surveillance. 

The benefits of such an approach are multifold: improved 

lifecycle predictions, optimized inspection intervals, targeted 

intervention planning, and enhanced safety margins. 

Ultimately, by embedding intelligence into SHM workflows, 

engineers can ensure that infrastructure resilience evolves in 

tandem with societal needs and technological capability.  

 

8 CONCLUSION AND FUTURE PERSPECTIVES 

This paper has presented the development, scientific rationale, 

and field validation of a modular, autonomous monitoring 

system that integrates multi-sensor technologies with advanced 

geospatial GNSS capabilities. Designed to achieve millimeter-

level accuracy in displacement, leakage detection, and 

environmental monitoring, the system represents a 

fundamental shift toward data-driven, real-time structural 

health monitoring (SHM). 

Central to this approach are two core technologies developed 

by the authors: the TEXtant® GNSS movement monitoring 

system and the MSS® Leak Monitoring technology. Their 

integration through the TEX-Sky Monitoring Cloud enables 

scalable, synchronized monitoring across diverse infrastructure 

types—from heritage bridges and industrial containment 

systems to tectonic plate boundaries and geotechnically 

unstable slopes. 

Field deployments in France, Germany, and Turkey have 

demonstrated the system’s scientific robustness, operational 

reliability, and its capacity to support predictive maintenance 

strategies. The introduction of fully autonomous, daily-

updating monitoring solutions fills a critical technological gap, 

particularly where traditional inspection cycles or manual 

GNSS data post-processing fall short. 

Continuous, unmanned monitoring systems capable of high-

precision results offer new opportunities to prevent disasters 

such as bridge collapses, dam breaches, and infrastructure 

failures due to undetected degradation. 

Future work will focus on expanding cross-border SHM 

networks, contributing to the development of international 

standards for autonomous infrastructure monitoring, and 

strengthening global collaboration to enhance structural 

resilience. 
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ABSTRACT: Structural health monitoring (SHM) is crucial for ensuring the integrity and safety of infrastructure. Traditional 

vibration analysis techniques rely on sensors such as Inertial Measurement Units (IMU) and Global Navigation Satellite Systems 

(GNSS), total stations (TS) and fibre-optics (FO), which require a physical attachment to structures in the observation process. 

However, Light Detection and Ranging (LiDAR) offers a contactless alternative, enabling high-resolution, time-synchronized 

observations that capture spatially continuous deformation information. This paper presents an innovative framework for SHM 

that leverages LiDAR-based time-domain frequency analysis to monitor dynamic structural behavior effectively. By integrating 

spatio-temporal modeling techniques, we establish a robust methodology for detecting oscillations and deformations in 

infrastructure. Our approach enhances current SHM practices by providing a scalable solution that does not require physical sensor 

deployment. Thus, this methodology provides information in much higher spatial resolution compared to the aforementioned 

approaches. The proposed methodology is evaluated by controlled experiments, demonstrating its applicability to real-world SHM 

scenarios and its potential for continuous, non-invasive structural assessment. 

 

KEY WORDS: Structural Health Monitoring; Laser Scanning; B-Splines; Harmonic Oscillation; Pont Cloud. 

 

1 INTRODUCTION 

Structural integrity is a fundamental concern in civil 

engineering, necessitating continuous monitoring of 

deformations and vibrations in infrastructure. Bridges, 

buildings, and other structures are subject to environmental and 

mechanical forces, including wind, traffic loads, temperature 

variations, and seismic activity. These forces induce static and 

dynamic deformations, which must be accurately tracked to 

prevent structural failures. 

Traditionally, SHM relies on point-based sensors such as 

Global Navigation Satellite System (GNSS) [1, 2], Inertial 

Measurement Unit (IMU) [3, 4], total stations [5], and fiber-

optic (FO) [6, 7] sensors, which provide precise motion data 

but require physical attachment to structures (Fig. 1). Optical 

sensors, including cameras [8, 9, 10], Vibrometers [11, 12, 13, 

14], and Light Detection and Ranging (LiDAR) [15, 16], offer 

contactless observations, reducing maintenance effort and 

enabling long-term deployment. Among these, LiDAR has 

gained prominence due to its ability to capture high-resolution, 

time-synchronized spatial data, making it well-suited for SHM 

applications. 

While prior research has explored LiDAR-based monitoring, 

empirical validation and integration into SHM workflows 

remain limited. This study addresses these gaps by presenting 

a comprehensive framework for contactless structural vibration 

monitoring using LiDAR. Our research focuses on leveraging 

time-domain frequency analysis to capture oscillatory behavior 

and quantify structural deformations more effectively. 

This paper addresses the following research questions: 

• Can LiDAR-based time-domain frequency analysis 

provide reliable results for SHM applications? 

• How does point-wise processing compare to area-wise 

processing in structural vibration analysis? 

• Do observation residuals exhibit systematic patterns 

that can inform SHM decision-making? 

We answer those questions applied to SHM methodologies by 

integrating 3D point clouds of LiDAR, that improve vibration 

analysis, uncertainty quantification, and structural condition 

assessment. 

 

 

Figure 1. Potential 4D bridge monitoring with GNSS (green), 

IMU (blue) or LiDAR (red) 

2 SPATIO-TEMPORAL PROCESSING 

LiDAR sensors naturally observe their surroundings with a 

high point sampling rate of several MHz and a spatial 

resolution in the mm-level. This observation principle enables 

to record high frequent 4D (3D + time) deformation signals of 

structures, as displayed in Figure 1 in comparison to using IMU 

and GNSS sensors. To use LiDAR point clouds for vibration 

monitoring, we present within this work an implementation of 

spatio-temporal connections, which we evaluate 

experimentally. Therefore, we first introduce into our 

experimental setup within section 2.1 to show a coarse 

LiDAR for vibration monitoring of infrastructure: stretching limits by spatio-

temporal time domain frequency analysis 
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overview of the object and used sensor. In section 2.2, we 

briefly describe our developed methodology to tackle 4D 

LiDAR data processing. Lastly, we discuss results regarding 

the outcome and limitations in section 2.3. 

 

 

Figure 2. Experimental measurement setup 

 Experimental Setup 

We evaluate our methodology using continuous observations 

of micro-electro-mechanical system (MEMS) LiDAR sensors 

to capture the periodic motion of a forced-excited acrylic glass 

sheet in Figure 2. This sheet is two by one meter and clamped 

on the upper and lower sides. Since it is also erected vertically, 

gravity acts asymmetrically on the test construction.  

Our experimental setup simulates real-world conditions by 

introducing controlled periodic excitation forces induced by a 

linear actuator with a frequency of about 0.3 Hz. Furthermore, 

we test the adaptability of our approach across different 

configurations and object geometries to assess its scalability. 

The selected process enables a continuous frequency mode 

description of a dynamically oscillating object, which ensures 

accurate spatial approximation and robust frequency 

estimation, enabling a fully automated analysis using low-cost 

sensors.  

 Methodology 

Our approach harnesses LiDAR data to exploit its contactless 

observations and high sampling rate for time domain frequency 

estimation [17]. However, dimensions are limited to the 

LiDAR sensors used in respective monitoring settings [16]. To 

further enhance processing efficiency, we integrate point cloud 

observations within a time-domain framework directly. This 

reduces computational complexity by minimizing intermediate 

processing steps while maintaining spatial and temporal 

coherence.  

In our workflow, we first implement an initial frequency 

estimation process based on spectral analysis techniques in the 

time domain, ensuring that dominant oscillation modes are 

accurately captured. Furthermore, consecutive points and their 

spatial neighborhoods facilitate establishing temporal and 

spatio-temporal connections, allowing direct oscillation 

modeling simultaneously in time and the metric space. By 

introducing spatial B-spline modeling, we establish smooth 

spatial transitions between neighboring observations [16]. 

Additionally, we connect observations in time by their 

underlying periodic signal. With both spatial and temporal 

connections, we formulate spatio-temporal connections 

 

𝑤(𝑢, 𝑣) = 𝜇(𝑢, 𝑣) + 

+∑𝑎(𝑢, 𝑣) ⋅ cos(2𝜋𝑓𝑖𝑡) + 𝑏(𝑢, 𝑣) ⋅ sin(2𝜋𝑓𝑖𝑡)

𝑁

𝑖=0

 

as a combination of the Fourier Series [18] and functions used 

in geometric modeling [19]. By employing a sophisticated 

mathematical model in time 𝑡, we approximate components 

like an immovable mean surface 𝜇(𝑢, 𝑣), amplitude variations, 

and phase shifts corresponding to frequencies 𝑓𝑖 by Fourier 

parameters 𝑎(𝑢, 𝑣) and 𝑏(𝑢, 𝑣) [20]. Except frequencies, all 

components are described as geometric functions expressed 

with their first and second principal component 𝑢, 𝑣 in Figure 

3 and the movement in time along the third principal 

component 𝑤. Figure 4 displays the signal 𝑤 along the time 

axis 𝑡 (not sorted for 𝑢, 𝑣) for experimental data of 100 sec: 

Clearly, the oscillations are visible.  

 

 

Figure 3. Observation point cloud with its principal 

components 𝑢, 𝑣, 𝑤. 

We further quantify parameter uncertainty to evaluate the 

reliability of estimated variables, thereby enabling robust 

movement and vibration analysis of spatially connected 

surfaces. Generally, our method simplifies the representation of 

periodic signals while preserving essential spatial 

characteristics for interpretation. 

 

 

Figure 4. Part of the noisy time series observed along 

principal component 𝑤 
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Figure 5. mode shape of the dominant amplitude with overall 

mean residuals as colors 

 Results and discussion 

Our developed methodology effectively captures and describes 

enforced motion in both space and time. The integration of 

LiDAR-based time-domain frequency analysis offers a 

significant advancement in dynamic object monitoring, 

reducing reliance on traditional sensor frameworks. Moreover, 

it automatically combines observations compared to the 

individual processing of individual sensors e.g. IMU and 

GNSS.  

Thus, we can explore interdependencies between parameters 

and their impact on results, highlighting the adaptability of our 

approach across different LiDAR systems. Besides the 

continuous amplitude shape shown in Figure. 5, we further 

analyze residuals from estimated parameters to identify 

systematic patterns that may indicate underlying structural 

characteristics in Figure 5. Therefore, our results show that 

continuous processing in the time domain produces higher 

fidelity reconstructions compared to point-wise approaches like 

mode description using IMU and GNSS sensors. Additionally, 

uncertainty propagation studies reveal the high sensitivity of 

estimated frequencies concerning sensor noise as well as 

environmental factors at the observation sight [16]. 

We further investigate the influence of different geometric 

modeling methods for establishing spatio-temporal 

relationships. The results indicate that B-spline modeling 

outperforms polynomial approximations in capturing smooth 

transitions while maintaining high-frequency response 

accuracy [16]. This highlights advantages of flexible basis 

functions in vibration analysis applications. 

3 CONCLUSION 

Our study demonstrates that LiDAR-based time-domain 

processing enables high-resolution monitoring of dynamic 

objects, offering advantages over traditional sensor-based 

methods as contactless observations and processing of the full 

object. The developed methodology ensures robust frequency 

estimation, efficient uncertainty quantification, and improved 

adaptability across different application domains. 

Future research will extend our methodology to real-world 

scenarios such as bridge vibration analysis, integrating 

additional sensor modalities for enhanced robustness. Herein, 

we will also evaluate the limits of our approach in more detail. 

Further improvements will focus on refining uncertainty 

quantification and optimizing computational efficiency to 

facilitate large-scale implementations. Additionally, we aim to 

investigate the potential for hybrid sensor fusion, combining 

LiDAR data with conventional methods to enhance the 

accuracy and robustness of vibration analysis in complex 

monitoring environments. 
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ABSTRACT: Geodetic monitoring of reclaimed landfills is essential in ensuring the geotechnical safety of slopes and for 

monitoring the process of landfill settlement caused by biological and physico-chemical decomposition of the deposited waste. 

Insufficient recognition of the size and directions of displacements may lead to severe damage to the landfill body (landslides, 

sinkholes) and endanger the environment and the life and health of people living near the landfill. Classic geodetic monitoring of 

such facilities is based on measurements of single control points (benchmarks) located on the landfill body, the displacements of 

which often do not represent actual changes occurring in the area of the entire facility. The solution to this problem is to use Light 

Detection and Ranging (LiDAR) technology, which allows surface measurement of the entire studied area, making it possible to 

obtain a complete image of changes in the geometry of the landfill body. This paper presents a case study of a reclaimed municipal 

solid waste landfill located in Poland for which monitoring was applied using Terrestrial Laser Scanning (TLS) and Airborne 

Laser Scanning (ALS) from an Unmanned Aerial Vehicle (UAV). The acquired 3D data made it possible to obtain reliable 

information on the deformation processes on the landfill's surface and to decide on the direction of development of the post-

remediation landfill as a Renewable Energy Sources (RES) station with solar panels and a biogas plant. 

KEY WORDS: LiDAR; ALS; TLS; Deformation monitoring; Landfill reclamation; UAV. 

1 INTRODUCTION 

Landfilling is still the most popular method of waste disposal 

in Poland. According to the Central Statistical Office (Główny 

Urząd Statystyczny - GUS) 2022 data, 259 active landfills in 

Poland and more than 600 landfills closed and partially or fully 

reclaimed. The 1999 European Union (EU) Landfill Directive 

and the EU's overall policy for sustainable waste management 

imply a gradual reduction in municipal waste sent to landfills. 

It also imposes technical and environmental requirements that 

landfills must meet, indirectly leading to the closure and 

rehabilitation of old, substandard landfills and the creation of 

new landfills that meet standards [1,2]. There will be a further 

increase in reclaimed landfills in the coming years. Municipal 

landfills are usually located near large cities, whose dynamic 

growth causes landfills to be integrated into the urban fabric 

over time. Often, in such cases, as compensation for the long-

standing negative impacts of the landfill on the immediate 

neighborhood (unpleasant odor, birds), they are transformed 

into public facilities with recreational, park, sports, museum, or 

exhibition functions [3]. It is also common to use these facilities 

in electricity production (biogas plant, photovoltaic farm, wind 

farm). An example of such a landfill is the Słabomierz-

Krzyżówka landfill site located in Poland, whose future post-

remediation development has been earmarked for a 

photovoltaic farm and where energy is currently being 

produced from extracted biogas [4]. 

Geodetic monitoring of deformation is essential in ensuring 

safety at reclaimed landfills by monitoring the impassibility of 

critical states defined for slope stability and monitoring the 

uniformity of settlement of the landfill body. In their design, 

reclaimed landfills can be compared to earth structures made of 

anthropogenic materials, supplemented by protective structures 

such as seals, drains, or reinforcements. The peculiarity of these 

structures is due to their large surface area (up to several tens 

of hectares), large volume (up to several million m3), 

considerable thickness (up to several tens of meters), and long-

time operating period (several decades). Due to the high 

heterogeneity of the stored waste (different mechanical, 

physico-chemical, and biological-chemical factors), the course 

of the subsidence process is difficult to predict. Compared to 

soils, wastes show very high compressibility, making the site's 

settlement dynamic, especially during reclamation [5-8]. 

The dynamics of landfill mass settlement are variable over 

time. The subsidence process can be divided into three phases: 

immediate settlement, primary settlement, and secondary 

settlement. Immediate settlement (pseudo-consolidation) is 

caused by the load from the weight of the landfilled waste and 

the process of mechanical compaction of the waste, which can 

reach up to 20% of the initial thickness. Primary settlement is 

caused by biological and physicochemical decomposition 

processes (e.g., oxidation, incineration, digestion, leaching) of 

the deposited waste and by the creep process. The processes 

associated with biodegradation of waste take place over a long 

period (several to several years), and the settlement volumes 

resulting from these processes can reach about 20% of the 

initial thickness of the deposited waste [5, 9]. Secondary 

settlement is caused by mechanical creep, can last for several 

decades, and can amount to a few percent of the initial thickness 

of landfilled waste. The course of the landfill settlement 

process is shown in Figure 1. 
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Figure 1. Landfill mass settlement process [8].  

The influence of water from precipitation is also a factor in 

the deformation of the landfill surface. Heavy and torrential 

rains can lead to soil leaching from the top layer covering and 

adding weight to the reclaimed landfill. Water infiltration into 

the landfill can destabilize the slopes and subsequent 

deformation. Short-term, heavy, and torrential rains are an 

increasingly frequent phenomenon in a changing climate. The 

elements of the water balance are shown in Figure 2. 

 

Figure 2. Elements of the landfill water balance [8]. 

In Poland, the requirement for geodetic monitoring of 

landfills is set out in the Regulation of the Minister of the 

Environment of 30 April 2013 on landfills [10]. The Regulation 

specifies a minimum frequency of landfill surveying every 3 

months during the operational and 12 months during the post-

operational phases. The monitoring period for landfills is 30 

years after closure. The monitoring defined in the regulation 

consists of controlling the settlement of the landfill's surface by 

geodetic methods based on measurements of displacements of 

control points stabilized on the facility's surface and in 

assessing the stability of slopes determined by geotechnical 

methods [11]. However, the regulation does not specify the 

number of monitoring points and their location on the landfill, 

so the monitored point movements often do not represent the 

entire landfill area. 

Classical geodetic monitoring at landfills is based on the 

point method - measurements of individual controlled points 

(points of interest) located on the body of the landfill in various 

geodetic marks (metal tubes, concrete posts, granite posts). 

This method makes it possible to accurately determine the 

movements of the selected points - their size, direction, and 

speed. It also assumes that the observed points are 

representative of the phenomenon. A denser network of points 

approximates the distribution of displacements more accurately 

but increases costs and time-consuming measurements. In 

practice, the determined displacements often do not reflect the 

actual changes occurring in the object area. Insufficient 

recognition of the magnitude and directions of these changes 

may lead to severe damage to the body of the landfill and 

consequently also endanger the environment and the life and 

health of people near the landfill [4,12,13]. 

A solution to this problem may be to use a surface 

measurement method using Light Detection and Ranging 

(LiDAR) technology. The surface method involves measuring 

the entire surface of an object - unstabilized points. This 

method makes it possible to observe any parts and the whole of 

the surveyed object. This method is free of the fundamental 

disadvantage of the point method - the surveyed surface is 

covered by a much larger number of points (in the LiDAR 

method, the surveyed surface is covered by millions of points). 

It is also possible to select observation points that depict the 

phenomenon depending on its dynamics. However, the 

disadvantage of this method is that the coordinates of the points 

are determined with less accuracy than in the point method. In 

the absence of pre-determined observation conditions and 

accuracy of results, a good solution is to use a hybrid method, 

a combination of point and surface methods. Such a strategy 

allows areas at risk of displacement to be detected and new 

stabilized points to be established in these areas [7, 13-17]. 

This paper presents a case study of the Słabomierz-

Krzyżówka landfill site in Poland, where LiDAR-based 

geodetic monitoring was applied. The measurements used an 

approach using Airborne Laser Scanning from Unmanned 

Aerial Vehicles (ALS-UAV) and Terrestrial Laser Scanning 

(TLS). This paper presents the results of the annual monitoring 

of one of the slopes of the landfill, which was exposed to both 

deformations caused by the impact of landfill subsidence and 

surface water run-off caused by damage to the defenses by wild 

animals (wild boar, deer). 

2 MATERIALS AND METHODS  

This section presents the characteristics of the study area 

(Section 2.1) and the measurement equipment used (Section 

2.2). The proposed methodology for determining slope 

deformation from TLS and ALS-UAV measurements is also 

described (Section 2.2). 

 Study area 

The research object is the reclaimed municipal solid waste 

landfill “Słabomierz-Krzyżówka”. The landfill is located ca. 40 

km south-west of Warsaw. The landfill was established in 1970 

on the site of an old pit after sand and gravel mining. From 1970 

to 1992, unsegregated municipal and industrial waste was 

deposited in the landfill. From 2016 onwards, only construction 

ballast waste was deposited at the landfill, such as concrete and 

concrete rubble from demolition and renovation, mixed 

concrete waste, brick rubble, ceramic materials, non-

conforming compost, and soil, soil, and stones. In 2022, the 

landfill was closed and rehabilitated. A degassing and drainage 

network and a vertical screen were built to prevent 

contaminants' escape. The target reclamation of the landfill was 

set for use as a Renewable Energy Station (RES) with solar 

panels and a biogas plant. Currently, the landfill site and its 
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technical facilities cover an area of approximately 14 ha, and 

the landfill covers an area of approximately 9 ha. The current 

height of the landfill body is approximately 27 meters measured 

from its base to the crown of the landfill. There are 15 

controlled points (benchmarks) on the site to monitor the 

settlement of the landfill body. The current appearance of the 

landfill is shown in Figure 3. 

 

 

Figure 3. View from the sky of the Słabomierz-Krzyżówka 

landfill with the study area (marked in red). 

The study was carried out on one of the slopes of the landfill, 

which was exposed to negative external influences and was a 

representative part of the entire landfill. The study area is 

marked in red on Figure 3. 

 Methodology 

The monitoring of the study area presented in this article was 

conducted over a one-year period from March 2023 to March 

2024. The representative area of the slope selected in the study 

covers an area of approximately 2000 m2. Due to the vegetation 

on the landfill, the measurements were carried out in early 

spring to minimize the influence of the vegetation on the 

measurement results as much as possible. The survey adopted 

two approaches: the TLS and ALS-UAV methods. The TLS 

measurements used a Leica RTC360 scanner, and the ALS-

UAV measurements used a LiAir S50 scanner with a Matrice 

M600 UAV. The LiAir S50 LiDAR system mounted on the 

platform consists of a scanner, Velodyne’s VLP-16, and a Sony 

A6000 RGB camera. The specification of the instruments used 

is shown in Figure 4. 

 

Figure 4. Overview of the research measurements. 

The measurements were related to reference grid points 

outside the object's influence area. The resulting point clouds 

from both methods were oriented in the same coordinate 

system. Reference matrix coordinates were determined in the 

PL-2000 coordinate system and PL-EVRF2007-NH height 

system. For the absolute georeferencing, the TLS scanner 

stations and reference targets were precisely tied to these 

external reference points, established through GNSS RTK and 

angular-linear measurements. The angle-linear network was 

then aligned using the least squares method. This allowed the 

TLS data to be transformed into a unified, absolute coordinate 

system compatible with the ALS-UAV data. For the ALS-UAV 

method, absolute georeferencing was achieved by integrating 

D-RTK GNSS corrections with onboard IMU data, UAV 

positioning sensors during the flight, and reference targets, 

ensuring precise alignment of the point cloud within the same 

coordinate system as the TLS data. Two measurement series 

were carried out (March 2023 and March 2024). A flowchart of 

the research methodology is shown in Figure 5. The research in 

flowchart consists of 4 stages: a preliminary study, fieldwork, 

data processing, and data analysis and results. 
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Figure 5. Flowchart of research methodology. 

The TLS method first required planning the positions of the 

scanner stations and reference points (targets on tripods), which 

were referenced to the reference points (Preliminary study). 

The positions were planned so that the mutual coverage of 

scans from successive scanner positions was not less than 50%. 

It allowed the mutual orientation of the scans to be performed 

using the cloud-to-cloud (C2C) method. Additionally, 

overlapping stations were used to strengthen the “connections” 

between the scans. This strategy allowed mutual orientation of 

all sites even in the case of a weak “connection” - too few 

common points between scanner sites. The problem of mutual 

orientation of the scans is particularly relevant in the case of 

reclaimed landfills, which are overgrown with lush vegetation. 

Branches, leaves, and blades of grass moving in the wind can 

make it difficult to orient the scans using the C2C method. A 

solution to this problem may be the use of reference spheres. A 

diagram of the scanner positioning strategy is shown in Figure 

6. 

The Leica RTC360 scanner used in the survey has a 

dedicated Leica Cyclone FIELD 360 application, which allows 

a rough mutual orientation of the scans locally directly in the 

field. It enables the assessment of whether adjacent scans have 

the required percentage of mutual coverage and whether there 

is a need for additional stations. The scans were acquired at a 

resolution of 3 mm at 10 meters. A total of nine scans were 

acquired (Field work). 

 

Figure 6. Scheme of measurements by a) TLS and b) ALS – 

UAV method.  

Orientation of the scans was performed using the dedicated 

Leica Cyclone REGISTER 360 PLUS software (Data 

processing). The resulting point clouds were de-noised (SOR 

Filter) and filtered from vegetation (CSF Filter) in Cloud 

Compare v.2.13.2 [18]. The parameters of the applied filtering 

were selected empirically (Data analysis and results). The 

average density of the resulting point cloud was approximately 

10,000 pts/m2. 

 (18).  

The ALS-UAV method first required planning a flight path 

(Preliminary study). The flight was performed in two 

transversely oriented directions (Fig. 6) at an altitude of 50 m. 

The distance between each flight path was 20 m. During the 

flight, a D-RTK reference station was used for data reference 

(Fig. 4). The field-acquired data (Field work) was processed in 

the dedicated Green Valley LiDAR360 software. The geo-

reference of the resulting point cloud was given based on the 

data from the D-RTK station and the antenna and IMU on board 

the UAV. As with the TLS data, the resulting point clouds were 

de-noised and filtered from vegetation in Cloud Compare. The 

average density of the resulting point cloud was approximately 

250 pts/m2.  

3 RESULTS 

Based on the obtained point clouds, a differential point cloud 

was calculated in the Cloud Compare program, representing the 

deformation of the slope over the annual period for the TLS 

method (Fig. 7a) and ALS-UAV (Fig. 7b). Differential point 

cloud was calculated using the Multiscale Model to Model 

Cloud Comparison (M3C2) algorithm [19,20]. The M3C2 

algorithm determines the distance along a local normal vector, 

estimated from each point's neighborhood. The method 

considers the surface's local orientation in the distance 

calculation process. The general principle of the algorithm is 

based on developing search cylinders along normal vectors to 

locally average the changes between two point clouds. The 

parameters in the M3C2 algorithm used were chosen 

empirically. The best results were obtained with a cylinder size 

of 25 cm, which was used in the study [19]. 
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Figure 7. Differential point cloud showing vertical slope 

displacements from a) TLS and b) ALS-UAV. 

Figure 7 shows deformations occurring between March 2023 

and March 2024. Figure 7a shows the TLS measurement 

results, while Figure 7b shows the ALS-UAV measurement 

results. The blue color shows subsidence, while the red color 

shows uplift. The absence of changes is marked in white, as 

indicated in the legend. The range of these values is between -

35 and 35 cm. Similar results can be seen in both figures. The 

most significant subsidence can be seen in the upper and middle 

parts of the slope, while uplift is noticeable in the lower part of 

the slope. The values of these changes are approximately -20 

cm for the upper part of the slope, approximately -10 cm for the 

middle part of the slope, and 10 cm for the lower part. This is 

an expected result and is related to the plastic deformation of 

the slope caused by the dead weight of the soil and the 

compaction of waste embedded in the body of the landfill. A 

diagram of this phenomenon is better shown in Figure 8. 

 

Figure 8. Diagram of the landfill slope deformation process 

over time. 

Figure 8 shows the process of slope deformation over time. 

Settlement is noticeable in the upper part of the slope, while the 

slope in the lower part is uplifted by compression of the soil 

mass. Sometimes, uplift at the foot of the slope may also be 

caused by the so-called apparent uplift - surface water run-off 

and deposition of washed-out soil at the foot of the slope. Such 

a phenomenon can also be observed in Figure 7. At the foot of 

the slope, between the technical road and the slope, the dark 

blue longitudinal stripes are a remnant of washed-out soil, 

which the landfill workers removed as part of maintenance 

works. The values in this area are approximately -10 cm. 

In Figure 7, characteristic features appearing in the two data 

sets are marked with red references to compare the results. The 

average difference between the selected points is 

approximately 3 cm. A differential point cloud was created to 

compare the two results better, showing the differences 

between the displacement results of the two methods, TLS and 

ALS-UAV (Fig. 8). 

 
Figure 8. Differential point cloud of displacements from TLS 

and ALS-UAV (differences of vertical displacements) (a) and 

histogram of a differential point cloud of displacements (b). 

 

Figure 8 shows the difference between the results of the TLS 

and ALS-UAV methods (Fig. 8a) and a histogram of the 

distribution of score values (Fig. 8b). The red and blue colors 

show significant differences in the results. In contrast, the green 

color indicates no differences in areas with low or zero values. 

These values range from -10 to 10 cm. Fig. 8 predominantly 

shows green points - close to the zero value. This means that 

the results of both methods were very similar. Possible 

differences are due to the accuracy of the two measurement 

methods, the different roughness of the point cloud, the 

different densities, orientation errors, and the effectiveness of 

the vegetation filtering. It can be assumed that the TLS method 

is more accurate than the ALS-UAV method and could be the 

reference method in the study. However, the TLS method in the 

application presented here has one key disadvantage - the 

unfavorable slope scanning angle. The laser scanner beam hits 

the slope at a vast angle, both in positions below and above the 

slope, preventing effective vegetation penetration. In contrast 

to the TLS method, in the ALS-UAV method, the laser beam 
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strikes almost perpendicular to the scanned area, allowing 

better vegetation penetration and ground scanning. The most 

significant differences between the two methods are 

particularly evident in the central part of the slope, where the 

ground scanner beam does not reach the ground but only scans 

the grassroots. This situation can lead to errors in interpreting 

phenomena occurring in the landfill regarding slope 

deformation processes. 

The histogram in Figure 8b shows the statistical distribution 

of the differences between the TLS and ALS-UAV methods. 

The distribution has the character of a normal distribution, with 

a mean of 0.00 m, showing that there is no systematic shift 

between the methods. The standard deviation is 0.04 m, which 

means that most of the differences are within ±4 cm, 

confirming both measurement methods' high consistency and 

precision. 

4 DISCUSSION AND CONCLUSIONS  

This paper presents a case study of the Słabomierz-Krzyżówka 

landfill located in Poland and the results of annual 

measurements of one of the slopes of the landfill exposed to 

damaging factors causing its deformation, such as the influence 

of soil gravity, waste compaction, and surface water run-off. 

Two measurement methods were adopted in the study: TLS and 

ALS-UAV. 

The results showed that both methods can be effectively used 

for periodic monitoring of the landfill surface. Similar results 

were obtained for both methods, demonstrating their 

effectiveness. Possible differences may be caused by:  

• different accuracy of the measurement methods,  

• different roughness of the point cloud,  

• different density,  

• different observation geometry,  

• orientation errors,  

• or the effectiveness of vegetation filtration. 

The TLS method should be assumed to be more accurate than 

the ALS-UAV method, assuming a suitable measurement 

methodology. Nevertheless, each method has its advantages 

and disadvantages. In the case of the TLS method, it was 

possible to measure with high accuracy and resolution. The 

disadvantage, however, is the scanner's position, which, in the 

case of slope scanning, creates an unfavorably wide scanning 

angle and makes it impossible to scan the ground in the case of 

high vegetation. The partial solution to this problem can be 

telescopic tripods, which allow the scanner position to be raised 

several meters. Changing the scanner's height to a higher one 

may allow scanning the slope at a better angle but will not solve 

the problem completely. Another disadvantage is the time-

consuming nature of the measurements. In paper [13] the 

authors compare the acquisition time and processing time of 

TLS and ALS-UAV measurements. The results show that 

scanning reclaimed landfills, by the TLS method, is 5 times 

more time-consuming than by the ALS-UAV method. In the 

case of large objects, it is necessary to set up additional control 

points to establish the measurements and maintain adequate 

accuracy of the results. The overabundance of measurement 

data can also be a problem. The scanner records two million 

points per second, which, in the case of measurements at the 

landfill, translated into the acquisition of approximately 70 

million points per measurement site (when using the highest 

resolution mode). In the case of the ALS-UAV method, an 

advantage is the ability to scan a large area of land, which is 

particularly useful in landfill measurements characterized by a 

large surface area (up to several tens of hectares). Another 

advantage is better vegetation penetration and the laser 

scanner's beam reaching the ground because of almost 

perpendicular laser beam to the scanned ground. However, the 

disadvantage of the ALS-UAV method is its lower accuracy 

than the TLS method. Measurement solutions of this type offer 

measurement accuracy similar to that of the GPS RTK method. 

One should also know that using UAVs in air traffic requires 

appropriate authorizations and competencies. Using this 

technology is impossible everywhere and under all conditions 

(direct vicinity of airports, detention centers, and military 

units). 

An important aspect to consider when selecting a 

measurement method is cost-effectiveness, especially if both 

methods meet the required accuracy criteria. TLS, while 

offering higher accuracy, typically incurs higher operational 

costs due to longer measurement times and the need for 

specialized equipment and personnel. Conversely, the ALS-

UAV method can rapidly cover larger areas, potentially 

lowering labor and time expenses. However, initial investment 

in UAV equipment and obtaining necessary flight 

authorizations can be significant. Compared to traditional 

surveying methods, both TLS and ALS-UAV provide 

improved efficiency and richer data, but the overall cost-

effectiveness depends mainly on the specific project scale and 

requirements. Including an economic evaluation alongside 

technical factors offers a more comprehensive basis for 

choosing the optimal measurement approach. 

The LiDAR monitoring applied allowed for a comprehensive 

assessment of slope deformation on an annual basis. 

Comparison of the data between the two measurement series 

made it possible to identify the general trends of the landfill 

slope settlement and the local deformations caused by external 

phenomena, such as surface erosion caused by rainwater. 

The use of LiDAR technology - in both the TLS and ALS-

UAV methods - significantly increased the efficiency of the 

measurements compared to the traditional point method. 

Thanks to the obtained point clouds, it was possible to detect 

displacements, visualize them spatially, and analyze the 

direction and intensity of deformation. The ALS-UAV method 

allowed a larger area to be measured quickly and 

comprehensively, while TLS provided data with a higher local 

resolution. 

Periodic monitoring using LiDAR can be critical in the 

decision-making and design process. The ALS-UAV method 

allows data collection over a large area in a short time with high 

spatial and temporal resolution. It is also a non-invasive 

method. The person carrying out the measurement is not 

exposed to direct contact with factors negatively affecting 

human health, such as biogases or leachates. On the other hand, 

the TLS method provides high-accuracy data, allowing 

detection of even the smallest damage. The best way to monitor 

reclaimed landfills will be to integrate both methods and use 

each method's advantages. TLS data can also be a source for 

referencing or validating ALS-UAV data to improve accuracy. 
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ABSTRACT: Structural Monitoring (SM) is crucial in civil engineering for ensuring the safety, functionality, and longevity of 

civil infrastructure, especially bridges. As its importance grows, SM practices are guided mainly by national standards, leading to 

fragmented approaches and limited global integration. This paper examines SM guidelines, focusing on contributions from 

Germany, while exploring the broader international framework. 

In Germany, key guidelines such as the DGZfP Merkblatt B09 and others offer structured methods and practice examples for 

long-term monitoring and performance assessment. Internationally, countries have developed their own SM frameworks. Amongst 

others, Austria’s RVS Richtlinie 13.03.01, France’s COFREND Livre Blanc, Canada’s ISIS Guidelines, the ACI Report 444.2-

21 from the USA, the TRB Circular E-C246 and the CIRIA Guideline from the UK contribute to a global understanding of SM. 

These guidelines address common technical, theoretical, and economic challenges across regions. 

This paper highlights the need for international collaboration, identifying synergies and gaps to promote a unified approach to 

SM. It offers insights into global standards and how successful strategies can foster innovation and cohesion in SM practices 

worldwide. 

KEY WORDS: Structural Monitoring, International Guidelines. 

This paper adopts the term structural monitoring (SM) instead 

of the more commonly used structural health monitoring 

(SHM), following the definition provided in the Transportation 

Research Circular E-C246 [1]. While SHM is widely 

recognized, its interpretation varies across disciplines, leading 

to ambiguity, particularly regarding the meaning of "health" in 

an engineering context. By contrast, SM explicitly refers to the 

automated, technology-driven collection of structural data over 

time to objectively assess performance, without implying a 

predefined goal such as "health", thereby broadening its 

applicability. Adopting this terminology helps ensure clarity 

and consistency, emphasizing the role of continuous, 

instrumented monitoring as a valuable complement to 

conventional structural assessment methods. 

1 THE IMPORTANCE OF STRUCTURAL 

MONITORING IN MODERN INFRASTRUCTURE 

GUIDELINES 

The increasing complexity and age of infrastructure necessitate 

advanced monitoring techniques to detect and address potential 

issues proactively. SM is a critical practice for ensuring the 

safety, functionality, and longevity of civil infrastructure, 

particularly bridges. By continuously assessing structural 

conditions, SM enables the early detection of potential issues, 

allowing for timely maintenance and preventing failures. This 

proactive approach not only enhances public safety but also 

contributes to the sustainable development of infrastructure by 

extending its service life. 

The evolution of SM has been marked by significant 

advancements in sensor technology, data acquisition systems, 

and analytical methods. Modern SM systems employ a variety 

of sensors to monitor parameters such as strain, vibration, and 

temperature, providing comprehensive insights into structural 

performance. The integration of artificial intelligence and 

machine learning algorithms further enhances the ability to 

interpret complex data, facilitating automated damage 

detection and assessment.  

Despite technological advancements, the implementation of 

SM is often shaped by national standards, resulting in 

fragmented methodologies and limited global integration. 

While Germany, for example, has developed comprehensive 

guidelines like the DGZfP Merkblatt B09 (2022) to standardize 

monitoring practices, similar guidelines exist in other countries, 

with many offering largely the same content. This suggests that 

the diversity in approaches is unnecessary. However, factors 

such as local or strategic interests, language barriers, lack of 

networking, economic considerations, varying financial 

framework conditions (such as budget constraints, funding 

availability, and investment priorities), the local acceptance of 

structural monitoring, and some isolated differences in 

scientific perspectives, though less prominent in practical 

implementation, continue to prevent a unified, global approach 

to SM. Additionally, the differing levels of acceptance of 

relatively new and unestablished methods in civil engineering, 

such as Structural Monitoring, remain a decisive factor, as 

some regions embrace innovative techniques while others 

remain hesitant to adopt them. 

To address these challenges, there is a need for increased 

international collaboration and the development of 

standardized SM protocols. By harmonizing guidelines and 

sharing best practices, the global engineering community can 

enhance the effectiveness of SHM systems, leading to more 

resilient and sustainable infrastructure worldwide. 
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2 SM GUIDELINES IN GERMANY 

In Germany, the significance of SM has been recognized 

through the development of a robust monitoring framework 

through a series of comprehensive guidelines, particularly for 

bridges and other civil engineering structures and aimed at 

standardizing monitoring practices. Together, these guidelines 

emphasize a data-driven approach for maintaining usability and 

availability of infrastructure and generally the preservation of 

structures. 

These guidelines collectively contribute to a structured 

approach in SM within Germany, promoting uniformity in 

monitoring practices. The development of such guidelines is 

crucial, as it offers building owners and operators a framework 

for implementing effective monitoring systems, thereby 

enhancing decision-making processes related to construction 

and maintenance. By establishing clear protocols and 

methodologies, the guidelines aim to reduce fragmentation in 

monitoring approaches and promote a unified strategy for 

ensuring structural integrity. 

 DGZfP Merkblatt 

Notably, the German Society for Non-Destructive Testing 

(DGZfP) has been instrumental in this endeavor. The 

publication of the DGZfP Merkblatt B 09 “Dauerüberwachung 

von Ingenieurbauwerken” [2] provided a cornerstone resource 

for owners, operators, and planners, detailing established 

methods for long-term monitoring and performance evaluation 

of civil engineering structures with a particular focus on 

concrete and prestressed concrete bridges. The document 

provides a practical guideline to help stakeholders implement 

effective monitoring solutions while considering the unique 

conditions of each structure. It delivers the necessary 

knowledge for the optimal design, installation, and operation of 

monitoring systems. 

The guideline offers an overview of suitable technical 

systems and sensors designed for long-term structural 

monitoring. It differentiates SM from temporary inspection, 

emphasizing that monitoring does not replace regular structural 

inspections but serves as a crucial supplement by providing 

real-time condition assessments and detection of time-varying 

parameters. 

A key focus of the document is the conceptual design of 

monitoring systems, from preliminary investigations, the 

definition of measured variables, the decision for or against a 

monitoring system, basic considerations for safety-relevant 

monitoring systems, the selection of suitable sensors, definition 

of measuring points, sensor connection/signal transmission, 

power supply, control, data verification, data storage, 

evaluation and alarming to the external communication 

connection and control of actuators. 

It outlines the specific questions that monitoring can help 

answer. Unlike most other documents, which primarily 

describe existing sensor technologies and leave it to the reader 

to determine their applicability to a given monitoring task or 

rather generally to a question that may be answered with the 

help of SM, this guideline approaches monitoring from the end 

user’s perspective, making it more accessible. The addressed 

monitoring tasks range from geometric aspects (strains, 

displacements, deflections, inclinations) to crack monitoring, 

force and strain measurements, vibration and shock monitoring, 

material moisture, corrosion, prestressing wire breakage 

detection and the influencing factors of temperature, humidity, 

traffic loads, etc., which must always be taken into account. 

Additionally, the leaflet emphasizes data management, 

ensuring that collected information is effectively processed and 

utilized. Like many other referenced documents, it also 

provides detailed examples of real-world implementations. [3], 

[4] 

 DBV Merkblatt 

A different focus is set in the DBV Merkblatt “Brücken-

monitoring” [5]. Issued by the German Society for Concrete 

and Construction Technology (DBV), the guideline addresses 

the monitoring of bridge structures, although it is also 

applicable to other engineering structures and buildings. It 

details the services that need to be tendered when implementing 

a structural monitoring system and highlights the economic 

considerations involved in such measures. It is less technical 

than the DGZfP guideline and aims specifically at 

administrations and engineering offices responsible for 

preparing tenders, helping them assess whether structural 

monitoring is a cost-effective option for their specific projects. 

The guideline defines relevant actors and comprehensively 

structures the monitoring process in different phases, beginning 

with defining the monitoring task, followed by the development 

of a qualified monitoring concept, implementation planning, 

installation and operation, data processing, data analysis and 

concluding with the evaluation of monitoring results. The 

structured process is supplemented by considerations on quality 

assurance and information on tendering. 

As structural monitoring is not yet a standardized service in 

civil engineering, the guideline also provides insights into the 

economic viability of monitoring measures, helping 

stakeholders evaluate the financial feasibility of these activities 

in relation to the benefits they bring. 

 DIN 1076 

In the context of this compilation, the new DIN 1076 [6] is the 

most authoritative document in terms of recognition, 

dissemination, acceptance and legal validity. However, as a 

general standardization document, it takes a more global 

approach and does not provide detailed guidance on planning, 

tendering, or implementation of monitoring systems. The 

standard explicitly permits the use of monitoring systems under 

specific conditions and for certain purposes, recognizing their 

value in preventive structural preservation. 

DIN 1076 highlights two key applications for monitoring in 

the context of the standard: supplementing regular structural 

inspections and addressing special situations, such as the end 

of a structure’s service life or ensuring structural and traffic 

safety. It mandates that monitoring data must provide clear 

condition assessments that can be incorporated into overall 

structural evaluations. In safety-critical applications, the 

standard requires defining warning or threshold values along 

with clear instructions for responsible personnel. 

Each monitoring application must follow a detailed, 

structure-specific assessment program covering the entire 

process (based on the DBV Merkblatt). The selected 

measurement methods must reliably detect the type, extent, and 

progression of damage or defects. 
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Overall, the standard takes a very conservative and selective 

approach to monitoring, limiting its scope to structural testing 

under DIN 1076. However, it leaves room for effective and 

beneficial use of monitoring in other defined applications. 

In summary, DIN 1076 is very conservative and exclusive 

with regard to monitoring. Yet, it does not mandate the use of 

monitoring but defines specific applications where monitoring 

can be considered "in accordance with DIN 1076". However, 

the scope and reasons for using SM extend far beyond these 

applications, which are not covered by the standard but still 

remain valid and necessary. This flexibility allows for other 

approaches to use monitoring sensibly, effectively and 

profitably, which are defined in other documents within this 

compilation. 

 BASt Leitfaden 

The recent BASt “Leitfaden Strategischer Einsatz von 

Monitoring für Ingenieurbauwerke” [7] offers strategic 

recommendations for the use of monitoring in engineering 

structures. It summarizes the state of the art, limits and 

potentials for monitoring in Germany, taking particular account 

of the three documents [2], [5] and [6]. In addition, it explicitly 

addresses why the possibilities of monitoring have not yet been 

used to the extent that they could be and how acceptance could 

be improved. 

Data management considerations form a large part of the 

guideline, as the sustainable storage of monitoring data, easy 

accessibility and systematic evaluation are central to effective 

monitoring projects. 

 BASt Erfahrungssammlung 

The complementary BASt “Erfahrungssammlung Monitoring 

für Brückenbauwerke” [8], compiled by the Federal Highway 

Research Institute (BASt), provides a comprehensive 

collection of practical experiences in bridge monitoring, 

complementing previous documents. It offers insights into the 

application, capabilities, and limitations of monitoring systems. 

In its general section, the document outlines the state-of-the-

art in bridge monitoring, reflecting the contents of the DGZfP 

and DBV Merkblatt. It follows a similar structure to the DGZfP 

Merkblatt, addressing key aspects from an end-user 

perspective, such as deformation, inclination, temperature, and 

crack monitoring, among others. It explains how different 

measurement techniques align with monitoring objectives and 

discusses their reliability, limitations, and quality assurance. 

The second part presents real-world examples, detailing the 

reasons for monitoring, the methods used, and key findings. 

3 INTERNATIONAL SM FRAMEWORKS 

SM practices have evolved worldwide to address regional 

infra-structure challenges and priorities. Despite variations in 

methodologies, national guidelines share common goals of 

ensuring safety, reliability, and long-term functionality of civil 

structures. This section explores international SM frameworks, 

focusing on selected approaches adopted in countries such as 

Austria, France, the US, Canada, and the UK. 

 Austria 

Austria’s RVS guideline RVS 13.03.01 “Monitoring von 

Brücken und anderen Ingenieurbauwerken” [9] provides a 

structured framework for the monitoring of bridges and other 

civil engineering structures, reflecting the country's 

commitment to SM. Compared to other referenced documents, 

it is relatively concise, comprising 32 pages, with a structure 

comparable to the DGZfP Merkblatt. One notable feature of the 

guideline is its classification of monitoring into local vs. global 

and static vs. dynamic approaches, each accompanied by a brief 

summary outlining the objectives and applicable sensor 

technologies. While this classification provides a structured 

perspective, it remains open to debate whether it offers 

significant practical advantages in the retrievability of 

information. 

A novel aspect that distinguishes the RVS guideline from 

other standards is its Safety Management Plan (SMP), which 

defines action sequences, assigns responsibilities, and 

references pre-established warning and alarm thresholds. The 

guideline specifies the content of such a plan and introduces a 

process scheme incorporating a traffic light system (green, 

orange, red) to represent different alert levels, ranging from 

normal operation (green) to immediate intervention, such as 

bridge closure (red). 

Additionally, an annex provides an overview of various 

measurement instruments referenced in the guideline, briefly 

explaining their principles of operation. A second appendix 

explores the role of the Internet of Things (IoT) in structural 

monitoring, emphasizing its relevance for data acquisition and 

management in modern SHM systems. 

 France 

The COFREND “Le Livre Blanc du SHM” [10] has a different 

focus and approach than other referenced international SHM 

guidelines. Rather than detailing the technical implementation 

of monitoring systems, it addresses overarching challenges 

associated with SM, including scientific and technological 

hurdles, regulatory concerns, and intellectual property issues. 

This white paper is the result of discussions within 

COFREND’s SM branch to develop a national strategy for SM 

in France. The document outlines key aspects of the field, such 

as its historical background, market potential, and major 

scientific and industrial challenges. It highlights the growing 

demand for SM in sectors like civil engineering, aerospace, and 

industrial equipment, where aging infrastructure and safety 

concerns drive the need for continuous monitoring solutions. 

A central theme of the Livre Blanc is the necessity for 

structuring an SM industry in France. It emphasizes the need 

for standardized methodologies, interoperable systems, and 

regulatory frameworks to enable widespread adoption. 

Additionally, it discusses how digital technologies such as IoT, 

AI, and digital twins are transforming SM by enabling real-time 

monitoring and predictive maintenance. 

The document also examines international approaches, 

comparing France’s SM landscape with that of the US, 

Germany, and the UK. By advocating for a coordinated effort 

among stakeholders, the Livre Blanc aligns with the ambitions 

of the present paper, which aims to structure international 

efforts in SM. It reinforces the necessity of global 

collaboration, regulatory alignment, and knowledge exchange 

to drive innovation and ensure the reliability of SM systems 

worldwide. 
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 Italy 

The MIT guideline “Linee guida per la classificazione e 

gestione del rischio, la valutazione della sicurezza ed il 

monitoraggio dei ponti esistenti” [11], that has been 

continuously updated since its first publication, presents a 

discussion on the permanent and continuous monitoring of 

bridges, outlining the key principles, necessary technologies, 

and critical applications of SM systems. The chapter on 

monitoring is framed within a broader context of visual 

inspections, risk assessment, and safety evaluations, 

positioning SM as a complementary tool alongside routine 

inspections, load testing, and numerical degradation analysis. 

Rather than being an isolated process, continuous monitoring is 

presented as an integral component of a comprehensive 

strategy for bridge management, enhancing both preventive 

maintenance and decision-making processes. 

The document carries a strong authoritative tone by 

advocating for the mandatory use of SM in high-risk scenarios, 

particularly for aging or strategically important bridges. It 

emphasizes the importance of long-term surveillance, 

particularly for large, complex, or high-risk structures, and 

highlights the operational requirements for implementing 

effective monitoring strategies. 

The text underscores the necessity of carefully designing SM 

systems to ensure durability, accuracy, and maintainability. It 

addresses fundamental aspects such as sensor selection, 

network architecture, power supply, and data processing, with 

a strong emphasis on integrating SM data into a broader bridge 

management system. The document also details specific 

applications of SM, including structural, seismic, geotechnical, 

hydraulic, and landslide monitoring. For each of these, it 

describes the most suitable technologies and analytical 

methods, ranging from dynamic response measurements for 

structural assessments to advanced remote sensing techniques 

for landslide detection. 

A key argument is that continuous monitoring enables early 

detection of structural deterioration, environmental hazards, 

and other risk factors, facilitating data-driven maintenance and 

decision-making. The discussion particularly stresses the value 

of integrating SM with real-time communication networks and 

automated data analysis to provide accurate, actionable insights 

into bridge behavior over time. 

The UNI/TR 11634 guideline “Linee guida per il 

monitoraggio strutturale” [12], by reference of [13] and [14], 

establishes a structured approach to SM, emphasizing its role 

in supporting asset management decisions. It outlines the entire 

monitoring process, covering system design, implementation, 

and data analysis. The document provides criteria for 

developing SM systems and identifies appropriate 

methodologies for evaluating structural conditions based on 

different classes and types. 

An aspect of the guideline is its focus on data processing 

methods, which leverage both data-driven and model-based 

techniques to assess structural integrity. It also defines the 

essential components of an SM system, detailing the processes 

for detecting structural damage and material degradation. 

Furthermore, the report discusses best practices for system 

installation, maintenance, and data acquisition to ensure 

effective monitoring and long-term performance. 

 United States 

The ACI PRC-444.2-21 report "Structural Health Monitoring 

Technologies for Concrete Structures" [15] provides a 

comprehensive examination of structural monitoring (SM) 

technologies applicable to concrete structures. Building upon 

an in-depth discussion of relevant material properties and the 

unique characteristics of concrete, the report systematically 

explores available sensor types, their underlying physical 

principles, and the specific monitoring objectives they serve. 

Additionally, it outlines the necessary measurement equipment, 

deployment methodologies, and existing standards and codes 

of practice. 

The report adopts an academic approach, extensively 

referencing scientific literature, thus enabling readers to deepen 

their understanding of the subject matter. Rather than 

presenting information in a condensed form, the document 

offers a thorough insight into sensor technologies, categorizing 

them into three main types: structural response sensors, 

environmental condition and load sensors, and supporting 

technologies. 

Complementing this perspective, the Transportation 

Research Board's Circular E-C246 "Structural Monitoring" [1] 

provides a broader, application-oriented discussion of SM. 

Unlike the ACI report, which focuses on technical aspects, this 

document addresses the practical implementation of 

monitoring systems from the perspective of potential clients 

rather than monitoring specialists. It highlights synergies 

between SM and traditional visual inspections, discusses key 

considerations for deciding when monitoring is warranted, and 

outlines the expected benefits. 

The circular briefly introduces relevant sensor types based on 

their measured parameters, such as inclination, acoustic 

emission, and temperature. A notable aspect is the emphasis on 

a progressive diagnostic approach, wherein monitoring is 

continuously refined to determine whether more extensive data 

collection is necessary in a cost-effective manner. This process 

accounts for multiple factors, including preliminary 

information gathering, structural criticality, financial 

constraints, installation feasibility, durability, and data 

management. Moreover, the document distinguishes itself by 

addressing the financial return of SM investments, outlining 

strategies for evaluating cost-effectiveness in advance. A 

dedicated FAQ section further enhances its practical utility by 

succinctly answering common questions related to SM 

implementation. 

 Canada 

Canada’s ISIS “Guidelines for Structural Health Monitoring” 

[16] represents one of the foundational references on SM 

included in this compilation. As an early comprehensive 

guideline outside the academic context, it contextualizes 

modern SM within the broader framework of various testing 

methodologies used to assess the in-situ condition and 

performance of structures under different load scenarios and 

potential damage conditions. The document systematically 

categorizes these methodologies based on the frequency and 

duration of measurements, distinguishing between static field 

testing, dynamic field testing, periodic monitoring, and 

continuous monitoring, the latter of which is now commonly 

referred to as structural monitoring. 
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Each of these testing approaches is introduced in detail, 

outlining its specific objectives, practical implementation 

strategies, and the potential benefits it offers for structural 

assessment. Moreover, the guideline provides multiple real-

world case studies to illustrate the practical application and 

effectiveness of the described methods in diverse structural 

contexts. 

The appendices of the manual offer additional technical 

depth, including explanations of the operational principles of 

selected sensor technologies, an introduction to data acquisition 

systems, and an overview of various algorithms used for 

vibration-based damage detection. While the sections on sensor 

technology and data acquisition have become somewhat 

outdated due to significant technological advancements since 

the publication of the manual, they still serve as a valuable 

foundation for understanding fundamental principles. 

 United Kingdom 

The CIRIA guide “Structural Health Monitoring in Civil 

Engineering” [17] provides a comprehensive, low-level 

introduction to SM for various stakeholders, including 

infrastructure owners, operators, and engineers. The guide 

begins by defining SM and explaining its role in risk 

management for civil infrastructure. It highlights how SM can 

support intervention planning by providing valuable data to 

enhance safety, reduce costs, and extend the lifespan of assets. 

A key focus of the guide is distinguishing between traditional 

visual inspections, periodic manual assessments, and 

automated continuous monitoring, emphasizing the advantages 

of sensor-based SM. The document underscores the importance 

of data quality, modeling, and redundancy in effective 

monitoring systems, recognizing data as the "currency" of SM. 

The guide discusses the business and technological drivers 

behind SM adoption, outlining both proactive and reactive 

applications. It provides guidance on conceptual design and 

implementation, including sensor selection and system 

integration. A dedicated chapter addresses data management, 

storage, security, ownership, and analysis, ensuring the 

effective use of collected information. 

Procurement considerations, risk assessment, and 

specification requirements are also covered in detail, offering a 

structured approach for organizations planning to implement 

SM. Additionally, the guide presents real-world case studies 

that illustrate the practical applications of SM, detailing the 

sensors used, data acquisition strategies, and resulting insights. 

 China 

The accessibility of Chinese SM standards to the international 

community is often hindered by language barriers and 

differences in normative frameworks. Unlike widely adopted 

international standards, Chinese regulations and guidelines are 

primarily available in Mandarin, making it challenging for non-

Chinese researchers and practitioners to engage directly with 

them. However, it is possible to gain indirect insight into the 

scope of Chinese SM standards by referencing available review 

documents, such as [18] or [19]. 

The extent of standardization efforts in China is remarkable, 

with a vast array of documents addressing various aspects of 

SM at multiple regulatory levels. These include national 

standards, which apply nationwide, professional standards that 

govern specific industry sectors, as well as provincial and 

company-level regulations. An often-cited national standard in 

this context is the GB 50982 technical code [20], that is 

discussed in detail in [21]. 

Instead of detailing the full list of normative documents 

available in China in a reproduction of the aforementioned 

articles, it is noteworthy to highlight the early adoption and 

impressive breadth of topics already addressed within their SM 

standards. These standards begin with foundational aspects, 

including the definition of basic terms and concepts, and extend 

to more specific areas such as SM design standards, operational 

maintenance, and management practices for SM systems. 

Additionally, there are guidelines governing the construction 

and acceptance of SM systems, as well as those focused on 

massive data processing for SM applications. Notably, China's 

SM standards also include regulations tailored to specific 

infrastructure types, such as bridges, with comprehensive 

technical codes and specifications. These bridge-related 

standards cover critical aspects such as fiber optic monitoring 

systems, concrete bridge monitoring, threshold levels for 

intervention, and the selection and placement of sensors. 

The breadth and depth of this standardization effort suggest 

a strong institutional commitment to SM, reflecting the 

country’s large-scale infrastructure development and emphasis 

on long-term structural safety and reliability. 

 Others 

One relevant document outside national application, of a very 

general nature, is the FIB Bulletin 109 [22]. One of the chapters 

is devoted to certain aspects of structural monitoring, in the 

wider context of structural condition survey (in particular NDT 

and load testing), condition assessment and sensor placement. 

Other specific national standards or guidelines for SM in civil 

engineering are not prominently documented in the available 

literature. While [23] references a withdrawn Russian standard 

[24], comprehensive national frameworks remain scarce. Some 

ISO standards address related aspects, such as vibration 

monitoring, but do not specifically focus on structural 

monitoring as a whole. Instead, much of the existing knowledge 

is found in scientific literature and technical reports. Notable 

examples of research results include, amongst others, and 

without assessing their value above others without further 

review, the SAMCO report [25], the Sustainable Bridges 

Report [26], the SMooHS Report [27], or the recent IM-SAFE 

Reports [28], which provide valuable insights into monitoring 

methodologies, system design, and long-term structural 

assessment. However, these documents primarily originate 

from research initiatives rather than regulatory bodies, 

highlighting the ongoing need for standardized international 

guidelines in structural monitoring. 

4 SYNERGIES AND CHALLENGES 

A shared objective in structural monitoring (SM) guidelines is 

to ensure the safety, reliability, and longevity of civil 

infrastructure. These guidelines reflect the diverse needs, 

priorities, and technical capabilities of different countries, 

addressing common challenges and promoting best practices 

globally. 

 Synergies 

Despite differences in local infrastructure conditions, economic 

constraints and environmental factors, there are surprisingly no 
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significant differences, only variations in focus, in 

methodologies, performance metrics and monitoring 

technologies. One reason for this may be that the technical 

challenges are comparable, which ultimately leads to similar 

guidelines. This basic agreement helps efforts to develop a 

unified approach. Therefore, a list of key aspects can be 

extracted from the different guidelines, which are relevant to be 

taken into account in a common effort for a harmonized 

monitoring strategy. 

• Definition of terms and notations: While terminology is 

often similar across guidelines, differences exist. For 

example, the distinction between SM and structural health 

monitoring (SHM) varies. A clear definition of terms is 

crucial to ensure consistency and avoid ambiguity in 

communication and implementation. 

• Promoting the benefits of SM: Guidelines highlight 

achievable goals, such as enhanced safety and risk 

reduction, while also acknowledging scientific 

technological challenges, i.e., what can not be achieved by 

employing SM. They emphasize early detection and 

prevention of structural degradation through continuous 

monitoring, proactive measures to mitigate risks, and data-

driven strategies for assessing infrastructure health and 

performance. 

• SM in civil engineering and other industries: Structural 

monitoring in civil engineering is placed in the broader 

context of its application in other industries, such as 

aeronautics, space, mechanical engineering, energy, and 

automotive sectors. These comparisons provide insights 

into cross-sector best practices and technological 

advancements. 

• Locally governing codes, standards, and practices: SM 

guidelines must align with national and international 

regulatory frameworks, integrating with existing structural 

assessment methods such as visual inspections, load tests, 

and non-destructive testing. They also play a role in 

maintenance planning and intervention strategies. 

• Criticality and asset value considerations: The relevance of 

SM depends on factors such as a structure's criticality, 

asset value, and degradation state. Guidelines help 

prioritize monitoring efforts based on risk assessment and 

long-term economic benefits. 

• Monitoring-relevant characteristics of structures and 

materials: Guidelines address the unique monitoring needs 

of different structures and materials, considering their 

physical properties, environmental influences, and long-

term durability. The focus is often on bridges, especially 

those of reinforced and prestressed concrete, most likely 

because a large proportion of the monitoring systems 

installed to date have been applied to such structures, and 

therefore a wealth of experience is available and the need 

for regulation is particularly great. 

• Preliminary research and assessment: Prior investigations 

are necessary to determine monitoring scope, relevant 

parameters, priority structures, and measurement 

locations. NDT techniques play a crucial role in identifying 

potential vulnerabilities and optimizing monitoring 

strategies. Based on these investigations, numerical 

models and simulations play an essential role in the further 

planning of monitoring systems for complex structures, 

broadly defined problems and unclear structural 

behaviour, in order to be able to estimate the sensitivity of 

SM systems with regard to the desired objectives. 

• Cost-benefit analysis of SM implementation: Guidelines 

provide methodologies for estimating financial benefits, 

considering cost-effectiveness and the value chain. 

Decision-makers can evaluate whether implementing SM 

is justified for specific projects. 

• Monitoring process and stakeholder responsibilities: 

Information is provided on the entire monitoring process, 

including relevant stakeholders, their responsibilities, the 

division of tasks, and the coordination required to ensure 

effective decision-making. 

• Procurement and tendering processes: Guidelines outline 

necessary specifications for tendering SM systems to 

ensure meaningful, comparable, and complete bids. They 

also address procurement considerations from a technical 

and administrative perspective. 

• Conceptual design of SM systems: Developing an 

effective SM system requires extensive considerations, 

ensuring alignment with project requirements and 

stakeholder expectations. Guidelines offer insights into 

designing target-oriented systems tailored to specific 

infrastructure needs. 

• Technical information on sensors and applications: 

Guidelines detail available sensor technologies, their 

capabilities, and the types of structural insights they 

provide. This includes both resistance- and load-related 

monitoring for comprehensive assessment. There are 

generally two different approaches: the (technical) 

contractor's view – what sensors are available and what can 

be achieved with them, and the (administrative) client's 

view – what tasks can be accomplished and what sensors 

are available to do so. 

• Supporting technologies: Integration of local and global 

data transmission, communication systems, and energy 

supply and harvesting technologies plays a crucial role in 

ensuring effective SM system functionality. 

• Practical implementation considerations: Guidelines 

address real-world challenges in SM deployment, 

including installation, maintenance, exchangeability, 

expandability, remote access and operational reliability, 

ensuring that systems function as intended over time. 

• Ensuring data quality and management: Strategies for 

maintaining consistent data quality, handling short- and 

long-term storage, and ensuring accessibility and 

visualization are essential components of SM guidelines. 

• Extracting meaningful insights for decision-making: 

Automated data analysis methods, i.e. how to 

(automatically) extract relevant knowledge about the 

monitored structure at the relevant time (preferably in real 

time) from the data for decision making, often referred to 

as “intelligence” in this context, i.e. feature extraction 

instead of mere data collection. This enables the detection, 

characterization, prognosis and risk assessment of 

degradation and damage and thus proactive maintenance. 

Some recent guidelines include artificial intelligence as a 

keyword. 

• Alarm processes and safety considerations: Guidelines 

provide ways of establishing alarm chains, escalation 
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procedures and personnel responsibilities to ensure an 

effective response to critical structural conditions, 

particularly in safety-related applications. They provide 

information on the special features of safety-related 

monitoring systems, in which considerations such as 

availability, redundancy, verifiability, etc. play an 

extremely important role compared to other monitoring 

systems. 

• Integration with broader digital systems: SM results can 

seamlessly integrate with building information modeling 

(BIM), digital twins, risk management systems, and 

structural databases to enhance decision-making and 

lifecycle management. 

• Qualification of monitoring personnel: Training and 

certification requirements for personnel involved in SM 

are essential to maintain high-quality data collection, 

interpretation, and response measures. It should be noted 

that there are hardly any standardized qualification paths 

that can be queried or specified. 

• Best practices and case studies: Guidelines often include a 

compilation of real-world monitoring projects, that 

showcase successful implementations and lessons learned 

to guide future applications in diverse environments. The 

technical and scientific depth of planning, execution, data 

analysis and results achieved in the examples vary widely. 

Harmonization of regulatory practices requires a balance 

between regional needs and global best practice, while ensuring 

that local priorities are not undermined. Encouraging 

international collaboration and knowledge sharing can help 

create adaptable, yet standardized, SM guidelines that meet 

different infrastructure requirements. 

 Challenges 

The integration of SM practices on a global scale faces 

numerous challenges. While SM has proven effective in 

improving infrastructure safety, functionality, and longevity, 

achieving a cohesive international framework requires 

overcoming these obstacles through harmonization, 

technological accessibility, and policy alignment. 

• Data Standardization and Interoperability: A major 

obstacle to global SM integration is the lack of 

standardized data formats and protocols. Different 

monitoring systems employ proprietary technologies, 

leading to inconsistencies in sensor calibration, data 

interpretation, and reporting formats. These discrepancies 

create challenges in comparing and integrating monitoring 

results. Establishing universal standards for data 

acquisition, processing, and analysis is essential for 

facilitating collaboration, ensuring data consistency, and 

improving the reliability of infrastructure assessments. 

Industry-wide cooperation and policy-driven initiatives 

can help create a unified data-sharing ecosystem. 

• Economic and resource constraints: Reservations about the 

long-term economic viability of monitoring systems play 

an important role, as the costs of designing, implementing 

and operating a monitoring system on a (presumably) 

intact structure must be weighed against the future, 

currently fictitious and elusive, savings of a preventive 

maintenance strategy using structural monitoring. 

Expenses related to implementing and maintaining SM 

systems is a significant barrier, particularly in regions with 

constrained infrastructure budgets. To mitigate these 

challenges, cost-effective solutions and scalable 

monitoring strategies must be developed. Encouraging 

public-private partnerships and leveraging emerging 

technologies such as energy-efficient sensors and cloud-

based data storage can also help improve affordability and 

accessibility. 

• Qualification of SM personnel: The effectiveness of SM 

depends on the expertise of personnel involved in data 

collection, analysis, and interpretation. However, specific 

training standards – if available at all – vary across regions, 

leading to inconsistencies in monitoring quality. 

Establishing global certification programs, standardized 

training curricula, and skill development initiatives can 

help ensure that SM personnel possess the necessary 

expertise to operate and maintain monitoring systems 

effectively. 

• Communication barriers: A fundamental and very essential 

hurdle are the communication challenges that hinder 

international cooperation in SM implementation. Even 

within Europe, the exchange of information on directives 

is limited because guidelines they are written in national 

languages and are not available in English. At the 

international level, language barriers make it much more 

difficult to exchange information, as it is often not even 

possible to search for specific national regulations because 

the necessary keywords are unknown in the relevant 

language. Although this challenge is lessened by the digital 

possibilities of translation, it remains, as availability is still 

limited to individuals. An effort to provide English 

translations of relevant documents would be desirable. 

However, multilingual resources are by far the better 

option, as English is not the "world language" for 

everyone. 

• Cultural barriers: The general openness to new 

technologies varies from region to region. The 

construction industry itself stands out as a particularly 

conservative industry, most likely because the financial 

investment values are very high and therefore the 

willingness to innovate is limited. Cultural differences and 

varying perspectives on risk management, maintenance 

priorities, and the perceived benefits of SM lead to 

inconsistencies in adoption and execution strategies. 

Differences in administrative procedures and 

organizational structures add to complexity. Effective 

collaboration requires fostering a culture of cooperation. 

• Intellectual property rights and industrial espionage 

concerns: Fears regarding intellectual property rights and 

industrial espionage pose challenges in international SM 

collaboration. Companies and institutions may be reluctant 

to share proprietary monitoring technologies or data due to 

concerns over competition and data misuse. Establishing 

clear legal frameworks and international agreements on IP 

protection, data ownership, and ethical data sharing can 

help alleviate these concerns while promoting cooperative 

advancements in SM technologies. 

• Data privacy and security concerns: Sharing sensitive 

infrastructure data across borders requires stringent 

cybersecurity measures and clear agreements on data 
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ownership and accessibility. Unauthorized access to 

monitoring data can pose security risks, including cyber 

threats and infrastructure vulnerabilities. Establishing 

robust rules for data protection, encryption technologies, 

and regulatory agreements is crucial for ensuring secure 

and ethical data exchange between stakeholders. 

• The importance of a well-developed SM concept: A 

properly developed SM strategy is crucial for ensuring that 

monitoring efforts align with infrastructure needs and 

long-term maintenance goals. Without a clear conceptual 

framework, SM implementations lack focus and 

efficiency, leading to reservations in the implementation in 

other projects and thus the widespread use of SM. 

• Availability of guidelines and standards: The accessibility 

of SM guidelines and standards significantly impacts their 

adoption and awareness. Documents that are not open-

access or are only available in print form limit their 

distribution. Promoting open-access policies and digital 

dissemination can improve the reach and influence of SM 

best practices, fostering wider implementation and 

international collaboration. 

Addressing these challenges calls for coordinated 

international efforts. By overcoming these barriers, the global 

engineering community can unlock the full potential of SM, 

ensuring safer, more resilient infrastructure for future 

generations. 

To address these gaps, increased international collaboration 

is essential. It is most viable to appreciate the efforts that have 

been made by others and then embrace and integrate them in a 

joint effort, at least referencing and appreciating best practice. 

Establishing common protocols, such as data exchange 

standards and unified terminology, can enhance the 

interoperability of SM systems. This alignment will not only 

improve the safety and performance of infrastructure but also 

pave the way for sustainable development and resilient 

infrastructure worldwide. 

5 CONCLUSION: TOWARDS A UNIFIED GLOBAL 

APPROACH TO SM 

The globalization of SM practices is essential for tackling 

shared challenges such as aging infrastructure, climate change, 

and rapid urbanization. While national guidelines serve as 

critical frameworks for monitoring and maintaining structures, 

international collaboration presents an opportunity to 

harmonize practices, facilitate knowledge exchange, and 

leverage technological advancements across borders. 

SM has become a fundamental tool in ensuring the safety, 

reliability, and longevity of civil infrastructure. However, as 

infrastructure systems grow increasingly complex and 

interconnected, a unified global approach to SM is more crucial 

than ever. By fostering cooperation and standardization, 

nations can maximize the potential of SM technologies, 

creating a safer, more resilient, and better-integrated global 

infrastructure network. 

Achieving global cohesion in SM requires a concerted effort 

to address existing disparities and align diverse methodologies. 

This endeavor can build upon the wealth of detailed and well-

established guidelines outlined in this paper. The missing piece 

is a comprehensive synthesis that bridges regional differences 

and integrates best practices into a cohesive framework, 

fostering interoperability and broader applicability. 

Looking ahead, the convergence of SM with emerging 

technologies holds immense potential for transforming 

infrastructure management and preservation. The adoption of 

digital twins, for instance, could enable real-time monitoring, 

predictive maintenance, and advanced scenario modeling. 

Additionally, advancements in machine learning and artificial 

intelligence promise to revolutionize data analysis, providing 

deeper insights into structural behavior and enhancing 

decision-making processes. 

As infrastructure networks become more complex and the 

demand for resilient systems continues to rise, SM will play an 

increasingly pivotal role in the global engineering landscape. 

The path forward lies in collaboration – sharing expertise, 

aligning methodologies, and driving innovation together. By 

embracing these principles, the global engineering community 

can solidify SM as a cornerstone of modern infrastructure 

management, ensuring a safer, more sustainable, and future-

proof built environment for all. 
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ABSTRACT: With the advancement of digitalization and related technological developments, Structural Health Monitoring 

(SHM) has become a useful and increasingly widespread tool to assist in the maintenance management of bridges and other 

engineering structures. The process of implementing monitoring requires expertise in many fields such as civil engineering, bridge 

operation and maintenance, monitoring technology, and data analysis. In recent years, monitoring has moved from method and 

technology development to standard practice. However, the implementation of monitoring as a standardized process can be an 

obstacle, especially for bridge operators, due to a lack of practical experience combined with the various expertise required. This 

can affect several areas, such as determining the cost-effectiveness of a monitoring measure, proper tendering and contracting, 

quality control, analysis and evaluation of measurement data, and last but not least, data management. In order to support the 

introduction of monitoring technologies into the practice of infrastructure operators, several guidelines have been developed in 

Germany in recent years by different interest groups, each with a different focus and essentially complementing each other. This 

paper aims to provide an overview of four different recently published guidelines and to highlight their strengths and advantages.  

KEY WORDS: Structural Health Monitoring; Guidelines. 

1 INTRODUCTION 

Germany's road and railway infrastructure faces several 

challenges, including a significant increase in traffic and a high 

average age of bridge structures. Bridge maintenance 

management is currently based on standardized inspections, 

which largely assess the condition of the structure visually and 

manually. At the same time, the development of procedures and 

technical requirements for Structural Health Monitoring 

(hereinafter referred to as "monitoring" for short) has by now 

progressed to the point where it is one of the most widely used 

tools for determining the structural condition of bridges and, if 

necessary, predicting developments. However, at present the 

use of monitoring is largely limited to event-related (reactive) 

actions while a great potential lies in the future support of 

predictive maintenance.  

Surveys conducted among federal and state road authorities 

found that the use of monitoring is limited to existing damage 

and deficiencies [1]. According to the survey, barriers include 

a lack of knowledge about the applications and benefits of 

monitoring, the procurement process of monitoring services as 

well as the handling of data storage.  

Due to the wide variety of construction methods and building 

materials, monitoring might vary greatly in its conception and 

implementation, depending on the specific object. 

Furthermore, there can be different approaches to the same 

objectives in terms of the parameters to be monitored, each with 

its own advantages and disadvantages. Therefore, there is no 

single approach that can be universally applied to the setup of 

monitoring systems for civil engineering structures. A recent 

challenge specific to Germany is that the current version of the 

German standard for bridge inspections DIN 1076 [2] does not 

include monitoring as part of the inspection process. This has 

led to a regulatory gap, as bridge authorities have not yet 

established a systematic monitoring process. This will change 

in the near future with the introduction of a current revision of 

DIN 1076. The next version will include monitoring as a 

standard inspection routine [3].  

The discrepancy between state-of-the-art monitoring 

methods and technology, on one hand, and the challenges 

associated with their implementation by bridge owners and 

operators, on the other, has become more apparent in recent 

years. One primary method to address this challenge is the 

implementation of guidelines that can provide direction and 

regulate the utilization of procedures to some extent. Several 

institutions have expressed a need for such guidelines, and they 

have taken steps to promote and facilitate their publication. 

The German Concrete and Construction Technology 

Association (Deutscher Beton- und Bautechnik-Verein e.V. 

DBV) played a pioneering role in developing and publishing 

the "DBV-Guideline Bridge Monitoring - Design, Tender, and 

Implementation" (DBV-Merkblatt Brückenmonitoring - 

Planung, Ausschreibung und Umsetzung) in 2018 [4]. The 

document meticulously delineates a range of monitoring 

applications and, most notably, methodically analyzes and 

structures the bridge monitoring process into multiple steps. 

Concurrently, the players involved in the process were assigned 

to the individual steps. Those involved in the practical 

application found this structuring to be very helpful. 

Additionally, the guideline briefly addressed tendering and 

economic considerations.  

As an extension of the support provided by guidelines, the 

German Society for Non-Destructive Testing (Deutsche 

Gesellschaft für Zerstörungsfreie Prüfung e.V. DGZfP) has 

published the "Guideline B09 Structural Monitoring" 

(Merkblatt B 09 Dauerüberwachung von Ingenieurbauwerken) 

[5]. The guideline is a comprehensive document that provides 
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a detailed overview of the conception of monitoring systems. It 

also includes a compilation of possible technical systems and 

sensors, depending on the specific tasks at hand. Additionally, 

aspects of data processing and data management are addressed. 

Operators of the structures are further supported by a 

compendium of best practice examples.  

Despite the existence of published guidelines, the practical 

application of monitoring specifically for road bridges did not 

gain widespread traction. In response, the German Federal 

Highway Research Institute (Bundesanstalt für Straßen- und 

Verkehrswesen BASt) initiated a research project in 2023. The 

objective of the project was to produce a brochure-type guide 

that would provide practical application instructions for 

monitoring road bridge structures. As a brochure cannot be 

expected to address every potential issue or question that may 

arise in the context of a monitoring application in great detail, 

the compendium-type final project report, "Guideline - 

Strategic application of monitoring for engineering structures" 

(Leitfaden – Strategischer Einsatz von Monitoring bei 

Brückenbauwerken), was pre-published in 2024 [6]. This report 

encompasses both technical aspects and addresses economic 

feasibility, tendering, and contracting of monitoring services. It 

includes a collection of typical monitoring applications on road 

bridges, organized by use cases, describing their common 

usage and benefits, supplemented by model examples. 

Currently, the monitoring system operator generally holds the 

measurement data, with no principal data transfer to the client. 

As monitoring applications become more widespread, 

standardizing procedures and establishing data management 

systems becomes crucial. The road administration is 

responsible for storing processed measurement data in a 

machine-readable format to enable future evaluations. The 

project developed foundations for designing suitable data 

management systems and explored how user agreements for 

data description and transfer can be incorporated into contracts. 

The final guideline in this series differs slightly from the 

previous guidelines. The primary focus of this guideline is the 

monitoring of prestressed wire breaks in prestressed concrete 

structures using the method of acoustic emission analysis, as 

opposed to the broader field of engineering structure 

monitoring. The DGZfP guideline "SE 05 - Detection of tendon 

wire breaks with acoustic emission" (Richtlinie SE 05 – 

Detektion von Spannstahlbrüchen mit Schallemissionsanalyse) 

aims to standardize the application of acoustic emission (AE) 

analysis for detecting prestressing wire breaks and to outline 

the method's capabilities and limitations [7]. It provides 

detailed instructions for planning, tendering, installation, 

operation, and evaluation of an AE monitoring system. The 

guideline also offers recommendations on technical and 

personnel requirements and quality standards to ensure a high-

quality information system. Its scope includes bridge and 

engineering structures with bonded prestressing wires, though 

the described methods could also apply to unbonded post-

tensioning systems. 

The contribution presents a compilation of the four different 

guidelines developed and published in recent years in 

Germany. These guidelines aim to structure and regulate the 

conception and implementation of monitoring applications to 

support the introduction of monitoring into the practice of 

managing bridge and other engineering structures. In addition 

to the guidelines presented here, several other documents have 

been published recently to assist those involved in the 

management of bridges and other engineering structures. For 

instance, these documents may include reports on a particular 

subject, such as corrosion monitoring of reinforced concrete 

structures [8], or documents that compile reports of applied 

monitoring activities in civil engineering, such as [9].  

2 DBV-GUIDELINE BRIDGE MONITORING 

The German Society for Concrete and Construction 

Technology (DBV) was the first to address the issue of 

harmonization approaches to planning and implementation of 

monitoring measures for engineering structures. In 2018, the 

DBV published the guideline "Bridge Monitoring - Design, 

Tender and Implementation" [4]. The guideline was developed 

by a consortium of bridge operators, monitoring providers, and 

representatives of the scientific community. This consortium 

was formed to consider the perspectives of all parties involved 

in the realization of monitoring projects. 

 Motivation and objectives 

The primary objectives behind developing this guideline were 

twofold: first, to catalog potential use cases of structural health 

monitoring throughout the life cycle of engineering structures, 

and second, to describe the monitoring process in detail, 

including all its phases, in conjunction with clearly defining 

responsibilities. The guideline was developed to serve as a 

practical resource for the planning and execution of monitoring 

activities. While the guideline is centered on bridge monitoring, 

its principles can be applied to a variety of engineering 

structures and buildings. 

 Content of the guideline 

The guideline underscores the importance of various 

monitoring applications across a structure's life cycle. 

However, the text also describes monitoring applications in the 

pre-construction, construction, and demolition phases. The list 

of use cases is not exhaustive, but it provides an overview of 

monitoring's potential. 

The implementation of bridge monitoring entails more than 

just installing sensors on a structure and recording the measured 

values. To successfully receive the requested structural 

information based on monitoring, it must be understood as a 

comprehensive process, from the definition of the task to the 

extraction of the qualified answer. The success of a monitoring 

project hinges on a structured process with clearly defined 

phases and service profiles for all involved parties. The 

guideline suggests a systematic monitoring process comprising 

the following six sequential phases: 

• Defining the monitoring objective and assessing its 

feasibility. 

• Developing a monitoring concept. 

• Detailed design of the monitoring system. 

• Implementation, including installation, operation, and data 

acquisition. 

• Data processing and evaluation. 

• Assessment, where results are interpreted using 

supplementary analyses. 

Stakeholders involved in monitoring projects have specific 

roles and responsibilities. While tasks are clearly assigned, 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-064 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 422 

depending on project size and complexity, a limited number of 

experts may fulfill multiple roles. In complex projects, there 

may be a need for different specialists, particularly when 

advanced measurement techniques are required. 

Quality assurance is critical at every stage of the monitoring 

process to ensure consistent, high-caliber standards. Internal 

quality control is always required, while external proofs may 

be necessary for critical projects. The guideline recommends a 

structured procedure for each of the three main subjects in 

terms of quality assurance: the monitoring concept, data 

integrity, and the key feature assessment. 

Additionally, the process of tendering monitoring services is 

complex due to the specialized nature of SHM. A well-

structured approach ensures coordinated data flow among 

stakeholders, leading to consistent quality. As defining 

monitoring services precisely in tenders can be challenging, 

functional descriptions focusing on objectives and expected 

outcomes can serve as an alternative. However, achieving 

comparable offers and execution quality remains a key 

challenge. The guideline delineates various approaches, 

contingent upon the complexity of the monitoring project. 

Finally, the cost-effectiveness of monitoring must be 

assessed before any action is taken. Monitoring provides 

valuable information that can extend a structure's service life, 

reduce the need for costly upgrades, and improve risk 

management. Monitoring is essential for preventing 

unnecessary restrictions or interventions. It helps optimize 

infrastructure maintenance and safety. The guideline covers the 

net present value method and the downtime costs accounting 

method, and it includes examples that illustrate the economic 

benefits of monitoring measures. Additionally, the text presents 

a method for evaluating the risk associated with the uncertainty 

of the monitoring results. 

 Guideline summery 

The proposed DBV-guideline "Bridge Monitoring - Design, 

Tender and Implementation" aims to catalog structural health 

monitoring use cases and describes the monitoring process with 

defined responsibilities. The process is structured in six phases, 

from defining objectives to result assessment. The guideline 

emphasizes quality assurance, addresses the complexities of 

tendering monitoring services, and discusses the cost-

effectiveness of monitoring. While the primary focus is on 

bridge monitoring, the principles can be applied to other 

engineering structures as well. The guideline is intended to 

serve as a practical resource for the planning and 

implementation of monitoring actions, taking into account the 

perspectives of bridge operators and monitoring providers. 

3 DGZFP-GUIDELINE B 09 STRUCTURAL MONITO-

RING  

 Motivation and objectives 

The DGZfP has developed the "Guideline B 09 Structural 

Monitoring" to assist owners, operators, and those responsible 

for structural maintenance, as well as qualified planners tasked 

with designing monitoring systems [5].  

Guideline B 09 is a clear complement to the DBV guideline 

Bridge Monitoring. As the previous section explains, it focuses 

on the description of monitoring applications, the monitoring 

process, and economic considerations. The DGZfP B 09 

guideline clearly states the objective: to provide readers with 

easy access to monitoring systems and to illustrate the 

conditions and limits under which monitoring specific 

structural parameters can serve as a useful supplement or 

alternative to manual structural inspections. It provides a solid 

foundation for a realistic assessment of the financial and time 

requirements from the initial idea to the evaluation of the 

results of structural monitoring. 

The guideline provides detailed descriptions of the aspects to 

consider when designing continuous monitoring systems and 

examines tasks that can realistically be addressed by structural 

monitoring. It also discusses critical issues for data 

management and quality assurance. The document emphasizes 

practical relevance. The explanations of monitoring tasks are 

formulated from the perspective of typical structural 

engineering questions rather than from the perspective of 

sensor technology. The authors of the guideline made a point 

of including a catalogue of practical examples. This collection 

includes monitoring applications from various structures 

(bridges, wind converters, etc.), different building materials 

(steel, concrete, etc.), and different monitoring objectives 

(damage monitoring, load monitoring, etc.). 

Given the increasing presence of providers of hardware and 

monitoring services in the marketplace, it is becoming 

increasingly important to have a common understanding of the 

factors that need to be considered during the various phases of 

structural monitoring. It is therefore imperative to ensure that 

monitoring systems reliably meet customer requirements for 

specific tasks and to avoid unrealistic expectations of potential 

results. According to the authors of the new DGZfP Guideline 

B 09 Structural Monitoring, this document makes a significant 

contribution to achieving this goal. 

 Content of the guideline 

The guideline covers all essential technical steps that must be 

considered during the design and implementation of a 

monitoring project according to the current state of knowledge. 

The focus is on large-scale monitoring systems, i.e., sensor 

networks with multiple sensors at different locations, with 

special consideration of applications to reinforced and 

prestressed concrete bridge structures. The substantive chapters 

of the guideline are presented below. 

Conception of Continuous Monitoring Systems: This chapter 

provides comprehensive guidance on the technical design of 

continuous monitoring systems. The necessary steps are 

described in detail along the measurement chain: The structure 

consists of the following: sensor connection, base station, and 

peripherals. The text starts by clearly explaining the 

preliminary investigations of existing structures. These 

investigations determine potential weak points, existing 

damage, and probable damage mechanisms. The text also 

describes the determination of measurement parameters. Next, 

we will critically assess whether monitoring is appropriate in 

each case. If the decision is positive, suitable sensors must be 

selected and suitable measurement locations determined. These 

locations must take into account the aspects described in the 

guideline. 

The signals collected at measurement points are transmitted 

to a base station or central computer via cable or wirelessly, 

depending on the sensor type and system layout. The data 

converges at the base station, where it is processed, verified, 
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and stored. The text explains different data acquisition modes 

(time-controlled, event-based) and considers event detection, 

data volume, and energy consumption. Remote transmission 

components enable continuous monitoring, alarming, and data 

backup. Actuators trigger events like switching traffic lights. 

Data evaluation is automated and based on specific standards. 

Challenges in larger projects include ensuring reliable 

communication and appropriate measurement intervals. 

Monitoring Tasks: This central chapter of the guideline deals 

with various typical construction issues that are fundamentally 

accessible to monitoring in civil engineering structures. For 

each monitoring task, only established methods and sensors are 

the topics of discussion. The selection and description of 

monitoring tasks is based on the practical experience and 

scientific expertise of the committee members. The authors of 

the guideline were aware that each structure is unique and that 

each type of sensor and sensor behavior is different. 

Generalizations are difficult to make, but they are necessary for 

a foundational document such as this guideline. Monitoring 

systems must be tailored to the task at hand. Therefore, it is 

essential to involve a monitoring expert in the design, planning, 

and implementation of monitoring projects. 

The guideline covers the following monitoring tasks: 

• Geometric quantities: Strain, displacement, deflection, tilt, 

cracks. 

• Static and dynamic quantities: Force, Stress, Prestressing 

Force, Vibration, Shock.  

• Material Properties: Material moisture, reinforcement 

corrosion, prestressing wire break detection.  

• Environmental influences: Temperature, humidity, other 

environmental conditions, traffic characterization. 

To improve comparability and readability, each monitoring 

task in this chapter is divided into four identical sections: 

• Purpose.  

• Sensors and Instrumentation.  

• Data Analysis.  

• Application and Limitations.  

Data Management: The primary task of any monitoring 

system is straightforward: to collect data from the operation of 

the monitored structure. This data must be stored and analyzed 

automatically. It must be visualized, uniquely assigned, and 

accessible, while ensuring data security. As the scope of the 

measure increases, data management plays a decisive role. The 

guideline devotes a separate chapter to this topic, describing in 

detail the aspects of data management that must be considered 

for optimal use of monitoring data. 

Quality Assurance of Measurement Systems: To ensure the 

highest quality monitoring results, which is critical for safety-

related tasks, it is essential to consider several key aspects, 

outlined in this chapter. This chapter addresses topics such as 

personnel qualifications, quality assurance during design and 

tendering, installation planning, actual installation, and 

ensuring quality assurance during operation and data 

preparation and evaluation. 

Practical Examples: The guideline concludes with a number 

of practical examples. We have thoroughly documented both 

large lighthouse projects and the monitoring of the "broad 

mass" on bridges, where a significant portion of the currently 

installed continuous monitoring systems are located. Each 

project is summarized on about three pages. The summaries 

include a description of the structure, the task, the monitoring 

system installed, and the results. 

 Guideline summery 

The new DGZfP Guideline B 09 Structural Monitoring is one 

of the most comprehensive publications in the guideline series 

to date. It comprehensively covers the entire technical process, 

from the decision for or against monitoring to the practical 

implementation of extensive instrumentation, focusing on the 

technical components of monitoring systems. A key feature is 

a catalog of practical examples that illustrate monitoring 

applications for different structures, materials, and objectives. 

The guideline's clear purpose is to provide a common 

understanding of essential considerations to ensure that systems 

meet client needs while avoiding unrealistic expectations, 

given the increasing availability of monitoring services. 

4 BAST GUIDELINE FOR THE STRATEGIC APPLICA-

TION OF MONITORING OF ROAD BRIDGES 

 Motivation and objectives 

A 2020 survey of experts from federal and state road authorities 

conducted by the German Federal Highway Research Institute 

(BASt) [1] revealed that the use of monitoring is limited to 

existing damages and deficiencies, despite the publication of 

the DBV guideline. The survey identified three key barriers: a 

lack of knowledge about the applications and benefits of 

monitoring, the procurement process for monitoring services, 

and the handling of data storage. The use of monitoring will be 

actively promoted within the structure's maintenance 

committee groups. Operators of road bridges must be supported 

by best practice examples, training, and standardized 

procedures for the use of monitoring. The German standard 

governing road bridge inspections is currently being revised, 

and the next version will include monitoring as a standard 

inspection routine [3].  

In response, BASt initiated a research project to produce a 

brochure-type guide for the practical application of monitoring 

road bridge structures. A booklet cannot cover all the issues and 

questions that may arise in the context of a monitoring 

application. An additional compendium-type report was 

published to address these issues and questions. This report 

must address technical issues and specifically cover the 

assessment of economic viability of monitoring, the tender and 

award process for installation and operation of monitoring 

systems, and the considerations for drafting contracts. The 

report is available for pre-publication on the BASt website [6]. 

 Content of the guideline 

The content of the guideline is based on the best possible 

applicability to the use of monitoring within the road bridge 

maintenance process. 

Monitoring use cases: The various possible uses of 

monitoring are summarized in the following section in the form 

of monitoring use cases. The project-specific use cases are 

derived from the project objectives and represent processes that 

contribute to achieving the defined goals. 

Several use cases have already been identified in [1], which 

are already frequently used in practice or have potential for 

future application. At present, monitoring is mostly limited to 

reactive measures, such as monitoring known damage or 
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deficits from recalculation or construction. However, the great 

potential of monitoring also lies in supporting predictive 

maintenance. 

The use cases are structured in the form of fact sheets. This 

clear and plausible presentation of the comprehensive ways in 

which monitoring can be used to reduce barriers is essential. 

Each use case is thoroughly described, including the initial task, 

the implementation, and the benefits. Concrete examples are 

used to illustrate the application in practice. 

The following list summarizes the various use cases, 

described in the guideline [10]: 

• Known localized damages. 

• Known deficits from recalculation or construction. 

• Determination of effects. 

• Support for regular inspection procedure. 

• Accompaniment for major buildings. 

• Maintenance and reinforcement measures. 

• Load tests. 

• Predictive life cycle management. 

• Birth certificate. 

• Measures during the construction period. 

• Protection of buildings during neighboring construction 

work. 

Monitoring Process and its Actors:  

As described in the section on the DBV guideline, structural 

monitoring is a multi-stage process from the description of the 

objectives to the assessment of the monitoring results. The 

operating authority of the structure must implement a system 

that divides the task into phases and assigns actors responsible 

for processing each phase. The tasks of the phases can be 

tendered separately or combined. The phases are defined 

similarly to [4]. 

Economic feasibility studies: Bridge owners and operators 

must determine the benefit-cost ratio of any monitoring system 

before implementation. To evaluate this ratio, it is necessary to 

estimate the expected costs associated with the future use of a 

road bridge with and without monitoring. This is a complex 

task. The expected costs depend on future developments in the 

condition and performance of the bridge, the quality of the 

monitoring system and data processing, possible monitoring 

results, future decisions related to these monitoring results (i.e., 

decisions on actions such as traffic restrictions, inspection, 

maintenance, bridge replacement, etc.), the direct and indirect 

costs associated with these actions, and the costs of installing, 

operating, and maintaining a monitoring system. The difference 

between the expected cost of operating a bridge without and 

with monitoring is the value of monitoring provided by a 

monitoring system. If this metric is positive, the cost of a 

surveillance system is justified by its benefits. The guideline 

draws on literature and the expertise of the German road 

authorities. It highlights the similarities and differences 

between existing procedures for assessing the economic 

feasibility of maintenance measures and analyses for evaluating 

the benefit-cost ratio of monitoring systems. It also provides 

clear, practical advice on how to assess this ratio and discusses 

situations where such analyses are less relevant [11]. 

Procurement process: As previously outlined, one of the most 

challenging areas for bridge agencies in implementing 

monitoring into their daily operations is the management of 

tendering, awarding, and contracting activities. This is due to 

the novelty of monitoring as a technique for determining bridge 

safety measures. The following aspects are the main areas of 

concern: 

• What are the required services to be tendered and 

provided? 

• Who are the players and which specifications and expertise 

potential bidders must provide? 

• What are appropriate award criteria? 

• What constraints need to be considered when drafting the 

contract? 

• How should liability claims be regulated and formulated? 

The guideline authors' experience with bridge monitoring 

bridges provides a solid foundation for the proposed procedure. 

Tendering is a viable option. Parts of the overall service can be 

tendered separately, depending on the requirements. There are 

also different types of tenders, depending on whether specific 

service points or the entire service is functionally tendered. The 

right choice is influenced by several factors. In addition to 

price, these include quality assurance criteria such as the 

qualifications of the bidders. This is especially crucial because 

vendors sometimes make exaggerated promises. When drafting 

contracts, it is essential to address specific issues that differ 

from a standard bridge inspection. It is essential to know how 

to deal with a temporary outage of parts the measurement 

equipment, e.g., due to vandalism. Minimum response times 

must be defined. Rules must be established for very long 

measurements to account for the additional costs of aging 

measurement equipment that may need replacing. Liability 

issues must also be addressed. The guideline provides clear 

recommendations for choosing the right type and scope of 

tender. The guideline also provides clear recommendations for 

negotiating contracts.  

Further, the brochure includes checklists for the topics 

discussed above. These include tendering and awarding, as well 

as contract design and liability. 

Measurement technology: Instrumentation combines all the 

technical components of a monitoring system. This includes not 

only the actual sensors, but also components for signal 

transmission, data processing, and storage. A classical 

monitoring system is made up of sensors, sensor connection 

components, data acquisition systems, and a measurement 

computer to which other external components can be 

connected. The guideline lists and presents the various aspects 

that influence the selection of measurement technology to assist 

in the best practice application of monitoring in bridge 

condition assessment. The selection of measurement 

technology is based on the monitoring concept, which 

considers all aspects of the technical implementation of a 

monitoring task in the monitoring system. In addition to the 

monitoring objective, this includes the type and size of the 

structure to be monitored, requirements for long-term stability 

or, if necessary, interchangeability, and economic criteria. It is 

essential that the selection of the sensor technology be based on 

clearly defined requirements. These requirements include the 

measuring range, measuring accuracy, sensitivity, measuring 

resolution, and sampling frequency. Finally, it is essential to 

consider potential technical and environmental influences. 

The guideline clearly describes the different technical 

components of conventional monitoring systems. Additionally, 

new types of IoT (Internet of Things) monitoring systems, 
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typically organized in sensor network structures, are briefly 

discussed. The relationship between the measurement task and 

the measurement technology is presented to assist road bridge 

authorities. The previous section clearly outlined the most well-

known and commonly used sensors. The sensors mentioned 

have clear applications, measurement, and target variables. The 

measurement principle is presented, and if necessary, 

comments on advantages and disadvantages or special notes on 

application limitations are given.  

Data Management: Although managing monitoring data is 

challenging for road authorities, it is valuable for future 

inspections and new methods. Data management is covered in 

national and international literature. The focus is on solving 

data management challenges as a governmental task to preserve 

information for the long term. Only one third of the monitoring 

data is stored at road agencies due to difficulties in structuring 

and sharing data between private companies and public 

agencies. This means that data management recommendations 

are needed. Currently, specialized structural measurement 

service providers (SSMSPs) handle most of the data. Some 

advanced road authorities also act as SSMSPs. 

Both SSMSPs and road authorities are responsible for storing 

monitoring data. SSMSPs are responsible for collecting and 

analyzing data, while road authorities are responsible for 

receiving, archiving, and sharing it. The requirements for road 

authorities were collected in user stories to help prioritize data 

management needs. These user stories are visualized as a user 

story map, which will help road authorities prioritize their 

requirements when evaluating data management software. The 

discussion revealed that road authorities must address SHM 

data governance and sovereignty but currently lack structured 

processes for receiving, archiving, and sharing SHM data, 

including quality control. To address this issue, two business 

processes were developed to facilitate the receipt of structured 

data.  

The first process begins with an inspection request and 

involves creating an employer's data requirement (EDR) 

document that specifies data formats, metadata, and delivery 

cycles. After the road authority approves the EDR, the SSMSP 

delivers the data as agreed. Then, the road authority verifies the 

data delivery and makes it available in asset management 

systems.  

The second process describes how stakeholders who oversee 

structural assessments use monitoring data. If the SSMSP 

performs the assessment, they must ensure the data is reusable 

and well-documented. This process includes negotiating a 

usage agreement and providing access to the data for automated 

and manual workflows. 

Long-term data preservation should be independent of 

proprietary software to enable broad accessibility and new 

business opportunities. 

 Guideline summery  

The guideline was developed due to a lack of awareness 

regarding which structural use cases should be monitored to 

provide information or improve bridge integrity, and which 

measurement technology is appropriate. Most importantly, 

there is a lack of a standardized monitoring process, as well as 

an unknown set of parties involved in the process. Additionally, 

there is a lack of knowledge on how to determine the economic 

feasibility of monitoring and how to tender and award 

monitoring services. Data management is another area of 

concern. The guide suggests approaches here and describes 

important boundary conditions that need to be considered. 

The final document offers solutions to all these issues. In 

addition to the detailed guideline report, the most important 

statements are summarized and published in a short, concise 

brochure. Throughout the guideline development process, 

consultations and discussions were held with the target 

audience of state and federal road agencies. These consultations 

are seen as a necessary basis for successfully introducing and 

accepting the guideline. [10, 11]. 

5 DGZFP GUIDELINE FOR DETECTION OF WIRE 

BREAKS BY ACOUSTIC EMMISION ANALYSIS 

 Motivation and objectives 

Prestressed concrete construction began in Germany in the 

1950s. It was characterized by experimental approaches and 

diverse prestressing systems, although the relevant codes were 

slow to develop. The key was recognizing the need for high 

tensile strength in prestressing steel to maintain effectiveness 

despite creep and shrinkage. While tempering and alloying 

improved the strength of prestressing steels, it also increased 

their susceptibility to stress corrosion cracking (SCC). This 

issue affected steels from the 1950s to the 1970s, and in East 

Germany until the 1990s [12]. SCC can cause brittle fractures 

in prestressing steel that are observed during construction and 

are attributed to the storage, installation, and pre-grouting 

periods. Damage can also occur after prolonged use in well-

built structures. Evaluating these structures is challenging due 

to the difficulty of inspecting internal tendons and detecting 

wire breaks. Some structures lack sufficient reinforcement to 

ensure safe load transfer when prestressing steel fails, which 

can lead to sudden failure. Many structures with vulnerable 

prestressing steel are still in use today, and significant damage 

continues to be observed. 

The challenge lies in the limited accessibility of tendons 

embedded within concrete. In recent years, acoustic emission 

(AE) monitoring has become a key method for detecting 

prestressing wire breaks in Germany. AE was originally used 

to test high-safety industrial equipment, and its potential for 

construction was recognized in the 1990s. AE monitoring was 

first applied to suspension and cable-stayed bridges, followed 

by prestressed concrete bridges. AE offers continuous, 

comprehensive monitoring, enabling immediate detection and 

localization of damage. Through automated analysis, it 

provides reliable data on wire breaks, making it indispensable 

for owners. Affected structures can continue operating safely, 

which allows for better planning and resource management. 

Ensuring safe and reliable bridge operation is critical. 

Regular inspections according to DIN 1076 are an important 

tool for this. Shorter inspection cycles are recommended for 

bridges with SCC-prone prestressing steel. Continuous 

monitoring methods, such as AE can detect wire breaks 

permanently and allow for the dynamic evaluation and 

adjustment of inspection intervals. AE monitoring significantly 

contributes to safe bridge operation by transitioning from a 

scientific method to a standardized procedure. In this context, 

the guideline SE 05 “Detection of prestressing wire breaks with 

acoustic emission” [7] establishes a framework for 

procurement and quality-assured operation. 
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The SE 05 guideline aims to standardize the application of 

AE monitoring for detecting prestressing wire breaks as well as 

outline the method's capabilities and limitations. The guideline 

provides detailed instructions for planning, tendering, 

installing, operating, and evaluating an AE monitoring system. 

The guideline also offers recommendations on technical and 

personnel requirements as well as quality standards to ensure 

an effective information system. The guideline’s scope 

includes bridges and other engineering structures with bonded 

prestressing wires, though the described methods could also 

apply to unbonded tensioning systems. 

 Content of the guideline 

The guideline is structured to help interested readers first 

understand the methodology and a proposed practical approach 

to applying AE monitoring for lifetime detection of wire 

breaks. After an introduction to the guideline, important terms, 

definitions, and abbreviations are presented. 

Methodology: AE detects damage by capturing the elastic 

energy released as shock waves, which can be detected by 

surface sensors. This guideline explains this principle as it 

applies to monitoring prestressing wire breaks and provides 

basic implementation instructions. AE analysis requires high 

sampling rates and complex data analysis. Recommendations 

include the type of sensor, the frequency range, and pre-

amplification. Piezoelectric sensors with a resonant frequency 

of 20-80 kHz are typically used to ensure sensitivity and 

minimize interference from low-frequency noise. Optimal 

sensor placement is critical for accurate detection and 

localization. Sensors should be strategically distributed based 

on the structure's geometry, material properties, and expected 

signal attenuation. The maximum allowable distance between 

sensors depends on factors such as signal strength, noise level, 

and the structure's damping characteristics.  

The effectiveness of AE monitoring depends on 

distinguishing signals from background noise. Additionally, 

AE only detects active damage and not preexisting wire breaks. 

Complementary methods, such as non-destructive testing or 

invasive inspections, are required to establish baseline 

conditions at the start of monitoring. 

Implementation and service description: After identifying the 

need for continuous monitoring, the system requirements must 

be defined and the procurement process initiated. Because each 

bridge has unique characteristics, such as structural geometry 

(e.g., box girder or T-beam), material properties (e.g., concrete 

type), and environmental factors (e.g., traffic load), each bridge 

requires a customized monitoring design. The guideline 

provides detailed instructions for acoustic analysis, sensor 

layout, and performance specifications. 

Qualification of provider: As no official certifications exist, 

personnel and operational qualifications for AE monitoring can 

only currently be demonstrated by reference projects and 

experience. Design, installation, and operation must be 

performed by qualified personnel. Detailed recommendations 

for qualification verification are provided. 

Data analysis and reporting process: This section outlines the 

steps from data collection to action. Automated analysis 

identifies potential wire breaks that require verification using 

additional methods or by engineers. Confirmed breaks are then 

used for structural evaluation. The discussion covers essential 

information for documenting candidate wire breaks. 

Appendices: The appendices offer supplementary technical 

information, including recommendations for supervising wire 

removal via acoustic emission, methods for determining 

background noise levels and signal attenuation, and 

calculations for maximum allowable sensor distances based on 

structural geometry and material properties. 

 Guideline summery  

This guideline introduces acoustic emission (AE) analysis as 

a tool for continuously monitoring prestressing wire breaks in 

concrete bridges. AE technology can detect and locate wire 

breaks in real time, offering critical information about the 

structural health of bridges. Therefore, it offers a unique 

opportunity to assess and manage structures at risk of stress 

corrosion cracking. AE is the only method that can directly 

detect wire breaks and requires specialized knowledge. This 

method applies to bonded prestressing systems but not to 

unbonded tensioning systems. However, it cannot detect wire 

breaks that occurred prior to the start of monitoring. 

The increased interest and use of AE systems has led to better 

regulation of procedures and requirements, as recognized by 

the DGZfP committee. This resulted in the SE 05 guideline. 

This guideline, developed by multiple parties, represents 

accepted technical standards and provides detailed instructions 

for the procurement and quality assurance of AE systems 

during installation and operation. 

6 CONCLUSIONS AND OUTLOOK  

 Conclusions 

The reviewed German guidelines - DBV Bridge Monitoring, 

DGZfP B09 Structural Monitoring, BASt Strategic Application 

of Monitoring, and DGZfP SE 05 Detection of Wire Breaks 

Acoustic Emission Monitoring - collectively provide a 

structured framework for conceiving, implementing, and 

managing SHM in bridges and other engineering structures. 

The guidelines address different aspects, ranging from process 

structuring and economic assessment to technical system 

selection and quality assurance, and offer complementary 

strengths. 

Despite these advances, the practical implementation of 

SHM is limited and is often restricted to event-driven responses 

rather than proactive and predictive maintenance. Key barriers 

include a lack of practitioner experience, challenges in 

procurement and tendering, and unresolved issues in data 

management and ownership. While the guidelines have helped 

clarify roles, standardize processes, and provide examples of 

best practices, they also reveal gaps, particularly the absence of 

a unified, one-size-fits-all approach and the need for 

harmonized data management systems. 

The transition from technological development to standard 

practice is underway. However, widespread adoption requires 

technical solutions, organizational clarity, and contractual 

clarity. Collaboration among stakeholders, including 

infrastructure owners, service providers, and researchers, is 

essential to bridge the gap between advanced SHM technology 

and practical application. Every phase of SHM projects must 

include economic evaluation and quality assurance to ensure 

cost-effectiveness and reliability. 
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 Outlook 

The upcoming revision of the German bridge inspection 

standard, DIN 1076, is expected to accelerate the integration of 

monitoring into standard maintenance practice by 

incorporating SHM as a routine element. As SHM becomes 

more prevalent, the need for standardized data management and 

protocols for data sharing and ownership will grow. Future 

guidelines should address these topics in greater depth. 

Furthermore, future guideline editions must include regulations 

on personnel qualifications and calibration of monitoring 

hardware. Training programs and knowledge transfer 

initiatives should be developed to provide practitioners with the 

expertise necessary for the effective deployment of SHM. 

Guidelines should address differing expectations between 

practitioners (e.g., bridge operators) and SHM service 

providers to promote clear communication and user-friendly 

solutions. 

A unified guideline or standard integrating technical, 

economic, and contractual aspects is needed to make it easier 

for practitioners to implement SHM, regardless of project size 

or complexity. 

Future work should also focus on aligning German guidelines 

with European and international standards to facilitate cross-

border projects and knowledge exchange. This includes 

adopting common terminology, data formats, and quality 

assurance procedures. 

Additionally, future guideline issues should continuously 

integrate the results of ongoing research focusing on predictive 

analytics, integration with digital asset management systems, 

and the development of scalable, adaptable SHM solutions. 

SHM guidelines should support a shift from reactive to 

predictive maintenance by leveraging monitoring data to 

optimize infrastructure management and extend service life. 

By fostering collaboration, harmonization, and continuous 

improvement, SHM guidelines can ensure the safety, 

reliability, and sustainability of critical infrastructure in 

Germany and Europe. 
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EXTENDED ABSTRACT  

KEY WORDS: Structural Health Monitoring; Italian Guidelines; Bridge management; Infrastructures. 

1 INTRODUCTION 

Bridge management plays a critical role in safeguarding 

transportation safety and functionality against aggressive 

environmental conditions, increasing load demands, and 

extreme events, making it an indispensable pillar of modern 

infrastructure systems. Recognizing the need for standardized 

practices, the Italian Ministry of Infrastructures and Transport 

issued the 2020 “Guidelines for Risk Classification and 

Management, Safety Evaluation, and Monitoring of Existing 

Bridges” [1]. These guidelines categorize bridges into five 

attention classes (ACs), determined by comprehensive 

assessments of structural and foundational conditions, as well 

as seismic, hydraulic, and landslide risks. Each attention class 

dictates specific analyses and Structural Health Monitoring 

(SHM) activities to enhance structural understanding and 

safety. This work provides a brief integrated overview of the 

2020 Italian Guidelines in conjunction with the 2015 national 

“Guidelines for Structural Health Monitoring” [2], exploring 

their synergies and identifying key challenges in their 

application. The potential of SHM technologies is critically 

assessed, focusing on their role in evaluating structural 

performance and reducing uncertainties related to material 

properties and operational conditions.  

2 THE ITALIAN GUIDELINES FOR BRIDGES 

The Italian Guidelines for Bridges (IGB) are characterized by 

an innovative multi-level and multi-risk approach. The six 

levels of analysis present a progressive increment in 

complexity and detail, while the number of bridges that require 

this analysis should decrease. Level 0 consists of the collection 

of design information, structural and geometric data, road 

traffic information, and past maintenance interventions. This 

census and collection process involves the whole bridge 

portfolio, as well as levels 1 and 2. Level 1 corresponds to the 

visual inspection of bridges to verify the design geometry and 

evaluate the presence of defects, which are noted in the 

defectiveness sheets provided by the IGB for each structural 

element. The number of defects and their intensity establish the 

defectiveness level of the bridge. Further, level 2 evaluates the 

bridge AC, combining four risk types: structure and foundation, 

seismic, hydraulic, and landslide. For each risk type, a partial 

AC is defined as a combination of hazard, vulnerability, and 

exposure. The combination of the partial ACs leads to a total 

AC for the bridge, which influences the application of the 

following level 3 and 4 analyses. Five ACs are defined, namely, 

low, medium-low, medium, medium-high, and high. Level 3 is 

a preliminary assessment of the bridge condition and is 

performed for bridges with a medium or medium-high AC to 

assess whether detailed analyses are needed. Level 4 represents 

a detailed structural analysis of the bridge according to the 

current standard, and it is mandatory for bridges in high AC. 

Structures are classified as: “adequate” if the analysis is 

satisfied for loads with a return period of 50 years, “operative” 

if the verification is satisfied for loads with a return period of 

30 years, or “transitable” if it is verified for loads with a return 

period of 5 years. Transitable bridges need a maintenance 

intervention within 5 years, and during this period, can receive 

restrictions such as roadway partial closure or load limitations. 

Finally, level 5 corresponds to a resilience evaluation of 

roadways considering the consequences due to the loss of 

functionality of the bridge on the entire transport network. 

However, this level of analysis is not yet detailed in the current 

version of the IG.  

3 THE ITALIAN GUIDELINES FOR MONITORING 

The Italian Guidelines for Structural Health Monitoring 

(IGSHM) define the objectives and the minimum requirements 

for a monitoring system to be installed on a bridge. Two main 

objectives are identified: (i) the check of the structural 

performance with respect to specific limit states, e.g., collapse 

and serviceability, and (ii) the identification of a degrading 

effect in-act. Thus, based on the monitoring data, surveillance 

and maintenance activities can be planned, the service life of 

crucial assets can be evaluated (and extended), and innovative 

constructive methods or structural schemes can be investigated. 

Monitoring activities are distinguished in: 

- occasional, when performed continuously for a limited 

period of time (from a few days to 1 or 2 years) to 

augment the knowledge of the structural performance 

before and after a rehabilitation activity, 

- periodic, when performed continuously for a limited 

period of time (typically a few hours or days) every few 

years, to investigate specific degradation phenomena 

that may occur over time, 

- continuous, when the monitoring system is permanently 

installed on the structure. This monitoring activity is 

Structural Health Monitoring in the Italian Guidelines for bridges 
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advised on complex structural systems (e.g., long-span 

bridges) or for structures that are subjected to rare, 

accidental, or exceptional actions (earthquakes, 

collisions, etc.). 

While monitoring activities are defined depending on their 

scopes, the design process of an SHM system usually follows 

eight steps, herein illustrated in Figure 1. 

 

 

 

The monitoring objectives, such as the knowledge of 

structural performance and the identification of in-act 

degrading phenomena, can be expressed in terms of an index 

(of damage, performance, or residual life) or through low-to-

high classification (on damage or performance evolution). The 

estimation of such indices is based on the mechanical (both 

referring to the structural response and the actions that are 

applied to the structure), thermodynamic, chemical, or 

electromagnetic characteristics that are measured on the 

structure. The layout of the sensors is defined according to the 

structure types and static scheme, and the model that is used to 

interpret the collected data. In the case of a vibration-based 

monitoring system, the layout of the sensors should be 

conceived to effectively capture the mode shapes and natural 

frequencies. In doing so, the redundancy of the monitoring 

system is crucial to limiting the effects of malfunctions. 

Therefore, the collected data are processed and interpreted. 

In some cases, the data already indicate the presence of damage 

(e.g., the scour depth or a crack size), while in some other cases, 

such as for a vibration-based monitoring system, data must be 

processed to estimate the natural frequencies and the mode 

shapes. Damage can be detected by investigating the variation 

of such modal parameters.  

Further, decision support tools can be developed based on the 

collected data by the definition of thresholds on the measured 

characteristics and associating them with warning alarms 

and/or interventions.  

4 THE ROLE OF SHM IN THE ITALIAN GUIDELINES 

FOR BRIDGES 

Within the IGB, SHM is defined as an essential tool in the 

optimization of the management of critical infrastructure. Its 

role extends beyond data acquisition, as it augments structural 

understanding, reduces epistemic uncertainties, and enhances 

targeted maintenance scheduling. SHM systems are presented 

as complementary to inspections, destructive, and non-

destructive testing methods, offering continuous information in 

bridge condition assessment. The real-time monitoring of stress 

responses, crack propagation, and displacements under 

operational and extreme load conditions, see Paragraph 6.2 of 

the IGB, can effectively support structural performance 

assessment and maintenance scheduling. Further, SHM data 

can allow for early warning by detecting anomalies and 

deterioration trends whenever periodic visual inspections are 

not performed. Emergency response planning can be supported 

by SHM, as for the cases of landslide (see Paragraph 4.4.2) or 

hydraulic (see Paragraph 4.5.1) hazards.  

SHM is seen to contribute to both diagnosis and prognosis, 

aiding characterizing the current condition of the bridge and 

predicting its future behavior. As pointed out in Paragraph 

6.3.3.5, SHM enables the calibration and update of bridge 

numerical models, reducing epistemic uncertainties related to 

material properties, loading conditions, and model 

assumptions. Also, as highlighted in Paragraph 7.6, SHM can 

optimize inspection scheduling by identifying zones of concern 

and providing long-term trends. The adaptive use of real-time 

data also supports the dynamic update of threshold values for 

alerts and interventions (see Paragraph 7.7), facilitating the 

transition from time-based to condition-based maintenance 

strategies. Furthermore, the integration of SHM data with 

Bridge Management Systems (BMS) can aid prioritizing 

interventions across a network of assets, enhancing long-term 

planning capabilities and aligning structural management with 

resilience and sustainability goals. 

5 MONITORABLE PARAMETERS IN THE ITALIAN 

GUIDELINES FOR BRIDGES 

SHM can aid at Level 1, Level 2, and Level 4 of the IGB by 

automatically collecting data about the structural condition and 

refining the risk classification and the detailed analyses. 

At Level 1, the automatic collection of data can both aid (i) 

detecting damage on bridge components that are not easy to 

inspect and (ii) investigating the evolution of defects in time. 

Within Level 2, numerous parameters are considered in the 

definition of the attention class, which can be low, medium-

low, medium, medium-high, and high. Defects that were 

detected during the inspections of Level 1, and other 

parameters proper to the four hazards (structural-foundational, 

seismic, hydraulic, and landslide) are examined, and an 

attention class is assigned to each bridge. SHM implementation 

is advised for medium-high and high attention classes.  

Check of the monitoring system accuracy requirements

Definition of the decision support tools

Choice of the interpretative models

Definition of the algorithms for data analysis

Definition of the data acquisition strategy

Definition of the monitoring system layout

Analysis of the structure and definition of the specific 
objectives of the monitoring system

Definition of the monitoring objectives

Figure 1: Steps in the design of a monitoring system 

according to [2]. 
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A reclassification of the bridge attention class would consider 

the collected data from a monitoring system, therefore possibly 

repositioning the bridge in another attention class. 

Reclassifications are advised periodically or in the case 

interventions are implemented on the structure. Among the 

monitorable parameters that drive the risk-based classification, 

there are: 

- Level of Defects, including all the possible defects that 

can be observed on bridge components, 

- Average Daily Traffic, indicating the average number of 

vehicles that cross the bridge in a day, 

- Frequency of commercial transit, indicating the average 

number of heavy loads, such as lorries, that cross the 

bridge in a day, 

- Scour depth, indicating the erosion of soil or sediment 

by flowing water, particularly around bridge piers and 

abutments. 

The level of defects is a primary parameter for the evaluation 

of the vulnerability within the structural-foundational risk, and 

it is characterized by gravity, intensity, and extension. As 

demonstrated in [3], the level of defects drives the attention 

classification – when the level of defects is high, the attention 

class is high regardless of the other parameters. Thus, the 

presence of defects with high or medium-high severity (and 

high intensity and extension) is defined as a critical condition 

for the attention classification [4]. Several monitoring 

techniques can be implemented to monitor the evolution of 

defects, such as extensimeters, tiltmeters, strain gauges, and 

accelerometers. Novel techniques include Interferometric 

Synthetic Aperture Radar (InSAR), video-based, and crowd-

sensing [5]. 

The frequency of commercial transit is a parameter that 

characterizes the structural-foundational hazard within the 

attention class determination. Heavy loads, such as lorries, 

represent a criticality for bridge integrity management, as they 

may exceed the traffic load for which the bridge has been 

designed.  

Further, the average daily traffic characterizes both the 

structural-foundational hazard and exposure. While together 

with the frequency of commercial transit is indicative of the 

traffic demand over the bridge, it is essential in estimating its 

exposure, i.e., the consequences in case of a collapse. Weight-

in-motion systems can be implemented to investigate the load 

demand on bridges and eventually set limitations [6]. 

The scour depth is a crucial parameter in the hydraulic risk 

assessment, specifically for the evaluation of the hazard for the 

local scour. The scour depth can be monitored by, for example, 

a vibration-based monitoring system. A decrease in the natural 

frequency or a variation in the mode shapes may refer to a loss 

of stiffness in the support of a bridge pier caused by scour.  

Noticeably, also the evaluation of the landslide hazard may 

be supported by SHM data, and its evolution may be monitored 

through several techniques, such as InSAR. 

Within Level 4 of the IGB, SHM may be used to calibrate 

and update the numerical model that is built for the detailed 

analysis. Bridge components may be modelled accounting for 

the defect severity, extension, and intensity, as a local decrease 

of the component stiffness. Further, the traffic demand on the 

bridge can be evaluated and modelled to verify the bridge 

condition and impose traffic limitations. Digital twins (of 

physical structures) can be created and continuously updated 

by SHM data. 

6 CONCLUSIONS 

This work provides a brief integrated overview of the Italian 

2020 “Guidelines for Risk Classification and Management, 

Safety Evaluation, and Monitoring of Existing Bridges” (IGB) 

and the national 2015 “Guidelines for Structural Health 

Monitoring” (IGSHM). The role of Structural Health 

Monitoring (SHM) in the IGB is investigated. Monitorable 

parameters that can affect the attention classification of Level 

2 and the detailed analysis of Level 4 are stated, and possible 

monitoring techniques are suggested. 
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ABSTRACT: Aging bridges were not designed for today’s higher traffic loads and often fail to meet current requirements. 

However, complete demolition or reconstruction is rarely feasible due to resource limitations, sustainability concerns and 

economic factors. A key issue lies in conservative assumptions regarding loads and resistance. Structural health monitoring (SHM) 

addresses this by providing real measurement data for a more accurate assessment.  

Monitoring produces large volumes of data that must be well-structured and stored for reliable assessments. This requires 

collaboration between civil engineers, measurement specialists, IT experts, and data analysts. As Building Information Modeling 

(BIM) adoption grows, standardized monitoring methods must ensure consistency and comply with the Single Source of Truth 

(SSoT) principle, enabling an integration of monitoring data in a BIM environment.  

The ANYTWIN research project aims to develop a framework for structured data storage and processing. It examines how 

measurement data relates to time and location, defines metadata and information for evaluation criteria and assigns responsibilities 

for data provision. A processing method ensures data preparation, analysis, and data mining, while quality indicators enhance 

reliability. These findings contribute to a tendering template, helping to structure monitoring tasks and improve maintenance 

strategies. 

KEY WORDS: Structural health monitoring (SHM); Standardization; Monitoring data; Data Quality; Quality Indicator; Tendering 

template.  

1 INTRODUCTION 

Existing bridges age over time and were not designed for 

today’s significantly higher traffic loads. Many of these 

structures no longer meet the current verification requirements 

of the Eurocode. However, complete demolition or new 

construction is not a practical solution—on one hand, the 

necessary resources for demolition and reconstruction are 

lacking; on the other hand, such an approach would be neither 

sustainable nor economically viable. 

A primary shortcoming in meeting verification requirements 

arises from the conservative assumptions made regarding both 

loads and resistance. This is where structural health monitoring 

becomes crucial: by collecting measurement data, a more 

precise and realistic assessment of the bridge’s condition can 

be made [1][2]. SHM allows for the adjustment of both load 

assumptions and structural resistance based on actual 

measurements, thereby enabling more accurate verification. 

The monitoring process generates vast amounts of data, 

which must be well-organized and properly stored to ensure a 

clear understanding of the bridge’s condition. This requires 

close collaboration among civil engineers, measurement 

experts, IT specialists and data analysts. As part of the ongoing 

digitalization effort and the adoption of Building Information 

Modeling (BIM), this collaboration should be enhanced while 

adhering to the Single Source of Truth (SSoT) principle. In a 

digital environment, such as a digital twin, various datasets and 

information sources converge, interconnect, and depend on 

each other. A structured representation of these relationships is 

essential for seamless integration. While the IFC model 

primarily serves as a static representation, it provides key 

information for monitoring, including the positions of 

individual measurement points, cable routing and other 

infrastructure details. 

However, the digital twin extends beyond this by 

dynamically reflecting the current sensor status, generating 

meaningful analyses of physical parameters at these points, and 

integrating diagnostic method data for a more comprehensive 

assessment. This approach enables a real-time, data-driven 

understanding of structural conditions. All of this should be 

guided by the principle that the digital twin serves as the SSoT, 

ensuring that all information is consistently structured, linked, 

and accessible within a unified system. 

To achieve this, monitoring methods should be standardized 

and incorporated into data-based load-bearing safety checks in 

civil engineering [3]. 

This is precisely the aim of the ANYTWIN research project 

[4], [5], [6]. The goal of the project is to establish a clear 

structure for collecting, storing and processing monitoring data. 

Different types of measurement data are analyzed and 

classified to ensure systematic storage. The project investigates 

how measurement data is connected over time and space, 

identifies key details necessary for evaluation, and defines 

responsibilities for data provision. A processing method is also 

developed to ensure that the data is transformed into clean and 

usable time series. Finally, the project establishes the quality 

requirements that the data must meet for specific verification 

purposes and defines quality indicators for assessment.  

ANYTWIN - Characterization and standardization of monitoring data 
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All these findings will contribute to the standardization of 

tendering processes, providing project owners with a 

comprehensive overview of monitoring tasks and the respective 

responsibilities of all involved experts. The objective is to 

generate significant value for the future maintenance and 

management of bridges [7]. 

2 IMPLEMENTATION OF MONITORING IN BRIDGE 

CONSTRUCTION 

The implementation of monitoring in bridge construction is still 

not a standardized procedure and is typically conducted on a 

case- by-case basis [8], [9], [10]. However, a structured 

approach has been established, based on the recommendations 

of the DBV guidelines [11]. According to these guidelines, the 

monitoring process consists of six phases, ranging from 

defining the objective, planning, installation, and operation of 

the monitoring system to the evaluation and assessment of 

measurement results (see Figure 1). In practice, these phases 

have not yet been fully standardized. 

Regardless of the specific task, certain measurement 

parameters and objectives have been identified as crucial for 

the effective implementation of monitoring.  

Specifically, for damage detection and computational 

verification in structural monitoring, the following 

measurement objectives are relevant: 

Temperature & Environment: Measures temperature 

differences and climatic effects (e.g., temperature sensors, 

humidity sensors, thermocouples, resistance thermometers, 

infrared detectors). These parameters are crucial for assessing 

thermal loads on structures. 

Moisture Measurements: Detects humidity levels and 

influences such as corrosion or mineral formation that can lead 

to durability issues (e.g., humidity sensors, multi-ring 

electrodes). 

Fatigue & Cracks: Identifies stress, strain, and early cracks 

(e.g., strain gauges, DFOS [12], Acoustic Emission Sensors 

(AE Sensors) [13]), which are strong indicators of structural 

load-bearing capacity. 

Deformation & Movement: Monitors settlements, 

vibrations and inclinations (e.g., displacement sensors, tilt 

sensors, acceleration sensors, distance sensors). By analyzing 

geometric changes at micro, meso and macro levels, insights 

into bearing movements, expansion behavior, creep & 

shrinkage, and crack formation can be derived. 

Load & Traffic: Detects overloads and load distribution 

(e.g., pressure sensors, laser measurement systems), which are 

critical for understanding structural performance under varying 

traffic loads. 

Figure 1. Representation of the individual phases of a monitoring process based on the DBV guideline [11], © MKP GmbH 
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Vibration Monitoring: Assesses dynamic structural 

properties, such as natural frequencies and damping values, 

which provide insights into fatigue behavior and potential 

damage (e.g., accelerometers, vibration velocity sensors). 

Acoustic Monitoring: Captures sound events to track 

damage progression caused by localized failure events (e.g., 

AE Sensors [13]). 

The selection of sensors depends on the measurement 

objective, type of structure, and environmental conditions and 

is adapted to specific requirements. Figure 2 illustrates some 

examples of sensors and measurement systems used for bridge 

monitoring. 

3 TYPES OF MONITORING DATA AND SENSORS 

The efforts to standardize the handling of monitoring data 

obtained in the context of SHM require a comprehensive 

examination and description of the characteristics and typical 

features of such data. This foundational understanding enables 

subsequent classification and the formulation of universally 

applicable procedures for processing, evaluation, data 

manipulation, and establishment of quality requirements. 

The term 'monitoring data' refers to the entirety of data 

generated in the context of SHM. In typical monitoring 

processes, sensor measurement data constitute the predominant 

volume of data. However, for effective information extraction, 

it is crucial to link these data with metadata, defined as all data 

describing the measurement. 

In the initial phase of this study, the measurement data are 

examined. Measurement data include all data that originate 

directly from sensing devices on the structure. To account for 

the increasing technological capabilities of system-on-a-chip 

(SoC) solutions and edge computing, the term is also applied to 

data generated through automated process steps close to the 

sensor or hardware level, provided that their characteristics 

allow them to be treated as measurement data. 

To illustrate the range of potential measurement data sources, 

typical measurement methods and their use cases briefly 

presented in Section 2, serves as a reference. The list focuses 

on recognized and proven methods without claiming to be 

exhaustive.  

The classification of measurement data can be based on 

various criteria and is generally necessary to address both 

software-related aspects in the creation of a storage and 

processing infrastructure, as well as content-related aspects for 

the metadata to be collected. 

One fundamental property describes the data in relation to a 

measurement location. Three main variants can be 

distinguished: point measurement methods, line measurement 

methods, and field measurement methods. 

• Point measurement methods (e.g., strain gauges) provide 

information about a discrete measurement point with a 

very small spatial extent relative to the structure being 

monitored. 

• Line measurement methods (e.g., distributed fiber optic 

sensing (DFOS) [12]) generate measurement data along a 

line with high spatial resolution. 

• Field measurement methods (e.g., photogrammetry) can 

be used for measurements over a larger (surface) area. 

A second classification criterion characterizes the temporal 

structure of the measurement data. Continuous and 

discontinuous data can be distinguished: 

• Continuous data are stored throughout the entire 

monitoring period with equidistant time intervals between 

consecutive data samples, typically with a low sampling 

rate (ranging from several minutes to hours). 

• Discontinuous data are recorded over a typically short 

period of time at a high sampling rate. The recording time 

can be determined either by a predefined time pattern or by 

data-dependent trigger conditions. 

Another classification option concerns the temporal 

reference of the measurement data. The simplest case is a direct 

assignment between the individual instantaneous value of the 

measurement signal and the timestamp. A further possibility is 

that the measurement data refer to a time-extended 

measurement interval, such as in the case of averaging. Even 

more complex time reference descriptions arise with methods 

like Rainflow counting or Fast Fourier Transform analysis 

(FFT). 

A fundamental category of properties for the storage 

structure of measurement data is the dimension of the index 

required to address a measurement value. Besides storage, this 

also determines the programmatic interfaces to processing 

algorithms. The most common attributes in this category are: 

• 1 index value per single measurement value, 

• 1 index value per n measurement values, and 

• 2 index values per 1 measurement value. 

Figure 2. Example of Sensor Technology in Structural 

Monitoring in Use, © MKP GmbH 
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For time series, the index always includes at least the 

timestamp. Additional index values may be required, for 

example, to identify a location or direction. 

Finally, a classification can be made based on the underlying 

measurement instrument(s) of the data. This is mainly used 

when assigning technical metadata. A key distinction is 

whether the data originate from a single, clearly identifiable 

sensor (element) or whether a sensor combination, a sensor 

array, or an automated/autonomous processing algorithm (e.g., 

a Weigh-In-Motion (WIM) system) should be considered as the 

data source. 

Table 1 provides an overview of the key characteristics of the 

measurement data (measurement location, temporal structure, 

temporal reference, index dimension, and technical data 

source) and categorizes them into subgroups (a to c). Each 

subgroup was formed by identifying up to three distinct 

properties for each feature. This classification facilitates the 

systematic organization and comparison of different types of 

measurement data and supports further analysis and processing. 

Table 2 provides an evaluation of the characteristics 

describing the generated measurement data based on the 

established classification system for specific measurement 

methods and sensor technologies. It categorizes different 

sensors according to common characteristics and highlights 

potential groupings. 

To facilitate abstraction, a '1' is assigned to applicable feature 

variants and a '0' to non-applicable ones. Gray shading is used 

to highlight transitions within a category. A gray mark appears 

in the feature column 1 to 5 whenever the assignment within a 

feature category changes from 0 to 1 or 1 to 0. 

Through this visual grouping, at least seven sensor groups 

can be identified. Sensors sharing the same color pattern are 

classified into the same category. In this case, temperature 

sensors up to acceleration sensors (Table 2) are grouped 

together, as they exhibit identical feature combinations across 

the evaluated categories. In contrast, the multi-sensor system 

differs from these sensors, which typically measure a single 

physical quantity. Instead, a multi-sensor system can generate 

multiple independent measurement variables. As a result, its 

classification varies, particularly in Feature 5 (technical data 

source). 

 

Table 1. Presentation and classification of characteristics for describing the generated measurement data 

Classification option 
Property 1  

(a) 

Property 2  

(b) 
Property 3 

(c) 

Feature 1: measurement location Point measurement method Line measurement method Field measurement method 

Feature 2: temporal structure Continuous time-series-data Discontinuous time-series-

data, segments with fixed 

time interval 

Discontinuous time-series-

data with event-driven time 

interval 

Feature 3: temporal reference Single instantaneous value (statistical) value derived 

from a time span 

Indirect value based of 

underlying data 

Feature 4: index dimension 1 index per 1 measurement 

sample 

1 index per n measurement 

samples 

2 indices per 1 

measurement sample 

Feature 5: technical data source Direct data - sensor 

alignment 

Indirect data-sensor 

alignment 

- 

Table 2. Evaluation of characteristics for describing the generated measurement data from various measurement systems 

Examples of 

measurement systems 

Feature 1  Feature 2 Feature 3 Feature 4 Feature 5 

a b c a b c a b c a b c a b 

Temperature sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Strain gauges 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Displacement sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Acceleration sensors 1 0 0 1 1 0 1 1 0 0 1 0 1 0 

Multi-sensor 1 0 0 1 1 0 1 1 0 0 1 0 0 1 

Corrosion sensor 1 0 0 1 0 0 1 0 1 0 1 0 1 0 

Weigh-in-Motion (WIM) 1 0 0 0 0 1 1 0 1 0 1 0 1 0 

AE Sensors 1 0 0 0 0 1 0 1 1 0 1 0 1 0 

DFOS 0 1 0 0 1 0 1 0 0 0 0 1 1 0 

Laser scan 0 0 1 1 0 1 0 0 1 0 0 1 1 0 

Tachymeter-total station 0 0 1 1 0 1 0 0 1 0 0 1 1 0 
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Considering the goal of this grouping, it is crucial for data 

structuring to determine how measurement values should be 

assigned to their respective IDs or timestamps. Only Feature 1 

and Feature 4, which are marked with bold borders in the table, 

are representative in this context.  

These groupings reflect common classification features, 

allowing them to be treated as uniform types when assigning 

descriptive metadata, organizing data storage, and designing 

input and output interfaces for data processing. 

For Feature 1, continuity on the spatial scale does not impact 

data structuring, thereby reducing the number of groups to two. 

For Feature 4, the key question is whether data should be 

structured as an array or a matrix. This decision is essential for 

grouping, as both Features (1 and 4) can be combined. The 

result is a definite grouping of sensors, which simplifies data 

structuring and enhances the readability of the stored datae. 

4 RELEVANT METADATA AND ADDITIONAL 

INFORMATION IN BRIDGE MONITORING 

In addition to the actual measurement data, another essential 

category of data exists: metadata and metainformation. For 

evaluations and measurement-based verifications, obtaining 

specific data and information from the measuring point on the 

structure and metadata from the installed measurement system 

or sensors is of great importance. This data is needed to apply 

the calculation method in data processing and evaluation while 

ensuring traceability of time-based trends, providing a 

comprehensive understanding of the structure’s behavior over 

time and at specific locations. 

According to the definition in the ANYTWIN research 

project, metadata refers to numerical, machine-readable values 

that can be assigned to sensors or measurement systems. In 

contrast, metainformation consists of structured, interpreted 

content and descriptions provided by actors, such as textual 

explanations. Both types of data are characterized by their 

stability, as they are generally static and determined once. An 

exception is when a sensor is replaced, which necessitates an 

update of the metadata and metainformation. 

Metadata is defined either during the development of the 

measurement concept or determined after sensor installation. It 

can be divided into two main categories: 

1. General metadata for sensor types – Cross-sensor 

information, such as the measurement method, the unit of 

the electrical signal, and the function used to convert the 

electrical signal into physical values. 

2. Specific metadata for installed sensors and 

measurement points – These are unique to each installed 

sensor, its measurement system, and the respective 

measuring location. They include: 

• Sensor characteristics: such as conversion factors and 

calibration parameters 

• Measurement parameters: such as sampling rate, 

measurement ranges and spatial resolution 

• Measurement point characteristics: such as material 

properties like modulus of elasticity or thermal 

expansion coefficient 

• Technical properties of the measurement system: such 

as frequency range and filtering methods 

• Additional evaluation parameters like installation 

values, calibration data and sensor orientation 

In addition to metadata, additional informative 

metainformation is available, providing details about the 

installed sensors and measurement techniques. This data is not 

necessarily included in the metadata and is not directly relevant 

for data evaluation. However, it is important for traceability, 

quality assurance, and functional verification of the sensors, for 

example, in assessing their lifespan. 

Unlike metadata, metainformation does not have to be stored 

in a machine-readable format. While it may include similar 

categories as metadata, it provides additional details that do not 

directly contribute to data analysis, such as: 

• Measurement parameters: Additional metrics, such as the 

maximum measurement range or sensor frequency range 

• Influencing factors: Environmental conditions, 

temperature compensation, background noise 

• Technical properties of the measurement system: 

Connection type, measurement amplifier specifications 

• Structural properties of the measurement points: Sensor 

protection mechanisms, material characteristics, 

installation date, expected lifespan 

Table 3. Overview of metadata and metainformation 

categories and actors responsibilities 

 Monitoring 

specialist 

planner 

Structural 

monitoring 

service 

provider 

General metadata for 

sensor type 

  

Measurement method 

(relative/absolute) 

- ✓ 

Unit of the electrical 

signal 

- ✓ 

Function model - ✓ 

Specific metadata from 

installed sensors and 

measurement points 

  

Sensor characteristics - ✓ 

Measurement parameters - ✓ 

Measurement point 

characteristics 
✓ - 

Properties of the 

measurement system 

- ✓ 

Additional parameters 

for evaluation 
✓ - 

Informative data for 

documentation and 

traceability 

  

Measurement parameters - ✓ 

Influencing factors ✓ ✓ 

Technical properties of 

the measurement system 

- ✓ 

Structural properties of 

measurement points 
✓ ✓ 
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Metadata and metainformation are provided and documented 

by different actors involved in various phases of the monitoring 

process. The monitoring specialist planner defines general 

sensor metadata and metainformation during the planning 

phase and in the creation of the measurement concept. This 

includes key parameters of the measurement point, such as 

surface area or modulus of elasticity. The specialized service 

provider for structural measurements is responsible for 

recording and providing specific sensor metadata and 

metainformation during installation. Additionally, they handle 

sensor calibration and update metadata and metainformation 

during maintenance or sensor replacement to ensure 

measurement accuracy and data consistency. 

Table 3 provides an overview of common metadata types and 

the corresponding roles of actors. 

5 DATA PROCESSING MODEL  

Structural monitoring encompasses the processes of data 

acquisition, including data transmission and management, as 

well as data analysis, which involves evaluation, validation, 

and plausibility checks. Based on this, an assessment of the 

current structural condition or a forecast of future structural 

behavior can be conducted. This sequential process can also 

occur cyclically, with the system continuously receiving new 

data. Prior to this cyclical process, the preparation of the 

monitoring measures can be implemented. The success of a 

monitoring project largely depends on a structured workflow, 

where the monitoring objective remains the central focus [11]. 

This section introduces the data processing model developed 

in the ANYTWIN research project for monitoring data. This 

model aims to combine various sensor types, short-term, long-

term, and continuous measurements, as well as different data 

processing methods, including machine learning, into a single 

process. 

The model is based on well-known data processing models 

(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and 

consists of eight main steps [11], [14], [15], [16], [17], [18]. 

These steps are highlighted in orange in Figure 3. Additionally, 

the feedback loop, highlighted in blue, ensures that the 

collected data meets the required quality standards and that the 

resulting maintenance recommendations are well-founded and 

reliable. All process steps are iterative. This means that it may 

be necessary to go back and repeat previous steps to refine the 

analysis and improve the results. 

Quality management is an ongoing process that spans the 

entire monitoring workflow – from defining the research 

objective to planning and installing the system, and finally to 

analyzing the collected data. 

In the first step, the objective of the monitoring measures is 

defined, specifying which aspects of the collected data should 

be analyzed and evaluated. This includes determining which 

parameters need to be monitored, what results are expected, and 

what resources are available for the monitoring process. This 

step involves developing the monitoring concept and preparing 

a tender. Additionally, success criteria for achieving the 

monitoring goals must be established, and suitable quality 

assurance methods (such as quality indicators, threshold values, 

and compensation methods) must be selected. 

In the second step, the measurement system is installed on 

the structure. This step may also include retrofitting an existing 

measurement system. It is essential to conduct quality checks 

immediately after installation, such as function tests and 

plausibility checks, to ensure proper system performance. 

In the third step, data collection is conducted to acquire the 

necessary information for subsequent analysis, which captures 

the impacts and/or responses of the structure. This step marks 

the beginning of the cyclical process of data collection, 

processing, and evaluation. At this stage, quantifiable quality 

measures are applied for the first time to ensure an objective 

assessment of data quality, independent of the specific task 

(these measures are detailed in Section 6). These quality 

indicators are also used in the next steps of data processing as 

they serve to monitor changes in data quality. 

The fourth step, data selection, involves choosing the 

necessary and relevant data to answer the formulated question. 

This selection can be spatial (e.g., sensors in specific structural 

areas) or temporal (e.g., data from summer months). When 

applying machine learning methods, this step also includes 

Figure 3. Data Processing Model in ANYTWIN project: Orange arrows represent the data processing workflow, while blue 

arrows illustrate the feedback loop, © Maria Walker, TUD. 
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selecting the data that will be used in the feature engineering 

process.  

Data preprocessing follows (step five), which includes data 

preparation tasks such as converting electrical signals into 

physical measurements, temperature compensation, time 

synchronization, signal cleaning, and data normalization. After 

each preprocessing step, a new data quality assessment is 

performed. The goal of data preprocessing is to enhance the 

inherent (task-related) data quality [19]. 

In the sixth step, system-dependent data quality is addressed. 

Data from various sources and measurement systems are 

standardized into a common structure and enriched with 

metadata. This standardization ensures that the data can be 

automatically processed by data mining algorithms in the 

subsequent step. 

The seventh step involves the actual data analysis or data 

mining, during which information is extracted from the data. 

This process may involve simple calculations, such as 

determination of mean values, maximum and minimum values, 

or counting algorithms, as well as the training and application 

of complex machine learning models to identify patterns in the 

dataset and to detect characteristic sequences in the data. 

The final step involves the evaluation and interpretation of 

the data mining results in relation to the initial question and 

predefined success criteria. The findings are assessed based on 

their validity, novelty, usefulness, and understandability. Based 

on these insights, necessary actions are determined, such as 

rehabilitation, load reduction, maintenance, reconstruction, or 

further monitoring measures. Additionally, this step includes a 

final assessment of the entire monitoring process and of the 

installed monitoring system to ensure its overall effectiveness. 

6 QUALITY ASSESSMENT OF DATA USING 

QUALITY INDICATORS 

To ensure reliable analysis and evaluation of structural 

behavior, the quality of measurement data must be guaranteed. 

It is crucial to eliminate anomalies in measurement data and 

deviations in time signals to achieve precise data evaluation of 

the structure’s performance. However, measurement anomalies 

and deviations are inevitable and can be caused by various 

factors, including: 

• Electromagnetic interference, leading to signal noise or 

data distortion 

• Direct interventions on-site, such as maintenance work or 

sensor replacements 

• Transmission errors, resulting in incomplete or faulty data 

• Malfunctions in the measurement system, caused by 

calibration errors or hardware defects 

In monitoring systems, which encompass interconnected and 

complex structures of measurement technology, data 

transmission, and IT aspects, anomalies in measurement data 

can occur. Therefore, it is essential to implement appropriate 

quality assessment methods to detect measurement anomalies 

early, correct or remove them if necessary, and optimize the 

monitoring system to ensure the reliability of the measured 

values. 

As part of the ANYTWIN project, the requirements from 

measurement-based verifications are considered to 

systematically assess data quality. For this purpose, quality 

indicators have been developed to enable a structured and 

objective evaluation of monitoring data in terms of its quality. 

The development of these indicators takes various use cases 

into account, including: 

• Measurement-based verifications, allowing for a precise 

assessment of structural safety, 

• Continuous monitoring with an integrated alarm system 

for early detection of deviations, 

• Digital twins, enabling detailed modeling and data-driven 

evaluation of structural behavior. 

For this purpose, both the status of the measurement system 

and the quality of individual time signals at the sensor level are 

analyzed. At the dataset level, key questions include: 

• Are the data available, complete, and up to date? 

Figure 4. Overview of quality indicators and the addressed 

questions 
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• Are the measurements time-synchronized, ensuring that 

dependencies between two measured variables are reliably 

considered? 

From these questions, the quality indicators availability, 

completeness, timeliness, and synchronization can be identified 

(see Figure 4). 

Availability: Checks whether the expected measurement 

data has been received within a certain time window. 

Completeness: Checks whether the received data contains all 

the required fields and sensor data records. 

Timeliness: Checks if the measurement data arrives within 

an acceptable delay period. 

Synchronization: Checks whether the multi-channel sensor 

data s synchronized in time. 

The indicators that assess the condition of the measurement 

system – availability, completeness, and timeliness – can be 

quantified by calculating the percentage of available and non-

missing data points within a defined time-period. To evaluate 

synchronization, the timestamps of individually generated time 

series (each measurement system) are analyzed. 

The second aspect, the sensor level, focuses on detecting 

potential measurement anomalies, such as outliers, jumps, 

unusual temporal trends, drift, or signal noise. Based on these 

possible signal anomalies, the following quality indicators can 

be identified: 

Plausibility: Checks whether the received values fall within 

physically plausible limits, allowing the identification of 

measurement anomalies such as outliers or jumps that are 

visibly apparent. 

To assess the plausibility of the data and determine whether 

it falls within a physically realistic range, initial filtering or 

thresholding can be used to define permissible limit values. 

Plausibility calculation involves verifying whether the 

measurement value lie within these physically plausible limit. 

In a second step, advanced regression methods can be applied 

to detect further apparent measurement anomalies in the signal. 

Consistency: Evaluates whether the change in sensor values 

is consistent with respect to environmental changes. This 

enables the detection of drift and noticeable patterns in 

temporal trends, such as step-like changes. While plausibility 

checks whether the data falls into a certain range, consistency 

compares current data with historical values and determines if 

the change in value is consistent with environmental changes 

(see Figure 5). 

Consistency calculation is based on analyzing the differences 

between consecutive measurements. The standard deviation of 

these differences is determined and normalized by their mean 

value. A low standard deviation indicates high consistency, 

while a high standard deviation suggests irregular changes and, 

consequently, potential inconsistency. With consistency 

calculation, smaller or less apparent anomalies such as start of 

drift, step-formation can be detected. 

Precision: Refers to the repeatability of measurements under 

identical conditions, ensuring the stability and reliability of 

sensor data. This helps to identify noise in the signal.  

The precision of a measurement signal indicates the extent of 

value dispersion in repeated measurements. High precision 

means that the measured values are closely clustered, while low 

precision suggests random fluctuations and an increased level 

of noise. Mathematically, the precision assessment is based on 

the standard deviation of the measured values within a defined 

time window, relative to an acceptable variation range. 

To quantitatively represent the indicators, the percentage of 

measured values that fall outside a defined tolerance range can 

be determined. Table 4 provides a comprehensive overview of 

the mathematical formulas used for detecting measurement 

anomalies, quantifying the indicators, and describing the 

relevant parameters. 

The results of the quality indicators are also time series, but 

with a lower frequency than the actual measurement data, as 

they are based on aggregated time windows. Storing these 

indicators as time series allows for better integration into digital 

twins and facilitates the analysis of relationships between 

indicators, leading to a better understanding of the 

measurement data and its quality. 

These indicators can be integrated into the partial safety 

factors of structural assessments as part of measurement-based 

verifications. This allows systematic consideration of 

Figure 5. Example of temperature data containing implausible and inconsistent values 
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uncertainties related to measurement technology, data 

transmission, IT, and numerical aspects and quantification in 

the form of modified partial safety factors. However, further 

research and development is needed to optimize these 

approaches and ensure their practical applicability. 

 

Table 4. Overview of mathematical formulas for quantifying quality indicators 

Indicator 

Mathematical Formula 

for measurement errors 

detection 

Quantification of the 

indicators 
Description of the parameters 

Availability --- 𝑁𝑟𝑒𝑐

𝑁𝑒𝑥𝑝
∙ 100 % 

Nrec – Number of received data points 

Nexp – Total number of expected data points 

Completeness --- 𝑁𝑐𝑜𝑚𝑝

𝑁𝑒𝑥𝑝 
∙ 100 % Ncomp – Number of complete data points (without 

missing fields) 

Nexp – Total number of expected data points 

Timeliness ∆T = 𝑇𝑛𝑜𝑤 −  𝑇𝑙𝑎𝑠𝑡 𝑁𝑡

𝑁𝑒𝑥𝑝
∙ 100 % 

Nt – Number of data points received within the 

acceptable delay interval, Tmax with respect to current 

timestamp (∆T ≤ Tmax)  

Nexp – Total number of expected data points 

Tnow – Current time 

Tlast – Time of last received data 

Synchronization ∆T = Tsync 

Tsync = |𝑇𝑆1,𝑖 −  𝑇𝑆2,𝑖| 
𝑁𝑠𝑦𝑛𝑐

𝑁𝑒𝑥𝑝
∙ 100 % 

Nsync – Number of synchronized data points 

Nexp – Total number of expected data points 

S1 & S2 – Measurements from Sensor1 and Sensor2 

TS1,i & TS2,i – Timestamp of Sensor1 and Sensor2 at 

row i. 

Tsync = |TS1,i – TS2,i| 

Plausibility Level 1: Filtering and thresholding 

Level 2: with/without ML-model 

𝑁𝑝𝑙

𝑁𝑒𝑥𝑝
∙ 100 % 

Npl – Number of plausible data points  

Nexp – Total number of received data points 

Consistency 1 −
𝜎∆𝑥

𝜇∆𝑥 + 𝜖
 

 

(or) 

 

with/without ML-model 

𝑁𝑐𝑜𝑛

𝑁𝑒𝑥𝑝
∙ 100 % 

𝜎∆𝑥– Standard deviation of consecutive differences 

(Δxi=xi−xi−1) 

𝜇∆𝑥 – Mean of consecutive differences 

𝜖 – Small constant (to avoid division by 0, 

e.g. 10-6) 

Ncon – Number of consistent data points  

Nexp – Total number of expected data points 

Precision 1 −
𝜎

𝑅
 

𝑁𝑝𝑟

𝑁𝑒𝑥𝑝
∙ 100 % 

Npr – Number of data points without noise 
Nexp – Total number of expected data points 
σ – Standard deviation of the measurements 

R – Acceptable variation range 

 

7 SUMMARY 

Bridge monitoring is a key component of structural assessment 

to ensure safety and longevity. Despite its growing importance, 

monitoring is not yet a standardized procedure and is mostly 

implemented on a case-by-case basis. A structured approach 

can follow the recommendations of the DBV guidelines. 

The sensor market is expanding rapidly, with increasingly 

intelligent and complex technologies for measuring 

temperature, material fatigue, deformation, and traffic loads. 

Innovations such as System-on-a-Chip (SoC) and edge 

computing, including Weigh-in-Motion (WIM) systems, 

enable greater automation of data collection but require 

systematic storage and analysis. 

A precise data classification and standardization are essential 

for efficiently processing monitoring data and making it usable 

for digital twins or measurement-based verifications. 

Classification is based on positional reference (point, line or 

field measurements), time-based structure (continuous or 

discontinuous data), and time reference (instantaneous values, 

averaging or advanced methods such as Rainflow counting or 

FFT analysis). 

Beyond the actual measurement values, metadata and 

additional information play an essential role in correctly 

interpreting the collected data. Metadata consists of machine-

readable values assigned to sensors and measurement systems, 

while metainformation includes structured documentation 

details. A clear assignment of responsibilities for collecting and 

managing this data is necessary to maintain a consistent data 

foundation. 

The ANYTWIN data processing model integrates various 

sensor types, measurement durations, and data processing 

methods, including machine learning, into a structured eight-

step process. It follows established data processing frameworks 

(CRISP-DM, SEMMA, Fayyad, DBV guidelines, Farrar) and 

ensures data quality through an iterative feedback loop. 

The process begins with defining the monitoring objective, 

followed by system installation and data collection. Next, data 
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selection, preprocessing, and standardization ensure structured 

and high-quality input for data mining and analysis. Finally, the 

results are evaluated and interpreted to support structural 

assessments and maintenance decisions. This structured 

workflow enables continuous monitoring and reliable decision-

making in structural health management. 

A key aspect of data analysis is the evaluation of data quality 

using quality indicators, which are categorized into system 

level (availability, completeness, timeliness, synchronization) 

and sensor level (plausibility, consistency, precision). At the 

system level, data is assessed for availability, completeness, 

timeliness, and synchronization. At the sensor level, the focus 

is on evaluating the quality of individual measurement series, 

particularly in identifying measurement deviations and 

anomalies. To detect and quantify measurement anomalies and 

uncertainties, statistical methods such as filter functions, 

regression analyses, and standard deviations are applied. These 

methods enable a precise assessment of measurement data, 

contributing to improved data evaluation. 

By storing these indicators as time series, they can be 

integrated into digital twins. Furthermore, they could be 

incorporated into measurement-based verifications by serving 

as a foundation for modified partial safety factors, considering 

uncertainties in measurement technology and data processing. 

While these approaches are promising, further research is 

required to enable their practical implementation in structural 

monitoring. 
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ABSTRACT: To effectively monitor engineering structures such as bridges, tunnels, and retaining walls, comprehensive 

knowledge of load-bearing behavior and load transmission mechanisms is essential. This knowledge allows for the assessment of 

its behavior and the identification of damage mechanisms. A thorough and clear documentation of regular inspection forms the 

foundation for this. It is important not only to capture damage patterns and visible defects but also to determine their origin and 

precise location. This information aids in the development of monitoring processes, the selection of measurement variables, and 

the implementation of monitoring technologies. The paper addresses the progress on how a documentation process of inspections 

is carried out to serve as a basis for a valid monitoring of such structures. Therefore, the use of digital models and a standardized 

description of damage in combination with a precise localization on the structure is described in the beginning. Such 

documentation provides valuable insights into load-bearing behavior and possible underlying damage mechanisms. Additionally, 

the development of suitable monitoring systems that serve as key parameters for structural inspection is demonstrated. The 

interaction and exchange of information between inspection and monitoring are emphasized, including clear visualizations and 

meaningful data overlays, to offer valuable benefits for building owners and inspection personnel. 

KEY WORDS: Inspection, SHM, monitoring data, structural behavior. 

1 INSPECTION OF CIVIL ENGINEERING 

STRUCTURES 

Inspections are an essential part of the maintenance strategy for 

residential and industrial buildings (see [1] & [2]) as well as for 

infrastructure such as bridges and tunnels (see [3] & [4]). While 

the former is usually carried out by the building owner, the 

latter are part of the responsibilities of the owners of the 

infrastructure (road or railway) or those responsible for 

maintenance. Due to its geographical location in the center of 

Europe and its alpine topography, Austria places special 

demands on the routing of its road and railway network and the 

associated infrastructure. Therefore, a large number of 

engineering structures to secure cuts and slopes (see Figure 1), 

cross mountains and span valleys. 

 

 

Figure 1. Gravity wall along the Semmering railway line. 

The majority of the routes required for this purpose, 

especially along the high-level road network, were built 

between 1960 and 1980, while other structures (e.g. along the 

Semmering railway line [5]) are already more than 150 years in 

service. 

 

 

Figure 2. Visual inspection method. 

Aside from the erection and the ongoing maintenance, 

inspections, as shown in Figure 2, are essential to ensure the 

reliability of these structures and, consequently, their 

roadworthiness, usability and safety. The principal task lays in 

generally on a manual visual inspection, which includes the 

load-bearing and non-load-bearing components and structural 

elements required for safety. 
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1.1 Goals, methods and guidelines 

In general, for inspection, a distinction can be made between 

ongoing tasks by internal personnel and inspection and testing 

by trained specialist personnel. These inspection activities are 

carried out periodically and usually conclude with a report. 

Thus, providing information on the state of preservation, 

includes necessary steps for maintenance and serves as the 

basis for subsequent testing and inspection intervals. 

Planning documents are required as the basis of inspection to 

define the scope and provide the necessary structural and 

safety-related information, defining the tasks for the inspection 

personnel. Furthermore, these documents provide the basis for 

recording information of the on-site activity during the 

inspection process. Examples hereof are damaged areas, image 

numbers, changes compared to the forerun inspections or in 

general changes in the state of preservation. 

Depending on the asset to be analysed, different guidelines 

and regulations apply in Austria. These are issued by the FSV 

and are to be regarded as the state of the art: 

• Road bridges - RVS 13.03.11 [6]; 

• Anchored retaining walls - RVS 13.03.21 [7]; 

• Road tunnel - RVS 13.03.31 [8]; 

• Gantries - RVS 13.03.51 [9]; 

• Retaining structures - RVS 13.03.61 [10]; 

• Noise barriers - RVS 13.03.71 [11], and 

• Trough - RVS 13.03.81 [12]. 

 

In general, manual and visual inspections are carried out, which 

are performed by the inspection personnel directly on site. 

Various smaller tools and instruments are used to carry out such 

activities on structures. Depending on the type of structure and 

asset, these range from cameras and plans to observation 

instruments (binocular or crack magnifier) and tools such as 

hammers and spanners. 

Digital tools for carrying out a structural inspection are 

generally not defined. Only specifications for integrating the 

inspection results into corresponding databases are given. 

Furthermore, within the area of monitoring [13] topics such as 

IoT (Internet of Things) and, briefly, the necessary 

digitalisation of measurement and monitoring tasks and the 

management of data and results are addressed. 

1.2 Damage and damage symptoms 

In order to enable a diagnosis of the structure and the resulting 

statement on the state of preservation, it is necessary to record 

defects and damage continuously on the structure to be 

inspected. Some examples are given in Figure 3. 

Due to the wide-ranging and interdisciplinary approach to 

civil engineering structures, it is difficult to provide a schematic 

collection of damage patterns and defects in such structures. 

However, the literature (see [14] to [17]) provides 

comprehensive descriptions and lists that can be used as a basis. 

In such a categorisation, a general distinction must be made 

between damage and defects relevant to load-bearing capacity 

and those relevant to durability. 

A distinction can be made between structural, geotechnical 

and geological damage patterns. In addition to a differentiation, 

however, an interdisciplinary and interactive approach is 

required in order to recognise the underlying causes of the 

damage so these can be addressed during maintenance. 

 

 

 

Figure 3. Examples for damages found during inspection of 

civil engineering structures; reinforcement corrosion and 

concrete spalling (top); shift and misalignment within a 

construction joint (center); erosion and unguided surface flow 

(bottom). 

1.3 Climate change 

Austria's topography, the dense road and railway network and 

the increasing average age of the infrastructure are a major 

challenge for long-term maintenance. In addition to the 

approximately 2,300 km of high-ranking road network and 

5,000 km of railway lines, there are also around 125,000 km of 

lower-ranking road network [3]. In terms of motorways, there 

are around 250 km per million inhabitants, which means that 

the high-ranking road network is around 50 % larger than the 

EU average. 

In addition to an increase in loads and traffic, climate change 

will also have a direct impact on structures as a perceptible 

manifestation of climate change. These are superimposed by 

geological and geotechnical effects such as increasing water 
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supply due to heavy rainfall events or the increase in natural 

hazards such as mass movements and rockfalls. 

The effects of climate change can be summarised as ‘long-

term changes in temperature and weather patterns’ Figure 1. 

Gravity wall along the Semmering railway line. Among other 

things, this will have an impact on road and railway 

infrastructure. These changed boundary conditions influence 

the durability of the infrastructure substance due to increased 

thermal and hydraulic stress and changed environmental 

conditions. At higher temperatures, the saturation vapour 

pressure of the atmosphere increases and more and more water 

vapour can be held in the air (+ 7% per 1°C). This intensifies 

the greenhouse effect and increases the risk of short-term 

extreme precipitation (see [18] & [19]). The intensity of these 

events can for example exceed the capacity of existing drainage 

systems, leading to both direct damage to the structure and 

indirect damage with respect to surface erosion and sediment 

transport. Increased extreme precipitation is also accompanied 

by an increasing risk of gravitational natural hazards such as 

rockfall, which, in addition to the direct risk in the area along 

the infrastructure, can also have a corresponding impact on the 

functionality of engineering structures due to an impact. [20] 

The increase in damage patterns, damage intensity and 

defects in combination with the increasing age of structures and 

the rise in traffic and loads pose new challenges for those 

responsible for maintaining structures. In 2021, the European 

Commission drew up a technical guideline to ensure the climate 

compatibility of infrastructure [21], which defines that the 

primary goal must be to make ‘infrastructure climate-neutral 

and climate-resilient’. 

1.4 Digital inspection 

In addition to the advantages that a digitalisation can offer, it is 

also important to adapt working methods to newly created 

possibilities in order to generate a corresponding increase in 

time and quality. Preparation by the inspection staff will remain 

essential, but the approach will take a different form. For the 

most part, the collection and collation of (meta) data will no 

longer be necessary and a stronger focus on existing issues and 

damage will be possible. 

 

 

Figure 4. Using digital inspection tools to reduce workload 

and to improve information transfer. 

However, it is not only the preparation that changes, the form 

of the inspection also changes when digital solutions are used. 

For example, due to standardisation and the use of existing 

inspection results, personnel will play a much stronger role as 

a controlling element. This results from the fact that a software-

supported inspection specifies or can specify defects or damage 

and structures and thus provides a framework for recording in 

the field. 

A number of benefits can be generated through the 

digitalisation of structural inspection. The biggest and usually 

most decisive point is the potential for savings in terms of on-

site inspection time. In addition to the monetary savings, this 

can also result in shorter closure times, which could lead to 

massive improvements in route availability, especially if a total 

closure is required. In addition, software solutions using digital 

devices on site creates a standardised and less error-prone 

structural inspection, from which reports and documentations 

can be created with little effort or information and characteristic 

parameters can be further processed digitally. In addition, 

photorealistic 3D models (e.g. from photogrammetry) depict 

the current condition of a structure more comprehensively and 

allow a comparison between different inspection periods. 

It should also be mentioned that structural inspections can 

provide the foundation for implementing structural health 

monitoring. Through the appropriate collection, evaluation, 

and interpretation of inspection results, it becomes possible, to 

have the fundamental information required for a structural 

health monitoring system readily available. Furthermore, based 

on the results of structural inspection and the analysis of 

findings over time, it is possible to determine whether the 

structure can remain in operation with monitoring, whether 

restrictions are necessary, or whether demolition, 

reconstruction, or strengthening are necessary. 

In addition to these advantages, there are also disadvantages 

associated with a digitalisation measure - or generally a change 

and adaptation of existing processes. On the one hand, these 

relate to usability and the utilisation of digital solutions by 

users. However, this can be very easily remedied with an 

appropriate software solution (UX and UI design see Figure 4). 

On the other hand, the pervasive and sustainable use of digital 

solutions often requires adjustments to databases, data 

structures and standardisation. In Austria, there is largely a lack 

of specifications relating to the use of digital products for 

structural inspection of infrastructure. Nonetheless, a 

corresponding trend and a corresponding willingness to 

implement such solutions and procedures can currently be 

recognised among a number of structural owners and 

maintainers. 

2 MONITORING OF CIVIL ENGINEERING 

STRUCTURES 

An essential component of the safety assessment of civil 

engineering structures can be created by the systematic 

consideration of monitoring data. This can give an inclusive 

insight into the behaviour of the structure or the triggers 

responsible for damage or a change in the structures reliability. 

However, in order to be able to utilise such information 

comprehensively, it is necessary to plan a monitoring system 

accordingly. The following briefly discusses possible measured 

variables, the timing of monitoring and the digitalisation of 
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existing measuring equipment. This serves to enable a holistic 

view between inspection and monitoring. 

2.1 Behavior of the structure 

The decisive factor when carrying out monitoring is the correct 

selection of the measured variable to be recorded. Due to the 

size and extent of engineering structures and the frequent 

interaction between the object and its surroundings, 

measurement data of the terrain is often the first choice. For 

example, data from satellite measurements or LIDAR 

measurements in the vicinity of the infrastructure can be used 

for this purpose. Such data offers information on areas that are 

otherwise difficult to access or overviews of the structure and 

the terrain, deformations can already be derived. 

Monitoring is also usually carried out by attaching sensors or 

transducers. These are usually attached directly to the structure 

or to relevant component regions. A range of different 

measured variables [13] can be used to analyse the terrain, the 

structure or individual components. These are often also related 

to the requirements or statements from the structural inspection 

- such as questions regarding load-bearing behaviour or load 

transfer. In addition, the overall behaviour of the structure must 

be considered when selecting measured variables or generally 

when defining the monitoring concept. 

 

 

Figure 5. State of preservation with respect to a measurand 

depending on the behavior of the structure. 

In addition to the arrangement of the sensors, the time 

component must also be thought of when planning a monitoring 

system. This is related to the behaviour of the structure and can 

be seen schematically in Figure 5. This shows the change in a 

possible measured variable depending on the state of 

preservation of the structure. The greater the damage to the 

structure - i.e. the greater the decrease in the state of 

preservation - the greater the change in a possible measured 

variable used for monitoring. 

The extent to which a measured variable increases until the 

structure fails is strongly influenced by the behaviour of the 

structure. While all structures should exhibit ductile behaviour, 

this may only be the case to a limited extent, especially in the 

case of brittle structures. An example of this is the reduction in 

the load-bearing capacity of a concrete cross-section that is 

damaged by corrosion of the main reinforcement [22]. 

This aspect means that the possible, recordable and 

detectable measured variable of a value is defined accordingly 

by the behaviour of the structure. As a result, during the 

planning of a monitoring, it is necessary to estimate how large 

the possible, still available supply of a measured variable is and 

whether the quantity is still sufficient to enable meaningful and 

accurate monitoring. 

2.2 Timing of measurement 

The behaviour of a structure in relation to the measurable value 

also results in a temporal influence on the monitoring. Similar 

to the quantity of the measurand to be recorded, a brittle or 

ductile structure also has an effect on the time available until 

failure occurs. This is shown schematically in Figure 6. 

 

 

Figure 6. Timely installation of a monitoring system with 

respect to the state of preservation depending on the behavior 

of the structure. 

This shows that, depending on the behaviour of the structure 

or the effects of damage, there are different time periods that 

indicate a decrease in the state of preservation. This can have a 

considerable influence, particularly with regard to the 

implementation of monitoring as a measure following a 

structural inspection. If the time period is too short, only a 

limited statement can be made about the behaviour of the 

structure. Meaning that it is not possible to differentiate 

between temperature-related and damage-related behaviour of 

the structure. This in turn means that a planned monitoring can 

only make a small contribution to the structural inspection. 

2.3 Digitalization of existing measurement equipment 

When implementing monitoring concepts, classic approaches 

applicable to new structures or the monitoring method can only 

be used to a limited extent. The subsequent installation and 

calibration of sensors and monitoring equipment on existing 

structures is often only possible to a limited extent due to 

accessibility. A particular problem with existing structures is 

the unknown construction effects and the limited observation 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-067 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 445 

time compared to the age of the structure. In particular, the 

assessment of load-bearing behaviour, load redistribution and 

the delimitation of seasonal effects therefore usually requires a 

combination with redundancy and an overdetermination of the 

measurement concept in order to correctly characterise the 

structure's behaviour. Another aspect of monitoring tasks on 

existing structures is the reactivation or digitalisation of 

existing measuring equipment. 

The aim of monitoring must always be to create a valid 

database which, in combination with appropriate testing and 

inspection of the structure, can be used to identify the load-

bearing behaviour and possible damage mechanisms of the 

structure. One innovative application example is the 

digitalisation of hydraulic force measuring devices on pre-

stressed grouted anchors. The current anchor force (see [23]) is 

one of the main parameters of an anchored structure. As a rule, 

force measuring devices have to be installed during the pre-

stressing process of the tendon, making a retrofitting of such a 

measuring device not often possible. 

 

 

Figure 7. Time-period of a subsequently digitalized anchored 

load plate. 

 

Digitising the measured value readings, as shown in Figure 7 

and described in more detail in [24], enables permanent data 

recording and provision for existing force measuring systems. 

Temperature and seasonal anchor force changes and the 

resulting effects on the structure can be reliably recorded thanks 

to continuous recording. This makes it easier to interpret the 

measurement data and represents a significant improvement on 

the current practice of periodic and manual readings. 

3 INTERLINK INSPECTION TO MONITORING 

The previous chapters have attempted to provide a brief insight 

into the inspection and monitoring of engineering structures. 

These topics are usually directly linked, but are currently 

usually considered separately. While the inspection of the 

objects is carried out and documented regularly, monitoring is 

usually only used for structures that already show a deficit in 

their behavior or corresponding damage. 

However, in order to be able to implement monitoring in a 

targeted manner, the content and results of inspection must be 

included. This can be seen schematically in the cycle in Figure 

8. The cycle without monitoring refers to the classic inspection 

of a structure, in which the relevant data and information on the 

structure and its condition are collected in the course of an on-

site activity in order to enable a subsequent assessment. This 

usually takes place in a purely visual and manual manner. The 

data and information collected is therefore purely about 

damage patterns or changes in the state of preservation 

recognizable on the surface of the structure or its surroundings. 

If there is no major damage and no extensive changes in the 

behavior of the structure can be detected, the inspection process 

is completed for the period in question and no further activities 

are required. 

 

 

Figure 8. Schematic process of interlinking monitoring 

processes into the cycle of structural inspection. 

The aim of the inspection is to be able to make a statement 

about the load-bearing behaviour of the structure and thus about 

its state of preservation. If this is not possible, special tests in 

the form of a material analysis or an in-depth inspection of the 

structure can be carried out. However, these often only provide 

information about the progression of damage (e.g. carbonation) 

or provide characteristic values for materials or components. A 

statement about the load-bearing behaviour of the structure and, 

for example, the interaction with the subsoil can only be given 

to a limited extent. 

Monitoring of the structure can be used for this purpose. This 

can be used to make a statement about the behaviour of the 

structure by recording measured values and interpreting them 

accordingly. In relation to the building inspection or rather the 

assessment of the construction, a valid statement can be made 

about the load-bearing behaviour, load transfer mechanisms or, 

for example, a number-based assessment of the load and stress 

levels of components. 

 

 

Figure 9. Ongoing circle on assessing data and information 

including asset management, maintenance and use phase. 
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If this relationship is now considered over the entire service 

life of a structure, it can be seen, as shown in Figure 9. Ongoing 

circle on assessing data and information including asset 

management, maintenance and use phase., that this results in a 

continuous process. Beginning after construction with a 

continuous recording and observation of the behaviour of the 

structure, which can be carried out either by inspection or 

supplemented by monitoring. 

Based on this, the necessary processes are planned and 

implemented in the asset management in order to be able to 

carry out maintenance. Here, both smaller measures can be 

derived from the inspection (e.g. flushing the drainage) and 

larger measures (e.g. replacing the edge beam) can be 

implemented. The whole process is completed by a phase of 

utilisation which is not associated with any restrictions and in 

which the structure is in a sufficiently good condition to be used 

safely and reliably. 

This brief and schematic illustration shows the possibilities 

in which the inspection of structures and their monitoring are 

linked. It also shows that monitoring is usually implemented as 

a measure or as a reaction to an inspection. It is therefore 

essential that the results are communicated and transferred to 

the monitoring of the structure in order to enable the two 

processes to interact and integrate with each other. 

4 EXAMPLE – ANCHORED STRUCTURES 

The approach described in the previous chapter can be 

explained using a practical example. An anchored construction 

as shown in Figure 10, which has a height of 9.00 m and a total 

length of approx. 240 m. The wall was constructed in three 

stages, with individual concrete elements anchored by two 

anchors (diagonally). It is not possible to tell from existing 

planning documents whether there is a transverse force-locking 

connection between the elements in vertical and horizontal 

direction. 

 

 

Figure 10. Segmented anchor wall. 

In the course of an inspection of the wall, a number of damage 

patterns were identified, which primarily affect the durability 

of the entire structure as well as that of the concrete 

components. Two examples of this are given in Figure 11. 

These show two symbolically recorded cracks, which can be 

found in a similar way along the entire wall. The cracks have a 

width of 0.2 to 0.5 mm. 

Some cracks are located in the area of the installed anchoring 

elements, as shown in the picture, while others are scattered 

across the entire surface of the wall. In general, the cracks are 

characterised by sintering and moss-like growth was also 

visible, which indicates that the cracks have been present for 

some time. 

No damage could be visually detected on the tensile elements 

of the structure (strand anchors), only slight signs of corrosion 

on the external components could be detected. In general, the 

structure was in an inconspicuous condition and only limited 

moisture damage, water leakage or other geological failure 

mechanisms could be found in the adjacent area. 

 

 

 

Figure 11. Cracks along the concrete structure and adjacent to 

the anchors. 

In general, this structure can be assumed to be in a good state 

of preservation, but there is a lack of information, particularly 

with regard to the anchorage, its function and the associated 

effects on the load-bearing behaviour. In order to obtain this 

information, special inspections [23] such as an endoscopic 

examination of the anchor head area and a lift-off check of the 

tension elements would be the first option. However, this is not 

possible on all structural anchors due to the non-liftable design 

of the tension elements, but it was possible to carry out 

subsequent digitisation on six structural anchors with existing 

force measuring equipment. 

The monitoring data (Figure 7) shows that there is a clear 

correlation between the temperature and the anchor force, even 

over a longer period. This indicates that either the structure, the 

measuring device or both together exhibit temperature-



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-067 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 447 

dependent behaviour. However, as there is no inexplicable 

change in the anchor forces, it can be assumed that there is no 

massive damage to the structure which is therefore behaving as 

it was designed intentionally. 

 

 

Figure 12. Anchor wall, anchor head and scheme of 

monitoring positions and sensors. 

Such investigations were possible because the structure 

already had force measurement equipment (see Figure 12) that 

could be included in the monitoring. Whether this takes the 

form of digitisation or continuous readings is merely a question 

of the desired accuracy or a resource-related one. If this had not 

been possible, a variety of other measurement systems would 

have been applicable, which are briefly described below: 

Classical deformation monitoring, for example by attaching 

measuring points, could possibly provide a statement about the 

temperature-related behaviour of the structure. However, this 

only provides a limited possibility of deducing an increase in 

damage, as only a limited distinction can be made between 

temperature-related fluctuations and a change in deformation. 

In particular, only periodic recording of the wall (e.g. on a 

weekly or daily basis) and not recording the entire surface of 

the structure means that only very limited detailed information 

can be provided. Current approaches such as full-surface 

monitoring of the wall surface and the resulting derivation of 

overall deformations could provide a remedy here, but are not 

yet considered state of the art. 

As there were no signs of extensive deformation of the object 

in the course of an inspection of the rear area of the structure, 

no major changes in the stresses on the structure due to earth or 

water pressures can be assumed. On the one hand, this would 

rule out a change in the above-mentioned structural 

deformations and, on the other hand, would also put 

geotechnical measuring equipment such as inclinometers or 

extensometers in their place as far as the detection of a change 

in the structural behaviour as a result of damage is concerned. 

As a result, only measured values that consider the structure 

itself remain possible. As this is an existing structure, the 

installation of earth pressure cells or the determination of the 

change in strain in the reinforcement, for example, is only 

possible to a limited extent, at great expense and with a possible 

falsification of the structure's behaviour. Nevertheless, the 

cracks already encountered on the front of the structure, for 

example, would be suitable for monitoring. Particularly with 

regard to a possible load redistribution between the tension 

element, which could indicate damage to these, would possibly 

manifest itself in the crack pattern of the structural components. 

Monitoring of the cracks on the front side would be 

recognisable in the event of a significant change in the cutting 

forces resulting from an anchor failure or a reduction in the 

prestressing force. A similar approach can also be used for 

corrosion-damaged angular retaining walls [24], for example, 

to show a redistribution between individual reinforcement 

elements. 

5 CONCLUSIONS & SUMMARY 

The aim of this article is to highlight the similarities between 

structural inspection and monitoring. The duality of this topic 

must be considered, which makes a significant contribution to 

a comprehensive understanding of the behavior of damaged 

infrastructure structures, whereby a distinction can be made 

between structural, geotechnical and geological damage 

patterns. In addition to a differentiation, however, an 

interdisciplinary and interactive approach is also required in 

order to recognize the underlying causes of the damage so that 

these can be addressed in the course of maintenance if 

necessary. 

On the one hand, the structural inspection and the resulting 

information on damage and damage processes form the basis 

for the planning and implementation of monitoring and the 

interpretation of monitoring data. On the other hand, 

monitoring can significantly improve the level of data and 

information on the behaviour of a structure. This is a great 

added value in the assessment of the structure, especially for 

structures in a poor condition, but also for objects with missing 

documentation. 

The aim of this article is to highlight the similarities between 

structural inspection and monitoring. The duality of this topic 

must be considered, which makes a significant contribution to 

a comprehensive understanding of the behaviour of defective 

infrastructure structures, and the relationships presented here 

are intended to show that considerable added value can only be 

generated through interdisciplinary and targeted cooperation 

and the exchange of information in both structural testing and 

monitoring. Only in this way it is possible to obtain a 

comprehensive statement about structures and thus 

subsequently guarantee their safety and reliability. Only in this 

way can a sustainable, durable and resilient infrastructure be 

made possible, which, in addition to appropriate usability, also 

has a certain resistance to climate change-related effects, 

whereby a distinction can be made between structural, 

geotechnical and geological damage patterns. In addition to a 

differentiation, however, an interdisciplinary and interactive 

approach is also required in order to recognise the underlying 

causes of the damage so that these can be addressed in the 

course of maintenance if necessary. 
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ABSTRACT: This paper presents the remaining useful life (RUL) prediction problem in civil engineering applications using a 

hidden Markov regression model (HMRM), as a promising approach for model-based degradation. Unlike self-transition hidden 

Markov models for mass-produced components, where prior lifetime signals are available to estimate state information, the 

proposed HMRM formulates the conditional probability of RUL in terms of the estimated regressor parameters, after temporally 

fitting the damage model. The discrete property of state in HMRM makes it possible to handle heterogeneities in the degradation 

process. The HMRM can also synthesise multiple signals by adopting a decision-level fusion. An adaptive closed-form solution 

for RUL prediction is presented. The performance of HMRM is demonstrated on synthetic measurements and compared with a 

Bayesian extended Kalman filter (EKF) updating technique. 

KEY WORDS: Hidden Markov chain; model-based degradation; remaining useful life prediction; damage model. 

1 GENERAL GUIDELINES 

The prediction of Remaining Useful Life (RUL) holds 

significant importance in both condition-based monitoring 

(CBM) and the formulation of maintenance strategies for 

structural components. RUL is defined as the time a structure 

has before reaching its design threshold, when it can no longer 

perform under its design function. In CBM, damage is 

characterised as a change in structural components due to the 

interaction between internal degradation and the working 

environment which adversely affects its current and future 

performance. The progression of damage is heterogeneous, and 

such heterogeneity can be due to unit-to-unit variability [1] of 

the material, changing operational conditions [2], or periodic 

loading [3]. 

 

Various damage models have been developed, ranging from 

empirical laws (such as Paris’ laws) to continuum damage 

mechanics (CDM) methods [4], which requires stochastic-

based approaches (such as Markov chain, Weiner processes) 

for predicting RUL [5]. However, these approaches suffer from 

parameter correlation. This study focuses on simple power and 

exponential laws suited in a hidden Markov chain, which, 

despite their simplicity, provide correlated, good curve fitting 

by: a linearised and automated regression segmentation and an 

adaptive parameter updates via a recursive Markov chain to 

improving accuracy. According to Si, et al. [5][6] hidden 

Markov models (HMMs) are suited for RUL prediction based 

on degradation state processes. HMM is composed of two state 

processes; an unobservable (hidden) Markov chain which 

accounts for the actual state of degradation such as fatigue at 

the grain level of a metallic component, and an observable 

process that interprets the monitoring information, for instance, 

crack width in a reinforced concrete beam.  

 

Within a degradation process is multiple discrete-hidden states. 

Past studies [7][8] [9][10] focused on the transition probability 

matrix and state duration definition. They consider that these 

states can switch into each other under a predefined transition 

probability, which is specific to the lifetime datasets. Modelling 

degradation by this approach is limited to the Markov property 

[11] which means that: a) the state at any given time step only 

depends on the previous state and not on any earlier states, b) 

and that shorter state durations are more likely than longer ones, 

i.e., state duration follows a geometric distribution. This can be 

a limitation for modelling real-world degradation processes. To 

remedy this weakness, hidden semi-Markov models (HSMM) 

have been proposed to explicitly model state duration 

distributions rather than assuming a geometric one [12][13]. 

Unfortunately, this improvement of modelling degradation in 

components with predefined transition probability and state 

duration does not extend to modelling the degradation 

processes on bespoke components that obeys damage laws. 

 

To the best of the author’s knowledge, this study frontier a 

premise of adopting a sequence of state in model-based 

degradation process. By this approach, the degradation process 

experiences a state switch at stages of damage triggered by the 

weighted state posterior distribution [14]. In addition, the 

proposed approach can handle multiple information of 

measured signals (i.e., multiple HMRM) earlier introduced in 

[13]. This improves the state identification since it captures the 

interacting factors of multiple signals, and reduces 

measurement noise uncertainty, leading to a more confident 

RUL prediction. The extended Kalman filter (EKF) is 

introduced in this study to recursively observe data in real-time, 

to compare with our inspection approach. As with HMM 

belonging to a finite-discrete set of states, the EKF is an optimal 

non-linear filter for finite-dimensional stochastic systems, for 

model-based analysis, where the states are continuous and 

described as parameters of the damage model [15]. 

Within the framework of modelling degradation presented in 

the paper, two case studies are considered: a fatigue crack 

growth process, and a multi-sensor beam degradation 

measurement. A decision-level fusion technique using fisher's 

weighted discriminant ratio [13] is considered to aggregate the 

multiple estimated parameters and predict the RUL. 
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2 HIDDEN MARKOV REGRESSION MODEL (HMRM) 

This section provides the framework that captures the hidden 

state degradation processes. 

 HMRM Parameter estimation 

The unobserved degradation processes 
tu  represent a sequence 

of K  hidden states of data points, formulated at index time t  

in a particular state k  as: 

 2exp( ), ( 1, , )t t k tu U t T=  = ò  (1) 

where 
tU  represent the damage model that characterises the 

degradation process up till failure time T . To model the hidden 

Markov chain, we take the log-transform of equation 1 and put 

in matrix form as: 

 2logt t t k k ty u = = +x β ò  (2) 

ty  becomes degradation processes that follows a Gaussian 

distribution of mean 
t kx β  and variance 2

k , the parameter 

vector 2 2

1 1( , , , , , , , )K K  =  π A β β  defines the model of 

the degradation process. 
tò is a random variable that follows the 

standard Gaussian distribution (zero mean and unit variance) 

representing an additive measurement noise with standard 

deviation
k . 

tx  is the covariate vector at index time t  that 

translates scatter due to environmental/operational conditions 

and 
kβ is a 2 1 vector containing the regression coefficients. 

The hidden sequence (1, , )K= k  is assumed to be a 

homogeneous Markov chain (as shown in Figure 1) of the first 

order and parameterised by an initial state distribution π  and a 

transition matrix A .  

 
Figure 1. Schematic representation of the actual degradation 

process over a sequence of hidden states (HS), from 1  to K . 

 

As shown in Figure 1, the hidden state discretises the 

observation that is continuously measured, in a sequence. This 

sequence of discretization is irreversible since degradation 

process is progressive, except when a maintenance action is 

implemented. Figure 2 describes the probability of stay in a 

hidden state is defined by the transition probability ,k kA in the 

transition matrix A . Hence, ,k kA determines whether the 

degradation process is either staying or moving to the next 

degradation stage. 

 

 
 

Figure 2. Illustration of the possible sequence of transition 

path between hidden states. 

 

The vector   can be estimated using the limiting properties of 

consistency, and asymptotic normality of the so-called 

maximum likelihood method. Its efficiency is subject to a 

considerable number of data points, so the sample size is 

suitable for taking advantage of the limiting properties of the 

likelihood estimator. The log-likelihood is presented in the 

form: 
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1 1

2 1

( ) log ( , , ; )
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 
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= =
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k
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π A y x β∣

L

N

 (3) 

The Baum-Welch algorithm is referred to as the expectation-

maximisation (EM) algorithm [11][16], which performs a 

recursive iteration over E-M steps while updating estimated 

parameters that govern the regression model. The regressor 

mean is: 
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X W X X W Y

 (4) 

where  

 
1, , [ ]'T= X x x  (5) 

is the 2T  regression matrix and ( )m

kW  is a T T  diagonal 

matrix of weights whose diagonal elements represent the 

posterior probabilities ( ) ( )

1( , , )m m

k Tkγ γ . On the other hand, the 

covariance matrices are updated as a weighted variant of the 

estimation of a Gaussian density with the polynomial mean 
( 1)ˆ m

t k

+
x β : 
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 (6) 

 Multiple HMRM (M-HMRM) 

Regarding the case of multiple signals, the model can be 

expanded as a set of q  time-series: 
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where the latent degradation state k simultaneously governs all 

of the univariate time series components. Having observed the 

multivariate degradation process with the M-HMRM in 

equation (7) and obtaining the estimated posterior distribution, 

the weighted discriminant type fusion technique [13] is used to 

re-define the regression parameters to a univariate process, and 

consequently the sampled distribution. The core concept of 

discriminant function analysis is to determine whether groups 

differ in terms of the mean of a variable, and then use that 

variable to predict which group the sample distribution might 

belong to. When dealing with a single variable, the final test to 

assess whether the underlying assumption of homogeneity of 

variance (i.e. homoscedasticity) distinguishes between groups 

is the F -test. This test is calculated by comparing the variance 

between groups to the pooled (average) variance within groups. 

If the variance between groups is significantly higher, it 

indicates significant differences in the prediction. The 

weighting process is influenced by the respective F -values. 

The F -value indicates how statistically significant a variable 

is in distinguishing between groups, reflecting its unique 

contribution to predicting group membership or fusion. 

Here, the estimated covariance 2ˆ( )k of the M-HMRM is a q q  

matrix. Since F -value is a measure of the extent to which a 

variable makes a unique contribution to the prediction of group 

membership, one can easily obtain the F -value of the different 

sensors from 2ˆ( )k  to be: 

 
variance between groups 

variance within groups
jkF =  (8) 

The final fusion becomes a weighted linear combination, as 

follows: 

    2 2

1

ˆ ˆˆ ˆ, ,
q

jk

k k jk jkq
j

jk

j

F

F

 
=

=


β β  (9) 

and the estimated bivariate coefficients are then integrated into 

the failure function. Integrating these coefficients into the 

degradation process facilitates the consideration of time-

varying dynamics of systems, making it a preferred approach 

among researchers. 

3 REMAINING USEFUL LIFE PREDICTION 

Having established the single and multiple signal HMRM 

degradation process, in this section the PDF of the RUL of their 

underlying damage models are formulated using a derived 

closed-form expression. As stated in the previous sections, the 

degradation is modelled by a random process ˆ{ ( ); 0}ku    , 

assumed Gaussian for simplicity. Under the concept of first 

hitting time (FHT), the conditional RUL ˆ( )k of the system on 

the observation ˆ ( )ku   at degradation rate  of state k  is 

defined as the time from the initial state of performance 

degradation until the failure threshold ( ) is reached for the 

first time, as:   

  ˆ ˆˆ ˆinf : ( ) ( )k k ku u    = +  ∣  (10) 

A simple system architecture of the approach is presented in 

Figure 3. The HMRM parameters are obtained by sampling the 

observed data over the underlying state-based damage model 

 

 
Figure 3. Remaining useful life flowchart. 

 

 Power model 

Consider that multiplicative measurement error in equation 1 

can be approximated as 2 2ˆ ˆexp( ) 1k k   +ò ò  and the variability 

in sampling the observation is very small, i.e., ( )ˆ 2 2ˆ ˆ ˆ~kb

k k kc    , 

then the failure function becomes: 

 
ˆ2 2ˆˆ ˆ ˆ ˆ( ) ( ) kb

k k k k ku U c     + +== ò ò  (11) 

 controls switching between one degradation point ( )u   and 

another across the K  hidden states. From the log-linear 

transform, ( ) [1 log ] =x  and ˆˆ ˆ[log  ]'k k kc b=β . Since the 

FHT of the nonlinear degenerate model at the current rate   

satisfies the inverse Gaussian distribution [17][18]. The 

degradation path upon hitting   can be expressed as the PDF 

of the system RUL as: 
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 (12) 

 

Where ˆ
k  equal to one [19].   

 Exponential model 

Under the measurement error condition of log-normal 

distribution as assumed in the power model, the exponential 

failure function is presented as: 

 
ˆ 2ˆ ˆ ˆ( ) kb

k k keu c


 = + ò  (13) 

From the log-linear transform, ( ) [1 ] =x  and 

ˆˆ ˆ[log  ]'k k kc b=β . The degradation path upon hitting   can also 

be expressed in terms of the PDF of the system RUL: 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-068 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 453 

 

( )
( )

( )

3 2

2

2

ˆIn In ˆ ˆ,
ˆ ˆ ˆˆ2

ˆ ˆˆIn In 
                           exp

ˆ ˆ ˆˆ2 ( )

k

T k

k k k k

k k k

k k k k

u
f

u b


 

  



 

−
= 

+

 − −
 
−
 +
  

∣

 (14) 

 Performance error 

The threshold   is chosen based on expertise judgement. 

However, since this degradation dataset lacks historical data, as 

typical for bespoke components, the value of the last data point 

will be used as the threshold. In the second case study (for 

multiple sensor information), the mean of the signals’ last data 

points is considered as the threshold. 

Since the true internal states of degradation are not available, 

the number of states for the lifetime of either case is unknown. 

However, any chosen number of discrete states should be able 

to capture the degradation effects, encompassing material 

degradation, loading, environmental conditions and 

maintenance regimes. For prediction performance accuracy, we 

compute the root mean square error (RMSE) metric over each 

state k  of the RUL, given as: 

 ( )
2

1

1 ˆRMSE
K

k k

kK =

= −  (15) 

where 
k

 and ˆ
k  represents the actual and predicted RUL 

respectively. 

4 FATGIUE CRACK GROWTH (FCG) 

A FCG degradation process in a structural component has 

been simulated based on the Paris law of fracture mechanics 

described in [20], and the synthetic data is shown in Figure 4. 

The synthetic data will be used as the available data for the both 

models discussed in the previous section. 

 Results 

Since RUL prediction solely depends on the available data, 

signals were continuously updated at every 25 cycles until 

failure. The advantage of this is to capture the heterogeneity of 

the degradation process. Typical for damage propagation in 

FCG, 2 and 3 state has been considered [21]. The parameter 

estimation procedure in section 2 and the PDF of RUL in 

section 3 is repeated recursively per inspection points.  

 

The estimated PDF of RUL in terms of recursion in 2-state 

HMRM by power model is shown in Figure 5. At early stages 

of prediction (i.e., 25, 50 cycles), the prediction is dominated 

by uncertainty (high variance) due to limited degradation 

process, which does not clearly indicate the propagation trends. 

As failure approaches, the degradation process becomes more 

predictable and the variance shrinks. In addition, states 

switches is seen to adjust continuously as more data is 

introduced. However, the model seems to suffer a positive bias 

in predicting the RUL, as these models are conservative and 

obviously may not match the growth dynamics of Paris’ law.  

 
Figure 4. Fatigue crack length measurements ( )u n  versus 

magnitude of cycles n . 

 

 
 

 
 

Figure 5. 2−state power HMRM reliability characteristics 

showing the predicted degenerate slope and the accompanying 

PDFs of RUL for real-time monitored information from the 

populated 25 initial cycles, updated by a populated 50, 75, and 

100 cycle of monitored information. 

 

 
Figure 6. Reliability characteristics showing predicted 

degenerate slope and the accompanying PDFs of RUL for 100 

cycles of monitored information in 3−state power (left) and 

exponential (right) HMRMs. 
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Figure 6 shows the complete (100 cycles of) predicted 

degenerate slope and the accompanying PDFs of RUL for 3-

state HMRMs. It compares the prediction by power and 

exponential model. From the PDF plots, it shows that 

prediction from power model suffers more uncertainty than of 

the exponential model, especially at the late stage of damage 

propagation. This uncertainty is associated with the regressor 

parameter ˆ
kb , which is gradual in the power model than in 

exponential model. 

 

Figure 7 presents the RUL prediction based on the PDF of 

RUL plots. From the plot, it is observed that 2-state hidden 

states satisfy the heterogeneity in the datasets, and an additional 

state does not contribute to the dynamical distribution in the 

dataset. This is reasonable since FCG simulation is quasi-static, 

and rarely models the micro-cracks at grain levels. As time 

passes, it is shown that the predicted RUL converges towards 

the actual RUL in the absence of a prior degradation. The RUL 

distribution of the 2- state exponential model are observed to 

converge best than the power model. This is evident as the 

model follows damage accumulation scenario, which is a 

typical exponential. An EKF model based on the power model 

is also presented, for comparison. The EKF-power model 

converges to the true RUL better than 2-state power model. 

This is because, for an inspection routine with HMRM, the 

variance of estimating the regressor parameters over a sequence 

of observed data is higher than that of an EKF monitoring 

process. Along the true RUL is a 95% confidence interval.  

 

 
Figure 7. RUL prediction versus magnitude of cycles. 

 

Figure 8 shows the corresponding RMSE using equation 

(15). Since error is cumulative, the model’s performance is 

conditioned on state’s discretisation and its ability to 

effectively capture the heterogeneity due to any dynamic 

effects by the switch operation mechanism of HMRM. The 

cumulative RMSE for 2−3 states of power model are 2.51×104 

and 1.50×104 cycles; of exponential model are 3.12×104 and 

2.60×104 cycles. The RMSE of EKF is 2.86×104 cycles. 

 

 
Figure 8. RMSE performance accuracy. 

 

5 STRUCTURAL BEAM DEGRADATION 

The second case study presents the corrosion degradation 

problem of a structural beam (see Figure 9). Sensors are 

deployed at intervals across the beam length to monitor the 

degradation process. For this study, synthetic measurements of 

signals from [20]  were also considered which obey the power 

model in equation 11, with assumed log-normal state 

distribution and normal multiplicative measurement error as 

detailed in the mentioned reference. 

 

 
Figure 9. Multi-sensor condition monitoring scenario of a 

structural beam under progressive spatial varying damage 

accumulation, specific to the red "dotted" location. 
 

Figure 10 illustrates the degradation distribution of the 10 

sensor locations which were placed at 400mm sensor-sensor, 

numbered from left to right. Each degradation data point 

approximates the degradation level per year. 

 

 
Figure 10. Synthetic sensor-based monitoring datasets of a 

structural beam subjected to damage accumulation. Observed 

dataset over the 10 sensor locations. 
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Figure 11. Combined distribution of the datasets. 

 

As in the previous example, the sensor signals are inspected 

in 25 years’ intervals until failure, when available, which was 

observed to be a minimum data points for a 2-state M-HMRM 

regression parameter estimation problem, according to the 

model. The same procedure of sequential updating of degraded 

sensor measurements applies to track the RUL change with 

time.  

 

In Figure 11, the observed degradation in equation 7 is a 𝑡 × 

10 matrix for 𝑡 −year cycle, which is used to estimate the 

degradation parameters by adopting the decision-level fusion 

in equation 9. A 𝑡 × 1 predicted degenerate slope is obtained 

and the accompanying PDFs of RUL for 2 and 3-state M-

HMRM are also obtained. The sensitivity of the concave 

degenerate slope is captured in the PDF distribution, in the 

hidden states, respectively. Whereas, a mean distribution of the 
thj sensors is the assumed observation for the EKF. 

 

 
Figure 11. Multi-Sensory monitoring of a structural beam 

based on 2-state (left) and 3-state(right) segmentation process.  

 

Figure 12 describes the RUL prediction at different times and 

its corresponding prediction performance accuracy. The 

prediction performance is influenced by the number of states 

used per observed cycle. The result shows that the 3-state 

predicted RUL converges better towards the actual RUL, 

consequently posing a better confidence of RUL prediction. 

The RUL for The RMSE for the prediction performance 

accuracy of both models is also presented. Figure 13 shows the 

cumulative RMSE for 2 and 3 states to be 10.47 and 10.94 years 

which is twice more accurate, in absolute terms, than 20.09 

years of EKF. 

 

 
Figure 12. RUL prediction versus duration of degradation. 

 

Figure 13. RMSE performance accuracy. 

 

LIMITATION IN PRACTICAL APPLICATION 

The models discussed in this paper are generalized empirical 

power models to approximate self-accelerating crack growth 

behaviour and corrosion damage in a structural beam. While 

corrosion in reinforced concrete beam obey empirical power 

laws [22], crack growth may require differential or rate-based 

power laws, such in Paris or NASGRO equation [23], to 

capture multiple parameters (or uncertainties) which 

characterizes real-world systems. Crack growth phenomenon 

are influenced by multiple factors (or uncertainties) such as, 

material variability, environmental, and operational effects. 

Provided that these laws can be approximately linearised and 

adapted into hidden-state process to quantify these parameters 

or uncertainties, a closed form solution of it FHT to predict the 

remaining useful life distribution can be obtained. Although, 

the solution may not follow closely a similar trend as discussed 

in this paper, but the principle is the same. 
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CONCLUSIONS 

A framework to estimate the RUL of bespoke components was 

presented and illustrated on two examples. A regression-based 

hidden Markov model was proposed for degradation process 

prediction and two power failure functions were used to 

illustrate the state-dependent degradation scenarios for each 

problem. A case of multiple sensor measurements has also been 

presented.  

 

Both cases presented address the situation where the system's 

prior lifetime dataset is unavailable, which makes it difficult to 

estimate RUL using traditional methods. The observations are 

modelled as sets of data that become available, and the 

parameters of the failure function are updated. Finally, the 

PDFs of RUL can be evaluated based on the re-estimated 

parameters of failure function, for each state. Compared to 

extended Kalman filter method, the model demonstrates its 

ability to estimate the RUL of a structural component in the 

absence of failure history. 
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ABSTRACT: Structural dynamical properties are vulnerable to the dynamic loads because such loads can change those parameters 

significantly. It is not possible to halt the aforementioned issue as dynamic loads are entirely unpredictable. The changes in 

stiffness, mass, and damping can lead to minor to serious damage scenarios depending on the level of changes of those parameters. 

Typically, the displacements trajectories of any systems are unknown, and if any other physical parameters e.g. damping is 

unknown that will form a nonlinear problem. Herein, to deal with the early mentioned problem a nonlinear observer namely the 

unscented Kalman filter (UKF) is employed. In conventional practice, the partial or full stiffness matrix are identified but 

identifying damping matrix is rare due to inherent complicacy. Hence, this study has focused on the identification of the entire 

damping matrix by adopting the UKF. The outcome of study shows that UKF is capable of identifying damping coefficients quite 

accurately. This outcome can play a vital role in the area of structural health monitoring and control applications. 

KEY WORDS: Structural Health Monitoring, Unscented Kalman Filter, Dynamic Loads, Damage. 

1 INTRODUCTION 

System identification is a process that helps to estimate any 

desire quantities e.g. stiffness based on measured sensory data 

and develop an underlying mathematical model of the 

dynamical system. Typically, the goal of the system 

identification is to develop a representative model that can 

render the true behavior of the dynamical system. Modern 

structures are getting complicated to monitor due to many 

underlying uncertainties such as their form, adaptation of state-

of-art technologies e.g. sensors, dampers, monitoring tools. 

Therefore, monitoring such structures require proper tools, 

scheme and knowledge to deal with hidden uncertainties. For 

instance, in order to keep track on any changes real-time 

monitoring could be an option [1], [5], [13] and [14]. On the 

other hand, system identification might assist to understand the 

structure better as it might help to update the virtual or 

mathematical systems real-time or offline. 

   System identification (SI) is a shared topic in many areas of 

science and engineering e.g. mechanical/civil engineering, 

robotics, process engineering [15][16]. However, in case of 

civil engineering application still the use and application of SI 

is limited due to associated problems, for instance, models are 

very large compare to a robot or mechanical tool. Dealing with 

large model require serious attention as many variables are 

unknows along with inputs. To deal with the numerous 

uncertainties, typically, from the measured data, stiffnesses are 

identified and feed to the control loop to adjust and update the 

model. Thereby, the updated model can render the true system 

behavior better contrary to doing no update. If the 

aforementioned process is done in real-time, optimal control 

performances can be expected.  

Many works can be found those who tried various methods 

to identify different parameters of various type of structures e.g. 

buildings, bridges. Among them, a new type black-box by the 

use of extended Kalman filter (EKF) is studied for SI [4], a 

neural network and dead-zone Kalman filter algorithm has been 

reported in [6], SI for time-varying system [7], autoregressive 

models based frequencies and damping ratio identification by 

[8], new forms of EKF for SI [9], SI for medical image 

processing application [10], SI using stochastic filter 

techniques [12]. The fundamental concept of the Kalman filter 

was proposed by Rudolf E. Kalman in 1960 [17]. Later, many 

have been proposed and developed different nonlinear filters 

such as EKF and UKF [11], [18] and [19] and their modified 

version. 

It is mentioned early that stiffness are often identified for 

civil engineering application due to the simplicity in contrast to 

identifying damping. For instance, a detail theoretical 

formulation and an experimental validation of semi-active 

control problem along with stiffness matrix identification has 

been carried out in [14]. In the aforementioned study, author 

did not perform the identification of damping matrix 

individually or linked to any control problem. Because, 

damping coefficients are extremely sensitive to inputs and 

material properties as a result dealing with the control problem 

makes things troublesome or even could lead to an 

uncontrollable situation. Therefore, not many studies have been 

conducted in case of damping coefficients/matrices in 

combination with states due to the underlying complicacy. 

More specifically, when both sates and damping coefficients 

are unknown simultaneously, it leads to a nonlinear problem 

that requires a nonlinear observer to solve. The aforementioned 

problem has been focused in [20] to identify damping matrix 

where main consideration was to see the effect of initial 

covariance of the observer. Another work [3] has tried to 

identify damping via sensitivity enhanced method linked to 

Principal Component Analysis. A more detail issues linked to 

nonlinear damping identification has been reported in [2].  

From above discussion it is clear that identification of 

damping itself leads to a complicated problem and it gets more 
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complicated when both sates and damping coefficients are 

unknown. To handle this issue, this study has focused into the 

identification of damping coefficients along with unknown 

states. A 15 degree-of-freedom (DOF) dynamical system is 

consider for the numerical implementations. The system 

identification task is performed by employing the unscented 

Kalman filter (UKF). The overall outcome shows that the UKF 

is capable of identifying damping coefficients quite accurately. 

As a result, the dynamical response (e.g. displacements) of the 

system shows excellent match with the response of the true 

system. Rest of the paper contains, problem description & 

formulation, results and discussion and finally a summary of 

the study.  

2 PROBLEM DESCRIPTION & FORMULATION 

The numerical investigations are conducted by adopting a 15 

storied dynamical system. The dynamical system is considered 

to be model as lumped-mass-spring system as depicted in 

Figure 1. A sample free-body diagram of the top floor and a 

typical floor is shown in the early mentioned figure along with 

the full structure. Typically, equation of motion (EOM) is 

derived for each floor from the free-body diagram of the 

structure. As for example, an EOM has been derived for the 1st 

DOF as shown below,  

𝑚1𝑥̈1(𝑡) + 𝑐1𝑥̇1(𝑡) + 𝑘1𝑥1(𝑡) − 𝑐1[𝑥̇2(𝑡) −
𝑥̇1(𝑡)] − 𝑘1[𝑥2(𝑡) − 𝑥1(𝑡)] =  −𝑢̈1(𝑡) (1) 

𝑚1𝑥̈1(𝑡) + [𝑐1 + 𝑐2]𝑥̇1(𝑡) − 𝑐1𝑥̇2(𝑡) + [𝑘1 +
𝑘2]𝑥1(𝑡) − 𝑘1𝑥2(𝑡) =  −𝑢̈1(𝑡) (2) 

Later, all those equations of motion are combined into one 

single equation in matrix-vector form. And the dynamical 

model can be expressed in vector-matrix form as, 

𝑀𝑋̈(𝑡) + 𝐶𝑋̇(𝑡) + 𝐾𝑋(𝑡) =  −𝛽𝑢̈𝑔(𝑡) (3) 

where M, C and K are the mass, damping and stiffness matrices 

with a size of 15 × 15, 𝑋, 𝑋̇ and 𝑋̈ are the displacement, 

velocity, and acceleration vector those have a size of 15 × 1, 

𝑢̈𝑔 is the input excitation, 𝛽 controls input excitations location, 

t is the time vector.  

 

 

Figure 1. The structure and sample free-body diagram of a 

typical floor and top floor. 

 

It is quite common that the dynamical system further 

formulated by adopting the state space (SS) formulation 

technique. The SS formulation contains two main equations, 

they called, (i) the process equation in Eq. (2), and (ii) the 

observation equation in Eq. (3). 

𝑥𝑘+1 =  𝐴𝑥𝑘 + 𝐵𝑢𝑘 (4) 

𝑦𝑘 =  𝐶𝑥𝑘 + 𝐷𝑢𝑘 (5) 

where 𝑥  is the states vector that has displacement and velocity, 

A is the state matrix, B represents the input matrix, it can be 

with single of multi inputs, D is the feedthrough matrix, C is 

output matrix, u contains input and control force (if any), y is 

the output vector.  

   Step ahead, the noise terms (both process and observation) 

are added to the SS formulation to deal with the observer. 

Typical, formulation of the UKF would look like,   

𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑣𝑘) (6) 

𝑦𝑘 = ℎ(𝑥𝑘 , 𝑛𝑘) (7) 

where 𝑣𝑘 represent process noise and 𝑛𝑘 is the observation 

noise. The dynamical systems are described via 𝑓 and ℎ 

functions [18]-[19]. UKF propagates random variables using a 

specific statistical procedure known as the unscented 

transformation (UT). Due the aforementioned procedure UKF 

is derivative free, as a result it is faster than its counterpart EKF 

[18]. In short, a structured transformation, distributed equally 

around the mean (also known as the sigma points) that 

propagate through early mentioned complex nonlinear 

functions. The sigma points (𝑥̂𝑘) are estimated as follows, 𝑥̂𝑘 =

[𝑥̂𝑘−1 ,  𝑥̂𝑘−1 + √(𝐿 + 𝜆)𝑃𝑘−1 ,  𝑥̂𝑘−1 − √(𝐿 + 𝜆)𝑃𝑘−1 ], 

where 𝐿 is the dimension of the states and 𝜆 is a scaling factor. 

There are two main steps for the UKF, they are known as (i) 

the prediction Eq. (6) and (ii) the measurement update Eq. (7). 

𝑥̂𝑘|𝑘−1 = 𝑓(𝑥̂𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1 (8) 

𝑦̂𝑘|𝑘−1 = ℎ(𝑥̂𝑘|𝑘−1) + 𝑣𝑘 (9) 

    A simplified flow-chart of the UKF is depicted in Figure 2. 

The overall estimation is done recursively until the simulation 

ends.  

 

 

Figure 2. Basic steps of the UKF. 

    

The estimation steps of the UKF is given below with more 

detail: 
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(i) The initialization step (setting the states and covariance): 

 

𝑥̂0 = 𝐸[𝑥0], 𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇]  
 

𝑥̂0
𝑎 = 𝐸[𝑥𝑎] = [𝑥̂0

𝑎 0 0]𝑇 , 𝑃0
𝑎 = 𝐸[(𝑥0

𝑎 − 𝑥̂0
𝑎)(𝑥0

𝑎 − 𝑥̂0
𝑎)𝑇] 

 

(ii) The Sigma Points estimation: 

 

𝛾𝑘−1
𝑎 = [𝑥̂𝑘−1

𝑎  ,  𝑥̂𝑘−1
𝑎 + √(𝐿 + 𝜆)𝑃𝑘−1

𝑎  ,  𝑥̂𝑘−1
𝑎

− √(𝐿 + 𝜆)𝑃𝑘−1
𝑎  ] 

 

(iii) The prediction or time update: 

 

𝛾𝑘|𝑘−1
𝑥 = 𝑓[𝛾𝑘−1

𝑥  ,  𝛾𝑘−1
𝑣 ] 

 

𝑥̂𝑘
− = ∑[𝑤𝑖

𝑚𝛾𝑖,𝑘|𝑘−1
𝑥 ]

2𝐿

𝑖=0

 

 

𝑃𝑘
− = ∑ [𝑤𝑖

𝑐(𝛾𝑘|𝑘−1
𝑥 − 𝑥̂𝑘

−)(𝛾𝑘|𝑘−1
𝑥 − 𝑥̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝜏𝑘|𝑘−1 = ℎ[𝛾𝑘|𝑘−1
𝑥  ,  𝛾𝑘|𝑘−1

𝑛 ] 

 

𝑦̂𝑘
− = ∑[𝑤𝑖

𝑚𝜏𝑖,𝑘|𝑘−1]

2𝐿

𝑖=0

 

 

(iii) The measurement update & correction: 

 

𝑃𝑦̅𝑘𝑦̅𝑘
= ∑ [𝑤𝑖

𝑐(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘
−)(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝑃𝑥𝑘𝑦𝑘
= ∑ [𝑤𝑖

𝑐(𝛾𝑖,𝑘|𝑘−1 − 𝑥̂𝑘
−)(𝜏𝑖,𝑘|𝑘−1 − 𝑦̂𝑘

−)
𝑇

]

2𝐿

𝑖=0

 

 

𝑥̂𝑘 = 𝑥̂𝑘
− + 𝑃𝑥𝑘𝑦𝑘

𝑃𝑦̅𝑘𝑦̅𝑘

−1 [𝑦𝑘 − 𝑦̂𝑘
−] 

 

where 𝑃𝑥 is the process noise covariance, 𝑃𝑦 is the measurement 

noise covariance, 𝑤𝑖  is the weight parameters [462]. 

 

3 RESULTS AND DISCUSSION 

The numerical investigations are conducted by adopting a 15 

degree of freedom (DOF) dynamical system. Therefore, the 

mass, damping and stiffness matrices size are 15 × 15, while, 

the mass matrix is assumed to be fully-diagonal. The mass is 

assumed to be equal in each floor and the weight of every floor 

is around 60 × 103 Kg. And the stiffness components of each 

floor are considered 65 × 105 N/m. The damping coefficients 

are estimated using eigenfrequencies and a damping ration of 

2%. The main goal here is to identify all of the 15 damping 

coefficients. To do this, UKF is employed as nonlinear observer 

and the numerical investigations are conducted for 160 sec with 

a sampling rate of 200 Hz. The harmonic type input excitation 

(𝑎̈𝑔 = 1 × sin (16.5𝑡)) is used to excite the structure (see 

Figure 3). The harmonic type input load has been selected due 

to the simplicity of the nature of the load in contrary to complex 

type input e.g. earthquake.  

 

 

Figure 3. Input excitation: full-time series (top), zoomed view 

(bottom). 

 

   The comparison of the original versus identified damping 

coefficients are presented in Figure 4, Figure 5, and Figure 6. 

More precisely, the damping coefficients are separated as  
𝑐1 − 𝑐5 in Figure 4, 𝑐6 − 𝑐10 in Figure 5,  and 𝑐11 − 𝑐15 in 

Figure 6, respectively. The aforementioned separation is done 

for better visualization purpose. Additionally, the values are 

normalized with respect to the top floor’s value for the same 

reason as mentioned earlier.  

 

 

Figure 4. Comparison of the original and identified damping 

coefficients [𝑐1 − 𝑐5]. 

 

It is observed that the accuracy of the estimated damping 

coefficients is in generally good. However, few parameters 

have struggled than their peers, it is due to the size of model’s 

variables, meaning, more parameters lead to complex tuning 

process (e.g. noise level, initial covariances, etc.), similar issues 

have been reported by many [12], [20] and [21]. However, even 

after hard tuning still at the end accuracy may not be as 

expected because it is mentioned earlier that the accuracy is not 

depended on any single variable.   
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Figure 5. Comparison of the original and identified damping 

coefficients [𝑐6 − 𝑐10]. 

 

 

Figure 6. Comparison of the original and identified damping 

coefficients [𝑐11 − 𝑐15]. 

 

There are many underlying uncertainties for parameters 

identification in general and it gets worse when it comes to 

damping. It is due to the nature of the damping itself and there 

are many influencing factors such as amplitudes of the inputs, 

initial covariances and noise. Additionally, the accuracy of the 

estimation/identification may change significantly if the 

sampling rate, duration of the simulation, initial states and 

covariances are not tuned properly. A summary of the 

identified damping coefficients is given in Table 1. Along with 

the early mentioned table a graphical representation of the data 

is shown in Figure 7. It should be noted that the normalized 

errors are estimated based on the last value at the end of the 

simulation. Hence for better understanding, Figure 4, Figure 5, 

and Figure 6 are recommended to see the whole time-series. As 

the parameters take some time to reach in stable or so-called 

steady-state condition hence errors are not isolation to a point 

of time of simulation (for example the identified value in the 

table).  

 

Table 2. Summary of the identified damping coefficients. 

Damping 

coefficients 

Original Identified* Normalized Error 

(%) 

𝑐1 1273.55 1665.95 0.016 

𝑐2 3807.57 5017.11 0.048 

𝑐3  6302.52 501131.164 19.78 

𝑐4 8732.81 493153.22 19.36 

𝑐5 11073.48 53097.78 1.68 

𝑐6 13300.52 25630.01 0.49 

𝑐7 15391.08 28422.90 0.52 

𝑐8 17323.71 47258.82 1.19 

𝑐9 19078.57 42974.68 0.95 

𝑐10 20637.66 411245.85 15.61 

𝑐11 21984.98 36596.87 0.58 

𝑐12 23106.76 3977.92 0.76 

𝑐13 23991.326 7640.00 0.65 

𝑐14 24629.76 28217.52 0.14 

𝑐15 25015.46 75434.76 2.01 

*absolute identified values belong to the end of the simulation 

   Further, the propagation of the uncertainties have evaluated 

and given as the root mean squared (RMS) and the standard 

deviations (STD), those values are estimated and illustrated in 

Figure 8 and Figure 9, respectively.  Both the RMS values and 

STD shows that they are not constant and consistent throughout 

the simulation period. That also justify why the identified 

parameters may have different level of errors based-on at what 

point the parameters are considered. 

 

 

Figure 7. Comparison of the original and identified damping 

coefficients and their errors [𝑐1 − 𝑐15]. 

 

 

Figure 8. Point-to-point error changes during the simulation 

period [𝑐1 − 𝑐15]. 
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Figure 9. Standard deviation changes during the simulation 

period [𝑐1 − 𝑐15]. 

 

Furthermore, to understand the effect of the identified 

damping coefficients, the displacements trajectories of the 5th, 

10th and 15th DOF is evaluated. The displacement of 5th floor is 

depicted in Figure 10, while Figure 11 has the 10th floor 

displacement and the 15th floor displacement is shown in Figure 

12. All of the aforementioned figures have a full-time series 

(top sub figure) and a zoomed view (bottom sub figure). It can 

be observed that all of those figures show a very good accuracy 

in terms of rendering the original behavior of the system.      

 

 

Figure 10. Original versus estimated displacement of the 5th 

floor. 

 

 

Figure 11. Original versus estimated displacement of the 10th 

floor. 

 

 

Figure 12. Original versus estimated displacement of the 15th 

floor. 

 

Last but not least, the acceleration response of those early 

mentioned floors (e.g. 5th, 10th and 15th) has been evaluated and 

presented in Figure 13, Figure 14, and Figure 15, 

correspondingly. Similar to the earlier observation, it has been 

noticed that the estimated acceleration data render the original 

data quite accurately. 

 

 

Figure 13. Original versus estimated acceleration of the 5th 

floor. 

 

 

Figure 14. Original versus estimated acceleration of the 10th 

floor. 
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Figure 15. Original versus estimated acceleration of the top 

floor. 

 

4 CONCLUSION 

This study investigates the possibility of identification full 

damping matrix of a 15 DOF system. The goal is achieved by 

adopting the UKF as an observer. The estimated parameter 

results show very good match with the original data. The 

displacement and acceleration comparison results confirm (due 

to their a very good match) that the identified damping 

coefficient are quite accurate. However, that doesn’t mean that 

all 15 damping coefficients (e.g. 𝑐1 − 𝑐15) are having same 

accuracy. UKF perform recursive estimation during the given 

time-span hence the error of the estimation is optimized by 

minimizing errors. In other words, the accuracy of the states 

(displacements and velocities) are not very much affected due 

to the individual damping coefficient accuracy. In a nutshell, 

the outcome of this study can be summarized that the 

investigated approach might be beneficial for structural health 

monitoring and vibration control applications as the states can 

be updated during the simulation in real-time.  
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ABSTRACT: Integrated Motion Measurement Systems (IMMSs) are multi-sensor systems, based on the principle of integrated 

navigation with inertial sensors as central components and an aiding by, e.g., GNSS receivers. IMMSs can be used to track elastic 

motions as additional degrees of freedom (DOFs) that capture the deformations of the object. To support the estimation of elastic 

properties, additional internal aiding measurements like strain gauges can be implemented. In addition to the raw sensor data, the 

elastic DOFs in the time and frequency domain are possible indicators to be used for Structural Health Monitoring (SHM). 

With the increasing availability of low-cost micro-electro-mechanical systems (MEMSs), combined with their ease of 

implementation, applications in large sensor quantities become feasible. To validate and experimentally test such an integrated 

motion measurement, a test rig with a movable, flexible pendulum beam was designed, to represent an idealization of a mast, rotor 

blade, or aircraft wing. 

In this study a short categorization of possible SHM applications for IMMSs is given, based on previous work and state-of-the-

art SHM approaches. In this context, the principle of IMMS is explained with the experimental realization, validation, and the 

resulting modal characteristics of the elastic DOFs as potential indicators for SHM. Furthermore, the importance of strain gauges 

is investigated with methods to reduce their number by redundant sensors and restricted aiding. 

KEY WORDS: Sensor fusion; Kalman filter; Inertial sensors; Complementary Sensors. 

1 INTRODUCTION 

Integrated motion measurement of flexible structures is the 

expansion of conventional integrated navigation systems, 

typically employing an inertial measurement unit (IMU) aided 

by GNSS (global navigation satellite system) [1-3]. In contrast 

to the classic approach, the object of interest is now developed 

from a simple rigid point with six degrees of freedom (DOFs, 

three for the position and three for the attitude) to an elastic 

body with extra DOFs, capturing elastic deformations. 

Furthermore, additional sensors are distributed on the structure, 

enabling this model extension. Such additional sensors are, on 

the one hand, inertial sensors like accelerometers or gyroscopes 

to expand the system input to accommodate the extra DOFs. 

On the other hand, further GNSS receivers, strain gauges, or 

other sensor types are feasible for aiding [4].   

With the ongoing development and miniaturization of micro-

electromechanical systems (MEMSs), such integrated motion 

measurement systems (IMMSs) can now be realized with cost-

effective sensors. A test rig [5], as well as a hybrid sensor 

system [6] was developed to validate the principle of IMMS on 

a flexible beam. The test rig and beam were designed to 

resemble an aircraft wing, mast, or rotor blade of a wind 

turbine. The validation proved that such low-cost sensor 

systems are suitable for IMMS applications and can reliably 

estimate structural deformations [7]. Concluding, IMMSs for 

flexible structures allow a comprehensive movement 

determination of the object including the rigid body part as well 

as elastic deformation of the structure itself.  

The validation [7] so far relied on the usage of a quantity of 

strain gauges being the same as the number of characteristic 

deformations introduced as additional DOFs. This means that 

with rising complexity of the structure and increased number of 

relevant mode shapes, more strain gauges are needed to 

complete the system requirements. Despite dominant 

advantages like high sensitivity leading to a reliable aiding of 

the selected deformations, certain disadvantages would benefit 

a reduction of these sensors. Such disadvantages are i.e. a 

complex installation process as well as maintenance. Installing 

strain gauges can be a lengthy and complex task that demands 

skill and accuracy. It requires specialized knowledge to ensure 

that the gauges are attached, wired, and calibrated correctly. 

Furthermore, strain gauges are vulnerable to environmental 

factors and therefore need to be shielded adequately. All these 

factors can add to the overall complexity of the project [8]. In 

contrast to that, the application of IMUs and Time-of-Flight 

distance sensors (ToFs) is relatively easy. In the present setup, 

both sensors are located on a circuit board and screwed to the 

structure [6]. It can be beneficial to reduce the usage of strain 

gauges in favor of low-cost, easy to apply sensors like IMUs, 

ToFs, or GNSS receivers for installation and maintenance 

reasons. 

The additional estimation of deformations by a distributed 

sensor network puts IMMSs in the spotlight as a potential 

application for vibration-based structural health monitoring 

(SHM) at a global approach. Unlike local methods, where a 

dense sensor network is setup around a perimeter of expected 

damage, the behavior of the complete structure is evaluated for 

damage diagnosis [9]. An abundance of methods exists in this 

field, however, to the knowledge of the authors, no existing 

method utilizes the estimation of elastic deformations via 

kinematic considerations: 

Integrated Motion Measurement – a Tool for Structural Health Monitoring? 

M. Kohl1, 0009-0000-6512-6219, J. F. Wagner1, 0000-0002-8536-4668 
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In state-of-the-art SHM applications, accelerometers are 

widely used as sensors and typical parameters for damage 

evaluation are modal parameters like natural frequencies and 

mode shapes. Often, the input or output signals are further 

processed by methods like Fast Fourier transform (FFT), or 

Wavelet transform (WT) [10]. While several methods combine 

IMU or accelerometer data with GNSS measurements [11-13], 

the sensor network or node is treated as a rigid body and in 

practice, the displacement of the monitored location is 

extracted for signal evaluation. On the other hand, applications 

with distributed sensors, mostly accelerometers without any 

aiding exist. For example, a network of low-cost MEMS 

accelerometers is applied in a bridge structure for displacement 

and vibration analysis [14]. In this case, modal parameters like 

frequencies, damping ratios and amplitudes are estimated based 

on the model of a damped harmonic oscillator. Subsequently, 

the mode shapes are extracted from the calculated amplitudes 

of the involved sensor locations and modes. In other 

applications, the overall deflection of a bridge [15] or wind 

turbine [16] is reconstructed based on the calculated rotation 

angles of distributed IMUs or accelerometers, gyroscopes, and 

magnetometers respectively. The latter method proposes to use 

the obtained deflection to assess the occurring stresses via a 

Finite Element (FE) simulation for SHM.  

Furthermore, many papers suggest the usage of Operational 

Modal Analysis (OMA). Here, only the measurement data with 

unknown system excitation is used to obtain modal parameters 

of the observed structure. A commercial OMA tool is for 

example used to identify different damage scenarios of an 

open-source benchmark system with distributed 

accelerometers [17]. In other OMA applications, simulated 

accelerometer data of distributed sensors are used to extract 

mode shapes [18] or natural frequencies, mode shapes, and 

curvature mode shapes [19] for floating offshore wind turbines 

and wind turbine blades respectively. Damage detection can 

then be applied by assessing the change of mode shape after 

applying damages [19]. Alternatively, distributed strain sensors 

in the form of Fiber Bragg Gratings (FBGs) can be used for 

damage detection by identifying the change of 

eigenfrequencies, obtained from OMA on a wind turbine 

structure [20].  

In another approach, damage assessment is done by Finite 

Element Model Updating for a laboratory bridge structure 

equipped with accelerometers [21]. Based on the measurements 

obtained, the mass, damping, and stiffness matrices of the FE 

simulation are updated to match the characteristics of the 

measurements. To conclude, there exist a variety of SHM 

methods and applications which could potentially be adapted to 

an IMMS, which aims at a more complementary, integrated use 

of different types of sensors. 

Thus, in this study, a preliminary classification and outlook 

on potential SHM applications by IMMS is conducted. 

Furthermore, the reduction as well as replacement of strain 

gauges with different sensor types and aiding approaches is 

investigated. For that, Section 2 introduces the concept of 

IMMS of flexible structures, including the general system 

equations and the kinematic equations for accelerometers and 

gyroscopes as central components. Section 3 provides the 

application of such a system for a flexible beam, introducing 

unit deformations as characteristic elastic deformations and 

aiding models of different sensor types. The test rig for 

experimental implementation as well as a summary of the 

conducted validation are presented subsequently. Based on this, 

the experimental approach of this study is presented in Section 

4, followed by the presentation and discussion of the results in 

Section 5. A conclusion and outlook finalize the paper in 

Section 6. 

2 INTEGRATED MOTION MEASUREMENTS OF 

FLEXIBLE STRUCTURES 

The main task of IMMSs is to track the propagation with time 

of the motion state vector  

  
T

( ) ( ) ( ) ( )t t t t=x r r Θ , (1) 

which holds the classical navigation parameters position r , 

velocity r , and attitude Θ . The state vector is further 

expanded by additional DOFs reflecting elastic deformations, 

which will be derived within this section. Other typical 

parameters like sensor biases are excluded for a better overview 

[4]. The dynamic behavior of x  can be modelled by a 

nonlinear, kinematical model 

 =x f(x,u)+Gw , (2) 

driven by the input vector ( )tu . In the case of IMMSs, the 

input consists of accelerations and angular rates, measured by 

an array of inertial sensors. Additionally, the stochastic 

measurement noise ( )tw  of the input is mapped to x  via the 

noise matrix G . Inherent errors like sensor noise and bias of 

the input u , in combination with numerical integration leads to 

a rising error if the system state x  is calculated from Equation 

(2). To reduce this error and ensure observability of the system, 

regular correcting measurements are necessary which are 

represented by the aiding vector 

 y = h(x,u)+ v . (3) 

The aiding vector ( )ty  comprises measurements, e.g. from 

GNSS receivers, which can be modeled according to the 

current system state x , input u , and their stochastic 

measurement noise ( )tv  [1].  

The IMMS combines the calculated system state from 

Equation (2) with the aiding Equation (3) to merge different 

sensor types by using the advantages of each sensor type 

against the disadvantages of the other sensors. This so-called 

sensor fusion, as well as solving the differential Equation (2) is 

accomplished by an extended Kalman Filter (EKF). The system 

architecture and signal flow of an EKF, which works according 

to the observer principle, is depicted in Figure 1 [22]. 
 

estimate ŷ  

corrector 
corr

ˆx  

estimate ˆ ,x u  + 

input u 

state x, u aiding y 

–  

system 

model 

object aiding 

device 

aiding 

model 

control 
 

Figure 1. System architecture of IMMS. Adapted from 

Wagner and Wieneke [22]. 

The system state x  and therefore the aiding vector y  results 

from the accelerations and angular rates acting on the object, 
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which are measured by the input u . Based on this input, an 

estimate of the system state x̂  and measurement vector ŷ  is 

calculated. Conclusively, the difference between actual aiding 

measurements and their estimation ˆy - y  is used to calculate an 

updated system state x̂ . 

 Kinematic system model and input 

To complete the state vector from Equation (1), to 

accommodate elastic deformations, and to give an overview of 

the involved input sensors within an IMMS, a simplified model 

of an aircraft fuselage with one wing as a beam is depicted in 

Figure 2. 

 
i   

i    

b   

b   

s   

s   

 j 

IMU 

D 

jr   

j   

j   
,Da    

D   

,Da    

ja   

j   

 

Figure 2. Simplified aircraft model with exemplary input 

sensors. Adapted from Örtel [4]. 

The wing is sketched in its deformed (solid line) and 

undeformed (dashed line) state. In this case, measurements of 

the input vector u  are indicated as red arrows, which are 

comprised of the accelerations , ,,D Da a  , and the angular rate 

D  obtained from an IMU in the center of the system D . 

Furthermore, additional peripheral accelerometers or 

gyroscopes at arbitrary positions j  measure either the 

acceleration ja  or angular rate j . Instead of single-axis 

accelerometers or gyroscopes, complete IMUs can be installed 

as peripheral sensors, however, only one of the signals shown 

is mandatory for the presented system model. The relevant 

coordinate systems are indicated by dotted arrows, which are 

the inertial coordinate system ( , )i i  , the body coordinate 

system ( , )b b  , and the sensor coordinate system ( , )s s  . 

Accelerations and angular rates are measured with respect to 

the inertial coordinate system, in either the body coordinate 

system (IMU in the center D ) or the sensor coordinate system 

(peripheral sensor in j ). The lever arm j  is the distance 

between D  and j . In the case of peripheral accelerometers, 

the kinematic equation of motion of j  is 

( ) ( )2i i b b i
j D j bi j bi j bi bi j= + +  +  +  r r ω ω ω ω , (4) 

with i
jr  comprising ja , which is therefore directly measured 

by the peripheral accelerometer (the left superscript indicates 

the reference system for differentiation). Furthermore, 
i

Dr  

holds the accelerations , ,,D Da a  , whereas biω  contains the 

angular rate D , meaning both vectors are readily available 

from the IMU measurements in D . With lack of low-cost 

angular acceleration sensors, biω  is calculated via numerical 

differentiation of biω . Considering peripheral gyroscopes, the 

kinematic equation of motion becomes 

 
( )d rot 

d

j

j bi
t

= +ω ω . (5) 

Here, jω  is directly measured by the peripheral gyroscope with 

j . Both Equations (4) and (5) contain the unknown lever arm 

j  and its first and second derivative ( b
j  and b

j ) in the case 

of peripheral accelerometers [4]. 

As indicated in Figure 2, the lever arm j  is modeled by a 

rigid part jr  on the undeformed wing plus a time-dependent, 

elastic part ( )j t . Under the assumption of small 

deformations, the lever arm is modeled by a series approach 

 ( )
1

( ) ( ) ( )j j j j jt b t 





=

= +   + r r s r , (6) 

with a selected number   of time-dependent deformation 

variables ( )b t  as a coefficient to their associated shape 

functions ( )js r . The deformation variables act as additional 

DOFs and reflect the current amplitudes of the shape functions, 

which spatially represent the structural deformations. For the 

latter, it is  assumed that ( )js r  only have components in b -

direction, which justifies the usage of single-axis sensors (more 

components require more sensor-axes). Additionally, the shape 

functions are defined in a way that they have the maximum 

displacement value of 1 at least at one point. Due to this 

definition, they will be referred to as unit deformations, of 

which two exemplary selections 1( )js r  and 2 ( )js r  are 

sketched in Figure 3. In this case the rigid part jr  of the lever 

arm is aligned with the  -axis of the body coordinate system. 

 

b   

b   b   

b   

jr   jr   

1 1( )jb s r   2 2 ( )jb s r   

1 1b    
2 1b    

Figure 3. Typical unit deformations. Adapted from Örtel [4]. 

As a result, the superposition of all selected unit deformations 

multiplied with their current amplitudes should reflect the total 

deformation of the structure. Consequently, the choice of type 

and number of unit deformations is essential for a proper 

approximation of the structure. It has been proven that the 

eigenmode shapes are a reasonable, but not mandatory choice 

for the unit deformations [4,7]. 

Based on Equation (6), the first and second derivative of j  

can be formulated with 

 

( )

( )

1

1

( ) ( )

( ) ( )

b
j j

b
j j

b t

b t

 



 





=



=

= 

= 





s r

s r

. (7) 

With the abbreviation ,( )j j =s r s , Equations (7) are 

substituted into (4), to deliver the set of Equations 

 
(

)
1

1 1 1,1 ,

( ) , , , , , ,

, , , , , , , ,

i i i
D bib t f

b b b b

 

  

= r r r ω

s s
, (8) 

for 1, , =   selected unit deformations and 1, ,j =  

peripheral accelerometers. Substituting Equation (6) into (5) 

yields 

 ( )1 1,1 ,( ) , , , , rot , , rot bib t f  = ω ω ω s s , (9) 

for 1, , =   selected unit deformations and 1, ,j =  

peripheral gyroscopes [4]. 
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Depending on the type of peripheral sensor being either 

accelerometer (acc) or gyroscope (gyro), the state vector from 

Equation (1) becomes 

 
 

T

acc

T

gyro

 =  

                or   

i D i D

i D i D

  

=

x r r Θ b b

x r r Θ b
, (10) 

according to the general form of Equation (2). All selected 

deformation variables 1, ,b b  and their derivatives are 

summarized in the vectors b  and b  respectively. The system 

input becomes 

 
 

 

T

acc , ,

T

gyro , ,

=  

              or   

D D D D

D D D

a a

a a

 

 

 

=

u a

u ω
, (11) 

with a  and ω  holding all measured peripheral accelerations 

1, ,a a  and angular rates 1, ,   . To maintain the 

observability of the IMMS, the number of peripheral sensors 

must be equal or higher than the elastic DOFs    . A further 

condition is that the chosen unit deformations need to be linear 

independent, and the sensor positions must be chosen 

adequately [4]. 

 Aiding equations and measurements 

The aiding Equation (3) relates the actual aiding measurements 

y  to their estimate ŷ , to correct the state estimate x̂  according 

to Figure 1. To achieve that, the measurements need to be 

reconstructed from the system state, which corresponds to the 

right-hand side of Equation (3). Aiding equations can be 

divided into two principles, with applications in Section 3:  

External aiding: The systems providing the measurements 

are independent and located outside of the object. A prominent 

example of such an aiding system are GNSSs. If the system, i.e. 

provides a position or distance reference of a point j, the 

measurement can be related with a function including the 

position, orientation, and the deformations [4]. 

Internal aiding: The measurement systems are located on the 

structure. Strain gauges, for example, provide data which can 

be related to the elastic DOFs only [4]. 

3 IMMS APPLICATION OF A FLEXIBLE BEAM 

For experimental validation and application of IMMS of 

flexible structures, the simplified aircraft model from Figure 2 

was reduced to a suspended, elastic pendulum as shown in 

Figure 4. This setup should abstract the aircraft fuselage and 

one wing as the pendulum bearing D and the pendulum itself. 

This representation also holds for a rotor or mast of a wind 

turbine and is therefore generally applicable. Considering 

technical limitations and the desired realization, all inertial 

sensors are applied in the form of a six-axis IMU measuring 

three accelerations and three angular rates. This means, that an 

IMU is placed in D, measuring ,Da  , ,Da  , and D , as well as 

in sj , measuring jsa  and js . As a result of restricted GNSS 

visibility due to an indoor test rig, Time-of-Flight distance 

sensors (ToFs) are placed alongside the peripheral IMUs, 

measuring the distance j  from the point j  towards a 

reflector plane, placed at the known location ref .d  Internal 

aiding is provided via strain gauges, which are applied as a 

wheatstone full bridge, measuring the bending strain j  in the 

location j  close to the IMU. The setup is completed by a high 

precision distance sensor, providing the displacement of the 

bearing D . The Pendulum is a steel sheet of the material 

DX51D+Z, with the dimension 4 m x 0.2 m x 0.002 m [5,7].  
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s   

ja   
j   

j   

,sj j   

j   

refd   

j   

D 

 

Figure 4. Experimental IMMS setup [7]. 

The state vector of the IMMS can be taken directly from 

Equation (10), with 

  
T

, i D d h = =r Θ  (12) 

and h  being the displacement of D  in i -direction. The input 

follows from Equation (11) without adjustments, including 

1,...,s sj =  peripheral accelerometers or gyroscopes. 

Ultimately, the aiding vector becomes 

  
T

acc gyro D D= =y y ρ ρ ρ ε . (13) 

The vectors ρ  and ε  hold the data set of all measured distances 

1, ,    and bending strains 1, ,    from 1,...,j =  

utilized ToFs and 1,...,j =  strain gauges. The position 

measurement Dρ  contains the horizontal distance of the 

bearing D  corresponding to d  and a pseudo-measurement of 

0 corresponding to h  respectively. In the final application, not 

all available sensor signals are utilized, meaning that an IMU is 

used without the accompanying ToF or vice versa. Therefore a 

distinction between placement and number of the sensors at 

hand s ,  , and    must be made. 

 Unit deformations 

The unit deformations of the pendulum are acquired from the 

eigenmodes of the linearized structure. These were calculated 

with a Finite Element (FE) analysis in ANSYS®. As indicated 

in Figure 2 and 3, the unit deformations are relevant from the 

perspective of the object and therefore should be transformed 

into body coordinates. The first six transformed modeshapes 

are plotted in Figure 5, where the first two modes of the 

structure have similar shape due to the transformation. As a 

result, these two modes are merged to a combimode, since their 

distinction by the system can not be guaranteed [4,7]. 
Consequently, the first six modeshapes are represented by the 

first five unit deformations 1, ,5 = , with the third mode 

corresponding to the second unit deformation, etc. The 

eigenfrequencies as well as the associated modes of each unit 

deformation are listed in Table 1. 
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Figure 5. First six transformed modeshapes [4,7]. 

Table 1. Allocation of eigenmodes to unit deformations with 

corresponding frequencies [7]. 

Unit def. 1 2 3 4 5 

mode 1 2 3 4 5 6 

 [Hz]if   0.302 0.860 1.909 3.492 5.262 8.318 

 Beam deflection, curvature, and aiding equations 

To give insight into the applied aiding measurements and 

equations, a sketch of the randomly deformed pendulum is 

shown in Figure 6. Furthermore, an arbitrary point (or sensor) 

j, placed at position j  on the undeformed wing with 

deformation j  is highlighted. The sensor coordinate system 

s is rotated relative to the body system b by the angle ,j sb , 

whereas b is rotated by   relative to the inertial system i. 

 

b   

b   

b   

b   

s   

s   

s   

s   

 j 
j ,j sb   j   

1 

j   
j   

i      

Figure 6. Relation between the local rotation and gradient of 

the bending line. 

Considering 1,...,j =  arbitrary peripheral points, the elastic 

deformation of the object at each location can be reconstructed 

with 

 

1 1,1 ,1 1

1, ,

s s b

s s b  



 

     
     

=  = 
     
          

S b  (14) 

and the matrix of unit deformations S . With the angle   being 

permanently calculated as part of the state vector, the location 

of j  in the inertial coordinate system is given by the 

transformation 

 
cos sin

sin cos

i j j

i j
i j jd

  

  

−    
= =     −     

r  (15) 

for small deformations. Under the same condition, the rotation 

,j sb  from the body to the sensor coordinate system can be 

approximated by the gradient of the bending line j . 

Considering the rotation of b relative to i, the total rotation of s 

relative to i can be formulated with  

   

1 1 1,1 ,1 1

1, ,

s s b

s s b   

 

  

 



 

        
         + = +  = + 
       
               

S b  (16) 

and  

 
, j

j

b

s
s







=


 (17) 

being the gradient of the unit deformations [4]. 

While the aiding measurements Dρ  and Dρ  directly 

correspond to the system states Dr  and Dr , the remaining 

aiding measurements have to be viewed in detail: 

ToFs: The distance j  is measured perpendicular to the local 

sensor position as sketched in Figure 7. With the location of the 

sensor, calculated from Equation (15), and the rotation j  from 

Equation (16), the distance measurement can be modeled by the 

function 

 
ref

( , , )
cos

i j

j

j

d
h d


 



−
= = b . (18) 
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Figure 7. Distance measurement of peripheral ToF sensor.  

Strain gauges: Considering the area moment of inertia and 

the moment of resistance, the bending strain of a rectangular 

beam of thickness *h  can be expressed for small deflections 

with 

 

1 1,1 ,1 1

1, ,

*

2

s s b
h

s s b



  







 

      
      = −  =  =
     
           

S b h(b)  (19) 

for   applied strain gauges. 

 Test rig 

The implementation of the IMMS setup from Figure 4 is 

implemented by a test rig shown in the big picture of Figure 8. 

The movable pendulum 1 is suspended with a plain bearing 2 

from a guidance rail 3. A reflector plane 4 for the ToFs 

completes the general structure. To impose movements d on the 

pendulum, a linear spindle actuator is mounted underneath the 

guidance rail and connected to the bearing suspension. The 

reproducible excitation of the system can then be used to 

provide comparability between different measurements and 

input for simulations [5].  

The intended input and aiding measurements of Equations 

(11) and (13) are realized by a hybrid sensor system [6], 

developed for this application. The system consists of multiple 

interconnected printed circuit boards (PCBs) as shown in the 

small picture of Figure 8, which accommodate an IMU, a ToF, 

along with an analogue to digital converter (ADC) to connect 

the strain gauges. An additional PCB reads the measurements 

of the displacement sensor in the bearing. Controlled by a 

Master PCB, the measurement system provides simultaneous 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-070 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 468 

measurements of the implemented sensor types at multiple, 

selectable positions. 

 

Figure 8. Test rig (big picture) and PCB (small picture) with 

IMU 1b, ToF 2b and ADC 3b [5].  

 Validation results 

For validation, a practicable and realistic displacement function 

for the actuator was created. The displacement consists of back-

and-forth movements, superimposed by frequency components 

up to the fifth eigenfrequency of Table 1. The resulting 

displacement ( )d t  is plotted in Figure 9, including an initial 

resting phase of 60 s for initialization purposes. As comparison 

parameters, the horizontal displacement d  of the bearing, the 

angular orientation  , and the pseudo-elastic deformation e  

were chosen, the latter being the joint-related deformation and 

calculated by   according to Equation (14) at the lower tip of 

the pendulum. To evaluate the IMMS, the FE model from 

Section 3.1 was simulated with the displacement input 

measured by D . To create a realistic scenario, an artificial 

white noise is added to D , which is in the order of magnitude 

of the sensor noise of the ToFs.  

 

Figure 9. Displacement function ( )d t  [7].  

It could be proven that for this excitation, the errors of 

attitude   and pseudo-elastic deformation e  converge with 

four involved unit-deformations 4 =  and four peripheral 

sensors (accelerometers or gyroscopes) 4s    = = = . The 

position error d  was insignificantly affected by the inclusion 

of the elastic DOFs. A comparison of the attitude   and 

pseudo-elastic deformation e  is shown in Figure 10 for a time 

interval with relatively high dynamics. The simulated 

parameters (sim) are compared against the accelerometer (acc) 

and gyroscope (gyro) configuration of the converged case. 

Despite time intervals with high dynamics, resulting in large 

deflections and other nonlinear effects, the results indicated that 

the IMMS delivers reliable estimates of the classical navigation 

parameters and the elastic deformation. A clear difference 

between the two sensor types in terms of the error values could 

not be determined, which can be explained by the relatively 

strong aiding of the deformation variables b  by the 

comparatively accurate strain gauges.  This resulted in a 

convergence of the estimated deformation variables of both 

configurations towards the simulated values, as shown in 

Figure 11. Furthermore, the plot shows that an excitation of 

four involved unit deformations from Table 1 could be 

registered, showing frequency components of the 

corresponding eigenfrequencies. Although higher unit 

deformations have less impact on the total deflection, their 

estimation in time and frequency domain can give valuable 

insight into the structural behaviour.  

 

Figure 10. Attitude ϕ and pseudo-elastic deformation e  with 

nearly identical results for “acc” and “gyro”.  

 

Figure 11. Deformation variables b [7].  

For the scenario at hand a sample rate of 200 Hz of the IMUs 

and strain gauges turned out reasonable, whereas the distance 

measurements were sampled with 33.33 Hz due to technical 

limitations. 

 Modal characteristics of deformation variables 

In addition to the conducted validation, the modal 

characteristics of the deformation variables are shortly 

investigated in this Subsection, following the state-of-the-art 

criteria in SHM from Section 1. For that, the single-sided 

amplitude spectrum of the deformation variables of the time 

interval from Figure 11 are plotted in Figure 12 for the “acc” 

and “gyro” configurations. To obtain the amplitude spectrum, 

the according signals are processed via FFT with a Hamming 

window and zero-padding to smooth the results. The 

eigenfrequencies of Table 1 are highlighted with red dotted 

lines, whereas the eigenfrequencies of the according unit 

deformations are marked with red dashed lines. 

While all amplitudes show distinctive peaks at their 

according frequencies, a coupling of the different mode shapes 

is clearly seen, especially for the fourth unit deformation. This 

can be explained by the multiple nonlinearities of the system, 

like the Coulomb-Friction in the bearing [7]. Furthermore, the 

displacement function of Figure 9 has components of the fourth 

eigenfrequency during the analyzed time interval, which 

explains the strong coupling of the fourth deformation variable. 

To minimize the nonlinearities, the bearing was fixed in a 
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purely simulative model, forcing the attitude 0 =  at all times. 

Subsequently, the sensor data were obtained by the FE 

simulation with the same input of Figure 9. For a short 

overview of the fundamental changes by the linearization of the 

system, the deformation variables 3b  and 4b  are plotted in 

Figure 13 for the same selected time interval. Due to the system 

changes, a combimode according to Figure 5 is no longer 

necessary. Therefore the deformation variables 3b  and 4b  of 

Figure 13 correspond to 2b  and 3b  of Figure 11. 

 

Figure 12. Single-sided amplitude spectrum of the 

deformation variables from Figure 11.  

 

Figure 13. Deformation variables 3b  and 4b  for a simulated 

linearized system due to a fixed bearing ( 0 = ).  

Analogously, the single sided amplitude spectrum with the 

adapted eigenfrequencies is shown in Figure 14. Figures 13 and 

14 show that a decoupling of the included deformation 

variables can be observed. This indicates that if the unit 

deformations are set according to the mode shapes of the 

structure, the deformation variables reflect the associated 

modal parameters of natural frequencies and modal damping. 

The prerequisite for this is, however, that the system is linear 

or at least linear during certain time intervals. 

 

Figure 14. Single-sided amplitude spectrum of the 

deformation variables 3b  and 4b  from Figure 13. 

4 EXPERIMENTAL APPROACH 

This part of the study follows the experimental validation of 

IMMS [7], which was recapped in Section 3.4, to assess the 

importance of strain gauges. It is based on a pendulum 

equipped with 18 PCBs (holding IMUs and ToFs) and 12 strain 

gauge arrays (wheatstone full bridge), which were placed to 

investigate different configurations. According to each chosen 

sensor configuration, the optimal set of sensors is selected 

according to the method of Effective Independence [4,23] out 

of the available test beam. In analogy to the conducted 

validation, the system is excited by the displacement function 

of Figure 9. Furthermore, only configurations with four 

additional unit deformations 4 =  are investigated. Due to the 

similarity of the results from Figure 10 and 12, the 

configuration with four unit deformations and four peripheral 

gyroscopes, strain gauges and ToFs (gyro: 4s    = = = ) 

serves as a new benchmark (bm) to compare and evaluate the 

acquired results. The comparative parameters are the attitude 

angle   of the bearing, the pseudo-elastic deformation e , as 

well as the deformation variables 1 4,...,b b . Of these, the error 

values are evaluated by calculating the root mean square error 

(RMSE) according to 

 
2

rmse bm,

1

1
ˆ( )

N

i i

i

x x x
N =

 = −  (21) 

for an arbitrary variable x  with N samples. Again, the sample 

rate of the input vector and strain gauges (if used) is set to 200 

Hz, while the ToFs and the linear distance sensor are set to 

33.33 Hz as in Section 3.4.  

To evaluate the importance of strain gauges, or more 

precisely the accurate aiding of the deformation variables in 

IMMS applications, the experimental procedure is divided into 

the following steps: 

• Removing strain gauges: 

In the first step, an accelerometer and gyroscope 

configuration with four peripheral inertial sensors and 

ToFs (acc/gyro: 4,  0s    = = = ) are compared 

against the benchmark. 

• Extended aiding by redundant ToFs: 

To compensate for omitted strain gauges, configurations 

with varying number of peripheral ToFs 4,...,13 =  and 

redundant inertial sensors 4,5s = are created.  

• Aiding with reduced number of strain gauges: 

A reduced number of strain gauges 1,2,3 =  are 

employed. Even though measurement Equation (19) 

becomes underdetermined in this case, aiding can still be 

employed via the EKF. Based on the preceding results, a 

reduced set of deformation variables ,aidedb  is aided by the 

strain gauges, leaving a remaining set of unaided 

deformation variables ,unaidedb . So, the strain gauges are 

selected in such a way that their placement is optimal with 

respect to ,aidedb . If the unaided deformation variables 

,unaidedb are already accurately estimated by e.g. redundant 

ToFs, their contribution to the bending strain can be 

subtracted from Equation (19). Accordingly, the matrix 

S  is separated, resulting in the adapted aiding Equation  

 ,unaided ,unaided ,aided ,aided ,aided( )     −  =  =ε S b S b h b . (22) 

Consequently, the left-hand side of Equation (22) is the 

adapted bending strain, associated to the aided deformation 

variables. The resulting configurations are supplemented 

by additional ToFs 4,...,13 = . 
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Depending on the degree of observability and quality of 

aiding measurements, a careful filter tuning of the EKF can 

become a crucial task [24]. This applies especially to the cases 

of removed and reduced strain gauges. In these cases, the 

settings of the EKF are adapted in an appropriate range. 

However, by applying extensive filter tuning, the results can be 

further improved for any of the applied methods. 

5 RESULTS 

The results are presented in the order as they are introduced in 

Section 4. The configurations in the following subsections will 

be either with accelerometers (acc) or gyroscopes (gyro) as 

peripheral input sensors. If not specified otherwise, the number 

of peripheral sensors are set according to the case with removed 

strain gauges ( 4, 0s    = = = ).  

 Removing strain gauges 

To demonstrate a general effect on the estimated system states 

by removing the direct aiding of the deformation variables, the 

estimates of attitude   and pseudo-elastic deformation e  are 

displayed on the left side of Figure 15 for the whole time 

interval of excitation. 

 

Figure 15. Estimated attitude ϕ and pseudo-elastic 

deformation e (left), and overscaled beam deformation at  

 t = 230 s (right) for the acc and gyro configuration without 

strain gauges, compared to bm.  

Both configurations show a gradual drift from the bm-values 

for both selected parameters in opposite directions, meaning 

that the attitude diverges contrary to the pseudo-elastic 

deformation. This behavior becomes apparent by visualizing 

the deformed, suspended beams at time 230 st =  on the right 

side of Figure 15. The graph displays the three configurations 

including the bearing D  indicated by the black circle. The 

deformations of the beam are overscaled to emphasize the 

occurring effect. Additionally, the positions of the involved 

ToFs are marked by dots on the deformed structures. The 

tangent lines on the beam origin is plotted by dash-dotted lines, 

visualizing the attitude   against an imaginary vertical line. 

Although the positions of the ToFs are accurate within the 

limits of their sensor error, the bending lines show a clear 

mismatch with respect to the benchmark. Without direct aiding 

of the elastic deformations and restricted accuracy of the ToFs, 

the aiding Equation (18) allows seemingly arbitrary 

combinations of   and b  to match the distance measurements. 

Ultimately, an overestimated attitude is compensated by an 

underestimated deformation.   

In analogy to Figure 11, the deformation variables are plotted 

for the same time interval of high dynamics in Figure 16. The 

first deformation variable 1b  is estimated accurately. This can 

be explained by its comparatively high amplitude, which can 

be resolved by the distance measurements. The deformation 

variables 2 4 to b b  display the observed drift, however in phases 

of high amplitude the estimations are partially corrected 

towards the bm values (especially 2b  and 3b ). Furthermore, the 

gyro configuration displays a smoother and qualitatively more 

accurate representation of the deformation variables than the 

acc configuration.  

 

Figure 16. Estimated deformation variables b for the acc and 

gyro configurations without strain gauges, compared to bm.   

 Aiding by redundant ToFs 

To compensate for the effects displayed in Figures 13 and 14, 

varying number of ToFs 4,...,13 =  are employed in 

combination with 4,5s = . The RMSE of   and e  according 

to Equation (21) is plotted in Figure 17 for the new acc and gyro 

configurations. With one additional ToF 5 = , both error 

values for both sensor types can be reduced significantly. By 

further increasing   the errors can be further decreased, 

however both error values converge towards a limit. Redundant 

inertial sensors show no positive effect, which is why they will 

be dismissed for further evaluation. 

 

Figure 17. RMSE of the estimated attitude ϕ and pseudo-

elastic deformation e for the acc and gyro configuration with 

additional ToFs, compared to bm.  

To show the reduced drift, the attitude   and pseudo-elastic 

deformation e  for two exemplary acc and gyro configurations 

with 10 =  is plotted in Figure 18 for the respective time 

interval. All cases display a satisfactory estimate, with the 

unwanted drift significantly reduced. 

Accordingly, the deformation variables are displayed in 

Figure 19, analogously to Figure 16. While still displaying a 

reduced deviation, 2 4 to b b  are no longer shifted exclusively in 
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the negative direction. Again, the gyro configuration displays a 

superior behavior regarding the deformation variables.  

 

Figure 18. Attitude ϕ and pseudo-elastic deformation e for 

exemplary acc and gyro configurations with additional ToFs, 

compared to bm. 

 

Figure 19. Estimated deformation variables b for the acc and 

gyro configurations with additional ToFs, compared to bm.    

Overall, the negative effects of removing the direct aiding of 

the deformations can be significantly compensated (but not 

prevented by placing additional ToFs on the structure). This is 

because the aiding is carried out by Equation (18), which also 

involves deformation variables. However, the Equation is 

highly nonlinear, and the measurement accuracy and frequency 

are not sufficient to distinguish the low amplitudes of higher 

deformation variables. The higher accuracy of gyroscopes can 

be explained by the one-time integration of b  according to 

Equation (10) in comparison to the double integration of b  for 

accelerometers. 

 Aiding with reduced number of strain gauges 

From Section 5.2 it becomes apparent that additional ToFs 

can not fully replace all removed strain gauges. However, it 

could be proven that the first deformation variable 1b  is 

sufficiently aided by a system without strain gauges. Building 

on that, configurations with 1,2,3 =  are created with the 

following specifications of Equation (22): 

• 1 = : T
,aided 2 3 4[ ]b b b =b ,  

• 2 = : T
,aided 3 4[ ]b b =b , 

• 3 = : T
,aided 2 3 4[ ]b b b =b . 

The selection is based on the observation that a set of aided 

variables equal to the number of the strain gauges used turned 

out to be beneficial. Nevertheless, aiding only one deformation 

variable was not feasible in the present setup. 

In analogy to Figure 17, the RMSE of   and e  are plotted 

in Figure 20 including the comparative values of the gyro 

configuration 10 =  from the previous Section with a black, 

dash-dotted line. By employing at least one strain gauge, the 

errors are comparable or better to the one achieved with 

additional ToFs. By increasing their number, the errors can be 

further decreased. Regarding the attitude and pseudo-elastic 

deformation, the gyro configurations with 2 =  displays a 

superior behavior.  
 

 

Figure 20. RMSE of the estimated attitude ϕ and pseudo-

elastic deformation e for the acc and gyro configuration with 

reduced number of strain gauges, compared to bm.  

Assuming an adequate estimation of 1b  and 2b  according to 

the previous Sections, the RMSEs of 3b  and 4b  are further 

assessed in Figure 21. The errors decrease with increasing 

number of strain gauges, whereas the gyro configurations show 

superior characteristics for each number of strain gauges. 
 

 

Figure 21. RMSE of the estimated deformation variables 3b  

and 4b  for the acc and gyro configuration with reduced 

number of strain gauges, compared to bm. 

The results suggest that a configuration with gyros and one 

strain gauge is comparable to accelerometers with two strain 

gauges and the same number of ToFs. Thus, the estimation of 

3b  and 4b  for two corresponding configurations (acc: 

2,  10  = = , gyro: 1,  10  = = ) is plotted in Figure 22 

for the selected time interval. Despite comparable RMSE 

values, the estimation of the gyro configuration approaches the 

bm values significantly better. 
 

 

Figure 22. Estimated deformation variables 3b  and 4b  for the 

acc and gyro configurations with reduced number of strain 

gauges. 

Concerning redundant ToFs and a reduced number of strain 

gauges, an attitude error of around 0.3    corresponds to a 
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deflection of roughly 0.02me  , which matches the error 

values of Figures 15 and 18. This error is within the limit of 

accuracy of the measurements and modelling errors. The gain 

in accuracy of the deformation variables is the result of their 

direct aiding through Equation 22. Nevertheless, the attitude 

and total deflection can not be further improved. Although the 

error 4,rmseb  is roughly the same according to Figure 21 for 

the inspected case in Figure 22, the latter shows a superior 

performance of the gyro configuration. This can be achieved, 

even with fewer strain gauges than the accelerometer case. 
 

6 CONCLUSIONS 

In this study, IMMS are presented as a comprehensive tool 

for determining rigid and elastic movements of a wide range of 

possible structures. In addition to a general categorization 

within possible SHM applications, the reduction of high-

maintenance sensors like strain gauges was investigated. 

This study showed that the direct aiding of the deformation 

variables is crucial for a precise estimation of the state 

variables. It could be shown that redundant position aiding via 

distance sensors can not fully compensate for a loss of strain 

sensors, but the negative effects could be largely reduced. 

However, a reduction in strain gauges is feasible without an 

essential loss in accuracy. This can be achieved by aiding larger 

deformations with the available distance sensors and small 

deformations by the accurate remaining strain gauges.  

With respect to the deformation variables, it could be shown 

that modal parameters are represented within the time and 

frequency domain. Even for a nonlinear system, the 

deformation variables show distinctive frequency peaks at their 

corresponding eigenfrequencies of the linearization. A linear 

simulated system holds the potential to estimate the modal 

amplitudes in the time domain during operation. With current 

SHM approaches using modal parameters like 

eigenfrequencies, mode shapes, or damping ratios, the 

estimation of the deformation variables in time and frequency 

domain are potential parameters to be analyzed. 

Eigenfrequencies could thus be extracted from the frequency, 

while the modal damping ratio could be extracted from the time 

domain. Both time and frequency domain of the deformation 

variables could also serve as an input for Finite Element Model 

Updating to localize simulated damage mechanisms. 

Additionally, the estimated deformation and curvature of the 

structure can indicate changes in the mode shapes due to 

damage. Furthermore, the precise movement analysis can give 

insight into loads and strains during operation and can therefore 

be included in the estimation of the remaining service life. In 

conclusion, this study could show the existing potential of 

IMMS for SHM. 

Next steps will apply artificial “damages” in the form of 

additional masses or stiffeners to the test beam. Subsequently, 

the influence of these structural changes on the behavior of the 

deformation variables in time and frequency domain will be 

analyzed according to the presented state-of-the-art methods in 

SHM. Further steps could replicate the linearized system with 

a fixed bearing and a sensitivity analysis regarding sensor 

requirements like accuracy and noise in combination with 

quantity. Ultimately, the benefit of IMMS in relation to state-

of-the-art methods needs to be proven experimentally. 
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ABSTRACT: Solving structural dynamic equations is crucial for evaluating the reliability and safety of civil infrastructures such 

as bridges, airport runways and railways under various loads. Currently, the Neural Operator (NO) shows great potential in solving 

structural dynamic equations under various excitations and boundary conditions without retraining and are capable of zero-shot 

learning. However, there has been a dearth of research into providing prediction errors and explicit uncertainty quantification of 

the operator-learned model for computing structural responses in different data regimes. This research aims to approximate the 

solution operator of structural dynamic equations with uncertainty quantification. Deep evidential learning is introduced to 

establish the Evidential Neural Operator (ENO) and the epistemic uncertainty of structural responses can be obtained. An 

illustrative example is given in this paper, which shows that the E-NO model can effectively identify the well-prediction condition 

and the worse-prediction condition. This work can provide an end-to-end framework for building surrogate models of real-world 

structures, which can rapidly compute structural responses with uncertainty. 

KEYWORDS: Structural Dynamics; Uncertainty Quantification; Evidential Deep Learning; Neural Operator. 

1 INTRODUCTION 

The uncertainty analysis of structural systems is the key to 

ensuring the safety and reliability of structural design. The 

conventional physical model-based method can analyze the 

uncertainty of the forward computation under random material 

parameters, geometric dimensions or external excitation 

through the probabilistic or non-probabilistic framework [1]. 

Probabilistic uncertainty analysis methods such as Monte Carlo 

simulation [2], [3], stochastic finite element method [4], [5], 

etc., statistically sample uncertainty propagation on uncertainty 

parameters by calculating models or conducting experiments. 

Non-probabilistic methods such as interval analysis [6], [7] and 

fuzzy theory [8], [9], which are different from probabilistic 

methods, are suitable for analyzing the epistemic uncertainty 

caused by a lack of knowledge in the absence of deterministic 

prior information. The above methods are versatile and flexible 

in the form of the model, but the calculation cost would greatly 

increase to conduct the uncertainty analysis of large-scale and 

high-dimensional structures. 

With the breakthrough of deep learning technology, neural 

operators [10], [11] can effectively learn the global mapping 

relationship of complex systems, especially for the cross-

resolution solution of high-dimensional and nonlinear 

problems, which reduces the computational cost compared with 

traditional physical modeling methods. Chawit et al. 

established the vehicle-bridge interactive neural operator as a 

surrogate model of the bridge structure, which can more 

accurately predict the structural response under different 

structural damage fields than the traditional finite element 

model [12]. Ding et al. solved the coupled differential equations 

of structural dynamics based on the physics-informed neural 

operator (PINO-CDE). Also, PINO-CDE provides a higher 

resolution for uncertain propagation tasks, which takes less 

than a quarter of the computing time compared to the 

probability density evolution method [13]. 

However, the neural operator mapping process is nonlinear 

and non-intuitive. The results are affected by multiple sources 

of uncertainty, such as aleatoric uncertainty and epistemic 

uncertainty [14], [15]. Most of the existing studies focus on the 

probability distribution of the output results of neural operators, 

but it is difficult to distinguish the sources of quantitative 

uncertainty. This fuzziness may lead to misjudgment in 

practical engineering based on computing results. While deep 

evidential learning provides a feasible path for aleatoric and 

epistemic uncertainty qualification of regression problems [16]. 

Therefore, how to integrate deep evidential learning and neural 

operators to build an efficient and interpretable computational 

uncertainty framework for dynamic structures is worth 

exploring. 

In this work, we propose an evidential neural operator, 

extending evidential deep learning to a more flexible and 

complex neural network like the Fourier neural operator. For 

parametric structural dynamic systems with stochastic 

structural parameters and load excitation, ENO can 

quantitatively distinguish aleatoric uncertainty and epistemic 

uncertainty in the forward computation without retraining. The 

multi-task regularizer is introduced in ENO to improve 

adaptability to high-dimensional scenarios and complex 

structural systems, by flexibly controlling the weights of 

regularizer. A single-degree-of-freedom system is provided as 

a numerical example to verify the accuracy of uncertainty 

estimation and quantization distinction. 

2 THEORETICAL BASIS 

 Fourier Neural Operator 

Fourier Neural Operator (FNO) can capture high-frequency 

characteristics of dynamic systems by Fast Fourier Transform 

Solving structural dynamics with uncertainty quantification  

via evidential neural operators 
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and spectrum convolution operation and is suitable for solving 

structural vibration differential equations to simulate the 

dynamic behavior of structural systems. 

Besides, performing convolution in Fourier space greatly 

reduces the computational complexity. For a single hidden 

layer (1), the Fourier neural operator utilize the kernel-integral 

operator, extend deep neural networks to infinite dimensions： 

(𝑁𝑙𝑉)(𝑥) = 𝜎(𝐴𝑙𝑉(𝑥) + 𝐵𝑙(𝑥) + ∫ 𝐾𝑙(𝑥, 𝑦)𝑉(𝑦)𝑑𝑦
0

𝐷
)   (1) 

Due to, 

𝐾𝑙(𝑥, 𝑦) = 𝐾𝑙(𝑥 − 𝑦)                         (2) 

∫ 𝐾𝑙(𝑥 − 𝑦)𝑉(𝑦)𝑑𝑦
0

𝐷
= 𝐾𝑙 × 𝑉                   (3) 

Using the Fourier transform result in (4)： 

𝐾𝑙 × 𝑉 = 𝑓−1(𝑓(𝐾) ∙ 𝑓(𝑉))                    (4) 

Hence, the computational complexity can be reduced from 

O(N2) to O(Nlog(N)). FNO shows great potential for fast and 

accurate computation of oscillatory differential equations. 

 Evidential Neural Operator 

The sources of uncertainty can be divided into aleatoric 

uncertainty and epistemic uncertainty. Evidential theory 

assumes that the prediction target Zi can be independently 

sampled from the Gaussian distribution. Then, a probabilistic 

estimate of its mean and variance is required. 

The normal-inverse-gamma (NIG) prior distribution is 

introduced in evidential regression [16]. The mean μ is assumed 

to follow a Gaussian distribution, and the variance σ is assumed 

to follow an inverse gamma distribution. By marginalizing μ 

and σ, the model evidence can be expressed as a Student-t 

distribution (5)： 

𝑝(𝑧𝑖|𝜃) = 𝑆𝑡(𝑧𝑖 ; 𝛾,
(1+𝜏)𝛽

𝜏𝛼
, 2𝛼)                 (5) 

where θ represents the combination of parameters of the NIG 

distribution. γ represents the expectation of the mean μ. τ is the 

precision parameter of the Gaussian distribution. α and β are 

the shape parameters of the inverse gamma distribution. 

Combining the high-dimensional computing capability of 

FNO and the ability of NIG high-order distribution for 

capturing data diversity and uncertainty. The evidential neural 

operator is proposed to convert the model output into four 

parameters of NIG distribution. The loss function (6) of the 

evidential neural operator is designed for uncertainty sources, 

which can be divided into two parts: negative log-likelihood 

loss and evidence regularizer. 

ℒ𝐸𝑁𝑂 = ℒ𝑁𝐿𝐿 + ∑ 𝜆𝑖ℒ𝑅𝐸𝐺𝑖
𝑛
𝑖=1                 (6) 

where, 

ℒ𝑁𝐿𝐿 =
1

2
log (

𝜋

𝜏
) − 𝛼 log(𝜙) + (𝛼 +

1

2
) log((𝑧𝑖 − 𝛾)2𝜏 +

𝜙) + log⁡(
Γ(𝛼)

Γ(𝛼+
1

2
)
)  

ℒ𝑅𝐸𝐺𝑖 = |𝑧𝑖 − 𝛾| ∙ (2𝜏 + 𝛼)                      
where, 𝜙 = 2𝛽(2𝜏 + 𝛼) . 𝑛  represents the number of 

regularizers for different outputs.  

In this work, ENO adds multi-task regularization to ensure 

that each task has independent error and evidence constraints, 

and can better adapt to multi-task learning and complex 

scenarios by flexibly controlling regularization weights. The 

data normalization module is incorporated into the training 

process to normalize and denormalize the dataset to address the 

potential training instability and gradient explosions arising 

from differences in the scale of output variables. 

3 ILLUSTRATIVE EXAMPLE 

For validating the effectiveness of ENO, a single degree of 

freedom random vibration equation (7) with harmonic 

excitation is used as an example to solve the forward 

uncertainty of response prediction:  

 𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐴𝑠𝑖𝑛(𝑤𝑡) (7) 

where, M is mass, M = 1kg. C is damping and K is stiffness. A 

represents amplitude and w represents the frequency of the 

 ̇harmonic force.𝑢, 𝑢̇, 𝑢̈ represent the displacement, velocity, 

and acceleration, respectively. 

K, A, and w are randomly sampled with a uniform distribution. 

The sampling interval of stiffness is [200,300] N/m. The 

sampling interval of amplitude and frequency are [50,100] N 

and [10, 45] rad/s, respectively. The probability density surface 

diagrams of three stochastic variables are shown in Figure 1. 

The Newmark-β integral algorithm is used to solve equation (7) 

and generate the datasets. The proportions of the training set, 

verification set and test set are 70%, 20% and 10%, respectively. 

The network parameters, such as convolutional layer depth 

Dconv, convolutional layer width Wconv, fully connected layer 

depth Dfc and width Wfc of FNO were optimized by using the 

Bayesian optimization algorithm. The optimal network 

parameters were determined as follows: Dconv=4, Wconv=32, 

Dfc=3, and Wfc=64.  

The ENO model is implemented in PyTorch and the Fourier 

modes of spectral convolution layers are 26. The weight 

parameters of the loss item are：𝜆1 = 1, 𝜆2 = 2, 𝜆3 = 2. The 

total number of epochs is 300 and the Adam optimizer was used 

with a learning rate of 10-3. 

 

 
(a) A-K distribution surface 
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(b) w-K distribution surface 

 

 
(c) K-A distribution surface 

Figure 1. Probability density surfaces of stochastic variables. 

The ENO model is validated against the state-of-the-art 

Deep Ensemble model presented in [17]. The baseline model is 

also embedded in the FNO framework (FNO-DE) to conduct 

ablation experiments, and the network parameters are 

consistent with those adopted by ENO. FNO-DE consists of 

five independently trained models with identical architecture 

but different random initializations. The evaluation metrics 

applied Root Mean Square Error (RMSE), Empirical Coverage 

Probability (ECP) and Pearson Correlation Coefficient (𝑅𝑝𝑟). 

RMSE can evaluate the error level between the predicted mean 

and the ground truth. ECP monitors the proportion of samples 

falling into the predicted confidence interval to the total number 

of samples. In this work, 95% confidence is considered, and the 

ideal value of ECP should be close to 0.95. Besides, the Pearson 

Correlation Coefficient can evaluate the correlation between 

prediction error and uncertainty. 

4 RESULTS AND DISCUSSION 

For solving the single-degree-of-freedom vibration equation, 

the ENO model performance was first tested by sampling test 

sets in the interval. The outputs of displacement, velocity and 

acceleration responses and their corresponding uncertainties 

are shown in  Figure 2. Due to the high cognition level of the 

tested model within the interval, it can be seen that the aleatoric 

and epistemic uncertainty are both small,  which are lower than 

101. 

 
(a) Uncertainty prediction of the displacement 

 

 
(b) Uncertainty prediction of the velocity 

 

 
(c) Uncertainty prediction of the acceleration 

Figure 2. Uncertainty prediction in the distribution (ENO). 

The out-of-distribution test evaluates the zero-shot learning 

ability and generalization of the ENO model. The results of out-

of-interval testing are shown in Figure 3. The epistemic 
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uncertainty of the model has increased by 20~40%, compared 

with that in distribution testing. And the epistemic uncertainty 

is always greater than the aleatoric uncertainty of the raw data, 

due to no extra noise added in the dataset for this illustrative 

case. 

 
(a) Uncertainty prediction of the displacement 

 

 
(b) Uncertainty prediction of the velocity 

 

 
(c) Uncertainty prediction of the acceleration 

Figure 3. Uncertainty prediction out of distribution (ENO). 

The performance comparison between the ENO model and 

the FNO-DE model is shown in Table 1. The ENO model can 

achieve higher fitting accuracy than the FNO-DE model. The 

RMSE of ENO is less than that of FNO-DE, especially when 

ENO is tested out of distribution. ENO has better generalization 

performance. In terms of uncertainty prediction, FNO-DE 

remains competitive in in-distribution testing, and the empirical 

coverage probability of both ENO and FNO-DE is relatively 

close to the nominal values. However, the uncertainty 

estimated by ENO shows a stronger correlation with prediction 

errors (𝑅𝑝𝑟~0.86) in interpreting out-of-domain data. 

 

Table 1. Compared the metrics of ENO and FNO-DE models. 

In distribution  Out of distribution 

Metrics ENO FNO-DE Metrics ENO FNO-DE 

RMSE 0.35 0.38 RMSE 2.22 2.41 

ECP 1.0 1.0 ECP 1.0 0.82 

𝑅𝑝𝑟 0.70 0.79 𝑅𝑝𝑟 0.86 0.67 

 

5 CONCLUSION 

In this paper, a novel evidential neural operator is proposed, 

which cooperates with the basic principle of deep evidential 

learning and the high-dimensional nonlinear mapping 

capability of the Fourier neural operator. ENO provides a 

scientific machine learning framework for the uncertainty 

quantification for the forward computation of structural 

vibration equations. This work solves the vibration equation of 

a single degree of freedom as a numerical example, indicating 

that the model has higher epistemic uncertainty when tested 

outside the interval. Compared to the evaluating metrics with 

the art-of-state ensemble model, the ENO shows superior 

uncertainty calibration and fitting accuracy in out-of-domain 

testing. Future works would consider the effect of data noise on 

the uncertainty qualification and expand the ENO to a more 

complex structural system.  
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APPENDIX: PREDICTION RESULTS OF FNO-DE 

A-1: Test results of FNO-DE within the interval  

The test results of the baseline model (FNO-DE) within the 

sampling interval are also shown in Figure 4. The predicted 

responses are generally consistent with the ground truth, 

indicating the FNO-DE can capture the dynamic change trend 

of the displacement and its derivative. The regions with large 

uncertainties are mainly concentrated at the boundaries of time, 

such as around t = 0 and t ≈ 0.5, while the uncertainty 

distribution is narrow within the time interval. This 

demonstrates that the FNO-DE model is quite sensitive and can 

not comply well with the boundary conditions. 
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(a) Uncertainty prediction of the displacement 

 
(b) Uncertainty prediction of the velocity 

 
(c) Uncertainty prediction of the acceleration 

Figure 4. Uncertainty prediction in the distribution (FNO-DE). 

A-2: Test results of FNO-DE out of the interval 

Outside the sampling interval (Figure 5), the deviation between 

the model prediction results and the Ground Truth increases, 

while the uncertainty region (green shadow) expands 

significantly, especially around the time period t = 0.4s, where 

the confidence interval of displacement u(t) increases from 

about ± 0.1 m to ± 0.2 m. This shows that the prediction 

confidence of FNO-DE for unseen data is greatly reduced. 

 
(a) Uncertainty prediction of the displacement 

 
(b) Uncertainty prediction of the velocity 

 
(c) Uncertainty prediction of the acceleration 

Figure 5. Uncertainty prediction out of the distribution 

 (FNO-DE). 
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ABSTRACT: Describing the damage initiation and development of engineering structures during strong dynamic loadings such 

as earthquake is one of the most important topics in structural condition monitoring and identification. Structural nonlinear 

restoring force (NRF) can not only directly describe the initiation and development process of nonlinear behavior of the structure 

during strong dynamic loadings but also can be used to evaluate the energy dissipation of structural members or substructures. 

However, it is hard to measure structural dynamic responses at all degree of freedoms (DOFs) of a structure in practice, and to 

model the NRF with an accurate parametric mathematical model in advance due to the variability and individuality of structural 

materials and types. In this study, a Chebyshev polynomial model as a nonparametric model is employed to model the NRF of a 

structure and structural stiffness, damping, mass and NRF are identified based on the extended Kalman particle filter (EKPF) 

algorithm by using acceleration measurements at limited DOFs during the known external excitation. Then, two multi-degree-of-

freedom (MDOF) numerical models equipped with different types of magnetorheological (MR) dampers are used as numerical 

examples to validate the performance of the proposed approach. Identified results show that the proposed method is effective for 

identifying the nonlinear MDOF structures with different nonlinearity with limited noise-polluted acceleration measurements. 

KEY WORDS: Nonlinear restoring force; Extended Kalman particle filter; nonparametric identification; Chebyshev polynomial; 

MR damper. 

1 INTRODUCTION 

During the service of engineering structures, when subjected to 

severe loads, the structural characteristics may change abruptly 

or gradually, resulting in stiffness deterioration and increased 

damping. The problem of precisely detecting parameter 

changes has piqued civil engineering researchers’ interest. 

Understanding changing structural parameters is crucial for 

designing, maintaining, and reinforcing structures, as well as 

selecting post-disaster rescue routes. When civil engineering 

structures are subjected to extraordinarily significant external 

excitations, such as earthquakes on buildings or heavy cars on 

bridges, they frequently exhibit nonlinear behavior. 

Identification of structural parameters and nonlinear 

restoring force (NRF) of nonlinear structural systems using 

partial acceleration measurements from structural health 

monitoring (SHM) is crucial for structural condition 

assessment and damage identification[1, 2]. In the past decades, 

many researchers have developed many parameters and NRF 

identification methods of nonlinear system. It is difficult to 

measure the acceleration responses of all degrees of freedom in 

practical engineering, some methods based on Kalman filter 

(KF)[3, 4], extended Kalman filter (EKF)[5, 6], unscented 

Kalman filter (UKF) [7-9], and particle filter (PF) [10, 11] were 

proposed to tackle the problem. However, conventional 

methods are only suitable for nonlinear hysteresis model 

parameters that are known. Due to the diversity and 

individuality of nonlinear behaviors, it is crucial to propose a 

general nonparametric identification method for nonlinear 

behaviors that does not rely on nonlinear hysteresis models. 

The idea of nonparametric identification of nonlinear 

behavior was first proposed by Masri and his collaborators[12, 

13]. Based on the equivalent linear theory and least squares 

method, identified methods of the structural nonlinear restoring 

force were proposed by Xu et al. [14, 15] using external 

excitation and complete dynamic response information and 

verified the feasibility of the proposed method through 

dynamic test data of a multi-degree-of-freedom shear frame 

model equipped with a magnetorheological (MR) damper. Xu 

and his cooperators proposed nonparametric identification 

method of the NRF in the presence of the known or unknown 

input, where the NRF was expressed using different polynomial 

models[16-19]. Some researchers regarded the nonlinear 

restoring force as an unknown virtual input, proposing different 

NRF identification methods[20-22]. The effectiveness of the 

proposed method was verified by numerical simulation and 

experiment. However, as far as the author knows, there is no 

extended Kalman particle filter (EKPF) method that is suitable 

for nonparametric identification of structural nonlinear 

behavior under non-Gaussian measurement noise without the 

need of the known parametric model of nonlinear behavior. 

Since the standard PF algorithm takes the transition 

probability of the system state as the importance density 

function, it does not use the updated observations. Therefore, 

the generated particle samples are concentrated at the tail of the 

posterior probability distribution, resulting in a large 

randomness in the selection of particles, which affects the 

filtering results. When there is a peak in the likelihood 

distribution, the prediction state is distributed at the tail of the 

likelihood distribution, which has a particularly serious impact 

on the filtering accuracy. The EKPF uses EKF as the posterior 

probability density function, which solves the problem of 

particle degradation in PF algorithm and improves the filtering 

Nonparametric identification of structural nonlinear behavior based on extended 

Kalman particle filter and Chebyshev polynomial model 
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accuracy. For the EKF part of EKPF, when Kalman filter is 

applied in practice, model error, noise error and calculation 

error may cause the prediction error covariance matrix and gain 

matrix to weaken the modified state estimation with the 

increase of iteration times, which leads to filter divergence. 

Therefore, the fading memory filtering (MF) technology can be 

used for EKF to increase the proportion of new data, reduced 

the proportion of old data and the negative impact of old data 

on filtering [16]. 

In this paper, a model-free identification method for 

structural parameters and nonlinear restoring force under 

limited acceleration observation is proposed by using EKPF 

algorithm. Based on the equivalent linear theory and EKPF 

algorithm, the structural parameters, unknown dynamic 

response measurements and nonlinear locations are identified 

under limited acceleration observations. Based on the 

identification value, the Chebyshev polynomial model is used 

to characterize the nonlinear restoring force of the structure, 

and the nonparametric identification of the NRF is realized. To 

verify the feasibility of the proposed method, two four-degree-

of-freedom shear frame models are established, and MR 

dampers with different numbers and different parameter 

models are introduced to simulate the nonlinear behavior of 

shear frame structures. Considering the influence of 

measurement noise in the observed acceleration signal, the 

structural stiffness, damping coefficient, mass, unknown 

dynamic response and NRF are identified. The feasibility of the 

proposed method is verified by comparing the identification 

results with the real values. 

2 EXTENDED KALMAN PARTICLE FILTERING 

ALGORITHM 

 The state-space equation 

In general, the nonlinear dynamic system of structures in civil 

engineering can be described as,  

 1 1( )

( )

k k k

k k k

f

h

− −= +


= +

x x r

y x v
 (1) 

where, the function ( )f  and ( )h represent the state transition 

function and the measurement model function of the system 

respectively. k is the number of time steps, kx is the state value 

of step k, ky  is the observation value of step k, kr is the 

process noise of step k, kv is the observation noise of step k. 

Equation (1) describes the recursive relationship between the 

structural state vector and the structural response over time. 

 Bayesian theorem and Monte Carlo simulation 

For the state space equation assumed by the formula (1), let 

0: 0 1{ , ,..., }k kx x x=x , 1: 1 2{ , ,..., }k ky y y=y , and given 0:kx , 

when the measurement sequence ky  is independent of each 

other, the prediction and update can be written recursively by 

the Bayesian formula, 

 1: 1 1 1 1 1( | ) ( | ) ( | )k k k k k k kp x y p x x p x y dx− − − − −=   (2) 

 
1: 1
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1: 1
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p x y

p y x p x y dx

−

−

=
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 (3) 

For nonlinear models, the above analytical formulas are often 

unable to be obtained, and it is also very difficult to solve them 

integrally. Therefore, the Monte Carlo simulation is considered 

to realize the recursion of Bayesian filter. The Monte Carlo 

simulation regards the problem to be solved as a random 

variable. By establishing a probability model and sampling a 

large number of samples, the integral value is regarded as the 

mathematical expectation of the random variable, and then the 

problem to be solved is estimated. That is to say, for the 

integrand ( )f x , it can be decomposed into the product of the 

state variable ( )g x  and its probability density function ( )p x , 

then the integral of ( )f x  can be regarded as the mathematical 

expectation of ( )g x . 

 The sequential importance sampling 

According to the Monte Carlo simulation, if we can sample 

from the posterior probability density function 
0: 1:( )k kp x y  

and get the sample set  ( ) ( )
0:

1
,

N
i i
k k

i
x 

=
, then 

0: 1:( )k kp x y  can be 

approximated by the sum of discrete samples, that is, the 

approximate solution formula of 0:( )kg x  can be written as, 

 ( ) ( )0: 0:
1

( )
N

i i
k k k

i
E g x g x

=
=   (4) 

However, in practice, it is very difficult to extract samples 

from the posterior probability distribution. Therefore, the 

importance sampling method is introduced to extract samples 

from the importance density function (i) (i)
k k 1 )(x |x , kq y−

. Then the 

mathematical expectation of ( )g x  can be written as,  
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where ( )ˆ i
k  is the normalized weight, which can be written as, 
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For the weight ( )i
k  of each particle, it can be recursively 

expressed as, 
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Accordingly, the implementation steps of the PF algorithm 

are as follows, 

(1) By sampling from the known prior probability 

distribution 0( )p x , the initial sample  ( ) ( )
0:

1
,

N
i i
k k

i
x 

=
 is 

obtained, where ( )
1{ } 1/

i N
ik N = = . 

(2) A new particle set  ( )

1

N
i

k
i

x
=

 is obtained by sampling from 

the importance density function 1( | , )i
k k kq x x y− . 

(3) Calculating the weight of each particle according to 

Equation (7). 
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(4) Normalized weights, 
(i) ( ) ( )
k

1
1

ˆ /

N
N

i j
k k

j
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=

=

 
=  

 
. 

(5) k=k+1, and return to step (1) to continue the iteration. 

 Resampling 

Because the variance of the particle weight increases with time, 

the particle degradation in the basic PF is inevitable. After 

multiple iterations, most of the particle weights are so small that 

they can be ignored, while the weights of individual particles 

are too concentrated. To improve this situation, the resampling 

method is used to discard the particles with small weights, copy 

the particles with large weights and make them have equal 

weights, so as to reduce the phenomenon of particle 

degradation. The system resampling method is adopted to avoid 

particle degradation in this paper. 

 EKF importance sampling density 

At time k, according to the new observation, the EKF algorithm 

is used to calculate the particle mean estimation i
kx  and 

variance estimation 
( )ˆ i

kP , and then the particles are extracted 

from the approximate Gaussian distribution 
( ) ( )

( , )ˆi i
k kN x P . 

This method of using EKF to generate importance density 

function is called EKPF. For a state vector ( )tX , the specific 

algorithm is as follows, 

(1) The initial particle samples are obtained by sampling 

from the known prior probability distribution. 

(2) The initial particles are updated by EKF, 

 ( )( ) ( )
1| | ,0ˆi i

k k k kx f x+ =  (8) 
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where 
( )

1|
i

k k+Φ  is the state transition matrix, 
( )

1
i

k+H  is the 

observation coefficient matrix, there are, 
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k ki i i

k k ki

h +

+ +


= =



x
H x x

x
 (14) 

Considering the cause of filtering divergence and the infinite 

growth of Kalman filter memory, the data error at the previous 

moment will cause the error covariance matrix P and the gain 

matrix K to lose the ability to correct the state estimation with 

the iteration, resulting in filtering divergence. To increase the 

weight of new data and relatively weaken the influence of old 

data, a fading factor is introduced to reduce the negative impact 

of old data on filtering estimation. The formula (9) is modified 

as follows, 

 ( )
T

( ) ( ) ( ) ( )
1| 1| | 1|

i i i i
k k k k k k k k S+ + +=P Φ P Φ  (15) 

Among them, the forgetting factor 1 S = , the literature 

suggests 0.95 1.0  , then the weighted weight of the fading 

memory is 1.0 < S < 1.05. 

(3) Complete the sequential importance sampling with 

reference to Section 2.3. 

(4) Complete system resampling with reference to Section 

2.4. 

3 PARAMETER-FREE RESTORING FORCE 

IDENTIFICATION METHOD BASED ON EKPF AND 

CHEBYSHEV POLYNOMIAL 

 The equivalent linearization theory 

For a multi-degree-of-freedom nonlinear dynamic system, the 

equation of motion can be written as, 

 ( ) ( ) ( ) ( ) ( )nont t t t t+ + + =Mx Kx Cx f f  (16) 

In the formula, M, K and C are the mass, stiffness and 

damping matrices of the system respectively. ( )tx , x(t) and 

( )tx  are the acceleration, displacement and velocity vectors 

respectively. ( )non tf  is the nonlinear restoring force vector 

provided by the nonlinear element, and f(t) is the excitation 

vector the system. 

The dynamic equation of the equivalent linear system is, 

 ( ) ( ) ( ) ( )E E Et t t t+ + =M x C x K x f  (17) 

where EM , EC  and EK represent the equivalent linear mass, 

equivalent linear damping and equivalent linear stiffness, 

respectively. Since the structural mass does not change during 

the nonlinear development process, EM  can be regarded as 

the identification value of the mass, that is, and M is 

numerically equal EM . The nonlinear restoring force of the 

structure in the equation (17) will be reflected in the parameters 

EC and EK  of the equivalent linear system, which is, 

 ( ) ( ) ( )non E Et t t= +R C x K x  (18) 

 Model-free nonlinear restoring force representation 

based on Chebyshev polynomial 

The Chebyshev polynomial is one of the most important 

function sets in mathematics. Any continuous function can be 

represented by a set of orthogonal function sequences on [ -1,1], 

the expression is as shown in the literature[16]. 

Therefore, the restoring force of the nonlinear element 

between the two degrees of freedom of the structure can be 

expressed by a set of relative velocity and relative displacement 

between the stories, 

 ( ) ( )non non
, 1 , 1, , , 1 , 1

0 0
( ) a b

A B

i i i i a b i i i i
a b

t c C v C s 
− − − −

= =
  R  (19) 

where 
non
, 1( )i i t−R  denotes the NRF of the nonlinear member 

between the i-th and (i-1)-th degrees of freedom of the system, 

and non
, 1, ,i i a bc −

 denotes the coefficient of the Chebyshev 

polynomial. ( ), 1a i iC v −  and ( ), 1b i iC s −  are Chebyshev 

polynomials. A and B are integers, and their values are related 

to the degree of nonlinearity of the structure. In this paper, 
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A+B=4. 
, 1i iv −

 and 
, 1i is −

 denote the relative velocity and 

relative displacement between the i-th and i-1th degrees of the 

normalized system, respectively. 

 , 1 , 1
, 1

, 1 , 1

min( )

max( ) min( )

i i i i
i i

i i i i

v v
v

v v

 − −
−

− −

−
=

−
 (19) 

 , 1 , 1
, 1

, 1 , 1

min( )

max( ) min( )

i i i i
i i

i i i i

s s
s

s s

 − −
−

− −

−
=

−
 (20) 

Among them, , 1i iv −  and , 1i is −  are the relative velocity and 

relative displacement between the layers of the structure before 

normalization. 

From Eqs. (17) and (18), the motion equation of the i-th DOF 

of the structure can be discretized as, 

 

non
, 1, , , 1 , 1

0 0

non
, 1, , , 1 , 1

0 0
                                  ( )

A B
a b

i

A B
a

i i i a b i i i i
a b

i i
b

a b i i i i i
a b

m c v s

c v s f t

x − − −
= =

− + +
= =

+   +

  =

 (21) 

Therefore, the nonlinear member is introduced into the 

structure. After the complete structural parameters and 

dynamic response are obtained by the EKPF method, the 

Legendre polynomial coefficients are identified by the least 

square method, and the total nonlinear restoring force ( )non tR  

of the structure can be calculated. Finally, according to Eqs. (16) 

to (18), the damping force provided by the nonlinear member 

can be inversely derived. 

4 NUMERICAL VERIFICATION 

 Example 1 

To verify the effectiveness of the proposed method, numerical 

simulations are carried out to validate the four-degree-of-

freedom shear-type frame with MR damper as an example. The 

nonlinear behavior of the structure is simulated by introducing 

the MR damper in the four-story concentrated mass shear-type 

frame shown in Figure 1. The mass of each layer of the 

structure mi=150kg, the inter-story stiffness ki=2.0×105N/m, 

and the damping coefficient ci=160N·s/m, where i=1, 2, 3, 4. A 

horizontal external excitation f(t) with an action time of 2s is 

applied to the third story, and the time profile is shown in 

Figure 2. The structural response is obtained by the fourth-

order Runge-Kutta method with a time step of 0.001s. 

 
Figure 1. Nonlinear model equipped with MR dampers 

Define the structure state vector as, 

 
1 2 3 4 1 2 3 4 1 2 3 4

T
1 2 3 4 1 2 3 4

( ) [ , , , , , , , , , , , ,

            , , , , , , , ]

E E E E

E E E E E E E E

t x x x x x x x x k k k k

c c c c m m m m

=X
 (22) 

 

The MR damper introduced in the structure is a Bingham 

model with a damping force that satisfies the relation, 

 
Bh Bh Bh Bh

non c , 1 0 , 1 0sgn( , )i i i iF f v v C v f− −=  +  +  (23) 

where Bh
nonF  is the damping force provided by the Bingham 

model, Bh
c 20Nf = , Bh

0 600N s / mC =   and Bh
0 0f =  are 

model coefficients. The damping force calculated from Eq. (23) 

is accurately calculated by the mathematical relation equation 

and thus can be used as the theoretical damping force of the 

structure to evaluate the identified value. 

 
Figure 2. External excitation force time history 

The setting range of the initial parameters of the structure is 

estimated based on the real parameters of the structure, and the 

number of particles is set to 20000, the initial value of the 

stiffness of each floor is 130kN/m~210kN/m, the initial value 

of the damping coefficient is 0kN·s·m-1~1000kN·s·m-1, and the 

initial value of the mass is 100kg~160kg. In fact, due to the use 

of EKF as the importance function for sampling, the identified 

range of particles after EKF update can exceed the setting range 

of initial parameters. Assuming that the acceleration of the 

second story of the structure cannot be measured, only the 

accelerations of the first, third and fourth stories of the structure 

are observed, and 5% non-Gaussian noise is added to the 

observations. 

Taking the mean value of the last step in each iteration as the 

parameter identification result, the structural stiffness, damping, 

and mass are identified using EKPF, the convergence process 

of the equivalent linear parameter is shown in Figure 3. Figure 

3(a) gives the convergence process of the identified equivalent 

stiffness of each story of the structure. It can be seen that from 

Figure 3(b) the equivalent damping identification value of the 

first to the third stories tends to the true value, but the identified 

value of the fourth story identifies with the other stories in the 

completely opposite direction, which can be judged that the 

structure has undergone a nonlinear behavior in the fourth story, 

which is also consistent with the actual installation of the 

damper. The convergence result of mass identification is shown 

in Figure 3(c), which can accurately converge to the actual 

value, which also shows that the nonlinear behavior of the 

structure does not affect the mass of the structure after it occurs. 

Table 1 and Table 2 give the identified results of the mass and 

the equivalent stiffness and equivalent damping, respectively. 

It can be seen from Table 1 that the identified result of the 

structural mass is better, and the error of each story is less than 

1 %. The equivalent linear parameters have also achieved good 

identification results. 
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Table1. Identified mass results 

Mass Identified [kg] Actual [kg] Error [%] 

m1 148.85 

150 

0.77 

m2 150.26 0.17 

m3 149.85 0.10 

m4 149.71 0.19 

 
(a) Equivalent linear stiffness 

 
(b) Equivalent linear damping 

 
(c) Equivalent linear mass 

Figure 3. Structural parameter convergence process 
Table2. Identified equivalent stiffness and damping results 

Parameter Identified Actual 

𝑘𝐸1(kN/m) 200 200 

𝑘𝐸2(kN/m) 198 200 

𝑘𝐸3(kN/m) 200 200 

𝑘𝐸4(kN/m) 201 200 

𝑐𝐸1(kN
 ⋅ s ⋅ m−1) 0.13 0.16 

𝑐𝐸2(kN
 ⋅ s ⋅ m−1) 0.16 0.16 

𝑐𝐸3(kN
 ⋅ s ⋅ m−1) 0.17 0.16 

𝑐𝐸4(kN
 ⋅ s ⋅ m−1) 0.86 0.16 

Figures 4 and 5 show the comparison between the identified 

results and the actual values of the displacement and velocity 

response of each story of the structure, and Figure 6 shows the 

comparison between the identified values and the true values of 

the unobserved acceleration of the 2nd story of the structure. 

The identified results of displacement, velocity and 

acceleration of the second story are in good agreement with the 

true values. 

 

 
Figure 4. Identified structural displacement responses

 

 
Figure 5. Identified structural velocity responses 

 
Figure 6. Identified structural acceleration responses on second floor 

Based on the identified structural parameters, displacement 

and velocity responses, the NRF of the 4th floor of the structure 

can be further obtained using the least squares algorithm in a 

nonparametric manner, and the results of the comparison 

between the identified and the true values of the NRF of the 4th 

floor of are shown in Figure 7. 

 
Figure 7. Identified MR damper force 
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The identified results of the unknown acceleration and NRF 

are quantified by the root mean square error (RMSE)[23], 

which are calculated to be 0.12m/s2 and 12.59N for the 

acceleration of on the 2nd floor and NRF, respectively. 

 Example 2 

Considering the actual situation that the structure may have 

multiple damages under strong dynamic loading, in order to 

verify the generality of the proposed algorithm, MR dampers 

are introduced in the first and fourth stories of the structure, and 

horizontal external excitation is applied to the second floor, and 

the nonlinear structural model and the external excitation are 

shown in Figure 8 and Figure 9, respectively. 

 
Figure 8. Four-story shear frame model with MR dampers 

 
Figure 9. External excitation force time history 

Distinguishing from the Bingham model in Example 1, the 

two MR dampers in this example use the modified Dahl model 

with the expression, 

 
Dh Dh Dh Dh Dh

0 , 1 0 , 1 0 0non i i i iF K s C v F Z f− −= + + +  (24) 

  (25) 

where Dh
nonF  is the damping force provided by the Dahl model, 

Dh
0 30N / mK = , Dh

0 600N s / mC =  , Dh
0 35NF = , 

500s / m = and Dh
0 0f = , Dh

0 0f = , Dh
0C , Dh

0F  and  are 

model coefficients, and Z is the dimensionless hysteresis. 

The settings of the initial parameters and the structural true 

values in Example 2 are the same as those in Example 1, and 

the identified process of the equivalent linear stiffness, 

damping and mass is given below. From Figure 10 the 

structural stiffness, damping, and mass parameters of the other 

floors converge to the actual value of the structure, except for 

the equivalent damping values of the first and fourth floors in 

Figure 10(b), which deviate from the actual value, and 

according to which it can be shown that the structure undergoes 

nonlinear behavior in the first and fourth floors. The identified 

results of the mass, the equivalent linear stiffness and damping 

are shown in Tables 3 and 4, respectively. The identified results 

of the parameters have small errors. 

 
(a) Equivalent linear stiffness 

 
(b) Equivalent linear damping 

 
(c) Equivalent linear mass 

Figure 10. Structural parameter convergence process 
Table 3. Identified mass results 

Mass Identified [kg] Actual [kg] Error [%] 

m1 147.70 

150 

1.53 

m2 150.48 0.32 

m3 149.01 0.66 

m4 150.13 0.09 

Table 4. Identified equivalent stiffness and damping results 

Parameter Identified Actual 

𝑘𝐸1(kN/m) 197 200 

𝑘𝐸2(kN/m) 199 200 

𝑘𝐸3(kN/m) 200 200 

𝑘𝐸4(kN/m) 201 200 

𝑐𝐸1(kN
 ⋅ s ⋅ m−1) 0.96 0.16 

𝑐𝐸2(kN
 ⋅ s ⋅ m−1) 0.16 0.16 

𝑐𝐸3(kN
 ⋅ s ⋅ m−1) 0.15 0.16 

𝑐𝐸4(kN
 ⋅ s ⋅ m−1) 0.95 0.16 

Figures 11 and 12 show the comparison of the identified 

results of displacement and velocity response of the nonlinear 

structure respectively, it can be found that the dynamic 

response of the structure in all floors are identified with good 

results. 

( ), 1 , 11 ( )i i i iZ v Zsgn v − −= −
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Figure 11. Identified structural displacement responses 

 

 
Figure 12. Identified structural velocity responses 

The same as in Example 1, based on the parameters and 

responses identified by the structure, the NRFs between the 

first and fourth floors can be identified, as shown in Figure 13. 

The RMSE of the identified acceleration value of the second 

floor is 0.30m/s2, the RMSE of the identified value of NRF of 

the first floor is 14.43 N, the RMSE of the identified value of 

NRF of the fourth floor is 11.46N. It can be seen in Figure 13 

that the identified  values of the first and the fourth floors of the 

damping force are in good agreement with the real values, 

which indicates that the proposed algorithm is not only able to 

effectively identify the nonlinear behavior of the structure at a 

single unknown location under strong dynamic loading, but 

also applies to the case of a nonlinear system where multiple 

nonlinear locations are unknown. 

 
(a) Identified result of MR damping force on the 1st floor 

 
(b) Identified result of MR damping force on the 4th floor 

Figure. 13 Identified MR damper force 

5 CONCLUSIONS 

In this paper, based on the EKPF algorithm and equivalent 

linear theory, the structural parameters and nonlinear locations 

are identified under limited acceleration observations, and a 

model-free identification of structural NRF is proposed based 

on Chebyshev polynomial. 

Numerical simulations of a four-degree-of-freedom 

concentrated mass nonlinear shear frame model were 

performed. In two examples, different numbers and models of 

MR dampers (Bingham model vs. Dahl model) are sequentially 

introduced to the structure to simulate different nonlinear 

behaviors for different numbers and locations. Considering the 

effect of measurement noise and changing the location of 

horizontal external excitation application, the structural 

stiffness, damping, mass parameters, and the inter-story NRF 

at the arrangement of MR dampers are identified with limited 

observations of the acceleration response, and the validity and 

applicability of the proposed methodology are verified by 

comparing the identified values with the theoretical values. 

The method proposed in this paper is general in that it does 

not need to utilize a parametric model of the NRF of the 

structure in the identified process. The identified NRF under 

strong dynamic loads such as earthquakes is an intuitive 

description of the hysteretic performance of the structure, and 

through the restoring force characteristics at different moments, 

it can reflect the occurrence and development of the damage of 

the structure or sub-structure at different moments in the 

process of dynamic loading, and can be used for the 

quantitative description of the energy dissipation of the 

structural components in the process of the loading. The 

method proposed in this paper is of great significance for 

damage localization, quantitative assessment and post-disaster 

structural performance evaluation of structures subjected to 

dynamic loads such as earthquakes. 
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ABSTRACT: As climate change leads to increasing temperatures around the globe, rail track buckling has become an increasing 

concern for rail operators. This paper provides an overview of the key outcomes from a four-year research program that sought to 

explore the use of distributed fibre optic sensors (DFOS), analytical modeling, and artificial intelligence techniques to aid in track 

buckling assessment and detection. Lab tests and field monitoring data were used to develop and evaluate two DFOS systems, 

one for short length dynamic buckling assessment due to train passage and the other for long length thermal buckling assessment. 

The data from each system was used to develop models for the detection of buckling using different techniques depending on the 

quality of the initial data and the required output. Finite element model (FEM) updating and statistical FEMs were explored to 

predict buckling response based on measurements at service loads. Beam on elastic spring models were used to estimate the 

influence of train passage on buckling capacity while Gaussian process regression (GPR) techniques provided insights into 

buckling indicators at the field sites. 

KEY WORDS: Distributed fibre optic sensing; Rail track buckling; Lab tests; Field monitoring; Data-based modelling. 

1 INTRODUCTION 

Continuous welded rail (CWR) is used in most modern rail 

networks because of the enhanced ride quality it provides as 

well as reducing noise and wear on the rails. However, the 

removal of joints along the rail means that there is no room for 

the rail to expand when its temperature changes relative to the 

rail neutral temperature (RNT) resulting in the development of 

a state of self-stress within the rail. If the temperature increases 

to a critical value, the lateral load resistance system of the rail 

track, consisting of ballast, ties, and fasteners, can no longer 

provide adequate support and the rail track buckles laterally 

[1,2]. The critical temperature can change over the operational 

life of the rail network as deterioration lowers this buckling 

temperature and proper maintenance increases it [1,3]. 

Analytical models exist to account for buckling during the 

design stage [1,4] however there are a number of challenges 

with using these models for the assessment of in-service 

buckling such as variations in geometry and support conditions 

that are present in existing rail tracks. Numerical simulations 

can provide more accurate estimates of track behaviour since 

they can account for variations in geometry and support 

conditions with length [2,5]. But obtaining the measurements 

required to develop accurate models in the field is time 

consuming and expensive.  

Structural health monitoring techniques represent a 

potentially useful approach for either detecting rail track issues 

directly or acquiring the data required to develop more accurate 

models. Researchers have previously explored the use of a 

variety of sensors to detect rail track issues such as strain 

gauges [6], accelerometers [7], ultrasonic and laser vibrometers 

[8,9], and digital image correlation [10]. The challenge with 

many of these techniques is that they only provide a local 

measurement of rail behaviour whereas buckling can occur 

anywhere along the length of the rail. 

A potential solution to this challenge is the use of distributed 

fibre optic sensors (DFOS). For strain sensing, research has 

focused on the use of Rayleigh based systems when high-

resolution (gauges lengths less than 1 mm are possible) and 

high-accuracy measurements (up to + 1 microstrain at the fiber 

core for Rayleigh based systems) are required [11]. And 

Brillouin based systems when lower resolution (gauge lengths 

of 50 mm) and lower accuracy (+ 15 microstrain) [12] is an 

acceptable trade-off to achieve longer sensing lengths (100 m 

per channel for Rayleigh-based systems [11] versus up to 25 

km and more for Brillouin-based systems [12]). Most of the 

current research using DFOS for rail applications has focused 

on the response of the rail due to vehicle loading [13,14]. Initial 

studies have been conducted on short lengths of rail to measure 

thermal strain due to free expansion using Brillouin Optical 

Time Domain Analysis (BOTDA) [15,16] as well as to measure 

strains due to thermal stress in the lab and the field [16]. 

The goal of the research campaign described in this paper 

was to evaluate the viability of using DFOS for the assessment 

of rail track buckling. The objective of this paper is to provide 

an overview of the entire research campaign starting with lab-

based thermal buckling experiments that were used to update 

finite element models (FEM) as well as to explore the use of 

statistical FEM (StatFEM) with distributed sensing data for the 

first time. Three field tests were also undertaken on a tangent 

track and a curved track section in Ontario, Canada to acquire 

first of their kind data sets and to explore the use of DFOS data 

to inform improved models of rail track buckling.  

 

2 LAB TESTING 

 Introduction 

Before undertaking field tests, the first phase of this research 

involved a series of small-scale lab-based experiments to 
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explore the use of both Optical Frequency Domian 

Reflectometry (OFDR), and BOTDA measurements for 

assessing rail track buckling. The rails were subjected to both 

mechanical and thermal loading to induce buckling in the rail. 

 Specimens 

An ASCE 5.95 kg/m (12 lbs/yd) mining rail specimen with the 

length of 3,048 mm (Hammer Steel Products, Canada) was 

used, as buckling of the member could be induced within the 

available lab constraints. The specimen had a specified elastic 

modulus (E) of 207 GPa, cross-sectional area (A) of 761 mm2, 

and coefficient of thermal expansion (α) of 11.6 × 10-6 / ℃. 

The second moment of area was 53,000 mm4 about the weak 

axis (Iy) and 229,000 mm4 about the strong axis (Ix). The 

specimen was instrumented with eight nylon-coated single 

mode strain measurement optical fibres (F1 – F8) to measure 

the surface strain and a temperature measurement fibre to 

measure the distributed temperature as illustrated in Fig. 1. 

Further details about the specimens are provided in [17,18]. 

 

 

Figure 1. Lab buckling test specimen (in mm). (a) rail cross-

section dimensions, (b) fibre locations on cross-section, (c) 

longitudinal dimensions and fibre layout. 

 Test setup 

As shown in Figure 2, the testing frame consisted of two steel 

plates that were connected to four threaded rods using nuts. 

Two types of tests were conducted: (1) buckling due to applied 

load from an actuator with three different lateral support 

conditions and (2) thermal buckling caused by restraining axial 

elongation due to changes in temperature. 

Figure 2(a) shows the schematic frame setup for the applied 

load buckling with no lateral restraint (NS) and thermal 

buckling tests. In the applied load tests with lateral restraint, the 

lateral restraint was provided by springs with a stiffness of 32.7 

N/mm, and a maximum compressible length of 30.2 mm. 

Figure 2(b) illustrates the test setup for the applied load tests 

with one spring placed at the mid-length test, and Figure 2(c) 

shows the applied tests with two springs placed at 1/3 and 2/3 

of the rail length, respectively, where weak-axis buckling 

occurs in the vertical direction.   

For the thermal buckling tests, the rail temperature was 

adjusted by changing the temperature within a climate chamber 

where the specimen was placed. The steel frame experienced 

similar thermal expansion/contraction as the rail due to a 

temperature increase/decrease (∆T), so to keep the length of the 

rail constant (e.g. full axial restraint), an axial load was applied 

to the rail to ensure the net axial displacement of the rail was 0 

mm. For all tests, the axial load was applied by a hydraulic jack 

with a capacity of 1010 kN and measured using a load cell with 

a 222 kN capacity. The actuator, supports, and the specimen 

could not be aligned perfectly, and axial loads with different 

eccentricities occurred in all tests. A linear potentiometer (LP) 

was placed at the mid-length of the rail to measure the lateral 

deflection during the test. The strain was measured using a 

LUNA ODiSI 6104 analyzer (LUNA Innovation, USA) for the 

OFDR tests and an NBX-6050A Brillouin Optical Time 

Domain Analysis (BOTDA) analyzer (Neubrex, Japan) for the 

BOTDA tests. 

 

 

Figure 2. Lab buckling test setup. (a) no lateral restraint, (b) 

one spring, (c) two springs. 

 Results 

The lab experiments were used to evaluate the potential for 

using DFOS measurements to assess buckling. Because 8 fibres 

were placed around the rail cross-section (see Figure 1), it was 

possible to define a fitted strain plane using the measurements 

at each point along the length of the rail as seen in Figure 3. 

 

Figure 3. Strain measurements from 8 fibres on the rail 

forming a strain plane enabling calculation of axial strain and 

strong and weak axis curvature. 

The strain plane seen in Figure 3 can be used to calculate the 

axial strain and weak and strong axis curvatures in the rail. The 

curvatures can then be numerically integrated twice to obtain a 

lateral deflection profile along the rail. One of the key 

conclusions from this part of the research was that both OFDR 

and BOTDA sensor systems could be used to measure the 

response of the rail using the strain plane approach although 

OFDR provided more accurate measurements, especially of the 

lateral restraint force provided by the springs [18]. While 

measurements of axial strain and displacement can be used as 
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thresholds for assessing the impact of buckling, to provide 

predictions of future behaviour, a numerical model based on the 

experimental data is required as discussed in the next sections. 

Further details about the lab-based experimental campaigns can 

be found in [17,18]. 

 Finite element model updating 

One challenge with using monitoring data to estimate the 

ultimate limit state behaviours of a structure is that the data is 

usually recorded at service loads. In this investigation DFOS 

data captured at service loads (i.e., applied loads and 

temperatures that were 50% of ultimate) were used to update 

finite element models to estimate the buckling capacity. A 

commercially available finite element analysis (FEA) program 

(i.e., Abaqus) was used to model the tests. The 3.048 m long 

slender member was modelled with 30 three-noded beam 

elements (B32), with the same cross-sectional and material 

properties as the rail. Connector elements with one degree of 

freedom perpendicular to the member were used to model the 

spring supports and were given one of two stiffnesses: (i) the 

manufacturer specified value (i.e., 32.7 N/mm) or (ii) the 

stiffness calculated from the DFOS measurement derived 

reaction force divided by the DFOS measurement derived 

displacement at the support location for each test [18]. Three 

steps of analyses were undertaken: 1. a linear buckling analysis 

to obtain the initial deflected shape, 2. a static general analysis 

considering geometric nonlinearity to determine the value of 

the mid-span imperfection and the end eccentricities through 

model updating and, 3. a static risk analysis to develop the 

buckling load-displacement response. Two approaches were 

taken to step 2: (a) a coarse grid and (b) a fine grid analysis. In 

the coarse grid analysis, the initial eccentricity parameters (at 

the supports and at midspan) were varied over a range of ±2.0 

mm with an increment of 0.5 mm and the optimum analysis was 

chosen based on the computed root mean square error (RMSE) 

between the modelled curvature values and the measured 

curvature values. In the fine grid analysis, each of the optimal 

eccentricity values from the coarse grid analysis were varied 

over a range of ±0.5 mm with an increment 0.1 mm resulting in 

1331 analyses. 

Figure 4 presents the load-deflection responses from the 

finite element model updating investigation for (a) the NS tests 

and (b) the OS tests. Also plotted in the figure are the measured 

load and displacement at each load stage. Figure 4(a) shows the 

results from the tests using both the OFDR and BOTDA 

sensing systems. The difference in behaviour between the 

OFDR and BOTDA tests is not a function of the measurement 

systems but is due to the different axial load eccentricities 

present in each test. The results from the fine and coarse grid 

approaches plot on top of each other suggesting either approach 

to estimating the impact of eccentricities on the tests results is 

acceptable. Overall, the finite element model updated using the 

service load data was able to capture the ultimate behaviour of 

the rail accurately. In Figure 4(b) it can be seen that using the 

manufacturer or estimated spring stiffness provides the same 

result for the OFDR system.. This is because the higher spatial 

resolution and accuracy of this system compared to the 

BOTDA allows for localized behaviour, such as lateral 

supports, to be resolved more accurately. Using the 

manufacturer’s spring stiffness along with the BOTDA data at 

service loads enables the updated FEM to capture the full 

behaviour. Though the estimated spring stiffness model is not 

as accurate, it is still conservative. 

 

 

(a) No lateral restraint tests comparing BOTDA and OFDR 

data to FE models using Coarse and Fine Grid approach 

 

(b) One spring restraint tests comparing BOTDA and OFDR 

data to FE models using both the Manufacturer and Estimated 

spring stiffness, K, from the data 

Figure 4. FE model updating results compared to measured 

response from applied load tests. 

 Statistical FEM model 

The previous section highlighted that DFOS data could be 

used to support FEM updating but one limitation of the 

approach is that depending on the number of structural 

parameters to be optimized and the complexity of the model, 

model updating can have a high computational cost associated 

with finding the structural parameters that provide the optimum 

fit to the data. A second limitation is that traditional model 

updating assumes the model perfectly represents the true 

structural response whereas in reality the model always 

involves assumptions and idealization of the actual system (e.g., 

materials, boundary conditions, loading, etc.). To address these 

two limitations, a second FEM updating investigation was 

undertaken, exploring the use of the Statistical FEM (StatFEM) 

with distributed sensor data for the first time [19]. The basis of 

the StatFEM approach is that the measured structure response 

is composed of the true structure response and errors due to 

sensor measurement noise that have a known statistical 

distribution. The true structural response is assumed to be a 

combination of the FEM structural response and the model-

reality mismatch due to model idealization and assumptions. 

The same approach was taken whereby data acquired at service 
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loads was used to update the model that was then used to predict 

ultimate capacity. In this investigation, polynomial chaos 

expansion (PCE) was investigated as an approach to generate 

the FE probability distribution prior to updating as opposed to 

the more traditional Monte Carlo simulation. This resulted in 

order of magnitude improvements in computation time from 16 

hours and 40 minutes to 9 minutes with a less than 1% reduction 

in accuracy.  

Figure 5 shows the strain versus load relationship for an (a) 

OFDR tests and (b) a BOTDA test for when 40 data points 

along the rail length (i.e. ny = 40) were used. It can be seen that 

the initial FE probability distribution overestimated the strain 

at a given load in the nonlinear range but that the StatFEM 

prediction of the ultimate limit state response incorporating the 

DFOS data collected in the service load range shows an 

excellent visual agreement with the measured ultimate limit 

state structural response. The model updated using the OFDR 

measurements (Figure 5(a)) demonstrates an excellent fit to the 

data over the entire measurement range and the error range (the 

grey shaded area) is smaller than the model updated using 

BOTDA data (Figure 5(b)). 

 

(a) OFDR measurements 

 

(b) BOTDA measurements 

Figure 5. Strain versus load relationship where the blue line 

and shaded area represents the FE prediction, the black line 

and shaded area represent the StatFEM prediction, and the 

discrete points are measured strain. 

The number of data points used to update the model was also 

found to play an important role in terms of prediction accuracy 

and the size of the error envelope. This shows the benefit of 

using DFOS for FEM updating as the number of points enable 

much higher prediction accuracy. Further details on the use of 

DFOS with the StatFEM can be found in [19]. 

3 FIELD MONITORING 

 Introduction 

Having demonstrated the potential to use DFOS for monitoring 

of thermal buckling and development of robust numerical 

models using controlled lab-based experiments, the next phase 

of the research involved three separate field investigations to 

evaluate the use of DFOS to monitor rail track buckling in the 

field: (i) short term dynamic monitoring, (ii) long-term thermal 

monitoring and assessment of tangent track, and (iii) long-term 

thermal monitoring and assessment of curved track. 

 Site installations 

The site installations were similar in that three nylon-coated 

strain measurement fibres with a diameter of 0.9 mm were 

installed at the various heights in the cross section as illustrated 

in Figure 7 so that the strain plane in Figure 3 could be 

measured. The two long-term monitoring installations were 

similar with the major difference being one was on a tangent 

track and the other was on a curved track. In both cases, a 20 m 

long 8 mm diameter temperature fibre and 4 thermocouples 

were also installed on the rail as shown in Figure 7 to capture 

thermal effects. The long-term fibre optic data was acquired 

using an NBX-6050A Brillouin Optical Time Domain Analysis 

(BOTDA) analyzer with readings being taken every 30 minutes 

over the course of one month [20].  For the short-term dynamic 

monitoring, the installed fibre length was 9 m (as opposed to 

the 20 m shown in Figure 7) so that the data could be acquired 

at a rate of 13 Hz using a LUNA ODiSI 6104 analyzer [21]. 
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Figure 7. Field monitoring installation on curved track. Strain 

(S) and temperature fibre (TF), and thermocouple (TC) 

locations on (a) cross-section (in mm) and (b) rail length, and 

(c) site layout and location. 

 Impact of temperature and train passage 

One of the key findings from the installation on the tangent 

track was that solar gain had an impact on rail strain 

measurements. Figure 8 shows the difference in temperature 

measurements from the thermocouples at various points on the 

rail cross-section relative to the location of the temperature 

fibre (TC3). It can be seen that at night (between midnight and 

8 am in Figure 8) the difference in temperature measurements 

is less than 1°C and is within the noise of the thermocouple 

measurements. During the day this difference can be as high as 

approximately 2°C and depends on the position of the sun 

relative to the rail as well as the amount of cloud cover. The 

impact of this temperature difference is three-fold. First, it 

challenges the conventional assumption of constant 

temperature in the rail cross-section often used in buckling 

assessment. Second, the strain measurements from the fibres 

must be compensated for temperature with the correction factor 

being approximately 20 microstrain/°C for the BOTDA system 

[16]. Third, this differential temperature can cause rail bending 

if the rail is not adequately restrained, which could increase the 

likelihood of rail track buckling. 

 

Figure 8. Difference in rail temperature at 4 different locations 

on the rail cross-section with time of day. 

A second issue that affects the accuracy of long-term 

monitoring data is the passage of trains. Figure 9 shows three 

sets of consecutive measurements taken at the curved track site 

taken before any trains passed, after the position of Train 1, and 

after the passage of Train 2 at a constant temperature.  

 

Figure 9. Effect of train passage on DFOS measurements at 

the curved rail site. (a) Curvature and (b) Axial Strain 

One can see from Figure 9 that both the curvature and the 

axial strain are impacted by the passage of a train. While this 

might not be the case for a track that was properly restrained 

against lateral and longitudinal movement, previous research 

has demonstrated that rail tracks supported by wooden ties and 

gravel ballast can experience longitudinal movement and thus 

changes in axial strain due to the passage of trains [22]. Thus, 

when monitoring and assessing rail tracks for buckling using 

DFOS, temperature effects due to solar gain and the passage of 

trains are important issues that must be carefully addressed. In 

the case of thermal effects, a potentially straightforward 

solution is to use combined strain and thermal measurement 

fibres at all three measurement heights along the rail. 

 Dynamic thermal buckling models 

Dynamic buckling occurs when the train wheel loads acting on 

the rail track cause a section of the track to lift off the ties and 
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become laterally unsupported. If that section of rail track is 

already prone to buckling due to being on a curve, having a 

small amount of misalignment along its length, or both then 

railway buckling can occur at lower temperatures than static 

thermal buckling.  

DFOS measurements were taken with the OFDR analyser 

along a section of curved track as a passenger train travelled 

over the instrumented section. Because strains were measured 

at multiple heights on the rail, the curvature profile along the 

instrumented section could be derived. A beam on elastic 

foundation (BOEF) model, where the rail is modelled as a beam 

with the same flexural stiffness (EI) as the rail and the 

foundation is modelled as a series of elastic springs, was then 

created. The curvature pattern was then used to update the 

BOEF model to estimate the track modulus by adjusting the 

spring stiffness until the measured rail curvature matched the 

model beam curvature, which resulted in a track modulus of 

13.6 MPa in this case. 

To predict the dynamic buckling temperature, a finite 

element model was constructed in ABAQUS using two-noded 

beam elements. Two types of connector elements were used in 

the FE model to simulate the interaction between the rail track 

and the rail ties as well as between the ties and the ballast, 

respectively.  The track modulus that affects the rail lifting-off 

behavior under train loading was derived from the DFOS 

measurements as noted above and the rest of the structural 

parameters that affect static thermal buckling behavior were 

obtained from the literature [21]. The FE modelling was 

conducted in two stages. First, a static nonlinear analysis was 

conducted to get the railway lift-off response under train 

loading. Afterwards, the impact of railway lift-off response on 

the lateral resistance provided by the ballast to the railway 

system was inputted into the railway FE model to simulate the 

railway dynamic buckling. A misalignment in the rail of either 

20 mm or 34 mm was modelled and then an increasing 

temperature was applied to the model to determine the 

temperature increase above the rail neutral temperature versus 

lateral displacement response as seen in Figure 10. Further 

details of the model can be found in [21]. 

From Figure 10 it can be seen that the passenger cars had no 

impact on the buckling behaviour as the dynamic buckling 

curve for the passenger cars plots on top of the static thermal 

buckling curve. This was because the rail passenger cars were 

not heavy enough to cause the rail to lift off the ties and reduce 

the lateral resistance. The locomotives, on the other hand, were 

heavy enough to cause the track between trucks of the 

locomotive to lift off the ties. As a result, the temperature to 

cause thermal buckling while a locomotive is passing was 

found to be lower than the static case. By comparing Figures 

10(a) and 10(b) one can also see that rail misalignment impacts 

both the static and dynamic buckling temperature where larger 

misalignments lead to lower critical buckling temperatures as 

would be expected. The combined effect of dynamic buckling 

and misalignment can be significant since in this case the 

critical temperature increase to cause buckling went from 

42.6°C with a 20 mm misalignment and no train loading to 

35.3°C with a 34 mm misalignment and locomotive loading. 

 

 

Figure 10. Static versus dynamic buckling response for 

monitored section of track. (a) 20 mm misalignment, (b) 34 

mm misalignment 

 Data-driven thermal buckling models 

In many infrastructure monitoring applications, the system 

being monitored is too complex to be accurately captured by a 

physics-based model. Such is the case for many rail buckling 

applications where the likelihood of buckling is a function of a 

complex system that involves interaction between the 

environment and a physical system with spatial varying 

geometric and material properties. As noted earlier in the paper, 

the position of the sun and cloud conditions affect the rail 

temperature and due to the lack of perfect rail restraint (e.g., 

due to gaps between the restraint plates and the rail) the rail 

experiences changes in the stress-state due to the passage of 

trains. Other issues such as variable support stiffness and rail 

track alignment further complicate the situation and make it 

essentially impossible to develop a comprehensive physics-

based model. 

One potential solution to this is to use a data-driven 

modelling approach. DFOS produces thousands of data points 

along the length of the rail to capture the spatial variability in 

both strain and temperature and allows for scans to be taken 

multiple times a day over the course of weeks to help resolve 
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the temporal variability. Gaussian process regression is a data-

regression technique that allows for the uncertainty of the 

model to be calculated. The first step in the process is to select 

an appropriate kernel which defines the function and the 

relationships between variables. In the current work a Matern32 

+ linear kernel was selected based on a comparison of 12 

different kernels to determine which one best fit the data. Each 

of the 12 models was trained using the first two weeks of data 

from the curved track monitoring site and then were used to 

predict the data from the last two weeks of monitoring.  

Two different GPR models were developed: Model 1 defined 

a relationship between the axial strain and curvature along the 

rail and the input variables of rail surface temperature and 

location. Model 2 also considered train passage and non-

uniform rail surface temperature as noise components that 

could impact the results based on the observations presented 

earlier. Figure 11 presents the GPR model results for axial 

strain versus temperature where the blue line represents the 

most likely relationship proposed by both models. The dark 

blue shaded region in the figure is the range of potential 

relationships according to Model 1 while the light blue region 

is the range of potential solutions for Model 2. It should be 

noted that the associated uncertainty for each model represents 

the range of potential models and should not be confused with 

other potential sources of error such as measurement error. If 

enough training data was available, it would be possible to have 

a GPR model with no uncertainty, but the actual measurements 

might not lie on the curve due to measurement noise. More 

details about the development of the models can be found in 

[20].   

 

Figure 11. GPR model of the relationship between axial strain 

and temperature with and without consideration of train 

passage and differential rail temperature effects. 

From Figure 11 it can be seen that the uncertainty band for 

Model 1 is smaller than for Model 2, due to the added potential 

uncertainty due to train passage and temperature variation 

around the cross-section of the rail. The uncertainty is also 

higher when the temperature is below approximately 7°C and 

above 45°C due to lack of training data in these regions. This 

presents a challenge as rail operators are most concerned about 

the behaviour above 40°C but there is inherently going to be 

less or even no training data at these critical temperature levels. 

Another important thing to note about Figure 11 is that many 

of the measured points do not match the proposed relationship 

or in some cases do not even fall within the uncertainty bounds. 

One reason for this is measurement error but there is another 

more fundamental issue and that is for this system there is more 

than one state of stress that can occur at a given temperature.  

Because of variables such as gaps between the rail and the 

supports, train passage, and differential rail temperatures, the 

rail can actually take on a variety of positions at a given 

temperature. As such, a limitation of using GPR for systems 

such as these is that they are not accurately described by a 

closed-form solution. However, they do provide rail operators 

with guidance as to the overall relationship. 

 Future Work and Scalability 

The initial results suggest that DFOS show promise as a rail 

track thermal buckling detection tool. However, three major 

issues still need to be addressed: (i) installation, (ii) improved 

thermal compensation, (iii) and automated detection. In terms 

of the installation, in a parallel study the research team 

developed a prototype robotic system that could install the fibre 

optic cables at various heights on the rail section an order of 

magnitude faster than human installers with improved 

placement accuracy. In the current work, temperature was only 

measured along the rail at one location on the cross-section, 

which meant that temperatures at other locations must be 

inferred from the single fibre optic measurement and 

thermocouple measurements. However, there are commercially 

available fibres that combine strain and temperature 

measurement fibres in a single housing that could be used to 

improve the temperature compensation. Finally, while the 

current research has shown that data driven techniques can be 

used to assist in modelling rail behaviour, further work is 

required to develop models and detection techniques that can 

be used by rail operators to automatically detect and provide 

warnings of thermal rail track buckling. 

4 CONCLUSIONS 

This paper presented the key findings from a four-year 

investigation into the use of distributed fibre optic sensing 

(DFOS) to support the monitoring and assessment of rail tracks 

that are susceptible to thermal buckling. The key conclusions 

include: 

1. Installing three DFOS strain sensing fibres on the cross-

section of the rail allows a strain plane at every sensor 

location along the length to be derived. Axial strain, and 

weak and strong axis curvature can then be determined 

and the curvature can be numerically integrated to obtain 

displacement along the length of the rail. 

2. DFOS data can be used to update finite element models 

that are capable of predicting the ultimate response even 

when model updating is based on data acquired at 

service loads. Additionally, DFOS data can be used with 

the StatFEM to provide not only more accurate models 

but also error bounds associated with sensor noise. 

3. The change in strains due to the passage of trains and due 

to variable heating of the rail cross-section due to solar 

effects are two of the challenges associated with using 

DFOS results for the assessment and modeling of 

buckling behaviour. 

4. Dynamic DFOS measurements can be used with a beam 

on elastic foundation (BOEF) model to estimate the 

deflected shape of the rail and the track modulus. The 

deflected shape and track modulus can then be used in 

an FE model of the rail track to estimate the impact of 

vehicle load on the dynamic thermal buckling behaviour. 
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5. Data-driven models such as Gaussian process regression 

(GPR) offer a potential approach for developing models 

in situations where a physics-based model is intractable. 

However, if the system does not have a unique solution 

at a given temperature, e.g., due to poorly constrained 

degrees of freedom from gaps between the rail and 

sleepers, the GPR model may not capture this behaviour 

but can still serve as a guide for rail network managers. 
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ABSTRACT: Distributed acoustic sensing (DAS) has emerged as a powerful technology for monitoring the health and integrity 

of civil and geotechnical infrastructure. This technology leverages existing fiber-optic cables as dense arrays of vibration sensors, 

enabling continuous, real-time monitoring over long distances. This abstract summarizes recent research advancements in 

applying DAS to various infrastructure monitoring challenges. We first provide a brief overview of the DAS technology and its 

working principles. Subsequently, we present several case studies demonstrating the versatility of DAS. These include: (1) 

monitoring and identifying geohazards, such as landslides and rockfalls, that threaten the stability of linear infrastructure; (2) 

detecting disturbance events, including drilling and excavation activities, near a high-speed railway tunnel; (3) identifying wire 

breaks in prestressed concrete cylinder pipes for early warning of potential failures; (4) measuring flow rates and detecting illicit 

flows in urban underground pipelines for improved water management; and (5) integrating DAS with deep learning for traffic 

monitoring, providing insights into traffic dynamics and patterns, particularly during the COVID-19 pandemic. These examples 

highlight the potential of DAS as a cost-effective and comprehensive solution for enhancing the safety, resilience, and operational 

efficiency of critical infrastructure. 

KEY WORDS: Distributed acoustic sensing (DAS); Infrastructure monitoring; Geotechnical hazards; Artificial intelligence; Fiber 

optic sensing 

1 INTRODUCTION 

Civil and geotechnical infrastructure faces escalating risks from 

geohazards, structural degradation, and operational challenges. 

Traditional monitoring methods often suffer from sparse spatial 

coverage, high deployment costs, or limited real-time 

capabilities. Distributed acoustic sensing (DAS) revolutionizes 

infrastructure health monitoring by repurposing optical fibers 

as ultra-dense vibration sensor arrays [1, 2]. Through precise 

analysis of Rayleigh backscattered (RBS) phase changes, DAS 

achieves meter-scale spatial resolution over tens of km ranges, 

enabling simultaneous strain rate measurement across 

thousands of sensing channels [3, 4]. 

Recent advances integrate DAS with artificial intelligence to 

address critical applications: geohazard early warning (e.g., 

landslides), tunnel integrity protection, prestressed pipeline 

diagnostics, urban water management, and intelligent traffic 

systems. This work demonstrates DAS’s dual capability as both 

physical sensor network and AI-driven data platform, 

providing cost-effective solutions for infrastructure resilience. 

Case studies validate its adaptability across energy, 

transportation, and water sectors, highlighting its 

transformative potential in smart city ecosystems. 

2 DAS MEASUREMENT PRINCIPLE 

A DAS system consists of an interrogator unit (IU) and a 

sensing fiber. The IU injects a continuous pulsed laser into the 

fiber and detects the RBS phase changes over specified gauge 

lengths (Figure 1). These scattering are caused by refractive 

index variations in the fiber. For the same pulsed (along the fast 

axis), the phase delay Φ of the RBS between two points of the 

gauge length is: 

 
g4π

=
nL


  (1) 

where n is the refractive index of the optical fiber, Lg is the 

gauge length, and λ is the wavelength of the incident laser. 

 
Figure 1. Schematic of DAS measurement principle. 

Between adjacent pulse (along the slow axis), the change in 

phase delay ΔΦ over a gauge length is linearly correlated with 

axial strain rate xxò , following: 
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where x and t determine the spatial and temporal information 

of the phase delay change, sf  is the sampling rate of the DAS 

IU, and ψ is the Pockels coefficient. 

Commonly available commercial DAS IU offers a range of 

gauge length from 1 to 20 m, with channel spacing capable of 

reaching below 1 m and a sensing range that can extend up to 

50 km. During DAS measurement, the sensing fiber is divided 

into dense sensing units based on the chosen gauge length. This 

approach enables each sensing unit to measure the axial strain 

rate of the fiber induced by vibration signals. 
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For the case studies described in this work, we utilized an 

OVLINK MS-DAS2000II DAS IU. This interrogator is based 

on the principle of phase-sensitive optical time-domain 

reflectometry (Φ-OTDR), which allows for the high-sensitivity 

detection of dynamic strain events along the sensing fiber. 

3 CASE STUDIES 

 Automated rockfall classification 

DAS enables continuous seismic monitoring, offering valuable 

insights into critical infrastructure hazards like rockfalls 

(Figure 2). However, automated real-time classification of 

extensive DAS datasets remains challenging. We developed an 

accurate and interpretable random forest classifier that 

achieved over 98.4% precision, recall, and F1-score in 

differentiating windowed DAS signals of rockfall events and 

various interferences (Figure 3) [5]. Rigorous training and 

validation on field-collected data leveraged waveform and 

spectral features for robust rockfall identification. 

Hyperparameter optimization further improved classification, 

reaching 99.3% accuracy through cross-validation. Importantly, 

the model generalized well to unlabeled test data, 

demonstrating its resilience for real-world deployment. This 

near real-time solution transforms distributed fiber networks 

into comprehensive seismic monitoring systems, unlocking 

their potential to enhance safety and resilience of critical 

infrastructure worldwide. 

 
Figure 2. Conceptual overview of DAS for rockfall event 

monitoring along linear infrastructure. 

 
Figure 3. Confusion matrices comparing Random Forest 

classification performance for window lengths of (a) 2 s, (b) 4 

s, (c) 6 s, and (d) 8 s. Five classes are shown: rockfall (1), 

pedestrian walking (2), hammering (3), truck driving (4), and 

background noise (5). 

 

 Automatic identification of diverse tunnel threats 

As the backbone of modern urban underground traffic space, 

tunnels are increasingly threatened by natural disasters and 

anthropogenic activities. Current tunnel surveillance systems 

often rely on labor-intensive surveys or techniques that only 

target specific tunnel events. We present an automated tunnel 

monitoring system that integrates DAS technology with 

ensemble learning (Figure 4) [6]. We develop a fiber-optic 

vibroacoustic dataset of tunnel disturbance events and embed 

vibroscape data into a common feature space capable of 

describing diverse tunnel threats. On the scale of seconds, our 

anomaly detection pipeline and data-driven stacking ensemble 

learning model enable automatically identifying nine types of 

anomalous events with high accuracy. The efficacy of this 

intelligent monitoring system is demonstrated through its 

application in a real-world tunnel (Figure 5a), where it 

successfully detected a low-energy but dangerous water 

leakage event (Figure 5b). The highly generalizable machine 

learning model, combined with a universal feature set and 

advanced sensing technology, offers a promising solution for 

the autonomous monitoring of tunnels and other underground 

spaces. 

 
Figure 4. The framework of the DAS monitoring system for 

automatic tunnel threat identification. 

 
(a) 

 
(b) 

Figure 5. (a) DAS fiber deployment scheme along the Beijing–

Xiong’an Intercity Railway tunnel; (b) Disturbance events 
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identified in the Beijing–Xiong’an Intercity Railway tunnel 

during a monitoring campaign. 

 Identifying wire breaks in prestressed concrete cylinder 

pipes 

The inspection of broken wires in prestressed concrete cylinder 

pipes is crucial for ensuring the safety and reliability of the 

pipeline. Traditional point detection techniques always require 

labor-intensive periodic inspections and cannot deployed along 

the entire pipeline, significantly limiting the development of the 

industry. Hence, there is an urgent need for more advanced and 

intelligent sensors that can achieve 100% coverage and provide 

sufficient accuracy assurance. Figure 6 presents an overview of 

the PCCP wire breaking test site. We develop a DAS-based 

automated monitoring system to accurately classify the rupture 

of prestressed wires (Figure 7) [7]. First, a computer vision 

approach is employed to primarily screen out potential 

vibrational signals from DAS array images. Then, a pre-trained 

support vector machine model is used to classify the vibrations 

as either wire breakages or non-wire breakages (Figure 8). This 

model’s performance surpassed other classification strategies, 

achieving 99.62% accuracy, 99.41% precision, 98.82% recall, 

and 99.12% F1-score in a side-to-side comparison. Our 

innovative workflow provides a comprehensive solution for 

detecting broken wires and offers guidance for the application 

of artificial intelligence-based DAS to complex vibration 

systems with limited training data. 

 
Figure 6. PCCP wire breaking test site; photos show the wires 

in a circular recess, DAS interrogation unit used, water pressure 

monitoring gauge within the PCCP, and optical fibers coupled 

to the outer wall of the pipe. 

 
Figure 7. The framework for the autonomous monitoring of 

wire breaks using DAS data. 

 
Figure 8. t-SNE is used to reduce the feature dimensionality 

from 15 to 2 dimensions for purpose of visualization. Five 

kinds of events are embedded in the same feature space, in 

which different types are distinguished with different colors. 

 Detecting illicit flows in urban underground pipelines 

Wastewater discharge from outfall pipes can significantly 

impact river water quality and aquatic ecosystems. Effective 

outfall monitoring is critical for controlling pollution and 

protecting public health. We demonstrates a novel DAS 

approach for detecting wastewater discharge events from 

outfall pipes located along rivers [8]. Controlled field 

experiments were conducted in an industrial park river to 

systematically evaluate DAS performance (Figure 9). DAS 

detects vibrational signals imparted to suspended fiber-optic 

cables by turbulent wastewater flows, predominantly within 

10–30 Hz, enabling continuous monitoring along entire river 

lengths. Vibrational power analysis locates outfalls with meter-

level accuracy, while time–frequency techniques discern 

discharge timing and characteristics (Figure 10). Cable type 

and outfall–fiber separation influence on detection capability 

was assessed. Thermoplastic-jacketed cables optimized 

detection through enhanced vibrational coupling. Vibrational 

energy decreased exponentially with separation, highlighting 

benefits of proximal deployment for sensitivity. However, 

detection range scales with discharge flow rate. Frequency 

centroid proved a robust feature with potential for automated 

discharge identification. Overall, DAS enables high 

spatiotemporal resolution monitoring to pinpoint concealed 

outfalls minimally invasively. This positions DAS as a 

promising tool supporting improved water governance through 

early pollution warnings and rapid source localization via 

outfall vibrational signatures emanating across river networks. 

 
Figure 9. Layout of the DAS system used in field discharge 

experiments. 
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Figure 10. Wastewater discharge detection and localization. (a-

b) Time series and short-term Fourier transform (STFT) plots 

showing pre-, during-, and post-discharge. (c) Power spectral 

density (PSD) comparison of the discharge signal, wave noise, 

and system noise. (d) Outfall location identified by calculating 

vibration power (10–30 Hz) along the cable. 

 Enhanced traffic monitoring 

Traffic monitoring provides crucial data for intelligent 

transportation systems (ITS) but traditional sensors are 

expensive to deploy and maintain at scale. A field experiment 

was conducted using a section of telecommunications fiber-

optic cable co-trenched with a natural gas pipeline in Yudu 

County, Ganzhou City, Jiangxi Province (Figure 11). We 

explore DAS using existing fiber-optic infrastructure as a cost-

effective solution for traffic monitoring [9]. While DAS offers 

advantages, vehicle detection signals are susceptible to noise. 

To address this, we propose a novel approach combining DAS 

with deep learning object detection using YOLOv8. Pre-

processed and labeled DAS data collected over two weeks on a 

highway during a COVID-19 lockdown were used to train the 

YOLOv8 network, achieving 92% classification accuracy. 

Applying the trained model revealed detailed hourly traffic 

patterns and vehicle compositions (Figures 12 and 13), 

demonstrating the potential of DAS for robust and cost-

effective ITS. These findings highlight the effectiveness of 

combining DAS and deep learning for noise mitigation in 

traffic monitoring and provide valuable insights into traffic 

dynamics during the pandemic. 

 
Figure 11. (a) Field experiment site for traffic monitoring and 

(b) Operating principle of DAS for measuring vehicle signals. 

 
Figure 12. DAS signals from passenger (a, d) and commercial 

(b, c, e, f) vehicles. (a-c) Waterfall diagrams. (d-f) Time series. 

 
Figure 13. Comparison of passenger (blue) and commercial 

(red) vehicle traffic patterns determined via DAS. (a) Daily 

traffic volume trends. (b-c) Vehicle proportions on weekdays 

and weekends. 

4 CONCLUSIONS 

This overview demonstrates the transformative potential of 

DAS as a unified monitoring solution for heterogeneous 

infrastructure systems. Across geohazard monitoring, 

structural integrity assessment, and urban network 

management applications, DAS consistently proves its capacity 

to convert standard optical fibers into high-resolution vibration 

sensor arrays. By synergizing Rayleigh backscattering physics 

with machine learning architectures, the technology overcomes 

traditional trade-offs between spatial granularity, coverage 

range, and operational scalability. 

The case studies reveal two paradigm-shifting attributes: 

First, DAS inherently operates as a cyber-physical transducer, 

simultaneously capturing mechanical wavefields and feeding 

AI-driven digital twins. Second, its compatibility with existing 

fiber networks enables rapid deployment at marginal cost, 

particularly advantageous for linear assets like pipelines and 

tunnels. While signal interpretation remains context-dependent, 

emerging standardization frameworks for DAS data annotation 

are reducing domain adaptation barriers. 

As cities prioritize infrastructure resilience, DAS emerges as 

a strategic tool for converged monitoring of above-ground and 

subsurface environments. Future implementations could 

expand its use in decarbonization initiatives, such as CO₂ 

storage integrity verification and smart grid dynamics tracking. 

By bridging physical infrastructure with computational 

analytics, this technology redefines the boundaries of structural 

health monitoring in the era of ubiquitous connectivity. 
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ABSTRACT: 60s economic boom led to spread construction of large transport infrastructures. Many of these steel reinforced 

concrete structures attain their end of lifespans on this and next decade. With no major renewing plan, repairing and retrofitting 

are explored alternatives. A good example is Milano's ring-road viaduct; while already repaired and its concrete deck enlarged, 

SHM begins nowadays. Monitoring of thermal and mechanical induced strain, static and dynamic, brings access to 

permanent strain, thermal expansion, eigenmodes of each single road span and better understanding of the whole structure 

dynamic behavior. Three trucks moving at 30 km/h load dynamically the enlarged deck, while real traffic is used for modal 

analysis. Often, this kind of comprehensive monitoring requires combining various measurement technologies, making their 

installation time-consuming and expensive. Thus, the number of sensors may be undercut, and measurement campaigns duration 

reduced, which may result in poorer monitoring results and mismatching between experimental results and model's ones. FEBUS 

SHM solutions based on DAS (Distributed Acoustic Sensing), DSS (Distributed Strain Sensing) and DTS (Distributed 

Temperature Sensing) provide quick instrumentation and easy monitoring. With long-range devices to address tens of km of 

infrastructure instrumented in a row, up to 400 kHz continuous monitoring, state-of-the-art DAS repeatability threshold of only 2 

picoStrain/SquareRoot(Freq), FEBUS DFOS (Distributed Fiber Optics Sensing) solutions brings values for every node of the 

structure, remote monitoring and mastered opex and capex. 

KEY WORDS: SHM; DFOS; DAS; Bridge monitoring; Dynamic strain monitoring; Fiber Optics instrumentation.  

1 INTRODUCTION 

DFOS begins to play a major role in SHM due to its outstanding 

combination of huge number of sensing points, sensitivity, 

repeatability, and easiness of very large instrumentation. In the 

pastr, DAS (Distributed Acoustic Sensing based on Rayleigh 

Backscattering in fiber optics) has been used to assess the 

dynamic behavior of a structure, while DSS/DTS (Distributed 

Strain Sensing / Distributed Temperature Sensing both based 

on Brillouin backscattering in fiber optics) focused on quasi-

static strain and temperature monitoring.  

The collapses of widely used infrastructures like the Morandi 

Bridge in Genoa and the Florida International University 

Pedestrian Bridge have highlighted the need of implementing 

monitoring strategies to prevent such disasters. These failures 

are often attributed to design flaws, material deficiencies, 

overloading, or insufficient maintenance. Following the 

Morandi bridge collapse, a substantial number of 

infrastructures were flagged for close inspection. DFOS 

monitoring can play a major role in detecting anomalies and 

raising early alerts to infrastructure operators and owners 

before collapses occur. Indeed, traditional point sensors have 

limitations, especially in urban environments with complex 

needs, stacked infrastructures and embedded networks [1 - 7]. 

When addressing Operative Modal Analysis, we can benefit 

from high sensitivity of DAS, and different kind of active and 

passive sources can be used. Indeed, Ambient vibration 

recordings provide valuable dynamic information on structural 

behavior. These vibrations stem from various sources such as 

traffic on the deck and ambient anthropogenic noise, including 

external traffic, construction activities, and industrial 

operations, as well as natural elements like wind and 

earthquakes. They enable the estimation of dynamic parameters 

related to structural properties and serve as a valuable tool for 

monitoring structural condition [8 - 12]. 

This study shows how FEBUS Optics’ DAS technology can be 

used for both dynamic (OMA) and quasi-static strain 

monitoring of an enlarged steel reinforced concrete bridge, 

which is a high-traffic viaduct. 

 

Figure 1. Two in-parallel motorway steel reinforced concrete 

viaduct. Yellow lines show extended deck interface. 

Indeed, the sensed structure is Milano’s Ring-road, having a 12 

km concrete viaduct with new bridge held by their own piles 

have been built parallel to each original viaduct and the road-

DFOS solutions covering full monitoring needs of an enlarged concrete deck viaduct 
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slabs have been joined together through steel bars (Figure 1, 

Figure 2).  

 

Figure 2. Transversal section. Extended deck in yellow frame 

This viaduct is facing several issues and challenges. It is 

suffering from corrosion on its exposed rebars at several 

locations, not fully successful repair works, heavy traffic, and 

interferences with other infrastructures and buildings that 

complicate the attempts of structural retrofitting to improve 

safety and durability.  

This study covers the first tests done with the initially 

instrumented parts of the viaduct and brought significant results 

to improve the understanding of the behavior of the structure, 

allowing to check the viability of the instrumentation for the 

entire viaduct, validating the numerical models, and 

highlighting the importance of monitoring and control of the 

structure to the asset operator (confidential). 

 

2 METHODS 

 DAS. Distributed Acoustic Sensing 

DFOS technologies rely on one of the three backscattering 

effects which are Rayleigh, Brillouin and Raman. The DAS 

(Distributed Acoustic Sensing based on Rayleigh 

backscattering technology) record high-frequency laser pulses 

sent into the fiber, analyzing backscattered light to detect 

heterogeneities along the cable. 

Rayleigh backscattering, caused by defects in the fiber, is 

repetitive along its length and changes when the fiber is 

disturbed by external events. These changes grant access of 

physical parameters variations like vibrations coming from a 

leakage being energetic enough to propagate its related noise 

around. The optical phase shift between two positions along the 

fiber is related to the longitudinal strain using equation 1 below. 

Key acquisition parameters include fiber length, pulse rate 

frequency, spatial and temporal sampling intervals, and gauge 

length (GL). 

 𝜀𝑦𝑦 =
𝜆∙𝑑𝜃

4𝜋∙𝑛∙𝐺𝐿∙𝜉
 (1) 

Where 𝜀𝑦𝑦 is the longitudinal strain, λ is the optical 

wavelength, dθ is the phase shift, n is the optical fiber index 

and ξ is a correction factor. 

As briefly introduced above, the optical principle of operation 

is based on the Rayleigh backscattering of a light pulse 

propagating through the fiber. As it progresses, a tiny fraction 

of the laser pulse is continuously returned to the interrogator by 

random heterogeneities present in the fiber. An acoustic 

interaction at one point of the fiber will alter this process 

allowing its detection and location by time of flight of light 

(Figure 3).  

 

 
 

Figure 3. Principle of measurement via DFOS. 

 

The information is contained in the optical phase of the 

received signal requiring interferometric detection. As the 

pulse propagates very quickly, the fiber can be repeatedly 

interrogated by sending a series of pulses, thus allowing to 

solve in frequency of acoustic vibrations (Figure 4) [13 – 17]. 

 

 
  

Figure 4. Distributed acoustic measurements. Filtered signal 

Bandpass @465Hz (Width 20Hz) 

 

The achieved acoustic bandwidth can range from a few Hz to a 

few tens of kHz, the upper limit being a function of the length 

of the fiber used (the longer the fiber is, the longer the pulse 

will travel through the fiber and the lower the cut-off frequency 

is). This device performs highest state-of-the-art sensitivity, 
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which is an advantage but can also be a disadvantage by being 

subject to noise acoustic environment. Real-time digital 

processing of the data is required to extract the signals of 

interest, as well as correctly applying the technology and 

instrumenting in the right manner the structure to be sensed. 

[18] 

 
Figure 5. Fast Fourier Transform representation of Rayleigh, 

Brillouin and Raman backscattering [19] 

 

 Experimental Setup. Dynamic loading of the viaduct 

Given the fact that the evolution of elastic modulus because of 

material ageing was not characterized and not having 

preliminary results from previous measurements at the 

beginning of this test campaign, one of the main challenges was 

to mobilize heavy enough loads to ensure the entire structure 

would strain as theoretically expected. To do so, up to three 

trucks were used to bend each span. The principle was very 

simple, each span was statically and dynamically strained by 

three trucks moving on single file at 30 km/h (Figure 6). Live 

tests were done overnight to be able to use these heavy trucks 

for loading. 

 

 

Figure 6. Principle of dynamic bending of viaduct’s span. 

Strain rate was measured by DAS. Both strain rate and dynamic 

strain were real-time plotted onsite. Indeed, time-integrated 

strain rate brings strain without need of classic DSS 

(Distributed Strain Sensing based on Brillouin). This use of 

Rayleigh backscattering technology (DAS) combines the best 

state-of-the-art repeatability of FEBUS A1 (DAS), the 

capability of measuring quasi-static strain and high frequency 

(up to 400 kHz) strain all along the sensing fiber optic cable 

which would be complex to match using Brillouin technology 

(DSS/DTS) going up to around 100Hz nowadays. 

 

 Sensors. Fiber Optic sensing cables 

Three different fiber optic sensing cables were tested for this 

study. 

• Strain sensing - Tight-buffered cable with steel 

reinforcement. Deemed the robust cable. 

• Strain sensing - Tight-buffered cable without steel 

reinforcement. Lighter and less rigid providing more 

sensitivity but less protection. 

• Temperature sensing - Loose tube cable. Essential to 

understand the thermal expansion of the viaduct. Not 

presented on this publication. 

 

While choosing a robust (tensile, bending and torsion resistant) 

make sense for high demanding deployments, the downside is 

that cable reinforcements increase stiffness which tends to 

reduce sensitivity of the cable. That’s why the second strain 

sensing tight-buffered cable without steel reinforcement is 

selected (Figure 7). 

Additionally, temperature sensing loose tube cable is used for 

both assess the thermal behavior of the viaduct, typically 

sensing the temperature evolutions between day and night as 

well as seasons ones. This was used for a classic temperature 

compensation with other Brillouin interrogator used on the 

study but out of the scope of this paper.  

 

 Instrumentation 

Different approaches were discussed during preparation 

phases. Indeed, one of the difficulties were to find a cost-

effective method to instrument the entire viaduct in a durable 

and sensitive way. It is important to note that the 

instrumentation is done beneath the viaduct deck, under its 

bottom, so gravity is pulling down the whole cable/glue until 

fully cured. Prior the bonding, point-by-point attachments 

allow to place the cable at right position until the glue is spread 

and cured. 

All the cables were bonded using three different glues: 

• Fast crosslinking (curing) - Resin PPPO (2,5-diphenyl-p-

phenylene oxide). Combining tenacity and vacuum effect 

to increase quick adherence (bonding strength). 

• Strong – Thixotropic Polyurethane (undisclosed 

formulation). Extremely rigid after crosslinking. Specially 

designed for structural gluing. 

• Medium Strong - Thixotropic Polyurethane (undisclosed 

formulation). Less rigid and quicker on crosslinking than 

the second one. Specially designed for structural gluing. 
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Fast curing adhesive is used for the first part of the 

instrumentation. Despite the use of temporary tape, uncured 

state viscosity remains too low and not perfectly fully suited to 

bottom instrumentation. Main goal was to deem if coupling is 

severely impacted by the type of Strong and Medium Strong 

adhesives (Figure 7). 

 

Figure 7. Sensors and Instrumentation. 

Figure 7 shows the sensing fibers instrumentation in a single 

loop, so the full line is interrogated using only one channel. It 

is important to note during data interpretation that each cable 

passes three times through the same spatial point. This way, 

each truck will be seen three times. 

 

3 RESULTS 

 Strain Rate monitoring 

The results are presented on a 3-axis diagram typically called 

inverted waterfall. Time on vertical axis (sooner time close to 

zero), distance on horizontal axis and magnitude of strain Rate 

on colour scale on the right side (Figure 8). 

The bending of the viaduct is properly captured. As expected, 

the tension relative strain (positive, red) appears first then 

replaced by compression (negative, blue) as truck goes away 

from each sensing point. This is coherent with a bended deck 

sensed on its bottom (Figure 6).  

 

 

Figure 8. Longitudinal axis Strain Rate. Comparison of three 

different adhesives and two first instrumented spans. 

 

It is noted the three trucks are equally captured. Indeed, three 

consecutive positive and negative loadings (related to (tensile 

and compression respectively) are plotted. Furthermore, the 

amount of strain is the same, meaning the three trucks weigh 

the same. Since the loads are moving at constant speed, both 

tension and compression strain rate follow constat slope. 

Trucks are moving in the same direction and sense; the wavy 

shape is due to the sensing fiber loop instrumentation (Figure 

7). Both spans respond qualitatively and quantitatively in the 

same way. The same slope and same amount of strain rate 

around +/ 1500 nm/m/s. It is important to highlight the units 

(nanometers/meter/second) to understand the slight straining of 

the viaduct deck. 

 

Figure 9. Longitudinal axis Strain Rate. Comparison of Steel 

reinforced and not reinforced cable. 

Then, the adhesive and bonding are assessed. It is shown that 

all three adhesives show the same response. Indeed, there are 

no significant differences on the intensity of the strain rate 

which points to a similar coupling structure-sensors, leading in 

fine to a similar sensitivity. The same conclusion for the 

comparison between steel reinforced cable and not reinforced 

one, having similar sensitivity (Figure 9). 

 

 Strain monitoring 

From previous results, strain rate expressed in nm/m/s - typical 

dimension and units of vibration on DAS measurements - many 

useful information can be inferred. 

Dynamic strain rate can be time integrated to obtain strain, 

expressed on µm/m. In this case, typical integration time is 1ms 

but can be adjusted thanks to the capabilities of FEBUS A1 

(DAS) to modify all its measurement parameters like pulse rate 

frequency (number of laser pulses emitted per time) and time 

resolution. 
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Figure 10. Longitudinal axis strain from time integrated strain 

rate 

In the graph above (Figure 10), the strain is plotted in function 

of time (left axis) and distance (bottom axis), while intensity of 

the strain is represented by the color scale on the right. To 

enhance the result, only two first spans with strong glue are 

plotted. From 105 m to 155 m.  

It is important to note the trucks are travelling from far distance 

to closer one, more precisely started on 155 m and go to 105 m, 

while the time is increasing on the left axis, so the trucks’ 

movements is seen as diagonal from bottom right corner of the 

graph to the upper left corner. 

It is observed in the figure above (Figure 10) the same patterns 

of positive and negative strain for each truck pass, as seen with 

strain rate. In contrast of strain rate results exploitation, we can 

note that the first span is reaching up to 100 µm/m on tensile 

and -60 µm/m on compression, while the second span is less 

strained on tensile, going up to 80 only µm/m, and the same 

compression strain of -60 µm/m. 

To go further in the quantification, we can see the pass of the 

trucks two and three on second span seemed to load 20 µm/m 

more than the pass of the first truck.  

 

 Displacement monitoring 

It is important to note that one the main aim of this study was 

to quantify the positive longitudinal displacement of the span 

because of the bending. To do so, a space integration was done 

at a particular point, where the strain was related to tensile, so 

positive. The region of this point is represented by the orange 

rectangle between 110 m and 115 m (Figure 10). 

 
Figure 11. Longitudinal axis displacement from space 

integrated strain 

In the graph above (Figure 11), we can see the result of the 

space integration of the strain rate, which is the longitudinal 

axis displacement created by the bending of the span. The 

length of integration was 1m, which can be tuned as wished 

with FEBUS A1. Thus, it is observed the amount of 

displacement is 80 µm/m on first span. This matches the 

expectations from numerical modelling as confirmed by the 

technical direction of CaeMATE Srl, the entity tasked of the 

mechanical modelling of the bridge for this study.  

 

 Modal analysis with DAS 

FEBUS A1 DAS was applied for monitoring of strain rate, 

strain and displacement but also for its more common use, 

modal analysis. The same cable and interrogator were suited 

for this kind of acquisition, and the real traffic at a high load 

time of the day (rush hour) was used. This is widely used and 

bring plenty of acoustic signals. Since the sensitivity of DAS is 

very high, it is preferable to plot results at one single point but 

other FFT-based 3D representations allow to get info from the 

entire line at once. In this case, the choice is to represent time 

on left axis while the frequency is on the bottom axis, while 

color represents the signal energy, thus amplitude of the 

vibration (Figure 12). 

 

Longitudinal axis displacement 
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Figure 12. Vibrations from real traffic, frequency in function 

of time for a particular point 

 

From previous information, the frequencies can be represented 

for a particular point and time, thus the amplitude of the 

vibration in function of the frequency, as shown on the figure 

below (Figure 13). In the aim of comparison of different states, 

two instants are plotted, on red the steady state to see the 

ambient noise when no vehicle on the instrumented spans, and 

blue for high intensity signals from traffic on the instrumented 

spans. 

 

 
Figure 13. Modal frequencies of the viaduct 

 

Up to five modal frequencies are detected clearly, between 10,3 

Hz and 27 Hz. 

It is important to note that this is plotted for one single point, 

thus one node identified previously on FFT over distance, but 

it is possible to do the same analysis for all the nodes of the 

structure, that are sensed simultaneously thanks to the 

properties of Distributed Acoustic Sensing, and its long range 

and fine resolution measuring capabilities. 

 

4 DISCUSSION 

It has been shown that DAS technology can be applied to both 

dynamic and quasi-static acquisitions addressing OMA and 

strain measurements with the same sensor (Fiber Optics) and 

DAS interrogator (FEBUS A1). Live data production - time and 

space integration - allowed to go from strain rate to strain and 

displacement during the acquisitions and check the quality of 

results and the coherence with the numerical models. 

While this is mathematically well known, the application of this 

methodology to DAS acquisitions is a novelty that unlocks new 

applications of DAS in the context of SHM and Civil 

Engineering as well as other potential uses on sectors like Oil 

& Gas and Geophysics, for static and dynamic assessment of 

pipelines and ground movement for instance. Indeed, thanks to 

the capabilities of FEBUS A1, all measurement parameters can 

be easily modified to suit to the infrastructure length and 

acquisition demands. 

Besides, one of the main advantages of Modal analysis of DAS 

monitoring is the possibility to combine high sensitivity and 

decide the position of nodes after instrumentation, allowing to 

overcome the difficulties of predicting the nodes of the 

vibration modes, and deciding the right positions to locate 

traditional point sensors without knowing how the structure 

behaves dynamically. For the selected position, 5 modal 

frequencies were located spectrally and quantified in terms of 

amplitude of vibration. 

The measurements were achieved with all the combinations of 

cable and adhesive in the scope, two different cables, steel 

reinforced and not reinforced, and three different glues. Indeed, 

all cables and glues tested shown good properties in terms of 

coupling and sensitivity for the intended goal of longitudinal 

axis displacement and Modal Analysis. 
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ABSTRACT: Real-time monitoring and accurate localization of pipeline leaks are crucial for pipeline safety. Conventional 

methods often fail to detect micro-leaks and face issues such as low positioning accuracy, high false alarm rates, and inability to 

monitor long distances. This study proposes two innovative leakage monitoring methods based on distributed temperature sensing 

(DTS) and distributed strain sensing (DSS). The first method utilizes evaporation-induced relative humidity measurement. By 

measuring the temperature of DTS fiber optic cables wrapped in gauze, real-time detection and localization of leaks in pipelines 

carrying ambient-temperature liquids can be achieved. A significant temperature drop at the leakage location allows precise 

identification of micro-leaks. The second method employs fiber optic cables with water-swelling blocking yarns for localized 

strain sensing, combined with Optical Frequency Domain Reflectometry (OFDR). At the leakage location, the strain of the sensing 

fiber significantly decreases, providing a distinct signal for detection. Indoor experiments confirmed the feasibility of both 

methods, demonstrating their ability to achieve real-time monitoring and precise localization of micro-leaks. These methods offer 

novel solutions for addressing pipeline leakage challenges. 

KEY WORDS: Micro-Leakage; Distributed Fiber Optic Sensing; Distributed Temperature Sensing; Distributed Strain Sensing. 

1 INTRODUCTION 

Pipeline transportation is a widely adopted technology for 

conveying fluids such as gases and liquids. In recent years, it 

has developed rapidly and has been extensively applied in 

sectors such as energy, municipal infrastructure, and water 

conservancy due to its advantages of high transport capacity, 

small land footprint, short construction cycles, and low 

operational costs. As one of the five major modes of modern 

transportation—alongside rail, road, waterway, and air—

pipeline systems have become the predominant solution for 

transporting water, oil, and gas across land, playing a critical 

role in national economic development and public safety [1,2]. 

However, as pipelines age, they become increasingly 

vulnerable to damage caused by thermal expansion and 

contraction, fatigue, corrosion, foundation settlement, or 

accidental excavation. These factors frequently lead to failures 

such as rupture or leakage, resulting in significant resource loss 

and economic damage. Consequently, real-time monitoring and 

accurate localization of pipeline leakage are essential to 

ensuring safe operation, protecting public assets, and 

maintaining system reliability [2]. 

Conventional leakage detection methods—such as the 

negative pressure wave, mass balance, ground-penetrating 

radar (GPR), capacitive sensing, electromagnetic reflection, 

and acoustic emission (AE)—have been widely utilized, but 

each presents notable limitations. While some offer advantages 

like fast response or low cost, they often suffer from poor 

localization accuracy, high false alarm rates, limited sensitivity 

to small or slow leaks, and an inability to monitor over long 

distances. For example, the negative pressure wave method is 

effective only for large and sudden leaks; the mass balance 

method lacks precise localization capability; and GPR and AE 

techniques are heavily dependent on operator expertise and are 

sensitive to environmental noise. These drawbacks 

significantly restrict their applicability in large-scale or 

complex pipeline systems. 

In this context, distributed fiber optic sensing (DFOS) has 

emerged as a promising alternative, offering numerous 

advantages such as corrosion resistance, compact structure, 

high sensitivity, immunity to electromagnetic interference, and 

long-term operational stability [3]. By monitoring physical 

parameters such as temperature, strain, or vibration, DFOS 

enables distributed and real-time leak detection with high 

spatial resolution. 

Among DFOS techniques, temperature-based methods have 

been most extensively studied. For instance, Vogel et al. [4] 

employed Distributed Temperature Sensing (DTS) to detect 

pipeline leaks by identifying abnormal temperature variations, 

a method that has since gained widespread adoption. Wang et 

al. [5] applied Brillouin Optical Time-Domain Reflectometry 

(BOTDR) for temperature-based leak detection and 

investigated how different installation methods influence 

sensing performance. However, these approaches typically rely 

on a significant temperature difference between the leaking 

fluid and the surrounding environment. To address this issue, 

some researchers have introduced active heating of the fiber to 

enhance detection sensitivity [6], though this introduces safety 

concerns in environments containing flammable gases. 

Commercial systems such as Omnisens DiTeST, which utilize 

both Brillouin and Raman scattering to monitor temperature 

and strain, can detect large-scale leaks but usually require the 

leakage volume to exceed 0.01% of the total flow to be 

identified [7]. 

Additional innovations include MacLean’s polymer-

embedded fiber design, which swells upon contact with leak 

fluids and causes signal attenuation detectable via Optical 
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Time-Domain Reflectometry (OTDR) [8]. While effective, this 

design is single-use and must be replaced after each leak event. 

Similarly, Jia et al. adopted Brillouin Optical Time-Domain 

Analysis (BOTDA)-based strain sensors, which exhibited 

significant accuracy degradation and poor reusability after 

leakage exposure. Interferometric methods such as Sagnac or 

Mach-Zehnder configurations offer high sensitivity but require 

complex signal processing. Moreover, Stajanca et al. [9] 

applied Distributed Acoustic Sensing (DAS) based on Rayleigh 

scattering to detect vibrations from gas leaks, but the method 

was highly susceptible to environmental noise, had low 

localization accuracy, and consumed large amounts of optical 

fiber. 

Despite these advancements, current DFOS-based 

technologies still face three main challenges: 

(1) limited ability to detect ambient-temperature liquid leaks 

without external heating; 

(2) low sensitivity to small or slow leakage events, resulting 

in potential missed detections; and 

(3) dependence on non-reusable sensing materials, such as 

polymer coatings that degrade upon fluid exposure. 

To address these limitations, this study proposes two novel 

DFOS-based methods for micro-leakage monitoring in tunnel 

pipelines. The first method utilizes evaporation-induced 

humidity sensing, in which a gauze-wrapped DTS fiber detects 

localized temperature drops caused by water evaporation at 

leak points. The second method employs Optical Frequency 

Domain Reflectometry (OFDR)-based strain sensing, using 

fiber optic cables integrated with water-swelling blocking yarns 

that exhibit measurable strain changes upon contact with 

leaking fluid. 

2 MATERIALS AND METHODS 

 Pipeline Leakage Sensing Principle Based on EETS-

DTS 

Distributed Temperature Sensing (DTS) technology measures 

temperature along an optical fiber by exploiting the 

temperature-dependent intensity ratio between Stokes and anti-

Stokes components of Raman backscattered light. When a 

pump pulse is launched into the fiber by a DTS laser source, 

photon–molecule interactions generate backscattered Raman 

signals at two distinct frequencies—Stokes and anti-Stokes. 

The Stokes signal intensity is largely temperature-independent, 

while the anti-Stokes intensity is strongly temperature-sensitive, 

increasing with local fiber temperature. 

The DTS interrogator calculates the temperature at each point 

by computing the intensity ratio of the anti-Stokes to Stokes 

signals and locates the scattering position using the round-trip 

travel time of the light pulse. The temperature 𝑇 can be 

expressed as follows: 
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where 𝑅(𝑇) is the temperature function, 𝐼𝐹 is the anti-Stokes 

light intensity, 𝐼𝑆 is the Stokes light intensity, 𝜈𝑆 is the central 

frequency of the Stokes component, 𝜈𝐹 is the central frequency 

of the anti-Stokes component, c is the speed of light in vacuum, 

𝜈 is the Raman shift, 𝐾 is the Boltzmann constant, ℎ is the 

Planck constant, and 𝑇 is the absolute temperature. 

The distance from the laser input to the scattering point can 

be determined by: 
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where X is the distance, v is the speed of light in vacuum, t the 

travel time of the light and n is the refractive index of the fiber. 

By combining Equations (1) and (2), the temperature at any 

point along the fiber can be measured in a distributed manner. 

 

Figure 1. Principle of distributed temperature sensing (DTS) 

technology. 

In unsaturated air, evaporation can occur at any temperature. 

When leakage occurs in a pipeline, the leaked liquid may come 

into contact with the sensing cable. However, conventional 

temperature-sensing cables have smooth outer surfaces, which 

inhibit significant evaporation, leading to minimal temperature 

drop. To enhance detection sensitivity, Sun et al. [10] proposed 

wrapping the fiber with porous gauze, which increases water 

absorption and promotes evaporation. 

The proposed Evaporation-Enhanced Temperature Sensing 

DTS (EETS-DTS) method involves deploying a gauze-

wrapped DTS cable beneath the pipeline. The gauze absorbs 

leaking water and facilitates capillary spreading due to its high 

porosity and large surface area. This promotes enhanced 

evaporation, resulting in a localized temperature decrease at the 

leak site, which is detected by the DTS system. Over time, a 

thermal equilibrium is reached between the heat loss due to 

evaporation and the heat supplied by ambient air, causing the 

gauze temperature to stabilize at a value lower than the 

surrounding dry areas. 

For ambient-temperature water leakage, the temperature 

difference ΔT between dry and wet cables can be estimated 

using the World Meteorological Organization (WMO) 

psychrometric formula: 

 ∆𝑇 = 𝑇1 − 𝑇2=
𝑒𝑤(𝑡2)−𝑈/100∙𝑒𝑤(𝑡1)

𝐴𝑃
 (3) 

where ew(T1) and ew(T2) are the saturated vapor pressures 

corresponding to the dry and wet cable temperatures, U is the 

relative humidity (%RH), A is the psychrometric coefficient 

(related to air velocity and sensor design), and P is the 

atmospheric pressure (MPa). Hence, the temperature difference 

is mainly influenced by humidity and ventilation conditions. 
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Figure 2. Schematic of the EETS-DTS leakage detection 

principle. 

The DTS cable used in this study (model NZS-DTS-C09) has 

an outer diameter of 5 mm and consists of five structural layers: 

a tight-buffered optical fiber, spiral steel armor, Kevlar yarn, 

braided metal mesh, and a protective outer sheath (Figure 3). 

The spiral armor and braided mesh provide mechanical 

protection, the Kevlar layer enhances tensile strength, and the 

outer sheath offers good thermal conductivity and flame 

resistance. The cable operates reliably within a temperature 

range of –20 °C to 85 °C. 

Temperature data are collected using a DTS interrogator 

(model NZS-DTS-A03), manufactured by Suzhou Nanzee 

Sensing Technology Co., which provides high-resolution 

distributed temperature profiling along the fiber. The key 

specifications of the device are listed in Table 1. 

(a)                    

(b)  

Figure 3. Structure of the DTS temperature-sensing cable: (a) 

Schematic diagram; (b) Physical photograph. 

Table 1. Specifications of the DTS interrogator. 

Parameter type Value 

Measurement range (km) 1~16 

Temperature range (°C) -40~120 

Fiber type Multimode 62.5/125 or 50/125 

Temperature accuracy (°C) ±0.3 

Temperature resolution (°C) 0.1 

Response time (s) 2 s/channel 

Spatial resolution (m) 0.5~3 

Number of channels 4 

Fiber connector type FC/APC 

Communication interface USB / RS232 / Ethernet 

Power supply DC19V 

 Pipeline Leakage Sensing Principle Based on OFDR 

Optical Frequency Domain Reflectometry (OFDR) is a high-

resolution sensing technique based on frequency-swept 

continuous wave interferometry (FMCW). It employs a laser 

source with linear wavelength sweep combined with 

heterodyne detection. The optical signal is split into two arms: 

a reference arm and a signal arm. Due to differences in optical 

path lengths, the Rayleigh backscattered signal from the 

sensing fiber interferes with the reference signal, producing a 

beat frequency that is directly proportional to the scattering 

position. By applying a Fast Fourier Transform (FFT) to the 

interference signal, a spatially resolved Rayleigh scattering 

profile can be obtained. 

Rayleigh scattering originates from random microscopic 

fluctuations in the refractive index of the fiber. Froggatt and 

Moore modeled these variations as a weak random Bragg 

grating. When external strain is applied to the fiber, the local 

spectrum of the Rayleigh scattering shifts. The magnitude of 

this spectral shift is linearly proportional to the applied strain. 

By comparing the shifted spectrum with a reference state, the 

strain distribution along the fiber can be quantified with high 

spatial resolution. 

 

Figure 4. Measurement principle of OFDR. 

Building upon the high-resolution strain measurement 

capability of OFDR, this study proposes a novel strain-sensing 

cable that incorporates water-swelling yarns into a fixed-point 

sensing structure. These yarns are made of polyester filaments 

coated with super-absorbent polymers (SAPs) and are 

commonly used as water-blocking fillers in optical cables. The 

SAPs contain abundant hydrophilic functional groups and a 

moderately cross-linked polymer network, enabling them to 

absorb water up to hundreds or even thousands of times their 

own weight. Once hydrated, the yarns expand into a hydrogel, 

maintaining structure under pressure and remaining functional 

under thermal cycling. 

 

Figure 5. Schematic of pipeline leakage detection using 

OFDR and water-swelling yarns. 
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In the proposed sensing cable, the fiber is pre-tensioned 

between discrete fixed points. Upon contact with leaked liquid, 

the SAP yarns rapidly swell, reducing the tensile force acting 

between anchor points. This localized strain reduction is 

accurately captured by the OFDR system, allowing for precise 

leakage detection. The cable features a four-layer construction, 

consisting of: a 0.9 mm tight-buffered strain-sensing fiber, a 

spiral armored tube, water-swelling yarn, and an outer braided 

mesh (Figure 6). 

(a)     

(b)  

Figure 7. Structure of the strain-sensing cable with water-

swelling yarns: (a) Schematic diagram; (b) Physical 

photograph. 

 

The cable is fixed at 1-meter intervals, creating a structure 

with discrete sensing segments. The outer mesh ensures that the 

yarn remains in place during operation. The yarn itself consists 

of two components: a super-absorbent polymer (e.g., 

polyacrylate), which swells when exposed to water, and 

reinforcement fibers (e.g., nylon or polyester), which improve 

tensile strength and elongation properties. The key 

specifications of the water-swelling yarn and the OFDR 

interrogator (model OSI-S) are presented in Tables 3 and 4, 

respectively. 

Table 3. Performance parameters of water-swelling yarn. 

Property Value 

Yarn linear density (dtex) 3330 

Basis weight (m/kg) 3000 

Breaking strength (N) ≥100 

Elongation (%) 15 

Swelling rate (ml/g in 1st minute) ≥60 

Long-term thermal swelling (150 °C, 24 h, ml/g) ≥65 

Instant thermal swelling (230 °C, 10 min, ml/g) ≥65 

Moisture content (150 °C, 1 min) 9 

 

Table 4. Specifications of OSI-S OFDR interrogator. 

Type Specification 

Portable enclosure dimensions (mm) 280×250×164 

Portable enclosure weight (kg) 4.5 

Spatial resolution (mm) 1-100 

Maximum sampling resolution (mm) 1 

Temperature accuracy (°C) ±0.1 

Temperature repeatability (°C) ≤0.1 

Measurement range (m) 100 

 

3 RESULT 

 EETS-DTS Monitoring 

Based on the spatial resolution of the DTS system, the length 

of gauze wrapping on the EETS cable was set to 1.8 meters. To 

simulate leakage, a 2-meter-long PVC pipe with an inner 

diameter of 75 mm and a leakage hole at the bottom was used. 

The fiber optic cable was secured directly beneath the pipe 

using plastic zip ties. Before the experiment, the water inside 

the pipe was left to stand for 24 hours to allow its temperature 

to reach equilibrium with ambient conditions. 

During the test, the PVC pipe was maintained in a fully filled 

state. A dual-probe PT100 thermometer was employed to 

continuously monitor and record both the water temperature 

inside the pipe and the ambient air temperature. As humidity 

can significantly influence evaporative cooling, a digital 

hygrometer was placed near the pipe to record ambient relative 

humidity throughout the experiment. 

The DTS temperature-sensing cable was connected to a 

temperature calibration box, which in turn was linked to the 

DTS interrogator, enabling real-time acquisition of the 

distributed temperature profile along the fiber. The complete 

experimental setup is shown in Figure 8. 

 

Figure 8. Photograph of the experimental setup. 

Figure 9 presents the temperature variation trends at different 

positions along the bare DTS cable wrapped with gauze. The 

observed behavior is consistent with that of the sheathed cable: 

the temperature at each point decreases over time, and the 

closer a point is to the leakage location (located at 6.02 m), the 

greater the temperature drop. Furthermore, the temperature 

distribution is approximately symmetrical about the leakage 

point. 

 

Figure 9. Temperature variation trends at different positions 

along the bare DTS temperature-sensing cable. 
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However, in contrast to the sheathed condition, where 

temperatures eventually stabilized, the bare cable setup 

exhibited a continuous temperature decrease over time, without 

reaching equilibrium. This indicates that the evaporative heat 

loss exceeded the heat replenishment from the surrounding 

environment, suggesting that a dynamic thermal balance was 

not achieved during the experiment. One possible explanation 

is that, in this configuration, the gauze was directly wrapped 

onto a copper mesh, enhancing the fluid contact efficiency and 

promoting stronger evaporation, which resulted in sustained 

cooling. 

Figure 10 illustrates the temperature distribution profiles 

along the bare cable at different time intervals. Similar to the 

sheathed condition, the temperature profile forms a 

characteristic “arch-shaped” curve, indicating that the 

temperature is lowest near the leakage point at any given time. 

However, compared with the sheathed cable, the bare cable 

exhibits a sharper temperature gradient, with a maximum 

temperature difference of 2.8 °C observed at 3600 seconds. 

 

Figure 10. Temperature distribution along the bare DTS 

sensing cable at 3600 s. 

 

These results indicate that the protective sheath has a 

noticeable effect on the EETS-DTS leakage detection 

performance. The bare cable yields clearer monitoring results, 

suggesting improved sensitivity. Therefore, the following 

sections focus on analyzing influencing factors for the bare 

EETS-DTS configuration. 

 OFDR-Based Monitoring 

In this experiment, a peristaltic pump was employed to control 

the leakage rate, and both ends of the strain-sensing optical 

fiber cable—embedded with water-swelling yarns—were fixed 

in place. The leak outlet of the pump was precisely aligned with 

the sensing section of the cable. The selected leakage rate was 

70 mL/min. The OFDR interrogator was connected to capture 

wavelength shift data corresponding to strain variations. The 

experimental setup is shown in Figure 11. 

 

Figure 11. Experimental setup for OFDR-based leakage 

monitoring. 

The measured strain distribution along the fiber is shown in 

Figure 12. Upon leakage, the strain recorded by the OFDR 

system dropped sharply and then stabilized. Throughout the 

leakage process, the strain-affected segment—defined by a 

significant drop in measured strain—spanned from 3.36 m to 

4.36 m. In contrast, the rest of the cable exhibited minimal 

strain change, resulting in a distinct step-like pattern in the 

strain profile. 

 

Figure 12. Strain magnitude measured by the fixed-point 

strain-sensing cable with water-swelling yarns. 

To further analyze strain behavior, two points were selected: 

one located within the strain-drop region and the other outside 

it. Their strain variation over time is compared in Figure 13. It 

is evident that the strain at the leakage point decreased rapidly 

at first, followed by a gradual stabilization, while the unaffected 

region maintained a stable strain level throughout. The time 

required for the strain to stabilize was approximately 100 

minutes. 

 

Figure 13. Strain variation over time at the leakage point of 

the strain-sensing cable with water-swelling yarns. 

4 DISCUSSION 

 Applicability Analysis 

This study presents two pipeline leakage monitoring methods: 

one based on evaporation-induced humidity sensing using DTS, 

and the other based on strain sensing using Optical Frequency 

Domain Reflectometry (OFDR) combined with water-swelling 

yarns. Both methods are suitable for detecting ambient-

temperature liquid leaks in environments where the pipeline is 

exposed to air, such as underground utility corridors and 

aboveground pipelines. However, they are not applicable to 
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buried pipelines, where direct air contact is absent, and 

evaporation or swelling may be inhibited. 

The current work focuses on leakage scenarios involving 

water as the leaking medium. The effectiveness of these 

methods for other fluid types (e.g., oils, chemicals) requires 

further study, as variations in fluid properties may affect 

evaporation behavior or interaction with swelling materials. 

The first method, based on evaporation sensing (EETS-DTS), 

is generally applicable in a wide range of environments and 

performs especially well in conditions with low humidity and 

high airflow, which enhance evaporation and generate more 

distinct temperature differences. In high-humidity 

environments, however, evaporation may be limited or 

suppressed, leading to reduced sensitivity or loss of 

functionality. 

The second method, based on OFDR strain sensing with 

water-swelling yarns, demonstrates broader applicability. It is 

insensitive to environmental variables such as humidity and 

wind speed and exhibits high sensitivity, enabling the detection 

of small-scale or micro-leaks with better reliability. 

 Practical Application Analysis 

Both methods offer distributed monitoring capabilities for 

pipeline leakage and are particularly advantageous for 

detecting small-volume, ambient-temperature liquid leaks. 

They are well-suited for underground utility corridors and 

open-air pipelines, where sensing cables can be conveniently 

installed beneath the pipelines. 

The EETS-DTS method supports long-distance distributed 

measurement, but it offers relatively low measurement 

accuracy. In practical scenarios, elevated ambient humidity 

may cause natural temperature fluctuations, leading to false 

positives. Additionally, in harsh environments—such as acidic, 

dusty, or corrosive conditions—the gauze layer may degrade or 

fail over time, compromising the monitoring performance. For 

long-term or demanding applications, regular gauze 

replacement is recommended to ensure reliability. 

The fixed-point strain-sensing cable embedded with water-

swelling yarns also enables distributed leakage detection. 

However, given that standard OFDR systems are limited to 

approximately 100 meters, it is advisable to adopt alternative 

demodulation technologies such as Brillouin Optical Domain 

Frequency Analysis (BODFA) or Brillouin Optical Time-

Domain Reflectometry (BOTDR) for longer-distance 

applications. 

In practical deployment, a hybrid monitoring strategy is 

recommended: (1) Use the EETS-DTS method in well-

ventilated, low-humidity environments to take advantage of its 

evaporation-based sensitivity. (2) In environments where the 

EETS-DTS method is inapplicable or limited, deploy the strain-

sensing cable with water-swelling yarns to ensure continued 

leakage detection. 

5 CONCLUSION 

This study proposed and experimentally validated two novel 

pipeline leakage monitoring methods based on distributed fiber 

optic sensing (DFOS): an evaporation-enhanced temperature 

sensing method using DTS (EETS-DTS), and a fixed-point 

strain sensing method using OFDR combined with water-

swelling yarns. Both approaches demonstrated effective 

capabilities for detecting small-scale leaks of ambient-

temperature liquids in tunnel or aboveground pipeline 

environments. 

The EETS-DTS method leverages gauze-wrapped optical 

fibers to amplify evaporation-induced temperature differences, 

enabling distributed leak localization with a relatively simple 

setup. It is particularly effective in low-humidity, well-

ventilated environments. The OFDR-based strain sensing 

method utilizes the swelling behavior of specially embedded 

yarns to detect leakage-induced strain changes with high 

resolution and sensitivity, and is less affected by environmental 

variables. 

Laboratory experiments confirmed the feasibility and 

reliability of both methods. The EETS-DTS technique offers 

advantages in long-range monitoring, while the OFDR-based 

method provides high accuracy in micro-leak detection. A 

hybrid deployment strategy is recommended to combine the 

strengths of both approaches for broader practical applicability. 

Overall, the proposed methods provide promising and 

complementary solutions for pipeline leakage monitoring, 

offering new perspectives for enhancing infrastructure safety 

and maintenance in complex pipeline networks. 
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ABSTRACT: Recent developments in digital technology make it possible to create interactive 3D models for structural analysis 

in a user-friendly software environment. In addition, the technology for creating 3D models of real structures using point cloud 

data for various users is also developing rapidly. Such rapid change may raise concerns about a developing gap between traditional 

structural mechanics education based on beam theory and the modern structural analysis scheme. However, if it becomes possible 

to efficiently perform structural analysis by recreating structures in cyberspace without special skills, it will be beneficial to 

cultivate a sense of structural mechanics for beginners. In this study, we investigated the feasibility and simplicity of constructing 

a point cloud-based structural analysis model to capture the general trend of deformation and stress in a structure. Specifically, we 

constructed a point cloud model from photographs of an approximately 2m long steel plate girder bridge using the SfM technique, 

meshing the model, and assembled a solid FE model using only general functions of packaged software without any special 

operations for model modification. We compared the strain in the constructed model under static loading with the actual measured 

values for the bridge. The model properly calculated the deflection shape, and it will help learners understand structural mechanics. 

KEY WORDS: Structure from Motion, Point cloud model, Structural mechanics. 

1 INTRODUCTION 

Our predecessors have taught us that the history of structural 

mechanics is a repeated process of observing phenomena 

through experimentation, and then formulating and 

systematising them [1], [2]. Today, students can learn about 

systematised structural mechanics efficiently. In exchange for 

these fruits, many students are passive and just learn how to 

solve problems.  

On the other hand, recent developments in structural analysis 

software have made it possible to precisely analyse structures' 

deformation and stress distribution with complicated shapes 

and materials. In addition, it has become possible to model even 

existing structures easily using point cloud technology[3]. 

Researches have been conducted on utilising point cloud data 

for structural analysis. However, they require advanced or 

complex procedures developed by each researcher[4], [5]. We 

have yet to fully benefit from them in structural engineering. 

Bridging the gap between cutting-edge structural analysis 

technology and traditional structural mechanics education or 

feeding back the latest technology to the learning of beginners 

will increase the attractiveness of this engineering area. 

The authors investigated the technique of constructing 

precise structural models of actual structures from point cloud 

models using SfM (Structure from Motion) or photogrammetry 

techniques. We have also developed a method for converting 

point cloud models into 3D FE models that can be used for 

structural analysis. Through this research, it has become 

possible to model the damaged actual structures with a certain 

degree of precision and to evaluate the stress of damaged 

members. On the other hand, modelling point clouds into 

appropriate shapes of FE models requires a relatively 

complicated procedure, and fine-tuning of parameters is also 

necessary individually. The precise evaluation of structural 

performance with automated procedures from point cloud data 

is the ambitious goal; however, even if the analytical accuracy 

is somewhat limited, more straightforward procedures will 

enhance the possibility of structural mechanics. 

In this study, we investigated the feasibility and simplicity of 

constructing a point cloud-based structural analysis model to 

capture the general trend of deformation and stress in a 

structure. Specifically, we constructed a point cloud model 

from photographs of an approximately 2m long steel plate 

girder bridge using the SfM technique, meshing the model, and 

assembled a solid FE model using only general functions of 

packaged software without any special operations for model 

modification. We compared the strain in the constructed model 

under static loading with the actual measured values for the 

bridge. 

2 FE MODEL FROM POINT CLOUD 

 A model bridge and point cloud model 

A simple steel girder bridge, an out-of-service railway bridge 

located on a test bed consisting of two main girders made of 

rolled I-shaped steel[4],  was subject to study. The length of the 

girder is 2.4 m, and the total width of the bridge is 1.1 m. The 

steel surface was generally rusted, but there was no significant 

reduction in thickness. A damaged state was prepared by 

grinding a 200×68.5 mm area on the top surface of the lower 

flange at the mid-span of one girder. 

The static loading experiment was conducted by placing steel 

plates on top of the main girders to create a two-point loading 

A PC based FE model as an innovative learning tool in structural mechanics 
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condition as shown in Figure 1. The loading weight is 80 kN. 

Strain gauges measured strain at the mid-span of girders. 

The point cloud model of the bridge was constructed using 

SfM. A SONY α6500 digital camera captured 2,969 images 

from around the bridge. The vertical and horizontal overlap 

rates were set to 80% or more. The Agisoft's Metashape (ver1. 

6. 5. 11249) loaded captured images and constructed a tie point 

cloud with high accuracy. Then, a point cloud model was 

constructed at medium quality and high-depth filter settings. 

Figure 2 shows the point cloud model of the bridge. There were 

no missing points in the entire point cloud. Table 1 shows the 

plate thickness of the damaged bridge at the center cross-

section of the span. The average error was 1.1 mm, and the 

model was generally accurate. The reduction in plate thickness 

of the damaged area was also modeled. 

 Conversion method into FE model 

Because the number of points in the point cloud model was 

enormous, a voxel grid was set on the point cloud, and a voxel 

downsampling was applied to create nodes. The grid size, 

which was set to 9mm or 18mm in this study, corresponds to 

the mesh size of the FE model. The centroid of the point cloud 

within the grid was then calculated as the node of the FE model. 

The girders were divided into web and flanges using the 

maximum and minimum z-coordinates of the web. The 

maximum and minimum values were calculated by using the 

normal vector for each point. 

To create a cross-section, align only the x-coordinate value 

of each point along the component’s axis to the same plane. An 

outline of a section was created along the component’s axis. 

The shape of the outline was controlled by a shrink factor 

determined by trial and error for each component. 

Figure 3 shows the concept of element generation. A 2D 

Delaunay triangulation was first performed on each cross-

sectional outline, dividing the 2D region into triangles using an 

arbitrarily set group of nodes. Next, the process of generating 

solid elements was applied to all cross-sections where 2D 

Delaunay triangulation was performed. For each triangular 

element on the Sn cross-section, the closest point on the Sn+1 

cross-section was found, and triangular solid elements were 

formed by connecting these points. Lastly, the web and flanges 

were reconnected using a similar way of generating the solid 

elements of each component. 

The elements and node information were exported to a NAS 

file and then imported into the structural analysis software 

Midas NFX. The constructed FE model of the damaged bridge, 

which is called Model A, will be shown in Figure 4. The 

analytical result will be discussed in Chapter 4. 

3 A SIMPLE METHOD FOR POINT CLOUD BASED 

FEM 

The recent development of image processing technologies and 

laser ranging technologies have brought about several options 

to obtain point cloud models of structures. If more 

straightforward procedures can be utilized to construct the FE 

model from the point cloud model, structural analyses will be 

much more user-friendly for non-professional users. Therefore, 

the authors explored a method to compose an FE model using 

only general software without original codes. The proposed 

steps are as follows: 

 

 

 

Figure 1. Static loading experiment. 

 

 

 

Figure 2. A point cloud model of a simple girder bridge. 

 

 

Table 1. Plate thickness (mm). 

 Real P.C. model 

Upper flange (G1) 20.0 19.6 (-0.4) 

Web (G1) 15.0 13.1 (-1.9) 

Lower flange 

(G1) 

outside 15.0 12.6 (-2.4) 

inside 10.0 10. (+0.4) 

Upper flange (G2) 20.0 19.7 (-0.3) 

Web (G2) 15.0 12.2 (-2.8) 

Lower flange (G2) 20.0 20.1 (+0.1) 

 

 

 

 

Figure 3. Concept of elements generation. 
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I. Loading the point cloud data by scanning and meshing 

software for point cloud data. 

In this study, Autodesk ReCap Pro loaded the same 

point cloud data in the previous chapter. Downsampling 

 is also conducted in the software to 25% of the original 

point cloud model. 

II. The meshing of the point cloud model 

Convert the point cloud to a mesh using the scan-to-

mesh service from ReCap with the medium-quality 

setting. 

III. Converting the meshed data into a 3D object 

Recap Photo converts the meshed data to 3D object 

data in an FBX format. The target face count is 

decimated by 90%. 

IV. Transformation of the mesh body into a solid body 

Autodesk Fusion opens the FBX file and closes the 

mesh. The mesh body has mass and volume, and then 

the mesh body is converted into a solid body with the 

facet option. 

The constructed FE model of the bridge, which is called 

Model B, will be shown in Figure 5, and the analytical result 

will also be discussed in Chapter 4. 

4 LINEAR STATIC LOADING ANALYSES 

Linear static analysis is conducted for the constructed 2 FE 

models; Model A was originally developed by the authors [4], 

and Model B was the proposed simple model in this study. The 

boundary conditions in the FE models were applied to the 

points on the underside of the sole plate, assuming the simple 

support condition. For the loading conditions, vertical 

downward loads of 80 kN in total acted at 4 points 400 mm 

away from the midspan to the support. In Model A, distributed 

load acted on nodes within the experimental loaded area. On 

the other hand, 4 concentrated loads were applied in Model B 

because the size of the automated generated mesh was not 

uniform and was larger than that of Model A. Commercial 

software Midas NFX for Model A and Fusion for Model B 

calculated the stress and deformation of the model. 

Figure 4 and Figure 5 show the longitudinal bending stress 

distribution and the enlarged deformation in Models A and B, 

respectively. Both figures show that stress distribution and 

deformation indicate positive bending in the structure. 

In the damaged area of Model A, tensile stress increases due 

to the introduction of damage at the midspan of the lower 

flange, and compressive stress predominates in the loaded area. 

The error in the experimental result was about 6% for the nodal 

longitudinal stress at the damaged point. 

On the other hand, the stress value of Model B is generally 

half of the stress of Model A. The thickness of plates was 

generally identical to the point cloud model and the actual 

structure in both FE models. However, the web plates of Model 

B have some thick parts due to rivets of connection and the 

roughness of the paint, and they may cause the reduction of 

stress. The error in the calculated stress is caused by such mesh 

configuration of Model B because both models are generated 

from the same point cloud data. Additionally, due to the low 

density of nodal points, a local torsional deformation occurs in 

the upper flange because of the eccentric loading at the upper 

flange, which was not observed in the experiment. 

 

 

 

 
Figure 4. The analytical result of Model A. 

 

 

 

  

Figure 5. The analytical result of Model B. 

 

5 CONCLUSION 

The authors have developed the construction method of the FE 

model from point cloud models. Because straightforward 

procedures will enhance the possibility of structural mechanics, 

we investigated the feasibility and simplicity of constructing a 

point cloud-based structural analysis model using only general 

functions of packaged software without any special operations 

for model modification. From the analytical results of a 2m 

long steel girder bridge, the global tendency of deformation and 

stress of the structure could be obtained, although the precision 

of calculated stress needs to be improved. The reproducibility 

and stability of composing mesh and solid are also subjects to 

be improved. However, future developments of this technique 

will provide a powerful tool for learners in structural mechanics 

and motivate the development of innovative construction 

design and effective maintenance methods. 
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ABSTRACT: This study presents a structural shape monitoring system combining Real-Time Kinematic (RTK) technology with 

an Unmanned Aerial Vehicle (UAV) for georeferencing without Ground Control Points (GCPs). Traditional GCP-based methods, 

though accurate, require substantial field efforts, limiting efficiency. This approach employs RTK-enabled UAVs for direct 

georeferencing, achieving sub-2 cm positioning accuracy. Experiments involved detecting shape changes using a target structure 

with attached brick shapes of varying depths (8 mm, 20 mm, 44 mm, and 84 mm). Successful detection was achieved for depths 

of 20 mm or greater, with limitations for smaller depths due to sensor and resolution constraints. Depth and volume estimation 

errors, initially 11% and 3%, were reduced to 6% and 1% through point cloud registration, improving alignment and geometric 

accuracy. The study also identified challenges like occlusions and patternless surfaces, which impacted reconstruction quality. 

These findings highlight the system’s potential to enhance structural health monitoring, offering an efficient, scalable solution for 

infrastructure inspections, with applications in civil engineering and beyond. 

KEY WORDS: Structural health monitoring, Real-time kinematic positioning, Point cloud, Unmanned aerial vehicle, 

Photogrammetry, Change detection, Structure from motion, Civil engineering

1 INTRODUCTION 

Recently, the integration of unmanned aerial vehicles (UAVs) 

with photogrammetry technology has been widely utilized 

across various fields. For example, it is used for large-scale 3D 

mapping of extensive areas such as terrain, forests, and coastal 

regions, as well as for the 3D mapping of individual objects 

such as buildings, bridges, and roads. Additionally, it is 

employed for monitoring construction progress and detecting 

deformations in roads, landslides, and ground subsidence. 

UAV-based photogrammetry has potential applications in 

structural health monitoring by detecting changes in structural 

geometry. 

Traditional UAV-based photogrammetry lacks scale and 

orientation information, which has conventionally been 

compensated for by using ground control points (GCPs) to 

generate 3D models. Since the point cloud is aligned to a real-

world coordinate system based on GCPs, the process requires 

installing GCPs around the target area and measuring their 

precise coordinates. 

 

However, the use of GCPs is time-consuming and costly, 

which can hinder the efficiency of UAV-based 

photogrammetry. Additionally, in areas with difficult access, 

such as valleys and rivers, deploying GCPs can be challenging. 

To address this issue, recent advancements have enabled 

georeferencing without GCPs by utilizing UAVs equipped with 

Real-Time Kinematic (RTK) receivers (Figure 1: RTK UAV). 

UAVs equipped with RTK receivers have been reported to 

achieve terrain mapping accuracy of 2–10 cm without GCPs, 

making them suitable for various applications over extensive 

terrains [1-2] 

In this study, structural health monitoring was conducted 

using a UAV equipped with RTK technology without the need 

for GCPs. The contribution of this research lies in the 

quantitative evaluation of monitoring accuracy in terms of the 

positional accuracy of the point cloud and the sensitivity to 

detecting structural deformations. 

2 METHODOLOGY 

 Photogrammetry 

Photogrammetry consists of Structure from Motion and Multi-

View Stereo to reconstruct 3D structures from overlapping, 

unoriented, and uncalibrated images, producing sparse and 

dense 3D point clouds. Structure from Motion involves the 

simultaneous reconstruction of the unknown three-dimensional 

scene structure, as well as the estimation of camera positions 

and orientations, based on a given set of feature 

correspondences [3]. After successfully recovering the intrinsic 

and extrinsic parameters of the camera in the Structure from 

Motion process, Multi-View Stereo is employed to create a 3D 

densified reconstruction [4]. 
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 Georeferencing 

Georeferencing is the process of aligning and scaling a 

generated 3D model to a real-world coordinate system. There 

are two approaches to georeferencing: rigid registration and 

non-rigid registration [5]. Rigid registration is applied after 

Structure from Motion, modifying the reconstructed point 

cloud to align with the RTK-surveyed coordinates of GCPs on 

the ground or GNSS-geotagged data from UAV-captured 

photos. Non-rigid registration, also known as adaptive 

registration, introduces a more dynamic approach. It utilises 

pose priors—the RTK-geotagged data in the UAV-captured 

photos—as flexible constraints during the Structure from 

Motion Bundle Adjustment phase. 

3 EXPERIMENTS 

The target structure is shown in Figure 2. A flight path was 

generated as a double-grid trajectory for 3D photogrammetry 

using the built-in app on the UAV’s remote controller and 

deployed in all the survey cases. 

 

 

Figure. 2 Target structure 

Structure from Motion (SfM) and multi-view stereo processing 

were performed using Pix4Dmapper v4.56, as shown in Figure 

3. These processes were employed to generate a dense point 

cloud representation of the target structure based on UAV-

acquired images. 

 

Figure 3. Target structure (Point cloud) 

Figure 4 presents the comparison of two point clouds of the 

target structure acquired at different time intervals using the 

Cloud-to-Cloud (C2C) absolute distance measurement in 

millimetres. This method quantifies the geometric differences 

between the two datasets by calculating the shortest distances 

between corresponding points in the point clouds. The resulting 

C2C distance values indicate structural deformations or 

displacements over time, allowing for an assessment of changes 

in the target structure’s shape and stability. 

 

 

Figure 4. C2C absolute distance (mm) 

4 CONCLUSION 

This study evaluated the feasibility of using an RTK-

equipped UAV with GCP-free georeferencing for structural 

shape monitoring. The results demonstrated that the generated 

point clouds achieved centimeter-level accuracy, with 

positioning differences of less than 2 cm compared to RTK 

rover measurements. The method successfully detected 

variations in brick depths down to 20 mm at a UAV altitude of 

15 m, though it failed at 8 mm, suggesting that close-up images 

could improve detection but would introduce higher 

operational complexity. Point cloud registration was found to 

enhance alignment, reducing depth and volume estimation 

errors from 3% and 4% to 1% each. However, patternless 

surfaces and occlusions negatively impacted reconstruction 

accuracy, highlighting the need to consider such factors for 

effective structural shape monitoring. 
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ABSTRACT: To support safe operation of monorail systems, periodic track inspections for line maintenance and structural 
inspections of the concrete girders and steel beamway that form the track are necessary, and efficient inspections and highly 
accurate inspection results are required. Since conventional inspections centered on manual measurement and visual inspection, 
there were issues in terms of the safety risk associated with work in high places and work efficiency. Furthermore, in visual 
inspections, it was not possible to gain an adequate understanding of deterioration over time due to the difficulty of quantitative 
evaluation. This paper presents an example of a non-contact inspection technique in which industrial area cameras, laser 
displacement sensor and a high-speed 2D laser profiler were installed on the inspection vehicle, and track displacement, visible 
deterioration trolley wire wear are measured while the vehicle is traveling. Although inspection work at the work site had required 
half a year with the conventional technique, the introduction of this technique shortened the inspection time to only 4 days, 
realizing improved efficiency and reducing the man-power required in site work. Future goals include sustainable infrastructure 
maintenance and improvement of track safety through efforts in trend analysis of the progress of deterioration based on an 
expanded range of inspection items and analysis of various types of accumulated data. 

KEY WORDS: Structural Condition Assessment; Performance Evaluation; Laser Scanning; Non-Destructive Testing; 
Infrastructure Monitoring. 

1 INTRODUCTION 

 Background and Issues of Monorail Inspection 
Monorails are widely used as a key part of transportation 
infrastructure in urban areas and tourist destinations. Figure 1 
shows a photograph of a monorail train traveling along the 
track beam above automobile street traffic. In proper 
maintenance management of this track structure, appropriate 
maintenance (line maintenance) is demanded from the 
viewpoints of safe operation and long service life. However, 
several issues arise in inspections of monorail systems. 

Investigations of equipment degradation by conventional 
manual work center on judgments based on the experience and 
subjectivity of the inspection worker. However, in inspection 
work, objective and quantitative assessments are required for 
numerical management of the track condition. Manual 
inspection work is also extremely time- and labor-intensive, 
and securing work safety is also an issue because work is 
frequently performed in high places or at night. Although 
automation and digitization utilizing laser measurement and 
image analysis techniques have been promoted in recent years, 
techniques adapted to the structures and environmental 
conditions peculiar to monorails have not been adequately 
established[1][2][3]. 

 Purpose and Significance of this Paper 
In the current state of monorail inspections, the 3 issues of 
“Efficiency,” “Quantifiable Results” and “Safety” may be 
mentioned. 

To solve these problems, this paper proposes a non-contact 
inspection technique utilizing industrial area cameras and laser 
displacement sensor. In addition to a very substantial reduction 
in work time achieved by mounting sensors on an inspection 
vehicle and performing measurements during vehicle travel, 

the quantifiable results of the inspection results is also 
improved by quantification and visualization of the measured 
data. Cracks and other surface damage are detected using image 
analysis with the cameras, and displacement of the track beam 
and wear of the trolley wire are captured with high accuracy by 
analyzing the data acquired by the laser displacement sensor as 
point cloud data. Higher efficiency and improved safety in 
inspection work and more advanced maintenance management 
can be expected by introduction of this technique. 

 

 

 

2 VISUAL AND MANUAL INSPECTION 
TECHNIQUES AND THEIR ISSUES 

Since the track structures of monorail systems are subject to 
progressive deterioration in the forms of rail displacement and 
beamway deformation when used repeatedly day after day, 
railway operators are legally required to conduct periodic 
inspections and perform appropriate maintenance management. 
In particular, since monorails play a key role in urban 
transportation, securing their safety is an extremely important 
social obligation. However, the current inspection methods still 

Figure 1.  Photograph of a monorail 
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depend on visual inspections and manual work, and higher 
efficiency and more advanced methods are needed. 

 Conventional Inspection Techniques by Close Visual 
Inspection 

In conventional inspections of monorails, the inspectors 
checked the structures directly, and the general method was 
judgment of abnormalities based on Close Visual Inspection. 
Concretely, inspectors conducted a “Visual Inspection” for 
structural deterioration by visually checking the structure 
surface for cracks, peeling, discoloration, etc., and “Track 
Displacement Measurement,” in which deviations in the height 
and levelness of the travel surface and misalignment of joints 
between beam segments and the gap between the beam 
segments were measured. The inspection items are shown in 
Table 1 and Table 2, and photographs of the conventional 
techniques used in rail displacement measurements are shown 
in Figure 2. 

Table 1.  Inspection items in Visual Inspections 

 

Table 2.  Inspection items in Track Displacement 
Measurements 

 

 
 Issues Related to Efficiency, Quantifiable Results and 

Safety 

2.2.1 Issues related to efficiency  
Many of the target sections of monorail inspections have been 
in service for more than 25 years, and since many lines were 
also constructed in the same period, demand for inspections and 
repairs is tending to increase. Because the target section in this 
paper has a total constructed length is 28.6 km and contains a 
large amount of infrastructure, enormous amounts of time and 
labor when an inspection is conducted. Thus, it is necessary to 
reduce the work load on inspection workers. However, a single 
inspection by the conventional method requires as much as 
several months, and securing speed (high efficiency) is an 
issue. 

2.2.2 Issues related to quantifiable results  
 Partial deterioration of the track beam with age has already 
been confirmed from the inspection results, and further 
progress of deterioration is also expected in the future. Because 
inspection workers judge abnormalities by visual inspection 
and manual work, a large part of the conventional inspection 
method depends on the individual experience and senses of the 
inspectors. For example, when measuring the width of cracks, 
there are variations in the results depending on the 
measurement position and angle, and in some cases, there are 
differences in the evaluation depending on the inspector, even 
when inspecting the same damage. Since it is difficult to check 
for deterioration of facilities over the wide inspection area by a 
single standard, securing quantifiable results is an issue. 

2.2.3 Issues related to safety 
Because the track beam of monorails is generally installed in 
an elevated location, inspection worker must use a high-lift 
work vehicle or scaffolding to conduct inspections. Inspections 

Inspection equipment 
PC track beams (including beam underside surface), steel 
track beams, lower part of steel beams, cross beams, PC 
track beam bearings, joint devices, signs, track circuit 

boundary markers 
Inspection items 

Cracks and other damage (fissures, etc.) 

Paint peeling and deterioration (corrosion) 

Paint peeling/corrosion of bearings (PC beams, steel beams) 

Paint peeling/deterioration of lower part of steel beams and 
cross beams (except flange parts) 

Other abnormalities (damage of resin mortar, 
presence/absence of damping materials, looseness of bearing 

anchor bolts and nuts, confirmation of signs and boundary 
markers) 

Inspection equipment 

Position of expansion joints of PC/steel track beams 
(including branch beams, median lines and pullup lines) 

Inspection item Content of inspection 

Partial longitudinal level 
irregularity measurement 

Measure changes in height of track 
beam 

Partial horizontal 
alignment irregularity 

measurement 

Evaluate linearity of track beam, 
and detect horizontal bending 

Cross level irregularity 
measurement 

Measure levelness (inclination) of 
beam 

Vertical/horizontal 
misalignment 
measurement 

Measure vertical level difference 
in joints and horizontal differences 

in the level of girder joints 

Joint gap measurement Measure gap between beams at 
beam joints 

Level difference at joint (vertical) 

Cross level 
irregularity 

(inclination of 
beam) 

Rail joint gap Misalignment 
at joint 

(horizontal) 

Figure 2.  Conventional inspection techniques 
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are frequently carried out at night, which increases the 
possibility of accidents due to fatigue or decreased 
concentration. Because this work involves a risk of falling or 
contact accidents, securing work safety is an issue. 

3 PROPOSED NON-CONTACT INSPECTION 
TECHNIQUE 

 Necessity of Digital Measurement Technique 
In recent years, infrastructure inspections using non-contact 
measurement technologies have been widely adopted, and 
more accurate and efficient inspections are expected to be 
possible by utilizing laser measurement and image analysis 
techniques. This can achieve improved worker safety and 
labor-saving in inspection work. In addition, it can also 
contribute to predictions of long-term deterioration and 
sustainable infrastructure maintenance by accumulating and 
analyzing data. 

This paper introduces a non-contact inspection technique 
utilizing laser displacement sensor and industrial area cameras 
and describes its effectiveness. The laser displacement sensor 
enable quantitative evaluations of the displacement of 
structures and wear of trolley wires. Highly accurate image 
analysis, without depending on visual inspection, is possible by 
using the industrial area cameras in combination with the laser 
displacement sensor. Although it was difficult to accumulate 
numerical data in conventional visual inspections, the proposed 
technique enables precise measurement and evaluation of 
visible deterioration and wear with high quantifiable results by 
combined use of the industrial area cameras and laser 
displacement sensor. 

 Outline of the Technique and Sensor Configuration 
As described in this paper, a non-contact measurement 
technique was constructed in order to gain a highly accurate 
understanding of the condition of the track beamway and the 
trolley wires of monorails and quantitatively evaluate the 
current condition of deterioration. 

In this technique, sensors were mounted on a monorail 
inspection vehicle, and data are acquired while the vehicle was 
traveling. The main sensors and their inspection items were 
industrial area cameras (visible deterioration, joint gap 
measurement), laser displacement sensor (for longitudinal level 
irregularities, horizontal alignment irregularities and vertical 
and horizontal misalignment of joints) and a high-speed 2D 
laser profiler (for trolley wire wear). 

The sensor installation arrangement was designed to extract 
the maximum possible measurement accuracy. The cameras 
were installed on the front of the vehicle, and photography was 
performed with a total of 16 units so as to cover the entire 
surface of the track girder, including the beamway, side 
surfaces, under beam area, bearing parts and track beamway 
substructure. The laser displacement sensor were installed at 
equal intervals under the vehicle and capture information on the 
distance to the beamway. A high-speed 2D laser profiler was 
also installed on the vehicle underbelly to capture information 
on wear of the trolley wire. Introduction of the cameras, lasers 
and various other sensor makes it possible to collect data 
continuously, and achieves more comprehensive deformation 
analysis than is possible with conventional spot measurements. 
The images of the installation positions of the industrial area 

cameras and image of installation of the laser displacement 
sensor are shown in Figure 3 and Figure 4, respectively, and 
photographs of the installed sensor are shown in Figure 5. 

 
 
 

 
Figure 3. Image of installation positions of industrial area 

cameras 

 
 

 

 
 
 

 
 

 

Light Steel frame 

Working 
vehicle 

Reflecting mirror 
for girder underside 
surface 

Industrial  
area  
camera 

Vehicle 
limit 

Monorail trestle 

Tr
ac

k 
be

am
w

ay
 CAM01 

CAM02 

CAM03 

CAM04,05 

CAM13 

CAM07 

CAM08 

CAM09 
CAM12 CAM06 CAM10,11 

CAM14,15,16 

Figure 4. Image of installation positions of laser displacement 
sensor 
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 Visual Inspection by Industrial Area Cameras 

3.3.1 Camera installation method and arrangement 
In visual inspections for facility deterioration, industrial area 
cameras are employed to capture surface cracks and paint 
degradation. Compared to line scan cameras, area cameras 
offer greater flexibility in installation and imaging conditions, 
as they can capture full-frame images in a single exposure 
without requiring continuous motion of the object. A total of 16 
compact area scan cameras with 2.35 megapixel resolution and 
a framerate (fps: frames per second) of 30 fps are used. A 
dedicated camera frame was designed to enable photography 
with the same quality from positions equidistant from the object 
of photography. An appropriate lighting arrangement and 
photographing distance for extraction of cracks with a width of 
0.2 mm were planned. The cameras used to photograph the 
running surface and side surfaces of the beamway were 
arranged directly facing those objects, and the cameras used to 
photograph the bearings and underside of the steel beamway 
were arranged to photograph those objects from an oblique 
angle. Arranging the cameras so there is an overlap in the 
camera angle of view of the beam side surfaces enables sure 
data acquisition, with no gaps between the photographs of each 
image. Since it would be difficult to photograph the underside 
surface of the girder directly from within the vehicle limit 
width, a method of photographing images reflected by a mirror 
was adopted. Table 3 shows the specification of the cameras 
mounted on the vehicle. 
 

Table 3. Specification of high-resolution cameras 

3.3.2 Issues in photography and countermeasures 
Since photography while the vehicle traveling is affected by 
vehicle vibration and shaking, the shutter speed of the cameras 
used in this technique was set to 1/4 000 s. This made it 
possible to minimize the effect of blurring caused by vibration 
and shaking. On the other hand, if this setting is used, the 
images will be dark because the short exposure time limits the 
light available when photographing an image. In order to 
acquire high quality image data even in dark areas, multiple 
LED lights were arranged so as that the entire surface of the 
girder received an appropriate, uniform amount of light. 
 

 Track Displacement Measurement by Laser 
displacement sensor 

Track displacement, including unevenness, level differences, 
and inclination, is measured using a total of 14 laser 

displacement sensors, each capable of high-precision, single-
point distance measurements that enable the detection of subtle 
structural shifts. Since the sampling frequency is 2 000 Hz, 
measurement at a pitch of about 2 mm in the travel direction at 
a travel speed of 15 km/h. The spacing of the laser 
displacement sensor was adjusted to 400 mm, which is the 
median value of the measurement range, and were installed so 
as to enable capture of displacement of the upper limit value 
(±100 mm). The specification of the laser displacement sensor 
is shown in Table 4. 

 
Table 4. Specification of laser displacement sensor 

 
 Trolley Wire Wear Inspection 

To investigate wear of the trolley wire located on the side face 
of the beamway, a high-speed 2D laser profiler is used to 
perform continuous scanning of cross-sectional shapes, 
enabling precise visualization and quantification of wear, 
misalignment, and other geometric anomalies. As in the case of 
the above-mentioned laser displacement sensor, because the 
sampling frequency is 2 000 Hz, measurement at a pitch of 
approximately 2 mm in the travel direction is possible, 
assuming a travel speed of 15 Km/h. Since it is necessary to 
grasp the compete image of the trolley wire when investigating 
wear, the high-speed 2D laser profiler was installed so that the 
entire trolley wire can be scanned from a position directly 
facing the wire. The specification of the high-speed 2D laser 
profiler is shown in Table 5. 
 

Table 5. Specification of high-speed 2D laser profiler 

Product name GO-2400C-PMCL 

Appearance 

 

Standard 1936 x 1216 px 
Sensor 1CMOS 

Sensor size 1/1.2 type 
External dimensions 29 x 29 x 41.5 mm 

Weight 46 g 

Product name LJ-V7300 

Appearance 

 

Measurement 
range 

155 to 445 mm 

Wavelength 405nm (visible light) 
Laser class: 2 

Sampling period Max. 16 µs 
Protection 
structure 

IP67 (IEC60529) 

External 
dimensions 

5.7 x 17.3 x 8.8 cm 

Weight Approx. 1 000 g 

Product name LK-G405 

Appearance 

 
Measurement range 300 to 500 mm 

Wavelength 655 nm (visible light) 
Laser class: 3Ror2 

Sampling period 20 to 1 000 µs 
Protection structure IP67 (IEC60529) 
External dimensions 3.6 x 10.8 x 8.5 cm 

Weight Approx. 380 g (including cord) 
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4 ANALYSIS OF MEASURED DATA 

 Preparation of Composite Image and Investigation of 
Visible deterioration  

After geometric correction, magnification correction and color 
correction, the images captured by the industrial area camera 
are composed as continuous composite images. Geometric 
correction is a type of correction processing in which images 
that contain distortion and deformation are adjusted to produce 
orthorectified images with an accurate shape and positional 
relationship. Creating composite images makes it possible to 
check each of the girders and beams of the track over a wide 
range, and at the same time, understand their actual positional 
relationships. Figure 6 shows composite images of the 
beamway running surface and side surface. 

Damage is extracted using the crack drawing support 
software “k-TRACE” (Figure 7 ), which was developed by this 
company (KRC: Keisoku Research Consultants Co.)[4][5]. 
When the inspector clicks the line of a crack with the mouse, k-
TRACE analyzes the shading of the color around the line 
joining the clicked points and automatically outputs the shape 
and width of the crack. Application of this tool is not limited to 
cracks, as the software can also extract the positions of peeling, 
water leaks and free lime at the same time. This processing 
makes it possible to obtain a comprehensive understanding of 
the exact position and scale of the damage from images, 
without going to the site, thereby securing “Safety” and 
“Quantifiable Results.” 
 

 
Figure 6. Composite images of beamway (top: running surface, 
middle: side surface, bottom: underside of girder) 

 

 

Figure 7. “k-TRACE”: crack drawing support software 

 Joint Gap Measurements 
For joint gap measurements, analysis is performed based on the 
photographed images. An image showing the joint part in the 
center is extracted from multiple images, and the width of the 
joint gap is calculated from the number of pixels at the gap 
position in the image. The calculated joint gap is standard value 
are then compared, and the locations of joints where the gap 
exceeds the control standard value are extracted. A photograph 
of the joint gap image is shown in Figure 8. 

 

       
Figure 8. Position of joint gap measurement 

 Partial Longitudinal Level Irregularity Measurement 
Displacement of the height of the beamway running surface 
(partial longitudinal level irregularity) is measured by using 3 
laser displacement sensor (A, B, C) installed at 1 m intervals in 
the travel direction. The partial longitudinal height 
displacement hd is calculated as the difference between the 
average distance measured by the first and last units (A+C)/2 
and the distance measured by the center unit B. The calculated 
values are arranged for each beamway segment, and locations 
that exceed the control standard value are extracted. An image 
of the height calculation method is shown in Figure 9. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

ℎ𝑑𝑑  = 𝐵𝐵 − �
𝐴𝐴 + 𝐶𝐶

2
� (1) 
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Figure 9. Image of height value calculation 
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 Partial Horizontal Alignment Irregularity Measurement 
Similarly to the partial longitudinal level irregularity 
measurement method, lateral deviations of the beam side are 
measured by 3 laser displacement sensor installed at equal 
distances in the travel direction. The data calculation method is 
also similar to that used in partial longitudinal level calculations. 
The waveform obtained in a horizontal alignment irregularity 
measurement is shown in Figure 10. 

 
 
 
 
 
 
 
 
 
 
 
 

 Cross Level Irregularity (Inclination) Measurement 
The inclination (cross level) of the beamway is measured by 
using an inclinometer and laser displacement meter. If the beam 
and the vehicle are parallel, the cross level θ can be measured 
using only the inclinometer, but there will be a slight variation 
in the inclination. Therefore, displacement is measured by 
using laser displacement sensor installed on the guideway and 
the stability surface of the beamway side surface to correct for 
the difference in inclination, and the difference in the 
inclinations of the track beamway and the vehicle is obtained 
from the respective measured values of a and b and positional 
relationship l between the displacement meters. Since the 
measured values of the inclinometer are also affected by 
centrifugal force, the cross level θ of the beam can be 
calculated by adding a corrected value Δθc, which is calculated 
based on the beam linearity and speed values. An image of the 
relationship of the inclinometer and the beam side surface and 
the numerical expression are shown in Figure 11. 

 

𝜃𝜃2 = tan−1 �
𝑏𝑏 − 𝑎𝑎
ℓ

� (2) 

 𝜃𝜃 = 𝜃𝜃1 − 𝜃𝜃2 + ∆𝜃𝜃𝑐𝑐 (3) 

Figure 11. Relationship of inclinometer and beam side surface 

 Vertical and Horizontal Misalignment Measurement 
Vertical misalignment and horizontal misalignment are 
measured at beamway joints (total of 6 positions of the running 
surface, guideway and stability surface) using laser 
displacement sensor. The amount of displacement is calculated 
from height of the fingerplate surface measured before and after 
passing the joint, and the vertical and horizontal misalignment 
of each joint is evaluated. Figure 12 shows a position diagram 
of the laser displacement sensor when measuring vertical and 
horizontal misalignment, and Figure 13 shows the waveform of 
vertical misalignment measurement results.  
 

 
Figure 12. Position diagram of laser displacement sensor for 

vertical and horizontal misalignment 

 

 
Figure 13. Result of vertical/horizontal misalignment 

measurement 

 Trolley Wire Wear Measurement 
In wear inspections, the cross-sectional shape of the trolley 
wire is measured using a high-speed 2D laser profiler, the result 
is compared with the design cross section, and the wear amount 
∆W is calculated. Here, ∆W is the difference between the 
design value of the trolley wire thickness Wdesign and the 
measured thickness of the remaining part of the wire Wmeas.  The 
thickness of the remaining part Wmeas is calculated by acquiring 
point information on 1 point (point A) at the tip, which is the 
wear zone of the trolley wire, and 2 corner points (points B and 
C) of the metal part were wear has not occurred, and calculating 
Wmeas from the relationships of distances a, b and c between the 
each of these points and the laser displacement meter. 

Using the high-speed 2D laser profiler enables more 
complete, quantitative wear measurement than is possible by 
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conventional manual measurement. It is also possible to 
analyze the trend of wear progress and carry out systematic 
trolley wire maintenance and exchanges by accumulating 
measurement results over the long term. Figure 14 shows an 
image of the trolley wire and wear and the numerical 
expression for the wear calculation. Figure 15 shows the data 
used to create the composite waveform of the high-speed 2D 
laser profiler. 

 

 
Figure 14. Image of trolley wire and wear 

 

 
Figure 15. Point cloud composed using scan data from the 2D 

laser profiler 

5 DISCUSSION 

 Improvement of Work Efficiency  
With the proposed method, site working time was shortened 
from half a year by the conventional method to only 4 days 
because many types of measured data can be collected at one 
time while travelling. This shortening of site working time not 
only improves work efficiency, but also contributes to 
improved safety. On the other hand, the load of office work, 
such as processing and analysis of acquired data, is large, so 
efforts for improvement for reduction of the volume of work 
are necessary. Nevertheless, digitization of inspection results 
has lightened the work involved in arranging and managing 
measurement results and improved the convenience of data use. 
 

 Improvement of Quantifiable Results  
By using the proposed technique, measured results with 
quantifiable results based on numerical values, and evaluations 
of damage based on those results, have become possible by  
using industrial area cameras and laser displacement sensor. In 
detection of cracks, semi-automatic measurement of the width 
and length of the damage is possible by utilizing image analysis, 
and quantitative comparison with past data is now easy. In 
measurements of track displacement, measurement results and 
evaluations with high quantifiable results have also become 
possible by using laser displacement sensor. 
 

 Improvement of Safety 
 
With the proposed technique, it is no longer necessary for 
workers to enter dangerous areas because the sensors are 
mounted on the inspection vehicle and measurements are 
carried out while the vehicle is traveling. The use of non-
contact sensors rather than contact-type measurement methods 
has not only reduced the loads on structures during 
measurements, but has also realized stable measurement.  
 

6 CONCLUSION AND FUTURE OUTLOOK 

 Conclusion 
The proposed technique is a system in which sensors are 
mounted on an inspection vehicle, and track displacement and 
visible deterioration are measured while the vehicle is 
traveling. Cracks and other surface damage are detected by 
utilizing image analysis of images acquired with industrial area 
cameras, and displacement of the track beamway is measured 
with laser displacement sensor. Highly precise evaluation of 
trolley wire wear has also become possible by applying an 
analysis technique utilizing point cloud data. Although 
conventional site inspection work had required half a year, the 
application of these techniques has shortened the site work time 
to only 4 days, realizing improved work efficiency and a 
reduction of the work load. Improved safety could also be 
secured by shortening the site work time of workers. 

By using the industrial area cameras, creation of composite 
images, understanding the overall deterioration of facilities, 
and comparison of deterioration between two time periods have 
become easy, and in measurements of track displacement, it is 

Wear zone 

Remaining 
part 

Design value Wdesign 

Remaining  
part Wmeas 

Wear  
amount ΔW 

∆𝑊𝑊 = 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (5) 
 

𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑏𝑏 + 𝑐𝑐

2
− 𝑎𝑎 (4) 

Point A 
 

Point B 

Point C 
 

a 

b 

c 2D laser  
displacement meter 

1scan 

Trolley wire 

Height of remaining 
part of trolley wire 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-079 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 527 

now possible to obtain measurement results with high 
quantifiable results as a result of the acquisition of high-
accuracy data using the laser displacement sensor and 
establishment of methods for calculating the amounts of 
various types of displacement using that data. Likewise, in 
measurements of trolley wire wear, quantitative evaluation of 
the amount of wear has become possible by a technique using 
a high-speed 2D laser profiler. Based on the above, in 
comparison with conventional inspections, it can be said that 
improvement of the reproducibility of inspection results, 
understanding of changes over time and quantitative 
evaluations are now possible. 
 

 Future Outlook  
The introduction of the proposed technique has realized high 
efficiency and improved quantifiable results in inspection work. 
However, we intend to address the following issues in order to 
development more advanced techniques and enable long-term 
operation. 

6.2.1 Reduction of the data processing load and automation 
With the proposed technique, on-site measurements can be 
completed in significantly less time compared to conventional 
methods. However, the analysis of the acquired images and 
point cloud data still requires a certain amount of processing 
time. In particular, damage detection and evaluation by image 
analysis involve work that requires specialized knowledge. 
Therefore, the introduction of AI technologies is expected to 
improve the efficiency of post-processing and reduce reliance 
on expert interpretation. 
•  AI automation of image analysis: 

Analysis time can be shortened and variations in accuracy 
can be reduced by automatic recognition and classification 
of cracks and other damage by machine learning. We will 
also study a system for diagnosis and evaluation of 
structures from damage extracted for each girder/beam. 

6.2.2 Further expansion of range of application  
Although this technique has been applied mainly to evaluations 
of displacement and damage of the track beamway and trolley 
wire wear, application to other inspection items should also be 
studied in the future. 
 
•  Deployment to various structures on the track: 

The aim here is to realize comprehensive infrastructure 
monitoring by expanding the objects to inspections to 
include bridges on the track, peripheral equipment, stations, 
etc. 

•  Selection of the optimum sensor technologies: 
In addition to the existing image and laser technologies, 
LiDAR, thermal infrared camera technology, etc. will also 
be studied in order to establish a multifaceted deterioration 
detection technique. 

 

6.2.3 Confirmation of linkage of individual inspection items 
Causal relationships also seem to exist between respective 
inspection items such as longitudinal levelness, horizontal 
levelness, misalignment, etc. These will be utilized for 

appropriate line maintenance by clarifying their relationships 
based on accumulated data. 
 

6.2.4 Prediction of long-term deterioration risk 
In the future, the establishment of a technology for predicting 
the future deterioration of structures by using accumulated data 
will be demanded. 
•  Creation of risk assessment model: 

Based on acquired data, a technique for assessing the rate 
of progress of deterioration and the range of its effects, and 
quantitatively judging the priority of repairs and 
maintenance, will be developed. 

•  Deterioration prediction using risk assessment model: 
Based on the risk assessment model, the progress of 
displacement and wear of the track beamway and trolley 
wire will be predicted to optimize maintenance 
management plans. 

 
In the future, we promote higher efficiency and more 

advanced techniques by solving these issues, with the aim of 
realizing more sustainable and precise infrastructure 
maintenance management. 
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ABSTRACT: The Structure from Motion/Multi-View Stereo (SfM/MVS) technique, which enables reconstruction of the three-

dimensional shape of an object based on multi-view images, is a useful technique for inspection of infrastructure such as bridges 

in order to gain a comprehensive understanding of the state of damage. However, in SfM/MVS, the camera position and three-

dimensional coordinates of the object are estimated based on feature points in images, making it difficult to apply this technique 

to steel structures, which have fewer feature points on surface textures due to coating. This paper presents a case in which 

SfM/MVS was successfully applied to a steel structure, specifically a steel bridge, by substituting the incomplete polygon model 

constructed in the conventional SfM/MVS process with a current-state CIM model created from existing drawings and point cloud 

data acquired with a terrestrial 3D laser scanner. 

KEY WORDS: SfM/MVS; Terrestrial Laser Scanner; Point Cloud; Steel Bridge; Inspection; BIM/CIM. 

1 INTRODUCTION 

At present, aging of bridges in service and a shortage of 

inspection engineers have become problems in Japan [1], 

heightening the need for higher efficiency and labor-saving in 

bridge inspections. In this situation, preparation and wide use 

of Guidelines for Use of New Technologies [2], Delivery 

Manual for 3-Dimensional Deliverables [3] and other 

regulations are being promoted for image instrumentation 

technologies, including the Structure from Motion/Multi-View 

Stereo (SfM/MVS) technique [4], [5], which enables 

reconstruction of the three-dimensional shape of an object 

structure from images to gain an understanding of the state of 

damage, etc. 

This study focuses on steel bridges as one type of bridge. As 

in other types of bridges, the problems associated with aging 

have also become apparent in steel bridges, as seen damage by 

corrosion of the steel materials [6]. However, it is sometimes 

difficult to apply the SfM/MVS technique to steel bridges since 

steel materials have fewer feature points, which are necessary 

for image processing, due to the uniform surface texture formed 

by coating film, and in such cases, reconstruction of the three-

dimensional shape may be incomplete. 

This paper examines the applicability of the SfM/MVS 

technique to steel bridges by using a method that utilizes a 

current-state CIM model (current-state CIM). This model was 

constructed by correcting existing drawings based on the 

current-state point cloud data (TLS point cloud) measured with 

terrestrial 3D laser scanners (TLS). 

 

2 USE OF SfM/MVS AND POINT CLOUD DATA 

 Overview of SfM/MVS 

SfM/MVS is a technique in which the three-dimensional 

geometry of an object is reconstructed from an image sequence 

(multi-view images) of the object by estimating the camera 

position and posture and the three-dimensional coordinates of 

the object by calculations based on feature points. Figure 1 is 

an image diagram of the reconstruction of a three-dimensional 

shape by SfM/MVS. 

“Feature points” refer to points on the object appearing in the 

image that can be identified based on differences in color, 

brightness, etc., allowing its position to be determined. By 

detecting corresponding feature points between images, it 

becomes possible to estimate the relative camera position and 

posture with respect to the target structure, as well as the three-

dimensional coordinates of each point. In general, the less 

uniform the surface texture of a structure, the greater the 

number of points detected as feature points. Accordingly, 

SfM/MVS technology can be effectively applied to structures 

with non-uniform surface textures and abundant feature points, 

such as concrete bridges. 

 Flow of Processing in SfM/MVS 

The following describes the process of reconstructing the three-

dimensional shape of an object by SfM/MVS and determining 

the three-dimensional location, size and other features of 

damage of the object structure. First, the point cloud data of the 

object structure is obtained by estimating the position and 

posture of the camera and the three-dimensional coordinates of 

the object structure based on the feature points described above. 

Next, a polygon model composed of surfaces is constructed 

based on the point cloud data, and a textured polygon model is 

obtained by applying textures sourced from photographic 

images onto the surface of that model. After this, it is possible 

to confirm the two-dimensional damage position and size by 

outputting orthoimages based on the textured polygon model. 

Figure 2 shows the general processing flow of SfM/MVS, 

including image acquisition. 
 

 

Figure 1. An image diagram of a three-dimensional shape 

reconstruction by SfM/MVS 
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Figure 2. General Processing Flow for Applying SfM/MVS 

 

 Objects with Few Feature Points 

The importance of feature points in SfM/MVS is as described 

above. However, when a paint film or other coating has been 

applied to the surface of the steel materials of a steel bridge, 

etc., the surface texture becomes uniform. This results in 

fewer points being detectable as feature points, making it 

difficult to apply SfM/MVS using general methods. Figure 3 

shows a comparison of the detection status of corresponding 

feature points between objects with surface textures of varying 

uniformity. In the case of non-uniform surface texture, 

corresponding points are distributed across the entire surface. 

On the other hand, in the case of uniform surface texture, it is 

confirmed that corresponding points are not detected, except in 

distinctive areas such as corroded parts. Furthermore some 

manuals for general software products used in computational 

processing by SfM/MVS also recommend avoiding objects 

with a uniform texture or luster [7].  

Figure 4 shows an example of constructing a point cloud  

data from SfM/MVS technique, targeting a steel bridge. In this 

example, there were many areas where the surface texture is 

uniform, and there were also areas where it was not possible to 

acquire a point cloud of the object structure at members that 

intrinsically have a flat surface due to the inadequate number 

of feature points. The inaccuracies in the shape of the polygon 

model and the improper placement of textures make it difficult 

to record the condition of damage of the entire object.  

Figure 5 shows the processing flow for the problem that 

occur when SfM/MVS processing by the general technique is 

applied to an object with a uniform surface texture due to 

coating film. 

 

 

Figure 3. Comparison of the detection status of corresponding feature points 

 

 

Figure 4. Point cloud where gaps occurred 

 

 

Figure 5. Problems in processing flow of SfM/MVS 

 

 SfM/MVS Combined with Measured Point Cloud Data 

To solved the problems in application of SfM/MVS to steel 

bridges with few feature points, this paper examines a 

technique in which the object is measured with TLS, and the 

acquired measured point cloud data are used. 

In this method, positions and posture of cameras, along with 

three-dimensional coordinates within the possible range, are 

first estimated using the conventional SfM/MVS approach.  
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Then, instead of the polygon model used in conventional 

methods, the current-state CIM, which reproduces the current 

shape of the object based on TLS point cloud and existing 

drawings, is utilized. Texture is projected onto this current-state 

CIM using camera images as sources, enabling the construction 

of textured models and orthoimages. Furthermore, even the 

incomplete polygon models created through conventional 

methods are used as a reference data for aligning the current-

state CIM. UAV is employed for image acquisition, and during 

the SfM/MVS phase, GNSS data obtained during image 

acquisition is also used for analysis. This method is referred to 

as "SfM/MVS combined with TLS point cloud" and the 

processing flow is shown in Figure 6. 

 

 

Figure 6. Processing flow of SfM/MVS combined with TLS point cloud 

 

3 EXAMPLE OF APPLICATION TO AN ACTUAL 

STEEL BRIDGE 

This chapter presents an example in which the proposed 

technique, SfM/MVS combined with TLS point cloud, was 

applied to an actual steel bridge. This verification is an attempt 

to apply SfM/MVS in work for investigation of the condition 

of corrosion and others of the steel materials of the object 

bridge. 

 Overview of Steel Bridge 

The object bridge is a bridge with a total length of 651 meters, 

in which the main bridge section is a mid-height-deck arch 

Lohse structure as shown in Figure 7. The object range of the 

inspection was the steel parts between piers P5 and P8, as 

shown in Figure 8. The bridge is constructed over the sea, and 

the distance between the revetments on the origin and terminus 

sides is approximately 450 meters. Owing to the water depth 

directly under the bridge between piers P5 and P7, it was 

impossible to enter this area on foot, but the area between piers 

P7 and P8 could be entered on foot at low tide. The 

specifications of the bridge are shown in Table 1. As can be 

seen in Figure 9, the steel materials in this object range have a 

uniform surface texture due to paint film. 

 

 

Figure 7. Object bridge 

 

 

Figure 8. Object range 

 

Table 1. Specifications of object bridge 

Bridge name Imari Bay Bridge 

Date completed 2003 

Location Imari City, Saga Prefecture, Japan 

Bridge length 651 m (over sea length: 420 m) 

Width Total width: 21.3 m 

Space below girder Height: 20.5 m, width: 200 m 

Superstructure  

(main bridge part) 

Steel 3-span continuous mid-height-deck 

Lohse bridge (70 m + 250 m + 70 m) 

 

 

Figure 9. Steel with uniform surface texture 

The subsequent processes are the same as the general 
processing flow (Figure 2) 
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 Equipment Used 

Image acquisition was performed using two types of UAVs 

with an attached camera. A Matrice 300 RTK was mainly used, 

and a compact Skydio was used in some places. Table 2 shows 

the specifications of the UAVs and the attached cameras. 

To acquire measured point cloud data on the current state of 

the object bridge, measurements were carried out with TLS. 

Two types were used in the measurements, a medium-range 

Focus S-350 (FARO) and a long-range SX10 (Trimble). Table 

3 shows the specifications of the instruments 

The software used in image analyzing by SfM/MVS was 

Metashape Professional (Agisoft). 

 

Table 2. Specifications of UAVs and camera 

Manufacturer DJI 

Type Matrice 300 RTK 

Appearance 

 

Device Item Specification 

Main unit 

Dimensions (length 

x width x height) 
810 x 670 x 430 mm 

Weight 6.3 kg (approx.) 

Flight time (max.) 55 min 

Auto flight function  Yes 

Cruising speed (max.) 17 m/s 

Max. operational wind 

speed 
12 m/s 

 

Name 
Zenmuse P1 

(mounted on Matrice 300 RTK) 

Appearance 

 
Dimensions 198 x 166 x 129 mm 

Weight 800 g (approx.) 

Sensor dimensions 35.9 x 24 mm 

Photo size 8 192 x 5 460 pixels 

Shutter speed 1/8 000 to 1 s 

Aperture range F2.8 to F16 

ISO sensitivity 100 to 25 600 
 

Manufacturer Skydio 

Type Skydio 2+ 

Appearance 

 
Device Item Specification  

Main unit 

Dimensions (length x 

width x height) 
229 x 274 x 126 mm 

Weight 0.8 kg 

Flight time (max.) 27 min 

Auto flight function Yes 

Cruising speed (max.) 58 km/h 

Max. operational wind 

speed 
11.1 m/s 

Mounted 

camera 

Photo size 4 056 x 3 040 pixels 

Shutter speed 1/1 920 to 1 s 

Aperture value F2.8 

ISO sensitivity 100 to 3 200 

Table 3. Instrument specifications of TLS 

Manufacturer  FARO Trimble 

Name Focus S-350 SX10 

Appearance 

  

Ranging method  Phase shift Time-of-flight 

Measurement 
distance 

0.6 to 350 m 1 to 600 m 

Measurement range V:320° H:360° V:150° H:360° 

Laser class Class 1 Class 1M 

Scan speed 122 000 points/s 26 600 points/s 

Accuracy  

Three-dimensional 

positional accuracy 

Distance measurement 

accuracy 

2mm@10m, 

3.5+0.1mm/m@25m or more 
2 mm + 1.5 ppm 

Unit weight  4.2 kg 7.5 kg 
 

 Condition of Measurement 

The condition of image acquisition by UAV is shown in Figure 

10. To prevent UAV crash accidents, the UAVs were not flown 

directly over the bridge, and images were acquired from 

positions where visual confirmation of the UAV by the operator 

was possible. In acquiring the images of the underside of the 

girders between P7 and P8, we entered the riverbed area of P7 

during low tide, and used the compact Skydio UAV to 

photograph the structure due to the limited space under the 

girders. To prevent image blurring, the shutter speed was set to 

approximately 1/1 000 s during photography, and continuous 

images were taken at intervals after adjusting the focus. The 

purpose of this work was to understand the positions and 

surface areas of corroded areas. Image acquisition was 

performed at a resolution of approximately 3 mm/pixel with a 

45 megapixel camera (8 192 x 5 460 pixels), as this is adequate 

resolution for confirming corrosion and image processing, and 

SfM/MVS can be performed more easily with a wider field of 

view per image. Image acquisition by UAV was conducted 

over a 4-day period, and a total of 10 232 images were captured. 

Figure 11 shows the cross-sectional positions of image 

acquisition. 

Figure 12 shows the condition of shape measurement of the 

object bridge by TLS. The Focus S-350 was used in 

measurements on the bridge. The inner surface shapes of the 

arch ribs and suspension members were measured. 

Additionally, given that the distance between the revetments at 

the bridge origin and terminus sides of the bridge is 

approximately 450 meters, the entire side elevation of the 

bridge was measured using the SX10 laser scanner, which 

enables long-distance measurement from both revetments. 

Figure 13 shows the measurements positions of the two TLS. 
 

   

Figure 10. Condition of image acquisition by UAV 
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Figure 11. Positions of image acquisition by UAV  

(section view) 

 

   

Figure 12. Condition of measurements by TLS  

(left: from revetment, right: on bridge) 

 

 

Figure 13. Positions of measurements by TLS  

(Created using aerial photographs (by the Geospatial 

Information Authority of Japan)) 

 

 Measurement Results 

The TLS point cloud of entire bridge shape is shown in Figure 

14. By precisely aligning  the point cloud data measured from 

the various positions, the point cloud data representing the 

entire bridge shape were obtained. 

 

 

Figure 14. TLS point cloud of entire bridge shape 

 

 Creation of Current-state CIM Based on TLS Point 

Cloud 

When the TLS point cloud was superimposed on existing 

drawings data, as shown in Figure 15, deviations were observed 

in the lateral shape of the arch rib members. Therefore, the 

linear data of existing drawings were corrected in accordance 

with the geometry of the TLS point cloud. The condition of 

correction of the drawing data is shown in Figure 16. 

Next, based on the corrected drawing data, a current-state 

CIM of the bridge was created. The condition of creation of this 

current-state CIM is shown in Figure 17. The required level of 

performance for reproducing CIM models, based on their 

intended use, is defined as "Level of Detail (LOD)” in the 

Guidelines for Introduction of CIM [8], [9] issued by Japan's 

Ministry of Land, Infrastructure, Transport and Tourism. 

Excerpts of the definitions of each specified level of detail are 

shown in Table 4. In the range where point cloud data were 

acquired for steel materials, an LOD of approximately 300 was 

used, as it was possible to understand the external shape. 

However, in the range where point cloud data could not be 

acquired, for example, on the underside of girders, modelling 

was performed using LODs of 200 to 300, referring to the data 

in existing drawings, etc. The created current-state CIM created 

is shown in Figure 18. 
 

 

Figure 15. Overlay of measured cloud point data and drawing data 

 

 

Figure 16. Correction of drawing data 

：Linear data of the existing general  drawing 

：Linear data of TLS point cloud 

Bridge surface 

：SX10 

：Focus S-350 

Approx. 450 m 

Shooting 

position : 
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Figure 17. Creation of current-state CIM 

 

Table 4. Definitions of levels of detail (LOD) 

LOD Common definition 

100 
Model showing the position of the object by symbols, 

lines or simple shapes. 

200 

Model with sufficient detail to understand the 

structural type. Cuts and fills are represented by 

standard transects, or in sufficient detail to sweep the 
standard transects of each structure in the general 

drawing in the object range. 

300 

Model accurately representing the external geometry 

of the object, with the exception of ancillary works 
and other detailed structures and the structure of 

connecting parts. 

400 

In addition to the requirements of LOD 300, accurate 
modeling is performed, including ancillary works, 

connecting structures and other detailed structures 

and the arrangement of reinforcing materials. 

500 Model representing the actual geometry of the object. 

 

 

Figure 18. Created current-state CIM 

 

 SfM/MVS combined with TLS point cloud Application 

Process and Results 

First, sparse point cloud data of the object bridge were obtained 

using location information from the GNSS data of UAV-

captured images and camera posture information derived from 

SfM analysis. The results are shown in Figure 19. 

Subsequently, for the dense point cloud data obtained 

through MVS analysis, a color map was created based on the 

number of depth maps used to generate each point cloud , as  

shown in Figure 20. A depth map is data that indicates the 

distance from the camera to each pixel in an image, and it is 

generally determined that the more depth maps used in the 

point cloud generation process, the higher the reliability of the 

point cloud data. The number of point cloud for each 

confidence level is shown in Table 5. As shown in Figure 20, 

while a large number of depth maps were used in some areas, a 

decrease in the number of depth maps used was observed near 

areas with missing point cloud. 

In the following step, in order to create textures based on 

camera images and construct a textured polygon model for the 

created current-state CIM, the current-state CIM and the 

cameras must be in the correct positional relationship. 

Therefore, to align the current-state CIM, a polygon model was 

first created based on the point cloud obtained through 

conventional SfM/MVS. As shown in Figure 21, although this 

model itself was an incomplete polygon model with missing 

areas and unevenness in originally flat sections, the point cloud 

derived from SfM/MVS with a confidence level of 10 or higher 

were superimposed on the TLS point cloud, and their 

differences were examined, as shown in Figure 22 and Table 6. 

As a result, 57.34% of the point cloud fell within a difference 

of 0.15 m and was distributed across the entire bridge. Note that 

27.86% of the point cloud showed a difference of 0.3 m or more, 

which is thought to be primarily due to differences calculated 

at the lower parts of the girders where sufficient measurement 

using TLS was not possible.  

Based on these results, the overall shape of the bridge and 

areas with high confidence were deemed to have a sufficient 

level of precision to serve as data indicating the positional 

relationship between the bridge and the camera. Therefore, the 

constructed incomplete polygon model was used as a reference 

for aligning the current-state CIM. 

 Subsequently, the aligned current-state CIM was imported 

into the SfM/MVS software, enabling the creation of an 

accurate textured polygon model. Figure 23 shows the data of 

the SfM/MVS application process using the current-state CIM, 

and Figure 24 shows the textured model created by this process. 

In addition to being able to confirm damage such as corrosion 

on the textured model, it became possible to output 

orthoimages, as shown in Figure 25, and accurately record the 

location, size, and other details of the damage by overlaying the 

orthoimages with drawings. Furthermore, the visualization of 

damaged areas using the 3D model enabled desk-based 

assessments of deterioration, as shown in Figure 26. 

 

 

Figure 19. Estimation of camera position based on GNSS 

coordinate information 

 

Shooting 

position : 
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Figure 20. The confidence map of point cloud generated 

by SfM/MVS 

 

Table 5. Number of point cloud for each confidence level 

Confidence level  

(number of depth maps used) 

Number and proportion of point 

cloud 

1 to 4 150,509,599 points (54.38 ％) 

5 to 9 50,222,768 points (18.14 ％) 

10 to 99 75,733,315 points (27.36 ％) 

100 or more 330,028 points (0.12 ％) 

 

 

 

Figure 21. Results of SfM/MVS processing by the 

conventional technique 

 

Figure 22. The difference color map between point SfM/MVS 

point cloud (high-confidence area) and TLS point cloud 

 

Table 6. The difference verification results between point cloud 

generated by SfM/MVS (high-confidence area) and TLS 

Statistics 

Range of color map 0.000 m to 0.300 m 

Total point cloud 
(Sampled with an average 

point spacing of 10 cm) 

2,819,768 points 

Point count in range 2,034,179 points 

Mean distance 

from base surfaces 
0.1056 m (0.0655 std dev.) 

Point 

Distribution 

0.000 m to 0.075 m 836,198 points (29.66 %) 

0.075 m to 0.150 m 780,498 points (27.68 %) 

0.150 m to 0.225 m 247,846 points (8.79 %) 

0.225 m to 0.300 m 169,637 points (6.02 %) 

0.300 m or more 785,589 points (27.86 %) 

 

 

Figure 23. The application process of current-state CIM 

 

 

Figure 24. Created textured polygon model 

Importing  

the current-state CIM 
Textured polygon model Point cloud of SfM/MVS 

The number of  

depth maps used 

≥100 

The number of  

depth maps used 

≥100 

Difference 
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Figure 25. Examples of created orthoimages 

(Top and middle images: bridge side view, bottom image: underside of the girder) 

 

 

Figure 26. Example of a damage map created based on   

orthoimages 

 

 Issues 

Four points may be mentioned as issues in the SfM/MVS 

combined technique using measured point cloud data described 

in this paper: i), Increase in costs associated with the 

construction of the current-state CIM, ii) Accuracy and level of 

detail of the current-state CIM, iii) Accuracy of alignment of 

the current-state CIM and camera positions and iv) 

Applicability of SfM/MVS to more difficult cases. 

i) Cost incurred in construction of the current-state CIM 

Compared to conventional SfM/MVS, the measurement of 

point cloud data aimed at understanding the current-state shape, 

the modification of drawing data to match the actual shape, and 

the creation of the current-state CIM lead to an increase in costs 

and workflow. It is necessary to plan accordingly to ensure 

efficient and sufficient data acquisition, based on the purpose 

of applying SfM/MVS techniques. This involves selecting 

appropriate equipment, preparing a measurement plan, and 

considering factors such as the level of detail (LOD) of the 3D 

model, as described later. 

ii) Accuracy and level of detail of the current-state CIM 

The current-state CIM prepared in the proposed method will 

contain errors due to measurement accuracy, accuracy during 

model preparation and the setting of LOD. As the error in shape 

estimation increases, the accuracy of the positional relationship 

of the model and the cameras will decrease, leading to 

decreased quality of the textures to be projected. In actuality, 

even in the case described in this paper, it was confirmed that 

due to the difficulty in capturing detailed geometry using TLS, 

the quality of textures decreased in parts on the underside of the 

girders, where the level of detail of the current-state CIM was 

low, compared to other areas. 

iii) Accuracy of alignment of the current-state CIM and camera 

positions 

 The point cloud obtained through conventional SfM/MVS 

processing was confirmed to be usable as reference data for 

alignment based on comparative verification with the TLS 

point cloud. Using the constructed incomplete polygon model 

as a reference, the alignment between the current-state CIM and 

the camera was performed. On the other hand, to ensure the 

accuracy and reproducibility of alignment, it is desirable to 

manage coordinates on public coordinate systems. This can be 

achieved by setting up multiple ground control points during 

UAV imaging and TLS measurements, and performing 

processes such as aligning the control points placed on the 

current-state CIM based on the TLS point cloud with the 

control point coordinates calculated by SfM/MVS. 

iv) Applicability of SfM/MVS to more difficult cases 

In the example described in this case, it was possible to 

estimate the camera positions by applying conventional 

SfM/MVS and perform polygon modeling, although 

incomplete. The factors in this successful result are thought to 

include the fact that image acquisition was performed by setting 

the angle of view to capture a wide range in photography by the 

UAVs, and corroded parts and fine irregularities on members 

could be detected and used as feature points. Thus, there is a 

possibility that the technique described in this paper may be 

inadequate for steel bridges and other structures with uniform 

surface textures or flat shapes over larger areas. Therefore, 

going forward, it will be necessary to consider combining 

SfM/MVS with other 3D model acquisition techniques, 

including improvements to the methods discussed in this paper. 

 

4 CONCLUSION 

As a technique for applying SfM/MVS to steel bridges, in 

which the steel materials have a uniform surface texture as a 

result of coating film, this paper examined a processing flow 

for projecting textures from camera images on a current-state 

CIM model based on measured point cloud data obtained with 

terrestrial 3D laser scanners. The technique was also verified at 

an actual bridge. Although the quality of textures differed 

depending on the accuracy and level of detail (LOD) of the 

current-state CIM model, the possibility of constructing a 

textured model and orthoimages with sufficient quality to 

identify overall damage could be confirmed. 

On the other hand, various issues for application of the 

SfM/MVS technique verified in this paper may be mentioned. 

: corrosion 
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These include the cost of creating the current-state CIM model, 

the accuracy and LOD of the model, the accuracy of alignment, 

and the applicability of the proposed technique to more difficult 

object structures. To overcome these problems, it will be 

necessary to plan methods corresponding to the purpose of 

applying SfM/MVS, the geometry of the object structure, and 

the surrounding environment. In the case described in this 

paper, the current-state CIM model was prepared based on 

existing drawings and the measured point cloud data of the 

current shape of the structure. In the future, the application of 

BIM/CIM, which has been actively promoted in recent years, 

may make it possible to substitute the current-state CIM with 

BIM/CIM models constructed at stages prior to inspections. 

As future work on SfM/MVS application techniques, the 

authors intend to improve the accuracy and expand the range of 

application of the SfM/MVS technique, and study approaches 

for realizing higher efficiency and labor-saving in bridge 

inspections of steel bridges. 
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ABSTRACT: Finite element analysis (FEA) is widely used to evaluate civil structures’ performance. To consider detected 

structural anomalies due to damage in FEA, it is required to represent the anomalous areas in the original finite element (FE) 

model and update the mesh configuration. This study proposes an approach for updating the shell-element FE models of thin-

walled structures with anomalous areas by the point cloud data (PCD)-based CV method, focusing on surface planar anomalies. 

In this approach, the Iterative Closest Point (ICP) algorithm was used for the alignment of the point cloud with the FE model. The 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) on HSV values of PCD was used to extract points of 

anomalies. The anomalous region is denoted as its boundary points detected by the Alpha-shape algorithm. Constrained Delaunay 

Triangulation (CDT) generates the new meshes over a constrained area based on points related to anomalies. An experimental 

study was conducted for validation using a steel plate structure with various stickers attached to simulate the anomalies. The 

proposed CV-based FE model updating method was validated by comparing the PCD-based updated model and the manually 

updated model in terms of geometric and analytical accuracy. Most of the corresponding anomalous regions in the two models 

show a high degree of consistency, except for some areas affected by the low quality of the PCD, which, however, do not have a 

significant impact on the FEA results. With the same thickness reduction of anomalies, the analysis results indicate that there is 

only a minimal error between the two models. The proposed method is feasible as a substitute for manual rebuilding, facilitating 

the automation of the FE model updating with anomalies. 

KEY WORDS: Finite element analysis; Point cloud data; FE model updating; Shell element; Anomalies detection; Registration. 

1 INTRODUCTION 

Since civil infrastructures, such as buildings, bridges, dams, 

and tunnels, in many countries have been in service for 

extended periods, various damage accumulated through aging 

in these in-service structures seriously threatens their safety. 

The damage assessment for aging structures is critical, 

considering the infrastructure's crucial role in supporting the 

quality of life and the economy.  

Residual capacity assessment, based on simulation with finite 

element analysis (FEA), is one of the most widely used 

methods for evaluating damage to in-service structures. 

Computer vision (CV) techniques based on point cloud data 

(PCD) enable the identification and representation of real 

structural anomalies in computational models. However, 

current PCD–based modeling studies primarily focus on 

geometric reconstruction, while relatively limited attention has 

been given to their applicability in structural analysis. 

Moreover, there are far more studies related to mass solid 

structures such as concrete than shell structures like steel[1], 

[2], [3], [4], [5].  

Considering that the PCD-based method of extracting 

anomalies can greatly facilitate the subsequent damage 

assessment based on numerical simulation, the purpose of this 

research is to propose a method for extracting anomalous 

information from the point cloud and incorporating it into the 

finite element (FE) model for analysis.  

2 EXPERIMENT 

This research conducted a full-scale steel structural mock-up 

test to simulate the actual inspection process of anomalies in 

steel structures. Shell element FEA was used to assess the 

structure's performance. The results of the manually built 

model served as a reference to validate the proposed CV-based 

modeling method. The specific setup of the specimen and FEA 

will be elaborated on as follows. 

The specimen was set up in this experiment as shown in 

Figure 1. It is based on a combined structure, consisting of three 

orthogonal SS400 steel plates welded together, with 

dimensions of 400 mm in height, 180 mm in length, and 180 

mm in width. The thickness of all plates is 9mm. 

On the surface of the specimen, stickers of different shapes, 

sizes, and colors are arranged in various locations to indicate 

anomalies. 

 
 

a) specimen b) Geometric dimensions 

  
c) Point Cloud d) Nominal FE Model 

Figure 1. Setup and source data of specimen. 

In this paper. A standard static analysis was conducted on the 

model using the commercial FEA software Abaqus. The 

reference model is manually imprinted with the outline lines of 
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anomalous regions in the geometric model, and the mesh 

generator tool included with the software is used to generate 

shell element (S3) meshes. Meanwhile, the test model is 

automatically remeshed based on the existing nominal FE 

model. The re-meshing is only executed within the local region 

specified by the proposed method. To introduce an observable 

amount of load capacity reduction, a uniform shell thickness of 

3 mm is used in the anomalous regions for both models, 

representing a corrosion depth of 6 mm.  

3 METHOD 

We propose a PCD-based, CV-driven approach for updating 

the shell finite element model with anomalous information on 

the structure. This approach comprises three tiers. 

The Perception Tier extracts geometry, features, and 

anomalous information from structures using point cloud data 

and establishes correlations between this information. The PCD 

of the steel structure was registered to the mesh through two 

steps: coarse (PCA) and fine (ICP) alignment. A clustering 

method that combines the Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm and the Support 

Vector Machine (SVM) was implemented to extract anomaly-

related points based on the color information of points. 
The Anomaly Description Tier processes anomalous 

information in the point cloud, extracting features to represent 

the anomalous area. We utilize the Alpha-shape algorithm for 

boundary detection. For a single anomalous area that may 

distribute across multiple planes, the points are further 

separated into corresponding planes by joint lines, allowing 

boundary detection to be conducted on each subset.  
The Re-meshing Tier performs local mesh regeneration of 

the target area based on the feature extracted by the previous 

tier. The Constrained Delaunay Triangulation (CDT) 

algorithm is used to generate new meshes within the original 

edge lines of the remeshing region. 

4 RESULTS 

The original model, manually updated model, and PCD-

updated model are shown in Figure 2. 

 

a) Original 
b) Manually 

updated 

c) PCD-based 

updated 

Figure 2. Results of the updated FE model 

The locations of anomalous regions in the PCD-based 

updated model are generally consistent with those in the 

manually updated model. 

Figure 3 present the load-displacement curves at the loading 

point for the three models during the loading process. 

 

Figure 3. Load-displacement curve 

5 CONCLUSION 

This study proposed a method that utilizes PCD-based CV 

techniques to extract anomalous information from the structure 

and update it into an existing FE model. This paper focuses on 

surface anomalies commonly encountered in structures 

modeled by shell elements. The meshes corresponding to 

anomaly are locally updated based on geometric and color 

information contained in the point cloud. 

The PCD-updated FE model was validated at the analytical 

level using a manually updated model created according to the 

design as the criterion. The following conclusions were drawn: 

1. The PCD-updated model accurately captures the changes 

in the global distribution of stress and reduction in ultimate load 

capacity caused by anomalies in nonlinear analysis. Its results 

are in good agreement with those of the manually updated 

model, with a difference of less than 1% in the ultimate strength 

reduction. 

2. The local stress distribution in the anomalous areas of the 

PCD-updated model is highly consistent with that of the 

manually updated model. However, due to limited detail in the 

extracted boundaries of anomalous regions, its local stress 

concentration effects do not perfectly match those of the 

manually updated model. Nevertheless, the level of accuracy is 

sufficient for evaluating structural load-bearing capacity. 

ACKNOWLEDGMENTS 

This work was supported by JST SPRING, Grant Number 

JPMJSP2124. 

REFERENCES 

[1] Y. Lin, Z. Nie, and H. Ma, Structural Damage Detection with Automatic 

Feature‐Extraction through Deep Learning, Comput.-Aided Civ. 

Infrastruct. Eng., vol. 32, no. 12, pp. 1025–1046, 2017. 
[2] T.-C. Hou, J.-W. Liu, and Y.-W. Liu, Algorithmic clustering of LiDAR 

point cloud data for textural damage identifications of structural 

elements, Measurement, vol. 108, pp. 77–90, 2017. 
[3] E. Rúa, M. Cabaleiro, B. Conde, and B. Riveiro, First results of a 

methodology to obtain a 1D variable geometry model for the structural 

analysis of corroded steel beams from the point cloud, Structures, vol. 
33, pp. 3257–3268, 2021. 

[4] G. Tzortzinis, B. T. Knickle, A. Bardow, S. F. Breña, and S. Gerasimidis, 

Strength evaluation of deteriorated girder ends. I: Experimental study on 
naturally corroded I-beams, Thin-Walled Struct., vol. 159, p. 107220, 

2021. 

[5] G. Tzortzinis, C. Ai, S. F. Breña, and S. Gerasimidis, Using 3D laser 
scanning for estimating the capacity of corroded steel bridge girders: 

Experiments, computations and analytical solutions, Eng. Struct., vol. 

265, p. 114407, 2022. 
 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-082 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 540 

ABSTRACT: Quantification of friction demands is a major task in management of road infrastructures. The use of pavement 

texture measurement in friction assessment offers the potential for describing road frictional characteristic in a non-contact 

manner. However, surface macrotexture profiles tested by stationary measurements and high-speed laser systems provide limited 

range of texture information at high frequency scales. To achieve adequate outdoor road surface reconstruction at ultra-high 

resolution and low cost, this research develops a synthetic environment for ground truth reference and efficient generation of data 

and experiment. To illustrate the approach, a photo-realistic computer graphics model of asphalt pavement surface is produced 

and virtually scanned using candidate image acquisition plans. Then, in-depth quality assessment of the corresponding 3D point 

cloud reconstruction models is performed. In this way, suggest use of a close-range photogrammetric pavement surface scan 

method using Structure-from-Motion (SfM) technology and its requirements for friction-oriented texture quantification in terms 

of spatial resolution, camera movement, and illumination configuration is put forth. The effectiveness of the synthetic environment 

and the optimized experiment setup is demonstrated through a field survey on three roads. Finally, the obtained point cloud datasets 

are used in texture feature characterization and friction number prediction modeling processes. 

KEY WORDS: Synthetic environment; Structure-from-Motion; Pavement texture measurements; Infrastructure friction 

performance.

1 INTRODUCTION 

Pavement skid resistance is one of the most important 

properties among other highway surface characteristics. 

Demand for engineering interventions to restore friction of the 

aging and deteriorating highway network has been increased 

through years. Period assessment of pavement friction 

performance at the tire-road interaction has a pivotal role in 

developing the inventory of the condition of infrastructures at 

the highway network level. Current means of tire friction 

measurement devices and processes need calibration and 

harmonization for quality assurance. The use of pavement 

texture measurement in friction prediction offers the potential 

for describing highway frictional characteristic in a non-contact 

manner. To this end, such practices need to identify a 

comprehensive list of pavement macrotexture and microtexture 

attributes which contribute to friction. Both stationary 

measurements and high-speed laser systems are employed for 

sufficient reconstruction of macrotexture surface profiles [1]. 

However, a lower bound of microtexture wavelengths that 

relate to pavement skid resistance is not standardized. 

Furthermore, not all high frequency scales of microtexture are 

measurable. Criteria for sufficient spatial sampling rate and 

quality quantification of a pavement microtexture measurement 

approach, which includes all useful scales, is still vague [2]. 

In this paper, camera-based sensing of highway surface 

texture, using Structure-from-Motion (SfM) technique, is 

suggested for outdoor practices of high-resolution 

reconstruction of surface topography. In order to make fully use 

of the advantages provided by SfM technique while at the same 

time quantify and overcome limitations observed in previous 

studies, the investigation qualify SfM pipelines for pavement 

texture measurements with three main contributions: (1) in-

depth quantitative studies of the texture measurement accuracy 

influenced by the photogrammetric capturing quality of 

highway surfaces at high frequency scales; (2) comprehensive 

list of 3D texture characteristics contributing to the texture-

friction correlation; (3) suggest use of an experimental setup 

using commercial off-the-shelf camera and its requirements for 

sufficient pavement texture quantification in terms of spatial 

resolution, camera movement, and illumination configuration 

is put forth. The works aims to optimize the use of outdoor 

photogrammetry techniques to friction-oriented road surface 

assessment, particularly for sufficient characterization of 

surface texture at micro-scales. 

2 PAVEMENT SYNTHETIC ENVIRONMENT 

Development of a synthetic test environment for close-range 

image acquisition of pavement surface topography is important 

for the proposed investigation for two main reasons:  

1. Ground truth measurement: Evaluation of the SfM 

surface reconstruction quality in terms of texture 

characterization requires a well-defined ground truth 

model as the target reference. More often, camera-

based approaches rely on a comparison to model from 

another costly technique such as a laser texture 

scanner or a microscopy. Therefore, the quality of 

such a comparison is limited by inevitable uncertainty 

in the reference model. Practices to mitigate this 

drawback include replication molding of the target 

surface and the use of 3D-print target objects [3]. In 

an approach using synthetic environment, the surface 

topography ground truth data is available. The 

Synthetic environment for close-range photogrammetry-based surface friction 

assessment of road infrastructures 
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accuracy and quality of a SfM reconstructed surface 

digital elevation model (DEM) can be quantified using 

a direct comparison to the ground truth displacement 

map of the synthetic texture model. Subsequently, the 

pavement texture measurement performance from a 

photogrammetric survey can be optimized based on 

the observed variation in comparison results. 

2. Efficient data generation and experiment: In the 

submillimetre, and micrometer range, quality of a 

photogrammetric surface reconstruction can be 

affected not only by the environmental and apparatus 

setups, but also by local characteristic variations of a 

target surface texture. Conducting a quantitative study 

of these factors in the field is time and cost consuming. 

In contrast, SfM surveys using images rendered in the 

synthetic environment can efficiently cover a wide 

variety of system configurations at any time without 

labor-intensive and site-sensitive field surveys. 

A synthetic environment has been developed to test and 

quantify all influential factors regarding pavement 

macrotexture and microtexture measurements in a 

generalizable manner. To bring the close-range 

photogrammetric setup into the outdoor field environment, the 

image acquisition strategy should be developed, tested, and 

optimized for an efficient and robust performance. 

Blender software is used to implement the synthetic modeling 

steps introduced herein. To extend the synthetic environment 

to a generalizable one, the high-resolution surface geometric 

details are modeled with a variation of texture characteristics 

using the Blender-Python API (Blender, 2024). The developed 

environment is used to produce survey images “captured” by a 

virtual micro-four thirds camera using different ground 

sampling distance (GSD). The resolution of each simulated 

image is 4592 × 3448, in which each pixel has a size of 3.77 

μm. This section describes the detail of each created texture 

model and the steps to develop the synthetic setup for pavement 

close-range photogrammetric texture measurement. First, a 

mesh of each solid object in the environment is created to 

represent the 3D geometric details of the target structure. Then, 

multiple texture maps and settings are imported to control base 

color, roughness, and shading effects of the object surfaces. 

Third, a simplified surrounding scene is configured, and a 

camera-light pair is positioned facing down at a determined 

height. Finally, a group of simulated images rendered from 

predetermined viewpoints are produced. An overview of the 

development is depicted in Figure 1.  

  
Figure 1. Framework for the synthetic approach of pavement 

texture photogrammetry. 

 Synthetic Data Generation 

The synthetic environment developed in this research consists 

of a 100 mm x 75 mm patch of surface texture with four edges 

enclosed by a 10 mm wide rectangular control frame. 

A solid object of control frame was generated in the synthetic 

environment. A cardboard thickness of 3.175 mm (1/16 in.) 

was selected to ensure flatness of reference surface for surveys 

in the field. The frame has a rectangular shape, and its inner and 

outer dimensions are 100 mm x 75 mm and 120 mm x 95 mm. 

The 10 mm width of four edges is selected so that the entire 

inner scanning area can be captured with at least two images 

(high overlapping). With a printed paper texture projected on 

the control frame top surface, a total of 40 reference marks of 5 

mm diameter are horizontally distributed on the edges of the 

enclosed target scanning area. The edge distribution approach 

of ground control points (GCPs) is followed to have an 

optimized mapping accuracy [4] and to avoid texture occlusion. 

Previous studies have observed that the addition of a few 

vertically distributed GCPs can decrease the vertical 

reprojection error of a UAV surface mapping without 

influencing the planimetric accuracies [4], [5]. Therefore, 

additional heights (1/32 in., 1/16 in., 3/32 in., 1/8 in.) are added 

to four of the 40 edge marks so that they can be utilized as 

vertical GCPs. 

A photogrammetry-based asphalt material downloaded from 

an public database [6] was adapted to generate a realistic 

pavement texture at a ultra-high level of resolution in the 

synthetic environment. The original data has a color map, a 

roughness map, a normal map, and a displacement map, each 

was represented by a 16K image of 1.2 m x 1.2 m area. Several 

data processing steps were developed to the texture maps so 

that realistic ground truth textures with a variation of statistical 

characteristics can be tested in the synthetic environment. 

1. The original maps have a resolution of 186.4p/mm2, 

equivalent to a pixel size of 73.2μm. Each of the three 

texture maps was refined to have an ultra-high 

resolution of 1.68Kp/mm2 (24.41μm pixel size) using 

bicubic interpolation. The 3D surface developed from 

a refined texture mesh has a smooth mesh geometry in 

the simulated images, in which unexpected edge 

artifacts in the high-frequency domain become 

invisible to the virtual camera pixels. Figure 2 shows 

a 5cm x 5cm patch of the surface color map before and 

after the interpolation. While increasing the synthetic 

surface smoothness enables a more realistic modeling 

of structure, it significantly increases the required 

computational power and time. The increased 

resolution of 1.68Kp/mm2 in the geometry modeling of 

ground truth surfaces is selected to offer a tradeoff 

between model reality and tedious work. As a result, 

the ground truth power spectrum density (PSD) has a 

nominal high cutoff wavevector of: 

 
2𝜋

𝜆𝑚𝑖𝑛
=

2𝜋

4.882×10−5𝑚
= 1.287 × 105𝑚−1          (1)  
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Figure 2. 5cm x 5cm patch of the asphalt texture model: 

original (left) and refined (right). 

2. To enable real world applications of the system 

configuration with performance tested in synthetic 

simulations, the synthetic asphalt was scaled to have a 

middle level of average macrotexture MPD equal 0.83 

mm. In this way, the target pavement shows realistic 

amplitude asperities over a large frequency range.  

Using the Blender-Python API [7], gridded vertices, and 

triangulated faces of a mesh with displaced vertical coordinates 

is first created to represent the ground truth geometry of each 

synthetic pavement. Then, the generated 3D mesh is textured 

using a principle BSDF node in Blender, in which the base 

color and the light reflection roughness of the mesh surface are 

controlled and rendered using a physically based approach. 

 Rendering Synthetic Images 

The length of the abstract is limited to 15 lines. The abstract 

should be self-contained and it must not refer to the other parts 

of the paper (such as the list of references). After the synthetic 

textured mesh of a pavement surface is created, an image 

acquisition plan including illumination condition and camera 

viewpoints is needed for optimization of tradeoff between 

spatial resolution and time/cost efficiency.  

Optics. The critical parameters of a commercial off-the-shelf 

camera optics that influence the GSD of captured images on the 

target surface are: (a) the minimum focus distance, which is the 

closest capturing distance the camera can focus; (b) the depth 

of field (DoF), which is the vertical variability limit the survey 

can digitize. The reference project developed in the synthetic 

environment uses a virtual 4K camera of 30 mm focal length 

capturing at a height as low as 80-mm.  

Macro camera lenses with a 1:1 or higher magnification ratio 

are widely used in applications of close-range photogrammetry 

[8]. The magnification ratio is the relationship of the size of a 

focused object in reality and the size of its reprojection on the 

camera image sensor. For a camera with pre-determined pixel 

size, a lens with higher magnification ratio enables capturing of 

images at a higher resolution. However, macro lenses exhibit a 

limited DoF without a time tedious process of focus stacking.  

According to the size of image sensor, most commercial off-

the-shelf cameras can be categorized into three types: micro-

four thirds (17.3 mm x 13 mm), APS-C (about 23 mm x 15 

mm), and full frame (36 mm x 24 mm). Figure 3 compares the 

three types of cameras and the relationship between GSD and 

DoF. The focal lengths are selected for individual camera type, 

so that they achieve same level of image GSD at an equivalent 

object (focus) distance. Although large image sensor size 

cameras feature superior performance in cases that require low-

light (small aperture) and/or high-ISO settings, they result in 

shallower DoF assuming equivalent effective focal length. At a 

lateral resolution level of 10 μm, the three cameras produce 

DoF results of 4.44 mm, 3.12 mm, and 2.03 mm, respectively. 

Therefore, micro-four thirds camera type is selected in both the 

synthetic environment and the field experiments to achieve 

sufficient DoF with cost efficiency. 

 

Figure 3. Depth of field (DoF) relationship with GSD for three 

camera types at a 60 mm equivalent effective focal length. 

To capture full range of surface texture amplitudes in a 

targeting pavement, a DoF greater than the texture maximum 

height (𝑺𝒛) is preferred. Most asphalt pavements have an MPD 

of less than 2 mm. Thus, a minimum GSD of 10 μm is selected 

for all configurations of image acquisition tested in the 

synthetic environment.  

Scanning Area and GSD. The ground sampling distance 

(GSD) of captured images is a standard metric for the resulted 

spatial resolution of reconstructed point cloud, as it is the 

measured distance between two consecutive pixel centers on 

the ground. The determination of GSD depends on various 

factors including the camera focal length, the sensor pixel size, 

and the object distance (Figure 4a). A camera with fixed focal 

length captured at a higher height can result in larger GSD and 

lower spatial resolution (Figure 4b) compared to a closer range 

of photo capturing (Figure 4c). Ideally, a GSD is expected to 

be smaller than the smallest roughness horizontal scale to 

enable measurement of surface irregularities at the highest 

frequencies. However, the apparatus cost can be exponentially 

increased to have an image sensor with smaller pixel size and a 

macro camera lens that allows higher magnification ratio 

captured at a longer distance. While the synthetic environment 

is an effective tool enabling the use of simulated images 

“captured” by a virtual camera of any specifications at any 

distance, inevitable constraints on a low-cost field survey 

configuration should be taken into consideration. 
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Figure 4. Determination of GSD (a), Large GSD – Low spatial 

resolution (b), and Small GSD – High spatial resolution (c). 

Another factor that can affect the selection of GSD in a 

photogrammetric survey is the dimensions of target scanning 

area. A single 4K digital image can only capture about 16 mm 

in width if a 4 μm of GSD is used. Therefore, numerous 

numbers of images will be required for a single pavement 

texture 3D scan. This requirement can lead to tedious image 

acquisition work as well as long image processing time. Figure 

5 shows the variation of the required number of images with 

GSD for a 3.77 μm pixel size 4K camera capturing a 120mm x 

95mm surface area. The calculated number of required images 

include auxiliary images captured from multiple heights to 

ensure consistent mosaicking of partial scans. In the resolution 

range of 10 μm or smaller, the required number of images per 

survey is increased exponentially as GSD decreases. The 

minimum tested GSD of 10 μm enables not only enough DoF, 

but also reasonable image acquisition time. As the 

computational power grows and the cost per pixel decreases 

through time [9], the observed limitations can become 

negligible for future implementations.  

 

Figure 5. Required number of images with GSD for 4K camera 

scanning 120mm x 95mm area. 

Scene and Lighting. The primary goal of lighting 

configuration is highlights while at the same time provide 

shadowless illumination. As discussed before, a camera with 

focus stacking technique may be needed if the aperture 

optimized for exposure provides insufficient DoF. In the 

proposed approach, fixed settings of F-stop (f/22) and ISO 200 

are selected for deeper DoF and smaller visibility of noise. As 

the target object is partially insulated from the environmental 

illumination through set-ups including the surrounding control 

frame, close apparatus, and a very small aperture, a specific 

light source in conjunction with the sunlight is used towards 

proper exposure. In Figure 6, three images are rendered at 105 

mm camera height with different energy settings of the added 

point light source. Therefore, proper adjustments of the light 

power output with object distance changes are required to 

prevent irreversible loss of data in the dynamic range. 

 

Figure 6. Synthetic rendered images of asphalt pavement 

texture with histogram at different light settings: (left) under 

exposed, (middle) proper exposure, and (right) over exposed. 

Finally, a complete synthetic scene of pavement background 

and morning sunlight was used in image rendering processes. 

A 600mW power of diffused point light source moves along 

with the virtual camera is used to ensure shadowless and even 

imaging. In field studies, the shadow introduced by an imaging 

apparatus capturing at a close distance can be removed using a 

ring light installed around the camera lens. Figure 7 shows the 

rendered scene including a target object placed on the ground, 

a virtual camera facing down, and a diffused point light with 

pre-adjusted power output. Camera specifications and 

illumination configurations are set according to optimization of 

trade-off between cost, time, and resolution discussed in the 

above sections. 

 

Figure 7. Scene and lighting configuration in synthetic 

environment. 

Camera Motion. Images captured from numerous 

prescribed viewpoints are used in SfM technique to estimate 

the relative camera positions through feature matching, which 

is the start of triangulation processes. Both quantity and quality 

of the acquired images can greatly influence the feature 

detection performance. Following the principle of full coverage 

with high overlapping, two main strategies of shooting 

scenarios are widely used to obtain high quality of surface 

scanning: circular camera motion around the object, or 

viewpoints in a Cartesian lattice [8]. The former is preferred 

when the size of a single image footprint is greater than the 

target scanning area, whereas the latter is good for wider 
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surface scanning. A minimum net scan area width of 100 mm 

is required for measurements of pavement macrotexture MPD. 

Therefore, one standard 4K image cannot fully cover a 

scanning area of the required size at a GSD smaller than 25 μm. 

However, the lowest wavelength of pavement roughness in 

rubber friction theory can be as small as a few micrometers 

[10]. This approach follows the Cartesian approach to avoid 

illumination artifacts and to achieve a lateral resolution as small 

as 10 μm. In addition, a few auxiliary images captured at larger 

heights are collected so that the overall reconstructed surface 

structure is consistent through small partial scans.  

The accuracy of 3D reconstruction outputs and their 

performance in texture characterization are tested at multiple 

levels of GSD: 10 μm, 13 μm, 15 μm, and 38 μm in the 

developed synthetic environment. As shown in Figure 8, a 

Cartesian approach is used in the first three image acquisition 

plans as it allows closer object distance for smaller GSD. The 

strategy of circular camera motion around the target, at a 22.5◦ 

rotation interval, is also tested for comparison. The number of 

images used in the texturing of the reconstructed surface in four 

different image acquisition plans are 80, 35, 20, and 13, 

respectively. At least 80% image overlap is employed in all 

four plans since photogrammetry in a close-range scenario 

requires larger overlapping of images [11]. 

 

Figure 8. Image acquisition plans simulated in the synthetic 

environment tested at different GSD: (a) 10 μm, (b) 13 μm, (c) 

15 μm, and (d) 38 μm. 

 Photogrammetric Process and 3D Reconstruction 

All simulated images for each system configuration of 

pavement characteristics and camera viewpoints are imported 

in ContextCapture software [12] carrying out a 

photogrammetric process. The entire process includes three 

major stages: feature tracking, sparse reconstruction, and dense 

point cloud reconstruction. 

First, the evenly distributed ground control points (GCPs) are 

detected in the images, either manually or automatically. An 

aerotriangulation process started from estimating the 

photogroup intrinsic and extrinsic properties. Taking into 

account the world coordinates of GCPs for georeferencing, the 

aerotriangulation detects and tracks matched features in the 

overlapped area of consecutive images. As a result, numerous 

automated tie points are detected and an estimation of camera 

properties is provided. Figure 9 shows an example of 4.412 tie 

points detected in one image “captured” at a GSD of 13 μm 

with a root mean square (RMS) reprojection error of 0.5 pixel. 

Enough tie points with sub-pixel parallaxes matched in the 

images is a good indicator of high precision in feature tracking. 

 

Figure 9. Example of 4,412 tie points detected in one rendered 

image by ContextCapture. 

Next, the correspondence found between all tie points at the 

previous stage still contain errors and the camera pose estimates 

will be further refined in sparse reconstruction. At this stage, a 

bundle adjustment of camera internal and external parameters 

is employed for robust estimation. Taking advantage of 

redundancy in large number of detected tie points, this step 

estimates the geometry of the scene and obtains a sparse point 

cloud with robustness. Figure 10 shows the output of the sparse 

reconstruction stage of an asphalt surface texture modeled in 

the synthetic environment. The pavement model has an average 

MPD of 1 mm and was scanned at a GSD of 10 μm. The control 

frame on the edges is only used to provide GCPs and will not 

be included in the reconstruction of dense point cloud. This 

stage marks the end of SfM technique applications. 

 

Figure 10. Sparse point cloud reconstruction output example. 

The proposed photogrammetry approach requires a 3D 

reconstruction result of dense point cloud with a resolution 

equal or close to the determined GSD. Therefore, Multi-View 

Stereo is implemented to increase the point cloud density and 

reconstruct the 3D model with voxel color texturing according 

to stereo images of the scene captured with overlapping across 

different viewpoints. In both synthetic and laboratory 
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environments, the camera motion can be controlled precisely 

with accurate positioning data. However, to simulate the 

outdoor scenario that camera positions are not available to be 

used as initial estimate of camera extrinsic parameters. In the 

proposed method, the scene coordinate system of a developed 

output 3D reconstruction was initialized using at least three 

arbitrary GCPs of choice instead. Figure 11 compares the top 

view of a synthetic asphalt surface in Blender and its 3D 

reconstruction model produced by ContextCapture at a spatial 

resolution of 10 μm. The original pavement model on the left 

is a mesh containing 1,567,362 vertices and 3,129,672 

triangular faces. Due to the limited computational power (32Gb 

memory), the resulting resolution of the model is set as 

24.41μm. Compared to the model ground truth, the 3D 

reconstruction on the right provides a top view picture with 

higher resolution. Although the two structures have different 

voxel resolutions, limited differences among the measurement 

of pavement texture parameters should be observed for a good 

photogrammetric texture reconstruction. 

 

Figure 11. Synthetic asphalt pavement surface (left) and its 3D 

reconstruction with 10 μm spatial resolution (right). 

3 DATA QUANTIFICATION AND EVALUATION 

The quality of each photogrammetric survey can be assessed by 

quantifying the difference between ground truth and 3D 

reconstruction and its Digital Elevation Model (DEM). 

 3D Reconstruction Model Quality 

Regardless of asperities in the surface topography, the 

modeling quality of a 3D reconstruction depends on the image 

acquisition plan, illumination, and camera intrinsic and 

extrinsic properties. Table 1 compares quality of 3D 

reconstruction outputs developed using different image 

acquisition plans. The density of the reconstructed point cloud 

remains uniform throughout the entire scanning area when a 

Cartesian approach is selected. Therefore, the resulted point 

cloud resolution of each Cartesian output is at the same level of 

the pre-determined image GSD (10 μm, 13 μm, and 15 μm, 

respectively). However, if a circular camera motion is selected, 

the resulted point cloud will be distributed at a range of 

resolution because of the inclined orientation of camera 

viewpoints. In this case, a sampling rate equal to the highest 

resolution (37 μm) or one pixel size (38 μm) will be used in the 

creation of surface DEM model even if smaller resolution 

values were observed in partial areas.  

Generally, a large number of tie points per image with a sub-

pixel parallax for images used in the aerotriangulation 

process is desired for high quality 3D reconstruction. The 

automated tie points detected in each image of the circular 

camera motion model (GSD=38 μm) is significantly decreased 

compared to results from the Cartesian approaches. A reason of 

this change is that the target surface was not covering the whole 

image footprint when the camera was capturing the entire 

object with a rotation in Z direction. An RMS reprojection error 

of less than one pixel size is observed for all four outputs, 

indicating that a satisfied precision in camera pose estimations 

can be obtained at various levels of point cloud resolution. As 

shown in Table 1, the average uncertainties found in estimation 

of image poses are less than 0.01 mm in all directions for three 

models with a GSD≤15 μm. For the model with 38 μm of GSD, 

the observed image pose uncertainties are also less than one 

pixel size for quality assurance. For all four model outputs, the 

image uncertainty in the Z direction is smaller than ones in the 

two horizontal directions, as the camera was moving mostly in 

the X and Y directions.  

Table 1. Quality summary of 3D construction at different GSD 

levels in image acquisition/ 

Point Cloud 

Resolution Range 

Median Tie 

Points per 

Image 

RMS Tie Points 

Reprojection 

Error 

0.0099 mm – 0.01 mm 4,541 0.55 pixels 

0.013 mm 5,395 0.5 pixels 

0.015 mm 6,025 0.5 pixels 

0.028 mm – 0.037 mm 1,263 0.68 pixels 

 Digital Elevation Model Quality 

Measurements of pavement texture only concern the height or 

elevation values of a target surface. Instead of conducting a 

direct comparison between voxels in two 3D structures, the 3D 

dense point cloud output of photogrammetry model will be 

rasterized to provide a surface DEM at one pixel sampling rate 

in MATLAB. The output map contains generalized height 

information of the input point cloud based on a local binning 

algorithm. As the GSD (one pixel size in mm) was selected as 

the fixed resolution of the grid element along X and Y axes, a 

few missing values are inevitable in the computed DEM and 

will be filled with linear interpolation. The corresponding 

percentage of the unfilled grids in DEM of the models with 

different grid resolutions are 0.099% (10 μm resolution), 0.1% 

(13 μm resolution), 0.15% (15 μm resolution), and 0.00056% 

(38 μm resolution) respectively. The number of unfilled grids 

in all four DEMs are neglectable compared to the matrix sizes.  

And the DEM of each 3D point cloud will be compared with 

the original displacement map of the synthetic asphalt 

pavement in terms of both residual errors and texture 

characteristics measurements. A visual comparison of the 

displacement (height) ground truth and the created model 

DEMs are displayed in Figure 12. According to the DEM 

surface plots, most of the height asperities of the structure are 

accurately scanned into the models. However, one deep pit was 

lost with a decreased absolute height in its 3D scans. The 

possible reason for this false is that occlusion happened when 

the optical paths were detecting the target point in valley.  
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Figure 12. 3D surface plot comparison of surface ground truth 

(a) and DEMs of four 3D reconstructions of the synthetic 

pavement at different resolutions: 10 μm (b), 13 μm (c), 15 μm 

(d), and 38 μm (e). 

Before comparing individual values in the ground truth 

matrix and the computed DEM of a 3D point cloud 

reconstruction, a spatial referencing process is needed to align 

the two matrices with different grid sizes. Then, the size of the 

matrix with a larger resolution is increased using linear 

interpolation. Finally, the residual errors of each DEM using 

the identical world coordinates are collected. Figure 13 shows 

the residual distribution of the DEMs compared to the ground 

truth. The shapes of residual histograms are close to normal 

distributions with zero means. It is observed that the RMS of 

all the residual distributions is within single digits of pixels. 

The general quality of a surface DEM is not improving with a 

decreased resolution. And the model sampled at 38 μm 

resolution provides the highest quality because a tilt camera 

view helped in preventing the occlusion issue. However, a high 

DEM general quality only means that the texture roughness in 

the range of wavelengths greater than 2 × resolution was 

reconstructed accurately. The height asperity data in higher 

frequency ranges of the original structure was lost. 

 

Figure 13. Residual distributions of DEMs of four 3D 

reconstructions of the synthetic pavement at different 

resolutions: 10 μm (a), 13 μm (b), 15 μm (c), and 38 μm (d). 

After the spatial referenced comparison, the quality of a 

DEM needs to be further evaluated in terms of the 

characterization of pavement macrotexture and microtexture. 

To this end, a Butterworth filter was applied to both the 

pavement ground truth and the reconstruction DEMs to get: (iii) 

total texture roughness with wavelengths less than 50 mm, (ii) 

macrotexture with wavelengths within [0.5 50] mm, and (iii) 

microtexture with wavelengths ≤ 0.5 mm. Figure 14 illustrates 

the filtering process and its effects on the synthetic pavement 

ground truth. As shown in Figure 14d, the original synthetic 

pavement contains waviness with wavelengths greater than 50 

mm and it will be filtered out before the texture characterization 

processes. 

 

Figure 14. Butterworth filtering results on the synthetic 

pavement texture: (a) original surface; (b) total texture 

roughness; (c) macrotexture; (d) removed waviness; (e) 

microtexture. 

 Texture Characterization Quality 

In this section, the macrotexture MPD and 3D areal parameters 

in total texture roughness measured from the 3D 

reconstructions will be evaluated. 

First, the standard MPD is calculated from macrotexture of 

both the ground truth and the DEMs. Since different numbers 

of MPD measurements will be collected from data with 

different resolutions, the averaged MPD and the RMS MPD 

value will be compared as metrics. Since all four 3D 

reconstructions were sampled at a resolution much smaller than 

the microtexture lower bound wavelength (0.5 mm), the MPD 

measurements of DEMs are all accurate with small differences 

observed in the averages (<3.1%) and the RMS (<3%) 

compared to the ground truth, as shown in Table 2. 

Table 2. Evaluation of the photogrammetric macrotexture 

MPD measurements. 

Resolution 
Average MPD RMS MPD 

mm Diff (%) mm Diff (%) 

Ground 

Truth 
0.8305 - 0.8498 - 

0.01 mm 0.8343 0.4596 0.8548 0.5910 

0.013 mm 0.8048 -3.0875 0.8244 -2.9851 

0.015 mm 0.8413 1.2991 0.8626 1.5069 

Two pavements with the same macrotexture and microtexture 

amplitudes, e.g. MPD, can have different friction levels. A 

variety of supplemental variables have been used to represent 

the texture-friction correlation with improved performance. 3D 

areal parameters has been playing a significant role in 

tribological studies [13]. Adapted from the ISO 25178-3 [14] 

standard, a list of statistical quantitative texture measurements 

is used for comprehensive characterization of a 3D surface 

topography. Specifically, in total of 26 3D areal texture 

parameters were calculated across five categories: seven height 

parameters (arithmetic mean height Sa, RMS height Sq, 

minimum peak height Sv, maximum peak height Sp, skewness 

Ssk, and kurtosis Sku), two hybrid parameters (root mean 

square gradient Sdq and developed interfacial area ratio Sdr), 

three spatial parameters (autocorrelation length Sal, texture 

aspect ratio Str, and the texture direction in rad Std), five 
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feature parameters (the density of peaks Spd, arithmetric mean 

peak curvature Spc, five-point peak height 𝑺𝟓𝒑 five-point pit 

height, 𝑺𝟓𝒗, and ten-point surface height, 𝑺𝟏𝟎𝒛), and nine 

functional parameters (peak material volume Vmp, core 

material volume Vmc, core void volume Vvc, dales void 

volume Vvv, peak extreme height Sxp, surface section 

difference Sdc, reduced peak height Spk, core height Sk, and 

reduced dale height Svk). 

The measurements of all seven height parameters were robust 

among four 3D models. The differences between the 3D 

measurements and the ground truth are less than 5%.   

The two hybrid parameters are both good indicators of texture 

roughness in general. As Sdq increases, the surface is inclined 

steeply. The surface becomes more rough when the Sdr value 

increases. All three 3D models with a resolution smaller than 

the ground truth resolution (24.4 μm) provide good 

measurements of the hybrid parameters. However, significant 

errors (>10% difference) are observed for the model that has a 

larger resolution (38 μm). 

Spatial parameters measure the surface horizontally. 

Therefore, the accuracy of 3D measurements varies depending 

on the influence of surface isotropy in the high frequency range. 

The strongest surface orientation was not accurately detected in 

the two 3D models of higher resolution (15 μm, 38 μm). 

Due to the sensitive nature of feature parameters, the 

difference observed between the ground truth and the 3D 

measurements in this category are large. Among the four 3D 

reconstructions, the circular camera motion model with a 

resolution of 0.038 mm has the best performance in feature 

parameters measurements. The reason is that a tilt camera 

orientation can help in capturing the actual value of points with 

the largest global peaks and pits heights. However, there is a 

trade-off between the sampling resolution and camera 

orientation. Therefore, feature parameters will not be used in 

the friction prediction modeling process utilizing the field 

texture measurements. 

Most of the nine functional parameters are measured 

accurately in the four 3D models. Some error in Vmp 

measurement were observed in two models with the smallest 

resolutions (10-μm and 13 μm). A possible reason is that 

redundant volume of extreme peaks are sampled in the two 

models as the result of linear interpolation. The significant 

differences in Spk and Sxp measurements for the 3D model 

with 15 μm indicate that this model failed to scan some peak 

height values. 

4 FIELD EXPERIMENT 

A low-cost commercial off-the-shelf camera (Lumix GX850) 

with a micro-four thirds 4K image sensor (4592×3448) 

installed with a macro lens is utilized in the field capturing 

images of pavement surface texture. The selected macro lens 

has a fixed focal length of 30 mm and a minimum focus 

distance of 105 mm (equivalent to a minimum working distance 

of about 22 mm). To minimize shake and achieve a spatial 

resolution of the order of tenth of micrometer, the camera was 

mounted on a tripod with a working height as low as 55 mm. In 

addition, a 180 mm rail nodal slider is fitted on the tripod to 

ensure consistent overlapping between consecutive images. 

Although the macro lens allows a maximum magnification 

ratio of 1:1, a smaller magnification (1/3) is selected to allow 

larger DoF at f/22 aperture. The target three track roads have 

previous MPD measurements fall in the range of 0.1 mm – 2 

mm. Therefore, a DoF of 5.63-mm should be sufficient to 

capture the asperities in amplitudes. As tested in the synthetic 

environment, a battery powered ring light is added to 

compensate for the low environmental lighting resulted from 

the shallow aperture. 

A LTS measurement pair for each photogrammetric texture 

scans was recorded for initial validation purposes of field MPD 

measurements. The LTS Model 9200 by Ames scans enables 

selected number of 100 mm length 2D texture profiles at a 

horizontal resolution of 0.015 mm. The device needs 

approximately 15 minutes to complete 50 scans of profiles over 

a scan area of 107.95 mm by 72.01 mm.  

Figure 15 shows all the apparatus utilized in field texture 

measurements as well as the LTS used for validation purposes. 

The total cost of all equipment listed in Figure 15b is less than 

$1000. Specifications of the photogrammetry device used for 

field texture scan are listed in Table 3. 

 

Figure 15. Apparatus of field texture scans: (a) LTS model 

9200, (b) 4K camera, macro lens, tripod, slider, and ring light. 

Table 3. Summarized specifications of texture scan using LTS 

and photogrammetry. 

SfM-based Photogrammetry 

Total scan area 100 mm × 75 mm 

Resolution 
0.011 mm in X, Y, Z 

directions 

Pixel Size 3.77 μm 

Image Sensor Size 
17.3 mm × 13 mm 

(4592×3448) 

Aperture f/22 

ISO 200 

Focal Length/GSD 30 mm/0.011 mm 

Field data collection of pavement friction and texture was 

conducted on three track roads in Spring 2024. As shown in 

Figure 16, the research and development division of INDOT 

has three track pavements with distinct MPD levels: two hot-

mix asphalt (HMA) pavements at the left and middle lanes, and 

one slick concrete pavement on the right. For each road, two 

longitudinal sections (each about 65 feet long) along with three 

locations: the left wheel-path, the center line, and the right 

wheel-path were selected as individual test locations. The three 

transversal locations are assumed to have different levels of 

traffic polishing. Consequently, the difference observed in 

friction data gathered from the three locations within each road 

will explain the influence of traffic polishing on road wet 

friction performance. On the other hand, two longitudinal 

sections for each road were selected for data argumentation, 
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assuming that the pavement surface texture in real world is not 

homogenous in real-world scenarios. 

 

Figure 16. The test fields: three track roads in INDOT. Each 

road includes two longitudinal sections (left) and three 

transversal locations (right). 

After texture data collection, a LWST was employed to obtain 

the pavement friction number (FN) at two vehicle speed levels 

with multiple repetitions. In total of 130 LWST measurements 

were completed in three days, and the test temperature of 

pavement varies between 45F to 112F.  

The residual errors of GCPs during the reconstruction of the 

field surfaces increases compared to the synthetic test results. 

One important reason is the additional uncertainties caused by 

calibration of a real-world camera with lens distortion. To 

verify the method reliability in the field, a comparison of 

macrotexture MPD measurement distributions between the 

proposed photogrammetric method and its LTS counterpart is 

employed. Since the measurement sampling rates and locations 

in the transversal direction varies, two sample T tests are 

employed to compare the average MPD in the distributions 

provided by the two methods. All 41 tests failed to reject the 

null hypothesis that MPD measured by photogrammetry and 

LTS are from populations with equal means at a 5% 

significance level. 

The R-square value of 0.7672 indicates that limited 

information in the road friction performance can be explained 

by the standard macrotexture MPD solely. Therefore, three 

alternative models are trained: stepwise linear regression, 

neural network (NN) model, and regression ensemble model 

(random forest). The optimized regression ensemble model 

contains 47 learners of all 25 predictors. And the model 

achieves better goodness-of-fit compared with both the 

stepwise linear model and the NN. As shown in Table 4, a R-

squared (Test) of 0.98 is obtained. The RMSE (Test) has been 

reduced to 3.36, and the MAE (Test) is only 2.55. It is worth 

noting that the MAE statistic (mean absolute error) is less 

sensitive to outliers compared to RMSE and MSE. 

Table 4. Performance of three texture-based FN prediction 

models. 

Model RMSE 

(Valid) 

R-squared 

(Valid) 

RMSE 

(Test) 

R-

squared 

(Test) 

Stepwise 

LR 

4.853 0.960 4.995 0.956 

Neural 

Network 

5.318 0.952 4.796 0.959 

Ensembl

e 

3.549 0.978 3.361 0.980 

As discussed in the synthetic simulations, a selection of small 

image GSD leads to high spatial resolution in the 3D 

photogrammetric pavement texture reconstruction. 

Consequently, the measurement quality of texture roughness 

characteristics is also changed with the sampling rate. The 

comparison results of an asphalt pavement surface scanned at 

multiple image GSD in the synthetic environment suggest that 

a DEM developed using the proposed 3D reconstruction 

method with a GSD/resolution of 0.011 mm – 0.013 mm can 

provide reliable measurements of 23 distinct texture 

parameters, as long as the maximum imaging DoF is sufficient 

for feature capturing of extreme peaks and pits. However, the 

highest frequency of pavement microtexture is undefined. 

Therefore, the minimum spatial resolution in surface texture 

scan required for reliable prediction of pavement friction 

performance is still debated.  

The original 3D reconstruction of 41 field texture 

photogrammetric scans will be down sampled at a scale of 0.5 

multiple times. Next, texture DEMs of the down sampled point 

cloud data are developed, among which there are five distinct 

resolution levels: 0.022 mm, 0.044 mm, 0.088 mm, 0.176 mm, 

and 0.352 mm. The 22 areal texture parameters are measured 

using the down sampled texture DEMs. The original speed, 

pavement temperature, and macrotexture MPD are kept as they 

were not affected by the down sampling process. Finally, new 

observations with changed values in 22 texture predicators are 

collected. 

The optimal regression ensemble model is used to predict FN 

using the six test groups of data observations. The prediction 

performance in terms of resolution changes is measured using 

the test RMSE and R-squared values. High R-squared values 

are observed in test results of all five samples, indicating that 

most of the pavement performance can be explained by 

pavement macrotexture. However, the RMSE between 

predicted FN using input of 25 predicators and the true FN 

provided by a LWST increases as the spatial resolution in 

texture 3D scan increases.  Therefore, the texture asperities at 

micro-scales have contributed to the friction performance of a 

pavement surface.  According to the increasing rates of test 

RMSE shown in Figure 17, it is suggested that the spatial 

resolution of a comprehensive 3D texture scan for friction 

prediction should be smaller than 0.1 mm at the least. 

 

Figure 17. Relationship between the Model performance and 

spatial resolution in texture scans. 

 

5 CONCLUSION 

This paper develops a prototype of image-based pavement 

texture measurement for friction prediction in a non-contact 

manner. Towards the goal of data quality assurance, a synthetic 

environment is developed before field implementation. The 
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survey simulations evaluate sensitivities in texture 

measurements arising from different experimental designs and 

testing feature configurations. The minimum condition for 

optimized 3D surface reconstruction of pavement surface is 

discussed. Finally, a field experiment investigates the 

characterization of surface texture at different scales and their 

contribution to pavement friction performance. 
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ABSTRACT: For efficient maintenance and repair, 3D modeling of bridges for converting analytical models and visualizing 

deformation locations is being advanced. Instead of manually creating models from drawings and ledgers, automating model 

generation from point cloud data, capable of capturing as-is geometry quickly and widely, can improve efficiency. Generating 3D 

modeling of bridges from point cloud data requires segmenting each member, but dynamically setting thresholds for shape features 

and positional relationships is challenging due to point density and missing points. While deep learning can dynamically set 

thresholds, in the case of point cloud data, it is impractical to prepare sufficient training data, and the number of inputting points 

is inadequate for setting appropriate thresholds. Therefore, this research focuses on two aspects: most bridges consist of members 

with swept cross sections along longitudinal direction, and deep learning classification methods for 2D images are highly 

developed. The aim is to segment members based on deep learning on 2D cross-sectional point cloud data obtained by slicing 

along longitudinal direction. This reduces the number of inputting points and increases training data. Additionally, fine cross 

sections enable segmentation close to 3D. The multiple patterns of learning methods, training data processing, and procedures of 

segmentations are compared to identifying highly accurate segmentation methods. 

KEY WORDS: Point cloud; Deep learning; Segmentation; Cross section; Steel truss bridge. 

1 INTRODUCTION 

A vast number of existing bridges are rapidly aging. Since it is 

not practical to rebuild all of them at the same time, strategic 

renewal through life cycle extension is required. To extend the 

life cycle of bridges, 3D models of bridges are created. These 

models can be converted numerical analysis models [1] and can 

visualize deformations [2]. However, in cases of old bridges, 

as-build drawings are often unavailable. In addition, conditions 

of bridges inevitably changed since its construction due to 

various factors. Therefore, it is necessary to construct 3D model 

based on dimensions data instead of relying on drawings, but 

manual measurement is time-consuming and prone to various 

human errors. 

Therefore, a method to efficiently create 3D models from 

point cloud data, capable of capturing as-is 3D geometry as a 

set of points quickly and widely, has begun to attract attention. 

It can make a significant contribution to efficiency. Qin et al. 

[3] sliced the point cloud data of a PC box girder bridge 

vertically from the ground and used the density of each 

obtained point cloud as a threshold to divide the superstructure 

and substructure for Building Information Modeling (BIM). 

Schatz et al. [4] semi-automatically divided the point cloud data 

of a PC box girder bridge into substructure, girders, bearing 

pavement, drainage facilities, etc. based on template matching, 

and created an Industry Foundation Classes (IFC) model. The 

authors [5] performed Finite Element Method (FEM) modeling 

of a steel truss bridge by segmenting a fine section along a 

longitudinal direction and dividing the point cloud of the 

section based on Euclidean distance. The segmentation and 

component determination processes in these papers are a 

mixture of manual processing based on human visual judgment 

and automatic processing based on threshold values such as 

shape features and positional relationships. In general, it is not 

easy to set the threshold dynamically in automatic processing 

because of the effects of point density, missing points, and 

other factors. In recent years, deep learning has attracted 

attention as a method for dynamically setting threshold values, 

and there are several cases where it has been applied to point 

cloud data processing [6, 7]. However, when targeting large-

scale bridges with a wide variety of geometries, the 

classification is roughly divided into upper and lower 

structures, and the lack of training data and the number of input 

points are insufficient. 

Therefore, this research focuses on the characteristics of 

bridges, which generally have many structures with swept cross 

sections of each member along a longitudinal direction, and the 

fact that classification methods for 2D images are relatively 

well-developed. In this research, point cloud data of 2D cross 

sections sliced along the longitudinal direction is used to 

classify members using deep learning. The number of input 

points can be reduced, and the number of training data can be 

increased by inputting point cloud data of cross sections. In 

addition, a finer cross-sectional view leads to an almost 3D 

segmentation. The optimal learning method, processing 

procedures, and multiple proposed patterns are compared and 

validated, and a highly accurate segmentation method is 

considered. 

2 STRUCTURE OF THE MODEL 

 Literatures about segmentation by using deep learning 

Deep learning-based image classification and segmentation 

often uses Convolutional Neural Network (CNN), which 

obtains features by convolving surrounding pixel features. If 

the number of pixels is reduced by convolution, the 
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segmentation results are restored to the original number of 

pixels by increasing the number of pixels based on the 

convolved features again. Typical models include U-Net [8], 

which performs domain segmentation at the pixel level; Feature 

Pyramid Networks (FPNs) [9] which combine high-resolution 

and low-resolution features to exploit multi-scale information; 

DeepLav v3+ [10] which applies convolution with different 

expansion rates in parallel. As an example of member 

segmentation of point cloud data of bridges, Saovana et al. [11] 

implemented segmentation of point cloud data by segmenting 

photographs of bridges from multiple viewpoints into members 

using U-Net and then projecting the results onto the point cloud 

data generated by Structure from Motion (SfM). The results are 

then projected onto the point cloud data generated by SfM to 

implement point cloud data segmentation. 

On the other hand, point cloud data differs from images in 

that pixels are not arranged in a regular and continuous manner, 

the same shape and color data can be obtained even if the order 

of the points is changed, and the three-dimensional coordinates 

provide a large degree of freedom. To cope with these 

problems, a transformation matrix is obtained from the features 

and applied to control the posture, and MaxPooling is applied 

to eliminate the effect of reordering. The segmentation of point 

cloud data is similar to that of a CNN. Typical models include 

PointNet [12], PointNet++ [13], and Dynamic Graph CNN 

(DGCNN) [14]. PointNet does not perform convolution to 

obtain features for all input points. PointNet++, an advanced 

version of PointNet, reduces the number of points and obtains 

features from the points in the neighborhood of the point, which 

is similar to the convolution process. DGCNN also obtains 

features from neighboring points, but the number of points does 

not change at any layer. 

 Structure of the deep learning model in this research 

Since the aforementioned PointNet++ [13] and DGCNN [14] 

are candidates for deep learning models in this research, the 

details of these model configurations are described in this 

section. 

The model structure of PointNet++ is shown in Figure 1. First, 

c1 is obtained by randomly sampling n1 points from the cross-

sectional point set c0. Next, a point pc1 in c1 is used to search k1 

neighbor points within r1, and then vectors from pc1 to the 

neighbor points as feature values. The obtained feature values 

are convoluted by using Conv1d, BatchNormlize and Relu 

function. This process is repeated 4 times to obtain a set of 

cross-sectional points c1, c2, c3, and c4 reduced by random 

sampling and the features associated with c4. After that, 3 

neighbor points from c3 to c4, are detected and their feature 

values are convoluted by using Conv1d, BatchNormlize and 

Relu function. This process is repeated until the c0 features are 

updated, and finally they are convolved with the classified 

features and output as random variables by applying the 

Logsoftmax function. 

The model structure of DGCNN is shown in Figure 2. In 

PointNet++, the neighbor points were obtained based on the 

position coordinates, but in DGCNN, the kn neighbor points are 

obtained based on all the feature values changed by 

convolution, not limited to the position coordinates, and the 

vector from the reference point to the neighbor points and the 

original feature values are integrated and convolved. The 

 

Figure 1. Model structure of PointNet++. 

 

 

Figure 2. Model structure of DGCNN. 
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number of input points does not change in either layer, but the 

xyz coordinates also change due to convolution. After repeating 

this process 3 times, the feature values obtained in each step are 

integrated. Next, MaxPooling is applied, and replicated for the 

number of input points. Finally, after several convolutions, the 

number of classified features is obtained and output as a 

random variable by applying the Logsoftmax function. 

Although the paper [14] describes a categorical vector that 

provides labels for each input data as additional information, it 

is not used in this research. 

3 PREPARING DATA FOR DEEP LEARNING 

 Case study 

A two-span continuous through-type truss bridge in Aichi 

Prefecture, Japan, is the case study. A photograph of the bridge 

is shown in Figure 3. The bridge length is 136.9m with a span 

length of 2@67.9m. A full width is 14.3 m with sidewalks on 

both sides. The effective width of the roadway is 7.5 m and that 

of the sidewalk is 2.0 m without widening. A slab thickness is 

200 mm with a pavement of 80 mm thickness (roadway) and of 

30 mm thickness (sidewalk). In addition, the bridge is straight 

and has a symmetric cross slope. A general bridge drawing is 

shown in Figure 4. The members to be segmented are "Upper 

chord", "Lower chord", "Brace (tensile)", "Brace 

(compression)", "Main girder", "Cross beam", "Upper lateral 

bracing", "Lower lateral bracing", "Sway bracing", "Gate", 

"Handrail", "Mounted components", and "Slab". 

 Generating point cloud data from 3D CAD data 

The 3D CAD data was manually created based on the drawings 

of the bridge shown in Section 3.1. Furthermore, for each 3D 

CAD component, point cloud data is obtained by randomly 

sampling points on its surface. In this case, noise and missing 

points are not generated. In addition, a uniform density (1 

[pts./cm2] in this case) was set for all members in order to avoid 

extreme bias in density. It is also possible to assign to each 

point the normal vector of the plane from which it was 

generated as a parameter. The generated point cloud data is 

shown in Figure 5. Each point in the point cloud data has a label 

number that corresponds to only one of the 13 types of 

components mentioned above, and the colors of the points in 

the figure correspond to the labels of the components (Figure 

6). The total number of points was 64,016,718. 

 Creating cross sectional point clouds 

The following shows the flow of the method for acquiring 

cross-sectional point clouds. 

First, the line that corresponds to a longitudinal direction is 

determined. Since the bridge in this research has straight linear 

and the width is not widened, a line passing through the 

centroid of the point cloud data and having the direction of the 

first principal component vector obtained by principal 

component analysis is defined as the "longitudinal direction 

line".  

Next, the point p is shifted pitch (0.1[m] in this case) from 

the starting point of the longitudinal direction line, and the 

plane that contains p and is perpendicular to the line along the 

longitudinal direction line is defined as the "cutting plane". 

Points within d (0.05 [m] in this case) of the cutting plane are 

detected, and these points are projected onto the cutting plane. 

This process is repeated until p reaches the end point (Figure 

7). 

From the point cloud data described in Section 3.2, 695 cross-

sectional point clouds were created. Examples are shown in 

Figure 8. The position of the braces differs depending on the 

cross section, and those irregular cross sections such as cross 

beams and sway bracings, are also included. 

 Normalization process for deep learning 

When training a cross-sectional point cloud, the coordinate 

system is modified. Define a local coordinate system for the 

cutting plane as shown in Figure 7. The cutting plane is the xy-

coordinate plane of the local coordinate system. The world 

 
(a) Side view 

 
(b) Bottom view 

Figure 3. Pictures of the case study bridge. 

 

 
(a) Front, Top, Bottom view 

 
(b) Cross sectional diagram 

Figure 4. General bridge diagram (Unit: mm). 
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coordinate Z-axis corresponds to the y-axis of the local 

coordinate system. The origin point is adjusted so that the 

midpoint between min. and max x-coordinates and y-

coordinates as shown in Figure 7. In order to prevent 

overlearning, the x-coordinate is flipped with respect to the y-

axis with a probability of 50%. 

4 IMPLEMENTATIONS AND DISCUSSIONS 

 Overview 

In this chapter, several cases are implemented and discussed 

using training data described in Chapter 3 and test data obtained 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 5. Point cloud generated from 3D CAD data. 

 

 

Figure 6. Legend of point colors. 

 

 

Figure 7. Detecting cross-sectional point clouds. 
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(a) General section 1 

 
(b) General section 2 

 
(c) Around the cross beam 

 
(d) Around the Sway bracing 

Figure 8. Examples of cross-sectional point clouds from 3D 

CAD data. 
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from the actual steel truss bridge by the stationary laser 

scanner. The implementation environment is shown in Table 1, 

and the common parameters used for verifying multiple cases 

are listed in Table 2. The number of input points and the batch 

size must fit in the GPU’s memory. If this limit is exceeded, 

computation is offloaded to the main memory, significantly 

increasing computation time. In addition, the batch size must 

be 2 or greater due to the use of BatchNormalize function as 

explained in Section 2.2. The number of training samples is 

10,336, calculated by dividing the total number of points in the 

cross-sectional point cloud by the number of input points. 

The implementation cases are organized in Table 3. During 

training, validation is included in each epoch. No fixed 

distinction is made between training and validation data; 

instead, 8,000 samples are randomly selected from the 10,336 

available for each epoch. The Intersection over Union (IoU) for 

each member in the cases is shown in Figure 9. The values 

shown represent the results from the epoch in which the 

average IoU across all members was the highest. Computation 

times for each case are summarized in Table 4. 

 Point cloud for using the implementation 

In this section, the measured point cloud data of the actual 

bridge without member labels is mentioned. It is used for the 

test of the trained model. The point cloud data (1,065,353,413 

points, Figure 10) measured with a stationary laser scanner 

Leica RTC360 (resolution: 3mm@10m, accuracy: 

1.9mm@10m) from 27 locations on the underpass and road 

surface of one span of the bridge described in Section 3.1. 

5,000 cross-sectional point clouds are created as the validation 

data by slicing at regular intervals (0.02 [m] in this case) along 

the longitudinal direction. Note that although this point cloud 

data contains color information, it is not used because there is 

no color information in the training data. Normals were 

obtained by calculating them with the Point Cloud Library [15], 

a point cloud data processing library. The normalization 

described in Section 3.4 is also applied to this cross-sectional 

point cloud. 

 Comparing PointNet++ or DGCNN 

First, the effectiveness of PointNet++ and DGCNN in 

segmenting point cloud data of cross sections sliced along the 

longitudinal direction is evaluated. The construction of model 

is shown in Figure 1 and Figure 2. As shown in the results of 

the application to the point cloud data presented in Section 4.2 

(Figure 11 and Figure 12), PointNet++ was more accurate in 

the test. Although DGCNN resulted in a higher IoU and faster 

computation time during training, there were many places 

where other members were misidentified as the main girders in 

the test. PointNet++ was able to distinguish between two types 

of cross-sections of the braces with high accuracy, although in 

some cases the slabs were misidentified as the cross beams in 

areas where the data quality was low due to limitations of the 

measurement environment. This is likely due to the fact that 

DGCNN have over-trained the training data. In addition, it 

seems that PointNet++ is more versatile in handling 2D point 

cloud data with image-like features, as its behavior more 

closely resembles the convolution process used in image-based 

deep learning. For generality, PointNet++ is used in the 

subsequent validations, although it takes more time. 

Table 1. Development Environment. 

Common 

CPU 
Intel(R) Xeon(R) Silver 4214R CPU @ 

2.40GHz 2.39 GHz (2 processors) 

Memory 224GB 

GPU NVIDIA GeForce RTX 3080 (10GB) 

OS Windows 11 Enterprise 24H2 64bit 

  

Slicing point cloud 

Platform Microsoft Visual Studio Community 2022 64bit 

Library Point Cloud Library (PCL) 1.12.0 64bit [15] 

Language C++ 

  

Deep learning 

Platform Microsoft Visual Studio Code 

Library Pytorch 2.5.1 cuda 12.1 

Language Python 3.10.5 

Table 2. Common parameters of deep learning. 

Num. of input points 6164 

Batch size 8 

Num. of training data  10336 

Num. of epoch 32 

Optimization function Adam 

Loss function Cross Entropy Loss 

Table 3. Implementation cases. 

Sec. Model Sampling 
Scale 

Norm. 

Normal 

vector 

Weights 

for loss 

4.3 * sample Yes No All 1 

4.4 PointNet++ * Yes No All 1 

4.5 PointNet++ sample * No All 1 

4.6 PointNet++ sample Yes * All 1 

4.7 PointNet++ sample Yes No * 

* is the comparing topic 

 

 
Figure 9. IoU of training in each case. 

 

Table 4. Computation time of each case. 

 Train Test  Train Test 

A 18h. 6h. D 16h. 9h. 

B 9h. 4.5h. E 15.5h. 11h. 

C 16h. 36h. F 15.5h. 9h. 
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0.825
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0.875
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0.925

0.95

0.975

1

Bt Bc LLB MG ULB CB UC LC SW Ga Hr MC Sl

A: Sec.4.3 PointNet++
B: Sec.4.3 DGCNN
C: Sec.4.4 block partitioning

D: Sec.4.5 without scale norm.
E: Sec.4.6 with normal vector
F: Sec.4.7 adjusting weights for loss
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 Comparing sampling methods as input data 

The number of input points is 6144, but the number of cross-

sectional point clouds is approximately 50,000 to 100,000 

points. Therefore, sampling is required. Here, two types of 

sampling "block partitioning" and "random sampling" are 

selected and compared the accuracy. For block partitioning, 

one point is randomly selected from the cross-sectional point 

cloud, from which points within a 5 m block around it are 

extracted and sampled so that the total number of points is 

6144. In addition, the coordinates that origin is at the center of 

the block are calculated and added as new features. Random 

sampling was performed by randomly selecting 6144 points 

from the entire cross-sectional point cloud and x and y 

coordinates are adjusted so that a distance to the farthest point 

from the origin point is 1. As shown in the test results (Figure 

13), block partitioning is able to detect the slabs without 

misidentifying them even in areas where the quality of the 

measurement data is low, but the accuracy of other members 

such as the braces and the cross beams is low. 

 Comparing presence or absence of scale normalization 

According to Section 4.4, since block partitioning without scale 

normalization has a higher detection rate of the slabs, the 

additional case without scale normalization with random 

sampling is implemented. As shown in the test results (Figure 

14), the accuracy of the slab segmentation was improved, but 

the accuracy of the braces was significantly reduced. The 

second span, where segmentation accuracy is low, was not 

originally intended to be measured. However, it was partially 

captured during scanning of the adjacent first span. As a result, 

the point cloud data is of poor quality, with low density and 

many missing points. Although it is necessary to develop a 

learning model that can be applied to point cloud data of low 

measurement quality as a future challenge, this paper concludes 

that random sampling and scale normalization are effective for 

segmentation accuracy in high measurement quality areas. 

 Comparing presence or absence of normal vector 

In the previous explanations, only xyz coordinates were used 

for the input point cloud data, but the case with additional 

normal vector was also verified. As shown in the test results 

(Figure 15), the reason for the poor results in the case where 

normals were added is that, as shown in Figure 16, normals 

were generated even where the laser scanner would not have 

been irradiated if generated from 3DCAD, which may have 

caused a discrepancy between the training data and the test 

data. Although it is useful to develop a sampling tool that 

simulates a laser scanner, it is more effective to create a 

learning model that does not use normal vector, considering the 

efficiency of training data generation. 

 Adjusting weights for loss calculation 

The equation for the CrossEntropyLoss function is shown 

below:  

 𝐿𝑜𝑠𝑠 = ∑ −𝑤𝑦𝑛𝑥𝑛,𝑦𝑛
𝑁
𝑛=1  (1) 

The loss is calculated each member and they are sum up. N is 

the number of points and 𝑥𝑛,𝑦𝑛  is a random variable in the 

output data. In the previous cases, 𝑤𝑦𝑛  was set to 1 for all 

members, but in this case, it is adjusted for each member. This 
parameter is used to prevent bias in the accuracy of the 

classification depending on the size of the member that is 

 
Figure 10. The point cloud data measured with a stationary 

laser scanner 

 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 11. Result of case A: PointNet++. 

 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 12. Result of case B: DGCNN. 
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number of points. So, in this case, 𝑤𝑦𝑛  is set inversely 

proportional to the number of points in each member (Table 5). 

As shown in the test results (Figure 17), the outcomes were 

generally similar to the case in which all weights were set to 1. 

However, the segmentation accuracy for the braces was slightly 

lower. This is believed to be due to the increased weight 

assigned to members that appear in only a small number of 

cross-sectional point clouds, such as the gates and the sway 

bracings, which in turn reduces the accuracy for other members 

that appear in most cross-sectional point clouds. Therefore, it is 

more effective to set all weights to 1 without adjusting the 

weights between members. 

5 CONCLUTION 

In this research, as a method for segmenting point cloud data of 

bridges into members using deep learning, using point cloud 

data of 2D cross sections sliced along the longitudinal 

direction. Several patterns are proposed and compared for 

validation to identify a highly accurate segmentation method. 

Through the implementation of several cases, it was 

confirmed that the following settings were effective when point 

cloud data obtained by pseudo-sampling the surface of a 3D 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 13. Result of case C: block partitioning. 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 14. Result of case D: without scale normalization. 

 
(a) Bird view 

 
(b) Side view 

 
(c) Top view 

 
(d) Bottom view 

Figure 15. Result of case E: Using normals. 

 
(a) 3D CAD 

 
(b) Stational laser scanner 

Figure 16. Normal vectors of the point clouds. 
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model was used as training data and point cloud data obtained 

by measuring the same bridge with a laser scanner was used as 

test data: 

• The learning model type PointNet++ is expected to be 

more versatile because of its higher segmentation accuracy 

of the test data. 

• When the number of input points was reduced to about 5-

10% of the total number of points, random sampling was 

more accurate and faster. 

• To increase versatility, it was more effective to apply scale 

normalization at the time of training model input. 

• Normal vectors can cause discrepancies between training 

data and test data depending on the calculation method, so 

care must be taken when generating them. 

• Weight adjustments during the calculation of the loss 

function for each member did not have a significant effect. 

As future work, training on multiple types of bridges (not 

limited to steel truss bridges) and performing segmentation 

across various bridge types is necessary, since the training and 

test data in this research are from the same bridge, although 

generated by different methods. In addition, since the bridges 

covered in this paper have straight liner and no width widening, 

it is desirable to conduct verification on bridges with curved 

liners or varying widths. 
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Figure 17. Result of case F: adjusting weights for loss. 
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ABSTRACT: The mid-span closure segment assembly of a cable-stayed bridge after cantilever construction traditionally relies 

on using a total station to measure the longitudinal distances of key control points to determine the closure trimming length. This 

approach neglects the rotation of the cantilever section, reduces the inherently three-dimensional (3D) assembly problem to a one-

dimensional (1D) longitudinal assembly. To overcome this limitation, this paper presents a 3D virtual pre-assembly method for 

the closure segment based on point clouds captured from a single station. An efficient and accurate two-stage registration method 

based on 2D image matching and 3D visibility simulation was developed to align incomplete measured point clouds with the 

design model. The estimated poses of the two cantilever ends were used for the virtual assembly of the closure segment. An 

optimization model for 5-DOF geometric information of the closure segment was established and calibrated using a particle swarm 

optimization. The proposed method was validated during the construction monitoring of a large-span railway cable-stayed bridge, 

demonstrating its reliability and practical effectiveness. 

 

KEY WORDS: Virtual Assembly, Laser Scanning, Point Cloud Registration 

1 INTRODUCTION 

Cable-stayed bridge closure marks the moment when two 

independent cantilevers become a single, continuous load-

carrying system. To achieve the desired stress redistribution 

and deck profile, engineers must monitor the closure joint 

during the 48 h immediately preceding installation, capturing 

temperature-induced movements and determining the match-

cut length of the closure segment with millimetre-level 

precision. Traditional construction monitoring relies on total-

station surveys of a handful of control points on each cantilever 

tip to estimate the longitudinal gap. Although well established, 

this point-wise procedure is labour-intensive, prone to human 

error, and often too slow for modern fast-track schedules. 

Terrestrial laser scanning (TLS), by contrast, can acquire a 

dense, full-field 3-D point cloud of the entire closure region in 

a single scan, providing sub-centimetre accuracy and a far more 

comprehensive geometric record. 

Over the past decade, researchers have explored TLS-enabled 

“virtual pre-assembly” workflows in bridge construction, 

focusing on reducing geometric deviations and optimizing 

prefabricated component assembly. Zhou et al. [1] proposed the 

virtual trial assembly method for prefabricated steel 

components in scenarios like bridge construction. It integrates 

high-precision point cloud registration, reverse BIM 

construction, and finite element analysis to accurately predict 

geometric shapes and stress states in prefabricated components. 

Li et al. [2] developed an automatic modeling approach for 

creating as-built prefabricated component models from laser-

scanned data, specifically for virtual trial assembly. Liu et al. 

[3] develops an automated virtual trial assembly framework for 

large and complex steel members, integrating terrestrial laser 

scanning and BIM to improve geometric accuracy, streamline 

assembly point extraction, and enable precise geometric quality 

inspection of bending and torsional deviations. Zhang et al. [4] 

introduced an automated virtual trial assembly framework for 

large steel members with bolted connections, leveraging 

multiscale point cloud fusion to achieve submillimeter 

precision in feature extraction, registration, and assembly 

deviation analysis. Li et al. [5] proposed a virtual pre-assembly 

method utilizing 3D laser scanning technology to predict 

alignment of large-span segmental precast assembled concrete 

cable-stayed bridges under stress-free conditions, effectively 

shortening construction time, reducing complexity, and 

enhancing precision in the assembly process. 

Despite the progress achieved in prior studies, significant 

challenges still remain. First, current fit-up calculations seldom 

account for the local downward deflection of the free cantilever 

tips under self-weight, thermal gradients, or wind loads, leading 

to non-vertical end faces at the time of measurement. Second, 

by collapsing millions of points into a few targets, valuable 

shape information is discarded. To address these gaps, this 

study introduces a 3D virtual-assembly method for cable-

stayed-bridge closure that capitalises on high-resolution TLS. 

After all segments except the closure slab are erected, a TLS 

survey simultaneously captures the full geometry and relative 

pose of the two cantilever ends. A particle-swarm-

optimisation–based virtual assembly routine then searches the 

point-cloud pair for the closure segment length and installation 

attitude that minimise global deck discontinuities. The method 

was validated during the closure of a cable-stayed bridge in 

Zhejiang Province, China, where it delivered rapid, centimetre-

level predictions that aligned with field measurements. 

Ultimately, the goal is to leverage complete 3-D geometry and 

relative pose information to predict—before any on-site 

cutting—the optimal closure-segment length and pose, thereby 

streamlining cable-stayed bridge completion and enhancing 

construction quality control. 
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2 METHODOLOGIES 

Traditional closure practice measures only the longitudinal gap 

between the two cantilever tips and match-cuts the segment 

vertically, reducing a fundamentally 3-D structural-assembly 

problem to a 1-D splice. Because this approach ignores the true 

pose of the cantilever end sections (rotations and offsets), it 

struggles to meet today’s mm-level accuracy requirements. 

To overcome these limitations, we develop a point-cloud-

driven virtual pre-assembly workflow consisting of three core 

stages (Figure 1). 

In the first stage, each cantilever tip is scanned in situ, yielding 

dense but incomplete point clouds that capture deck edges. A 

synthetic point cloud generated from the as-designed numerical 

model is then rigidly aligned to the measured data via an 

iterative closest-point procedure, producing a 3D 

transformation matrix that maps design space to the bridge’s 

physical coordinate frame. This registration not only reconciles 

deviations due to construction tolerances but also embeds the 

design geometry in the same reference frame as the field 

measurements. 

The second stage performs virtual pre-assembly. The meshed 

design models of the two cantilever tips are transformed with 

the previously obtained matrix and imported into a physics-

aware simulation environment. A particle-swarm-optimization 

solver searches the six-degree-of-freedom space to minimize 

the surface misfit between opposing tips, rapidly converging to 

a sub-mm pose match. Because the algorithm explores both 

translational and rotational degrees of freedom concurrently, it 

reveals subtle misalignments that would otherwise remain 

undetected under one-dimensional gap measurements. 

In the final stage, the optimized virtual pose is used to derive 

the manufacturing and installation parameters of the closure 

segment. After correcting for construction-stage temperature 

effects, the workflow outputs the optimal match-cut length, the 

required bevel angle of the end faces, and the spatial orientation 

necessary for installation. These data provide fabricators with 

precise cutting instructions and give field crews an accurate set-

out for lifting and welding, thus shortening decision cycles 

while ensuring that closure is achieved within the stringent 

tolerances demanded by fast-track bridge construction. 

 

Figure 1. Flowchart of the proposed method for closure 

segment cutting calculation. 

3 FIELD TEST ON A CABLE-STAYED BRIDGE 

The proposed virtual-assembly workflow was validated on a 

cable-stayed bridge crossing on the Fuchun River in Hangzhou, 

Zhejiang Province, China. The structure features a mixed-

height, H-shaped pylon arrangement and a hybrid steel–

concrete deck. Span configuration proceeds from the west 

abutment as 62.395 m + 97 m + 300 m + 46 m + 30 m, giving 

an overall length of 535.395 m. The downstream pylon rises 

141.5 m above foundation level, whereas the upstream pylon is 

92 m high (see Figure 2). 

The 300 m main span employs a composite section in which a 

U-shaped steel box girder is integrally connected to a cast-in-

place concrete deck slab, yielding both bending stiffness and 

fatigue durability. Construction of this span followed the free-

cantilever method: modular box-girder segments were 

symmetrically erected from each pylon, forming two outward-

growing cantilevers. When the remaining gap diminished to 

less than a single segment, a closure unit was installed using the 

thermal-expansion technique to create a continuous load path. 

The segments immediately adjacent to the closure piece are 

labelled MG15 on the south-east cantilever and MD09 on the 

north-west cantilever. This full-scale construction scenario 

offered a realistic test bed for examining the accuracy and 

efficiency of the TLS-driven virtual pre-assembly method 

under field conditions.  

 

Figure 2.Tested bridge for closure in construction 

A RIEGL VZ-400i terrestrial laser scanner was deployed to 

acquire high-density point clouds of the opposing cantilever 

tips. The instrument offers a ranging window of 0.5 – 800 m 

and a single-shot accuracy of ±5 mm; for this test the pulse-

repetition frequency was set to 1.2 MHz, while the full 360° 

horizontal and 100° vertical fields of view were enabled. To 

maximize coverage of the local cross-section, the scanner was 

rigidly mounted 1.6 m above the deck on the outboard edge of 

segment MD09 and levelled with its optical axis parallel to the 

bridge centerline. From this vantage, a single sweep captured 

the entire end face of the MD09 tip together with the mating 

surface of segment MG15 across the closure gap, yielding a 

unified dataset that preserves both geometry and relative pose 

for subsequent virtual pre-assembly processing. 

Figure 3 depicts a representative time step of the raw point-

cloud data. Because each sweep originates from a single 

scanner station, the TLS captures only the outward-facing 

portions of the two cantilever tips; one tip is almost complete, 

whereas the opposite tip contains only a narrow chord of the 

full cross-section. To isolate the geometric cues most relevant 

for alignment, the cloud is first segmented by fitting a best-fit 

plane to the deck-edge points of each tip and then retaining the 

points within a narrow band around that plane. The result 

shown in Figure 4 is a pair of sparsely sampled, partially visible 

cross-sections that serve as registration targets. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-084 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 560 

 

Figure 3. Raw point cloud of the cable-stayed bridge captured 

with the TLS. 

 

Figure 4. Filtered cantilever-tip cross-section extracted from 

the TLS data. 

Iterative closest point (ICP) requires a reasonably accurate 

initial transform to avoid convergence to local minima. It is 

challenge to deal with the two targets share only limited 

overlap. To generate a robust starting estimate, the extracted 

cross-sections are orthogonally projected onto an image plane 

and converted to binary occupancy maps. A phase-correlation 

matcher is then applied to the two images, yielding translational 

shifts and in-plane rotations with sub-pixel precision; these 

parameters are back-projected into 3D space to construct the 

initial rigid-body transform. 

Directly registering the measured cloud to the full design model 

is computationally inefficient and prone to bias because large 

portions of the as-designed surface are invisible in a single 

scan. We therefore employ a ray-casting routine to generate a 

virtual scan of the design model that mimics the scanner’s 

actual position and field of view. The synthetic cloud retains 

only those facets that would be visible to the TLS under 

identical conditions, producing a down-sampled “design-

congruent” dataset whose completeness closely matches that of 

the field measurement. ICP is then executed between the real 

and virtual point clouds, with the phase-correlation transform 

as its initialization. After registration, the measurements of 

control point distances were extracted from the TLS data and 

compared with those obtained from the total station. As shown 

in Figure 5, the distance errors for all 17 control points are 

within 10 mm. 

 
Figure 5. Comparison of control point distance measurements 

at cantilever beam ends using total station and TLS. 

Once the spatial poses of the two cantilever tips have been 

fixed, the search for the best installation strategy can be 

formulated as a stand-alone optimization problem. A closure 

segment of ample stock length is first inserted between the tips 

in a nominal configuration that deliberately intersects both end 

faces. Because high-quality welding demands near-perfect 

geometric agreement at each splice plane, we evaluate every 

candidate pose by the overlap area—the common surface 

shared by the closure-segment end face and its mating 

cantilever section.  

To automate the search, we couple the point-cloud pose 

information with the 3D CAD model of the closure segment 

and cast the task as a 5-DOF optimization: three translational 

components and two rotational angles around the local 

horizontal axes. The remaining rotation about the longitudinal 

axis is fixed to maintain deck camber continuity. A PSO 

scheme explores the 5-DOF space, beginning from a physically 

reasonable initial guess derived from the measured gap and the 

nominal bridge geometry. During each PSO iteration the 

algorithm updates the candidate pose, clips the closure segment 

to the planes of the two cantilever tips, and computes the 

resulting overlap areas. The fitness function is defined as the 

negative sum of these areas. 

Convergence of the swarm yields the pose that maximizes 

simultaneous overlap at both interfaces. From the converged 

configuration the algorithm extracts two quantities required for 

fabrication and erection: (i) the match-cut length, obtained by 

measuring the distance between the optimally aligned splice 

planes, and (ii) the six-parameter installation pose, which 

prescribes the precise translation and orientation of the trimmed 

closure segment in the bridge’s global coordinate frame. In this 

way, the virtual pre-assembly routine provides construction 

crews with a complete, data-driven specification for 

manufacturing and installing the closure element. 

4 CONCLUSIONS 

This study presented a point-cloud-driven, 3D virtual-assembly 

method for cable-stayed-bridge closure that resolves the 

intrinsic shortcomings of one-dimensional match-cutting 

practices. By combining high-precision TLS acquisition, rigid 

registration of design geometry, and a particle-swarm-

optimized pose-matching procedure, the workflow delivers 

sub-mm estimates of the closure gap and end-face attitude. 

Field trials conducted on the 300 m main span of the cable-

stayed bridge verified the method’s effectiveness. 
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ABSTRACT: Terrestrial laser scanning (TLS) is commonly used to capture 3D point cloud data of the environment. In this article 

we demonstrate that TLS data can also be used to measure long-term and daily deformations of bridges. On one hand full dome 

laser scanning is used to determine the deformations of entire bridge pillars whereas scanning total stations are well suited to 

capture segments and profiles of bridge pillars. We highlight that an accurate point cloud registration and appropriate processing 

algorithms are crucial to reliably determine deformations in the millimeter range. The capabilities of our approach are 

demonstrated on two large highway bridges where the bending of bridge beams due to temperature changes and one side sun 

illumination are investigated. 

KEY WORDS: Terrestrial laser scanning, bridge monitoring, structural health monitoring 

 

1 INTRODUCTION 

Many large highway bridges in Europe were built in the 1960s 

and 70s. While the lifetime of these bridges was designed to be 

up to 100 years, reality shows that lots of bridges do not meet 

this expectation. One of the reasons is the increased load due to 

the rapid increase of traffic volume within the last decades 

(Figure 1 [1]).  

As the replacement of the respective structures will take several 

years, aging objects need to be kept in service in the meantime. 

To ensure safe operation during this period, monitoring 

measures are often taken to obtain crucial data for decision 

making, e.g. prioritize structural measures, restrict traffic or 

similar.  

One way to gather reliable data of bridges is to capture 

geometric changes of the structures. A geometric change can 

either be induced by loading of the bridge, by changing 

environmental conditions or by damages. Deformations can be 

measured with traditional geodetic sensors such as Robotic 

Total Stations (RTS), where one or multiple discrete points are 

measured and the absolute coordinates are determined in 3 

dimensions with high accuracy. Another possibility is to 

capture multiple point clouds with Terrestrial Laser Scanners 

(TLS) over time. The different point clouds can be compared 

to each other and deformations can be computed throughout the 

entire object.  

With these kind of remote sensors, not only static deformations 

can be captured but also dynamic changes during the pass of a 

load over a bridge. Modern RTS can track individual prisms 

with 20 Hz [2] and many TLS can also be operated in profile 

mode The Profile Laser Scanner (PLS), works just as an TLS, 

but the rotation of the standing axes is suppressed. Therefore, 

the profile is measured multiple times per second and the 

relative deformations can be captured dynamically in 2D [3]. 

When using an RTS dynamically, the instrument stays with 

observing just one prism at the time but can take angle and 

distance measurements with up to 20 Hz and therefore capture 

the dynamic 3D deformation of this prism. A study about the 

performance of both of the methods as well as Profile Laser 

Scanners can be found in [2] and [4]. Additionally, some 

modern RTS have also a scanning feature included. These so 

called Multi Stations (MS) have a slower scanning speed than 

conventional TLS and therefore are not well suited for full 

dome scanning but well applicable for scanning defined 

sections of a scene, e.g. a tunnel face or bridge pillars. 

 
 

 
Figure 1. Exemplary trend of good transportation at the 

Brenner pass for Railway and road transportation from 1960 – 

2022, translated to English after [1]. 

 

While dynamic measurements are mostly done to assess the 

deformations of structures due to dynamic loading, e.g. 

overpass of a truck or other dynamic excitation, static 

measurements are used to either determine the deformations 
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during static load tests or to observe changes due to 

environmental effects such as temperature or structural 

changes. One important criterion for the comparison of multi-

epoch data is the registration of point cloud data to obtain 

reliable results. This is challenging as bridges do not always 

offer stable areas to connect multiple scan epochs.  

In this paper we demonstrate that it is possible to compare 

multiple scanning epochs that are taken over several days with 

a scanning total station, as well as point cloud data captured by 

a classical TLS with target-based registration over a longer 

period of time on a real-life bridge object. This work focuses 

on the deformation of the bridge pillars. The deformation of the 

bridge decks e.g. during load tests are discussed in [2], [4] and 

[5].  

2 BRIDGE OBJECTS 

 Aurachbrücke 

The Aurachbrücke, is the highest bridge of the A1 

Westautobahn in Austria, located between Linz and Salzburg. 

The observed bridge is a temporary building for the time of the 

replacement of the old bridge. The bridge is a concrete box 

girder structure with 5 spans and a total length of 420 m.  

 Gschnitztalbrücke 

Situated in Steinach am Brenner in Tyrol, the Gschnitzalbrücke 

(Figure 2) is part of the most frequented alp passage in Europe, 

the Brenner highway. The bridge consists of 7 spans with a total 

length of 560 m. The deck is curved with an arch radius of 

about 600 m. The steel-concrete composite bridge was built as 

a continuous beam in the 1960s for two lanes in each direction. 

In the 1980s an additional third lane was built in each direction 

due to upcoming traffic. One of the 7 spans is observed via TLS 

and RTS.  

3 MEASUREMENT SETUP 

 Aurachbrücke 

The measurements at the Aurachbrücke were taken within 48 

hours from 06.09.2024 to 08.09.2024 with a Leica MS60 RTS 

with scanning function. Every 15 minutes the following 

sequence of measurements was performed: First multiple 

prisms were measured within 3 sets of combined angle and 

distance measurements. Afterwards, parts of the pillars 3 and 4 

were scanned, see Figure 3. The scans included areas pointing 

along and across the bridge’s direction. This setup creates the 

possibility to derive the 3D bending line of the pillars. In this 

paper, only pillar 3 is considered. 

Additionally, IoT tilt sensors were mounted on top of every 

pillar for long term monitoring. The measurement rate of these 

sensors was also set to 15 minutes. Hence, three different data 

types (3D prism coordinates, point clouds, tilt readings) are 

available for comparison.  

 Gschnitztalbrücke 

At the Gschnitztalbrücke in Tyrol, TLS and RTS measurements 

are taken epoch-wise 4 times a year. The measurements are 

taken at night from 10 p.m. onward to avoid truck traffic 

affecting the measurements. In Figure 2 the setup with the laser 

scanner in span 7 and the setup of the static total station is 

shown. A Leica RTC360 was used as TLS. This instrument 

performs full dome scans and hence the captured 3D point 

cloud includes the whole bottom side of the girders as well as 

the pillar and end abutment of the bridge. The measurement 

time is about two and a half minutes per scan for the highest 

scanning resolution (without pictures). The RTS takes 

measurements of the prisms sequentially. Not only the prisms 

on the bridge are measured, but also control points are included 

in the measurements.  

Figure 2. Overview at the Gschnitztalbrücke with span 6 & 7.  

The measurement setup shows the prisms at the spans, as well as the RTS position and the TLS position. 
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Figure 3. Setup of the RTS at Aurachbrücke.  

The scanning areas can be seen in light yellow, as well as the 

measured prisms mounted at the pillars (red circles) 

4 DATA ASSESSMENT 

 Aurachbrücke 

The Leica MS60 is capable of not only measuring single points 

sequentially, but also capturing point clouds. Compared to a 

real TLS, the scanning speed is rather slow, but the advantage 

of the scanning total station is, that specific Regions of Interest 

(RoI) can be chosen which are scanned. This reduces the 

scanning time, and the definition of the scans can be used 

multiple times, so a time series of scans can be captured. All 

these measurements are triggered externally by a laptop using 

a python script and Leica GeoCom for communication.  

Combining the scanning function with classical point-wise 

measurements, the following data is available for every epoch 

(15 minutes): 
 

• 3 sets of all prism points 

• 1 scan of each of the two pillars 3 & 4 
 

The scan resolution is about 5 cm in horizontal and 5 cm in 

vertical direction. To compute the deformations of the pillar, 

horizontal bands of 0.5m are cut from the point cloud along the 

Z-component for the longitudinal and cross section of the pillar. 

The points within each band are then averaged for every 5 cm 

in height and a moving average filter is applied to the remaining 

vector with a size of 0.2 m. To eliminate stationing errors, the 

bottom part (1 m) of the pillar is supposed to be fixed, so the 

mean value of the lowest meter is subtracted from every epoch. 

As reference epoch serves the first captured epoch on 

06.09.2024 at around 20:00.  

For the sequentially measured object points a free stationing 

is computed for every epoch and the polar points are derived 

from there. The coordinates can be transformed into along and 

across direction of the bridge to compare the results of both 

methods. A bending line can also be calculated, assuming, that 

the bending originates from the temperature differences of both 

sides of the pillar which is calculated by  
 

 ∆𝑇 =
𝑑 ∙ 2 ∙ 𝐵

𝛼𝑇 ∙ 𝐻2
 (1) 

 

whereas d is the displacement, B is described as the width of 

the pillar, αT is the temperature expansion coefficient of the 

material and H the height of the pillar. The biggest temperature 

differences are calculated to be less than 3 K. 

Also, for the tilt sensor data, a theoretical bending line is 

calculated to be compared to the captured point cloud and 

pointwise prism data. 

 Gschnitztalbrücke 

The scans at the Gschnitzalbrücke were taken at night with the 

Leica RTC360 while no heavy traffic was passing the bridge. 

Hence the load free state of the bridge was captured and only 

environmental effects are affecting the structure. The 

registration of the point clouds was target based, whereby four 

targets were setup and their positions determined via RTS 

measurements. Different approaches to register deformed point 

clouds are available and investigated by many researchers, one 

of the latest examples is stated in [6].  

In this case the comparison of the point clouds of the pillars was 

done using a Cloud to Cloud (C2C) comparison directed to the 

surface plane of the examined pillar. So, it is possible to show 

the deformation of the pillar over the entire surface. 

Comparisons with the RTS data are not shown in this work but 

can be seen in [5]. Other state of the art methods of comparing 

point clouds are described in [7]. 

5 RESULTS 

 Aurachbrücke 

The results of the 48 hours measurement reveal interesting 

significant temperature dependent deformations. The behavior 

of the pillar can be followed for every 15 minutes over 2 full 

days.  

 

 
 

Figure 4. Deformation of Pillar 3 in longitudinal and cross 

direction for the epoch 07.09.2024 12:00 compared to the first 

captured epoch (06.09.2024 20:00) 
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In Figure 4, one epoch captured at noon is shown relatively to 

the first epoch measured in the evening. In longitudinal 

direction, the bending of the pillar is clearly visible and matches 

well the calculated theoretical bending line that is derived by 

the prism on top of the pillar.  

Looking at the cross direction, the prism on the top as well as 

the scanning data do not show significant deformations at the 

height of the pillar. However, a strong deformation is 

noticeable at the height of about 10 to 15 m. The source of this 

anomaly was not clearly found, but it seems unlikely that the 

pillar deforms that way. Yet, looking at the waterfall Figures 5 

and 6, it can be seen, that the apparent deformation occurs in 

both directions at the same time of day in the same height of 

the pillar. This indicates, that the deformations may occur due 

to a combination of angle of incident of the sun and the angle 

of impact of the laser distance measurement by the RTS. 

Also, it can be seen in Figure 5 that the bending in 

longitudinal direction rises beginning on top of the pillar and 

grows with time over the day and peaks at about midday. After 

the deformation is widely dismantled, a short deformation in 

the other direction can be seen on the second day at around 

16:00. But this coincides also with the described anomaly and 

therefore is not considered real deformation but rather a 

problem with the laser distance measurement due to the surface 

of the pillar.  

The peak of bending on midday is explainable by the East-

West alignment of the bridge which implies that the pillars are 

illuminated from one side before and from the other side after 

midday. 

To further validate the quality of the point cloud acquisition, 

a band of 1 m is cut from the top of the point cloud and 

averaged for every epoch. This timeseries can be directly 

Figure 6. Deformations of pillar 3 in cross direction of all measured epochs.  

Figure 5. Deformations of pillar 3 in length direction of all measured epochs.  
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compared with the time series of the prism on top and bottom 

of the pillar, but also with the calculated displacement by the 

tilt sensor data assuming a temperature induced bending. These 

results for both, longitudinal and cross direction can be seen 

together with the temperature and global radiation during the 

experiment in Figure 7. The measurement of global radiation is 

disturbed by the bridge’s shadow that is casted onto the 

radiation sensor from 08:30 to 10:30 for both days. The missing 

parts are interpolated in Figure 7 (bottom).  

The timeline of the prism at the bottom of the pillar shows 

deformations of less than 0.5 mm in both directions, which 

could be assumed as stable. The prism on top of the pillar shows 

a deformation over the day up to 6 mm with its minima at 12:00 

at midday. The same deformation with small variations is also 

captured by the tilt sensor in longitudinal direction. In cross 

direction, the tilt sensor obviously captures deformations that 

are not recorded by any other sensor and may be caused by 

internal temperature dependent effects of the sensor itself but 

needs further investigation. 

The calculated deformation of the point cloud data shows a 

higher noise than the other sensors in both directions. 

Nevertheless, the deformation derived from TLS fits well with 

the measured deformations using the RTS and the prism.  

In cross direction, no clear diurnal variation can be seen, 

except for the tilt sensor. As the pillar is significantly wider in 

cross direction than in longitudinal direction, this seems to be 

plausible. Also, no force due to bridge expansion can act onto 

the pillar in cross direction, whereas the fixed bearing at the 

pillar may cause additional longitudinal deformations. 

 
 

 
 

Figure 7. Deformation of the top part of the point cloud 

(PC), the prism on top and bottom and calculated deformation 

of tilt sensor on top in length direction (top figure), cross 

direction (central figure), and the temperature and global 

radiation during the experiment, while shadow is casted onto 

the sensor the global radiation is interpolated (bottom figure) 

 

 Gschnitztalbrücke 

At the Gschnitztalbrücke multiple measurement epochs were 

taken, and two of them are shown here. While the comparison 

of pillar deformations at the Aurachbrücke was motivated by 

the behavior of the pillar due to one sided sun illumination over 

a rather short time and high measurement frequency, the 

concern at the Gschnitztalbrücke is the thermal expansion of 

the bridge deck and transfer of this deformation to the pillars. 

Usually the bearings between pillar and girder should absorb 

this deformation, but as long-term tilt measurements indicated, 

the bearings do not take the full deformation that is expected by 

thermal expansion.  

In Figure 8, the deformations in plane direction of the pillar 

can be seen for the spring (2023/05) and summer (2023/08) 

epochs. The temperature difference between the epochs was 

only 1°C. Assuming a free thermal deformation of the bridge, 

and the length of 210 m to the zero point of thermal expansion, 

the deformation of the girder should sum up to 2.5 mm at the 

position of the pillar. Figure 8 shows deformations of up to 

10 mm and therefore rather bigger deformations than expected.  

Looking at the second epoch that is examined in Figure 9, the 

measured deformations are way bigger with up to 25 mm. The 

temperature difference on the other hand is 7°C compared to 

the reference epoch which results in a theoretical deformation 

of 17.5 mm. So, also in the second epoch, the deformation is 

way bigger than expected. The shape of deformation can also 

be seen in the figure and leads from the bottom left to the top 

right. 

 

 
 

Figure 8. C2C comparison of pillar 6 seen from the end 

abutment below span 7 of reference epoch 2023/05 and the 

following epoch of 2023/08 
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Figure 9. C2C comparison of pillar 6 seen from the end 

abutment below span 7 of reference epoch 2023/05  

and epoch of 2023/11 
 

While both epochs overshoot the expected deformation, the 

differences of the epoch can also be considered. The 

temperature difference is 6°C, and therefore a deformation of 

about 15 mm is expected. Taking the maximum values, which 

occur on top of the pillar, of 10 mm of the first epoch and 

25 mm of the second epoch into account, the relative 

deformation adds up to 15 mm which is exactly the expected 

value between the epochs. The offset to the reference epoch has 

to be investigated further on as its source cannot be determined 

yet.  

The results of the Gschnitztalbrücke show the potential of 

gathering valid data of the behavior of the structure and 

verifying the idea of nonconforming bearing transmission over 

a long period of time.  

6 CONCLUSIONS & OUTLOOK 

Conventional geodetic monitoring of bridges delivers 

deformation data only at a few distinct points. With modern 

laser scanners entire bridge decks and pillars can be observed 

and a tilting of a pillar can be well distinguished from bending.  

The required point clouds can either be captured with full 

dome laser scanners or scanning total stations. Depending on 

the given situation the right type of instrument has to be chosen. 

Although a full dome laser scanner is much faster than a total 

station, the distance measurement noise is usually higher. 

Measurements to individual prisms with an RTS still deliver 

highest accuracy, see Table 1 and true 3D displacements [8].  

 

Table 1. Performance of RTS measurements on prisms [9] and 

scanning of TLS RTC360 [10] 

Instrument Angle 

accuracy 

Distance 

Accuracy 

MS60 prism measurement  1” 1 mm + 1.5ppm 

RTC360 18” 1 mm + 10 ppm 

 

Furthermore, a scanning total station can register point 

clouds with a high accuracy by using RTS setup functionalities 

like free stationing.  

Overall both techniques help to gain a better understanding 

of the overall behavior of large civil structures without the need 

to physically access the measurement location to install sensors 

on the structure. 
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ABSTRACT: This study proposes a novel non-contact electromagnetic (EM) sensing system tailored to detect magnetic flux 

density changes associated with prestressed tendons embedded in concrete structures. The research emphasizes the optimization 

of sensor head geometry and coil configurations, including single, multi-solenoid, and Halbach array arrangements, to enhance 

external magnetic field detection at distances representative of real structural applications. Analytical formulations based on 

closed-form magnetic field equations were validated through finite element analysis (FEA) using ANSYS Maxwell. Results 

confirm that concentric Halbach-arrayed multi-solenoids outperform conventional configurations in delivering high-density 

magnetic fields beyond structural surfaces, particularly at target distances up to 30 cm. The verified modeling framework supports 

further development toward practical integration into structural health monitoring (SHM) systems. 

 

KEY WORDS: External Magnetization; Tensile Force Estimation; Magnetic Sensor; Simulation; 

 

1 INTRODUCTION 

The long-term structural integrity of prestressed concrete (PSC) 

systems relies heavily on the performance and health of internal 

tendons, which bear the majority of tensile stresses in such 

structures. Over time, factors such as corrosion, overloading, or 

construction defects can compromise the tendon condition, 

potentially leading to severe degradation or even catastrophic 

failure of bridges, buildings, or other critical infrastructure. 

Accurate and efficient detection of tendon degradation is thus 

essential for ensuring public safety, extending structural service 

life, and reducing maintenance costs. 

Conventional non-destructive testing (NDT) methods—such as 

ground-penetrating radar, ultrasonic testing, and magnetic flux 

leakage (MFL)—have shown limitations in terms of resolution, 

access requirements, or signal penetration through dense 

concrete media. Many existing approaches require contact or 

partial exposure of the internal tendon system, making them 

invasive, time-consuming, and impractical for routine 

inspection in large-scale infrastructure. In particular, methods 

that rely on internal access or cutting into protective sheaths can 

inadvertently introduce new vulnerabilities into the structure or 

disrupt service operations [1][2]. 

To overcome these limitations, recent research has shifted 

toward the development of non-contact electromagnetic (EM) 

sensing technologies capable of detecting magnetic field 

variations induced by internal steel tendons through external 

measurements. These techniques leverage the principle that 

magnetization induced in ferromagnetic tendons (such as 

carbon steel wires) generates measurable magnetic flux that 

extends beyond the concrete surface. However, accurately 

detecting and analyzing such flux from the outside remains 

challenging, especially at distances exceeding several 

centimeters from the embedded tendon. 

This study proposes a new design and modeling approach for 

an external, non-contact EM sensor system specifically 

engineered to detect magnetic flux leakage fields generated by 

prestressed tendons embedded in concrete. Central to this 

investigation is the optimization of the sensor head geometry, 

solenoid coil configuration, and magnetization arrangement to 

maximize field sensitivity and directional control. Theoretical 

modeling is performed using closed-form solutions based on 

vector potentials and elliptic integrals, while simulation 

validation is conducted through finite element analysis (FEA) 

using ANSYS Maxwell [3]. 

 

2 DERIVATION OF EXTERNAL MAGNETIC FIELD 

FOR NON-CONTACT EM SENSOR DESIGN FOR 

EXTERNAL SECTIONS 

 External Magnetization Trends by Sensor Head 

Geometry 

Sensor head designs with varying top diameters (0.3 mm to 50 

mm) were modeled in ANSYS Maxwell. The diameter of the 

upper surface was changed from 0.3 to 50 mm and finite 

element analysis was performed using ANSYS Maxwell 

software. 

 
Figure 1. Modeling of sensor head 
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Figure 2. Magnetization according to the shape of head 

 

As the upper radius of the cylindrical sensor increases, the 

magnetic field concentration effect at the upper part decreases, 

but the magnetic field dispersion effect into the external space 

increases. 

A finite element analysis was performed on the space of 300 

mm above and below the sensor head, and a graph of external 

magnetization by distance was obtained. 

 

 

Figure 3. External magnetization according to distance by 

sensor head type 

 

 Generating an external magnetic field using multiple 

solenoids 

The magnetization trend at heights of 10 cm, 20 cm, and 30 cm 

outside the solenoid was analyzed by changing the diameter of 

the solenoid (100 mm, 150 mm, and 300 mm) in the same area 

along the x-axis and y-axis.  

 

   
(a) 100mm             (b) 150mm                  (c) 300mm 

Figure 4. Magnetization degree at heights of 10 cm, 20 cm, and 

30 cm for each solenoid diameter 

 

In order to determine the optimal solenoid arrangement with 

the strongest magnetic flux density in the same area, various 

coil arrangements were analyzed. As a result, it was confirmed 

that the arrangement of three concentric circles showed the 

strongest magnetic flux density at a position of 30 cm. 

 

 

Figure 5. Magnetization degree at heights of 10 cm, 20 cm, and 

30 cm for a solenoid arrangement with concentric circles 

3 CONCLUSION 

This study presented a comprehensive approach for designing, 

modeling, and validating a non-contact electromagnetic (EM) 

sensor system for external magnetic field detection, aimed at 

assessing the integrity of prestressed tendons embedded in 

concrete structures. Through the combination of theoretical 

modeling and finite element analysis (FEA), the work 

systematically explored the influence of sensor head geometry, 

solenoid arrangement, and coil dimensions on the resulting 

external magnetization performance. 

In the early stages, parametric simulations were conducted to 

evaluate how varying the sensor head’s upper surface diameter 

affects magnetic field distribution. The results revealed a trade-

off between field concentration at the sensor surface and its 

dispersion into external space, and consequently, a cylindrical 

head with identical top and bottom diameters was selected as 

the optimal geometry for external flux detection. 

Further investigation into solenoid coil diameter demonstrated 

that larger diameters yield significantly higher external flux 

densities. In particular, concentric arrangements of solenoids 

with increasing diameters (100 mm, 200 mm, and 300 mm) 

achieved approximately double the magnetization at a 30 cm 

height compared to a single solenoid of equivalent maximum 

diameter. These results support the use of concentric, multi-

sized solenoid configurations for enhanced long-range sensing. 

Overall, the study has successfully established a robust design 

methodology for non-contact EM sensing tailored to the 

constraints of structural health monitoring in concrete 

infrastructures. The integration of analytical theory with 

numerical simulation provides a solid foundation for practical 

implementation. Future work will focus on experimental 

prototyping, performance evaluation in real structural 

environments, and integration with data acquisition and 

diagnostic systems to enable autonomous, continuous health 

monitoring of critical infrastructure components. 
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ABSTRACT: Ground Penetrating Radar (GPR) is commonly used for internal inspection of concrete structures. However, the 

fixed design parameters of commercial GPR limit adaptability for specific inspection conditions and integration with emerging 

technologies. This study presents the development of a Stepped-Frequency Continuous Wave (SFCW) radar for concrete structure 

assessment, based on numerical simulations and experimental validation. Parametric analysis was performed to evaluate the 

influence of frequency bandwidth, antenna spacing, synthetic aperture length, and beamwidth on imaging performance, 

particularly in detecting embedded reinforcing bars. B-scan data were generated and processed using Delay and Sum Algorithm 

(DSA) for an image focusing, and image resolution was evaluated in both azimuth and range directions. Based on the simulation 

results, an SFCW radar prototype was built, and its performance was assessed through tests on reinforced concrete specimens. 

The experimental results confirmed the system’s capability to detect internal targets. The findings suggest that the proposed radar 

system offers improved flexibility and adaptability for concrete inspection compared to conventional commercial GPR. 

 

KEY WORDS: Nondestructive Estimation; SFCW Radar; GPR; Image Focusing; Concrete Structure Inspection. 

1 INTRODUCTION 

In recent decades, the deterioration of civil infrastructure has 

become a growing issue in many countries. In addition, extreme 

climate events have introduced loading and environmental 

conditions that were not considered during the original design 

and construction phases. Under such conditions, accurate 

structural condition assessment and maintenance technologies 

are essential. For reinforced concrete structures, identifying 

internal features such as voids and rebar structure is necessary 

for reliable performance evaluation. Currently, Ground 

Penetrating Radar (GPR) is widely used for internal inspection 

of concrete structures [1, 2, 3, 4, 5] 

GPR can be categorized into impulse-type and stepped-

frequency continuous wave (SFCW) type depending on the 

signal transmission method [1]. Impulse-type GPR transmits 

short-duration electromagnetic pulses, while SFCW GPR 

transmits continuous waves by sweeping the frequency in 

discrete steps. SFCW has advantages in terms of signal-to-

noise ratio and penetration depth [6], and is also used for 

concrete inspection applications [7, 8, 9, 10] 

The image quality of GPR data depends on various radar 

design parameters such as waveform, frequency bandwidth, 

antenna characteristics, and scanning distance (synthetic 

aperture). These parameters affect the azimuth (scan direction) 

and range (depth direction) resolution and the overall imaging 

performance [6, 11]. However, most commercial GPRs have 

fixed configurations in terms of frequency range, antenna 

spacing, and polarization, which limits the ability to optimize 

inspections for specific applications. Additionally, integrating 

GPR with technologies such as drones or multi-channel 

antenna arrays is restricted. Therefore, it is necessary to 

develop a customizable radar platform for concrete inspection. 

This study develops an SFCW radar for internal imaging of 

concrete structures through numerical simulations and 

experimental validation. The effects of key design parameters -

frequency bandwidth, antenna spacing, synthetic aperture 

length, and beamwidth - on imaging quality were analyzed 

using simulation. Based on the results, a SFCW radar system 

was constructed and its performance was evaluated through 

experimental tests on reinforced concrete specimens. 

2 DESIGN OF SFCW RADAR FOR CONCRETE SCAN 

 SFCW Radar 

An SFCW radar transmits continuous waves while 

incrementally increasing the frequency from a minimum 

frequency (𝑓𝑚𝑖𝑛 ) to a maximum frequency (𝑓𝑚𝑎𝑥 ) at fixed 

intervals Δf, as expressed in Equation (1) [6]: 

𝑠𝑡𝑥,𝑖(𝑡) = 𝐴𝑖 cos(2𝜋𝑓𝑖𝑡 + 𝜙𝑖)                       (1) 

Here, stx,i(t), fi, Ai, and ϕi represent the i-th transmitted wave, 

its frequency, amplitude, and phase, respectively, and t is time. 

The received signal is a delayed version of the transmitted 

signal, with a round-trip delay (τ) due to the wave propagating 

to and from the target, as shown in Equation (2): 

𝑠𝑟𝑥,𝑖(𝑡) = 𝐵𝑖 cos(2π𝑓𝑖(𝑡 − τ) + ϕ𝑖)                 (2) 

In this equation, 𝑠𝑟𝑥,𝑖(𝑡) is the received signal corresponding 

to the i-th transmission (A-scan), 𝐵𝑖  is the attenuated 

amplitude. Due to spherical spreading and material attenuation, 

𝐵𝑖  is typically proportional to (Δ𝑡/τ)2 . Δ𝑡 is the time step 

between A-scans. The radar module demodulates the received 

signal into a baseband signal in frequency domain as in 

Equation (3): 

Development of SFCW Radar System for Concrete Structure Inspection 
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𝑆𝑓,𝑖 = (Δt/τ)2Ci exp(−𝑗2π𝑓𝑖τ)                    (3) 

Here,  𝐶𝑖 is a coefficient related to the amplitude and assumed 

to be 1. The time domain response is then obtained by applying 

the inverse Fourier transform to the frequency domain signal: 

st,m = ℐℱ𝒯(Sf)m                           (4) 

where 𝑚 denotes the scan position. Performing this calculation 

across all scan positions yields the B-scan data. 

 

 GPR Image Focusing 

To obtain focused images, image processing is applied to the 

acquired B-scan data. In this study, the Delay and Sum 

Algorithm (DSA) was used for image focusing [12]. The 

focused image g(xi, zj) is calculated as: 

g(xi, zj) =
1

M
∑ st,m(τ)

m∈𝐶𝑥

 

where (xi, zi) denotes the azimuth and range coordinates of an 

image pixel, m is the number of A-scan positions, 𝐶𝑥 is the set 

of A-scan positions. 

To analyze the design parameters of SFCW radar for concrete 

inspection, a simulation was performed as illustrated in Figure 

1. Two reinforcing bars were embedded 50 mm deep in 

concrete with a center-to-center spacing of 50 mm. This 

spacing was chosen based on the maximum aggregate size and 

typical cover thickness. The relative permittivity of concrete 

was assumed to be 10 [13], and the rebars were modeled as 

point targets. 

 

Figure 1. Numerical simulation model (unit: mm) 

 

The frequency bandwidth used in the simulation was set to 

1–5 GHz, based on typical GPR configurations for concrete 

inspection [7]. The transmitting and receiving antennas were 

placed on the surface of the concrete with a defined spacing, 

and moved horizontally with 1 mm step intervals to simulate 

scanning. The antenna was assumed to have a beamwidth (θ), 

and signals outside this angle were ignored for simplicity. 

Figure 2(a) shows a representative B-scan image generated 

through the simulation ( 𝑑𝑎𝑛𝑡  = 80 mm, θ  = 120). The 

amplitude values were normalized to a range of 0 to 1. The time 

interval was set to 5 ps, and the total time window was 

determined to be 20 ns based on the 50 MHz frequency step. 

Only the reflections from the rebars were considered, and 

surface reflections and direct waves were excluded, assuming 

that background removal would eliminate these components 

[14]. Background removal was performed by averaging the B-

scan data along the scan direction and subtracting it from the 

original signal. 

Figure 2(b) shows the focused image obtained by applying 

DSA to the B-scan in Figure 2(a), also normalized from 0 to 1. 

The image shows a strong reflection at the rebar locations, with 

decreasing amplitude as the distance from the rebar increases, 

indicating that the imaging and focusing were successful. 

 

 

(a) B-scan data 

 

(b) Focused image 

Figure 2. Simulation results 

Figure 3 shows the reflection amplitude in dB scale along a 

cross-section including the rebars, and the –3 dB resolution was 

measured in both azimuth and range directions [15]. 
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(a) Azimuth cross-section 

 

(b) Range cross-section 

Figure 3. Distribution of reflectivity at rebar cross section 

 

 SFCW Radar Design Parameters 

Based on the numerical simulations, several design parameters 

for SFCW radar in concrete scanning were considered. First, 

wide frequency bandwidth is required, and higher frequency 

components are preferred unless significantly attenuated. 

Vivaldi antennas, commonly used in wideband applications, 

can be applied [16]. However, electromagnetic attenuation in 

concrete increases with frequency [17], so optimal bandwidth 

selection should consider this trade-off. 

Second, a smaller antenna spacing improves resolution, but 

mutual coupling effects must be considered. The simulation did 

not account for these effects, but in practice, closely spaced 

antennas may interfere with each other’s radiation patterns and 

impedance [18,19]. Therefore, antenna spacing should be 

minimized without causing mutual coupling. 

3 SFCW RADAR DEVELOPMENT AND VALIDATION 

 Radar Configuration 

A vector network analyzer (VNA) is a device used to evaluate 

the frequency domain performance of RF components by 

sweeping a wide frequency range. When combined with 

appropriate antennas, it can function as an SFCW radar. In this 

study, the UVNA-63, the educational VNA by Mini-Circuits, 

was used as the SFCW radar module (Figure 4).  

 

 

Figure 4. UVNA-63 (https://www.minicircuits.com) 

The device provides a maximum output power of 0 dBm and 

operates in the frequency range from 0.1 to 6 GHz, which 

covers the frequency range of typical commercial GPRs [8, 9, 

10]. The maximum receive input level is 10 dBm. 

For transmission and reception, a wideband Vivaldi antenna 

(113 × 150 mm) was used (https://www.craeca.com/antenna).  

 

 

Figure 5. Preliminary test for antenna spacing 

As shown in Figure 5, the antenna was mounted on a 2D 

motorized scanning frame that enables C-scan acquisition. The 

horizontal scan range was set to 1150 mm to secure a sufficient 

synthetic aperture length. This configuration ensures that 

concrete members located 100 mm away can be scanned up to 

approximately 1.2 m in depth. The antennas were oriented so 

that the scan direction aligned with the H-plane, which 

typically has a wider beamwidth. The antenna used in this study 

had a reduced beamwidth at higher frequencies, indicating the 

need for further development of antennas that maintain 

beamwidth across the full frequency range. 

A preliminary experiment was conducted to determine the 

appropriate antenna spacing using two D16 rebars (SD400 

grade) placed 40 mm apart in air, as shown in Figure 5. The 

antennas were spaced at 9, 50, and 88 mm during horizontal B-

scan. The rebars were positioned 165 mm away from the 

antenna tips and fixed using Styrofoam, which has a relative 

permittivity of approximately 1.04 [20], making it nearly 

equivalent to air and minimally affecting the measurement. 

Electromagnetic absorbers were placed around the rebars to 

minimize environmental reflections. 

The transmission bandwidth was set to 1–5 GHz based on 

antenna performance, with 50 MHz frequency steps. The 

transmit power was 0 dBm. A-scan data were acquired at 2 mm 

intervals over a scan distance of 600 mm. To enhance high-

frequency components in the measured data, an amplification 

process was applied as defined in Equation (6), where R was 

empirically set to 1000: 

𝑆𝑒𝑛𝑐ℎ𝑎𝑛𝑐𝑒𝑑,𝑖 = 𝑆f,𝑖 exp [ln 𝑅
𝑓𝑖−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
]             (6) 

Here, Senchanced,i  is the amplified signal at frequencyfi , and 

fmin  and fmax  are the minimum and maximum frequencies, 

respectively. 

The B-scan data were processed with background removal 

and DSA for image focusing. Figure 6 shows the experimental 

results. The white circles indicate the positions of the rebars. 
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Unlike the simulation results, lower resolution was observed 

when the antennas were placed too close together. At 9 mm 

spacing, the two rebars could not be distinguished. When the 

spacing was increased to 88 mm, the rebars were clearly 

resolved. This result indicates that at least 88 mm of antenna 

separation is required to suppress mutual coupling effects. 

 

 

(a) Antenna spacing 9 mm 

 

(b) Antenna spacing 50 mm 

 

(c) Antenna spacing 88 mm 

Figure 6. Preliminary test results 

 

 Validation Test 

To validate the developed SFCW radar, an experiment was 

conducted using a reinforced concrete specimen. Figure 7 

shows the geometry of the specimen. The concrete block 

measured 160 × 200 × 260 mm and included six D16 rebars 

(SD400) embedded in two layers. The vertical spacing between 

the two layers was 50 mm, and the horizontal spacing between 

rebars in the same layer was 50 mm and 70 mm. The 

compressive strength of the concrete was 30 MPa, a typical 

value for structural applications. The antenna spacing was set 

to 100 mm to avoid mutual coupling effects. The scan length 

was 1000 mm with 2 mm measurement intervals. The standoff 

distance between the antenna and the specimen surface was 100 

mm. The same high-frequency amplification process used in 

the preliminary test was applied to the acquired data. 

 

 

Figure 7. Concrete test specimen (unit: mm) 

 

 

Figure 8. Verification test setup 

Figure 8 shows the experimental setup. To minimize 

environmental interference, only the concrete specimen was 

placed in the direction of wave propagation. The scan was 

performed on the surface with a concrete cover of 42 mm. The 

transmit frequency range was set from 0.1 to 6 GHz in 50 MHz 

steps, and the transmit power was 0 dBm.  

The acquired B-scan data were processed using background 

removal and DSA. Figure 9(a) shows the time-domain B-scan 

after high-frequency amplification and background removal. A 

strong surface reflection was observed due to the large area of 

the concrete surface, exceeding the strength of the rebar 

reflections. DSA was applied with a relative permittivity of 7 

for concrete. Refraction at the air–concrete interface was 

accounted for using Snell’s law. Figure 9(b) shows the focused 

image in dB scale for the scan area (260 mm in azimuth, 160 

mm in range). Strong reflections were observed at the positions 

of the front-layer rebars, and three distinct rebar signatures 

were clearly identified. The positions in both range and azimuth 

directions matched the actual locations of the rebars. These 

results confirm that the developed radar can detect and localize 

rebars located 50 mm deep in concrete. 

However, the rebars in the rear layer were not detected in the 

focused image. This is attributed to signal attenuation during 

propagation and interference from surface and front-layer 

reflections. Since the rear-layer signal becomes weaker and is 

partially masked by stronger reflections, detection is more 

difficult. To address this, future research is required on signal 

compensation techniques, clutter removal methods, and 
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antenna design that enhances high-frequency transmission for 

deeper penetration. 

 

 

(a) B-scan data 

 

(b) Focused image 

Figure 9. Verification of test result 

 

4 CONCLUSION 

This study conducted numerical simulations and experimental 

tests to develop an SFCW radar system for internal inspection 

of concrete structures. The following conclusions were drawn: 

1. To analyze the effects of SFCW radar design parameters 

on image quality, simulations and image focusing were 

performed using rebar-embedded concrete models. The results 

identified five key design parameters for an SFCW radar in 

concrete scanning: 

(1) A wide frequency bandwidth is required, and higher 

frequency components should be used as long as attenuation is 

acceptable. 

(2) The antenna spacing should be minimized without 

introducing mutual coupling effects. 

(3) The synthetic aperture length should exceed the expected 

rebar spacing and target area. 

(4) A larger antenna beamwidth improves resolution; 

therefore, the antenna should be oriented such that the scan 

direction aligns with the plane having a wider beam. 

(5) Amplifying high-frequency components while 

maintaining overall bandwidth improves azimuth resolution 

without degrading range resolution. 

2. An SFCW radar system was developed using a vector 

network analyzer. Ultra-wideband Vivaldi antennas were 

employed. Preliminary tests were conducted on exposed rebar 

with varying antenna spacing. The results showed that mutual 

coupling effects were avoided when the spacing was 88 mm or 

more. 

3. A validation experiment was conducted on a reinforced 

concrete specimen using the developed radar. The focused 

image showed strong reflections at the locations of the front-

layer rebars, and three rebars were clearly detected. This 

confirmed the radar’s ability to identify and localize rebars 

embedded 50 mm deep in concrete. However, the rear-layer 

rebars were not detected due to signal attenuation and masking 

by front-layer reflections. To address this, further research is 

needed on signal compensation, clutter suppression, and 

antenna design for improved high-frequency transmission. 

The developed SFCW radar offers greater flexibility than 

commercial systems, as its configuration can be freely modified 

by the user. This advantage makes it suitable for structure-

specific inspection applications, integration with emerging 

technologies such as UAVs, multi-channel antenna arrays, and 

the development of new NDT techniques. With continued 

development, the proposed system has the potential to 

outperform existing commercial GPRs in terms of performance 

and applicability. 
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ABSTRACT: Non-destructive testing of reinforced concrete commonly utilizes electromagnetic waves, such as radar, to obtain 

internal structural information. When probing around rebars using electromagnetic equipment, hyperbolic-shaped images are often 

generated. Typically, image focusing techniques, including Hyperbolic Summation, Kirchoff Migration, Phase-shift Migration, 

Omega-k Migration, and Back-projection-based Focusing, which are based on Synthetic Aperture Radar (SAR) algorithms, are 

applied to analyze these hyperbolic images. However, these conventional methods cannot accurately determine the size of rebars 

and face limitations when inspecting doubly reinforced concrete due to shadow regions created by surface-layer rebars, which 

obscure the internal rebars. To address these challenges, this study proposes a novel approach that analyzes hyperbolic images 

based not on the image itself, but on the information related to wave propagation distances. In this method, the rebar cross-section 

is assumed to be a circle with an arbitrary radius, and a hyperbolic equation is established accordingly. The radius is determined 

by solving the equation using a system identification (SI)-based approach that minimizes the error between the measured hyperbola 

and the theoretical one. As with many conventional SI techniques, this problem is highly ill-posed, requiring the introduction of 

regularization methods to stabilize the solution. 

KEY WORDS: System Identification (SI), Rebar Radius Estimation, Non-Destructive Testing (NDT), Radar SAR Imaging, 

Regularization Techniques.

1 INTRODUCTION 

When non-destructive testing is performed on reinforced 

concrete using radar equipment, the result appears in a 

hyperbola as shown in Figure 1. Such hyperbola images can be 

processed using methods such as hyperbolic summation, 

Kirchoff migration, phase-shift migration, Omega-k migration, 

or back-projection-based focusing [1-5], or analyzed 

empirically to determine the position and size of the rebar. 

These methods are very useful for identifying the overall 

internal structure of concrete. They make it possible to detect 

the presence of materials other than concrete (e.g., rebar or 

voids) inside the concrete and to estimate their approximate 

size. However, only a relative size can be inferred; the exact 

size of the object remains unknown. While it is fairly easy to 

detect a missing rebar—omitted either by mistake or 

wrongdoing during construction—it is difficult to confirm 

whether a rebar with a smaller cross-sectional area than 

required was used. It is also challenging to verify significant 

reductions in effective cross-sectional area due to severe 

corrosion. Moreover, in cases such as double-layered 

reinforcement, shadowed areas may appear, making analysis 

difficult. 

To compensate for these shortcomings of image focusing 

methods, this study aims to develop an algorithm that 

determines the size of the rebar by analyzing the hyperbola seen 

in B-scan images—strictly speaking, this curve is not a perfect 

hyperbola but one that closely resembles it, and is commonly 

referred to as such. 

 

2 PROBLEM DEFINITION AND SOLUTION  

 Definition of “Hyperbola” 

When rebar is present inside concrete, a B-scan taken on a 

plane parallel to the rebar’s cross-section shows a hyperbola, as 

in Figure 1. If it is assumed that the rebar has a perfectly circular 

cross-section and that the transmitting and receiving antennas 

are located at the same position (mono-static), the principle 

behind the formation of this hyperbola can be explained by 

Figure 2. 

In Figure 2, the gray area represents concrete and the white 

area represents the rebar. The variables rr, T and  𝑇̅ correspond 

to the rebar radius, the distance from the transmitter/receiver 

antenna to the surface of the rebar, and the rebar-related 

information actually recorded by the transmitter/receiver 

antenna in the B-scan, respectively. 

Because the transmitter/receiver antenna transmits 

electromagnetic waves in all directions and receives waves 

from all directions, it only knows the time difference between 

transmission and reception; it does not know which direction 

the wave traveled. At each position of the antenna, the signal 

strength is recorded over time and plotted with the vertical axis 

as time (or distance) and the horizontal axis as the antenna’s 

location. By displaying signal intensity as color, one obtains a 

B-scan similar to Figure 1. Conventionally, the time axis in a 
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Figure 1. Hyperbola seen in a B-scan when rebar is 

present in concrete 
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B-scan represents half the round-trip time of the wave, 

effectively the one-way travel time. When the dielectric 

constant is known and assumed constant, this time can easily 

be converted into distance. For simplicity, the discussion here 

assumes the vertical axis represents the one-way travel distance 

of the electromagnetic wave. 

In Figure 1, a hyperbola commonly appears in the B-scan. 

This hyperbola can be idealized by the red curve in Figure 2. 

For instance, when the transmitter/receiver antenna is located 

at the inverted triangle in Figure 2, the electromagnetic wave 

emitted by the transmitter reflects off the rebar and then returns 

to the receiver. Because the angle of reflection equals the angle 

of incidence, only the wave that follows the normal vector of 

the (assumed circular) rebar cross-section can return to the 

receiver. Therefore, the wave travels a distance of T to reach 

the rebar, reflects, and then travels the same distance T to reach 

the receiver. In the B-scan (Figure 1), the reflected signal from 

the rebar appears at a vertical distance of T beneath the 

antenna’s position. If this vertical distance is denoted by 𝑇̅, then 

in an ideal situation with no external interference and no 

measurement error, 𝑇̅ should be equal to T. The term T is the 

distance from the rebar center to the antenna minus the rebar 

radius; using Figure 3, it can be expressed as follows: 

 

𝑇(𝑥, 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑟) = √(𝑟𝑥 − 𝑥)2 + 𝑟𝑦
2 − 𝑟𝑟  (1) 

 

 Here, x, 𝑟𝑥, and 𝑟𝑦  denote the antenna’s horizontal position, 

the rebar center’s horizontal coordinate, and its vertical 

coordinate, respectively. In Equation (1), if the rebar radius rr 

is set to zero—in other words, if the cross-section of the 

material embedded in the concrete is assumed to be a point—

the curve becomes a perfect hyperbola. It is for this reason that 

the curves in Figures 1 and 2 are commonly referred to as 

“hyperbolas.” 

 

 Estimation of the Rebar Radius in the Form of an 

Inverse Analysis 

As explained above, in an ideal situation without any 

measurement error, 𝑇 = 𝑇̅ holds in Figure 2. By substituting 

three pairs of (𝑥, 𝑇̅)  into Equation (1) and solve the 

simultaneous equations, the rebar radius rr can be found. 

However, because actual measurements are subject to various 

errors, the measured 𝑇̅  inevitably includes some error. As a 

result, the value of rr obtained using only three pairs of (𝑥, 𝑇̅) 

can be extremely sensitive to even slight errors.  

To reduce such errors, Multiple (𝑥, 𝑇̅)  pairs is used to solve 

an inverse problem defined by the following optimization 

equation: 

 

min
𝑟𝑥,𝑟𝑦,𝑟𝑟

1

2
∫‖𝑇̅ − 𝑇(𝑥, 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑟)‖

2

2
𝑑𝑥

𝐴

 (2) 

 

In this equation, the integration domain A covers all x values 

where measurements were made. Discretizing this integral 

yield: 

 

min
𝑟𝑥,𝑟𝑦,𝑟𝑟

1

2
∑ (𝑇̅𝑛 − 𝑇(𝑥𝑛 , 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑟))

2

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛

 (3) 

 

𝑇̅𝑛  and 𝑥𝑛  denote the n-th measured (𝑥, 𝑇̅)  pair. Although 

Equations (2) or (3) can be solved by various methods, because 

the gradient vector and the Hessian matrix can be derived 

analytically, Newton’s method provides an efficient way to 

obtain a solution. 

 

3 NUMERICAL EXAMPLE 

 General Rebar Example 

To analyze the error sensitivity of the proposed method, a 

numerical example was employed to verify Equation (3). In 

general, non-destructive testing equipment that uses 

electromagnetic waves discretizes the signals received by the 

receiver antenna. As shown in Figure 1, because only discrete 

points on the hyperbola can be recorded, the actual 

measurement cannot produce a smooth curve; instead, it is 

represented by quantized (or gridded) points. Such quantization 

becomes a significant source of error when using Equation (1) 

to fit to the measurement points for solving Equation (3). 

Various other errors that inevitably occur during the 

measurement process also contribute substantially to the 

instability of Equation (3). 

To verify the stability against these errors, a numerical 

example was created using Equation (1), and then Equation (3) 

was solved using Newton's method to obtain a solution. The 

details of the example are as follows: 

• Rebar radius: 12 mm 

Figure 2. Principle behind hyperbola formation in the B-scan 

when rebar is present in concrete 

Figure 3. Travel distance of the electromagnetic wave upon 

reflection 
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• Concrete cover: 50 mm 

• Rebar spacing: 50 mm 

• Spatial sampling frequency: once per 5 mm 

• Time sampling frequency: 20.48 GHz 

• Relative permittivity of concrete: 5 

It was assumed that the measuring device is Proceq’s GP8800 

[6]. The horizontal axis was discretized based on the number of 

scans per unit distance, and the vertical axis was discretized 

based on the temporal sampling rate and the relative 

permittivity. Up to 3% uniformly distributed white noise was 

added to the hyperbola generated by Equation (1), and the data 

were placed at the nearest discretized (grid) point. 

Figure 4 shows the results of this example. The black dashed 

line indicates the actual rebar cross-section, and the black solid 

line represents the hyperbola derived from Equation (1). After 

adding white noise and mapping it onto the discretized grid, the 

red points appear in a stepwise manner rather than forming a 

smooth curve. It can also be observed that some points are 

distributed discontinuously because of the white noise. 

Using the (𝑥, 𝑇̅) pairs of these red points to solve Equation 

(3), the rebar radius was estimated to be 12.229 mm. The rebar 

radius and center location obtained from the estimation are 

plotted as a red dashed line in Figure 4, showing a good match 

with the actual location and radius. 

 

 Double-Layered Rebar Example 

When the rebar is double-layered, as shown in Figure 5, 

information about the rebar behind the front one is obscured. 

Figure 5(a) shows the B-scan image, and Figure 5(b) illustrates 

a schematic representation. The obscured region is where the 

curve undergoes the most significant change, and thus contains 

the greatest amount of information. If a typical image-focusing 

post-processing method is applied to this image, almost no 

meaningful information about the rebar can be extracted. 

However, by employing the proposed inverse hyperbola 

analysis method, the rebar radius can still be estimated in such 

cases. The same conditions as the previous example were used, 

with the concrete cover doubled and a shadow region created 

extending five times the rebar radius from its center. As shown 

in Figure 6, this setup is similar to the previous example but 

lacks measurement points near the rebar. By solving Equation 

(3), the rebar radius was estimated to be 13.42 mm. Although 

the accuracy is lower compared to the earlier example, it still 

represents a reasonably good estimation of the rebar radius 

 

4 CONCLUSION 

• An inverse-analysis-based method for estimating the rebar 

radius is proposed, which utilizes the hyperbolas observed 

in B-scans. By treating the rebar center coordinates and 

radius as unknown variables and formulating an 

optimization problem that minimizes the least-squares 

error, it becomes possible to determine the precise size of 

rebar cross sections—information that is difficult to obtain 

using conventional image-focusing techniques. 

• The proposed rebar radius estimation method was verified 

through numerical examples. In a scenario with a typical 

rebar arrangement, the method accurately estimated the 

Figure 4. General rebar example and the resulting estimation 

of the rebar radius

(a)

(b)

Figure 5. Double-layered rebar as seen via B-scan:  

(a) B-scan and (b) Schematic

Figure 6. Simulation example of double-layered rebar  

and the resulting rebar radius estimation 
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rebar radius. It also performed well for the multi-layered 

rebar 

• By presenting an inverse analysis approach for explicitly 

estimating the rebar radius, the proposed method 

overcomes limitations of existing non-destructive testing 

techniques. It can be effectively applied to detailed analyses 

of internal concrete structures. With ongoing research to 

refine (𝑥, 𝑇̅)  pair extraction and address numerical 

instabilities, even higher levels of accuracy can be expected 

in the future. 
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ABSTRACT: Concrete structures are at several stages of deterioration across the world. The presence of chloride ions salts as in 

the case of marine infrastructure or due to the application of de-icing salts, can further aggravate the rate of deterioration. 

Inspections of large concrete structures are predominantly undertaken through visual inspections. Detailed inspections are 

undertaken using piezo-generated ultrasonics. These inspections can be time and resource-intensive as the piezo devices need to 

contact the structure during measurements and their energy outputs are limited. Rapid inspections of large civil engineering 

structures would require a non-contact, high-energy source means of measurement. In our approach, we used a high-energy pulsed 

laser for excitation and an acoustic microphone for reception towards monitoring concrete structures. Defects in concrete like 

debonding and honeycombing, were simulated in the concrete specimens. The pulsed laser was used to excite the concrete 

specimen and the resultant waves generated due to this excitation were measured using focused cardioid microphones. The 

characteristic features in a typical waveform were first identified in pristine specimen. Subsequently, features corresponding to 

defects are extracted from the acquired signals using the signals from the pristine signal as a reference. The variations in these 

features were localised and their veracity was associated with the embedded defects in the specimen. As a result, the location and 

the nature of the defect were inferred. Thus, through this work, a framework for using pulsed lasers and microphones for non-

contact non-destructive detection of defects in concrete is demonstrated.    

KEY WORDS: Concrete structures, Pulsed laser, acoustic microphone, non-contact Condition monitoring, damage detection. 

1 INTRODUCTION 

Australia has a road network of about 14,500 km of National 

highways and 265,000 km of major local roads. These roads are 

supported by 53,000 bridges which are predominantly made of 

concrete [1]. According to the National State of the Asset 

Report in 2024, councils across Australia have concrete 

bridges, buildings and stormwater drains worth $66.5bn that 

are in poor condition, function and capacity [2]. 

Traditionally, built infrastructure assets have been inspected 

visually, depending on the expertise of the inspectors. These 

assets are predominantly inspected visually which is tedious, 

unreliable, and expensive. Moreover, asset owners find it 

difficult to allocate resources for their monitoring and 

maintenance. So, sensors can be embedded into the assets to 

improve reliability in reporting their condition. Fibre optic 

sensors have been embedded in concrete structural assets to 

measure strains and sense deterioration in them [3]. As these 

fibres are predominantly glass fibres, they are susceptible to 

deterioration due to alkali attack from the concrete. Ensuring 

the longer durability of these sensors is a challenge [4]. Radio 

Frequency Identification (RFID) sensors have been embedded 

in concrete assets to detect changes in humidity and 

temperature in assets [5]. However, RFID devices are a passive 

means of monitoring, requiring the sensors to be embedded 

during the construction phase of assets.  

Ultrasonic sensors generate waves that travel through the asset 

and interact with any emanating deterioration in it. Ultrasonic 

sensors can be embedded in concrete, and the condition of the 

concrete asset is discerned through the recorded travelling 

waves [6]. However, they can deteriorate over time and are 

prone to vandalism, making them unreliable. Moreover, these 

sensors must be pre-embedded in the assets before the inception 

of any deterioration. Mobile sensors can be used to alleviate the 

shortfalls in embedded sensing [7]. 

Image analysis and its synergistic association with computer 

vision have also been attempted for mobile sensing of concrete 

assets [8]. However, using this method, sub-surface 

deteriorations in the assets cannot be detected until they emerge 

to the surface. Mobile piezo sensors are commonly used for the 

generation and reception of ultrasonic waves for condition 

monitoring. They have been used to detect corrosion in rebars 

[9] and subsequently when they are embedded in concrete [10]. 

Field instruments that can provide scans of concrete are now 

available. The compact modular design of these ultrasonic 

scanners makes them convenient for surface-based operations 

[11]. The data obtained from these scanning devices can be 

coupled with advanced imaging algorithms to understand 

hidden rebars [12], incipient corrosion and debonding [13]. 

However, the scanning area is rather limited (around 300 mm 

square). Moreover, it is a manual and contact device. Thus, 

generating ultrasonic scans for concrete assets using mobile 

piezo sensors can be time and labour-intensive with contact 

between the sensors and the asset imperative. 

In Impact Echo (IE), the surface of the concrete asset being 

tested is impacted with a solenoid-based metallic impactor, and 

the response is measured using an accelerometer. Lower 

frequency waves are typically used in this inspection to develop 

rapid scans in concrete assets [14]. These waves can also be 

monitored by using an array of acoustic microphones on a 

mobile platform [15]. The limited energy of the impactor and 

high attenuation of waves in concrete restrict the inspection 

range of this method. This impactor can be replaced with a 

high-energy pulsed Laser to generate high-energy pulses for 

rapid inspections of large concrete assets.  

The range of inspections can be extended by using a high-

energy pulsed laser for excitation. A pulsed laser imparts high-

energy laser pulses on the substrate being monitored, making 

them ideal for sub-surface inspections. The energy from the 
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Laser pulse ablates the substrate being monitored and 

subsequently generates waves in the substrate [16]. These 

generated waves can be monitored using a range of air-coupled 

sensors such as acoustic microphones and Laser Vibrometers 

[17,18]. The laser-generated waves, when received non-

contact, would help improve the inspection capabilities for 

large concrete assets.  

In this paper, we explore the capabilities of a non-contact 

pulsed laser-microphone system for inspecting large concrete 

assets. The results and discussion of the experimental works are 

presented in the subsequent sections of this paper. The 

embedded defects in the specimens simulate some of the 

common defects in concrete structures. 

 

2 METHODOLOGY 

 Experimental setup 

In the present scheme of experiments, an Nd-YAG pulsed laser 

was used to excite the concrete specimen. This pulsed laser, 

NL303 HT, was made by Ekspla and can operate at two 

wavelengths 1064 and 532 nm. In the present scheme, the Laser 

was operated predominantly at 1064 nm with a pulse duration 

of 3-6ns where the pulse was Gaussian in shape. The pulse 

repetition rate of this laser was 10 Hz. The maximum energy 

output from this laser was 800mJ. The waves generated from 

the laser impact were measured using a microphone and 

amplifier system. A representation of the experimental setup is 

shown in Figure 1. A matched pair of Røde Compact Cardioid 

½’’ condenser microphones was used as an air-coupled 

receiver. The received signals were amplified using a Yamaha 

MG06 mixer. The amplified signals were digitised using a 

Picoscope 2000 series modular oscilloscope, and subsequently, 

the digitised data was stored as .csv files on a personal 

computer. During the experiments, the specimens were 

securely placed on the measurement table on a positioner 

assisted by a guide. The Nd-YAG pulsed Laser was operated at 

1064nm wavelength for excitation at an energy output of 

480mJ. The microphones were placed on a rigid support and 

secured to the measurement table using screws as needed. An 

average of 32 signals is used for measurements made at any 

acquisition location. 

As the Pulsed Laser impacts concrete, the temperature at the 

impact location rises to a few tens of thousands of degrees. The 

severe increase in temperature causes melting and ablation of 

material locally. As the ablation and molten material front 

moves ahead, it interacts with the surrounding material. This 

causes the generation of travelling mechanical stress waves in 

the material. A portion of the generated stress waves leaks into 

the air surrounding the concrete while the other part propagates 

in the concrete. In the present testing regime, the pulsed Laser 

is operated at a lower energy such that the pulsed laser, upon 

impact, results in an ablative region on concrete about 1 mm in 

diameter. The depth of penetration of this ablative region is on 

a sub-millimetre scale. This laser ablation results in the 

generation of stress waves in concrete. Visual observations 

reveal that the geometry of the ablation marks on concrete was 

of the order of some air voids which occur in concrete while it 

sets. Moreover, the imparted energy of the Laser wasn’t of the 

order to cause any severance to the structure. Moreover, this 

approach doesn’t involve the extraction of a core from the 

concrete specimen. Thus, as the inspection method is relatively 

void of destruction to the specimen, this approach is considered 

a non-destructive test for assessing concrete.    

The stress wave propagation in concrete interacts with any 

defects in concrete in its travel path. Based on the differences 

in acoustic impedances of the defect and the surrounding 

concrete, a portion of the travelling wave gets reflected towards 

the free surface of the concrete, causing vibrations in the air 

surrounding the concrete. The vibrations in the air caused by 

the laser impact and subsequent reflections from embedded 

defects in the air surrounding the concrete are measured by 

acoustic microphones. The vibrations received at the 

microphones are digitised and amplified as required.                    

 

 Specimen details 

 

In this experiment, concrete specimens were cast for testing. 

All specimens were of the dimension 500 x 250 x 100 mm. 

Each specimen has two steel bars of 10 mm diameter embedded 

in it. The concrete specimens were prepared with a mix design 

by weight as shown in Table 1.  

Table 1: Concrete Mix Design 

Constituent Cement Fine 

aggregate 

Coarse 

aggregate  

w/c 

ratio 

Ratio 1 1.44 2.32 0.5 

The nominal size of the coarse aggregate used was 10mm. The 

prepared moulds were filled in three layers, and a table vibrator 

was used to remove any air voids formed during casting of the 

specimen. After casting, the specimens were cured for 28 days 

in a water bath. Along with the specimen mentioned below, 

Figure 1 Experimental setup 

Nd-YAG Pulsed laser 

Computer Amplifier Microphone 

Concrete specimen 

Digitiser 
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cylinders of the specimen were also cast to test the cylinder 

compression test of the mix. The average compression strength 

of concrete obtained from this mix was 48.2 MPa.  Table 2 

demonstrates the details of the specimens used in the present 

study. In specimen D1, two types of debonds were created on 

the embedded rebars. One debond was created using a 

polystyrene foam wrap around the bar, representing severe 

debonding, and the other by wrapping several layers of 

insulation tape around the bar, representing slight debonding. 

In specimen H1, a region of honeycombing was simulated. This 

was created by placing aggregates of larger diameter mixed 

with cement without vibration in the mould and letting it set for 

one day before casting. Subsequently, the measurement points 

were marked on the specimen at distances of 50 mm. The 

microphones were placed 70 mm from the surface of the 

specimen for all measurements. As the Laser imparts on the 

specimen, due to ablation a travelling mechanical stress wave 

gets generated and is received by the microphones. The first 

arrival times of these waves are noted as the Time of Arrival 

(𝑇𝑜𝐴). The ToA of the first positive peak was calculated using 

Equation 1.  

𝑇𝑜𝐴 =
𝑑𝑎

𝑣
 (1) 

 

Here 𝑑𝑎is the aerial distance between the microphone and the 

laser impact on the concrete specimen, and 𝑣 is the velocity of 

sound in air. The specimens presented in Table 2 will now be 

tested, and the results will be reported in the subsequent 

sections of this paper.       

Table 2 Details of specimens used in this experimental study 

ID Photograph 

D1  

 

 

 

 

 

 

 

H1  

3 RESULTS AND DISCUSSIONS 

 Specimen D1 

On specimen D1, the pulsed laser was applied, and 

measurements were subsequently taken on three lines, namely 

A, B and C series. The measurement points were marked on the 

specimen at distances of 50 mm as shown in Figure 2. The 

microphones were placed 70 mm from the surface of the 

specimen for all measurements. The distance between the point 

of laser impact and measurement using the microphone was set 

to 100mm. The impact and measurement locations were chosen 

such that they span undamaged and locations with embedded 

damage in the specimen. In the present study, the pulsed laser 

and microphone were placed on the same side of the concrete 

specimen while undertaking measurements. Thus, all 

measurements were taken in the reflection mode, where 

reflected waves were monitored.      

 

Figure 2: Specimen D1 with simulated debonding  

Typical measurements from the laser-microphone acquisition 

setup are presented in Figure 3. This measurement is called A-

Scan. Along line B, to develop an overview of the specimen 

condition, the laser was imparted at B8, B7, B6 etc., and the 

corresponding measurements were received by Microphones at 

positions B6, B5, B4, etc., ensuring a 100mm distance between 

the transmission and measurement points in the specimen. In 

Figure 2, the measurements' nomenclature is chosen so that it 

denotes the location of laser impact and microphone placement 

during measurements. The measurement, LaserB7_MicB5, 

represents the measurement taken with a pulsed laser impacting 

at B7 and a microphone at B5. In Figure 3, the presented 

measurements denote the pristine location of the specimen. 

From here forth, this nomenclature will be followed for 

nomenclature. In these measurements presented in Figure 3, the 

first peak was observed between 0.3 and 0.4 ms. 𝑇𝑜𝐴 of the 

first positive peak was calculated using Equation 1.  Here, ToA 

accounts for the arrival of the Rayleigh wave to the microphone 

due to Laser impact on concrete.   

 
Figure 3 Repeatability of measurements 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

0 0,2 0,4 0,6 0,8 1

am
p

li
tu

ed
e 

(V
)

time (ms)

LaserB7_MicB5

LaserB5_MicB3

LaserB6_MicB4

LaserB8_MicB6

Heavy Debond 

Slight Debond Rebar 

Rebar 

Honeycomb 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-089 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 584 

During the experiments, the Laser is aimed at a horizontal 

distance of 100 mm from the microphone on the concrete. The 

microphone is placed at a vertical distance of 70 mm from the 

concrete surface. For this configuration, the value of 𝑑𝑎 was 

122.06 mm. The value of 𝑣 was assumed to be 343 m/s at a 

temperature of 25°C. Thus, the 𝑇𝑜𝐴 was 0.35 ms as per 

Equation 1. As the Laser impacts the concrete surface, a stress 

wave is generated in the concrete due to its ablation. Upon  

impact, a stress wave travels in the air as well as in the concrete. 

The travelling stress waves in concrete have a higher velocity. 

The stress wave in concrete travels through the specimen and 

reflects from the concrete-air interface at the bottom of the 

specimen. The difference in acoustic impedance between 

concrete and air results in the generation of this reflected wave. 

The reflected wave now reaches the level where the laser had 

initially impacted. Subsequently, the reflected wave leaks into 

the air and reaches the microphone. The expected arrival time 

of this reflection is around 0.7 ms. The presence of any defects 

in concrete would result in a mismatch of acoustic impedances 

between the concrete and the defect. This acoustic impedance 

difference would result in the generation of a subsequent 

reflected wave. As the source of the reflected waves would lie 

before the bottom of the specimen, the reflection from 

embedded defects would occur before the arrival of the 

reflection peak. Thus, the first arrival and the arrival of the 

reflected peak would be considered as two markers in the 

measured signals. Further investigations will be undertaken to 

explore reflection signatures from defects in the subsequent 

sections.     

 

The characteristic of this peak corresponding to the first arrival 

remains unchanged over the measurement undertaken on line 

B. Between 0.4 and 0.7 ms, several other reflections are 

observed. This corresponds to the arrival of the reflected waves 

in the specimen. Similarities in the character of the signal were 

observed across several measurements along line B, as 

presented in Figure 3. As the signals remain relatively 

unchanged across several locations on the specimen, the 

repeatability in measurements using the laser-microphone 

system is ascertained. Now, the variations in measurements 

over locations of embedded debonds will be explored to 

understand the capabilities of this technique for the detection of 

embedded damages.     

Subsequently, measurements were undertaken on specimen D1 

in a similar configuration. The laser-microphone measurements 

were taken over Lines A and C over the two rebars embedded 

in the specimen. Over these measurement lines, two different 

types of debonding were simulated. During casting, heavy 

debonding was simulated along line A by embedding a 

concentric low-density polyethene foam of about 10 mm 

thickness over the rebar. Along line B, four layers of regular 

insulation tape were used to create the slight debonding case. 

The observed variation in measurements corresponding to the 

locations of defects is presented in Figures 4 and 5. 

As observed in Figures 4 and 5, the measurements taken along 

lines A and C in principle have similar characteristics between 

0.3 and 0.4 ms as those observed earlier over line B. This initial 

peak, corresponding to the arrival of Rayleigh waves, can be 

observed at 0.4 ms. They correspond to the measurements 

acquired over the simulated heavy debond and slight debond 

regions are presented. In the measurements along line A, the 

signal amplitude varies between 0.5 and 0.7 ms in regions with 

the presence of an embedded heavy defect. Figure 4 shows the 

variation in the amplitudes in measurement LaserA6_MicA8 in 

the heavy debond region over the measurement 

LaserA2_MicA4. This variation is caused by the acoustic 

impedance introduced by the heavy debond.  

 

 

 

 

 

 

 

 

 

Figure 4 Measurements over simulated heavy debonding 

On line C, a significantly different variation in the phase of the 

signal between 0.6 and 0.7 ms was observed. In the mentioned 

time interval, the measurement LaserC8_MicC6, which is 

directly over the slight debond region, has a significantly 

different signature as compared to the pristine region in 

measurement LaserC3_MicC1, as observed in Figure 5.  This 

variation was on account of the change in acoustic impedance 

caused by the simulated slight debond that was embedded in 

the specimen. The variations in amplitude and phase as 

reflected in the signal characteristics due to the embedded 

effects were thus observed.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Measurements over simulated slight debonding 

Thus, considerable changes in the waveform were observed in 

the specimen corresponding to the presence of embedded 

damages in the specimen. These changes in the waveform need 

to be identified and subsequently used to understand and 

classify the nature of damage in the specimens.      

 Specimen H1 

The methodology discussed for specimen D1 will now be tried 

for specimen H1. Measurements are undertaken on lines A and 

C on this specimen as presented in Figure 6.  In Figures 7 and 
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8, measurements taken along the lines B and C on the specimen 

are presented. 

 

Figure 6 Specimen H1 with simulated honeycombing 

The arrival time of the first peak across all measurements in this 

specimen is consistent with those observed in specimen D1. 

However, there is a considerable variation in the phase and 

magnitude of the signal after the first arrival between 0.4 and 

0.8 ms. Along the line B, in the measurement LaserB6_MicB8, 

there is a sharp rise in the amplitude and considerable variation 

in the phase of the signal compared to measurements at 

LaserB1_MicB3. The increased difference in acoustic 

impedance due to air voids in the honeycomb around the 

LaserB6_MicB8 points resulted in this variation in the signal. 

The variations in the signal between 0.4 and 0.7ms warrant 

further investigation to uncover details about hidden defects in 

the specimen (Figure 7).  

 

Figure 7 Signals in specimen H1 over the line B  

In measurements along line C, the extent of variation in the 

signals is slightly lower compared to the ones over line B. In 

Figure 8, a variation in measurement over honeycomb, 

LaserC8_MicC6, between 0.4 and 0.7ms over measurement 

LaserC3_MicC1 can be observed. This trend is expected, and a 

plausible explanation surrounding this trend is the presence of 

line C further away from the core of the honeycomb. However, 

this variation is to be classified, and its extent is associated with 

the veracity of the damage in the specimen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Signals in specimen H1 over the line C  

 Classification of defects 

To further understand and classify the variations in the acquired 

signals due to embedded damages. The acquired signals are 

compared with the measurements at the pristine region. A 

Condition Index (𝐶𝐼) is proposed to compare the signals 

acquired at various locations in the specimens. Though there 

are several approaches to compare two vectors, the proposed 

approaches are used for it’s simplicity and ease of computation. 

To undertake this comparison, the signals in the comparison are 

considered vectors. The vectors are unitised by dividing them 

by their magnitude. The process of unitising a vector is 

presented in Equation 2 by considering the example of a 

pristine signal. Here 𝑽𝒑 is the signal and 𝑽𝒑𝒖 is its 

corresponding unitised vector. 

𝑽𝒑𝒖 =
𝑽𝒑

‖𝑽𝒑‖
  (2) 

Subsequently, unitised vectors of measurements from other 

damage locations are also developed. Using scalar products, the 

similarities of the developed vectors are evaluated. The scalar 

product of these vectors is presented in Equation 3. The scalar 

product is captured in a parameter 𝐶𝐼.      

𝐶𝐼 = 𝑽𝒑𝒖. 𝑽𝒅𝒖 (3) 

Here 𝑽𝒅𝒖 represents the unitised vector from an A-Scan 

acquired over a defect. This is compared with the 𝑽𝒑𝒖 

calculated over the pristine region.  

The outcome of Equation 3 is cos 𝜃, where 𝜃 represents the 

angle of the two unitised vectors. If 𝐶𝐼 = 1, the corresponding 

𝜃 between the vectors is 0, which implies the vectors are 

identical to each other. As the value of 𝜃 increases, the value of 

𝐶𝐼 decreases. Thus, the value of 𝐶𝐼 indicates the difference 

between the signal at a location with the pristine signals. Now, 

𝐶𝐼 at several locations will be compared with the pristine signal 

to understand its association with the location of damage in the 

specimens.  

To undertake the comparison, an average of three 

measurements recorded at LaserB5_MicB3 on specimen D1 

over line B was utilised and as 𝑽𝒑𝒖 as per Equation 2. 

Subsequently, three other pristine locations on this specimen 

were considered as 𝑽𝒅𝒖 and their 𝐶𝐼s calculated as per Equation 

3.  In Table 3, a comparison of 𝐶𝐼 values at various locations in 

the pristine region is presented. These values are very close to 

each other, indicating that the time signals are like each other.  
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Table 3 CI over the line C for pristine condition  

Location CI 

Pristine1 0.993458 

Pristine2 0.986087 

Pristine3 0.990595 

 

As the reliability of measurements was observed earlier over 

the pristine location, an average of the three measurements 

recorded at the pristine region will now be used as a reference 

pristine signal. The variation in 𝐶𝐼 at the damage will now be 

explored to understand the sensitivity of the proposed approach 

in detecting damage. This will be compared against the 

measurements taken over the defect regions. As seen in Table 

4, a low 𝐶𝐼 value was observed at the debond region. This 

variation occurred because of the variation in the acquired 

signal due to the acoustic impedance difference between the 

surrounding concrete and the simulated debond in specimen 

D1. This variation in acoustic impedance causes the incident 

wave to reflect, thus the variation in the wave signature. The 

magnitude of 𝐶𝐼 further reduces over the honeycomb region in 

specimen H1. The air present in the simulated honeycomb 

results in further variation in acoustic impedance and thus a 

further decrease in 𝐶𝐼 value.              

Table 4 Variation in signal similarities at various locations 

Location CI 

Heavy debond -0.08175 

Slight debond -0.08782 

Honeycomb1 0.050011 

Honeycomb2 0.001647 

 

The veracity of the proposed methodology in detecting hidden 

damages in concrete is thus established. Further investigations 

are now underway to explore the capabilities of the proposed 

method to evaluate the veracity of this method in deciphering 

defects at various depths from the surface. This will be 

extended to detecting progressive deterioration. Monitoring 

long-term durability due to the actions of corrosion and 

freezing-thawing will be explored.       

 

4 FREQUENCY RESPONSE 

To understand the variation in A-Scans due to defects, the 

acquired time signals will now be explored to understand the 

frequency content in them. The frequency content in the signal 

was developed through the Fast Fourier Transform algorithm 

implemented using the ‘fft’ function in MATLAB software 

[19]. The frequency content of signals is presented in Figure 9. 

A high-pass filter with a cut-off set at 2 kHz was used on the 

frequency response to remove any ambient vibrations in the 

signal. The frequency response of the pristine sample was 

compared with that of the defect cases discussed earlier. It can 

be observed that the signal has considerable signal strength 

between 6 and 15 kHz across all measured signals. The 

magnitude of the frequency spectra across all the damage cases 

is higher than the pristine case. Moreover, there is an increase 

in the magnitudes of lower frequency components, particularly 

between 6 and 12 kHz and a damping down of frequencies 

higher than that range. This indicates a change in the vibration 

characteristic of the specimen. To explore the trends in the 

frequency responses, regions of interest will be identified, and 

the frequency content in the regions will be explored. Further 

information can be inferred from the inclusion of information 

about the phase spectra of the acquired signal.  

 

 

Figure 9 Frequency responses of A-Scan signals  

5 CONCLUSIONS 

In this paper, we present a novel pulsed-laser microphone 

system to monitor deterioration in concrete. In this method, 

high-energy pulses are used to generate acoustic waves and 

microphones are used for reception. The efficacy of this non-

contact, non-destructive method for monitoring hidden 

deterioration in concrete is explored in this study. The 

following are the key conclusions: 

 

• In this study, the generation of acoustic elastic waves 

in concrete using a Pulsed Laser and their reception 

using an acoustic microphone was established. 

• The variation in acoustic wave pressure due to laser 

impact was received by the microphone and digitised 

into an electrical signal. 

• The signals were acquired on two specimens with 

embedded defects like simulated debonding and 

honeycombing. 

• The variation of signals in the pristine region and the 

defects was identified. 

• A Condition Index (CI) was developed to qualify the 

variation of signals due to the presence of defects. 

• The efficacy of using a pulsed laser–acoustic 

microphone system in detecting embedded defects 

was established.     
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ABSTRACT: Real-time monitoring of road infrastructure is crucial in addressing the challenges posed by the increasing volume 

of vehicles and the need for timely maintenance to manage structural aging. Traditional Weight-in-Motion (WIM) systems provide 

accurate measurements of vehicle load, axle configurations, and speed but are costly to install and require road closures, hindering 

widespread deployment. This study introduces an innovative method for estimating traffic load by repurposing acceleration-based 

Structural Health Monitoring (SHM) systems integrated with an AI powered vision system which enables to classify vehicles, 

estimate their weight, speed and finally assess traffic load over time with a scalable and cheaper solution. 

Vehicles have been classified into three macro classes: cars, lightweight trucks and heavy trucks. A comparative analysis has been 

performed between load estimation using only the AI-powered vision system, based on YOLO object detection, and an enhanced 

approach that integrates acceleration data. The combined method demonstrated significantly improved accuracy in weight 

estimation. The methodology was tested on an highway viaduct and the results validated by using a reference WIM system. The 

findings underscore the potential of this integrated approach to provide cost-effective and scalable solutions for traffic load 

estimation and structural health assessment. 

KEY WORDS: SHM; Weight in motion; Road traffic monitoring; Sensor fusion 

1 INTRODUCTION  

In recent decades, highway infrastructure has been subjected 

to escalating stress due to the combined impacts of increasing 

traffic volumes and the aging of structural components. 

Transportation networks, which serve as vital conduits for 

economic activity and goods distribution, are facing growing 

demands. A major driver of this strain is the rapid expansion of 

road-based freight transport, fueled by the rising demand for 

efficient and adaptable logistics. In Europe, for instance, road 

freight accounted for more than 75% of all inland freight 

transport in 2023, with heavy-duty vehicles (HDVs) playing a 

central role in long-haul logistics and supply chains [1]. 

Bridges and viaducts are particularly susceptible to the 

combined effects of increased loading and structural aging. 

These assets often endure long service durations, facing 

environmental wear, and intensified mechanical stresses. 

Among the various contributors to their deterioration (e.g. 

material fatigue, environmental factors, seismic forces and 

inadequate maintenance) overloading by HDVs stands out as 

one of the most widespread and damaging. Numerous studies 

have identified overloading as a critical factor in both the 

progressive degradation and sudden failure of bridge structures 

across different contexts and typologies [2, 3]. 

Given this context, the need for effective and continuous 

traffic monitoring systems has become increasingly urgent. In 

particular, identifying and quantifying the load contribution 

from heavy vehicles is critical for estimating cumulative 

damage, supporting load rating decisions, and optimizing 

maintenance schedules. Traditional static weighing stations, 

while accurate, are inefficient for large-scale deployment due 

to their reliance on vehicle stops, high operational costs. 

Consequently, Weigh-In-Motion (WIM) systems have 

emerged as a valuable alternative, capable of measuring axle 

loads, gross vehicle weight (GVW), and vehicle classification 

in real time without interrupting traffic flow [4] 

 

WIM systems are generally classified into two main 

categories: Pavement-based WIM (P-WIM) and Bridge-based 

WIM (B-WIM). P-WIM systems involve the installation of 

strain or piezoelectric sensors within the roadway surface to 

directly record the forces exerted by passing axles. While 

effective in certain applications, these systems require an high 

installation cost and frequent maintenance and recalibration 

due to their direct exposure to traffic and weather. In contrast, 

B-WIM systems leverage the dynamic or static responses of 

bridge structures to estimate vehicle weights typically using 

strain, displacement, or acceleration sensors. This approach is 

advantageous as it utilizes existing infrastructure, minimizes 

road surface interventions, and offers spatial scalability over 

the entire highway network [5].  

The concept of B-WIM was first introduced by Moses in 

1979, where an inverse problem formulation was used to 

estimate axle weights based on strain measurements recorded 

during vehicle crossings [6]. This methodology laid the 

foundation for modern B-WIM systems and has since been 

refined through the integration of improved sensing hardware, 

robust signal processing algorithms, and advanced calibration 

procedures [7]. Strain-based B-WIM systems are currently the 

most widely adopted, offering high accuracy for vehicle weight 

estimation under controlled conditions. However, they still face 

limitations related to temperature sensitivity, sensor drift, and 
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the need for detailed knowledge of bridge geometry and 

boundary conditions.  

More recently, research has explored the use of acceleration-

based B-WIM systems as a low-cost and scalable alternative. 

These systems utilize MEMS (Micro Electro-Mechanical 

System) accelerometers to measure bridge vibrations induced 

by vehicle crossings. Their non-intrusive nature and ease of 

deployment make them attractive for widespread monitoring 

applications. Nevertheless, acceleration-based systems 

introduce new challenges, particularly related to signal 

variability caused by vehicle dynamics, road roughness and 

environmental noise [8]. Despite these challenges, several 

promising studies have demonstrated the feasibility of such 

approaches. For instance, Sekiya et al. [9] deployed MEMS 

accelerometers on a steel bridge and demonstrated the potential 

to estimate GVW and axle positions from a single vehicle 

crossing. A follow-up study [10] extended this investigation to 

a year-long deployment, highlighting the need for temperature 

compensation and advanced data filtering techniques to ensure 

accuracy.  

Further developments in the field have explored hybrid and 

data-driven methods. O'Brien et al. [11] used statistical analysis 

of acceleration signals to jointly estimate vehicle weight and 

assess bridge integrity. While effective for GVW estimation, 

the method struggled to resolve axle weights and spacings. 

Wang et al. [12] addressed some of these limitations by 

integrating vision-based systems with acceleration data to 

enhance vehicle detection and classification capabilities. The 

incorporation of transfer learning also demonstrated improved 

generalization across different bridge types. 

These advancements underscore the growing interest in low-

cost, scalable, and intelligent structural health monitoring 

systems. The evolution of WIM technologies, particularly B-

WIM systems enhanced by MEMS sensors and machine 

learning algorithms, opens new possibilities for real-time 

infrastructure assessment. However, significant challenges 

remain in terms of robustness, environmental adaptability, and 

the reliable estimation of axle-level loads. As urban 

infrastructure continues to age and traffic volumes increase, the 

development of resilient and accurate WIM systems becomes 

not only desirable but essential for the future of bridge 

maintenance and safety. 

This study aims to demonstrate the feasibility of estimating 

highway traffic loads by utilizing existing structural monitoring 

systems installed on viaducts, offering a cost-effective 

alternative to conventional, high-cost systems such as P-WIM 

technologies. The proposed methodology integrates vision-

based systems for vehicle detection and classification with 

acceleration data acquired using accelerometers positioned on 

the bridge spans of the viaduct. The effectiveness of this 

approach is illustrated through a case study involving an 

operational highway viaduct located in Italy (schematized in 

Figure 1) where a reference P-WIM system is present as a 

reference for the vehicle weight.  

In this work, sensitive data regarding highway traffic and 

viaduct accelerations were used; therefore, the actual 

acceleration values will be masked in the figures, and no 

Figure 1: Viaduct schema and accelerometer position. 

Figure 2: Piezoelectric accelerometers (Acc_1 and Acc_2) 

positioned on the viaduct spans. 
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absolute values will appear in the text. This does not affect the 

validity of the results. 

  

2 MATERIALS AND METHODS 

The viaduct features a simply supported beam configuration 

and consists of six spans. This study focuses on the first three 

spans, each measuring 21 meters, as they correspond to the 

direction of traffic flow. The primary structural components are 

made of conventional reinforced concrete, while the decks and 

pier caps are constructed using pre-stressed reinforced concrete 

to enhance load-bearing capacity and durability. Overhangs are 

located at piers 5 and 6, supporting the adjacent suspended 

spans through Gerber saddles, which facilitate simple support 

articulation and allow for structural continuity. The entire 

structure is founded on direct foundation systems. 

The monitoring setup implemented on the viaduct includes 

three PCB 393A03 piezoelectric IEPE accelerometers 

positioned on the first three spans of the viaduct (see Figure 1 

and Figure 2). The use of multiple accelerometers enables 

vehicle speed estimation by correlating the time delays between 

the signals captured by the sensors. Furthermore, it allows for 

a comparative analysis of acceleration responses at mid-span 

locations (Acc_0 and Acc_2), where the dynamic amplification 

of structural response is more significant and near the joint 

(Acc_1), where vehicle impacts contribution on the 

acceleration data. Data acquisition was performed 

synchronously using a National Instruments CompactDAQ 

system (model cDAQ-9172 equipped with NI 9230 boards) 

with a sampling frequency of 1000 Samples/s. 

For vehicle detection and classification, a vision system 

comprising a Sony Handycam HDR-CX405 camera was 

installed above the tunnel exit, providing a clear field of view 

of the traffic flow immediately following the tunnel (as shown 

in Figure 3). To establish a ground-truth reference, a P-WIM 

system located upstream of the viaduct was used. Given the 

absence of highway exits along between the P-WIM system and 

the viaduct, it was ensured that all vehicles recorded by the P-

WIM system subsequently traversed the viaduct under 

investigation. To account for potential overtaking between the 

two locations, an auxiliary camera installed at the P-WIM site 

was used to reorder vehicles and ensure accurate matching with 

the viaduct observations. 

The reference data provided by the P-WIM system included 

detailed vehicle information, such as speed, length, lane 

position, axle count and spacing, individual axle loads, gross 

vehicle weight (GVW), and vehicle classification based on the 

ASTM E1318-09 standard [13]. The vehicle flow was sparse 

enough to ensure that only one vehicle crossed at a time, 

simplifying the analysis and reducing the complexity 

associated with multi-vehicle events. The dataset analyzed 

comprises a total of 96 vehicles that traversed the viaduct 

during the time period in which all monitoring systems were 

simultaneously acquiring data. Approximately 90% of the 

recorded vehicles were two-axle vehicles, with an average 

GVW of around 2 tonnes. This category includes not only 

passenger cars, but also vans, light trucks, and motorcycles. 

The remaining 10% consisted of heavier vehicles with three, 

four, or five axles, corresponding primarily to trucks, with an 

average GVW of approximately 20 tonnes. Regarding vehicle 

speed estimation, it was derived by correlating the data from 

the accelerometers with the output from the vision system. The 

velocity measurements provided by the P-WIM system could 

not be considered a reliable reference, as the system is located 

upstream of the viaduct and vehicle speeds may vary along the 

intervening  highway segments. 

 Vision-based vehicle detection and speed estimation 

Vehicle detection and classification within the region of 

interest were performed using a Python-based application that 

integrates OpenCV with a pre-trained object detection 

algorithm. Each video frame was processed to identify and 

localize vehicles using the YOLOv3 (You Only Look Once 

[14]) model, trained on the COCO dataset [15], which enables 

vehicle classification in only four classes: car, motorbike, bus, 

and truck. To achieve more stable classification and refine 

detections, post-processing was performed by applying a 

confidence threshold and non-maximum suppression. A 

tracking algorithm was then employed to assign persistent IDs 

to detected vehicles across consecutive frames by comparing 

the centroids of bounding boxes. This enabled consistent object 

identification throughout the video. Vehicle counting was 

carried out by monitoring object trajectories across a user-

defined detection zone delimited by three virtual lines. When 

an object centroid crossed the designated thresholds, it was 

counted and classified accordingly (see Figure 3 (right)).  

Given the relevance of vehicle speed as a parameter, a 

method for its estimation was also implemented. During video 

processing, the frame numbers at which each vehicle entered 

and exited the detection area is recorded. By combining this 

information with the known frame rate and the estimated 

physical distance (Δ𝑠) between the entry and exit lines, the 

vehicle speed (𝑣_𝐼𝐷) was approximated using the following 

relation: 

 𝑣_𝐼𝐷 =
Δ𝑠 × 𝑓𝑝𝑠

𝑓𝑟𝑎𝑚𝑒1−𝑓𝑟𝑎𝑚𝑒0
 (1) 

 

where 𝑓𝑟𝑎𝑚𝑒0 and 𝑓𝑟𝑎𝑚𝑒1 denote the frame indices 

corresponding to the vehicle entry and exit points, respectively, 

and 𝑓𝑝𝑠 (frame per second) corresponds to 50 for the camera 

used. The accuracy of this estimate depends on factors such as 

camera placement, resolution, and perspective distortion. 

Several limitations in the detection and classification process 

were addressed. First, the object class assigned by YOLOv3 

may vary across frames, leading to misclassification. To 

Figure 3: Vehicle detection when it crosses the P-WIM system 

(left) and while it crosses the first viaduct span (right). 
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mitigate this, all class labels assigned to an object during its 

passage were stored, and the most frequently assigned class 

(mode) was used as the final classification. Second, incomplete 

or intermittent detections, often due to low confidence scores, 

could cause the same vehicle to be assigned to different IDs, 

affecting both vehicle counting and speed estimation. To 

address this, the ID matching process was extended to compare 

across both temporary detection lists, improving continuity in 

object tracking. However, if a vehicle was detected only in the 

latter part of the detection zone, the estimated speed would be 

significantly overestimated. To prevent this, the system 

recorded the initial detection point for each object and 

suppressed speed calculations for vehicles detected too late in 

the zone, where time-distance correlation becomes unreliable.   

 Acceleration-based vehicle detection and sped 

estimation 

This section focuses on vibration analysis using accelerometer 

data, aiming to correlate sensor-derived information with data 

obtained from video recordings. Specifically, the analysis 

addresses two objectives: (i) the identification of light and 

heavy vehicles using time-domain features extracted from 

acceleration signals, and (ii) the estimation of vehicle speed 

through the synchronization of signals from three 

accelerometers, followed by comparison with speed estimates 

derived from the vision-based system. 

By analyzing the time histories from raw accelerometer data 

(see Figure 4), vehicle pass-by events were initially identified 

by observing distinct signal peaks. A representative segment of 

the vibration data, collected during one of the experimental 

campaigns, illustrates this concept. To improve detection 

clarity, a moving Root Mean Square (RMS) function was 

applied to the signal. The RMS provides a measure of signal 

energy over a defined time window and is particularly useful 

for distinguishing between light and heavy vehicles, as heavier 

vehicles are expected to induce greater energy in the structure. 

However, fixed thresholds for vehicle classification cannot be 

determined a priori, as they depend on the specific structure and 

sensor placement.  

Frequency domain analysis (see Figure 5) reveals that the 

primary distinction between light and heavy vehicles lies in the 

low-frequency range, specifically below 50 Hz. Based on this 

observation, the signal energy within this band, quantified 

using the RMS of the band-pass filtered signal (5–50 Hz), was 

selected as the key feature for vehicle classification.  

Vehicle speed can be estimated also correlating signals from 

different accelerometers, based on their spatial position and the 

time taken by a vehicle to traverse the corresponding distance. 

Several methods can be used to estimate the time lag between 

two signals; in this case, the cross-correlation method was used, 

which computes the time lag between two signals considering 

the well-known correlation function: 

 

 𝐶𝑜𝑟𝑟(𝜏) = ∫ 𝑎𝑒𝑛(𝑡) 𝑎𝑒𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇

0
 (2) 

 

where 𝑎𝑒𝑛(𝑡) and 𝑎𝑒𝑥(𝑡) represent the signals from entry and 

exit sensors, respectively, and 𝜏 denotes the time shift. The 

correlation was applied either directly to the moving RMS of 

the signal or to the envelope of the signal. These two 

acceleration-based methods will be compared to the vision-

based estimates in the results section to evaluate their 

performance. 

 

3 RESULTS 

This section presents the results of the study, beginning with 

the comparison of speed estimations comparison between the 

two systems and subsequently discussing the outcomes of 

vehicle classification between light and heavy vehicles. 

Although vehicle speed estimation is not the primary focus 

of this study, it remains a valuable parameter, as the velocity at 

which a load travels over a viaduct can significantly influence 

the dynamic response of the structure. Moreover, since speed is 

also estimated by P-WIM systems, utilizing existing 

infrastructure such as cameras or accelerometers for speed 

estimation can enhance the spatial coverage of traffic 

monitoring. This approach has the potential to provide a more 

comprehensive mapping of vehicle speeds across the highway 

network, contributing to a more accurate assessment of moving 

loads on the structure. 

The comparison between the acceleration-based and vision-

based vehicle speed estimation methods is summarized in 

Table 1.  

Table 1. Vehicle speed estimation comparison between 

acceleration-based and vision-based methods. 

Method Δ < 20
km

h
 Δ ≥ 20

km

h
 

Moving RMS 91.7% 8.3% 

Envelope 82.5% 17.5% 

 

Both the Moving RMS and the Envelope methods have been 

used for speed estimation from the acceleration based system. 

The parameter ∆ represents the absolute difference in speed 

estimates between the two systems. Results are categorized 

based on whether this difference is less than or greater than 20 

km/h. The Moving RMS method exhibited a high level of 

agreement, with 91.7 % of the estimates falling within a ∆ < 20 

Figure 4: Raw acceleration signals from the 3 accelerometers 

during the passage of two vehicles. 

Figure 5: Average spectrum for heavy vehicles and light 

vehicles during their passage over the accelerometer Acc_0. 
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km/h and only 8.3 % exceeding this threshold. Similarly, the 

Envelope method showed that 82.5 % of estimates were within 

the acceptable margin, while 17.5 % exceeded it. These 

findings suggest that both acceleration-based techniques, 

particularly the Moving RMS approach, demonstrate 

promising accuracy and consistency when compared with the 

vision-based system. 

 

 

4 CONCLUSION AND FURTHER DEVELOPMENT 

This study presents a preliminary investigation into the 

feasibility of leveraging existing monitoring systems - , 

specifically, accelerometers installed on viaducts and highway 

surveillance cameras - to estimate traffic loads acting on 

highway infrastructure.  

Although not the primary objective, traffic load estimation is 

highly relevant for informing maintenance strategies, 

forecasting potential structural damage and design new 

infrastructure.  

Currently, P-WIM systems serve this purpose but are often 

associated with high installation and maintenance costs. As an 

alternative, the proposed methodology offers a low-cost, albeit 

less precise, approach by estimating vehicle loading by 

identifying the number of heavy vehicles (>10 tons) traversing 

the viaduct. A reference P-WIM system was used as ground 

truth for weight calibration, enabling a daily estimate of total 

traffic-induced load, potentially useful in design or assessment 

contexts where knowledge of acting loads is required. 

 

Results demonstrate that employing an intelligent vision-

based system (e.g. using pre-trained deep learning object 

detection models), can distinguish between light and heavy 

vehicles. However, intermediate vehicle categories (e.g., vans, 

minibuses, RVs) are occasionally misclassified. One inherent 

limitation is the high variability in heavy vehicle weights 

depending on loading conditions, making it challenging to 

detect overloading or estimate precise weight using 

classification alone. In this regard, the inclusion of structural 

acceleration data improves classification accuracy, as the 

energy transferred by the vehicle, expressed through the root 

mean square (RMS) of the acceleration signal, provides an 

additional informative metric for estimating vehicle mass. 

Furthermore, the study compares vehicle speed estimates 

derived from both systems. By correlating signals from three 

accelerometers and cross-referencing them with visual 

detections, the comparison shows that in 90% of cases, the 

speed difference between the two methods is below 20 km/h, 

suggesting consistency and potential for dual-system 

validation. 

 

Despite its promising results, the study faces several limitations 

that define avenues for future research. Most notably, the 

dataset includes only 239 vehicles, limiting the use of more 

sophisticated data-driven algorithms that could enhance load 

estimation using richer input features beyond RMS. Expanding 

the dataset would enable the exploration of machine learning 

models trained directly on raw acceleration signals.  

Concerning vision-based algorithms, having a bigger dataset 

would allow model retraining with more vehicle classes 

specifically tailored for this application, enabling a more 

precise weight estimation. Additionally, while the present study 

analyzes the two systems separately, future work should 

consider integrating their outputs into a unified model, enabling 

sensor fusion to enhance overall system robustness and 

accuracy. 
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ABSTRACT: With the rapid development of sensor technologies and computational methodologies, real-time structural health 

monitoring (SHM) has gained significant attention in the field of civil engineering. Infrastructures, such as long-span bridges and 

dams, are often equipped with diverse sensor arrays to enable continuous monitoring of their structural conditions. However, 

conventional SHM typically require extended data collection periods post-sensor installation, which can delay their practical 

applications. To address this challenge, this study introduces a novel methodology termed information transferring with 

dimensional expansion, which leverages transfer learning principles to enhance anomaly detection capabilities in newly 

instrumented structures. By referencing datasets from similar existing infrastructures, this approach mitigates the dependency on 

extensive initial data while ensuring reliable anomaly detection. Validation through a case study on a long-span bridge in Republic 

of Kore demonstrates the method’s efficiency and accuracy, highlighting its potential to revolutionize SHM practices by enabling 

immediate operationalization upon sensor deployment. This research contributes to advancing SHM systems, emphasizing 

scalability and adaptability for diverse structural applications. 

KEY WORDS: Structural Health Monitoring; Transfer Learning; Anomaly Detection; Gaussian Process Regression.

1 INTRODUCTION 

As sensor technology and computational capabilities have 

advanced, interest in structural condition monitoring has been 

steadily growing. In particular, there has been a noticeable shift 

toward real-time monitoring of infrastructures, such as long-

span bridges and dams, utilizing a wide array of sensors 

including accelerometers, strain gauges, inclinometers, 

anemometers, thermometers, piezometers, and water level 

gauges. Consequently, the development of techniques capable 

of identifying structural anomalies based on sensor data has 

become important. 

Previous studies have proposed various methods for 

detecting structural anomalies. For instance, Lee et al. (2018) 

dynamically adjusts anomaly detection criteria by considering 

environmental conditions’ seasonal and daily variations [1]. 

Lee et al. (2019) integrates information from finite element 

simulations to build anomaly detection models of structures 

under construction [2]. Lee et al. (2022) explored the evaluation 

of railway bridge deflections under high-speed train loads to 

identify behavioral irregularities [3]. However, a common 

limitation of these methods is their reliance on extensive data 

collection before deployment, making them less viable for 

immediate application following sensor installation. 

To address this challenge, our study seeks to develop an 

anomaly detection model for newly constructed structures by 

leveraging data from similar existing ones. We adopt the 

concept of transfer learning [4], enabling knowledge transfer 

from previously monitored structures to new monitoring 

applications.  

2 METHOD 

To develop an anomaly detection model for structural condition 

monitoring, an information transfer approach with a 

dimensional expansion can be introduced. Traditional methods 

require extensive data collection before deployment, while the 

proposed approach aims to leverage data from existing 

structures with similar characteristics to enhance anomaly 

detection in newly instrumented structures. The methodology 

consists of the following steps: 

• Data collection: This process involves acquiring data using 

sensors, such as accelerometers. A crucial aspect of this 

step is securing pre-existing sensor data from structural 

members and physical quantities similar to those of the 

newly installed target. 

• Dimensional expansion: To address the issue of scale 

differences in data from different sensors, an additional 

feature via one-hot encoding is introduced, distinguishing 

data classes while maintaining comparability. For 

example, when temperature and response data are 

collected from two difference sensors, the input dimension 

can be expanded, as shown in  Figure 1, distinguishing 

between different sources of data. 

• Transfer learning implementation: Instead of training 

separate models for each dataset, a unified super-model 

Structural condition monitoring through information transferring with dimensional 

expansion 

Jaebeom Lee1, 2, Seungjun Lee3, Dong-Jin Yoon4 

1Senior Research Scientist, Nondestructive Metrology Group, Korea Research Institute of Standards and Science (KRISS), 267 

Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea  
2Assistant Professor, Precesion Measurement Major, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-

gu, Daejeon 34113, Republic of Korea  

3Postdoctoral Researcher, Nondestructive Metrology Group, Korea Research Institute of Standards and Science (KRISS), 267 

Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea  
4Principal Research Scientist, Nondestructive Metrology Group, Korea Research Institute of Standards and Science (KRISS), 

267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea  

 

email: jblee@kriss.re.kr & jblee@ust.ac.kr, seungjun@kriss.re.kr, djyoon@kriss.re.kr 

mailto:jblee@kriss.re.kr
mailto:jblee@ust.ac.kr
mailto:seungjun@kriss.re.kr
mailto:djyoon@kriss.re.kr


13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-091 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 596 

that incorporates knowledge frow well-established 

datasets which fine-tuning for new dataset is constructed. 

• Probabilistic anomaly detection: A probabilistic anomaly 

detection model to identify deviations in structural 

behavior is constructed using Gaussian process regression, 

which is non-parametric Bayesian regression methods. 

 

 

Figure 1. Dimensional expansion via one-hot encoding  

3 RESULTS 

The approach was validated using real-world bridge monitoring 

sensors: two accelerometers installed on the cables of an 

operational cable-stayed bridge. One accelerometer had been 

measuring data for two weeks in advance, while the other began 

recording approximately two weeks later, leaving only on day 

of available data for anomaly detection model construction. 

The acceleration measurements from the two sensors differed 

in scale by approximately 2 cm/s2. The objective was to detect 

anomalies in the sensor data over the subsequent 10-day period 

(Figure 2). 

 

 

Figure 2. Dataset utilized to validate the approach  

First, Figure 3 presents the anomaly detection results 

obtained using only one day of data without applying transfer 

learning. Although the 10-day prediction period corresponds to 

a normal state with no actual anomalies, the model incorrectly 

identifies multiple data points as anomalies. In contrast, Figure 

4, which applies the proposed approach, successfully 

distinguished the normal state, even though the model was built 

with limited data from a newly installed sensor. This 

demonstrates that the proposed approach enables the 

construction and deployment of an anomaly detection model 

from the early stages of sensor installation. 

 

 

Figure 3. Anomaly detection without transferring information 

 

Figure 4. Anomaly detection with transferring information 

4 CONCLUSION 

This study demonstrates the effectiveness of a transfer 

learning-based approach for structural anomaly detection in 

newly monitored structures. Traditional anomaly detection 

methods require a substantial data collection period before 

deployment, limiting their immediate applicability. To address 

this challenge, leveraging pre-existing sensor data from similar 

structural members can be considered to enhance anomaly 

detection for sensors with limited initial data. 

The results show that models built using only one day of data 

without transfer learning tend to misclassify normal conditions 

as anomalies. In contrast, the proposed method effectively 

distinguishes normal states, even when applied to a newly 

installed sensor. This confirms that transfer learning can 

improve anomaly detection accuracy from the early stages of 

sensor deployment.  
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ABSTRACT: Structural health monitoring (SHM) plays a crucial role in ensuring the safety and longevity of critical infrastructure, 

such as bridges. SHM refers to continuous, sensor-based, and automated monitoring that complements traditional inspection 

methods by providing real-time data on structural performance. This paper proposes an unsupervised machine learning approach 

to SHM using vibration data, aiming to address the challenges of data scarcity and the difficulty of collecting labelled damage 

examples. The methodology combines statistical and spectral feature extraction with an Isolation Forest anomaly detection model, 

trained solely on healthy data to identify potential damage. The feature extraction process includes key metrics such as root mean 

square, entropy, and spectral centroid, which capture both time-domain and frequency-domain characteristics of the vibration 

signals. The Isolation Forest model is trained on these features to distinguish between normal and anomalous patterns, making it 

well-suited for applications where labelled damage data is unavailable. Results from FE simulation show high accuracy (95.5%), 

precision (91.75%), and recall (100%), demonstrating the effectiveness of the method in distinguishing damage from healthy 

states. The proposed approach provides a scalable and data-efficient solution for real-time damage detection in civil infrastructure, 

with significant potential for deployment in large-scale monitoring systems. Future work will focus on experimental validation 

and improving the model’s robustness in real-world conditions. 

KEY WORDS: Structural Health Monitoring; Unsupervised Learning; Anomaly Detection; Vibration Data; Isolation Forest; 

Damage Detection; Bridges; Machine Learning; Feature Extraction; Real-Time Monitoring 

1 INTRODUCTION 

Structural health monitoring (SHM) is an essential aspect of 

maintaining the safety and integrity of civil infrastructure, 

particularly for critical structures like bridges. With the ageing 

of infrastructure, globally and increasing demands on 

transportation networks, the need for efficient, real-time 

monitoring systems has never been more pressing. SHM refers 

to continuous, sensor-based, automated monitoring that 

complements traditional inspection methods by providing real-

time data on structural performance. This allows engineers to 

prioritise inspections and, in some cases, reduce their 

frequency, especially for hard-to-access structures such as 

long-span bridges or offshore platforms. 

Machine learning-based approaches represent a more 

contemporary method for processing SHM data and developing 

models that enhance damage detection. These methods can 

improve both the speed and accuracy of detection and 

complement established techniques like system identification 

that are commonly used for real-time monitoring. Structural 

responses, such as acceleration, displacement and strain, 

provide quantitative measures of how a structure reacts to 

applied loads. Among machine learning approaches, 

unsupervised anomaly detection has gained interest for its 

ability to function without requiring labelled damage data. This 

is especially useful in civil infrastructure applications, where 

collecting labelled examples of damage is costly, time-

consuming, and often impractical. 

Unsupervised learning approaches are particularly 

advantageous in SHM applications where only healthy baseline 

data are available, as they do not require labelled damage 

examples for training. While unsupervised methods broadly 

include clustering and dimensionality reduction techniques, 

this study specifically adopts an anomaly detection approach 

trained solely on healthy data. This is especially relevant in 

large-scale infrastructure where controlled damage scenarios 

are infeasible [1]. Accelerometers, widely used for collecting 

vibration-based data in SHM, are valued for their simplicity, 

cost-effectiveness, and ability to capture overall structural 

response. Despite limitations such as temperature sensitivity 

and noise, they remain a preferred choice for large-scale 

deployment. While other sensors, such as Fibre Bragg Grating 

(FBG), can detect localised damage with higher precision, they 

require complex installation and costly equipment [2]. 

Soltani et al, provided a comprehensive review of machine 

learning techniques for SHM, highlighting the increasing use 

of unsupervised methods such as Principal Component 

Analysis (PCA), Isolation Forest, and autoencoders [3]. Their 

study emphasised the importance of real-time, data-driven 

monitoring frameworks in situations where model-based or 

supervised methods are limited by the lack of labelled damage 

data. Fernandez-Navamuel and Magalhães proposed an 

ensemble method that combines PCA and autoencoders for 

feature extraction and damage detection in bridge vibration 

data [4]. Their hybrid approach improved sensitivity to 

structural changes while maintaining robustness in noisy 

environments, making it suitable for long-term monitoring 
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applications. Boccagna, Bottini, Petracca, and Amelio also 

supported hybrid techniques by combining convolutional 

autoencoders with PCA and Isolation Forest to detect 

anomalies in railway bridge vibration data [5]. Their results 

demonstrated the potential of integrating deep learning and 

traditional unsupervised methods to detect complex structural 

changes in simulated datasets. This work further reinforces the 

value of hybrid models, particularly where conventional 

techniques may struggle to capture subtle anomalies. Recent 

work by Toufigh and Ranjbar explored a deep autoencoder–

Isolation Forest framework for detecting damage in concrete 

structures using ultrasonic vibration responses [6]. Their 

method integrated automatic feature extraction with 

unsupervised anomaly detection, offering an efficient and 

scalable solution without the need for labelled damage data. 

Similarly, Bayane, Leander, and Karoumi developed an 

unsupervised SHM pipeline using vibration-based features and 

anomaly detection techniques to monitor bridges [7]. Their 

results illustrated the practicality of using data-driven methods 

for real-time monitoring, especially in preventing costly 

maintenance or failure events. 

In contrast to these studies, the model developed in this paper 

focuses on vibration data from bridge structures, particularly 

using statistical and spectral feature extraction methods (e.g., 

RMS, entropy), combined with the Isolation Forest algorithm 

trained exclusively on healthy data. The novelty of this 

approach lies in its use of a sliding window technique to 

segment the signal, enabling localised anomaly detection over 

time. This is especially valuable for identifying slowly 

progressing damage, such as cracking or fatigue, which may 

not be visible in global features. Additionally, the 

implementation of a consecutive anomaly rule ensures that 

damage is only flagged when anomalies persist across 

multiple windows, which increases robustness against 

transient noise and false positives. Together, these design 

choices make the system well-suited for large-scale, real-time 

SHM applications where computational efficiency and 

scalability are essential. 

In this study, a finite element (FE) model of a simply 

supported beam was developed to simulate the dynamic 

response under both healthy and damaged conditions. A 

moving load was applied to reflect real-world traffic 

scenarios, and acceleration data were collected at mid-span. 

The time-series signals were segmented using a sliding 

window, and statistical and spectral features were extracted. 

These were used to train an unsupervised Isolation Forest 

model, aiming to detect structural damage based solely on 

deviations from the healthy baseline vibration signature. 

 

2 METHODOLOGY 

 Simulation Setup 

The finite element model represents a simply supported beam 

subjected to a moving load, as illustrated in Figure 1. This 

configuration is used to emulate bridge structures, where the 

pinned–roller boundary condition provides a simplified yet 

effective representation of real-world support systems [8]. To 

ensure the accuracy of the model and to validate the results, the 

initial simulation setup was based on the approach outlined in 

[8]. Specifically, the model was first validated by replicating 

their results, ensuring that the acceleration of the mid-span of 

the beam matched their findings before proceeding to select the 

range of velocities and forces for further simulations.  

The beam is discretised into ten elements, with damage 

introduced in a single element for selected cases[8]. In the 

validation setup, the damaged element is positioned at 35% of 

the beam’s total span from the left support. 

In this study, damage was introduced by locally reducing the 

stiffness of a single finite element in the beam by 20 per cent. 

The damage location remained static across all damaged 

simulations and was fixed at 35 per cent of the beam span from 

the left support, following the setup used in Mousavi and 

Holloway [8]. This fixed location was chosen to allow 

consistent comparison of model predictions across simulations 

and to simplify the initial sensitivity analysis. The reduction in 

stiffness was chosen to represent a moderate-to-severe 

degradation, such as advanced cracking or corrosion. While 20 

per cent is a relatively large value, it was selected to ensure the 

damage signal was sufficiently distinct to validate the 

effectiveness of the detection method. Future work will explore 

smaller reductions and varying damage locations to assess the 

model’s robustness in detecting more subtle or distributed 

damage scenarios. 

 

Figure 1. The schematic of the simply supported beam with a 

moving load 

A total of 200 dynamic simulations were conducted to evaluate 

the beam’s acceleration under varying loading conditions—100 

with undamaged beams and 100 with damage applied. For each 

simulation, the magnitude of the vertical force and the moving 

velocity were randomly selected within specified ranges, using 

uniform random sampling. The vertical force was chosen 

randomly between 5000 N and 15000 N, and the velocity was 

selected between 13 m/s and 25 m/s. This approach introduces 

variability in the system, ensuring that a range of realistic 

vehicle loading conditions is tested.   

Material properties for the beam were based on structural steel, 

assuming linear elastic behaviour. To simulate structural 

degradation, damage was introduced by locally reducing the 

stiffness of a single element. This modelling approach is used 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-092 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 599 

in the literature to represent localised damage within a linear 

elastic framework [9]–[11]. 

Huner, Irsel, Bekar, and Szala demonstrate that explicit solvers 

provide advantages over implicit methods in both 

computational efficiency and accuracy when dealing with 

transient impact loads [12].An explicit solver (LS-DYNA) was 

used to perform the simulations, selected for its effectiveness 

in modelling highly dynamic and nonlinear systems.  

All simulations were sampled at a frequency of 1000 Hz, 

ensuring high-resolution capture of the system’s dynamic 

response. The main modelling parameters are listed in Table 1. 

Table 1. System Parameters for the SHM model. 

Quantity Value 

Modulus of elasticity 200 GPa 

Density 7800 kg/m³ 

Poisson’s ratio 0.3 

Beam length (L) 20 m 

Cross-section width 

(w) 

0.2 m 

Cross-section depth 

(h) 

0.2 m 

Sampling frequency 1000 Hz 

Load range (F) 5000 – 15000 N 

Velocity range (V) 13 – 25 m/s 

Number of simulations 200 (100 damaged, 100 

undamaged) 

 
 

 Anomaly Detection with Isolation Forest  

An unsupervised anomaly detection framework was developed 

to identify structural damage from acceleration time-series data 

obtained from simulations of both healthy and damaged beam 

conditions. The overall procedure is summarised in Figure 2, 

which presents a flowchart of the anomaly detection pipeline. 

Although each simulation lasts only 1.54 seconds at the lowest 

velocity (13 m/s), the signals were concatenated across 100 

healthy and 100 damaged runs to emulate continuous traffic 

loading. The resulting dataset was divided into overlapping 

windows of two seconds, with 50% overlap. This approach 

enables the system to track localised signal variations while 

preserving frequency content and computational efficiency. 

 

Figure 2. Flowchart of the anomaly detection model. 

This configuration was selected to balance temporal and 

frequency resolution and improve the model’s sensitivity to 

dynamic structural changes. While smaller window sizes were 

considered, they reduced the effectiveness of frequency-

domain features and increased susceptibility to noise. The 

adopted strategy aligns with recent studies in structural health 

monitoring that use similar windowing to support reliable 

anomaly detection. An example of the sliding window 

approach used to segment the time-series data is illustrated in 

Figure 3. 

 

Figure 3. Sliding windows illustration 
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For each window, a set of statistical and spectral features was 

extracted to characterise the dynamic response. The features 

used in this study include root mean square (RMS), entropy, 

kurtosis, skewness, dominant frequency, spectral centroid, and 

band power ratio. These features were selected for their proven 

utility in vibration-based structural health monitoring and are 

supported by recent benchmark studies. 

An Isolation Forest model was trained exclusively on the 

healthy feature set to establish a baseline for normal structural 

behaviour. This algorithm builds an ensemble of binary trees 

(isolation trees), each of which recursively partitions the data 

space using randomly selected features and split values. The 

key idea is that anomalies differ sufficiently from the bulk of 

the data to be isolated more quickly. For any input vector 𝑥, the 

anomaly score is computed as: 

 

𝑠(𝑥, 𝑛)  = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)

−
  

where: 

• ℎ(𝑥) is the path length, that is, the number of splits 

required to isolate the data point within a tree. 

•  𝐸(ℎ(𝑥)) represents the average path length of x 

across all trees in the forest. 

• 𝑐(𝑛) is the expected average path length in a binary 

search tree built from n samples. It is approximated 

by: 

𝑐(𝑛) =  2𝐻(𝑛 –  1)–
2(𝑛 –  1)

𝑛
 

 

Here, 𝐻(𝑖) is the ith harmonic number, approximated by ln(i) 

+ 𝛾, with 𝛾 ≈  0.5772 being the Euler–Mascheroni constant. 

Data points with short path lengths (i.e. those isolated quickly) 

receive anomaly scores close to 1, indicating a higher 

likelihood of being anomalous. Normal points, which are 

harder to isolate, tend to have longer path lengths and receive 

scores closer to 0. 

In this study, the IsolationForest implementation from the 

scikit-learn library (v1.6) was used. The number of trees 

(n_estimators) was set to 100 to ensure a stable estimation of 

anomaly scores. The random_state was fixed at 42 to ensure 

reproducibility. The contamination parameter, which estimates 

the expected proportion of anomalies in the dataset, was tuned 

to 0.085 based on preliminary experiments. This value 

provided a good balance between capturing true positives and 

minimising false detections. 

After training on the healthy data, the model was applied to 

both healthy and damaged datasets. The .predict() method 

classified each window as either normal (+1) or anomalous 

(−1), depending on whether its anomaly score exceeded the 

threshold determined by the contamination setting. To enhance 

reliability, only groups of five or more consecutive anomalous 

windows were treated as an indication of structural damage. 

This post-processing step helped reduce the risk of false 

positives caused by transient fluctuations or signal noise, 

ensuring that only sustained deviations from the healthy 

baseline were flagged as damage. 

 

Once trained, the model was used to classify both healthy and 

damaged windows as either inliers (labelled +1) or anomalies 

(labelled −1). To enhance the robustness of the classification 

and reduce false positives, a post-processing step was applied 

whereby only groups of five or more consecutive anomalous 

windows were considered indicative of actual damage. This 

thresholding logic aligns with practices in unsupervised SHM 

where transient anomalies or noise could otherwise trigger 

misleading alerts [17]. 

This decision was motivated by the observation that isolated 

anomalous predictions frequently arose due to short-lived 

signal fluctuations or imperfect feature generalisation. By 

requiring a minimum streak of five consecutive anomalies, the 

model avoids false alarms while still being sensitive to 

sustained deviations caused by damage. Additionally, the 

simulation data were not shuffled during concatenation. 

Instead, the 100 healthy simulations were placed first, followed 

by 100 damaged ones, ensuring a continuous transition from 

undamaged to damaged conditions in the time series. This 

ordering reflects a realistic monitoring scenario in which 

damage develops after a prolonged healthy period and also 

allows for visual and algorithmic evaluation of detection 

accuracy at the transition point. 

 

3 RESULTS 

The system's performance was evaluated using accuracy, 

precision, recall and F1-score metrics, with the confusion 

matrix providing a summary of classification outcomes. 

Results 

The performance of the anomaly detection framework was 

evaluated using both visual comparison of signals and 

quantitative metrics derived from classification results. 

Figure 4 shows a side-by-side comparison of raw acceleration 

data from the damaged and undamaged simulations. It is 

evident that the damaged signal (red) exhibits a higher density 

of peaks and more abrupt variations in magnitude than the 

undamaged signal (blue). This variation highlights the physical 

impact of stiffness reduction on dynamic response. 

 

 

Figure 4. (a) Time-series comparison of acceleration signals 

between damaged and undamaged beams at mid-span from 

101 to 103 seconds under a 10,000 N moving load at 15 m/s. 

(b) Kernel density estimate of full signal distributions, 

showing increased spread in the damaged case. 
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Figure 5 illustrates the point of transition between healthy and 

damaged data in the concatenated signal, where the black 

dashed line marks the onset of damage. This figure does not 

represent a change in damage location, but rather demonstrates 

the model’s ability to correctly identify the onset of anomalous 

behaviour. The Isolation Forest model successfully 

distinguishes between the two conditions, with no false 

detections in the healthy region prior to the transition.

 

Figure 5. Mid-span acceleration response under moving load 

for healthy and 20% stiffness-reduced beam. Dashed line 

marks detected damage. 

The confusion matrix in Figure 6 provides a quantitative view 

of the model’s predictive accuracy. Out of 945 damaged 

windows, all were correctly identified, yielding a recall of 

1.000. Meanwhile, 860 out of 945 healthy windows were 

correctly classified, producing a precision of 0.917. The overall 

accuracy of the model was 0.955, and the F1 score was 0.957, 

indicating a strong balance between precision and recall. 

 

Figure 6. Confusion matrix for SHM anomaly detection. 

 

Table 2. Anomaly detection performance metrics. 

Metric Value 

Accuracy 0.955 

Precision 0.917 

Recall 1.000 

F1 Score 0.957 

True Positives (TP) 945 

True Negatives (TN) 860 

False Positives (FP) 85 

False Negatives (FN) 0 

 

These results, summarised in Table 2, demonstrate that the 

proposed combination of statistical and spectral features with 

an unsupervised Isolation Forest algorithm is effective in 

identifying structural damage using only healthy training data. 

The perfect recall of 1.000 confirms the model’s ability to 

detect all instances of damage under the simulated conditions. 

While this result is promising, it may also reflect the relatively 

distinct nature of the simulated damage (a 20% stiffness 

reduction), which provides a clear contrast to the healthy 

baseline. In real-world scenarios, where damage may be more 

subtle or masked by noise, recall performance may vary. 

Nonetheless, achieving full sensitivity in this setup is an 

important step toward validating the model’s potential for 

practical SHM applications. 

The absence of false negatives indicates that the selected 

features, including root mean square, kurtosis and spectral 

centroid, are sensitive enough to detect changes in the mid-span 

acceleration response associated with damage. 

Permutation feature importance analysis in Figure 7 supports 

this, showing that RMS had the greatest influence on the 

model’s predictions, while entropy, kurtosis and skewness 

contributed less. This highlights the importance of signal 

energy in distinguishing damaged from undamaged states and 

suggests that the model relied primarily on RMS to detect 

anomalies. 

 

Figure 7. Permutation feature importance showing the relative 

contribution of all features to the Isolation Forest model’s 

anomaly detection performance. 

However, the presence of 85 false positives, reflected in a 

precision of 0.917, suggests that some healthy windows 

exhibited irregular but non-damaging patterns. These 

anomalies may be due to transient structural behaviours, 

elevated loads, or complex vibration modes that were not well 

represented in the training data. 

This result reflects a trade-off between sensitivity and 

specificity. In structural monitoring applications, prioritising 

recall is often preferred, as missing damage poses a greater risk 

than raising a false alarm. The high F1 score of 0.957 supports 

the strength of this balance. Nevertheless, repeated false 

positives may reduce user trust in the system and increase 

inspection costs. To address this, further work is needed to 
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investigate the nature of these misclassifications and explore 

feature refinement or adaptive thresholding strategies that can 

improve specificity without compromising detection accuracy. 

The simulations used in this study were designed to represent 

realistic bridge conditions, based on established finite element 

modelling techniques reported in structural health monitoring 

literature. A simply supported beam was subjected to a moving 

load, with force and velocity ranges chosen to reflect typical 

vehicle traffic scenarios. By randomly sampling these 

parameters across simulations, the model captures a level of 

variability comparable to that seen in practice. However, while 

the simulations reproduce essential structural behaviours, 

certain complexities that exist in real-world monitoring, such 

as sensor noise, thermal drift, and environmental changes, were 

not included. Although the method performs well in this 

controlled environment, additional validation using 

experimental or field data is needed to confirm its applicability 

in real conditions. 

In this study, damage was introduced by reducing the stiffness 

of a single element in the finite element model by 20%. This 

level of degradation represents a significant structural change, 

such as might result from cracking or corrosion. The resulting 

increase in vibration energy was clearly detectable in the 

acceleration signal, particularly at the beam's mid-span. While 

the model achieved full sensitivity to this level of damage, its 

performance with smaller changes remains to be assessed. 

Reductions in stiffness of 5%-10%, for example, may produce 

more subtle variations in the signal, making them harder to 

distinguish from normal fluctuations. Future work will 

investigate how sensitive the model is to such smaller 

degradations and how well it performs under more realistic 

conditions that include noise and environmental variation. 

All results presented in this study are based solely on finite 

element simulations. While these simulations provide a 

controlled and repeatable environment for evaluating the 

proposed method, they do not capture the full complexity of 

real-world monitoring scenarios. It is well known that 

vibration-based damage detection techniques often face 

challenges in practical applications due to noise, environmental 

variability, temperature effects, and operational conditions. 

These factors can introduce variability that may obscure subtle 

signs of damage or increase the rate of false positives. 

We acknowledge this as a limitation of the current study and 

plan to address it in future work. Specifically, we aim to 

validate the approach using real-world sensor data collected 

from instrumented laboratory-scale bridge models or in situ 

field deployments. This would involve applying 

accelerometers to physical structures subjected to controlled 

damage and comparing the model's predictions against ground 

truth. Such validation is essential for assessing the robustness 

and transferability of the proposed method and would provide 

critical insights into how it performs under realistic operating 

conditions. 

 

 

 

4 CONCLUSION 

This study set out to develop and evaluate an unsupervised 

machine learning framework for structural health monitoring 

(SHM), with the specific aim of detecting damage using only 

vibration data from healthy structural conditions. The 

motivation was to address the limitations of supervised 

approaches that rely on labelled damage data, which is often 

unavailable or impractical to collect in real-world scenarios. 

The proposed method combined lightweight time-domain and 

frequency-domain features with an Isolation Forest anomaly 

detection model, further enhanced by a consecutive anomaly 

rule to reduce false positives. The approach was tested on 

simulated acceleration data from both healthy and damaged 

beam configurations. Results showed that the model achieved 

high detection accuracy, with perfect recall and no false 

negatives, indicating strong sensitivity to damage. Precision 

and F1 scores also demonstrated the model’s ability to reliably 

distinguish between normal and abnormal structural behaviour, 

despite being trained exclusively on healthy data. 

These findings confirm the method’s suitability for low-cost, 

real-time deployment on civil infrastructure, particularly in 

settings where computational resources and data availability 

are constrained. Although this study relied on simulated data, it 

provides a solid foundation for future experimental validation 

using real-world sensor inputs. Further refinement may focus 

on improving robustness to environmental variability and 

exploring hybrid models to enhance detection performance. 
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ABSTRACT: Structural health monitoring is essential for ensuring the safety, reliability, and longevity of infrastructural assets. 

However, conventional monitoring measurements face significant challenges, such as being labor-intensive, costly, and time-

consuming. In recent years, the rise of machine learning and deep learning has data analysis frameworks, offering a promising 

solution to these challenges. Despite this, developing reliable and robust approaches that generalize well to unseen scenarios often 

requires large amounts of training data. This presents a challenge, mainly with regulatory constraints and difficulties in collecting 

data, particularly for rare events. To address the issue of data scarcity, this study proposes a generative data augmentation approach 

using a Wasserstein Generative Adversarial Network (WGAN). This approach generates high-quality short-time Fourier transform 

(STFT) spectrograms, which are transformed into image-like data, from in-situ acceleration signals for model training. The 

collected signals, recorded from real-world bridges during various events such as hammering, drilling, environmental noise, and, 

most importantly, the rare event of wire breakage in prestressed concrete bridges, are processed and fed into the WGAN model to 

synthesize additional data. This improves the diversity and robustness of training datasets. Evaluation of the generated 

spectrograms using various performance metrics, such as Structural Similarity Index Measure, Peak Signal-to-Noise Ratio, and 

Fréchet Inception Distance, demonstrates that the proposed method offers a scalable and cost-effective solution for enhancing the 

training dataset, particularly in scenarios where event data is sparse, such as prestressing wire breakage. 

 

1 INTRODUCTION 

Bridges are critical infrastructures for transportation and 

economic development, but are increasingly vulnerable to 

deterioration caused by aging, traffic loads, and environmental 

impacts [1]. Structural Health Monitoring (SHM) is essential 

for the early detection of damage, as highlighted by failures 

such as the Reale Viaduct and Fossano Bridge collapses in Italy 

[2, 3]. However, conventional SHM methods, such as visual 

inspections, are often costly, labor-intensive, and ineffective at 

detecting subtle or internal damage. Although sensor-based 

methods offer improvements, they generate complex and noisy 

data, making manual analysis difficult [4]. As a result, recent 

advances in Machine Learning (ML) and Deep Learning (DL) 

have emerged as promising approaches, demonstrating strong 

performance across various domains, including structural 

damage detection [5, 6]. Nevertheless, real-world 

implementation of these methods still faces challenges, 

particularly data scarcity and class imbalance, which are 

especially essential for rare events like wire breakage, an 

internal form of structural damage that is difficult to capture. 

Data augmentation (DA) techniques have been proposed to 

address these issues, but conventional methods like Mixup and 

time-shifting are insufficient for replicating the complexity of 

real-world events. In this study, Generative Adversarial 

Networks (GANs) are proposed as a powerful solution for 

generating realistic synthetic data. Prior work, mainly in speech 

and audio generation, has demonstrated the effectiveness of 

spectral-domain representations, such as STFT spectrograms, 

for improving generative models. However, applications of 

GANs in SHM, particularly for STFT-based augmentation, 

remain limited. 

To address this gap, this study utilized Wasserstein GAN 

using gradient penalty (WGAN-GP), a GAN model designed 

to generate single-channel STFT spectrograms specifically for 

SHM applications. Unlike traditional three-channel 

approaches, the single-channel input maintains the spectral 

information of structural vibration signals. This study also 

provides a unique real-world dataset from two operational 

bridges in Italy, offering realistic and challenging data for 

model training and validation. By enhancing dataset diversity 

and improving model robustness, the proposed approach aims 

to tackle key SHM challenges, advancing scalable, adaptive, 

and reliable monitoring frameworks. The methodology, 

experimental setup, evaluation strategies, and detailed analysis 

are presented to support future developments and replication 

steps. 

2 METHODS 

 Generative Adversarial Networks  

GANs are a type of generative model that learns patterns in 

data and generates new samples that resemble the original 

dataset [7]. GANs consist of two neural networks, competing 

in a zero-sum game: the generators, which create the synthetic 

data, and the discriminator, which distinguishes between the 

real and generated data (Figure 1). The generator aims to 

minimize the discriminator’s ability to differentiate between 

real and fake samples, while the discriminator tries to maximize 

its ability to classify data correctly. 

GANs' training can be challenging due to issues like mode 

collapse and gradient instability. To address this challenge, 

Wasserstein GAN (WGAN) was introduced [8]. In this 

approach, the Wasserstein distance (Earth Mover’s distance) 

was utilized to measure the difference between the real and 

generated data. The WGAN replaces the discriminator with a 

critic network, which provides more stable gradients, avoiding 

the problem of vanishing gradients in traditional GANs.  

To further improve training stability, WGAN with gradient 

penalty (WGAN-GP) was introduced [9], which added a 

gradient penalty in the loss function. This term makes the 

critic’s gradient more stable and smooth and improves 

convergence. The WGAN-GP loss functions are:  

 

𝐿𝐷 =
1

𝑁
∑[𝑑(𝑔(𝑧𝑛)) − 𝑑(𝑥𝑛)] + 𝜆. 𝐸[(|∇d(𝑥̂)|2 − 1)2]

𝑁

𝑛=1
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In this equation 𝑑(𝑥𝑛) and 𝑑(𝑔(𝑧𝑛)) are the critic’s outputs 

for real and generated images, respectively. 𝑁 is the batch size 

and 𝜆 is controlling the strength of the gradient penalty.   

 

 

 

Figure 1. Overview of Generative Adversarial Networks. 

 

 Evaluation Metrics 

2.2.1 Structural Similarity Index Measure (SSIM) 

SSIM evaluates the similarity between two images by 

considering structural information, such as luminance, contrast, 

and structure. The SSIM score ranges from 0 to 1, with 1 being 

perfect similarity [10].  

 

𝑆𝑆𝐼𝑀 = (
2𝜇𝑥𝜇𝑦 + 𝑐1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1

) . (
2𝜎𝑥𝜎𝑦 + 𝑐2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2

) . (
𝜎𝑥𝑦 + 𝑐3

𝜎𝑥𝜎𝑦 + 𝑐3

)  

In this equation, x and y are image patches. 𝜇𝑥and 𝜇𝑦 are the 

mean intensities of the image x and y. 𝜎𝑥  and 𝜎𝑦 are the 

standard deviations and 𝜎𝑥𝑦 is the covariance, and c is the 

constant value to prevent division by zero.  

2.2.2 Peak Signal-to-Noise Ratio (PSNR)  

PSNR measures the similarity between two images by 

comparing the maximum pixel value to the noise in the image. 

Higher PSNR value indicates better quality [11].  

 

𝑃𝑆𝑁𝑅(𝑅, 𝐺) = 10𝑙𝑜𝑔10(
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) 

R and G refer to the real and generated images, respectively. 

MAXI is the maximum possible pixel value (set to +1 in this 

study due to normalization), and MSE is the mean squared error 

between the real and generated images.  

2.2.3 Fréchet Inception Score (FID) 

FID measures the distance between the feature distributions of 

real and generated images [12]. A lower FID score indicates 

better image quality.  

 

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
2

+ 𝑇𝑟(Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)
1
2) 

 𝜇𝑟and 𝜇𝑔 are the mean feature vectors of the real and 

generated images, respectively. Σ𝑟 and Σ𝑔 are the covariance 

matrices of the real and generated images. Tr refers to the trace 

of the matrix, which is the sum of its diagonal elements. 

 Acquisition Setup and Data Collection  

The experimental framework was conducted on two post-

tensioned concrete bridges in Italy, Le Pastena and Cerqueta. 

The data collection phase was performed during the 

deconstruction and maintenance phase with a collaboration 

between Politecnico di Torino and Strada dei Parchi S.p.A. Due 

to the bridges’ height and limited access, a Mobile Elevated 

Work Platform (MEWP) was used for instrumentation setup. 

The wire cutting process, performed on twisted tendons, was 

carried out using an electric trimmer in a controlled setup after 

the prestressing tendons were exposed.  

The primary dataset was acquired using two accelerometers 

(Model 805M1, DSPM Industria srl), placed 4.5 meters from 

the cutting point on the sides of the beams. This setup was 

chosen to ensure the signal could be reliably recorded, 

considering the effects of signal attenuation and dispersion 

along the propagation path. These propagation effects can 

influence the measured acceleration signals and, consequently, 

the generated spectrograms. These accelerometers recorded 

structural vibrations during wire cutting, with a high sampling 

rate of 96 kHz and a frequency response of 0.4 to 12 kHz. In 

addition to the rare event of wire breakage signals, other 

vibrational events such as hammering, electric trimmer, and 

traffic were captured. This comprehensive dataset ensures the 

development of a robust model for generating sound events and 

further development of more generalized automated systems 

(Figure 2). 

  

 
 

 
 

Figure 2. Sensor positions on La Patenda Bridge. 
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 Experiments  

2.4.1 Feature Extraction  

The dataset used in this study comprises four signal classes: 

wire breakage (202 samples), hammering (264 samples), 

electric trimmer (459 samples), and traffic (415 samples). As it 

is evident, there is a class imbalance, with critical events like 

wire breakage being underrepresented, which may affect model 

performance. The signals were captured at a sampling 

frequency of 96 kHz, with each signal having 1000 samples 

over 0.0104 seconds (Figure 2). To ensure consistency and 

reduce bias from varying amplitudes, all signals were 

normalized before further processing. 

 

 

Figure 3. Time-domain representation of the wire breakage 

acceleration signal (units: m/s²). 

 

This study uses Short-Time Fourier Transform (STFT) for 

feature extraction from in-situ acceleration signals to analyze 

event patterns. STFT transforms signals from the time domain 

to the two-dimensional time-frequency domain, keeping both 

temporal and spectral information. One important parameter in 

STFT analysis is the window size selection, which can affect 

the trade-off between time and frequency resolution.  Smaller 

window sizes (e.g., 64) offer high time resolution but low 

frequency resolution, while larger windows (e.g., 512) provide 

better frequency resolution but less temporal precision. In this 

study, the optimal balance was achieved using window sizes of 

128 and 256 (Figure 3). The extracted STFT spectrograms were 

used as single-channel images for model training, optimizing 

feature extraction and computational efficiency for event 

detection and structural health monitoring applications. 

 

 

Figure 4. STFT spectrogram of a wire breakage signal. The 

x-axis represents time (seconds), the y-axis represents 

frequency (Hz).  

 

2.4.2 Model Developments  

The WGAN-GP was implemented as one of the most 

successful models for image generation. It improves on the 

standard GAN and WGAN models by using the Wasserstein 

loss function and adding a gradient penalty. The generator 

starts with a latent noise vector of size 100, a typical setting in 

GAN studies. This vector is reshaped into small feature maps 

and upsampled through transposed convolutional layers to 

generate spectrogram-like images. In this study, the generator 

consists of four transposed convolutional layers with kernel 

sizes of 5×5 and strides of 2, progressively reducing the feature 

map depth from 512 to 256, 128, and 64 before producing the 

final spectrogram. To ensure stable training and avoid 

vanishing or exploding gradients, batch normalization is 

applied after each layer. Leaky ReLU activation is used 

throughout the layers to add non-linearity, except in the final 

layer, where a tanh activation function normalizes the output 

values to the range [-1, 1].  

The critic, unlike the discriminator, does not classify samples 

as real or fake; instead, it assigns real-valued scores to samples, 

helping to approximate the Wasserstein distance between real 

and generated data. The critic consists of several 2D 

convolutional layers, which progressively reduce the spatial 

dimensions of the input, followed by batch normalization and 

Leaky ReLU activations to improve learning stability. To 

enforce the Lipschitz constraint, a gradient penalty term with a 

coefficient of 𝜆=12 is added to the loss function. The selection 

of hyperparameters search space was based on a combination 

of recommendations from GAN literature and preliminary 

tuning experiments on dataset to achieve stable and high-

quality spectrogram generation. The summary of 

hyperparameter selection for this model is in Table 1. 

Table 1. Hyperparameter Selection for WGAN-GP Model 
Parameter Value Search Space 

Learning Rate (Generator) 2 x 10-5 2 x 10-5 to 2 x 10-5 

Learning Rate (Critic) 2 x 10-6 2 x 10-5 to 2 x 10-5 
Batch Size  16 16 to 64 

Epochs  1500 1000 to 5000 

Optimizer  Nadam Nadam, Adam, 
RMSProp 

Gradient Penalty Coefficient  12 1 to 25 

Activation Function 
(Generator) 

Leaky ReLU, Tanh Leaky ReLU, 
ReLU, ELU, Tanh 

Activation Function (Critic) Leaky ReLU Leaky ReLU, 

ReLU, ELU, Tanh 

Generator Layers 4 Transposed 

Convolutions  

3 to 8 

Critic Layers  5 Convolutions 3 to 8 
Kernel Size  5x5 3x3 to 5x5  

 

To assess the performance of WGAN-GP and the quality of 

generated images, the model was evaluated using multiple 

metrics, including SSIM, PSNR, and FID. The results are 

shown in Table 2 for both window sizes of 128 and 256, which 

enable the determination of the effect of window sizes in 

generating STFT-based images.  

 

Table 2. Performance Metrics of WGAN-GP 
Metrics Class Window Size:128 Window Size:256 

SSIM 

Breakage 0.367 0.180 

Trimmer 0.342 0.403 

Hammer 0.208 0.232 

Traffic 0.170 0.186 

PSNR Breakage 13.409 11.972 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-093 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 607 

Trimmer 13.424 13.621 

Hammer 10.520 11.289 

Traffic 11.374 12.020 

FID 

Breakage 0.219 0.331 

Trimmer 0.173 0.270 

Hammer 0.221 0.194 

Traffic 0.179 0.237 

 

For SSIM, WGAN-GP achieved the highest value for the 

Trimmer event at window size 256 (0.403), indicating better 

structural similarity compared to the other events. It is notable 

that for the breakage event at a window size of 128, the score 

dropped from 0.367 to 0.18, which suggests that the model is 

not able to preserve the pattern of more complex signals, such 

as wire breakage. For Hammer and Traffic events, the SSIM 

values were relatively lower, indicating that WGAN-GP had 

difficulty maintaining high structural similarity for these types 

of events across both window sizes. 

In terms of PSNR, which measures image clarity and noise 

levels, the best performance was obtained for the Trimmer 

event with a PSNR of 13.424 at window size 128 and 13.621 at 

window size 256, indicating that WGAN-GP generated 

spectrograms with minimal distortion for this event. However, 

the Breakage event exhibited lower PSNR scores, particularly 

at window size 256 (11.972), highlighting a reduction in image 

quality for events with more intricate features. Hammer and 

Traffic events also showed similar trends, with Traffic 

performing better at window size 256 (12.020). For reference, 

higher PSNR values indicate greater similarity, with values 

above 20 generally considered good for images; however, in 

the context of generated spectrograms, PSNR values are 

typically lower, and values above 10 are commonly reported as 

acceptable in the literature for synthetic data with complex 

structures. 

The FID metric, which evaluates the similarity between real 

and generated data distributions, showed that WGAN-GP 

performed well for the Trimmer event at window size 128 (FID 

of 0.173). However, it struggled with Breakage and Hammer, 

with higher FID scores indicating that the generated 

spectrograms deviated more from real data. Overall, Traffic 

also showed relatively low FID values at both window sizes, 

indicating good model performance for simpler events. 

 

  

Figure 5. STFT Spectrogram images (window size 128) of 

wire breakage signal (Left) Real Sample, (Right) Generated by 

WGAN-GP. The x-axis represents time (seconds), the y-axis 

represents frequency (Hz). 

 

In summary, WGAN-GP demonstrated strengths in 

generating synthetic spectrograms for certain events like 

Trimmer and Traffic, especially at window size 128. However, 

the model faced challenges in generating high-quality 

spectrograms for more complex events such as Breakage and 

Hammer, particularly at larger window sizes. These results 

highlight the need for further development and utilization of 

GAN models to better capture fine spectral features and 

improve consistency across different types of events. 

 Conclusion and Future Developments  

This study demonstrated the potential of GAN-based data 

augmentation in the context of structural health monitoring 

using STFT spectrograms from in-situ acceleration signals. The 

model showed promising performance, particularly for 

Trimmer and Traffic events. However, it is important to note 

that WGAN-GP showed some limitations in generating more 

complex STFT patterns, such as those associated with Wire 

Breakage events. 

To further improve the model, future work will focus on 

addressing these limitations by refining and customizing the 

architecture. Additionally, integrating more advanced models, 

such as sequential models and attention mechanisms, which are 

robust for time-series data, will be explored to enhance the 

model's ability to capture intricate temporal dependencies and 

improve the generation of complex event patterns. 

Furthermore, future studies will systematically evaluate the 

impact of GAN-generated data on downstream event 

classification and detection models to better quantify the 

practical benefits of data augmentation for structural health 

monitoring. 
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ABSTRACT: Achieving both energy efficiency and high triggering accuracy is a critical multi-objective optimization challenge 

in Structural Health Monitoring (SHM), particularly for power-constrained wireless edge devices deployed in dynamic 

environments. Traditional empirical and static-threshold-based methods often struggle to simultaneously have low miss trigger 

and false trigger rate and lack adaptability to varying environmental and operational conditions. This study proposes a multi-stage 

adaptive triggering strategy built upon a Feedback Control (FC) framework, driven by Bayesian Optimization (BO) as the 

optimization engine, and accelerated by Digital Twin (DT) for data augmentation and Neural Networks (NN) for real-time 

contextual understanding and robust inference. The strategy dynamically refines triggering thresholds based on simulated insights 

and partial observations, enabling rapid adaptation and generalization across scenarios. Experimental validation through 

simulations and onboard deployments demonstrates that the proposed method improves F-beta performance by over 30% 

compared to conventional empirical methods. This approach provides a promising pathway toward intelligent, energy-efficient, 

and sustainable SHM sensing through fast feedback, reduced deployment cost, and minimized missed critical events. 

KEY WORDS: Trigger Sensing, Energy-efficiency, Adaptive Sensing, Feedback Control, Bayesian Optimization, Structural 

Health Monitoring

1 INTRODUCTION 

In Structural Health Monitoring (SHM) systems, triggering 

mechanisms are essential for determining when edge sensor 

nodes should initiate data acquisition to capture transient 

structural responses during events of interest [1]. In real-world 

deployments with limited energy resources, triggering directly 

affects both responsiveness and long-term system sustainability. 

A mechanism that is both energy-efficient and accurate allows 

the system to capture meaningful data while minimizing power 

consumption [2]. When continuous high-rate sampling is 

infeasible, intelligent triggering becomes critical for reliable 

and autonomous monitoring. 

Conventional methods typically rely on fixed thresholds or 

handcrafted rules based on prior knowledge [3]. While easy to 

implement and low in computational cost, they lack 

adaptability. Triggering parameters (e.g., threshold and 

duration) set during deployment often remain static, making it 

difficult to respond to changes in structural behavior or 

environmental conditions. In practical deployments, these 

parameters are often conservatively configured to minimize the 

risk of missing events of interest. This conservative strategy 

prioritizes recall at the expense of precision, which, although 

effective in reducing missed detections, often leads to an 

increased rate of false triggers [1]. 

Practical SHM deployments present several challenges that 

complicate the design of effective triggering mechanisms. 

Structural events are typically rare, limiting the amount of 

available data and making it difficult to establish reliable 

patterns for triggering. The occurrence of events is also highly 

imbalanced, with most data corresponding to normal or inactive 

states, which biases learning-based methods and complicates 

threshold design. In addition, due to energy constraints, sensors 

operate in low-power sentinel modes and only acquire data 

when a triggering condition is met. As a result, only responses 

associated with triggered events are recorded, leading to partial 

observability, where only a subset of structural behaviors is 

accessible for analysis [4]. These factors collectively call for a 

triggering mechanism that is adaptive, context-aware, and 

lightweight, while also possessing the capability to predict and 

infer unobserved structural responses. 

To address these challenges, this study proposes a multi-

stage adaptive triggering strategy primarily built upon a 

Feedback Control (FC) framework [5], which integrates a 

digital twin (DT) [6], onboard neural networks (NN) [7] [8], 

and Bayesian optimization (BO) [9]. FC enables the continuous 

refinement of triggering behavior through performance-driven 

feedback; BO operates as an optimization engine that seeks the 

global optimum and guides trigger parameters toward rapid 

convergence; DT facilitates data augmentation by simulating 

real deployment environments; NN provides real-time 

contextual awareness and accurate prediction, even under 

partial observability. This integration empowers the triggering 

system to adaptively and efficiently search for the optimal 

trigger parameters under uncertain event conditions. 

The proposed strategy is validated upon a setup mimicking 

real-world deployment, showing clear advantages over 

empirical baselines. Specifically, it achieves over 30% 

improvement in 𝐹𝛽  score, enhancing event detection without 

increasing unnecessary energy use. These findings demonstrate 

the effectiveness of the proposed strategy in simultaneously 

optimizing detection accuracy and energy efficiency, and 

further underscore the potential of integrating closed-loop 

control, Bayesian optimization, and digital twin to enable 
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adaptive and intelligent triggering in real-world SHM 

deployments. 

2 SMART ADAPTIVE TRIGGERING 

 Basic triggering mechanism and baseline strategy 

An example of a typical trigger sensing mechanism is the one 

implemented in Xnode [2], which combines a low-power, low-

resolution sensor with a high-power, high-resolution sensor, as 

illustrated in Figure 1 and Table 1. The low-power sensor, such 

as the ADXL362 [10], is responsible for continuously 

monitoring motion and detecting events of interest based on 

predefined thresholds and durations. When the signal 

amplitude exceeds the configured threshold for a specified 

duration, an event of interest is deemed to have occurred, as 

shown in Figure 1. At this point, the low-power sensor activates 

the high-power sensor, transitioning the system from sentinel 

mode to working mode to capture detailed event data. This 

fundamental triggering mechanism forms the basis of the smart 

adaptive triggering strategy proposed in this study. 

Table 1. Xnode sensor energy consumption. 

Mode \ Sensor ADXL362 (12 bit) LIS344 (24 bit) 

Sentinel Mode Working 270nA Sleeping 1uA 

Working Mode Sleeping 10nA Working 680uA 

 

Figure 1. Xnode trigger sensing mechanism. 

In SHM practice, the application of basic triggering 

mechanisms is typically accompanied by parameter 

configuration using empirical approaches. Engineers often 

perform preliminary sensing to gain insights into the target 

structure or environment, and subsequently configure the 

triggering parameters (i.e., threshold and duration) manually in 

a conservative manner to ensure low miss trigger rate [2]. This 

empirically tuned method also serves as the baseline for 

comparison in subsequent sections. 

 Feedback control powered by Bayesian optimization 

As stated in the introduction, the goal of the triggering 

mechanism is to minimize missed triggers while keeping the 

false trigger rate at an acceptably low level, which constitutes 

a multi-objective optimization problem in its mathematical 

nature. To facilitate the analysis, the 𝐹𝛽 score is introduced to 

quantitatively and comprehensively evaluate the performance 

of the triggering mechanism, as defined in Equation (1).  Note 

that with the use of 𝐹𝛽, the original multi-objective problem is 

transformed into a single-objective optimization problem, 

where the parameter 𝛽 controls the relative weighting between 

missed and false triggers. In SHM context, usually more weight 

should be put on recall, which means 𝛽 should be configured 

greater than 1. For situations where precision is more important 

than recall, e.g., false triggering can be quite costly, 𝛽 should 

be smaller than 1. 

 𝐹𝛽 = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (1) 

Based on the analysis presented in the introduction, smart 

adaptive triggering centers on two key questions: what are the 

optimal triggering parameters, and how they can be efficiently 

approached during system operation. The first question 

represents an optimization problem, while the second 

constitutes a control problem. A major limitation of most 

existing triggering mechanisms lies in their lack of adaptivity, 

which can be effectively addressed through a feedback loop. As 

illustrated in Figure 2(a), the triggering mechanism outputs a 

performance metric to the optimizer, which in turn determines 

the next parameter configuration to explore based on historical 

observations. To comply with modern control theory [5], the 

closed loop can be expressed as Figure 2(b). Figure 2(b) depicts 

the formal structure of feedback control, comprising four main 

components: the environment, the system, the estimator, and 

the controller. In the context of trigger-based SHM, the 

environment refers to the structural responses that sensors aim 

to observe. The system corresponds to the triggering 

mechanism itself, as shown in Figure 1. The estimator is 

responsible for monitoring or estimating the performance of the 

triggering mechanism, specifically, the 𝐹𝛽 score in this study. 

The controller, in turn, utilizes iterative feedback to search for 

the optimal parameter configuration and to devise strategies for 

efficiently approaching the optimal values. In short, feedback 

control serves as a backbone to integrate necessary tools to 

provide adaptivity for triggering parameter fine-tuning. 
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Figure 2. Feedback control framework for triggering 

parameter optimization: (a) optimization loop; (b) feedback 

control form. 

At the core of the feedback control architecture is the 

controller, which governs the adaptation process through 

parameter adjustment. While various tools can be used to 

implement the controller, the choice must be carefully tailored 

to the characteristics of the target problem. In the case of 

trigger-based SHM, the controller takes the 𝐹𝛽 score as input 

and outputs the triggering threshold and duration. However, 

there is no explicit analytical expression linking the input to the 

output, making it a black-box optimization problem. Moreover, 

each feedback iteration requires calculating the 𝐹𝛽 score based 

on many events, resulting in considerable computational cost, 

in addition to the overhead of observation and estimation. 

Given these considerations, Bayesian optimization [9] is 

adopted as the controller due to its demonstrated effectiveness 

in solving black-box problems and its ability to efficiently 

converge toward the global optimum.  

The algorithmic framework of BO is presented in Algorithm 

1. As illustrated, the optimization process is driven by the 

observation dataset 𝓓 , which comprises input–output pairs, 

where the inputs are the triggering parameters, and the outputs 

are the corresponding 𝐹𝛽  scores. The process begins with an 

initial sampling phase to obtain a preliminary understanding of 

the input–output relationship. Subsequently, the optimization 

proceeds iteratively, with each iteration updating the surrogate 

model 𝓜  and expanding the dataset with new evaluations. 

Typically based on Gaussian Process Regression (GPR), the 

surrogate model provides a non-parametric, probabilistic 

estimate of the objective function, offering both the predicted 

mean and associated uncertainty for any given input. This 

probabilistic nature enables GPR to model complex, non-linear 

relationships with relatively few samples, while maintaining 

analytical tractability and useful mathematical properties such 

as differentiability. To balance exploration of uncertain regions 

and exploitation of promising areas, an acquisition function 𝓢 

is employed to determine the most informative point 𝑥𝑖 . 

Common acquisition functions include Expected Improvement 

(EI), Probability of Improvement (PI), and Upper Confidence 

Bound (UCB), each offering a different strategy for leveraging 

the predictive mean and variance to guide sampling. Herein, 

UCB is used for simplicity. After evaluating the objective 

function to obtain the corresponding output 𝑦𝑖  , the dataset 𝓓 

is updated. Finally, the input 𝑥̂  associated with the best 

observed output in 𝓓 is selected as the optimum.  

 

Algorithm 1 Bayesian Optimization Algorithm Framework 

Input: Search space 𝓧 , objective function 𝑓 , surrogate 

model  𝓜, acquisition function  𝓢 

Output: Dataset 𝓓  (set of sampled points and their 

evaluations) 

Initialize dataset: 𝓓 ← InitSamples(𝑓, 𝓧) 

for 𝑖 = |𝓓| to 𝑇 do 

    Fit the model: 𝑝(𝑦|𝒙, 𝓓) ← FitModel(𝓜, 𝓓)  

    Select next point:  𝑥𝑖 ← arg 𝑚𝑎𝑥𝑥∈𝓧 𝓢(𝒙, 𝑝(𝑦|𝒙, 𝓓)) 

    Evaluate objective function: 𝑦𝑖  ← 𝑓(𝑥𝑖) 

    Update dataset: 𝓓 ← 𝓓 ∪  {(𝑥𝑖 , 𝑦𝑖)}  

end for 

Pick the best from 𝓓 as optimum: 𝑥̂ ← arg 𝑚𝑎𝑥(𝒙,𝑦)∈𝓓 𝑦 

 

After introducing the algorithmic details, it becomes evident 

that the surrogate model 𝓜 plays a central role in addressing 

the black-box nature of the problem by providing a reliable 

approximation of the true input–output relationship along with 

favorable mathematical properties. Meanwhile, the acquisition 

function 𝓢 serves as the foundation for efficient convergence 

toward the global optimum, as it guides the search process in a 

principled manner rather than relying on random exploration. 

As can be inferenced by Algo. 1, the computational efforts 

required for BO for the following edge deployment is mainly 

determined by the size of observation dataset 𝓓 , and each 

sample in this dataset is only a pair of triggering parameters and 

performance metric, meaning it can be easily operated on edge 

devices.  

 Digital twin for data augmentation 

Feedback control is a powerful tool to address the lack of 

adaptivity; however, it falls short in tackling another critical 

challenge—data scarcity, imbalance, and uncertainty. Digital 

twin technology offers a promising solution to augment data for 

a variety of purposes, such as simulation, optimization, and 

neural network training. To effectively construct a digital twin 

for trigger-based sensing for SHM, it is essential to accurately 

simulate both the structural response and the triggering 

mechanism. Specifically, this involves modeling the 

excitation–structure–response chain as well as the threshold–

duration-based triggering logic, as shown in Figure 3. 

 

 

Figure 3. Digital twin for excitation-structure-response flow 

and triggering mechanism. 

Excitation simulation is the first step in structural response 

modeling. To support the study, several common types of 

events are considered, including ambient vibrations, 

earthquakes, impacts, and strong winds. Each event type can be 
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generated using either external databases or simulation 

techniques. Ambient vibrations are typically modeled using 

Gaussian white noise, while earthquakes can be synthesized by 

superimposing harmonic waves based on a given spectrum. 

Impacts are represented as impulsive loads, and strong winds 

can be simulated using autoregressive models combined with 

time modulation. 

Structure modeling is another crucial step in response 

simulation, achieved by formulating the equation of motion, as 

shown in Equation (2). In this equation, 𝑀, 𝐶, 𝐾 represent the 

mass, damping, and stiffness matrices, respectively.  𝐺 denotes 

the force allocation matrix, and 𝑃(𝑡) represents the external 

force vector at time t. Equation (2) thus serves as a digital twin 

of the target structure to be monitored. Following structural 

modeling is the simulation of structural responses, which 

involves calculating the displacement, velocity, and 

acceleration of each degree of freedom in the constructed 

digital twin. A widely used and reliable numerical method for 

this purpose is the Newmark-beta method [11], which provides 

accurate structural response simulation.  

 𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 = 𝐺𝑃(𝑡) (2) 

In addition to structural responses, the basic triggering 

mechanism must also be simulated to complete the digital twin, 

with implementation details provided in Algorithm 2. With a 

comprehensive digital twin that includes both the structural 

model and the triggering logic, data can be flexibly 

manipulated for various purposes, such as simulation, 

optimization, neural network training, and more. 

 

Algorithm 2 Triggering Mechanism 

Input: signal value 𝑠, threshold 𝜏, duration 𝑑 

Output: trigger flag 𝑇 (binary: 1 for trigger, 0 for no trigger; 

initialized as 0) 

Internal Variable: counter 𝑐 (initialized as 0, used to track 

consecutive time steps) 

For each time step 𝑡: 

if  |𝑠| ≥ 𝜏 then 

    Increment counter: 𝑐 ← 𝑐 + 1 

if 𝑐 ≥ 𝑑 then 

     Set trigger flag: 𝑇 ← 1 

         Reset counter: 𝑐 ← 0 

end if 

else 

    Reset counter: 𝑐 ← 0 

    Set trigger flag: 𝑇 ← 0 

end if 

 

 Lightweight neural networks for onboard inference 

Feedback from the triggering mechanism is essential for 

achieving adaptivity; however, its effectiveness is often 

hindered by challenges in real-world deployment. As shown in 

Equation (1), the computation of the 𝐹𝛽  score relies on both 

precision and recall, each of which faces practical difficulties. 

Specifically, precision depends on the identification of true 

positives and false positives. In the absence of human 

intervention, ground truth labels for captured signals are 

typically unavailable, making it impossible to determine 

whether a triggered signal corresponds to an actual event of 

interest. This uncertainty undermines the ability to accurately 

evaluate performance metrics such as precision and, 

consequently, the 𝐹𝛽  score. The situation is even more 

challenging for recall, which relies on identifying both true 

positives and false negatives as shown in Equation (4). 

Estimating false negatives necessitates knowledge of missed 

events of interest—information that is inherently inaccessible 

in trigger-based sensing systems. These limitations present 

fundamental barriers to autonomous online adjustment of 

triggering parameters, underscoring the importance of 

developing effective solutions.  

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

Edge intelligence, which integrates lightweight onboard 

computation with AI, offers a promising pathway for achieving 

online fine-tuning on edge devices, particularly for problems 

beyond the reach of traditional approaches. To address the issue 

of precision, the absence of ground truth can be mitigated by 

deploying an onboard AI classifier to infer signal labels. 

Similarly, for recall, an AI-based estimator can be employed to 

directly approximate the recall value, thereby facilitating more 

accurate performance evaluation. Most importantly, the 

onboard AI enables autonomous feedback generation without 

the need for human intervention, thereby streamlining 

operations and advancing full system automation. To meet the 

requirements of edge deployment, these neural networks 

should prioritize lightweight architecture and high 

computational efficiency. 

Table 2. NN parameters summary. 

Parameter Type CNN DNN 

Total Parameters 142(572.00 B) 209 (836.00 B) 

Trainable Parameters 44 (176.00 B) 209 (836.00 B) 

Non-trainable Param. 8 (32.000 B) 0 (0.00 B) 

Optimizer Parameter 90 (364.00 B) 0 (0.00 B) 

 

To effectively classify time series data, a 1D Convolutional 

Neural Network (CNN) combined with feature engineering is 

employed. Given an input signal of 6000 samples, the data is 

first transformed from the time domain to the frequency domain 

using the Fast Fourier Transform (FFT). Both time- and 

frequency-domain signals are then downsampled to 64 samples 

each. The resulting vectors are concatenated into a 128-

dimensional feature vector, which serves as the input to a 

lightweight CNN classifier. Details of the network size and 

architecture are provided in Table 2 and Table 3, respectively. 

The training curves and classification results are presented in 

Figure 4. 

Table 3. CNN classifier architecture. 

Layer Output Shape Para. Number 

Input Layer 128 0 

Conv1D 128 16 

BatchNorm 128 16 

ReLU 128 0 

GlobalAvgPooling 4 0 

Dense 4 20 
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Table 4. DNN Recall estimator architecture. 

Layer Output Shape Para. Number 

Dense 16 64 

Dense 8 136 

Dense 1 9 

 

Since false negatives cannot be directly observed in trigger-

based sensing, a Dense Neural Network (DNN) is introduced 

to estimate recall based on noise level, trigger threshold, and 

duration. Utilizing the dataset generated from the digital twin, 

the DNN is trained to predict recall under various noise 

conditions and triggering configurations. The network size is 

detailed in Table 2, the architecture is provided in Table 4, and 

the training curves are shown in Figure 4. With both the CNN 

classifier and the DNN recall estimator trained, the feedback 

loop is fully established, completing the final component of the 

closed-loop control system. 

 

Figure 4. NN training curves: (a) CNN classifier (b) DNN 

estimator. 

3 STAGED DEPLOYMENT  

Despite the many advantages of edge intelligence, its most 

prominent inherent limitation lies in the constrained onboard 

resources, which restrict the efficiency of triggering parameter 

optimization. In the previous section, a feedback control 

approach was introduced for iterative optimization of triggering 

parameters. To further accelerate this process, a staged 

deployment strategy is proposed, comprising a pre-deployment 

optimization stage and an onboard fine-tuning stage. The 

second stage inherits insights obtained during the first, allowing 

only lightweight fine-tuning on the device and thus minimizing 

computational overhead. 

Figure 5 illustrates the concept of this staged optimization 

strategy. Both stages are built upon the same feedback control 

framework. The key differences lie in two components: the 

environment component, which refers to the excitation-

structure-response flow, and the estimator component, which is 

responsible for providing performance metrics. In Stage I, the 

environment is simulated using a digital twin. Although the 

structural responses are not real, this fully controlled setting 

provides complete knowledge of all events, enabling accurate 

performance evaluation. In Stage II, the environment becomes 

real and uncertain. Since ground truth labels are unavailable, 

recall cannot be directly computed. To overcome this limitation, 

onboard neural networks including the CNN classifier and the 

DNN-based recall estimator are employed to complete the 

closed-loop feedback control. It is important to note that in the 

trigger sensing setup, the DT model is not required to be of high 

fidelity, as its primary role is to generate synthetic data for 

training the classification model. 

 

 

Figure 5. Staged deployment strategy: (a) pre-deployment 

optimization (b) onboard fine-tuning. 
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4 VALIDATION AND RESULTS 

 Dataset generation 

 

Figure 6. Dataset generation. 

As previously discussed, the uncertainty of data distribution in 

real-world deployment makes it unsuitable for reliable 

evaluation of triggering mechanism performance. To enable 

consistent and controlled assessment, a synthetic dataset with a 

predefined distribution was constructed, as illustrated in Figure 

6. Let n denote the total number of event samples, and m 

represent the number of event types considered as events of 

interest. Events of no interest, represented by ambient vibration 

in this context, account for half of the dataset (n/2 samples), 

while the remaining half is evenly divided among the m types 

of events of interest. In this study, n is set as 1200 for validation. 

For ambient vibration signals, data is generated using a 

Gaussian distribution with a mean of zero and a standard 

deviation derived from real-world ambient data. This approach 

aims to closely approximate actual deployment conditions.  

In this evaluation setup, three types of events are defined as 

events of interest: earthquake, impact, and strong wind, 

resulting in m = 3 and n/6 samples for each type. These signals 

are synthesized using a uniform distribution based on peak 

value ranges, allowing for diverse intensity levels within each 

event type. This structured and realistic data generation strategy 

ensures a balanced and reproducible dataset, enabling 

consistent evaluation of triggering mechanisms across a wide 

range of simulated scenarios. 

 Host Devices and Implementation Procedures 

According to the proposed staged deployment strategy, the first 

stage focuses on preliminary optimization of triggering 

parameters using the digital twin in a resource-rich 

environment, such as a personal computer or workstation. The 

second stage is dedicated to real-time fine-tuning in real-world 

conditions on resource-constrained edge devices. To emulate 

this setup in the evaluation, Stage I was carried out on a 

personal computer, while Stage II was implemented on 

LiftNode, a low-cost microcontroller-based AIoT sensor node 

developed by the Laboratory of Intelligent Infrastructure at 

Nanyang Technological University. More specifically, the 

implementation is based on a dedicated middleware named 

TinySHM, which is currently under active development and 

features a hierarchical structure of basic utilities (e.g., time 

management, communication), mathematical operations, 

signal processing, and AI support (accelerated by ESP-DL 

library [12]). The specifications of the host devices, including 

main frequency and RAM capacity, are summarized in Table 5.  

Table 5. Host devices specifications. 

Layer Main Freq. RAM 

PC 2.50 GHz 32 GB 

LiftNode-ESP32 480 MHz 8 MB 

 

 

Figure 7. The main control board of LiftNode-ESP32. 

ESP32 features the capability for Wi-Fi Connection designed 

for IoT applications. By combining onboard SD card module 

for large volume data storage and IoT capabilities, the proposed 

framework can achieve large dataset storage via Internet 

streaming and record-by-record onboard processing within 

limited onboard memory. In short, the implementation adopted 

a ‘more time for less space’ strategy, using longer time 

consumption to address the limits of restrained onboard 

resources. This is reasonable, as the appearance of interested 

events can be sparse during monitoring, leaving enough time 

for edge device to process. Besides, the event records are only 

used to provide classification label, the core part for adaptive 

optimization is BO, which only focuses on the observation 

dataset 𝓓, simply data pairs of trigger parameters (threshold 

and duration) and performance metric (𝐹𝛽). Usually, it requires 

hundreds or thousands interested events to update the 

observation dataset 𝓓  once, which means low demand for 

computational capability on edge devices. 

In this research, each record was formulated to 1 min long, 

assuming most events will not exceed this duration. 

Theoretically, even the time history data is longer than 1 min, 

the onboard NN can still easily provide the type of events using 

partial data, showing the robustness of the proposed framework 

design. For each triggered and recorded event, the host device 

determined its type, and update the counting variable. Only 

when there are enough number of events recorded, the host 

machine will conduct BO for triggering parameter updating. 

 Results 

The detailed configurations for the optimization process is 

listed in Table 6, and the optimization process is recorded and 

visualized in Figure 8 and Figure 9. As illustrated in Figure 8, 

red dots represent Stage I optimization results and blue dots 

represent Stage II results. To accelerate convergence, a bonus 

factor of 1.1 is applied to the final 𝐹𝛽 score for iterations where 

both precision and recall exceed 90%. The final results 

including the baseline approach and breakdown results of stage 

I and II are presented in Table 9.  

Table 6. Validation configurations.  

Parameter Description Value 

noise std ambient vibration 2.92~3.57x10-3 g 

EQ peak val. earthquake 0.1 ~ 3.0 g 

IP peak val. impact 0.1 ~ 3.0 g 

SW peak val. wind (x noise std) 1.5 ~ 2.5  

beta beta in Eq (1) 5 

IniNum # initial observation  15 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-094 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 615 

IterNum1 # iteration in stage I 50 

IterNum2 # iteration in stage II 20 

bonus factor for p>0.9 & r>0.9 1.1 

𝜏𝑙𝑏  threshold lower bound 0 

𝜏𝑢𝑏 threshold upper bound 0.01706 

𝑑𝑙𝑏  duration lower bound 2 

𝑑𝑢𝑏 duration upper bound 10 

 

 

Figure 8. Optimization result overview. 

Table 7. Validation results. 

Item F-beta Precision Recall 

Baseline 0.8025 50% 100% 

Stage I 1.0808 96.33% 98.37% 

Stage II 1.0511 92.54% 95.72% 

 

As shown in Figure 9 and Table 7, the baseline method, 

marked in black, reflects a conservative conventional 

configuration. While it achieves high recall, this comes at the 

cost of significantly reduced precision, resulting in a high false 

trigger rate. In contrast, the proposed staged optimization 

framework effectively addresses this limitation. Several key 

observations can be drawn from the results. 

Superior Performance of SATM. The proposed SATM 

framework demonstrates clear advantages over the 

conventional approach, achieving 𝐹𝛽 scores of 1.0808 during 

pre-deployment optimization and 1.0511 during onboard 

optimization, significantly outperforming the baseline score of 

0.8025. These results highlight the effectiveness of SATM in 

optimizing triggering parameters for SHM applications. 

Strong Synthetic-to-Real Transferability. The similarity 

between data distributions in the pre-deployment phase (based 

on the digital twin) and the real-world onboard phase indicates 

strong transferability of the optimization strategy. Although 

some deviations are observed due to inherent differences 

between synthetic and real data, such discrepancies are 

expected to decrease as real-world data continues to 

accumulate over time. 

Highly optimized energy-efficiency ratio. For long-term, 

battery-powered monitoring, a trigger-based scheme is 

significantly more energy-efficient than always-on or duty-

cycled approaches. By adaptively optimizing the triggering 

parameters, the overall performance can be quantitatively 

evaluated using a dedicated performance metric. Depending on 

the initial parameter settings, energy consumption may 

decrease if the parameters are overly strict, or increase if they 

are too loose. However, one thing remains consistent: the 

energy-efficiency ratio improves, as reflected by the 

performance metric. 

 
 

Figure 9. Optimization results: (a) top view, (b) front view, (c) 

side view.  
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Efficiency of the Surrogate Model. The surrogate model, 

trained within the digital twin environment, significantly 

enhances the efficiency of onboard fine-tuning. It enables the 

optimization process to converge in fewer iterations compared 

to the initial stage, achieving rapid progression toward high-

quality configurations and yielding improved average 

performance during real-world deployment. 

Balanced Exploration and Exploitation. The two-stage 

deployment strategy effectively balances the trade-off between 

exploration and exploitation. The first stage emphasizes 

exploration, exhibiting greater variability in performance 

metrics to thoroughly investigate the parameter space. In 

contrast, the second stage focuses on refining configurations 

based on prior knowledge, resulting in stable and robust system 

performance. 

5 CONCLUSION 

This study introduces a smart adaptive triggering mechanism 

that seamlessly combines feedback control, digital twin 

modeling, and Bayesian optimization. It is specifically 

designed to tackle key challenges such as limited adaptivity, 

multi-objective optimization, unknown event distributions, 

lack of ground truth, partial observability, and high data 

acquisition costs. SATM is structured around four core 

components: the environment, the system, the estimator, and 

the controller. The mechanism functions through two 

sequential phases: an initial pre-optimization phase utilizing a 

digital twin to identify a strong baseline configuration, 

followed by an onboard fine-tuning phase that adapts 

parameters under real-world deployment conditions. 

Evaluations confirm that SATM achieves substantial 

improvements in triggering performance, delivering 

approximately a 30% increase in the 𝐹𝛽  score compared to 

traditional approaches. These results underscore the promise of 

SATM in enabling automatic, adaptive parameter tuning for 

trigger-based sensing systems across various application 

domains. In future, the proposed method will be used for long 

term monitoring uses and incorporate more types of events, e.g., 

structure failure. 

APPENDICES 

Excitation-Structure-Response Simulation: 

https://github.com/Shuaiwen-Cui/Research-

Excitation_Structure_Response.git 

 

Smart Adaptive Trigger Sensing: 

https://github.com/Shuaiwen-Cui/Research-

Smart_Adaptive_Trigger_Sensing.git 
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ABSTRACT: Monitoring the structural integrity of civil infrastructures, such as bridges and viaducts is crucial, as non-visible 

damage like post-tensioned wire breaks can lead to catastrophic failures, endangering public safety. In this study, we simulate 

post-tensioned wire breaks by generating controlled mechanical impacts using a sclerometer. These impacts are applied at varying 

distances from optical fibers cables attached to the tendons of two different structures. A novel detection framework is developed 

using distributed acoustic sensing (DAS) technology to identify post-tensioned wire breaks in a suspension and a concrete bridge 

while effectively distinguishing between vehicular noise, environmental noise, and actual wire break events. For suspension 

bridges, a spectrogram-based template matching approach is implemented, leveraging sub-band selection and image-based 

analysis to enhance sensitivity to break events while suppressing false positives from environmental noise. In concrete bridges, a 

deep learning-based convolutional neural network (CNN) model achieves 96% classification accuracy, outperforming traditional 

methods in detecting wire breaks with high precision. These approaches provide a real-time, reliable solution for structural health 

monitoring, offering significant advancements in distinguishing critical break events from background interference, improving 

bridge safety and maintenance strategies. 

KEY WORDS: Distributed acoustic sensors, Distributed optical fiber sensors, Structural Health Monitoring, Bridge monitoring

1 INTRODUCTION 

Bridge maintenance is crucial for infrastructure management, 

directly impacting public safety and economic stability. Among 

the key components of bridge structures, post-tensioned cables 

are essential for enhancing load-bearing capacity and ensuring 

structural integrity [1]. These high-strength steel tendons, 

tensioned after concrete curing, play a pivotal role in 

suspension and concrete bridges. However, wire breaks in post-

tensioned systems present a serious risk to structural stability, 

potentially causing catastrophic failures [2]. Such failures have 

led to costly repairs and tragic accidents, emphasizing the need 

for advanced monitoring and detection methods. 

Traditional detection methods for wire breaks include 

techniques such as visual inspections, electromagnetic testing, 

and strain gauges. While these approaches have served as the 

foundation for bridge maintenance, they have limitations. 

Visual inspections are subjective and often miss hidden defects, 

while electromagnetic testing is hindered by accessibility 

challenges and the need for specialized equipment [3]. Strain 

gauges, although effective in measuring tension, lack 

comprehensive coverage, particularly in inaccessible areas [4]. 

These limitations highlight the need for real-time, reliable 

systems for continuous monitoring of bridge infrastructure. 

The detection of post-tensioned wire breaks has been 

investigated using Fiber Bragg Grating (FBG) sensors and 

acoustic emission (AE) techniques, both crucial for ensuring 

the structural integrity of bridges and wind turbines. FBG 

sensors, which are point-based, detect wire breaks by 

monitoring changes in natural frequency [5], while AE 

methods, utilizing piezoelectric transducers, capture signals 

associated with wire fractures [6]. Despite their effectiveness, 

these approaches face challenges in distinguishing wire break 

signals from background noise. In contrast, Distributed 

Acoustic Sensing (DAS) technology presents a promising 

alternative by converting optical fibers into dense arrays of 

vibration sensors. DAS sensors offer continuous spatial 

coverage and capture spatiotemporal patterns, significantly 

enhancing the detection of wire breaks within noisy 

environments, particularly in large-scale structures. 

Additionally, DAS systems enable the tracking of event 

propagation along the entire length of the optical fiber, a 

capability absent in point sensors, which are limited to 

detecting localized signals and cannot monitor the full 

progression of an event. 

 DAS technology has emerged as an innovative technology 

that utilizes fiber optic cables to detect vibrations, enabling 

real-time data collection and analysis [7]. DAS technology, 

leveraging optical fibers, is currently used in various 

applications such as infrastructure monitoring [8], seismic data 

acquisition[9], security[10], and environmental research[11]. 

While DAS is typically employed for monitoring natural 

frequencies in Structural Health Monitoring (SHM)[12], this 

paper explores its use for detecting potential wire breaks in 

infrastructure. This technology addresses the shortcomings of 

traditional methods by providing reliable, continuous 

monitoring of the entire bridge, allowing for early detection and 

timely intervention to prevent minor issues from escalating into 

major problems. 

Simulating wire breakages under controlled conditions is 

essential for thoroughly testing and calibrating the DAS system 

for detecting such failures. Field testing with actual wire breaks 

in post-tensioned tendons is inherently challenging and 

impractical, as it requires the intentional damage of structural 

elements, which is not a feasible approach for testing. 

Post-tensioned wire breaks detection method using distributed acoustic sensing in 

bridges & viaducts. 
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Controlled impact testing has been widely used in structural 

health monitoring to simulate damage events in prestressed 

concrete [13], as well as for detecting wire breakages in post-

tensioned structures [14]. These methodologies substantiate the 

use of impact-induced stress waves as a reliable proxy for wire 

break simulations, enabling repeatable testing without causing 

irreversible structural damage. To generate these controlled 

impacts, a sclerometer was utilized, as it is a well-established 

industry method for producing stress waves that replicate those 

associated with actual wire failures. 

The evolution of detection algorithms for post-tensioned wire 

breaks using DAS has been driven by the need for efficient and 

accurate monitoring. Traditional, labor-intensive methods have 

been replaced by automated systems that employ artificial 

intelligence, machine learning, and advanced signal processing 

for real-time detection, even in challenging environments. 

Although DAS has proven effective in controlled settings, it 

faces challenges such as external noise and unpredictable 

conditions [15]. As an example, in railway systems, DAS 

techniques like gradient analysis and convolution have been 

used for rail break detection but can struggle with varying track 

conditions or interference [16]. 

Machine learning algorithms, such as support vector 

machines and neural networks, have improved detection 

accuracy but rely on large, labeled datasets, limiting their 

effectiveness in dynamic environments [17]. DAS systems 

have been explored as a promising solution to overcome these 

limitations in detecting wire breaks in prestressed concrete 

pipes. For instance, one study introduced a DAS system 

combined with a pre-trained support vector machine model, 

achieving 99.62% accuracy in classifying vibrational signals, 

thus automating the detection process and improving pipeline 

safety [18]. Another research applied DAS to detect wire 

breaks by analyzing key parameters, such as zero-crossing rate 

and short-time energy, which allowed for precise identification 

and location of acoustic signals generated by wire breaks in 

large experimental pipelines [19]. While both studies 

demonstrate the effectiveness of DAS in wire break detection, 

they do not address other potential causes of structural failure 

or the influence of environmental factors and external noise, 

which may limit the accuracy of these systems in practical, real-

world settings. 

This study proposes a novel approach for detecting post-

tensioned wire breaks in bridges using DAS technology. By 

strategically installing fiber optic cables along post-tensioned 

tendons, it enables continuous real-time monitoring and 

advanced signal processing to identify acoustic anomalies 

indicative of cable failures. This innovative methodology 

enhances bridge safety, reliability, and maintenance by 

addressing the limitations of current detection methods. The 

findings from this research demonstrate the potential of DAS 

to revolutionize structural health monitoring, offering a more 

efficient and cost-effective solution for premature failure 

detection and long-term infrastructure resilience. 

2  INSTALLATION AND SETUP 

An UTS-AS1000 DAS interrogator from Uptech Sensing 

was employed at two locations: a suspension bridge in Bear 

Mountain and a viaduct in Florida, both in the United States. A 

single-sensing optical fiber was used, and measurements were 

recorded with different fiber installations. The two sites were 

chosen to evaluate the DAS system’s performance in different 

structural environments.  

 Installation at Suspension Bridge 

First, in the Bear Mountain suspension bridge installation, the 

optical fiber was structurally bonded to one of the suspension 

cables using epoxy resin, enabling distributed acoustic sensing 

along the cable. A schematic representation of the installation 

is provided in Figure 1, where the monitored cable is 

highlighted in red. 

 

 

Figure 1: Schematic of the optical fiber (red line) installed at 

Bear Mountain bridge. 

   

 
(a) 

 
(b) 

Figure 2: (a) Suspension bridge with fiber optics from Type 1 

(red) and Type 2 (yellow) , placed within 1 cm of each other.                                                                                        

(b) Fiber arrangement in Type 1(red) and Type 2(yellow) 

cables with color-coded segments indicating their function. 

Two fiber optic cables from different manufacturers were 

installed in the structure: one from Prysmian (Type 1) and one 

from Solifos (Type 2), both of them containing several fibers 

for strain sensing (tight fibers in the cable) and for temperature 

sensing (loose fibers). The fiber was glued to a suspension 

cable of the Bear Mountain metal bridge by means of an epoxy 
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resin. These two fibers, strain and temperature, are widely used 

in industry when measuring with distributed strain and 

temperature sensors (DTSS), being the first tight bonded, thus 

sensitive to temperature and mechanical deformations, while 

the latter loosely bonded, therefore only much less affected by 

strain variations. However, for DAS sensing, both fibers will 

detect the acoustic events, since the sensitivity is highly 

increased with respect to a DTSS, but it is expected to have 

higher attenuation levels in loose fibers (temperature) rather 

than in tight fibers (strain). 

  The schematic representation of the cable installed in the 

structure is shown in Figure 2(a). Type 1 is highlighted in red, 

while Type 2 is highlighted in yellow. The Type 1 cable 

contains three fibers—two temperature-sensitive and one 

strain-sensitive. The Type 2 cable contains six fibers—four 

temperature-sensitive and two strain-sensitive. Together, they 

form a total of nine segments, each of the 60-m-long. The figure 

drawn is scaled for a better representation of the scenario. 

A 540 m composite fiber was formed by fusion-splicing the 

nine 60 m fiber segments in series. The purpose of creating this 

composite fiber was to investigate the impact of different fiber 

couplings on the measurements obtained by the DAS sensor, 

with the goal of determining whether significant differences in 

the results could be observed. The splicing at the different ends 

of fibers A and B is shown in Figure 2(b), with each fiber 

represented by a distinct color for clarity. In Type 1, the 

temperature-sensitive fibers are shown in blue and orange, 

while the strain-sensitive fiber is in green. In Type 2, the 

temperature-sensitive fibers are represented in purple, gray, 

red, and blue. The strain-sensitive fibers in Type 2 are shown 

in pink and black. The figure drawn is scaled for a better 

representation of the scenario. 

After creating the 540 m composite fiber, two distinct cables, 

each incorporating two different fiber types, were employed to 

evaluate the performance of both the cables and the optical 

fibers. The fiber-cable combinations were assessed to evaluate 

their impact on the system's ability to minimize false positives, 

improving the reliability of event detection. 

 Installation at Concrete Bridge 

Next, the interrogator was deployed at the Roosevelt Viaduct 

in Stuart, Florida, a major highway, where measurements were 

taken at the second location. It has a twin parallel drawbridge, 

one for northbound traffic and the other for southbound traffic. 

The interrogator was connected to a previously installed fiber 

for DTSS measurements in a road bridge in Florida. The 

sensing optical fiber is affixed to one of the tendons using an 

industrial-grade adhesive, ensuring strong coupling for 

effective vibration and acoustic sensing. This configuration 

enables the detection of structural responses to environmental 

and vehicular loads, facilitating distributed acoustic sensing 

along the bridge.  

The optical fiber was installed inside the structure of the 

Roosevelt Viaduct, with its placement highlighted in red in 

both images in Figure 3:. In Figure 3:(a), the exterior of the 

viaduct is shown for reference, providing context for the 

installation. In Figure 3:(b), the fiber was visibly integrated 

within the interior, demonstrating its positioning for structural 

monitoring. This setup was designed to optimize the detection, 

ensuring effective internal assessment of the viaduct's 

condition. Additionally, the impacts were generated at different 

distances from the fiber to evaluate the influence of the distance 

of the impact from the fiber on the detection performance. 

 

 
(a) 

 
(b) 

Figure 3: Optical fiber installation at Roosevelt Viaduct: (a) 

Exterior perspective from the structure, (b) Interior placement 

within the structure. Installed fiber is highlighted in red. 

Suspension bridges like the Bear Mountain metal bridge rely 

on cable-supported flexibility, allowing vibrations to dissipate 

through tensioned cables and the deck, resulting in distributed 

and oscillatory wave propagation. In contrast, concrete bridges 

such as the Roosevelt in Florida, with their rigid structural 

elements, transmit vibrations more directly through the solid 

slab and supporting components, leading to localized wave 

reflections and attenuation. This fundamental difference affects 

how vibrations propagate through each type of bridge[20]. This 

distinction in vibration behavior underscores the need for 

tailored monitoring approaches for each bridge type. With this 

understanding in mind, the impacts on both structures are 

approached differently. 

3 WIRE BREAK DETECTION 

 Experimental Design 

As introduced before, a controlled approach was employed, 

utilizing a sclerometer to generate impact events, simulating the 

sound and vibrations generated by a post-tensioned cable break, 

at varying distances from an optical fiber sensing cable affixed 

to the tendons of two distinct structures. The study analyzed the 

DAS system’s response to controlled impacts to assess its 

ability to detect, characterize, and locate potential tendon 

failures in real-world conditions, while minimizing the possible 

false cases generated due to other events that might produce 

similar sound patterns. 
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 On one hand, the DAS sensor is configured with a spatial 

resolution of 2m, a gauge length of 2m, and an acquisition 

frequency of 2 kHz, monitoring a 540-meter-long optical fiber 

cable on the suspension bridge installation. On the other hand, 

for the concrete bridge tests, the system used spatial resolution 

and gauge length of 3m, with the same acquisition frequency of 

2 kHz, to monitor a 3.5-kilometer-long optical fiber.   

In the suspension bridge configuration, impact events were 

generated using a sclerometer to replicate the characteristic 

waveforms of wire breakage. These impacts were delivered at 

varying angles relative to the suspension cable axis, enabling 

the investigation of strike orientation on the propagation of 

acoustic signals through the structure. As depicted in Figure 4, 

the monitoring optical fiber, highlighted in red, was positioned 

along the cable to capture the resulting waveforms. A series of 

tests was conducted under controlled conditions, with the 

impact responses systematically recorded for each test. The 

waveform of the sclerometer hits were obtained for angles of 

0º, 45º and 90º with respect to the position of the monitoring 

fiber. The resulting data were organized into a comprehensive 

dataset, facilitating further analysis of signal variations as a 

function of impact direction and intensity. 

 

Figure 4: Fiber optic scheme (red line) in suspension cable 

and sclerometer strike angle diagram relative to the position of 

the monitoring optical fiber. 

For the concrete bridge, impact events were generated at two 

carefully selected locations to assess the system's sensitivity to 

structural vibrations. As shown in Figure 5, the sensing fiber 

highlighted in red was positioned in the concrete slab to capture 

the resulting waveforms. The first set of impacts was applied at 

the midpoint of the 19th span, directly on the ground, to 

simulate the propagation of vibrations through the bridge deck. 

The second set of impacts was introduced on the ceiling, 

generating acoustic waves that traversed the upper structural 

elements. The impact events were generated at varying 

distances from fiber (0.7112m, 1.4224m, 2.032m, 3.3528m) in 

both cases. The resulting data were organized into a 

comprehensive dataset, facilitating further analysis of signal 

variations as a function of impact direction and intensity. 

 

 

Figure 5: Fiber optic scheme (red line) in concrete slab and 

sclerometer strike diagram relative to the position of the 

monitoring optical fiber in the bridge. 

 Data Analysis   

3.2.1 Data Analysis on Suspension Bridge 

Data analysis plays a crucial role in monitoring suspension 

bridges, enabling the assessment of structural integrity and the 

identification of potential issues. Nine fiber segments were 

used to monitor the same region, arranged one after the other in 

parallel. This configuration results in repeated measurements, 

with the hit observed across all nine segments. The fiber runs 

from A to B, as shown in the Figure 2(a) and Figure 2(b).  

In this study, the sclerometer hits were obtained for angles of 

0º, 45º, and 90º with respect to the position of the monitoring 

fiber. The waveform of the sclerometer hits was recorded at an 

angle of 0º relative to the position of the monitoring fiber. 

Figure 6 presents the first two segments, where the x-axis range 

from 20 to 80 meters corresponds to the first fiber segment, and 

the range from 80 to 140 meters represents the second fiber 

segment. Signal amplitudes are represented by the color scale 

previously shown, where negative values (down to -2.0 a.u) are 

indicated by blue hues and positive values (up to 2.0 a.u) are 

depicted in red, with near-zero values shown in white. All the 

waterfall plots were generated using this fixed amplitude limit 

to ensure consistent visual comparison across different events. 

Distinct diagonal and vertical patterns can be observed in the 

data distribution.  

Two segments monitor the same zone of the suspension 

cable, and the sclerometer hit was clearly visible in both, 

characterized by the diagonal pattern. This pattern was 

attributed to the propagation of the hit made at 0º angle respect 

to the structure, captured as the disturbance moves through the 

fiber. Notably, the second segment exhibits a reversed version 

of the pattern seen in the first segment, which results from the 

light in the second segment traveling in the opposite direction 

compared to the first, producing a mirror image of the hit’s 

propagation.  

 

Figure 6: Waterfall data from two segments with the hits from 

the sclerometer. 

Additionally, a fainter hit was observed closer to time 100ms, 

which was produced by the rebound of the sclerometer hit. It is 

important to note that whenever a hit is produced, it is usually 

followed by several rebounds, resulting in the consistent 

visibility of the secondary, fainter hit. Noise was also observed 

around the 80-meter mark as a vertical pattern, at the end of 

cable B, shown in Figure 2(a), is highly susceptible to wind 

exposure. This noise was not observed at end A, as this portion 

of the bridge was less affected by winds compared to the other 

end. 

A waterfall diagram containing a sclerometer stroke for the 

entire length of the fiber is shown in Figure 7. Diagonals with 

opposite slopes were observed, which were repeated along the 
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spatial axis (x-axis) and were found to correspond to the 

acoustic signals acquired by the nine optical fiber segments 

connected in series. Additionally, multiple diagonals over time 

(y-axis) were identified, representing replicas of the blow that 

had been generated by the sclerometer.  

When comparing the signals acquired from the center of each 

optical fiber region, it was evident that the strain fibers labeled 

as "c," "h," and "i" demonstrated the highest sensitivity. This 

was observed through both temporal and spatial replications, as 

each of these fibers consistently detected three replicates of the 

same event at different time intervals and locations. The 

repeated detection at multiple spatial points and across various 

times indicates that these fibers were particularly responsive to 

the transient events, highlighting their effectiveness in 

capturing the signal. In contrast, the temperature fibers had 

demonstrated variable sensitivity; fiber "d" had been able to 

detect the third replication slightly, whereas fibers "a," "b," "e," 

and "f" had not exhibited such detection capabilities. The 

consistency of the replicated patterns was observed to indicate 

a high degree of repeatability in the impact response of the 

sclerometer. This observation was found to highlight the 

reliability of strain-sensitive fibers in capturing high-frequency 

acoustic signals. Moreover, the periodic nature of the detected 

hits was noted, further reinforcing the consistency of the 

acquired signals. The temporal waveform at the center of each 

optical fiber region is presented in Figure 8. 

 

Figure 7: Waterfall diagram showing a sclerometer stroke hits 

obtained for angles of 0º acquired by the DAS sensor. 

 

Figure 8:  Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 7. 

The comparison of the performance across the nine segments 

highlighted distinct differences between fiber types, but no 

significant differences between cable types. As seen in Figure 

8, the strain fibers exhibited a pronounced detection pattern, 

while the temperature fibers showed a more subtle response. 

This difference is due to the tight bonding of strain fibers, 

which makes them highly sensitive to vibrations but also more 

prone to noise. In contrast, temperature fibers, with their loose 

bonding, produced less noise but were less effective at 

detecting vibrations. Therefore, the choice of fiber should 

depend on the specific application, with strain fibers ideal for 

high-sensitivity detection and temperature fibers better suited 

for scenarios where noise reduction is a priority. Additionally, 

as shown in Figure 7, the detection patterns were consistent 

across different cables when the same fiber type was used, 

indicating that cable type had a negligible impact on the overall 

detection performance. 

A similar analysis was conducted for impact angles of 45º 

and 90º with respect to the cable, revealing variations in the 

acquired waveforms. At 90º, as shown in Figure 9. The 

amplitude of the diagonals was observed to be lower than at 0º, 

and the temporal replicas of the signal could no longer be 

detected. The corresponding temporal waveform at the center 

of each optical fiber region, depicted in Figure 10, indicated 

that the amplitude of the impacts was comparable to 

background noise, making detection challenging without 

spatial information. 

 

Figure 9: Waterfall diagram showing a sclerometer stroke hits 

obtained for angles of 90º acquired by the DAS sensor. 

 

Figure 10: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 9. 
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For the 45º impact, the amplitude of the diagonals, which 

represents the signal strength along the diagonal axis of the 

data, as shown in Figure 11, was found to be similar to that of 

the 0º impact but greater than that of the 90º impact. While 

temporal replicas were still visible, they appeared significantly 

attenuated. The temporal waveform at the center of each optical 

fiber region, presented in Figure 12, demonstrates that the 

amplitude of the initial impact was distinguishable from noise, 

whereas the replicas became indistinguishable. These findings 

indicate that while monitoring fiber effectively captured 

acoustic events at different impact angles, the detectability of 

replicated signals was highly dependent on impact orientation, 

with attenuation effects becoming more pronounced at higher 

angles. 

 

Figure 11: Waterfall diagram showing a sclerometer stroke 

hits obtained for angles of 45º acquired by the DAS sensor. 

 

Figure 12: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those 

indicated in Figure 11. 

The monitoring composite fiber effectively captured acoustic 

events from different impact angles, although performance 

depended heavily on the impact orientation. Attenuation effects 

increased at higher angles, a phenomenon that field experts link 

to air gaps between the structure and cables at certain 

orientations, likely caused by installation flaws. Orientations 

where fibers were closer together experienced less gap 

interference, resulting in better event detection. This sensitivity 

profile indicates that high-energy events like tendon ruptures, 

especially in well-coupled areas, would produce strong, easily 

detectable signals similar to sclerometer impacts recorded 

outside poor coupling zones. These findings strengthen the 

system's potential for reliably detecting critical structural 

events, boosting confidence in its monitoring ability for vital 

infrastructure. 

3.2.2 Data Analysis on the Concrete Bridge 

In the context of monitoring concrete bridges, data analysis 

plays a crucial role in assessing integrity and detecting potential 

issues. For this analysis, data were recorded from hits generated 

by a sclerometer, simulating events such as wire breaks. Unlike 

suspension bridges, where the fiber installation allows for 

repetition across multiple segments, the configuration of fibers 

in concrete bridges is unique, meaning repetition of patterns 

across segments is not expected. A typical hit pattern detected 

by the interrogator is shown in Figure 13, The pattern clearly 

shows a hit detected across multiple spatial points, with surface 

waves propagating from the point of impact to adjacent 

locations. This wave distribution aids in detecting the event at 

various points, crucial for assessing the damage's extent. 

 

Figure 13: Waterfall diagram showing a sclerometer stroke 

acquired by the DAS sensor. 

 
Figure 14: Waveforms at different spatial positions of the 

monitoring fiber. The spatial positions correspond to those in 

Figure 13. 

A detailed analysis of the acquired signals was conducted, 

and the temporal waveform at points "a" to "d" was presented 

in Figure 14. The hits were distinctly observed, and the duration 

of each blow was measured at approximately the same time 

09:22:50. Furthermore, variations in amplitude across different 

spatial points were identified, suggesting differences in their 

sensitivity and signal attenuation. The time-domain 

characteristics of the acquired signals were analyzed, revealing 

that certain spatial points were more effective at detecting 

transient events due to their proximity to the point of impact 

and the propagation of surface waves. It was observed that 

signals from these locations exhibited stronger and clearer 

responses. Optimizing fiber selection and positioning could 

enhance detection accuracy by placing fibers at strategic 
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locations where the signal propagation is most pronounced, 

thereby capturing more relevant data.  

 

 

Figure 15: Waveforms at central positions of the fiber 

monitoring for different hitting lengths from the fiber. 

The impacts from the sclerometer at the different distances 

from the fiber were taken, and the mid spatial point is chosen 

from all the impacts, and their temporal evolution is shown in 

Figure 15. The decrease in hit amplitude with increasing depth 

from the sensor is primarily due to the fundamental principles 

of seismic wave propagation in concrete. As acoustic waves 

travel through the slab, their energy disperses, leading to 

geometric attenuation. Additionally, material absorption within 

the concrete causes further energy loss. Scattering effects due 

to variations in the concrete's composition and microstructural 

heterogeneities also contribute to signal attenuation. These 

combined factors naturally result in a reduction in amplitude as 

the distance from the source increases. 

 

Figure 16 Maximum detection range estimation for tendon 

break monitoring. 

To quantify the effective detection range for tendon break 

monitoring, the exponential attenuation relationship observed 

in Figure 15 was extrapolated using curve fitting analysis. The 

measured signal decay follows 𝑦 = 𝑎𝑒−𝑏𝑥 + 𝑐, with 

amplitudes decreasing from 27 dB at 1 m to 9 dB at 9 m due to 

geometric spreading, material absorption, and scattering effects 

in concrete. A minimum detection threshold of 5 dB was 

established to ensure reliable discrimination of tendon break 

signals from background noise. The fitted model, as shown in 

Figure 16 predicts a maximum effective detection range of 10.6 

meters, beyond which the combined effects of wave 

propagation losses render tendon break detection unreliable. 

This analysis provides essential parameters for determining 

sensor spacing in structural health monitoring systems, 

ensuring complete coverage for the early detection of 

prestressing tendon failures in concrete bridges. 

In conclusion, this analysis highlights the influence of the 

distance between the sclerometer hits and the fiber on the 

amplitude of the detected signals. The decrease in hit amplitude 

with increasing distance is attributed to seismic wave 

propagation, material absorption, and scattering effects within 

the concrete. To enhance the sensitivity and reliability of the 

monitoring system, it is recommended that the sensing fiber be 

placed closer to the structure, allowing for more accurate 

detection of breaks and better signal capture. 

 Detection Algorithm 

3.3.1 Detection Algorithm for Suspension Bridges 

The hits from the suspension and concrete bridge were 

clearly observed in the data, with the temporal traces from the 

relevant spatial points carefully explored to study the generated 

impacts. These impacts were analyzed in detail to understand 

their characteristics and temporal evolution. This was used 

effectively in designing the detection algorithm for the two 

structures.  

As for the suspension bridge, in this study, a spectrogram-

based method was proposed, utilizing only a single fiber 

segment. A spectrogram-based template matching approach 

was employed for the suspension bridge to detect transient 

events in time series data across multiple sensor channels. This 

method was chosen for its ability to detect transient events 

across multiple optical fiber segments by leveraging 

spectrogram-based template matching. The use of multiple 

optical fiber segments enhances the spatial robustness of the 

detection, reducing the likelihood of false positives and 

ensuring reliable identification of events. Additionally, the 

repetition of results across various fiber segments provides 

strong validation for detected events, reinforcing the reliability 

of the method. This approach is preferred over machine 

learning as it offers a clear, interpretable process that directly 

correlates spectral energy variations with event detection, 

without the complexity and data dependency often associated 

with machine learning models. 

The methodology consisted of sequential steps, beginning 

with spectrogram computation. Given a time series 𝑥(𝑡), its 

time-frequency representation was obtained using the short-

time Fourier transform (STFT), producing a spectrogram 

𝑆(𝑓, 𝑡), where 𝑓 represented frequency and 𝑡 represented time. 

For the spectrogram computation, a window length of 256 

samples and an overlap of 248 samples were used. This 

transformation enabled the localization of spectral energy 

variations over time, forming the basis for subsequent feature 

extraction. 

To enhance sensitivity to specific frequency components, 

sub-band selection was performed by isolating predefined 

frequency ranges from the spectrogram. Two sub-bands were 

defined for analysis: Sub-band 1 ranged from 90 to 180 Hz, and 

Sub-band 2 ranged from 350 to 440 Hz. This process yielded 

refined sub-band spectrograms 𝑆′(𝑓, 𝑡), where only the relevant 

spectral components were retained. Each extracted sub-band 

spectrogram was then treated as an image 𝐼(𝑓, 𝑡) in which pixel 
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intensities corresponded to spectral power. This conversion 

facilitated the application of image-processing techniques for 

event characterization. 

The core of the detection methodology involved template 

matching, in which a predefined temporal template was 

convolved with 𝐼(𝑓, 𝑡) to identify characteristic signal patterns. 

The template was designed with three consecutive time slots, 

where the first and third slots were assigned a weight of -1, and 

the central slot was assigned a weight of 1. This structure 

enhanced contrast by emphasizing transient spectral changes 

while suppressing background variations. The template 

extended across the entire frequency sub-band, ensuring 

comprehensive coverage of the targeted spectral range. 

Through convolution, a response function was obtained that 

highlighted localized temporal variations indicative of hits. 

 

Figure 17: Detection of the hits in the suspension bridge. 

To ensure spatial robustness, the template matching 

procedure was applied independently across multiple fiber 

sensor locations, generating a three-dimensional response 

matrix 𝑀(𝑐, 𝑡) where 𝑐 represented the sensor channel and 𝑡  

denoted time. Each entry in 𝑀(𝑐, 𝑡) corresponded to the 

template matching response at a given location and time. A hit 

was considered when multiple sensor channels exhibited a 

significant response simultaneously, thereby reducing the 

likelihood of false positives caused by localized noise or 

isolated fluctuations. A thresholding operation was applied to 

𝑀(𝑐, 𝑡) to identify significant activations, ensuring that only 

strong and spatially correlated events were retained. The 

detection results are presented in Figure 17, where the 

significant activations identified through the thresholding 

operation are distinctly visualized across the sensor channels. 

The algorithm successfully identified the sclerometer impact 

points, which are highlighted in pale blue within the figure. 

Despite the use of a single segment, minimal false-positive 

rates were achieved. The analysis was conducted exclusively 

on this segment, demonstrating the effectiveness of the 

proposed approach in reducing false positives. These results 

highlight the spatial and temporal correlations of the detected 

hits, demonstrating the effectiveness of the method in 

identifying true events while minimizing false positives. The 

figure provides a comprehensive overview of the detected 

impacts within the given time frame and sensor locations. By 

integrating sub-band selection, image-based template 

matching, and distributed sensor analysis, the approach 

provided a scalable and robust solution for detecting transient 

events in DAS applications. High sensitivity to localized 

perturbations was achieved while mitigating false positives, 

making the methodology well-suited for health monitoring and 

real-time monitoring for the suspension bridge. 

3.3.2 Detection Algorithm for Concrete Bridges 

This study presents a deep learning-based approach for 

detecting wire breaks in concrete bridges utilizing 

Convolutional Neural Networks (CNNs). Unlike suspension 

bridges, which benefit from repetition across multiple 

segments, allowing for template matching, concrete bridges 

lack this repeatability in optical fiber segments, necessitating a 

different method. Machine learning is preferred over traditional 

techniques because it can automatically learn complex patterns, 

eliminating the need for manual feature extraction. CNNs are 

ideal for this task as they efficiently learn complex patterns and 

features from data, making them highly effective for detecting 

wire breaks in concrete bridges.  

The dataset consists of positive images showing a pattern 

from hits and negative images of patterns from vehicles and 

other patterns that are not hits. To generate a more robust 

dataset for training, a Generative Adversarial Network (GAN) 

was utilized for data augmentation, as it generated realistic 

synthetic data that enhanced the training dataset. GAN-based 

data augmentation techniques were employed here to create 

additional images, ensuring a larger and more diverse set of 

training data. The images were preprocessed and resized for 

uniformity, and the dataset was split into training and testing 

sets. Positive images were labeled as 1, and negative images as 

0. This ensured the model could effectively learn to distinguish 

between the two classes. 

The CNN architecture consists of five fully connected 

convolutional layers, each followed by a max pooling layer, 

which reduces the spatial dimensions while retaining key 

patterns. The number of filters increases progressively with the 

layers, to capture both low- and high-level features. The 

extracted feature maps are then flattened and passed through a 

fully connected layer, followed by a single neuron with a 

sigmoid activation to classify the images into two categories: 

breaks (1) or not possible breaks (0).  

The training process and the model’s learning progression are 

illustrated in Figure 18, which presents both training and 

validation loss trends throughout 15 epochs. Two side-by-side 

plots are shown: the left plot depicts a consistent decrease in 

loss values for both the training and validation datasets, while 

the right plot demonstrates an increase in accuracy metrics, 

which plateaued around 95%. The model was trained 

efficiently, and convergence was achieved with minimal 

overfitting, as indicated by the close alignment between 

validation and training performance throughout the training 

period. 

 

Figure 18 Training and validation loss curves over 16 epochs. 
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Post training, the model’s performance was evaluated on the 

test set, where predictions were converted into binary labels. 

Standard evaluation metrics, including accuracy, precision, 

recall, and F1-score, were calculated. Performance metrics and 

the confusion matrix are presented in Table 1 and the 

classification report is presented in Table 2, offering a detailed 

overview of the model’s effectiveness. Confidence scores and 

entropy were also calculated to measure the model’s certainty 

in its predictions. 

Table 1 Confusion Matrix 

 Predicted 

Negative 

Predicted 

Positive 

True Negative 673 19 

True Positive 18 313 

 

Table 2 Classification Metrics  

Type of  

Perturbation 

Precision Recall F-score 

Negative 0.97 0.97 0.97 

Positive 0.94 0.95 0.94 

 

 

The predicted labels were visually compared with true labels 

on a subset of test images to assess the model’s accuracy. Based 

on the results obtained, the proposed deep learning-based 

model demonstrates robust performance in detecting wire 

breaks in concrete bridges. The model achieved an overall 

accuracy of 96%, as evidenced by the confusion matrix and 

classification report. Visual comparisons of predicted and true 

labels for a subset of test images highlighted the model’s 

strengths in correctly identifying wire breaks, while also 

revealing some misclassifications that can be improved. These 

insights are crucial for refining the model and enhancing its 

performance. This method’s potential to advance structural 

health monitoring, particularly in the context of bridge 

inspections, underscores its importance in improving the safety 

and maintenance of infrastructure. 

4 CONCLUSION 

A comprehensive method was developed for detecting post-

tensioned wire breaks in both suspension and concrete bridges 

using DAS. By tailoring techniques to each bridge type, the 

approach enabled real-time monitoring and effective detection, 

classification, and localization of cable break events. These 

advancements offer valuable applications in improving the 

safety and maintenance of critical infrastructure. 

In the suspension bridge, the monitoring fiber captured 

acoustic events at various impact angles; however, signal 

detectability was strongly influenced by orientation. The 

comparison of performance across different segments revealed 

distinct differences between fiber types, though no significant 

differences were observed between cable types. The strain 

fibers exhibited a pronounced detection pattern, while 

temperature fibers showed a more subtle response. Based on 

these findings, a spectrogram-based template matching 

approach was developed, incorporating sub-band selection and 

image-based matching. This method enabled accurate detection 

while maintaining low false positive rates, even when relying 

on a single fiber segment. Therefore, the choice of fiber should 

depend on the specific application, with strain fibers ideal for 

high-sensitivity detection and temperature fibers more 

appropriate for environments requiring minimal noise. 

For the concrete bridge, a decrease in signal amplitude was 

observed as the distance from the fiber increased. This 

emphasized the need to place the fiber close to the structural 

surface. A CNN achieved 96% classification accuracy, 

outperforming traditional methods in both precision and false 

positive reduction. Data augmentation using a GAN further 

improved model generalization by creating a diverse training 

dataset. 

These tailored methodologies provide effective, real-time 

monitoring strategies for both bridge types. Future efforts 

should focus on integrating the proposed techniques to improve 

system accuracy and adaptability in complex environments, 

and on exploring additional data augmentation strategies to 

further enhance model robustness. 
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ABSTRACT: Prestressed concrete bridges are designed to limit cracking. Aging can lead to prestressing steel fractures with strain 

changes without visible cracks. To detect and locate fractures, long-term monitoring with distributed fiber optic sensors in 

combination with acoustic emission sensing is useful. This study focuses on fiber optic sensing based on Rayleigh backscattering. 

A long-term monitoring system was installed to ensure the service of two prestressed concrete bridges in Munich. Their 

prestressing steel is at risk of stress corrosion cracking. For reliable operation of the fiber optical measurements, tests were carried 

out both in the lab and in the field to investigate the measurement signal in conditions that are as isolated as possible. On the 

bridges data is collected at three-month intervals starting in 2021. Furthermore, strain changes caused by temperature fluctuations 

and traffic loads were captured. Moreover, valuable insights are being gained in a long-term operation. The investigations show 

that long-term fiber optical strain measurements are useful to assess the structural behaviour of existing prestressed bridges over 

several years and can ensure safety of structures. 

KEY WORDS: SHMII-13; prestressed bridges, DFOS, stress corrosion cracking. 

1 INTRODUCTION 

The first standards and regulations for prestressing steel in 

Germany were developed after 1945 [1]. The first decades of 

the use of prestressing steel were the source of many structural 

problems in prestressed bridges. Due to the lack of knowledge 

at that time, some deficiencies can still be found in existing 

bridges today. One such material defect is the susceptibility of 

prestressing steel to stress corrosion cracking. This can lead to 

brittle failure of the steel without plastic deformation and 

subsequent collapse of the component without warning. 

Recently stress corrosion cracking led to the component failure 

of the Carola Bridge in Germany [2]. In this case, cracks were 

observed years before failure, but the existing crack widths 

were below the standard limits [3]. Acoustic emission (AE) 

monitoring is proposed for the remaining bridge components 

[4]. 

 

 
Figure 1. longitudinal and cross-section of the bridge 

„Kreuzhof“ BW40/45 

In Munich, a monitoring system with AE has been in 

operation since 2021 on two bridges with prestressing steel 

sensitive to stress corrosion cracking. Additionally, distributed 

fiber optical sensors (DFOS) are in usage for crack detection. 

On these bridges, DFOS can also be used to monitor structural 

behaviour. This application of DFOS for structural behaviour 

monitoring has been carried out in many cases. [5], [6], [7] and 

[8] are just a few examples. This case study provides some 

insights into the laboratory and field tests and shows selected 

results from the past years.  

 

2 MONITORING KREUZHOF BRIDGES 

German bridges with stress corrosion cracking sensitive steel 

must be reassessed according to the guideline HA SpRK [9]. 

This guideline recommends the numerical verification of 

sufficient warning behaviour as crack-before-failure. For both 

"Kreuzhof" bridges, the crack-before-failure criterion could not 

be verified in every section. But even in areas with sufficient 

warning behaviour, an object-related inspection instruction 

must be defined. 

The bridges were built in 1967 and span a four-lane road. 

They are three-span slab bridges with longitudinal tubular 

voids and span lengths of about 20.5 m – 29.0 m – 20.5 m. The 

concrete slabs are prestressed by the bonded post-tensioning 

system according to the approval of the company “Polensky 

und Zöllner”. There is a minimum of two and a maximum of 

six post-tensioning tendons in each web between these hollow 

bodies. Figure 1 shows the longitudinal and the cross-sectional 

profiles of bridge “BW40/45”. 

Acoustic emission sensors have been installed for direct 

detection of steel fractures. They are measuring continuously 

since 2021. The local and global structural response to fractures 

is measured as strain changes along the length of the bridge. 
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Data is collected three to four times a year using BRUSens V9 

distributed fiber optical sensors. Rayleigh backscattering 

technology is used with the ODiSI instrument manufactured by 

Luna Innovations Incorporated. The DFOS are applied in a 

groove milled into the structure and are located in every second 

web on the bottom of the slabs. In addition, 1.5 years of data 

acquisition was carried out using different sensor technologies 

for object-specific traffic load determination (B-WIM system). 

More details can be found in [10] and [11]. 

3 VERIFICATION OF STRAIN MEASUREMENTS 

For verification of the measurements tests were performed in 

the laboratory using the same type of sensor. The BRUSens V9 

is a layered sensor with an outer PA sheath, a stainless steel 

tube and a multilayer buffer to the optical fiber. In order to 

simulate the strain transfer from the host material to the sensor 

core in an equivalent way, the sensor was applied to a concrete 

specimen using the same method. The aim of these tests was to 

investigate conditions that were as isolated as possible. This 

was achieved by applying pure compressive, tensile or 

temperature loads, generating a specific crack width and 

performing a long-term test under constant conditions. In 

addition, different sensors with the same and different 

measurement principles were used for each test to validate the 

reliability of the strain signal. 

Test loads were also applied to the bridges by trucks at the 

beginning of the monitoring and repeated after six months. The 

tests were carried out to assess structural behaviour and to 

analyse environmental effects on the measured data. For in-

field verification, it was possible to compare the DFOS results 

with those from the B-WIM strain gauges. 

4 RESULTS AND DISCUSSION 

Laboratory tests show reliable results for compressive and 

tensile strains in the uncracked concrete. When cracks appear, 

due to the sensors layers a slippage can occur. In this case the 

crack width can no longer be determined exactly. Various 

studies have also analysed the measurement signal at crack 

opening with different sensors, i.e. [5], [12], [13], [14]. The 

appearance of a crack manifests itself always as a strain peak, 

even in the case of slippage. In prestressed structures already 

new formed small cracks are first signs of a deterioration. 

If a test specimen is subjected to a constant temperature load, 

the DFOS BRUSens V9 will record the thermal expansion of 

the inner stainless steel jacket layer. In addition, the strain 

profile scatters over the sensor length with increasing 

temperature difference. In the tests, a value between 

15 und 19 × 10-6/K was determined for the thermal expansion 

coefficient of the sensor, whereby the average value is 

16 × 10-6/K according to the manufacturer Solifos AG [15]. 

Strain measurements on the bridges show that only very 

small strain changes of less than 30 µm/m (0.03 ‰) occur when 

two trucks with a maximum vehicle weight of 42 tonnes are 

loaded. This means that the measurement signal from light 

vehicles such as cars is masked by the DFOS measurement 

noise. On both bridges no cracks have been detected since the 

start of monitoring. 

In contrast, strain changes due to temperature variations are 

particularly pronounced. Figure 2 presents selected results from 

the mid-span of the 'Kreuzhof' bridges. The raw data taken on 

twelve different days since November 2021 are shown. When 

these results are compared with the theoretical strain change at 

the given temperature, the same influence of thermal expansion 

on the data as in the laboratory results is observed. 

Furthermore, strain peaks in Figure 2 have a dominance of 

approx. 200 µm/m (0.20 ‰). In laboratory tests, such peaks are 

an indication of the presence of a crack. A visual inspection of 

the bridge revealed an offset in the concrete surface in the 

location of the peak. This concrete offset results in a 

longitudinal offset of the sensor, which means that linear strain 

transmission between the concrete and the glass fibre core is 

not possible. When comparing all measurements over several 

years, the strain peaks appear in the same location. Provided a 

single measurement signal is referenced to a measurement 

taken at a similar temperature, no more pronounced strain 

peaks are visible. The conclusion is that no new strain change 

has occurred at these locations. In a theoretical case of a 

possible prestressing steel fracture, a local peak would appear 

that could be distinguished from the temperature. 

 

 
Figure 2. Raw data of the results and the corresponding 

temperature in the mid-span of bridge BW40/45 from 

November 2021 to June 2024 

 

5 CONCLUSION 

The long-term monitoring on the “Kreuzhof” bridges in 

Munich, employing acoustic emission sensors and distributed 

fiber optic sensors (DFOS), does guarantee a safe operation of 

the bridge service. Laboratory tests have been crucial in 

understanding the limitations and reliability of the DFOS 

measurements, particularly in the presence of cracking and 

temperature variations. While with in field tests object specific 

limitations are discovered.  

The City of Munich decided to replace the bridges due to the 

risk of stress corrosion cracking in the prestressing steel and a 

future tram line which will pass under these bridges. In January 

2025 destructive structural tests were carried out shortly before 

the partial dismantling to validate the monitoring system. The 

first results will be generated in the middle of the year 2025. 
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ABSTRACT: Stress corrosion cracking (SCC) of prestressing steel represents a critical threat to the long-term safety and 

serviceability of aging bridge infrastructure. This phenomenon occurs within the cross-section and leads to the initiation and 

propagation of cracks, ultimately causing the rupture of the prestressing wires, which may ultimately result in sudden bridge 

failure. This underscores the need for reliable monitoring solutions. Traditional non-destructive testing techniques, while valuable, 

often lack high-resolution capabilities. In contrast, Distributed Fiber Optic Sensing (DFOS) has emerged as a transformative 

approach, offering high-resolution, continuous monitoring of strain distribution and crack development in concrete structures. 

This study demonstrates the practical application of DFOS technology for detecting and quantifying crack propagation in 

operational bridge structures affected by the risk of active SCC. By considering field investigations on four infrastructure projects 

the research evaluates DFOS performance for structures vulnerable to SCC. The paper demonstrates the technology’s capability 

to monitor crack dynamics under operational conditions as anomalies in the crack pattern may indicate early symptoms of 

structural damage caused by SCC. By bridging knowledge gaps in the application of DFOS for infrastructure safety, the study 

advances the role of fiber optic sensing in addressing SCC challenges, ultimately contributing to the development of more resilient 

and sustainable bridge monitoring systems. 

KEY WORDS: DFOS, distributed fiber optic sensing, stress corrosion cracking, bridge monitoring, SHM, structural health 

monitoring. 

1 INTRODUCTION 

 Background and motivation 

Stress corrosion cracking (SCC) is a critical degradation 

mechanism in prestressed concrete bridges. This phenomenon 

involves the initiation and gradual propagation of cracks in 

prestressing wires inside the cross-section, often remaining 

undetectable by conventional methods in early stages. As the 

process advances, stress concentrations may lead to surface 

cracking in prestressed elements. Progressive SCC results in 

sequential wire rupture, reducing structural capacity and 

potentially leading to sudden failure. This form of corrosion is 

particularly insidious due to its delayed manifestation and the 

absence of external indicators, making early detection 

extremely difficult. Numerous historical cases have shown that 

even well-constructed bridges can suffer unexpected failures 

due to SCC, emphasizing its relevance for long-term structural 

integrity [1]. As many existing bridges age and are subjected to 

increasing traffic loads, the risk posed by SCC continues to 

grow. Conventional inspection techniques often fail to capture 

early signs of SCC, prompting the need for advanced, reliable 

monitoring methods. Therefore, the development and 

implementation of modern evaluation and monitoring 

strategies are essential to ensure the safety and longevity of 

critical infrastructure. 

 Scope and objectives of the article 

This paper focuses on the application of Distributed Fiber 

Optic Sensing (DFOS) in the monitoring of structures 

susceptible to SCC, with examples of identifying structural 

response to loading, crack detection, and evaluation of crack 

width changes. The article also outlines the advantages of 

DFOS over conventional inspection methods, emphasizing its 

ability to provide continuous, high-resolution, and little-

invasive monitoring. 

2 FUNDAMENTALS OF STRESS CORROSION 

CRACKING IN BRIDGES 

 Mechanisms of SCC in prestressing steel 

The phenomenon of SCC refers to the chemical and/or 

electrochemical corrosion of a material under the simultaneous 

influence of static tensile stress. Two primary types of SCC in 

steel can be distinguished: anodic and cathodic corrosion [2]. 

Anodic corrosion involves the decomposition of material at the 

surface through an electrolytic reaction. Cracks form deep 

inside the crystal structure and are not visible from the outside. 

In contrast, cathodic corrosion occurs when free hydrogen 

atoms penetrate the metal’s crystal structure. As hydrogen 

molecules form, they cause internal expansion, which leads to 

crack initiation along the grain boundaries. 

Microscopic corrosion scars are usually the points of 

crack initiation. Scanning electron microscope (SEM) studies 

have shown that microcracks begin at weak points in the grain 

structure and grow into a honeycomb-like pattern [2]. The 

visible signs of stress corrosion manifest as numerous 

microcracks, perpendicular to the axis of the prestressing 

strand, starting at the surface and progressing inward — 

Distributed fiber optic sensing of bridges with stress corrosion cracking 
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see Fig. 1. What makes SCC particularly dangerous is 

progression without visible deformation of the structure or 

expansive corrosion products, meaning failure often happens 

suddenly due to brittle fracture of the prestressing steel. 

In Germany, high-strength steels with tensile strengths 

above 1700  N/mm², used primarily in the 1960s and 1970s, are 

considered particularly susceptible to SCC. This includes steel 

types such as Neptun St  145/160 (FRG), Sigma St  145/160 

(FRG), and Hennigsdorf St  140/160 (GDR) [3]. 

 

 

Figure 1. Inspection of the prestressing strand taken from the 

Carola Bridge (Dresden): a) microcracks visible by fluorescent 

magnetic particle method, b) longitudinal section [4] 

 Impact of SCC on structural integrity and service life 

Several failures of well-designed and properly built 

structures have been linked to SCC. A prominent example is the 

partial collapse of a production hall in Mannheim in 1989, after 

28 years of use. Investigations revealed that the primary cause 

was the loss of flexural capacity in the roof girders due to SCC. 

Despite proper grouting and maintained alkalinity, the 

prestressing wires showed numerous microcracks characteristic 

of SCC. Similar damage occurred in Mühlacker in 1992, where 

only rapid intervention prevented a collapse. Even with 

completely filled ducts, SCC-induced cracking was found in the 

prestressing steel. In some cases, such as the collapse of the 

Berlin Kongresshalle in 1980, SCC acted as an additional factor 

accelerating degradation, alongside moisture and chlorides. 

Recent events underline the ongoing relevance of SCC: 

In September 2024, a 100-meter section of the Carola Bridge in 

Dresden collapsed due to severely corroded and fractured steel 

tendons [4]. The collapse caused major infrastructure and traffic 

disruptions in the city. Demolition of the remaining structure is 

currently planned. Similarly, in November 2024, the Elbe Bridge 

in Bad Schandau was immediately closed after inspections 

revealed longitudinal cracks in prestressed elements (particularly 

in the lower arch). The closure caused significant local transport 

disruptions, with temporary ferry services established. At the 

beginning of April 2025, load tests of the bridge were conducted. 

The collected results, including strain measurements using 

DFOS, were used to calibrate the computational model. Based 

on the performed analysis, authorities decided to temporarily 

reopen the bridge for use, with a restriction on the maximum 

allowed vehicle weight. 

It is estimated that in Germany, there are at least 500 

[5], [3] or even 1000 bridges [6] still in service that contain 

prestressing steel susceptible to SCC. Due to the considerable 

costs and potential socio-economic consequences, it is essential 

to take actions aimed at extending the service life of these 

structures while maintaining an appropriate level of safety and 

considering the economic and environmental impacts. 

 Limitations of conventional monitoring technologies 

Conventional monitoring methods have notable 

limitations in detecting and observing SCC. Visual inspection, 

though widely used, is time-consuming, costly, and limited to 

surface-level damage. Moreover, the reproducibility is limited 

due to the high dependency of crack localization on the 

observer's perception, as well as on environmental conditions 

at the time of inspection, such as temperature and humidity. It 

cannot detect microcracks or subsurface flaws, which often 

form due to localized stress concentrations – such as those 

caused by ruptured prestressing tendons [7]. 

Non-destructive testing methods like ultrasonic or 

radiographic testing offer deeper insight but still struggle with 

early-stage SCC, particularly in inaccessible areas or complex 

geometries [8]. These methods require skilled operation, offer 

limited scanning depth, and are significantly affected by the 

density of reinforcement. Early-stage SCC, which typically 

begins as microscopic damage below the surface, can avoid 

being detected until it becomes critical. Conventional 

techniques lack sensitivity to local stress concentrations, which 

are critical indicators of potential SCC initiation [9].  

3 DISTRIBUTED FIBER OPTIC SENSING (DFOS) FOR 

STRUCTURAL MONITORING 

 Principles and advantages of DFOS 

DFOS systems utilize the Rayleigh, Brillouin, or Raman 

scattering mechanisms in optical fibers to measure strain, 

temperature, or vibration continuously along the fiber length 

[10], [11]. Optical fibers serve both as the sensing element and 

the transmission medium, making them ideal for long-range, 

distributed measurements without the need for discrete sensors. 

Depending on the chosen scattering principle and 

instrumentation (e.g., OFDR, BOTDA), high spatial resolution 

(down to the millimeter scale) and varying sensing ranges 

(from 100 m to over 80 km) can be achieved [12]. 

The DFOS technology offers the following advantages: 

▪ Provides high-resolution structural monitoring over time and 

along the full length of the sensor [13]. 

▪ Enables early detection of the cracks in reinforced and 

prestressed concrete structures, with the sensitivity 

allowing to detect even microcracks with very small widths 

[14]. 

▪ DFOS can be integrated into digital twin models and 

automated data analysis pipelines, supporting predictive 

maintenance and real-time infrastructure assessment [15]. 

 Application of DFOS in crack detection and strain 

monitoring 

Distributed Fiber Optic Sensing (DFOS) enable 

continuous, high-resolution strain measurements that are 

particularly effective for detecting cracks and evaluating their 

width changes in reinforced and prestressed concrete 

structures. Cracks are identified by localized strain peaks in the 

profile, which are analyzed based on parameters such as 

prominence, height, and width. The key challenge lies in 

a) 

b) 
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distinguishing these from peaks caused by noise or local 

deformation accumulations, which do not necessarily indicate 

cracks [16]. Crack detection is based on the algorithms 

employing a topographic approach, with peak height and 

prominence serving as key parameters. They quantify how 

distinctly a peak stands out from its surrounding strain 

environment. The careful selection of these parameters is 

critical: if set too high, adjacent cracks may be mistakenly 

interpreted as a single, broader crack, while if set too low, 

insignificant microcracks may be falsely detected, leading to 

overestimated number of cracks and underestimated widths of 

the real cracks at the same time. Additional parameters such as 

minimum peak width are employed to further filter out noise 

and ensure that only meaningful strain concentrations are 

considered.   

The width of an identified crack is calculated as the 

integral of the strain distribution between local minima, which 

define the boundary of the strain peak – see Fig. 2. In reinforced 

concrete members, the tension stiffening effect reduces the 

apparent crack width, what is included by adjusting the area 

under the strain distribution curve according to the following 

equation 

 𝑤𝑐𝑟,𝑖 = ∫ 𝜀
𝑥𝑐𝑟,𝑖+𝑙𝑡,𝑖

+

𝑥𝑐𝑟,𝑖−𝑙𝑡,𝑖
− (𝑥) − 𝜀TS(𝑥)d𝑥 (1) 

where: 

xcr,i  – position of the crack, 

lt,i−  – distance to the preceding local minimum, 

lt,i+  – distance to the following local minimum, 

ε (x)  – measured strain, 

εTS(x)  – strain resulting from tension stiffening effect. 

 

Practically, the effect of tension stiffening is accounted for in 

crack width calculations by subtracting the shaded regions, 

representing the contribution of concrete, from the total area 

under the strain distribution curve. These regions are typically 

approximated as triangular zones with peak values located at 

midpoints between adjacent cracks. 

 

 

Figure 2. Parameters included in crack detection and 

estimation of crack width 

 

 The presented approach allows for accurate 

quantification of width changes as small as 0.02-0.05 mm [17]. 

Herbers et al. [18], [19] demonstrated that Rayleigh-based 

DFOS systems can reliably identify cracks across different 

fiber types and installation methods, achieving results 

comparable to those obtained using high-resolution digital 

image correlation (DIC) techniques. 

In addition to crack monitoring, DFOS is also effective 

in identifying prestressing wire or tendon failures. Abrupt strain 

changes – such as localized jumps or sudden deviations in 

gradient – are key indicators of tendon breakage events and can 

be detected with high spatial resolution [20]. Such events can 

be detected using DFOS, which is particularly well-suited for 

periodic measurements. To enhance diagnostic capabilities, it 

might be advantageous to integrate DFOS with 

complementary, continuous monitoring techniques such as 

Acoustic Emission (AE). In this configuration, AE signals can 

serve as event-based triggers, initiating high-resolution DFOS 

measurements to enable accurate spatial localization of 

damage. As DFOS provides a thorough strain distribution along 

the length of the sensor, it allows also to determine the 

anchorage length of prestressing tendons based on strain 

measurements along the tendon axis after cutting [21]. 

Furthermore, DFOS facilitates the creation of digital crack 

maps and enables the tracking of strain development under load 

and temperature fluctuations. These features support automated 

condition assessment, early damage detection, and risk-

informed maintenance strategies [22]. 

 DFOS Performance in Detecting Crack Initiation and 

Propagation 

The initiation of cracking in concrete is typically 

associated with a localized strain concentration, which DFOS 

detects as a sharp and narrow strain peak along the fiber path. 

These peaks emerge even before visible cracking occurs and 

serve as early indicators of damage accumulation. Once cracks 

are initiated, DFOS allows for real-time tracking of their 

propagation. Lemcherreq et al. [23] applied DFOS under 

monotonic and cyclic loading, demonstrating that cyclic strain 

accumulation is directly correlated with the development of 

microcracks and that bond shear stresses progressively 

redistribute toward the unloaded end with an increasing number 

of load cycles. Importantly, the repeated loading (1 000 000 

load cycles) did not impair the quality or reliability of the 

DFOS measurements throughout the test. 

Based on the study by Broth and Hoult [24], it can be 

concluded that after 3 600 load cycles, strain profiles still 

captured distinct peaks at crack locations, with strain gradients 

evolving due to stress redistribution. Crack breathing was 

clearly visible in the strain signals across load cycles. The 

sensors enabled the recording of a gradual increase in strain 

peaks during successive loading cycles, particularly in deep 

beams, which suggested the widening of previously formed 

cracks. Initially, the strain values at crack locations reached 

approximately 1400–1500 µm/m, increasing to nearly 

2000 µm/m by the final cycle of the test. 

The DFOS system described by Galkovski et al. [25] 

achieved a measurement resolution of up to 10 µm/m 

(0.001%), allowing for detection of early-stage microcracking. 

Strain peaks exceeding 12 000 µm/m (1.2 %) were measured at 

crack locations—well above the steel yield strain 

(~2 000 µm/m), indicating DFOS capability to track yielding 

and post-yield bond behavior. 
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 Limitations and Challenges 

The application of DFOS in SHM of prestressed concrete 

structures susceptible to SCC offers comprehensive strain 

analysis. Conducting measurements that enable the acquisition 

of data essential for a reliable and unequivocal analysis 

necessitates careful consideration of the following aspect: 

▪ interference from overlapping strains within the intensively 

cracked areas affected by superimposed long-term strains 

(from creep, shrinkage, or thermal gradients), complicating 

damage localization and potentially masking SCC-related 

events [26]; 

▪ proper choice of the sensor-adhesive combination and 

measurement settings are crucial for reliable measurement 

results and good quality data [19]. 

▪ quality of the installation – successful application of 

DFOS relies on the proper sensor installation. Adhesive 

selection, groove preparation, and embedding quality 

significantly influence data accuracy. Unsuitable 

adhesives or rough interfaces can introduce artificial 

strain peaks or suppress real ones [27]; 

▪ data interpretation – measurements, above all the 24/7 

monitoring processes, produce large datasets requiring 

robust post-processing algorithms to distinguish true 

damage signs from noise, thermal effects, or adhesive 

degradation. Misinterpretation may lead to false alarms or 

overlooked damage [28], [29]; 

▪ sensor length affecting data quality – with longer sensors, 

optical device constraints lead to reduced spatial resolution 

and sampling rate [19]. This decline in performance is 

accompanied by increased measurement noise, which may 

obscure or distort strain events associated with SCC. In 

practical terms, a compromise must be made between 

coverage area and data fidelity, depending on the selected 

DFOS interrogation technology [11]. 

4 FIELD INVESTIGATIONS ON REAL 

INFRASTRUCTURE ASSETS 

In the following section case studies demonstrating the 

application of DFOS for monitoring bridge structures 

susceptible to SCC are presented. The focus is on real-world 

infrastructure where DFOS enables early detection of 

microcracks, evaluation of changes in crack widths, and 

assessment of structural behavior under operational loading. 

 Considerations for DFOS Deployment at Bridge 

Structures 

The installation of DFOS systems in existing bridge 

structures requires meticulous engineering, application-specific 

adaptation, and access to specialized equipment. Sensor routes 

must be defined with precision, targeting critical zones such as 

anchorage areas, webs, soffits, and coupling joints [30] – regions 

particularly vulnerable to hidden damage or prestressing wire 

fracture. For installations in existing structures reference 

measurements (“zero measurements”), ideally under constant 

loading conditions (no traffic), are used to initialize monitoring 

cycles and enable tracking of structural evolution over time. 

The fiber optic sensors are typically bonded to prepared 

surfaces using adhesives. While exact details vary, the standard 

approach includes marking sensor paths, cutting grooves, and 

embedding the sensors with injection mortars, ensuring robust 

strain transfer from the measured substrate to the sensor core. 

These operations are carried out with specialized cutting and 

cleaning tools. Due to the location of sensors on the underside 

of structural elements, auxiliary access equipment, such as 

scaffoldings, under-bridge platforms, or telescopic lifts, is often 

necessary – see Fig. 3. 

 

  

Figure 3. Examples of the special equipment for sensor 

installation: a) lifting platform, b) under-bridge inspection device  

Furthermore, proper choice of the sensors used is crucial 

for meeting the demands of the monitoring purpose – for high-

resolution crack assessment, monolithic fiber optic sensors provide 

the best results, while their consistent and rigid geometry ensures 

more direct strain transfer. This is essential for accurately 

capturing sharp strain gradients near cracks [19]. Environmental 

durability and system reliability are ensured not only by using 

robust sensors, but also by routing fiber leads in protective 

conduits and terminating them in sealed cabinets. Additionally, to 

distinguish mechanical strain from temperature-induced effects, 

several thermal compensation methods are employed in practice 

[31]. Temperature influence strain measurements through changes 

in the refractive index (which represents the dominant effect on the 

results) and the thermal expansion of the fiber. One approach 

involves interrogators based on Raman backscattering, which is 

sensitive to thermal effects only. Alternatively, two interrogators 

(e.g., Rayleigh and Brillouin) can be used on the same fiber, 

allowing for precise measurements but requiring laboratory 

calibration. Mechanically decoupled reference fibers, typically 

embedded in gel, may be affected by friction and are generally 

more suitable for shorter measurement sections. The simplest and 

most cost-effective, though less precise, solution involves 

pointwise temperature measurements using conventional 

resistance temperature sensors embedded in structural members – 

particularly suitable for applications with minimal temperature 

gradients. In such cases, compensation is performed by subtracting 

the strain resulting from the known temperature change. 

In the following sections, four examples of monitoring 

bridges at risk of SCC using DFOS technology are presented. 

In all reported implementations, monolithic sensors 

EpsilonSensor Ø3 mm (manufacturer: Nerve-Sensors) were 

installed. These sensors featured single-mode (SM 9/125) 

optical fibers and an external braid that additionally enhanced 

adhesion. Measurements were carried out using Rayleigh 

backscattering technique, with a spatial resolution of either 

1.3 mm or 2.6 mm, depending on the total sensor length. 

Thermal compensation was achieved based on discrete 

temperature measurements. These measurements accounted for 

the previously discussed effect of the temperature change and 

the associated thermally induced strain changes. 

a) b) 
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 Asset 1: Königsbrücker Str. Bridge in Dresden 

The bridge at Königsbrücker Straße in Dresden, 

constructed in 1979, crosses railway infrastructure and consists 

of three structurally independent units: one for tram traffic and 

two for road traffic. Due to the use of Hennigsdorf’s 

prestressing steel a dedicated structural health monitoring 

(SHM) system based on DFOS and AE combination was 

deployed to ensure continued structural safety and detect early 

signs of deterioration [32]. Fiber optic sensors were installed 

along the full length of each superstructure, embedded into 

grooves on the bottom surface and bonded with high-

performance mortar, enabling high-resolution, distributed 

strain and crack monitoring – see Fig. 4. Measurements are 

being conducted since November 2023, including an initial 

zero measurement and further follow-up measurements under 

varying seasonal and operational conditions. 

 

 

Figure 4. Installation of the optic sensor on the bottom surface 

of the girder 

Across all monitored spans, the DFOS system consistently 

detected multiple microcracks, with crack width variations 

typically below 0.05–0.07 mm and strain peaks occasionally 

exceeding 1000–1600 µm/m – see Fig. 5.  

 

 

 
 

 

 
 

 

 

Figure 5. Comparison of the crack width change within the 

first span of the tram superstructure 

In the latest, following measurement, only minimal 

crack width changes were noted compared to the previous 

measurements, suggesting no SCC-induced damage and 

confirming structural stability. The DFOS monitoring proved 

highly effective in characterizing microcrack evolution in SCC-

susceptible girders and offers non-intrusive solution for long-

term condition monitoring.  

 Asset 2: Road bridge in Waren (Müritz) 

The bridge on federal road B192 over the railway line 

in Waren (Müritz) is a continuous three-span structure 

consisting of two separate overpasses. Due to the use of high-

strength prestressing steel prone to hydrogen-induced SCC, 

continuous monitoring has been in place since 2014. Long-term 

inclinometer measurements indicated a successive reduction in 

structural stiffness, suggesting progressive structural 

degradation, due to SCC. 

In preparation for an upcoming replacement of the 

bridge, the south span - temporarily carrying all traffic – was 

equipped with a DFOS system to monitor potential crack 

propagation. Two sensor lines (10.5 m and 11 m) were installed 

on the underside of the deck to detect strain changes and 

localize microcracks in the mid-span section. Initial load tests 

in April 2024 with a 50-ton truck showed only minor strain 

changes (0–50 µm/m) and microcrack width changes below 

0.01 mm, with no macroscopic damage detected – see Fig. 6. 

A second load test in October 2024 confirmed these results, 

with strain peaks up to 80 µm/m and similar minimal crack 

width variations. The structural response remained consistent 

between both tests, and all observed strains were reversible 

after unloading. 

 

 

Figure 6. Strains (blue line) and change in microcrack (red 

points) resulting from truck load 

Due to the results of long-term measurements, facing 

doubts about the condition and safety of the structure, it was 

decided to demolish and replace both spans, with the detonation 

of the north span scheduled for January 2025. Since the south 

span must carry all traffic during the construction period, 

DFOS measurements and load testing were carried out to assess 

whether the explosion on the north span had caused any 

damage to the south span and to ensure its safety for continued 

use. To this end, load testing was conducted using a 50-ton 

heavy-duty truck. Figure 7 presents the change in strains along 

the sensor segment at the mid-span, induced by the passage of 
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the test vehicle. A gradual increase in strains is evident along 

the monitored length. Distinct strain peaks correspond to the 

locations of pre-existing cracks. Under loading, local strain 

peaks of up to 40 µm/m were recorded, while in the sections 

between the cracks, the strain values remained approximately 

constant at around 20 µm/m. 

 

 

Figure 7. Strain change resulting from the passage of a test 

truck with distinct microcrack opening 

DFOS measurements enabled the identification of crack 

locations at the very beginning of the loading test, even before 

the test vehicle reached the center of the monitored span. Strain 

development was most pronounced at the crack locations, with 

the progressive formation of peaks clearly visible. Due to the 

considerable stiffness of the structure, the variation in the 

microcracks, calculated according to the methodology described 

in Section 3.2, was minimal and did not exceed 0.01 mm. 

The DFOS measurements, conducted before and after 

the controlled demolition confirmed no anomalies or damage to 

the monitored bridge segment. The consistent, low, and fully 

reversible strain values provide clear evidence that the structural 

integrity was not compromised by the blast or load tests. 

 Asset 3: Bridge BW55b in Döbeln 

The B169 bridge near Döbeln (BW55b), built in 1966, 

is a prestressed concrete structure consisting of two hollow box 

girders connected by a concrete deck, spanning approximately 

67 m with a total width of 16 m [33]. The bridge forms part of 

a vital route connecting the A4 and A14 motorways and 

remains structurally safe but is classified as highly susceptible 

to SCC due to the use of prestressing steel made from over 200 

fine wires per tendon. Instead of replacing the bridge, the Saxon 

State Authority for Road Construction and Transport (LASuV) 

implemented an advanced SHM strategy to prolong its service 

life. This included the installation of DFOS on the undersides 

of the four longitudinal box girder webs, in total around 100 m 

of sensing length. The sensors were installed in grooves and 

bonded using high-performance injection mortar – see Fig.8. 

The follow-up measurement performed under regular 

traffic revealed strain changes with peak values typically below 

150 µm/m, and extremely small variations of crack widths – 

generally not exceeding 0.01 mm. Several local strain peaks 

were detected, suggesting the presence of microcracks, but no 

signs of active or progressive damage were observed. 

Temporary changes during vehicle crossings indicated 

reversible crack width variations between 5 and 20 µm, which 

immediately returned to previous state after the load passed, 

demonstrating the high stiffness and resilience of the structure. 

All measurements were temperature-compensated, and sensor 

performance remained stable. No anomalies indicating 

structural issues were identified. The purpose of the long-term 

DFOS monitoring supported by AE is the continuous 

assessment of the structure’s condition, ensuring safe operation 

without the need for costly replacement. 

 

 

Figure 8. Layout of the sensors on the surface of hollow box 

 Asset 4: Budapester Str. Bridge in Dresden 

The Budapester Straße Bridge in Dresden, built between 

1963 and 1968, is a critical urban infrastructure linking the city 

center with the southern districts. The 850-meter-long structure 

spans the main rail yard of Dresden Central Station, tram lines, 

and the Ammonstraße, and is composed of multiple 

monolithically constructed prestressed concrete sections. Its 

overpasses were constructed with longitudinal post-tensioning 

using oil-tempered Henningsdorf’s prestressing steel, a 

material highly susceptible to hydrogen-induced SCC. Cracks 

between 0.1 and 0.5 mm wide (Fig. 9a) and visible rust staining 

(Fig. 9b) have raised concerns about latent internal damage. 

 

  

Figure 9. Visible damages: a) cracks with extensive widths, 

b) rust staining and displacement within coupling joint 

To address the concerns and ensure long-term traffic 

safety without the necessity of a premature reconstruction, a 

comprehensive SHM system based on DFOS and acoustic 

emission is being installed – see Fig. 10. Around 880 meters of 

sensors are glued into the grooves along the underside of 

overpasses a and c. The system is designed to detect 

microcracks, localize strain peaks, and monitor changes over 

time under thermal and traffic-induced loading. Strain 

measurements are complemented by distributed temperature 

fiber optic sensors 

a) b) 

microcracks 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-097 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 637 

fiber optic sensors, using Raman backscattering, to ensure 

reliable thermal compensation for longer sections. The main 

goals include detecting potential wires breakage, tracking crack 

formation near coupling joints, and providing high-resolution 

insights into the bridge’s response to operational and 

environmental loads. 

 

 

Figure 10. Localization of the sensors on the internal segment 

of the superstructure 

The sensors are divided into 14 segments, each covering 

up to three spans, with data acquisition performed periodically 

using optical interrogators. This quasi-continuous monitoring 

allows localization of crack activity across the entire length of 

both overpasses. Although the installation in the existing 

structure obviously does not allow to monitor structural health 

from the “hour zero”, DFOS enables ongoing evaluation of 

crack development and possible early signs of structural 

deterioration starting directly after the installation. 

5 DISCUSSION 

 Comparison with Traditional Monitoring Methods 

DFOS offers several advantages over conventional 

monitoring methods such as strain gauges, vibrating wire 

sensors, and visual inspections. Unlike these techniques, DFOS 

enables continuous, high-resolution strain measurements over 

long sensor paths. 

In a study on the Black River Bridge in Ontario, DFOS 

successfully identified localized cracking and strain 

concentrations – insights that were missed by traditional gauges 

spaced every meter. It also detected unintended semi-rigid 

restraint conditions at supports, demonstrating its ability to 

capture unexpected behavior [34]. DFOS strain resolution 

(typically 1–5 µm/m) is comparable or superior to that of foil 

strain gauges (5–10 µm/m), while covering thousands of data 

points simultaneously. In the project described in [35], discrete 

sensors were replaced by more than 1500 m of fiber optic 

sensors, with each individual sensor providing approximately 

38 400 measurement points. 

Compared to visual inspection, DFOS provides 

objective, quantitative detection of crack formation and width 

changes. With strain change exceeding 50 µm/m, it can identify 

cracks smaller than 0.05 mm, well below the threshold of 

unaided visual assessment [20], [36]. Additionally, sensors can 

be embedded into structural components like tendons and rebar, 

enabling long-term monitoring of prestressing forces and 

internal damage progression – tasks that are difficult or 

impossible with surface-mounted sensors or manual inspection. 

 Interpretation of Long-Term Structural Behavior 

including thermal compensation 

DFOS enables precise interpretation of long-term 

structural behavior by continuously capturing strain 

distributions and tracking crack evolution under both 

mechanical loading and environmental influences. Based on 

DFOS measurements carried out by the authors on actual 

bridges during in-service operation, over several years of 

continuous monitoring, following findings can be pointed out. 

At the Königsbrücker Straße bridge in Dresden, fiber optic 

sensors recorded mechanical strain responses caused by tram 

and road traffic, with peak strain values near supports and 

midspans. These strain concentrations corresponded to 

microcrack openings predominantly between 0.01–0.05 mm. 

Changes in crack width over time indicated stable structural 

behavior under service loads. In the bridge on the road B192 

over the railway in Waren, strain peaks of 50–100 µm/m were 

recorded during staged loading under increasing traffic, 

allowing localization of microcracks with widths estimated 

around 0.02–0.05 mm. In both projects, thermal effects were 

observed as restrained strain patterns uniformly distributed 

along the spans, depending on exposure and structural response 

(imposed strains). 

Thermal compensation is essential to distinguish 

thermal effects from mechanical responses. Rayleigh and 

Brillouin backscattering are sensitive to temperature-induced 

changes in the fiber, what needs to be considered in evaluation 

of mechanical strain readings [37]. Including the findings 

presented in [31], a temperature change of 1 K results in an 

additional strain of approximately 20 µm/m in monolithic 

sensors embedded in concrete structures. To address this, 

multiple solutions can be utilized for dedicated temperature 

measurements, allowing separation of thermal and mechanical 

effects and thus enabling accurate compensation and 

interpretation of structural behavior over time [38]. For real use 

cases the most practical approaches to thermal compensation 

include utilizing distributed temperature measurements with 

Raman backscattering or even local spot temperature sensors. 

 Enhancing Predictive Maintenance Strategies 

The integration of DFOS into SHM systems offers 

multiple advantages. One effective strategy is the use of hybrid 

monitoring systems, where DFOS is combined with 

technologies such as acoustic emission sensors. An example of 

such implementations is Kreuzhof bridge in Munich, where 

real-time detection of wire breaks via AE was supplemented by 

spatially distributed strain monitoring via DFOS, significantly 

improving damage assessment reliability [39]. 

Beyond external installations, DFOS can also be 

integrated directly into structural elements such as prestressing 

tendons or reinforcement cages. This embedded approach 

enables continuous internal monitoring of strain and 

prestressing forces, providing detailed insights from the initial 

loading stages through the entire service life of the structure. 

A practical demonstration of this concept was presented in 

a study on a prestressed concrete bridge girder, where fiber 

optic sensor was installed during fabrication to successfully 

fiber optic sensors 

AE sensors 
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monitor strain development and crack formation under service 

and ultimate loads [40]. 

In addition, DFOS systems can be linked to digital twin 

platforms, enabling real-time data to support predictive 

maintenance, condition-based inspections, and system-wide 

risk assessments. This form of integration advances 

infrastructure monitoring from traditional inspection cycles 

toward proactive, data-driven management [15]. 

6 FUTURE RESEARCH DIRECTIONS 

Despite significant progress in the deployment of DFOS 

for SHM, several open research questions remain, particularly 

addressed to: 

▪ early-stage and automated SCC detection – future studies 

should explore enhanced DFOS signal interpretation 

methods, such as high-frequency dynamic strain analysis 

or modal-based decomposition, to identify signatures 

associated with early-stage wire degradation; the 

development of automated algorithms for the 

classification and localization of SCC-induced damage, 

based on DFOS strain gradients, could streamline 

monitoring and reduce the reliance on manual data 

interpretation; techniques such as anomaly detection, 

pattern recognition, and signal filtering are promising 

directions for algorithmic refinement. 

▪ integration with predictive modelling – coupling DFOS 

data with finite element models and machine learning-

based predictive tools would enable dynamic risk 

assessment by correlating measured strain patterns with 

probabilistic failure modes. 

One of the most promising directions for the 

advancement of detecting tendon breakages is distributed 

acoustic sensing (DAS) technology. While distributed strain 

sensing excels in measuring quasi-static and low-frequency 

strain distributions with high spatial resolution, DAS extends 

the functionality of the same optical fiber network by enabling 

detection of dynamic, high-frequency acoustic signals along 

the entire fiber length. Mechanical disturbances, such as 

microcracking, prestress wire rupture, or acoustic emissions, 

alter the backscattering pattern, allowing the system to localize 

and characterize the source of dynamic events in real time. This 

makes DAS particularly suitable for detecting sudden or 

progressive failure mechanisms, including wire breakages or 

energy release events associated with SCC [41] However, the 

use of this technology still requires extensive research to 

determine the effective detection range around the optic sensor 

– i.e., the distance between the event and the sensor at which 

the event can be reliably detected. Further studies are needed to 

establish the optimal application pattern and to develop 

automated methods for data analysis. 

Combining DSS and DAS in a hybrid sensing system 

can significantly enhance the sensitivity, reliability, and 

redundancy of SHM strategies. For instance, a wire rupture 

may first be identified as a sharp acoustic signal via DAS and 

subsequently confirmed and quantified by correlated local 

strain changes registered by DSS. This fusion of datasets might 

support cross-validation, improve false positive rejection, and 

enable automated alert systems for infrastructure operators. 

7 CONCLUSIONS 

The application of distributed fiber optic sensing in the 

structural health monitoring of bridges vulnerable to stress 

corrosion cracking demonstrates clear advantages over 

traditional inspection and sensing methods. DFOS provides 

continuous, high-resolution strain data capable of detecting 

early-stage microcracks, quantifying crack width changes, and 

localizing damage with high spatial precision. The case studies 

presented confirm the efficacy of DFOS in operational 

environments, with successful deployment across multiple 

bridge structures. Monitoring results revealed that even 

microcrack width changes (typically below 0.01 mm) could be 

captured, and strain peaks were localized precisely at pre-

existing damage sites. Multiple real-world case studies have 

shown that DFOS systems can effectively monitor the 

evolution of cracks under operational conditions, offering 

valuable insights into the structural integrity and residual 

service life of aging infrastructure. The ability to detect 

reversible strain patterns and correlate them with loading 

events supports informed decision-making regarding the 

continued safe use of SCC-affected structures. 

The integration of DFOS with other sensing 

technologies, such as acoustic emission, further enhances 

damage detection capabilities and supports predictive 

maintenance strategies. While there are still challenges, such as 

sensor installation complexities and the need for robust data 

processing algorithms, the DFOS technology can be perceived 

as a transformative tool in advancing resilient, data-driven 

infrastructure monitoring practices. 
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ABSTRACT: Existing prestressed concrete bridges without minimum shear or flexural reinforcement are at increased risk of 

sudden failure, even if they appear undamaged. To prevent such a sudden failure surface mounted Distributed Fiber Optical 

Sensors (DFOS) can detect local strain changes prior to cracking and visible damage. Failure mechanism analysis, laboratory tests 

and numerical simulations are used to identify relevant strain indicators. These strain changes could be detected by DFOS even if 

the failure location is not known exactly in advance. From these results, limits for a universal monitoring concept could be derived 

considering the individual failure mechanisms and the limitations of the sensor system.  

KEY WORDS: SHMII-13; distributed fiber optical sensors; existing prestressed bridges; shear failure; brittle failure; monitoring. 

1 INTRODUCTION 

Existing prestressed concrete bridges often no longer meet 

current safety standards, even though they were originally 

designed and constructed in accordance with the standards in 

force at the time, and show no visible damage. Particularly 

critical are structures lacking minimum shear or flexural 

reinforcement, where sudden failure without sufficient prior 

warning can occur [1]. 

Reassessments of such structures according to the German 

Reassessment Guidelines and their supplements increasingly 

reveal structural deficiencies [2][3]. Some of these affect shear 

capacity, transverse reinforcement between flanges and web, 

and the structures bending robustness. Due to these 

deficiencies, early indications of failure become less likely or 

may not occur at all when conducting structural inspections in 

accordance with current German standards (e.g., DIN 1076 [4]) 

[1]. 

A further challenge is the accurate measurement of local 

strain changes in existing structures, where irregular surface 

conditions, structural tolerances and limited accessibility 

significantly affect the reliable application of both established 

and innovative monitoring methods. 

To ensure the long-term structural safety of this existing 

structures, it is essential to develop and implement tailored 

monitoring strategies. This requires the development of 

practical principles that provide engineering consultants, 

clients and inspection authorities with a sound basis for 

decision making. 

2 FAILURE MECHANISM 

The absence of minimum reinforcement or corrosion damage, 

especially stress corrosion cracking in prestressing steel, can 

lead to brittle, unannounced failures in prestressed concrete 

bridges. 

Lifetime elongation of existing prestressed bridges with a lack of structural integrity 

using DFOS 
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Figure 1.  

 
Figure 1 Applied DFOS on the Hammelburg bridge girder web, taken from [6] 
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 Shear 

Previous test programs have shown that, despite low shear 

reinforcement, redistribution in the tension chord can result in 

a certain increase in shear capacity [5]. In contrast, shear tests 

at the Hammelburg bridge revealed early failure after initial 

cracking due to pre-damaged and unfavourably oriented 

tendons, as well as smooth reinforcement bars [6]. Figure 1 

shows the girder web of the Hammelburg bridge after the shear 

test. 

 Bending Robustness 

Significant problems on prestressed structures with a lack of 

flexural reinforcement became apparent with increasing 

operational experience. In Germany the introduction of 

robustness reinforcement was consequently introduced in 1995 

[7]. In bridges that were built before this time, calculative proof 

of sufficient warning behavior as a crack before structural 

failure is not always given. Moreover, even with proven 

sufficient warning behavior, the implementation of condition 

monitoring is required to prevent sudden failure [8]. 

 

3 SURFACE MOUNTED DFOS ON PRESTRESSED 

CONCRETE BRIDGES 

Fiber optical measurement technology based on Rayleigh 

backscattering offers advantages on prestressed concrete 

structures. As there is generally little or no tensile stress in the 

cross-section of existing prestressed concrete bridges, there is 

less likelihood of significant cracking. Nevertheless, it is 

possible to follow the stress under temporary loading and thus 

detect cracks that may have been overstressed by the 

prestressing. Strain changes are detected continuously and with 

high spatial resolution up to 0.65 mm along a bonded fiber 

optical sensor with lengths exceeding 100 m.  

The application of DFOS on the surface of existing structures 

faces many challenges. Uneven adhesive layer thicknesses, 

rough formwork surfaces, and positional inaccuracies due to 

construction tolerances are just a few, which have to be 

considered in the data evaluation. Discontinuities in the 

adhesive or surface irregularities can lead to strain peaks in the 

signal, but these can be validated through visual inspections [9]. 

The early detection of localized strain changes long before 

the appearance of visible cracks enables innovative condition 

monitoring strategies, which can significantly extend the 

service life of existing structures and support more efficient and 

economical maintenance planning. 

4 ACTUAL RESEARCH 

The current research at the Chair of Concrete and Masonry 

Structures at the Technical University of Munich includes 

numerical simulations to identify strain fields associated with 

failure mechanisms. Various damage scenarios are analyzed to 

map critical strain zones for shear and flexural failure. The 

results serve as the basis for defining expected measurement 

quantities and developing robust sensor layouts. 

Parallel experimental investigations are conducted. In small-

scale tests different sensor-adhesive combinations, application 

techniques, and environmental influences are compared. 

Particular attention is given to overhead applications and the 

detection of strains over irregular surfaces. Long-term tests 

examine the effects of temperature cycles and potential creep 

phenomena within the sensor. 

Building upon these results, current research focuses on the 

development of a monitoring concept for prestressed concrete 

bridges with static and structural deficiencies. The study 

emphasizes the identification of suitable sensors, application 

methods, sensor placement, and the definition of meaningful 

measurement intervals. The outcomes are intended to provide 

consulting engineers, clients, and inspection authorities with a 

solid basis for developing and implementing individually 

adapted monitoring strategies. 

Large-scale tests on prestressed concrete girders will be 

carried out based on the numerical and experimental results. 

The focus of these tests lies on the application of a developed 

monitoring concept to detect the initial signs of a shear or 

flexural failure described in chapter 2. The load cycles are 

designed to induce microcracking and pre-damage, which, 

although not visibly detectable after unloading, can still be 

measured by DFOS  

The outcomings should lead to a comprehensive guideline for 

the use of DFOS on existing prestressed bridges. It will include 

recommendations for sensor layouts, suitable adhesive and 

application techniques, and methods for determining 

appropriate measurement intervals. The guideline also provides 

information on installation requirements and data 

interpretation. Validation will be carried out on two bridges 

with different types of structural deficiencies: one suffering 

from shear capacity issues and another from missing robustness 

reinforcement combined with susceptibility to stress corrosion 

cracking. 

 

5 CONCLUSION 

Effective use of DFOS on bridges has already been 

demonstrated by several studies, i.e. [10][11][12][13]. This 

shows that the general and widespread use of this sensor 

technology can be useful for extending service life of existing 

bridges. Therefore, limits can be developed for a universal 

monitoring concept for prestressed concrete bridges with 

known deficiencies using DFOS. Therefore, reliable sensor 

layouts for typical failure mechanisms and recommendations 

for the selection of suitable sensor and adhesive combinations 

have to be analyzed. Moreover, the development of 

methodological approaches for defining measurement 

intervals, considering damage probabilities and degradation 

processes have to be considered. 

Through practical validation, the feasibility of the developed 

concepts will be demonstrated. Thus, the project contributes 

significantly to the sustainable maintenance of existing 

prestressed concrete bridges and the extension of their service 

life. 
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ABSTRACT: In recent years, Distributed Strain Sensing (DSS), utilizing optical frequency domain reflectometry of Rayleigh 

backscatter, has gained significant prominence in the realm of Bridge Structural Health Monitoring (BSHM). Its key advantage is 

its ability to provide continuous strain monitoring with high spatial resolution (0.65 mm) and an accuracy of up to 1 µm/m. This 

capability facilitates the monitoring of deformations and defects, as well as precise crack detection, the assessment of crack width 

and others.  

However, publications on DSS based on Rayleigh backscattering often report local effects that are not linked to disturbances 

caused by the measurement principle, such as noise or anomalies in strain readings. These effects can complicate the evaluation 

of DSS data, particularly concerning crack detection and width measurement, as well as tasks like detecting tension wire 

breakages. There have been theories, suggesting that these local effects may stem from micro-cracks or inhomogeneities within 

the concrete matrix, yet further investigations into this phenomenon are lacking. 

Within this paper the phenomenon of local effects, henceforth referred to as the concrete signature, has been investigated on 

multiple time scales during. The analysis utilizes data from the openLAB research bridge in Bautzen, Germany. Possible reasons 

for the development and behavior of concrete signature are discussed, along with the challenges and opportunities associated with 

addressing it. 

KEY WORDS: Concrete Signature, Distributed Fiber Optic Sensing, Distributed Strain Sensing, Bridge Structural Health 

Monitoring. 

1 INTRODUCTION 

Distributed fiber optic sensing (DFOS) has emerged as a 

pivotal technology in the realm of structural health monitoring 

(SHM) in recent years. The applications of DFOS can be 

broadly classified into three primary categories: distributed 

temperature sensing (DTS), distributed acoustic sensing 

(DAS), and distributed strain sensing (DSS). All these 

applications exploit backscatter effects arising from 

inhomogeneities within optical fibers. The principal types of 

backscatter effects include Raman, Brillouin, and Rayleigh 

backscattering [1, 2].  

Within the scope of SHM of concrete structures, DSS has 

gained considerable attention, as it offers continuous strain 

measurements in structures, a significant advantage over 

traditional measurement systems such as strain gauges or 

inductive transducers [3]. DSS utilizing Rayleigh 

backscattering (optical frequency domain reflectometry) 

achieves a high spatial resolution of up to 0.65 mm with an 

accuracy of 1 µm/m [4], albeit with a sensing range constrained 

to approx. 100 m [5]. Therefore, its principal applications lie in 

the evaluation of failures, damages and local effects in concrete 

structures, particularly in the realms of crack detection and 

crack width calculation [6, 7].  

Crack detection with DSS is predicated on peak 

identification, while the subsequent quantification of crack 

width relies on minima or midpoint approaches to ascertain the 

influence length of the crack to find out the borders for linear 

integration. Hence, it is important to distinguish clearly 

between peaks and minima attributable to cracks and those 

arising from other factors present in DSS readings [6, 7].  

However, literature regarding DSS based on Rayleigh 

backscattering in concrete structures frequently reports local 

effects that do not correlate with disturbances originating from 

the measurement principle, such as noise or strain reading 

anomalies [8-11]. These local effects, subsequently referred to 

as the concrete signature, appear to evolve over time, 

maintaining a consistent position, thereby complicating the 

interpretation of DSS readings, particularly concerning crack 

detection and crack width evaluation, as well as for the 

identification of tension wire breakages [12].  

Given that current publications on DSS employing Rayleigh 

backscattering predominantly rely on laboratory assessments or 

short-term field trials, this paper aims to investigate the 

phenomenon of evolving concrete signature in DSS readings 

over various time scales. To achieve this objective, DSS data 

from the openLAB research bridge in Bautzen, Germany, are 

analyzed [13, 14]. A picture of the openLAB research bridge is 

given in Figure 1.  

The DSS dataset analyzed encompasses the production of 

precast elements, the installation phase, and the operational 

phase of the bridge, extending over a total sensor length of 1.5 

km [13]. For the purposes of this analysis, a single beam will 

be selected to examine the development of the concrete 

signature along with the potential underlying factors and their 

implications. Ultimately, the study will elucidate the impact of 

concrete signature on DSS reading evaluation and its potential 

significance. 

Concrete signature in long-term Distributed Fiber Optic Strain Sensing: Challenges 

and opportunities for Structural Health Monitoring 
Lisa Ulbrich1, ORCID, Alessia Abbozzo2, ORCID, Frank Jesse1, ORCID, Marco di Prisco2, ORCID 

1Hentschke Bau GmbH, Department of Research and Development, Zeppelinstr. 15, 02625 Bautzen, Germany   
2Department of Civil and Environmental engineering, Politecnico di Milano, P.za L. da Vinci, 32 – 20133 Milano, Italy. 

email: Ulbrich.Lisa@hentschke-bau.de, Jesse.Frank@hentschke-bau.de, alessia.abbozzo@polimi.it, marco.diprisco@polimi.it 

https://orcid.org/0000-0001-9868-1139
https://orcid.org/0009-0003-6328-8224
https://orcid.org/0000-0002-8165-0261
https://orcid.org/0000-0003-1779-2449


13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-099 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 645 

 

Figure 1. OpenLAB research bridge in Bautzen, Germany 

(Stefan Göschel) 

2 CONCRETE SIGNATURE 

Although concrete signature is recognizable in the majority of 

publications [12, 15, 16], only a few commented it briefly [8-

11, 17].  For instance, Richter et al. highlighted the emergence 

of local effects that are not associated with disturbances in the 

measurement system [9]. Becks et al. reported fluctuations of 

up to 200 µm/m in DSS readings from sensors adhered to the 

concrete surface, attributing these variations to local strain 

changes within inhomogeneous concrete [8]. Weisbrich et al. 

provided a similar explanation, conducting laboratory tests 

with concrete specimens that had Ormocer coated sensors 

glued to the surface, to reinforcement, and embedded in the 

concrete matrix [11]. They indicated that "inhomogeneities and 

imprecision of the concrete" could account for fluctuations in 

DSS readings observed during their tests [11]. Additionally, 

Sieńko et al. reported on micro-cracks resulting from thermal 

shrinkage during the concrete hardening process in laboratory 

tests, which correspond in size to the phenomena described by 

Becks et al. [8, 10]. Despite these effects being identified and 

illustrated in diagrams across numerous publications, there has 

yet to be a thorough investigation into their underlying causes 

and behaviors. 

3 METHODOLOGY 

To investigate the development and properties of concrete 

signature over various time scales, DSS readings from a fiber 

optic sensor placed in a 15 m prestressed bridge beam of the 

openLAB research bridge in Bautzen, Germany have been 

analyzed. The beam FT1.1 features a T-shaped cross-section 

and is prestressed. The beam is made from C20/25 standard 

concrete using granite and quartzite aggregates, with a 

maximum aggregate size of 16 mm.  

The fiber optic sensor analyzed is an EpsilonSensor, 3 mm, 

ripped from Nerve-Sensors [18], where the fiber itself is 

embedded within a monolithic core out of polyester fibers and 

epoxide. It is situated at the bottom of the beam within the 

concrete matrix and is securely fixed to the stirrups using cable 

ties. The sensor was interrogated by an ODiSi6100 system from 

Luna Inc. [5], utilizing a gage pitch of 1.3 mm. 

Figure 2 and Figure 3 are showing the placement of the 

sensor within beam FT1.1. Figure 2 illustrates the sensor 

placement within the beam FT1.1 at openLAB, while Figure 3 

is a picture of the fiber optic sensor (red) within the 

reinforcement cage during the production of FT1.1. 

 

 

 

 

 
Figure 2. Sensor placement of the fiber optic sensor at beam 

FT1.1 in span 1 of the openLAB in Bautzen, Germany. 

 

 

Figure 3. EpsilonSensor 3 mm ripped with the reinforcement 

cage of FT1.1 in span 1 of the openLAB in Bautzen, Germany. 

In addition to DSS readings, temperature measurements with 

Gaia 200 of Maturix [19] using thermocouples type K inside 

the concrete took place during hydration. Later, during 
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prestressing and operation, the concrete temperature was 

measured using Testo 176T4 [20] with thermocouples of type 

K at five points inside the beam. In the operational phase, a 

combi-sensor continuously measuring air temperature and air 

humidity was installed next to the beam. 

The DSS readings have not been compensated for 

temperature variations, either regarding optical or material 

effects. Compensation for material effects entails addressing 

the thermal expansion of both the sensor materials and the host 

material. In the case of concrete as the host material, this is 

typically accomplished by utilizing the overall thermal 

expansion coefficient of concrete [16]. For optical effects, 

temperature compensation related to changes in refractive 

index is achieved by applying the temperature calibration 

constant of the fiber and calculating the spectral shift based on 

the temperature difference [21]. Given that only gradual 

temperature changes occur within concrete elements, neither 

effect significantly impacts the local, distinctive manifestation 

of the concrete signature. 

The analysis involved varying the DSS readings tare to 

examine the redevelopment of the concrete signature across 

different time scales and for comparisons. Thereby, tare defines 

the point where the DSS reading was set to zero line again. 

4 RESULTS 

During the time scales under consideration, the global stress in 

the beam is changing several 100 µm/m due to temperature 

changes, load, creep, and shrinkage. However, the focus of this 

study is the development of the local concrete signature. Thus, 

a representative segment of 2 meters from the DSS readings, 

collected at specific timestamps, is presented to elucidate the 

data. The diagram areas delineate a section of 200 µm/m, 

visualized through a grid structured in increments of 50 µm/m. 

The orientation of the readings was selected based on the mean 

value located at the midpoint of the y-axis to effectively 

showcase the manifestation of the concrete signature. 

The investigation initiates with the first 24 hours of the 

hydration phase of concrete, aiming to analyze the initial 

development of the concrete signature. For that the DSS 

readings have been referenced to the beginning of the 

hardening.  

Figure 4 depicts the evolution of the concrete signature 

throughout hydration. The timestamp 0 hours signifies the 

beginning of the hardening process and the tare for the 

following DSS readings; consequently, the DSS reading 

establishes a baseline of zero. After 2 hours, initial fluctuations 

are observed, although the DSS readings remain relatively 

smooth. After 6 hours, a pronounced signature emerges, 

exhibiting an increasing trend until 12 hours, ultimately 

reaching a value range around the mean of approx. ±80 µm/m 

and a standard deviation of approx. 22.6 µm/m. Thereafter, the 

signature exhibits a decreasing trend until the concluding DSS 

reading at 24 hours with a value range of ±75 µm/m and a 

standard deviation of 20.4 µm/m. Notably, significant peaks are 

apparent between 2 hours and 6 hours, with DSS readings at 

24 hours remaining considerably elevated. 

 

 
Figure 4. Distributed strain sensing readings during the first 24 

hours of hydration.  

 

During the hydration, a notable increase in the temperature of 

the concrete was observed, reaching a maximum temperature 

differential of 22.5 K relative to the tare readings at 0 hours. 

Figure 5 shows the temperature development during the 

hydration process as well as the temperature difference ΔT for 

the selected DSS readings to the tare reading at 0 hours. 
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Figure 5. Temperature measurements during hydration. 

 

The prestressing process was subsequently analyzed with 

respect to the tare prior to hydration and the tare prior to 

prestressing. This included assessments prior prestressing the 

tendon, after partial prestressing the tendon in subsequent 

bonding 33 % and after prestressing strands in immediate 

bonding at a concrete age of 5 days. Followed by DSS readings 

after full prestressing of the tendon 100 % in subsequent 

bonding at concrete age of 15 days.  

Figure 6 illustrates the evolution of the concrete signature 

throughout the prestressing process. The red lines represent the 

DSS readings with tare before hydration, while the blue lines 

indicate the DSS readings with tare before partial prestress, 

marked by the zero line at the timestamp just prior prestressing. 

Regardless of the tare used, the concrete signature in both DSS 

readings shows an increase and noticeable similarities.  

A comparison of DSS readings across the different tares 

reveals that primary features consistently re-emerge during the 

prestressing process, also after taring prior to prestressing. 

Specifically, the concrete signature with tare before hydration 

reaches a maximum value range according to the mean of 

±69 µm/m and a standard deviation of 22.1 µm/m, whereas the 

concrete signature with tare before prestressing reaches a 

maximum value range around the mean of ±31 µm/m and a 

standard deviation of 11.8 µm/m. 

During the prestressing process, the concrete temperature 

changed less than 1 K. Compared to the tare before hydration 

the temperature changed approx. -4.9 K. 

 

 

Figure 6. Distributed strain sensing readings during 

prestressing process (red: DSS readings with tare before 

hydration, blue: DSS readings with tare before partial 

prestress). 

 

Finally, the concrete signature was assessed over one year 

with no traffic load during the DSS readings. The tare is 

established after finishing construction at the beginning of the 

operation phase (0 Months). Figure 7 illustrates the evolvement 

of the concrete signature during the operation. It is noteworthy 

that the concrete signature is already significantly redeveloped 

after three months. The increasing trend of the strain values 

from the left to the right side of the diagram in each DSS 

reading is due to the bending moment in the beam bearing on 

the columns.  To quantify the concrete signature despite the 

bending effects, a sliding mean with a window of 380 

(approximately 0.5 m at a gage pitch of 1.3 mm) was applied 

(Figure 7 dashed line). This approach yields a maximum value 

range of the concrete signature around the sliding mean of 

approximately ±29 µm/m at six months and a maximum 

standard deviation of 8.1 µm/m at 12 months. 

After two months, distinct patterns of regular increases and 

decreases, occurring approx. every 15 cm, become apparent 

and are clearly noticeable after six months. 
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Figure 7. Distributed strain sensing readings during one year of 

operation. 

During the operation, the beam was exposed to environmental 

conditions, resulting in permanent changes in air temperature 

and humidity. Concrete temperature, air temperature and air 

humidity changes regarding the tare measurement at 0 months 

are presented in Table 1. 

 

Table 1. Temperatures and humidity changes during the 

selected DSS readings regarding to the tare at 0 months.  

DSS reading ΔTc [K] ΔTa [K] ΔrHa [%] 

0 months  0 0 0 

2 months +11.4 +17.0 +12.37 

6 months  +10.5 +19.6 +6.81 

12 months -3.6 -1.54 +56.01 

 

5 DISCUSSION 

It has been demonstrated that the concrete signature begins to 

develop during the hydration process, with certain features 

remaining consistent over time. In the chosen DSS readings the 

most prominent signature occurs at 12 hours, which correlates 

with the highest temperature reached, leading to relation 

between the concrete signature and the temperature behavior 

of the concrete matrix. The temperature expansion coefficients 

of the various components of the concrete matrix—such as 

granite, quartzite, and cement stone—differ substantially (as 

shown in Table 2), thus the distinct expansions of these 

materials could be recorded by the sensor.  

 

Table 2. Thermal expansion coefficients [22]. 

Component Coefficient of thermal 

expansion αT [-] 

Granite, Quarzporphyr  7.4 × 10−6 

Basalt, Diorite, Gabbro  6.5 × 10−6 

Quartz sand/gravel  11.0 × 10−6 

Quarzite 11.8 × 10−6 

Cement matrix (min)  10.0 × 10−6 

Cement matrix (max)  23.0 × 10−6 

 

A temperature increase of 19.4 K, like for the 12 hours DSS 

reading, induces a temperature strain of approx. 140 µm/m for 

granite, about 130 µm/m for basalt, and around 200 µm/m for 

liquid cement. This results in strain variations of up to 

65 µm/m, close to the variation visible in the DSS reading at 

12 hours. However, it is important to note that the thermal 

expansion coefficient of the cement matrix increases during 

hydration and decreases with diminishing humidity [22]. 

Additionally, throughout the hydration process, the modulus of 

elasticity, concrete strength, and, as a result, creep behavior 

exhibit continuous variations [23], which may also affect the 

signature. 

The decrease of the signature at 24 hours might be due to the 

cooling as well as relaxation effects. The peaks observed after 

cooling can be attributed to the shrinkage of the cement matrix 

in relation to the aggregates. The more prominent peaks may 

be indicative of micro-cracks formed as a result of this 

shrinkage, as described by Sieńko et al. [10]. However, the 

regular spatial appearance of these peaks suggests the influence 

of structural elements such as stirrups or cable ties used for 

sensor fixation may also contribute.  

During the prestressing process temperature remains almost 

constant. However, even after taring before prestressing, the 

concrete signature begins to redevelop. This suggests that the 

concrete signature is also influenced by load changes, leading 

to creeping effects. The creep behavior in concrete is affected 

by the Young's modulus, which varies based on age, aggregate 

size and shape, its deformation characteristics, and the ratio of 

cement paste or mortar to aggregates [23]. Considering the use 

of two aggregate types with differing shapes, sizes, and 

deformation characteristics, variations in their respective 

Young’s moduli are expected. These differences can 

significantly influence their creep behavior, potentially 

affecting the DSS readings.  

Similarly, the concrete signature continues to redevelop 

during the operational phase even after taring in the beginning. 

In this phase, all the potential influencing factors previously 

mentioned are at play. Environmental changes, such as 

fluctuations in temperature and humidity, contribute to 

swelling, shrinking, and thermal expansion. Additionally, there 

are creeping effects resulting from the prestressing and the dead 

weight of both the beam and the cast-in-place concrete slab. 

 The interaction of these effects, combined with the 

heterogeneous nature of the concrete matrix, leads to a 

continuous change in the concrete signature. Noteworthy is, 

that the maximum value range of concrete signature apparently 

increases with the concrete temperature. Additionally, the most 

significant fluctuations in the concrete signature, as indicated 

by the highest standard deviation, occur at an elevated relative 

air humidity level, which serves as an indicator of increased 
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moisture in the concrete. However, due to the multitude of 

simultaneous effects, it is challenging to isolate and quantify 

the impact of each individual factor on the concrete signature. 

The observed regular increases and decreases every 14 to 

15 cm in certain sections may be attributed to the placement of 

stirrups, which are distributed approximately every 15 cm in 

the corresponding section of the beam. It is important to note 

that the concrete analyzed here is still relatively young (with 

the last DSS reading taken at an age of 19 months), which may 

result in greater fluctuations in the concrete signature due to 

more pronounced creeping effects in younger concrete. 

Conceivable would also be that there are also effects from the 

reaction of the sensor coating itself. Fluctuations in the concrete 

moisture and concrete temperature can lead to expansion 

effects in the material, which can be transferred to the fiber. 

This effect is for example used for polyimide-coated fibers in 

order to measure humidity [24]. However, for coating out of 

polyester fibers and epoxide these effects can be neglected, 

since epoxide (epoxy glue) is used to insulate fibers from the 

surrounding moisture [24].  

Regardless of the specific time episode being analyzed, the 

manifestation of the concrete signature is always dependent on 

the selected tare. While the tare does alter the resulting concrete 

signature itself - such as the position of the peaks - it does 

influence the prominence (e.g, the height of the peaks), as 

illustrated in the prestressing process. This distinction is crucial 

during data evaluation, as an appropriately chosen tare can 

enhance the concrete signature for analysis or diminish it to 

isolate other factors under scrutiny, such as tension wire 

breakages. However, the ability to reduce the concrete 

signature in this manner is contingent upon DSS readings taken 

in temporal proximity to the effect being analyzed, given that 

the concrete signature, at least in the evaluated DSS readings, 

tends to redevelop rapidly. 

6 CONCLUDING REMARKS 

It has been shown that concrete signature develops over 

various time episodes, ranging from several hours to several 

months. Potential environmental factors influencing this 

phenomenon include temperature, humidity, and load, which 

can lead to thermal expansion, shrinkage, swelling, and creep, 

as well as localized disturbances from structural elements like 

cable ties or reinforcement. Additionally, it is crucial to 

consider factors intrinsic to the concrete matrix, particularly the 

differing responses of aggregates and the cementitious matrix 

to these environmental influences. The age of the concrete itself 

may also play a significant role, since creeping and shrinkage 

depend on concrete maturity. 

In this study, concrete signature achieved a maximum value 

range of ±75 µm/m, which considerably affects crack detection 

and width calculation, as peak detection and minima 

approaches may not work accurately. Moreover, identifying 

micro-cracks or instances of tension wire breakage may prove 

challenging, as these phenomena produce effects smaller than 

those associated with concrete signature. Consequently, the 

priority will be to develop effective compensation methods to 

ensure the reliability of data from digital signature systems 

(DSS).  

However, gaining insights into the causes and influences on 

concrete signature could provide a better understanding of 

concrete behavior related to load, creep, shrinkage, and thermal 

expansion. This understanding would facilitate more accurate 

assessments of structural behavior, for instance, by refining 

calculations pertaining to creep effects as outlined in EC2. 

Moreover, concrete signature may present opportunities for 

quality assessment during production through the examination 

of material inhomogeneities like gravel nests. 

To gain a deeper understanding of the causes and factors 

influencing concrete signature in DSS readings, systematic 

testing is currently underway. Initial experiments are designed 

to isolate these impact factors and observe the resulting 

responses of the concrete matrix at the meso-level. Building on 

this knowledge, compensation methods and knowledge 

extraction techniques can subsequently be developed and 

evaluated in field tests. 
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ABSTRACT 

Current climate protection goals are driving research toward large-scale structural health monitoring solutions for critical, long-

lifespan infrastructure, alongside the usage of low CO₂ emission materials. In this work, we present an innovative approach that 

combines both aspects: the use of continuous basalt fibers assembled into sustainable reinforcement structures, and low-cost 

measurement systems for integrated long-term condition monitoring, specifically applied to tunnel segment monitoring. As a 

proof-of-concept for the integration of sensor elements into basalt reinforced concrete structures, we utilized stranded steel wire 

to create custom strain gauge sensors for integrated strain measurements, paired with a custom-designed resistive bridge-based 

measurement system to evaluate the feasibility of enabling low-cost condition monitoring. Mechanical tests were conducted on 

basalt-reinforced concrete specimens under both tensile and compressive loading. The results indicate that the system can measure 

even low strain values for the sensor-enhanced structures down to approximately 5 μm/m and a standard deviation of 2.1 μm/m, 

achieving a sensing performance close to state-of-the-art measurement systems and externally applied standard strain gauges. The 

study demonstrates the potential for cost-effective condition monitoring of individual tunnel segments with sustainable basalt 

reinforcement. Further optimizations of the system are anticipated in future projects. 

KEY WORDS: Structural health monitoring; Strain measurements; Integrated stress monitoring; Crack detection; Basalt fiber 

reinforcement; Tunnel segment monitoring; Segmental lining element; Measurement system design; Low-cost electronics.

1 INTRODUCTION 

The expansion of the European infrastructure network and the 

growth of international metropolises are increasing the need for 

major road and railway construction projects. Tunnelling and 

bridge construction are essential in this context. At the same 

time, the focus is shifting to climate protection and ambitious 

international targets. According to the Climate Act, the EU is 

committed to reducing net greenhouse gas emissions by 55% 

by 2030 and becoming climate-neutral by 2050 [1].  

The construction and building sector is responsible for 38% 

of global CO₂ emissions and harbors great potential for 

innovation [2]. Cement production alone contributes 3.3% to 

Austria's and 4.5% to global emissions [3][4].  

Structural steel in reinforced concrete is approx. 3 to 5 times 

more CO₂-intensive per ton. According to a study on the 

Brenner Base Tunnel, one ton of structural steel emits 1,980 kg 

of CO₂, while cement emits 576-622 kg of CO₂ per ton [5][6]. 

In segmental lining elements, concrete can contain 

approximately 150 kilograms of steel per cubic meter. The 

production of 150 kilograms of steel emits nearly the same 

amount of carbon dioxide as the cubic meter of concrete 

surrounding it. Consequently, a low-CO₂ material as an 

alternative to steel reinforcement offers great sustainability 

potential.  

Due to these challenges, ongoing research projects are 

investigating the use of basalt fibers as a sustainable alternative 

for concrete reinforcement. The key advantages include 

significantly lower production intensity and CO₂ emissions 

compared to steel, as well as high corrosion resistance. Other 

beneficial properties include higher tensile strength than steel, 

low weight, and fire resistance. Additionally, basalt 

reinforcement exhibits electrically insulating characteristics, 

resulting in longer lifespans of basalt-reinforced materials [7].  

While the application of basalt fibers is also being researched 

in the form of macrofibers, this study considers continuous 

fibers with diameters of 17 μm ± 1 μm [8] bundled into 

multifilament yarns. These fibers can resemble structural steel 

in the form of Basalt fiber-reinforced polymer (BFRP) rebars 

or be woven into grid-like structures. Due to their 

processability, they can also be woven into 3D structures and 

precisely manufactured to meet specific load-bearing 

requirements. To maintain the stability of the reinforcement 

structure and ensure the stress distribution among the 

individual filaments within the bundle, they are impregnated 

with resin [9]. 

The manufacturing method allows for the processing of 

various fiber materials, leading to the concept of integrating a 

sensing fiber for strain measurements. The precise placement 

of fibers during the process enables the defined integration of 

measurement sensors, ideally within a fully automated 

manufacturing setup. The process combines sustainable and 

corrosion-resistant basalt fiber reinforcement with an efficient 

method for structural health monitoring. This offers significant 

potential in saving CO2 emissions, particularly relevant in 

tunneling, where the required structural service life often 

exceeds 100 years [10]. 

The production of reinforcement structures using basalt 

fibers is considered to be particularly advantageous for 

prefabricated construction [7], placing the focus of our 

investigations on segmental lining elements. By equipping each 
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segment with an integrated, low-cost measurement device, 

continuous structural health monitoring could be extended 

beyond individual rings to cover the entire tunnel, enabling 

comprehensive long-term condition assessment. Building on 

this approach, we have extended our research to include the 

development of a cost-effective measurement system. Figure 1 

shows the conceptual sketch of the combined basalt 

reinforcement and integrated strain gauges in a tunnel segment.  

 

Figure 1. Segmental lining element ring and a conceptual 

sketch of the basalt reinforcement with integrated strain 

gauges in a tunnel segment.  

The sensor’s measuring length can be tailored to accommodate 

the desired spatial resolution and range. The strain sensor’s 

integration into the reinforcement windings ensures precise 

measurement along the axis of maximum force, resulting in 

optimal measurement signals. An overlapping sensor 

configuration with varying measuring lengths is being 

evaluated for localized crack detection.  

2 STATE OF THE ART METHODS 

Current methods for ensuring structural safety and functional 

maintenance of tunnels rely on regular inspections. A 

distinction is made between destructive methods, core drilling, 

and non-destructive methods for condition monitoring. 

The Austrian Federal Railways (ÖBB), for example, governs 

these inspections by the RW 06.01.02 regulations [11], 

focusing on crack formations in the tunnel linings. Tunnel 

scanners are used to create high-resolution images of the inner 

shell surface. Despite ongoing artificial intelligence integration, 

the process remains labor-intensive due to specialized 

equipment and manual evaluation [12][13]. 

In addition to condition assessments conducted through 

inspections, systems for continuous long-term monitoring 

(LTM) and structural health monitoring (SHM) are also 

employed. One focus is geotechnical monitoring, for which 

instrumentation, typically comprising extensometers, pressure 

cells, and convergence systems [14], are strategically installed 

in areas where geologically unstable zones, such as fault zones 

and swelling rock formations, are anticipated. The systems can 

be installed deep within the surrounding rock mass, extending 

behind the structural construction, in order to record data from 

the unaffected or stable rock formations.  

To monitor the stress state of concrete structures, 

measurement systems are commonly embedded within the 

concrete matrix. These systems are typically attached to the 

reinforcement to ensure precise positioning, or alternatively, 

they are mounted to separate structural elements, particularly 

in the case of unreinforced concrete. The two most common 

systems for SHM in tunnelling are based on strain gauges (SG) 

and distributed fiber optic sensing (DFOS). Both sensor types 

are applied in cast-in-place concrete, such as inner linings, as 

well as in precast elements, such as tunnel segments. 

Vibrating wire sensors provide accurate measurement of 

strain and, consequently, allow for analytical prediction of 

stress within the tunnel lining. However, they are limited in 

their strain length, often below 250 mm. Therefore, they only 

provide localized data from a few selected points. Furthermore, 

data is manually collected on-site from individual measurement 

boxes, which often require road enclosures. 

The more recent advancement in SHM with DFOS offers 

several benefits over SGs. One fiber optic cable enables 

multiple measurement points within the structural component, 

making it an ideal system for crack detection [15]. 

Additionally, data transmission can be performed over long 

distances without significant loss, allowing the measurement 

analysis to be conducted outside the tunnel. However, DFOS 

systems require careful installation and protective measures to 

ensure durability. To enhance robustness, they are often 

encased in a thick protective layer, compromising flexibility 

and being subject to strain incompatibilities with the material 

to be monitored. The complex setup and costly instrumentation 

are key reasons for the installation at only few locations [16]. 

An innovative alternative to conventional monitoring 

methods involves using carbon fiber reinforcement not only for 

structural support but also as a sensor [17]. Although carbon 

fibers offer greater durability and tensile strength, they are far 

less favorable than basalt fibers in terms of CO2 emissions 

during production, production costs and handling during 

installation [7].  

 

The presented disadvantages of the existing solutions speak in 

favor of the approach pursued in this work of a sensor system 

that can be fully and automatically integrated into the basalt 

reinforcement structure. This cost-efficient approach enables 

continuous SHM not only of sections, but the entire tunnel. A 

holistic SHM system is essential for detecting overstressing 

early, thereby enhancing safety, minimizing downtime of 

infrastructure, and reducing overall maintenance costs [12]. 

Particularly relevant for infrastructures such as tunnels with a 

projected and required long service life.  

3 METHODOLOGY 

Current state-of-the-art metrology solutions to measure strain 

on tunnel segments, like DFOS, offer precise measurement data 

and can, therefore, reliably monitor the few segments in which 

they are integrated. With this approach, the condition of other 

segments can only be estimated. Reliable condition monitoring 

of the whole tunnel system, however, depends on the condition 

monitoring of each segment. Therefore, more cost-effective 

and simpler solutions must be used. The following sections 

cover metrology, and the electronics used for this goal.  

The Methodology section is divided into several subsections. 

It begins with the sensor conceptualization and the description 

of the hand-patterned steel wire strain gauge used in the devices 

under test. Next, the construction of the test device is discussed, 

including the design of the specimen. Following this, the 
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subsequent subsection describes the design of the custom 

electronic measurement system and the theoretical 

measurement principle behind the approach. In the final 

subsection, the test procedures that were conducted are 

explained. 

 Sensor Concept 

Readily available strain gauges suitable for condition 

monitoring of tunnel segments are expensive and challenging 

to mount automated and securely on reinforcement or concrete 

surfaces. Additionally, the precise location and orientation of 

the strain gauges may become uncertain if they shift during the 

concrete pour. A more practical approach would involve 

integrating the strain gauges into the construction of the 

concrete reinforcement. One potential method involves 

integrating a resistance wire into the basalt reinforcement 

fabrication at predefined areas of interest and measuring the 

reinforcement’s strain at those locations. This process can be 

automated using existing robots, simplifying the integration 

process. Prototype devices discussed in this work are equipped 

with hand-wound strain gauges glued to the basalt 

reinforcement. In future production processes, the resistance 

wire would be integrated between individual strands of the 

prefabricated basalt reinforcement of a concrete segment.  

Accompanying electronics would need to be attached during 

this process. After concrete pouring and electronic verification, 

the segment would be ready for mounting inside a tunnel.  

Because the anticipated operation duration is several years to 

decades, common issues such as creep and sensor degradation 

can affect long-term strain measurements. This may lead to 

false-positive or false-negative alerts regarding damage in the 

tunnel segment. These factors are a significant focus of our 

research and pose major concerns for the design and 

development of our condition monitoring system. 

In this work, a stranded steel wire with 90 strands and a 

diameter of 14 µm per strand is used. Electrical insulation 

between each winding is guaranteed due to the careful forming 

of meanders by hand. The specific resistance is approximately 

70 Ω/m. 1.74 meters of wire are used, which results in 120 Ω 

resistance, accommodating standard bridge measurement 

systems. 

The steel wire exhibits a gauge factor 𝑘 of approximately 2, 

a typical value for metal strain gauges [18][19]. The gauge 

factor relation k is defined by 

 𝑘  =   
Δ𝑅 𝑅0⁄

Δ𝑙 𝑙0⁄
=  

Δ𝑅 𝑅0⁄

𝜀 
 ≈ 2  . (1) 

In the given equation the gauge factor 𝑘 is defined as the ratio 

of the relative change in electrical resistance 𝛥𝑅 𝑅0⁄  to the 

technical strain 𝜀. The strain 𝜀 is given by the relative 

elongation, where 𝛥𝑙 is the change in length and 𝑙0 is the initial 

length. Similarly, 𝛥𝑅 denotes the change in electrical 

resistance, while 𝑅0 is the initial resistance of approximately 

120 Ω. 

For clarity, relevant values of the steel wire material are 

presented in Table 1, the wire is a Bekinox® VN-fiber 14.1.9 

from Bekaert [20]. The stainless-steel fiber bundle was chosen 

as the sensor material due to its corrosion resistance and the fact 

that the strands are not twisted. The individual strands are held 

together by a limited number of wrapped polyester filaments. 

Table 1. Test strain gauge properties. [20] 

Steel fiber: Bekaert Bekinox® VN-fiber 14.1.9 

Diameter Strands Ω/m k-factor 

14 µm 90 70 2 
 

Before concrete pouring and after curing, a digital multimeter 

was used to measure the wire’s resistance and ensure proper 

installation and electrical connection. 

 Test Device Construction 

Prior to the concrete tests, tensile tests using PET film were 

conducted to validate the measurement concept. The steel wire 

was mounted to a PET film strip over an approximate gauge 

length of 120 mm with seven meanders, using an epoxy 

adhesive. To verify the measurements, an additional reference 

strain gauge with the same length was attached adjacent. The 

promising results obtained justified further investigations in the 

context of the intended application on basalt reinforcements. 

In the subsequent tests, the steel wire was attached by hand 

to the basalt rods using epoxy. Two types of reinforcement 

were used: basalt rebars with a diameter of 8 mm [21] and 

custom-manufactured basalt rods. The latter consisted of a total 

of 16 basalt fibers, each with a linear density of 2400 tex [8], 

bundled together. The 16-fiber configuration closely 

approximates the cross-sectional area of the basalt rebar and is 

intended to resemble the future application of fully automated 

placement of continuous basalt fibers into 3D reinforcement 

structures.  

Figure 2 shows the steel wire strain gauge conceptual 

drawing and a BFRP rebar with the steel wire attached to the 

surface with epoxy, after a destructive compressive test.  

 

Figure 2. Steel wire strain gauge conceptual drawing and 

implementation on basalt-reinforced polymer rebar after 

destructive compressive test. 
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Due to the small test geometry, multiple meanders were 

required. After the test, pieces of concrete were additionally 

detached for inspection of the steel wire. 

Two test arrangements were designed for both basalt 

materials, with only one basalt rod in the center of each 

specimen, to investigate the suitability of the test strain gauge 

applied to basalt reinforcement inside concrete elements. The 

designs were developed to account for the different directions 

of applied force or load, specifically in both tension and 

compression directions. Both concrete specimen designs are 

cylindrical with only one reinforcing basalt rod in the center. 

The dimensions of both designs can be viewed in Figure 3. 

PVC pipes were used as molds for the concreting process. The 

concrete mix of both designs was similar to typical 

formulations used in precast elements for tunnel construction. 

 

Figure 3. Specimen geometry for tensile (left) and 

compressive tests (right) with measuring length (in mm) and 

strain gauge (blue) on basalt reinforcement element.  

The concrete mix design originates from the corresponding 

specification for precast tunnel segments but was adapted to 

suit the test specimen size. Specifically, aggregate fractions 

exceeding 8 mm were excluded and their mass proportions 

were redistributed among the other grain sizes. The cement 

used was CEM I 42.5 R-SR, and Dynamon NRG 1010 NK was 

employed as the superplasticizer and accelerator. Due to the 

slender design, the concrete was poured in layers with 

intermittent short compaction cycles on a vibrating table to 

minimize the formation of large pore spaces. Additionally, 

unreinforced specimens were produced for each mixing batch 

to determine the uniaxial compressive strength (UCS).  

After demolding the tensile specimens, they were further 

modified by a 3 mm wide and 8 mm deep notch, achieved 

through four cuts with a stone saw, to ensure the formation of 

a central crack during the destructive tensile test. The central 

crack formation enables comparability of the strain gauges, as 

cracks near the fixtures, for instance, could occur outside the 

shorter measurement range of the reference strain gauge. 

Due to the required length of the resistive sensor element of 

approximately 1.74 m to achieve a resistance of approximately 

120 Ω, suitable for the commercially available bridge 

measurement devices, the steel wire test strain gauge had to be 

arranged in a meander pattern, resulting in varying effective 

gauge lengths between the tensile and compression tests. As a 

reference, a commercial strain gauge from the company Althen 

BV was applied to the outer surface of the concrete specimen 

after demolding. Two reference strain gauge types for concrete, 

mortar, and rock materials were applied: PL-120-11-3LJCT-F 

and PL-60-11-3LJCT-F. Both types feature a three-wire 

parallel vinyl cable configuration in a three-wire quarter-bridge 

setup [22]. The reference strain gauges were mounted on the 

surface with a 120 mm measuring length on the tensile and 

60 mm on the compressive specimens, intended for the 

comparison of the inner strain on the basalt reinforcement to 

the strain on the outer concrete surface.  

The specific steel wire gauge lengths and the required 

number of meanders for each test configuration was adjusted to 

the specimen length. For the tensile test setup, the measuring 

length was set to 214 mm with 4 meanders on the basalt 

reinforcement. The shorter compressive tests required 9 

meanders of steel wire over the measuring length of 95 mm.  

 Electronic Design 

The strain gauges’ resistance is commonly not directly 

measured but rather utilized in a resistance measurement 

bridge. Therefore, a quarter bridge measurement to determine 

the strain of the specimen under test using the approximated 

strain relation presented in Equation (2) was used: 

 𝜀  ≈  
4 ⋅ 𝑉𝑑

𝑘 ⋅ 𝑉0 
 (2) 

Here, 𝑉𝑑 represents the amplified differential voltage of the two 

bridge arms, 𝑘 is the gauge factor of the strain gauge, and 𝑉0 

denotes the excitation voltage applied to the Wheatstone 

bridge.  

As state-of-the-art measurement tools prove to be impractical 

for large-scale tunnel condition monitoring, a complementary, 

low-power, and compact electronic measurement system 

approach is being tested throughout the measurements. The 

block diagram of the developed prototype electronics is 

presented in Figure 4. 

Figure 4. Block diagram of the developed measurement 

system. The device under test is employed in a quarter bridge. 

The ADS1261 IC measures the bridge voltage 𝑉𝑑 and supplies 

the bridge with its internal voltage reference. An Arduino Uno 

R4 Minima reads the digitized data. Additionally, the Arduino 

exports its data to a PC for data storage. 

The primary focus of this design is the sensor front-end section. 

This part is responsible for analog-to-digital conversion, 

amplification, filtering, and transmission of the digitized 

measured bridge voltage 𝑉𝑑. Furthermore, the resistance bridge 

must be supplied either by a current for absolute resistance 

changes or a voltage source for relative resistance changes. In 

addition to signal conditioning, the sensor front-end must 
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communicate with a microcontroller to transmit the 

measurement data to a PC for further signal processing. Given 

the significance of various key parameters, such as offset drift, 

linearity, potential supply outputs, the number of analog inputs, 

the number of samples per second, the possible integrated 

circuit (IC) supply ranges, package sizes, and recommended 

applications, the sensor front-end ADS1261 [23] (Texas 

Instruments, Inc.) was selected as the preferred choice. This 

sensor front-end incorporates a precision 40 kSPS Delta Sigma 

analog-to-digital converter (ΔΣ-ADC), along with a 

programmable gain amplifier (PGA), an internal precision 

voltage reference, and an internal current source for bridge 

applications. Furthermore, the ADS1261 provides 

programmable registers to configure sampling rates, 4-wire or 

6-wire measurements, current or voltage-driven bridge supply, 

PGA gain, filter modes, and read-only registers for data 

transmission over the serial peripheral interface (SPI). For the 

initial prototype, an Arduino Uno R4 Minima [24] (Arduino, 

Inc.) was used to read-in the digitized bridge level data. For this 

purpose, an algorithm to configure the ADS1261 registers for a 

predefined operating mode and a voltage-driven bridge circuit 

was developed. It then read the incoming data and displayed it 

on the Arduino’s serial monitor for further storage and 

processing.  

 

Figure 5. Developed Arduino shield incorporating the 

ADS1261 bridge front-end, screw terminals, and an OLED 

display for data visualization and debugging. 

Furthermore, a printed circuit board (PCB) was designed and 

constructed. It integrates the ADS1261, connectors for the steel 

fiber strain gauge, and an OLED screen for data visualization, 

as shown in Figure 5. The printed circuit board was designed to 

fit seamlessly onto the Arduino pins, facilitating a direct 

connection. Such boards are commonly referred to as shields.  

The strain gauge connection was realized with screw 

terminals as seen in light green and will be replaced by soldered 

connections in future revisions for a smaller contact resistance. 

These terminals form one half of the measurement bridge. This 

approach enabled adaptation for every strain gauge resistance 

within certain linearity boundaries. Given a specific strain 

gauge resistance, either two strain gauges can be connected to 

form a temperature-compensating half bridge, or a resistor with 

an equal no strain resistance can be connected to the second 

terminal to form a quarter bridge circuit. 

 Test Configurations 

Building on the success of previous proof-of-concept 

measurements that involved creating a test strain gauge by 

attaching a steel wire to a plastic foil for tension tests, 

handcrafted concrete test devices are used for the following 

evaluations. These devices are equipped with handcrafted 

meander-shaped strain gauges and serve as preparatory tools 

for future tests involving real segmental lining elements.  

Figure 6 depicts the setup comprising the devices under test 

for tensile and compressive tests in the test stand, including the 

load cell in the tensile test arrangement, and the mechanical 

measurement connections that can be applied as tensile force or 

compression force by a servo-hydraulic actuator.  

 

Figure 6. Test setup with the device under test mounted 

securely for tensile and compressive tests. Inside the device a 

steel fiber strain gauge is used. On the outside of the device, a 

standard strain gauge is installed. The load cell measures the 

applied force.  

During measurements, the test stand applies and records force 

and travel distance in the longitudinal direction of the device 

under test. This force induces elongation or compression in the 

device and the strain gauges. Consequently, the strain gauges’ 

resistances are anticipated to change. As a result, the 

strain/force relation can be quantified and visualized. As the 

resistance of the strain gauge also fluctuates in response to 

temperature, air pressure, magnetic field, and electromagnetic 

radiation changes, all of these factors were held constant to the 

extent practicable. 

After constructing the devices under test and allowing a 

curing time of seven days, realistic test conditions were 

assumed. Special clamps to hold the devices, which are 

equipped with elastic rubber bands at the clamp edges were 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-100 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 657 

used to ensure equal pressure around the circumference of each 

device. Once the devices were mounted in the clamps, the 

connection wires to the measuring devices were connected. At 

this stage, a small amount of pre-tension or pre-compression 

was applied to ensure that the test stand can directly apply force 

during movement without any forceless travel. 

Due to a limited number of test devices resulting from the 

tedious manufacturing process, several measurements using 

non-destructive forces with half of the expected maximum 

force before failure were conducted. This approach allowed us 

to measure strain with multiple setups before any devices were 

destroyed. The testing control paradigm varied between the two 

test setups. The compression test was conducted in force-

controlled mode with a linear increase in applied force over 

time. In contrast, the tensile test was performed in distance-

controlled mode by linearly increasing the distance between the 

mounting positions of the device under test, due to easier test 

stand programming.  

As the final step of a measurement session, a destructive test 

was conducted. During destructive tests, the applied force 

exceeded the load-bearing capacity of the concrete, leading to 

the formation of cracks. In the case of the displacement-

controlled tensile test, the applied force drops rapidly after the 

expected initial crack in the pre-notched specimen center. 

Further cracks form along the length of the specimen. 

Depending on the arrangement, different reactions occur at the 

inner and outer measuring areas. 

Table 2. Relevant specimen and test parameters. 

 Tensile Compressive 

Number of samples 6 3 

Number of tests 25 13 

Nondestructive force (kN) 1.5 45 

Destructive force (kN) 4 120 
 

The experimental test program on the steel wire strain gauge 

with basalt fiber-reinforcement materials is structured into 

tensile and compressive tests as presented in Table 2. The 

number of tests includes the number of repeated non-

destructive variants and the final destructive ones for each test 

sample. Estimates of nondestructive and destructive loads are 

based on the results of tests with unreinforced concrete 

specimens.  

4 RESULTS 

Out of many test measurements, selected results based on their 

significance are presented in this section. Both for tensile and 

compressive tests on the reinforced concrete test objects, we 

present comparisons between the measurement signals 

recorded by a Quantum MX1615B [25] (HBK, Inc.) 

measurement system and the custom bridge measurement 

system. We organized the setups such that each strain gauge 

was measured with each measurement device, but for 

sequential and separate measurements. For instance, the inner 

strain gauge was connected to the MX1615B, and the outer 

strain gauge to the custom electronics during one non-

destructive test. In the subsequent non- destructive test, we 

switch the connections. This method allows qualitative 

comparison of the results obtained by the MX1615B device and 

the results obtained by the custom electronics. 

Using its accompanying software tool, we set a low-pass 

filter using a 4th-order Bessel filter, with a cutoff frequency of 

10 Hz at a measurement rate of 50 Hz, for the Quantum 

MX1615B measurements. 

For all signals recorded by the measurement systems, zero-

phase digital filtering in the signal post-processing using 

Matlab's filtfilt() function was applied. In this case, an FIR 

low-pass filter with a cutoff frequency of 2 Hz and a length of 

101 was implemented. This approach ensures no phase delays 

of different frequency compone nts of the measurement signal. 

 Tensile tests 

Based on previous test measurements conducted with 

unreinforced concrete test specimens, non-destructive tensile 

tests were performed with estimated tensile forces below 

1.5 kN, less than half of the expected maximum load, as stated 

in Table 2. Given the relatively small forces, only minor strains 
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Figure 7. Two non-destructive tensile tests with an in-built hand-made strain gauge in green, measured with the custom-made 

electronics (left) and with the MX1615B (right). The applied tensile force is shown in blue. 
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of less than 50 µm/m were anticipated, which was reflected by 

the executed measurements. Figure 7 shows two measurements 

of different test measurements using the same device under test 

for a qualitative comparison between the custom measurement 

system and the MX1615B. Each plot illustrates the tensile force 

resulting from uniform cylinder motion in blue and the low-

pass filtered measurement signal from the measurement 

systems connected to the inner steel wire strain gauge in green. 

In the left plot, the measurement signal of the custom 

electronics is shown. On the right side, the measurement signal 

from the MX1615B instrument. Both measurement signals were 

digitally filtered with the aforementioned FIR low-pass filter 

with a filter length of 101 and a cut-off frequency of 2 Hz. As 

one can observe, at these strain values, even the reference 

measurement system MX1615B has significant signal 

variations.  

Most non-destructive tensile tests were conducted over a 

duration exceeding 60 seconds, as the test stand exhibited a 

slow but consistent movement. It is evident from Figure 7 that 

the reduction of the tensile force signal precedes the end of the 

load sequence. The tests concluded at this point, and the force 

was set to zero manually after a few seconds, shown with the 

dashed blue line. The minor strain relaxation detected, prior to 

the manual movement, was observed in all tensile tests and is 

most likely attributable to displacements of the elastic rubber 

bands within the clamping device. 

During destructive tensile tests, cracks in the concrete 

appeared, resulting in sudden force drops and elongation rises. 

Figure 8 shows this behavior in a comparable range for both, 

inner and outer strain gauges. As the force, due to the steadily 

moving test stand, increases, the device under test experiences 

more and more mechanical stress. At a certain point, the 

concrete rips and gives way for a relative movement between 

the concrete and the basalt reinforcement. This results in an 

overall elongation of the system, which is measured by the 

applied strain gauges, shown in Figure 8. During destructive 

tests, several cracks occur. For a more detailed insight into the 

destructive strain measurements, only one is shown here.  

 

Figure 8. Concrete ripping apart during a destructive tensile 

test. The applied test stand force, shown in blue, drops due to 

the formation of a crack. The outer reference strain gauge in 

dashed green, and the inner steel wire strain gauge (green line) 

show the feasibility of crack detection. Both measurement 

signals were recorded with the MX1615B. 

 Compression tests 

Due to concrete's high compressive strength and previous 

unreinforced compression tests, a linearly increasing 

compression force of up to 60 kN was applied for non-

destructive test measurements, again less than half of the 

expected maximum load, as stated in Table 2. Given the 

significantly higher forces during this measurement session, 

correspondingly greater changes in the signals were expected 

to be observed.  

Figure 9 illustrates, similar to Figure 7, two separate 

compressive test measurements with the inner steel wire strain 

gauge. The compressive force is shown in blue, and the 

measurement signals from the custom electronics on the left 

and the MX1615B on the right are shown in green. Both strain 

signals were again filtered using the FIR low-pass filter with 

filter length 101 and a cut-off frequency of 2 Hz.  
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Figure 9. Two non-destructive compressive tests with an in-built hand-made strain gauge in green, measured with the custom-

made electronics (left) and with the MX1615B (right). The applied compressive force is shown in blue. 
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Once again, the load was held at a specific point before 

manually setting it to zero after a few seconds, shown with the 

dashed blue line. The fluctuations in the strain measurement 

signals are believed to be a result of relative movement between 

the individual components of the composite material.  

 Evaluation of Noise 

During all tests, the Quantum MX1615B (accuracy class 0.1, 

linearity deviation 0.05) was used alongside the PL-120-11-

3LJCT-F and PL-60-11-3LJCT-F strain gauges, which have a 

gain factor of 2.1 ± 1%. According to the datasheet, the 

Quantum MX1615B produces less than 0.6 µV/V noise at 25°C 

with a 5 V excitation.   

In comparison, the ADS1261, used in the custom system, 

exhibits 30 nVRMS noise (gain 128, 20 SPS) and a linearity of 

2 ppm. The stranded steel wire used in the setup is assumed to 

have a gain factor of 2. Throughout the tests, temperature and 

humidity were maintained constant, as the test stand is located 

in a sub-terrain basement. These factors lead to the standard 

deviations of the detrended measurement signals, as shown in 

Table 3. 

Table 3. Standard deviations obtained from the reference 

Quantum MX1615B and the custom measurement system, 

both for tensile and compressive tests after low-pass filtering. 

Standard deviations Tensile 

(µm/m) 

Compressive 

(µm/m) 

MX1615B 0.769  0.563 

Custom system 1.49 2.07 
 

As is visible, after low-pass filtering, the standard deviations 

are in the same order of magnitude.  

5 CONCLUSION 

Our measurements aimed to demonstrate the feasibility of in-

built strain gauges into the basalt reinforcement for future 

automated production processes. 

Based on prior tests, tensile as well as compressive tests were 

conducted, using hand-patterned steel wire strain gauges 

mounted on basalt reinforcement to measure the device under 

test’s elongation and compression. Both compressive and 

tensile tests showed promising results. Relative movement 

between the basalt reinforcement and the concrete is the same 

for wounded basalt fibers as well as basalt rebar. Furthermore, 

the adhesion between the hand-patterned strain gauge and the 

basalt rebar holds and the strain gauges endure the harsh 

concrete environment without failure, as seen in Figure 2. 

These are promising findings for further development of 

automated basalt reinforcement construction. Additionally, it 

shows that the adhesion between the reinforcement and the 

concrete has to be improved in future revisions, giving valuable 

insight into the dynamic behavior of the compound material.  

Our low-cost, custom-made, first prototype measurement 

device reaches acceptable sensitivity close to the range of the 

Quantum MX1615B measurement system. As a result, we 

demonstrated the viability of our low-cost, structural health 

monitoring concept, feasible for the instrumentation of a whole 

tunnel. 

 

Future revisions of the electronics anticipate the replacement of 

the Arduino with an industrial-grade microcontroller, further 

reduction of component sizes, and the removal of the OLED 

screen for low-power operations within tunnel segments. 

Additionally, all metrics for improvement, concerning an 

integrated solution of both the electronics and sensors for the 

application in concrete elements, including temperature 

compensation actions, are being considered. These include 

half-bridge configurations, degradation compensation, and 

software measures to counteract false-positive and false-

negative readings. 

Moving forward, we anticipate further tests including 

bending beam tests as a precursor to tests on real tunnel 

segments due to more representative conditions of standard 

segment test scenarios. Furthermore, in the long term, we 

propose test arrangements with multiple measurement systems 

in segments, forming a tunnel ring, for real-world test 

environments.  
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ABSTRACT: This paper presents a battery-operated wireless long-term response measurement system for high-guyed masts in 

the UK, as a part of ROSEHIPS project. The monitoring system aims to capture wind speed and direction as input and 3D 

accelerations and 3D displacements as outputs for a target period of three months. GNSS (Global Navigation Satellite System) 

based time-synchronisation methods were used in all subsystems for accelerometer, anemometer, and Computer Vision based 

cameras. Epson E-M352 sensors were used to measure triaxial accelerations with extreme accuracy 0.2ug/ÖHz at multiple points 

along the height of the mast, together with an anemometer. Low-power consumption features of ESP32 microprocessor unit was 

utilized to achieve a longer battery life. To remotely monitor its 3D displacement, a wireless stereo vision system was developed 

using Raspberry Pi. The displacement is measured in the image plane of each camera, and the data is then uploaded to the cloud 

for 3D reconstruction. The measurement accuracy was validated through an outdoor test, where the two cameras were 

approximately 100 meters apart, and the target was located about 200 meters from both cameras. The results showed a 

measurement error of approximately 1 mm. The time synchronisation between the accelerometer and the stereo vision system was 

also evaluated. By using the system to track an accelerometer mounted on a cantilever, the time-sync error was found to be less 

than 1 ms. 

KEY WORDS: Structural Health Monitoring, Wireless Sensor, Accelerometer, Stereo Vision, Anemometer. 

1 INTRODUCTION 

High-guyed masts are critical infrastructure for 

telecommunications and broadcasting, yet their slender designs 

make them vulnerable to environmental loads, particularly 

wind-induced vibrations [1]. 

    Effective monitoring of these structures is essential to ensure 

safety and reliability [2]. Traditional wired systems face 

challenges including high installation costs, power supply 

limitations, and maintenance difficulties. Wireless, battery-

operated systems offer an attractive solution, providing 

flexibility and ease of installation. 

    This paper presents a wireless long-term monitoring system 

developed as part of the ROSEHIPS project, specifically 

targeting high-guyed masts. It integrates Epson E-M352 

accelerometers for accurate acceleration measurements, an 

anemometer for wind monitoring, and a Raspberry Pi-based 

stereo vision system for remote displacement tracking. GNSS-

based synchronization [3] ensures precise timing across all 

sensors. 

2 WIRELESS INPUT-OUTPUT MONITORING 

SYSTEM 

 Accelerometer 

 

Figure 1. Accelerometer node 

The accelerometer node consists of a M5Stack Core2 MPU 

based on esp32, a GNSS module, an accelerometer module for 

an Epson M-A352 sensor, and a battery module. M5Stack 

provides a convenient modular design, which an additional 

feature can be added a module layer stacked below the MPU. 

Light sleep was employed in esp32 to save power-consumption. 

 

 Stereo vision system 

The wireless stereo vision system comprises two identical 

nodes (left and right), each equipped with a SONY IMX296 

camera and lens, a Raspberry Pi 4B computer, a GNSS board 

and antenna, and a 4G communication module. The camera in 

each node is triggered by its Raspberry Pi via a jumper cable. 

To achieve synchronous image capture, both nodes use pulse-

per-second (PPS) signals from the GNSS modules; upon 

receiving these PPS signals, the Raspberry Pi generates a 

synchronised 10 Hz trigger signal for the cameras. 

First, the two nodes are positioned, and their geometric 

relationship is accurately determined using a GPS-RTK system 

for later 3D reconstruction. Users set an identical start time for 

both nodes, initiating synchronised 10 Hz image capture upon 

receiving the PPS signals. A measurement target is selected 

from the initial images of each node, ensuring the same target 

is tracked by both nodes. Each node independently measures 

the target's 2D displacement, and the data is uploaded to AWS. 

Finally, the 3D displacement is calculated in AWS using 

triangulation based on the uploaded 2D measurements and the 

known geometric relationship between the cameras 

 

 Anemometer 

Anemometer used was a GILL 1350 ultrasonic anemometer, 

which measures wind speed and direction up to 10 Hz. 
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3 SYNCHRONISATION VALIDATION 

 Setup  

The time synchronisation between the accelerometers and the 

stereo vision system was validated. Three accelerometers 

(named ACC1, ACC2, and ACC3) were mounted on a 

cantilever beam. Two camera nodes (named CV1 and CV2) 

were placed 0.62 m from the structure, as shown in Figure 2. 

The validation consisted of three subtests: (1) synchronisation 

error between accelerometers, (2) synchronisation error 

between camera nodes, and (3) synchronisation error between 

accelerometers and cameras. 

 

Figure 2. Experiment setup. 

 Results 

(1) Synchronisation error between accelerometers 

The structure was manually excited, and the accelerometers 

recorded the structural acceleration. Figure 2(a) shows the 

measurement results, and Figure 2(b) shows a zoomed view. If 

the sensors were perfectly synchronised, the measured data 

from all three sensors should have no phase lag. The observed 

phase lags were considered as synchronisation errors. The 

synchronisation error was 40 μs between ACC1 and ACC2, and 

11 μs between ACC1 and ACC3. 

(a)  

(b)  

Figure 2 Measurement data of accelerometers. 

(2) Synchronisation error between camera nodes 

Figure 3(a) shows the measurement data from CV1 and CV2, 

and Figure 3(b) provides a zoomed view. The synchronisation 

error between the two camera nodes was 32 μs. 

 

(a)  

(b)  

Figure 3 Measurement data of camera nodes. 

(3) Synchronisation error between the accelerometer and 

camera 

Acceleration and displacement are two different measurement 

units, but their waveforms are opposite when the signals are 

simple harmonic. The ACC1 data was multiplied by -1500 and 

then compared with the CV1 data. The synchronisation error 

between the two types of sensors was 309 μs. 

 

(a)  

 
(b) 

Figure 4 Measurement data of the accelerometer and camera. 

4 CONCLUSION 

The developed wireless sensors—including anemometers, 

accelerometers, and vision-based systems—help fill the gap in 

long-term input-output monitoring of high guyed masts at low 

cost. These heterogeneous sensors form a wireless sensor 

network, which also has potential for other structural health 

monitoring applications, such as using vision-based systems to 

capture vehicle input and accelerometers to measure structural 

response on bridges. 
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ABSTRACT: Engineering structures are generally understood to be predominantly functional objects, such as bridges, tunnels, 

cranes, silos etc. Failure of these structures not only causes physical damage but can also lead to interruption of production, 

disturbance of infrastructure or traffic and thus disruption of operations with commercial impact for both the asset owner as well 

as concerned commuters or customers.  

Therefore, in-situ monitoring is of major importance. The challenge lies in the need to observe specific parameters in difficult to 

access locations, under demanding environments, or with high data rate requirements. These conditions often exceed the 

capabilities of geodetic observation techniques. Wireless Condition Monitoring (WCM) nowadays can breach the gap by 

implementing a variety of sensors and maintenance-free hardware without the requirements of line-of-sight or cables. Compact 

Nodes with internal and external sensors and low power consumption are versatile and provide long battery life. Remote access 

allows adjustment or temporary changes of configuration settings (e.g. recording intervals). Automated data transfer to cloud-

based visualization platforms enables continuous data access with configurable alerts, allowing for proactive evaluation of 

structural health.  

The article presents a number of practical field examples that address the challenges mentioned above, while highlighting the 

specific requirements for interpreting the collected data – supported by examples of result validation using independent techniques. 

KEY WORDS: Monitoring, Structural Health, Wireless Condition Monitoring, Multi Sensor System 

 

Figure 1 : Installation of tilt sensors for monitoring a retaining wall in a track area with restricted access 

Wireless Multi Sensor Monitoring of Engineering Structures 

Markus Rennen1, ORCID 0009-0002-5772-4205 

1Senceive Ltd, Milton-Keynes, UK 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-102 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 665 

1 MONITORING OF ENGINEERING STRUCTURES 

 Motivation 

Per definition, the primary focus of engineering structures 

lies in fulfilling functional tasks. According to DIN 1076, 

engineering structures include relevant buildings, 

transportation systems, bridges, tunnels, trough and retaining 

structures, but also silos, masts, chimneys, cooling towers, 

industrial facilities, etc. If a structure can no longer fulfill its 

function, the damage is not limited to the structure itself but 

also includes the loss of its economic utility. In industrial 

plants, entire production lines can be affected if a single 

component fails. Naturally, structural safety is of fundamental 

importance and ensuring usability while avoiding failure-

oriented maintenance is essential. 

As an additional challenge, monitoring usually has to be 

conducted during full operation, which causes limited 

accessibility and demands an extraordinary robustness of the 

hardware. 

 Automation of Monitoring 

Monitoring of engineering structures typically focuses on 

relatively small-scale structures. The motivation to automate 

monitoring usually stems from one or more of the following: 

• The required sampling rate makes manual monitoring 

impractical or inefficient.  

• Access to the monitored object is generally difficult, 

uneconomical, or dangerous (see Figure 1).  

• The observation period is very long. Automation ensures 

that operations (e.g., traffic flow) remain undisturbed.  

Moreover, smart automation of the monitoring process 

allows operational workflows (e.g. traffic flow) to remain 

undisturbed. 

Monitoring, as a broad term can involve various parameters, 

including economic or statistical indicators characterizing 

industrial usage. It may also be necessary to record internal and 

external timeframes to synchronize operational influences with 

structural integrity parameters. 

Figure 2: Wireless Sensor Nodes: 3-Axes-Tilt-Sensor (Triaxial Tilt Sensor) (Foreground) and Laser Distance Sensor 

(Background) 

Figure 3: Solar powered cellular gateway, intermediately 

stores the sensor data and transmits it to the server 
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Automated systems collect data in regular or event-triggered 

intervals and transmit it to a platform, locally or via cloud-

based interfaces accessible through a web browser. 

2 WIRELESS MONITORING SYSTEMS 

Various observation methods can be considered wireless (e.g., 

prisms, remote sensing). Generally, the term refers to what has 

become known as Wireless Condition Monitoring (WCM): 

active sensors with autonomous data acquisition units, or 

'nodes', that integrate sensing, power supply, and data trans-

mission. These nodes can incorporate external sensors with 

various signal types (analog or digital) and are highly compact. 

Miniaturized low-power MEMS (Micro-Electro-Mechanical 

Sensors) have opened the door to practical usage. For instance, 

tilt sensors consist of a chip-based nano-sized probe resting 

between capacity electrodes recognizing gravity related 

rotations. Available High-G versions offer considerable 

resistance to physical shock. Additionally, built-in mechanical 

as well as statistical filters help eliminate outliers. Some 

manufacturers include additional accelerometers that allow 

sensor values to be triggered by outside impacts which occasio-

nally is utilized in slope and embankment monitoring as well 

as rockfall detection. 

In Figure 2 examples for commercial 3-axis tilt sensors, and 

laser distance sensors, are shown, offering more than 10 years 

of battery life at half-hourly data sampling rate. 

 Communication and Operation 

Data is typically encrypted and transmitted from nodes to a 

local gateway (Figure 3), and from there via cellular networks 

to an online platform. Internally, systems use 2.4 GHz Wi-Fi 

frequency for high bandwidth or LoRa for long range (868 

Figure 4: Sensor locations at the Südzucker Lime Kiln in 

Wabern/Germany 

Figure 5: Correlation of Lime Kiln Deformation with duirnal Sun Exposure (Tilt Units in mm/m) 
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MHz licensed in Europe). Due to short sampling intervals and 

small monitoring areas in structural applications, 2.4GHz is 

often preferred. LoRa only allows longer reporting intervals 

and has limited two-way communication, making remote 

configuration more difficult. 2.4GHz-based systems mitigate 

shorter range via node meshing, where neighboring nodes act 

as repeaters. Gateways can be solar powered, enabling flexible 

placement. Unlike geodetic methods, WCM does not require 

line-of-sight, allowing sensor placement on hard-to-reach 

structures. Sensors are maintenance-free and configurable 

remotely. 

 Applications and Interpretation 

Interpreting WCM results can be challenging. While geodetic 

methods like Total Station observations provide 3D 

coordinates, tilt sensors only provide angular data, which must 

be interpreted cautiously. For instance, when converting 

angular units via trigonometric calculations, i.e. projection onto 

real respectively virtual beam lengths, into more intuitive 

metric values, (e.g. mm/m) structural stiffness and deformation 

behavior must be considered.   

Sometimes, the mere indication of movement is enough to 

trigger further action. In inaccessible areas like rail zones, ease 

of installation and maintenance are crucial (see Figure 1). If 

models of deformation characteristics exist, tilt angles can be 

extrapolated to derive horizontal or vertical displacements of 

masts, walls, foundations, etc. 

3 CASE STUDIES 

 Südzucker Lime Kiln, Wabern 

3.1.1 Situation  

The lime kiln at the Südzucker site in Wabern/Germany was 

monitored to assess its behavior during operation, including 

firing and loading phases. The structure is a 48.5m tall 

cylindrical tower with a diameter of 2.66m. Tilt sensors were 

mounted in all four cardinal directions near the top of the tower. 

As mentioned above, extrapolating tilt measurements along the 

length of a structure requires the assumption that the structure 

is rigid. If the assumption holds, the recorded tilt values can be 

projected over the kiln’s height to measure the horizontal 

displacement at the top of the structure. Model assumptions like 

this naturally must be validated.  

As it was rather unlikely that the tower would tilt as a rigid 

body over the entire almost 50m, three additional sensors were 

installed in a vertical alignment on the north side from the 

foundation to the top  (Figure 4).  

Typically, MEMS tilt sensors provide resolution of 

approximately 0.0001° or less than 0.002mm/m with repeata-

Figure 6: Installation of tilt sensors on the supports and 

longitudinal beams of the crane rails 

Figure 8: Mobile crane bridge with centrally positioned 

gateway 

Figure 7: Crack sensor for detecting the internal deformation 

of the crane bridge 
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bility of roughly ±0.0005° (less than ±0.01mm/m). Critical 

though is temperature correlated sensor behavior which can 

reach a magnitude of 0.0017°/K (0.03mm/m je °K) [1]. Therefore, 

to achieve higher accuracy, temperature compensation is 

required, or the installation must be configured to separate 

deformation effects from temperature influences.  

3.1.2 Interpretation 

The installation took place in early September, at a time when 

temperatures fluctuated between approximately 15°C at night 

and, in some cases with strong sunlight, well over 40°C during 

the day. Since all nodes are equipped with an internal 

thermistor, the local temperatures were recorded directly at the 

sensor.  

Figure 5 depicts the nodes’ behavior for all four top nodes 

and the bottom one on the north side. The top graph shows the 

nodes’ temperature recordings for roughly the first week of 

observations. Temperature peaks shifting from east to west 

throughout the duration of one day reflect the sun’s path. 

Naturally, no temperature peaks occurred on the north side; 

however, the bottom and top sensor in the North i.e. the light 

and dark blue graphs still followed the general daily 

temperature pattern. 

When examining the movements in the horizontal X and Y 

directions (Figure 5 lower two graphs in mm/m), a temperature-

correlated, oscillating motion pattern can be observed in all 

sensors located in the upper tower area. In contrast, the tilt 

sensor at the base of the tower showed virtually no movement). 

These observations essentially allow two conclusions to be 

drawn: 

a) The movement in the upper part of the tower is real 

and not caused by temperature effects on the sensor, 

as otherwise the sensor at the base would also show 

temperature-correlated movements. 

b) The tower deforms increasingly with height and 

does not tilt as a rigid body. 

 

Therefore, the above demanded separation of temperature 

impact from the real signal could be achieved by appropriate 

sensor constellation. The derivation of realistic horizontal 

displacements at the various levels of the kiln would require 

more sophisticated differential models not conducted during 

this task (for comparison see 3.4). 

 Crane Track at Thyssen Krupp, Duisburg  

3.2.1 Task and Realization 

According to the client, German Thyssen Steel Company in 

Duisburg/Germany, the crane track girders had previously 

exhibited wear damage with unknown causes in the past. It is 

suspected that crane movements while transporting heavy steel 

slabs induce short-term deformations, which remain detectable 

by geodetic methods among others due to their dynamic nature.  

3.2.2 Data Considerations 

Tilt sensors and crack sensors were installed on supports and 

beams (Figure 6 and Figure 7), with their positions measured 

geodetically.  

Additional gateways were placed on each crane bridge to 

allow for independent, stable, yet mobile wireless mesh 

networks (Figure 8). Data was sampled every 2 seconds and 

transmitted via cellular network. Through an API-based 

database interface, approximately 400 MB of CSV data per day 

was transferred over several months to a local computer. 

Moreover, the timestamp of the data allows synchronization 

between sensor behavior and crane position. This should enable 

the user to associate specific load cases and crane con-

figurations with the corresponding sensor. 

Figure 9: Permanent Observation of Abutment Tilt and 

indicative vertical Displacement of the Bridge Deck 

Figure 10: Bridge during load test with 48t mobile crane 
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At the time of writing, the geometric evaluation of the 

combined data from sensor readings and crane positioning is 

still ongoing and will be the subject of a student master’s thesis. 

Even ahead of that outcome, the project has already 

demonstrated that such high sampling rates can be handled 

wirelessly over extended periods of time. 

 Indicative Monitoring Bridge BAB43 Bochum 

At a highway bridge in Bochum/Germany the asset owner 

expressed concerns that the cylindrical roller bearing might 

exceed its margins due to the abutment tilting outwards. In 

order to avoid dangerous vertical displacement (“drop”) of the 

bridge deck, wooden supports were inserted that would only 

allow <10mm sag.  

Since the question of whether the vertical displacement 

occurred was essentially binary - either it happened or did not 

- a low cost, indicative alarm solution was requested to run 

alongside the abutment tilt observations. A spring-loaded 

telescopic crack sensor was installed (Figure 9) that allowed for 

diurnal and seasonal horizontal movement of the deck while 

reliably indicating vertical displacement.  

 Bridge on Wittekindstraße, Dortmund 

3.4.1 Situation and Task 

Compared to the above, this Dortmund bridge demanded 

more detailed i.e. quantitative observation. The case presented 

involves a slab structure built in 1957, consisting of two 

identical superstructures separated by a joint, each 

approximately 31 meters in length, with four individual bridge 

spans of about 15 meters each (Figure 10). At this location, two 

major traffic arteries of Dortmund intersect in an urban setting: 

the six-lane B1 and the four-lane Wittekindstraße. 

An expert report prepared in 2023 confirmed the load-

bearing capacity of the bridge. To ensure continued safe 

operation, permanent monitoring was recommended as a 

supplementary measure to the regular structural inspections. As 

a result, the Civil Engineering Department of the City of 

Dortmund, in collaboration with the Surveying and Cadastral 

Office, developed a monitoring concept that included the 

continuous observation of the structure using WCM sensors.  

Following the layout of the prestressing tendons, tilt and 

strain sensors were installed across the four bridge spans 

(Figure 11). The arrangement was designed to approximate the 

expected deformation trough using four tilt sensors per bridge 

deck, i.e. two tilt sensors at each shoulder and a strain sensor in 

the middle, where the greatest tensile stress was expected. In 

addition, transverse cracks were equipped with potentiometric 

crack sensors, and temperature probes were embedded in the 

concrete. The system was installed using a lifting platform 

within a single day and has been transmitting data to a browser-

accessible cloud server at 30-minute intervals since October 

2023. 

3.4.2 Load Test 

The initial expert report had already recommended a dedi-

cated load test, which was carried out in April 2024 using a 

48-ton crane provided by the Dortmund fire department (Figure 

10).  

Figure 11: Arrangement of the WCM sensors (tilt, strain, 

and crack sensors) and operation of the laser scanner 

during the load test 

Figure 12: Visualization of the deformation during the load 

test via live access to the cloud portal 
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Specific loading points were defined by the Civil 

Engineering Department and marked by the Surveying and 

Cadastral Department1. For the test, the sensor system was 

remotely switched into a 30sec interval live mode. This was 

intended to ensure that the vehicle remained in position until 

the increase in deformation had subsided and stabilized at a 

constant level. It turned out that the full deformation occurred 

almost instantaneously (Figure 12). Accordingly, the crane was 

held in position for approximately 15 minutes before moving 

to the next position. This duration allowed precise evaluation 

of the sag dynamics while providing redundant observations to 

generate reliable, representative averages in order to avoid data 

noise bias. 

The experts from the Civil Engineering Department of 

Dortmund predicted a load-induced deformation in the order of 

                                                           
1 Vermessungs- und Katasteramt 

magnitude of 2-4mm that can certainly be detected using 

geodetic methods. Accordingly, surface scans were carried out 

before, during, and after the loading using a high-precision 

geodetic Zoller & Fröhlich phase scanner (Figure 11), and the 

results were evaluated as part of a bachelor's thesis at the 

Department of Geodesy at Bochum University of Applied 

Sciences. Figure 11 shows the significant deformation of the 

bridge span around the load position by color coding. 

 To compare the two methods, a cross-sectional profile-

spline was calculated through the scan-generated surface, 

following the layout of the prestressing tendons.  

In order to get a comparable graph from the tilt nodes the 

resulting deformation trough was approximated by a higher 

order polynomial with the tilt values representing tangents at 

dedicated “chainage”. The tangent gradient is obtained from the 

Figure 14: Comparison of the results from surface scanning and tilt sensor data along the course of the prestressing tendons 

(Graphic: [2] M.Różański) 

Figure 13: Example visualization of the load-induced deformation pattern of a bridge span from the surface scan  

(Graphic: [2] M.Różański) 
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first derivative of the polynomial. Accordingly, the inclination 

values can be used to solve the system of differential equations 

and determine the coefficients of the polynomial. In this way, a 

deformation profile can be calculated from the inclination 

values. Thanks to the high data density - through the large 

number of surface-representing points in the Laserscan and the 

repeated measurements from the tilt sensors - both systems 

achieved sub-millimeter relative accuracy at the collocation 

points. 

The resulting graphs are shown in Figure 13. Since a laser 

scanner profile includes significantly more sample points, local 

deformations that fall between the gaps of the WCM are only 

picked up by the scans. Nevertheless, both methods yield 

similar results, coinciding closely in shape and differing by 

approximately 0.2mm. 

The observed result came reassuring to the local authority. 

Not only did the results confirm that the installed system 

provides correct and representative data. The observed 

deformation of around 2 mm, confirmed the prediction and as 

such do not indicate any cause for concern regarding the 

structural integrity of the bridge. 

The results of both measurement methods aligned within the 

submillimeter range. This demonstrates that the automated 

system is well suited for capturing the deformation behavior in 

a representative manner. Continuous monitoring can therefore 

be entrusted to an automated system, which can then trigger 

more detailed laser scanning if warning thresholds are 

exceeded. 

4 CONCLUSION 

Using several practical examples, the capabilities of Wireless 

Condition Monitoring (WCM) for monitoring complex 

engineering structures has been demonstrated. While the 

operation of the system is low-maintenance and the installation 

is quick and straightforward, interpreting the results requires a 

certain level of understanding regarding the behavior of the 

structure. 

The versatility of WCM is evident not only in the wide range 

of sensors available or possible to integrate, but also in the 

installation possibilities on or within the structure without the 

need for line-of-sight connections. The sensors operate 

autonomously, making them suitable for hard-to-reach or 

inaccessible areas, and their long battery life enables them to 

be used for long-term monitoring tasks. High sampling rates 

could be achieved, as well as temporary adjustments via remote 

access. 

It is important to emphasize that WCM should not be seen as 

a competitor to traditional geodetic methods. Rather, it fills the 

gap where conventional approaches are impractical or 

inefficient. For example, WCM enables high-frequency, 

continuous monitoring and, through automated alerts, trigger 

manual geodetic verification when needed. 

Utilizing WCM sensor technology allows safe extension of 

the observed structures’ life span while reliably identifying 

approaching deterioration, without compromising on safety or 

risking disruptions to increasingly interconnected infra-

structure systems. 
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ABSTRACT: When sensor systems are used on outdoor structures (bridges, tunnels, etc.), they are exposed to a wide range of 

environmental influences. In particular, temperature can significantly affect the quality and accuracy of measurements. While 

most commonly available sensors are calibrated at temperatures of around 20°C before use, but the influence of variable 

temperatures is rarely considered. Furthermore, the measuring systems used for these sensors, particularly wireless sensor systems, 

are often only calibrated for room temperature. For this reason, this paper presents calibration procedures for monitoring systems 

including the sensors used (here displacement sensors are used as an example). The aim is to provide a practical routine for 

structural monitoring applications. This involves simulating typical temperature changes in a climate chamber (-20°C to +50°C) 

while measuring the temperature-induced strain of steel, and analyzing the reproducibility and temperature response of the entire 

measurement system. Other external influences affecting measurement quality are also discussed, and these are considered when 

determining the overall measurement uncertainty. This helps to define the requirements and limitations of measurement systems 

for structural health monitoring, particularly for bridges. The resulting findings should support the standardization process for 

assessing the suitability of monitoring systems for future SHM applications. 

 

KEY WORDS: Calibration; Wireless Sensors; Environmental Influences. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) plays a vital role in 

maintaining the long-term stability and safety of civil 

infrastructure. Among the various SHM technologies, wireless 

sensor networks (WSNs) have emerged as an efficient solution 

for the real-time monitoring of structural integrity. However, 

WSNs present specific challenges, particularly when deployed 

outdoors, where they are exposed to a variety of environmental 

factors. Bridges, for instance, are subject to extreme 

temperatures, rapid temperature fluctuations, wind, rain, and 

vibration, all of which can significantly affect sensor 

performance and measurement accuracy. Despite these 

challenges, most calibration efforts focus solely on the sensor 

itself and are typically performed under laboratory conditions 

at around 20°C. The effect of variable influences on the entire 

measurement system is often not sufficiently considered. These 

include not only external influences, but also aspects such as 

the stability of the measurement system in relation to its power 

supply (e.g., wireless sensors are often battery-powered). Such 

limitations can lead to measurement inaccuracies and impair 

the reliability of SHM systems in outdoor applications. 

This paper presents the calibration process for a wireless 

monitoring system that measures displacement and strain. This 

system will later be used on a building to determine changes in 

strain or crack width with high precision. It should be noted that 

precision must be defined before selecting the appropriate 

sensors and sensor system. For example, in the context of 

service limit states, crack width change may require an 

accuracy of 0.05 mm. The proposed approach involves placing 

the complete sensor system in a climate chamber to simulate 

real-life temperature conditions and fluctuations ranging from 

-20 °C to +50 °C. Monitoring the temperature-induced strain of 

a steel plate under these controlled conditions enables the 

development of a more comprehensive and practical calibration 

routine for SHM applications. 

It is expected that the findings of this research will enhance 

the accuracy and reliability of WSN-based SHM systems, 

particularly for bridges exposed to harsh environmental 

conditions, and to contribute to the standardization of 

calibration procedures in this field. 

2 BACKGROUND AND BASICS 

 Wireless Sensor Systems in SHM Applications 

WSNs for SHM offer a promising alternative to traditional 

wired sensor systems. The reliance on physical connections for 

power supply and data transmission in wired systems 

significantly increases the complexity, manufacturing costs  

and maintenance requirements of such systems. In contrast, 

wireless sensor systems integrate power supply or harvesting 

and wireless communication capabilities directly into the 

sensor units, enabling efficient data acquisition and real-time 

signal processing without the need for extensive cabling 

infrastructure. This self-sufficiency not only simplifies the 

deployment of SHM systems but also reduces the overall costs 

and logistical challenges associated with their maintenance [1].  

WSNs can be applied to a variety of different use cases. The 

network usually consists of a series of motes (sometimes also 

referred to as nodes), each equipped with one or more sensors 

depending on the measurement task. For example, these 

sensors can measure temperature, humidity, strain, 

displacement, pressure, force, tilt, and other variables. The 

measured values are transmitted wirelessly to a central 

Practical approach to calibrating wireless sensors for use in structural health 

monitoring in an outdoor environment 
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processing unit, which primarily stores and pre-processes the 

data. From there, the data is transmitted to the user for post-

processing. It should be noted, however, that WSN applications 

are only of limited use for high-frequency measurements 

(vibrations, high-frequency load changes, etc.) due to the 

limited data transmission via radio and the limited energy 

supply in battery-powered WSNs (sampling rate correlates with 

energy consumption). 

Figure 1 shows a standard schematic of a sensor mote, which 

can be described as having four major components: a sensor 

unit, a processing unit, a communication unit and a power 

supply unit [2]. When connecting analogue sensors, a suitable 

signal conditioning device and an analogue-to-digital (A/D) 

converter are also required. 

 

 

Figure 1. Block diagram of the hardware for a standard sensor 

mote [3]. 

While all these units vary depending on the application, they 

are subject to the same environmental influences when used 

outdoors. In this paper, the schematic in Figure 1 will be 

allocated with the components used in the calibration procedure 

and considered as a whole. Influences on the communication 

unit will not be discussed in order to focus on the sensors and 

the sensor mote themselves. Similarly, environmental 

influences on the power unit will not be considered, although 

fluctuations in the energy supply might affect the 

measurements. 

 External Influences on WSNs 

A variety of external influences can affect both a wireless 

measurement system and the value being measured. As well as 

influences from the structure itself and how it is used (e.g. 

vibrations and deformations), environmental factors such as 

temperature and humidity also have a significant impact. The 

extent and nature of these influences depend largely on the 

structure's geographical location and the motes' specific 

positioning within it. It is essential to quantify these influences 

and take them into account when determining measurement 

results, as this is part of a highly recommended validation 

process.  

For example, significant differences in environmental 

exposure can arise in the case of a bridge depending on whether 

sensors are mounted on the deck, beneath the structure, or 

within enclosed components such as hollow box girders. The 

primary influences affecting accuracy in wireless sensor 

systems can basically be categorized into two key factors, 

according to [3]: 

• The transfer function between the physical quantity to be 

measured (stimulus) and the sensor system (specifically 

the sensor’s response function). This defines how 

accurately and consistently the sensor converts the 

physical stimulus into a measurable signal. 

• The cross-sensitivity of external disturbances on the 

measured quantity, which largely depends on the type of 

sensor and its underlying measurement principle. Such 

disturbances can introduce significant errors if not 

properly accounted for, particularly in environments with 

variable thermal, electromagnetic, or mechanical 

conditions. 

 

Figure 2 shows an Ishikawa diagram of the many possible 

influences on a WSN node, which can impact the quality of the 

measurement. This categorization especially provides an 

overview of the basic influences, which are temperature [°K], 

relative humidity [%], shock [g1] and vibration [mm/s]. 

Depending on the location of the WSN, disturbances due to 

electromagnetic fields might also be a significant factor (for 

example, near high-voltage lines). More detailed 

documentation on the classification of electrotechnical 

components according to environmental influences can be 

found in EN 60721/IEC 721 multi-part standard series of the 

International Electrotechnical Commission (IEC).  

This article only considers temperature as a decisive factor 

influencing the measured value determined by a wireless sensor 

and the calibration of the sensor system, as the influence of 

temperature is often not adequately determined during 

calibration by the manufacturer.  

Since the temperature on external structures fluctuates 

greatly, some assumptions must be made. For example, the 

climate in a tunnel is more constant than on a bridge, where 

wind, solar radiation and humidity also play a role in addition 

to the air temperature. In order to determine upper and lower 

limits for the air temperature, statistical results for the area in 

question should be analyzed beforehand. 

As an example, for Austria, according to the annual climate 

report in [4], the minimum air temperature in 2024 was 

measured at -25.5 °C in mountainous regions and -21.1 °C in 

urban areas, with a maximum temperature of +36.9 °C.  

Another approach could be to use the temperatures used to 

calculate the integrity of the structure in question, which are 

mostly regulated in national standards. In case of the European 

standard in the national appendix, set in [5], a two-day average 

of the maxima and minima, appearing all 50 years, is used as 

the dimensioning value. There the lowest temperature expected 

is set for -32 °C in Austria, while the highest is set for smaller 

than +39 °C, depending on the sea level. 

These values, as can also be seen in Table 1, provide a rough 

estimate of the required range. 

 

Figure 2

                                                           
1 With [g] being a common unit for acceleration with 1 g being 

the gravitational acceleration of Earth: 1 g ≈ 9,81 m/s² 
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Figure 2. Ishikawa diagram showing the influences on the uncertainties of WSN nodes. 

 

Table 1. Minima and maxima of air temperature in Austria. 

Reference Tmin Tmax ΔT 

 [°C] [°C] [°K] 

Austrian Measurement 2024 -25.5 36.9 62.4 

Austrian Standard -32 39 71 

Tmin … minimal temperature 

Tmax … maximal temperature 

ΔT … difference of min and max 

 

The examples in Table 1 do not apply to every case. Firstly, 

the effect of direct sunlight is not considered. Depending on the 

medium, surface temperatures near motes can be much higher, 

depending on the intensity of the sunlight. Secondly, the values 

shown are extreme pinpoints of the whole country. They can 

vary considerably depending on the location. Nevertheless, 

they demonstrate that the estimated temperature range that a 

WSN has to endure for long-term SHM, can exceed 60 K, 

ranging from below -10°C to above 30 °C, depending on 

various factors. 

3 PROPOSED CALIBRATION METHODOLOGY 

 Experimental Setup 

For experimental evaluation, an integrated sensor mote is 

placed in a climate chamber as a complete unit, including the 

sensors, but without the sensor mote housing. Approximately 

once per minute, measurement data is transmitted via a LoRa 

(Long Range) radio module to a receiver, which forwards the 

data to a remote database for storage and analysis. 

The sensor mote provided by SmartMote [6] consists of two 

printed circuit boards (PCBs) and is referred to as 

SmartmoteWS. The primary PCB contains a microcontroller that 

is responsible for signal processing and data management. It 

also contains a communication interface (LoRa – 868 MHz), a 

power supply unit comprising two 3.6 V lithium thionyl 

chloride batteries, and several integrated measurement 

electronic components and digital sensors for measurement 

(see Figure 3). The second circuit board serves as a separate 

sensor interface card, which provides three ports for connecting 

analogue sensors. The card has a reference voltage and a 

voltage meter as well as 24-bit high precision analogue-to-

digital conversion with adjustable gain for use with different 

sensor types (see Figure 4). 

Table 2. Configuration of the Sensor Mote. 

Sensor Mote Name:  SMUSE 143 

Onboard measurements: Acceleration x, y and z  

 Temperature  

 Relative humidity  

 Battery voltage 

 Illuminance 

Port 1 Fixed resistors 

Port 2 KG 2A – EFA231506 

Port 3 KG 2A – EFA231507 

  

 

Table 3. Specifications of the crack displacement transducers.  

Transducer name KG 2A – EFA231506 

Capacity 2 mm 

Rated Output 1480 µV/V (2960 x 10-6 strain) 

Non-linearity 0,2 %RO 

Input resistance 351.6 Ω 

  

Transducer name KG 2A – EFA231507 

Capacity 2 mm 

Rated Output 1430 µV/V (2860 x 10-6 strain) 

Non-linearity 0,2 %RO 

Input resistance 351.2 Ω 
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For this experiment, the sensor interface board is equipped 

with two crack displacement transducers (model KG-2A, 

Tokyo Measuring Instruments Laboratory [7]), which are 

connected in a mirrored configuration to a steel plate (see 

Figure 6 and Table 4) to measure the thermally induced strain. 

Additionally, the third input channel is connected to a fixed 

resistor network, which acts as a stationary reference input to 

periodically validate the stability and performance of the 

measurement system under varying environmental conditions 

(see Table 2,  

Table 3 and Figure 5 for technical details). 

 

 

Figure 3. Primary PCB with power supply. 

 

Figure 4. Secondary PCB with sensor ports. 

 

Figure 5. Crack displacement transducers on a steel plate. 

R  

Figure 6. Steel plate S235 140x30x2 [mm]. 

A programmable climate chamber (model: VÖTSCH VT 

4060) is used to determine the influence of environmental 

temperature variations. It allows precise temperature control 

within the range of -40°C to +180°C and includes adjustable 

ramp rates and programmable dwell times at set points. This 

enables reproducible temperature profiles to be implemented 

that are tailored to sensor calibration procedures. 

Table 4. Characteristics of the steel plate. 

Steel plate grade S235 JR 

Length  140 mm 

Width 30 mm 

Thickness 2 mm 

Temperature coefficient αT ~12*10-6 1/°K 

Base length of measurement L0 103 mm 

 

For the present calibration experiment, a temperature range 

of -20°C to +50°C is defined. This range is based on the 

boundary conditions discussed in section 2.2, with slight 

modifications to accommodate the technical limitations of the 

chamber. Although temperatures below -20 °C have 

historically occurred in the alpine regions of Austria, such 

extremes have become rare in recent years due to climate 

change. Conversely, +50°C approximates the extreme surface 

temperatures that can be experienced by bridge components 

exposed to direct sunlight in summer. 

The temperature setpoints selected for this calibration are 

−20 °C, 0 °C, +20 °C, +35 °C, and +50 °C, as recommended in 

[3] for the thermal characterization of wireless sensor motes 

and their attached sensors. Each setpoint is maintained for 30 

minutes to allow sufficient time for data collection and to 

determine the response time of the sensor system, as well as for 

statistical evaluation of repeatability. Thus, a minimum of five 

readings is taken at each plateau. 

 

 

Figure 7. Temperature graph for one calibration cycle. 

The full temperature profile is implemented as follows (see 

Figure 7 for the programmed profile): Starting from a reference 

temperature of +20 °C, the chamber performs a series of 

temperature ramps at a constant rate of 1 K/min. The 

temperature then drops to 0 °C, falls further to −20 °C, returns 
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to 0 °C, rises to +20 °C, continues to +35 °C, and finally to 

+50 °C. It then returns to +20 °C via +35 °C. Each of these 

temperatures represents a holding period of 30 minutes. 

This sequence defines one full temperature cycle, which is 

repeated ten times to increase the statistical significance of the 

results and to enable the observation of potential thermal 

hysteresis and time drift effects in the sensor system. 

 Calibration Procedure 

To evaluate, calibrate and compare the performance of the 

two displacement sensors mounted on the steel plate (Figure 5), 

for which thermal expansion was calculated by using the 

chamber temperature and the characteristics of Table 4. It was 

decided to use ordinary structural steel for the application, 

rather than nickel-iron alloys (Invar steel) because the influence 

of steel strain on the uncertainty determination was expected to 

be minimal. Due to the homogeneous and predictable thermal 

expansion behavior of steel, its deformation under temperature 

change can be considered sufficiently uniform and it is 

therefore used as the “real” deformation value for comparison 

purposes. 

The expected strain was calculated using the linear thermal 

expansion equation commonly applied in civil and structural 

engineering for practical application. The strain induced by 

temperature is defined as: 
 

∆𝑙 =  𝛼𝑇 ∗ ∆𝑇 ∗ 𝑙0 (1) 

with: 

∆𝑙 : absolute elongation or contraction [mm] 

𝛼𝑇  : coefficient of linear thermal expansion [1/°K] 

∆𝑇  : temperature difference relative to a reference [°K] 

𝑙0  : original base length of measurement [mm] 
 

For this experimental setup, the reference temperature is 

20 °C and the base length of the steel segment between the two 

sensors is l₀ = 103 mm. The coefficient of linear thermal 

expansion for structural steel is assumed to be αT = 12*10-6 

1/°K (Table 4) with an assumed standard deviation of ~0,3*10-

6 1/K. The expected median deformation values for the two 

temperature extremes in the calibration protocol are calculated 

using equation (1): 

• Maximum elongation at +50 °C (ΔT = +30 K): 

Δl = 12 (±0.3) × 10⁻⁶ × 30 × 103 = 0.037 (±0,001) mm 

• Maximum shortening at −20 °C (ΔT = −40 K): 

Δl = 12 (±0.3) × 10⁻⁶ × (-40) × 103 = −0.049 (±0,001) mm 

The calculated values serve as a reference line for the 

evaluation of the measurement results of both sensors. When 

functioning correctly, the cumulative deformation values 

recorded by the sensors should closely follow this curve, 

assuming a uniform temperature distribution and negligible 

mechanical disturbances.  

The calibration procedure involves repeating the temperature 

cycle described in section 3.1 six times. During each cycle, 

measurements are recorded at a sampling rate of approximately 

one measurement per minute. It should be noted that this 

interval is shorter than is typical for long term monitoring 

applications, and therefore occasional inconsistencies in the 

data are to be expected as the system is optimized for lower 

frequency measurements. 

Following the temperature programming, the sensors are 

subjected to controlled thermal load in the climate chamber. 

The measurement output consists of a differential voltage 

signal relative to a reference voltage, which is continuously 

recorded and transmitted via the wireless mote system. A 

calibrated transfer function is then used to convert this voltage 

output into a displacement in millimeters [mm]. 

This conversion is based on the known sensitivity 

characteristics of the strain gauges ( 

Table 3), and the applied formula as shown in Equation (2): 
 

𝑋 =
𝑚𝑎𝑖𝑛𝑚𝑣𝑝𝑣

(1000 − 𝑟𝑒𝑓𝑚𝑣𝑝𝑣) ∙
𝑅𝑠𝑒𝑛𝑠𝑜𝑟

𝑅5

∙
𝐶𝑎𝑝𝑠𝑒𝑛𝑠𝑜𝑟

𝑅𝑂𝑆𝑒𝑛𝑠𝑜𝑟

∙ 1000 

 

(2) 

with: 

𝑋  calculated displacement [mm] 

𝑚𝑎𝑖𝑛𝑚𝑣𝑝𝑣  measured voltage at the sensor output [mV/V] 

𝑟𝑒𝑓𝑚𝑣𝑝𝑣  reference voltage equal to all supply voltages of 

the components [mV/V] 

𝑅5  reference resistance of the measurement system 

being 100 in the apparent setup [Ω] 

𝑅𝑠𝑒𝑛𝑠𝑜𝑟  input resistance of the Wheatstone Bridge of the 

used sensor [Ω] 

𝑅𝑂𝑆𝑒𝑛𝑠𝑜𝑟 characteristic value of the Wheatstone bridge for 

the measuring range [mV/V] 

𝐶𝑎𝑝𝑆𝑒𝑛𝑠𝑜𝑟  measuring span of the used sensor [mm] 

 

Based on this formula, a data structure (see Table 5) is 

generated. To align the time domains of the two systems, the 

temperature measurements from the climate chamber are 

linearly interpolated to match the timestamps of the wireless 

sensor node. Figure 8 shows the results of the measurements at 

the set temperatures. The calculated cumulative displacement 

is set to zero for the first measurement at 20°C. 

Table 5. Data structure of experiment. 

Column name Description 

__time Datetime of the measurement [YYYY-

MM-DD hh:mm:ss] 

Ref_mV_per_V reference voltage equal to all supply 

voltages of the components [mV/V] 

(see equation (2)) 

mV_per_V measured voltage at the sensor output 

[mV/V] (see equation (2) 

Displacement Calculated displacement of each 

timestep in [mm] (see equation (2) 

Delta 

displacement 

Calculated displacement subtracted 

from each timestep before in [mm] 

Cumulative 

displacement 

Cumulative displacement started with 

the first timestep as zero in [mm] 

Temperature Measured temperature of the climate 

chamber interpolated for each measured 

timestep in [°C] 

Reference 

temperature 

Temperature which is programmed for 

the cycle (not measured) in [°C] 

Cycle direction Differentiated into cooling, heating and 

constant 

Steel  Expected displacement of the steel plate 

with ideal strain in [mm] (see equation 

(1)) 

Error Difference of cumulative measurement 

and steel in [mm] 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-103 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 677 

  

Figure 8. Raw data of cumulative displacement for both 

displacement transducers. 

Figure 8 shows the results of the cumulative displacement of 

the two KG-2A sensors (Port 2 and Port 3) plotted against the 

temperature profile of the climate chamber and the theoretical 

elongation of the steel reference. Neither of the two sensor 

curves matches the expected thermal elongation of steel (blue 

line), which indicates a systematic error in the raw 

measurement data. 

During heating and cooling phases, both sensors follow 

different curves. However, at the holding points where the 

temperature was kept constant, the cumulative displacement of 

both sensors converge to a common value. This behavior 

suggests that the response time of the sensors may need to be 

considered when higher accuracy requirements are specified. 

 System Temperature Compensation 

It has not yet been clarified whether the measurement error 

(Figure 8) is due to the sensors themselves or to the 

measurement system. In order to isolate and correct the 

systematic temperature sensitivity of the wireless mote itself, a 

special reference arrangement was implemented using a full 

Wheatstone bridge composed of high precision 350 Ω (0.1%) 

resistors, which were connected to Port 3 of the sensor mote. 

This configuration allows sensor specific strain effects to be 

excluded and ensures that only thermal influences on the 

measurement electronics are detected. 

The entire system was placed into the climate chamber and 

subjected to the same thermal cycling protocol. Since the strain 

gauges in the KG-2A sensors also operate with a Wheatstone 

bridge of approx. 350 Ω, this setup simulates the electrical 

behavior of such a sensor. Consequently, all recorded voltage 

variations can be attributed solely to temperature-related shifts 

in the signal conditioning circuit. 

A correction function can therefore be derived from the 

resulting data set, which can be used to compensate the 

systematic temperature error of the wireless measurement 

system. This step is essential for improving measurement 

accuracy in an outdoor environment. 

 

Figure 9. Results for the 350 Ω reference arrangement and 

linear regression for temperature compensation. 

Figure 9 shows the results for the 350 Ω reference 

arrangement connected to Port 3. As can be seen, there is a 

systematic error in the measurement system over the 

investigated temperature range. To quantify the systematic 

thermal influence of the mote, a linear regression model was 

developed based on the stabilized measurement data at the 

holding points. Specifically, the final ten data points at each 

temperature plateau were extracted, equivalent to the final ten 

minutes of each holding phase. This time window was chosen 

to ensure that the system had reached thermal equilibrium, 

thereby minimizing transient effects caused by sensor response 

delays. The resulting data was used to fit a linear correction 

function with temperature as the independent variable, as 

shown in the following equation (3) below: 
 

𝑚𝑎𝑖𝑛𝑐𝑜𝑟𝑟 =  𝑚𝑎𝑖𝑛𝑚𝑣𝑝𝑣   −  0,0005  ∗  𝑇  −  0,0107  (3) 

with: 

𝑚𝑎𝑖𝑛𝑐𝑜𝑟𝑟   corrected measurement [mV/V] 

𝑚𝑎𝑖𝑛𝑚𝑣𝑝𝑣   measured voltage at the sensor output [mV/V] 

𝑇  measured temperature [°C] 
 

The corrected measurement is then inserted back into 

equation (2) to calculate the corrected displacement. The results 

of the corrected measurements can be seen in Figure 10 

exemplary for KG-2A on Port 3. 

As shown in Figure 10, correcting the error caused by the 

measuring system reduces the absolute error, but it is still 

relatively large. The deviation from the ideal strain curve of the 

steel is most likely due to the design of the sensor. The sensor 

itself consists largely of a steel construction, with the 

Wheatstone bridge presumably implemented inside the sensor 

via a type of spring mechanism. The steel construction 

therefore deforms almost identically to the steel rail in response 

to temperature, so that the Wheatstone bridge does not 

experience any significant strain. 
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Figure 10. Corrected values on KG-2A@Port 3. 

 Sensor Temperature Compensation 

The procedure for temperature compensation of the sensors 

is carried out in the same way as for determining the correction 

function for the temperature error caused by the measuring 

system. A linear regression over the last ten measurements at 

each hold point forms the basis for the correction formula for 

each individual sensor. The linear change in length of the steel 

plate is then also calculated using a linear function. From these 

two, a correction function (4) is created with temperature as the 

independent variable in order to calibrate the sensor with regard 

to its temperature behavior. 

 

𝑋𝑐𝑎𝑙 = 𝑋𝑟𝑎𝑤 + (𝑘𝑠𝑡𝑒𝑒𝑙 − 𝑘𝑙𝑖𝑛.𝑟𝑒𝑔.) ∗  T −  (𝑑𝑠𝑡𝑒𝑒𝑙 − 𝑑𝑙𝑖𝑛.𝑟𝑒𝑔.) (4) 

with: 

𝑋𝑐𝑎𝑙   calibrated displacement [mm] 
𝑋𝑟𝑎𝑤   corrected displacement acc. to equation (2) 

[mm] 
𝑘𝑠𝑡𝑒𝑒𝑙   slope of the steel function [0.00123] 
𝑘𝑙𝑖𝑛.𝑟𝑒𝑔.  slope of the linear regression of the raw 

measurements [0.0003] 
𝑇  measured temperature [°C] 
𝑑𝑠𝑡𝑒𝑒𝑙   intercept of the steel function [-0.0244] 
𝑑𝑙𝑖𝑛.𝑟𝑒𝑔.  intercept of the linear regression of the raw 

measurements [-0.0048] 
 

Following calibration, the corrected measurement data clearly 

shows a trend towards the expected thermal elongation of the 

steel reference, as demonstrated in Figure 11 for the KG-2A 

sensor connected to Port 3. 

 

Figure 11. Calibrated displacements on KG-2A@Port 3. 

 Uncertainty Analysis 

The uncertainty analysis involves evaluating each input 

parameter according to the classification defined in [8], 

distinguishing between Type A and Type B uncertainties. This 

procedure is also described for a comparable experiment in [9]. 

Type A evaluation is based on the statistical analysis of 

repeated measurements and is applied to the cumulative 

measurement value in this setup. Type B evaluation, on the 

other hand, relies on scientific judgement or prior information. 

Accordingly, the uncertainty associated with the elongation of 

the steel for example is classified as Type B. For practical 

purposes, the temperature is considered ideal. Consequently, 

rather than the actual temperature measured by the sensor mote, 

the temperature of the climate chamber (see Table 5) is used as 

a reference for this analysis. 

Furthermore, the displacement calibration performed on a 

similar KG-2A sensor from [10] will be taken into account as 

an example.  
 

Measurement error: 

The measurement error is included in the data structure in 

Table 5 and is calculated using the following equation (5): 
 

𝜀(𝑡, 𝑇) = ∆𝑙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡) − ∆𝑙𝑠𝑡𝑒𝑒𝑙(𝑇) (5) 
 

with: 

𝜀(𝑡)  error for each timestep [mm] 
∆𝑙𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑡)  calibrated cumulative measurement for 

each timestep [mm] 
∆𝑙𝑠𝑡𝑒𝑒𝑙(𝑇)  expected steel elongation for each 

temperature [mm] 
 

Type A uncertainty: 

For the evaluation of Type A uncertainty, the methodology 

outlined in ([8], p. 22) is applied to each sensor port 

individually. This analysis assumes that the measurement 

deviations approximately follow a Gaussian (normal) 

probability distribution, which is a reasonable approximation 

for random fluctuations in sensor readings under stable 
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conditions. The arithmetic mean and the experimental standard 

deviation of the measurement error are calculated from the last 

ten measurements at each holding point to account for sensor 

response time. This allows for a detailed quantification of the 

repeatability and consistency of the sensor system under 

varying thermal conditions. Mathematically, the Type A 

uncertainty is expressed as follows: 
 

𝑢𝑖 = 𝑠 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

 

(6) 

With: 

𝑥𝑖   individual error values in [mm] 
𝑥̅  mean error 
𝑠  sample standard deviation, representing 

the Type A uncertainty 
 

Following the Type A uncertainty evaluation for each port as 

shown in Table 6, Figure 12 illustrates the calibrated error 

including the standard deviation for each temperature holding 

point. Also shown in Table 6 is the final unweighted mean error 

and corresponding deviation across the entire temperature span. 

Figure 12 shows the error bands for raw, corrected, and 

calibrated data, highlighting the effect of each correction stage 

on measurement uncertainty. 

Table 6. Type A uncertainty for each temperature holding 

point, after temperature compensation. 

Temperature KG-2A@Port2 KG-2A@Port3 

[°C] 𝑥̅ [mm] s [mm] 𝑥̅ [mm] s [mm] 

ut-20 0.0033 0.0002 0.0039 0.0004 

ut0 -0.0004 0.0002 -0.0011 0.0005 

ut20 -0.0020 0.0003 -0.0020 0.0006 

ut35 -0.0008 0.0004 -0.0001 0.0007 

ut50 0.0037 0.0002 0.0029 0.0004 

utemp_full 0.00076 0.0001 0.00072 0.0002 

 

 

Figure 12. Error diagram for raw and compensated values. 

The mean error at each holding point should be interpreted as 

a systematic bias (or also known as truthfulness) relative to the 

assumed real value. Since the total mean value of the errors 

across all temperatures after temperature compensation is 

relatively low, it is not considered in further uncertainty 

calculations. The decisive factor for the uncertainty assessment 

is therefore solely the combined consideration of the 

uncertainties at each hold point. 
 

Type B uncertainty: 

In accordance with the methodology described in [[8], p. 23], 

Type B uncertainty is evaluated based on input quantities 

whose variability is derived from scientific judgement, 

manufacturer specifications or published data, rather than from 

repeated observations. As the aim of this paper is to establish a 

practical and field-adaptable calibration approach, not all 

parameter uncertainties are derived from formal traceable 

standards. Nevertheless, the main sources of Type B 

uncertainty in this setup are clearly identified and justified. 

Three factors are shown: the variance of the temperature 

coefficient of steel αT, assumed to be ±0,3*10-6 1/°K, the 

nonlinearity of each sensor (shown in  

Table 3) and the displacement calibration given from an 

earlier analysis for a KG-2A sensor [10]. Given the variance of 

αT for a base length of 103 mm and a base temperature of 20°C 

the uncertainty of the elongation for every holding point is 

shown in Table 7 (calculated using Equation (1)).  

Table 7. Uncertainty of elongation at holding points by 

variance of steel temperature coefficient. 

Uncertainty by Temperature s [mm] 

usteel -20 0,0012 

usteel0 0,0006 

usteel20 0 

usteel35 0,00046 

usteel50 0,00092 
 

According to the manufacturers’ datasheet for the 

displacement sensors [7], the nonlinearity is specified as 0.2 % 

of the rated output (RO). Given the full-scale measurement 

range of ±2 mm (i.e., a total span of 4 mm), the resulting 

nonlinearity can be interpreted as contribution to the 

uncertainty of 𝑢RO = 0.002 × 4 mm = 0.008 mm. However, 

the datasheet does not provide further details regarding the 

determination of this nonlinearity or whether the 0.2 % RO 

represents a standard uncertainty or a combined uncertainty 

with a coverage factor (e.g. k=2). Therefore, in the absence of 

this information, the nonlinearity is conservatively treated as a 

Type B uncertainty contribution in accordance with the GUM 

framework. 

Additionally, prior calibration using a similar KG-2A 

displacement sensor yielded a calibration uncertainty of 

𝑢dis-cal = 0.003 mm based on measurements within a range of 

±1.5 mm. As no significant nonlinear behavior is expected 

beyond this range and there is no evidence to suggest otherwise, 

the same calibration uncertainty is assumed to be valid over the 

full range of ±2 mm. This assumption is also incorporated into 

the Type B uncertainty budget. 

The complete Type B uncertainty is calculated using 

equation (7) for general purposes and equation (8) for this 

demonstration, with the results shown in Table 8: 
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𝑢𝐵 = √∑ 𝑢𝑖
2

𝑛

𝑖=1

 

 

(7) 

𝑢𝐵(𝑇) = √𝑢𝛼𝑇
2 (𝑇) + 𝑢𝑅𝑂

2 + 𝑢𝑑𝑖𝑠−𝑐𝑎𝑙
2  (8) 

with: 

𝑢𝐵  combined uncertainty for Type B 
𝑢𝑖   individual uncertainty of each factor falling in 

Type B, uαT(T) is the variation of the steel 
elongation depending on the temperature 
coefficient 

𝑢𝑅𝑂   nonlinearity given by the datasheet 
udis−cal evaluated uncertainty due to displacement 

calibration 

Table 8. Type B uncertainty by temperature. 

Type B by Temperature s [mm] 

uB-20 0.0086 

uB0 0.0086 

uB20 0.0085 

uB35 0.0086 

uB50 0.0086 

uBtemp-full 0.0086 
 

Table 8 shows that the influence of uncertainty on the 

temperature coefficient is irrelevant in this experiment and will 

therefore not be discussed any further. 
 

Combined uncertainty: 

The combined standard uncertainty uc is derived by 

aggregating the individual contributions of Type A and Type B 

uncertainties. Type A uncertainty reflects the statistical 

dispersion in repeated measurements, while Type B uncertainty 

accounts for systematic influences, such as variations in 

material properties and sensor nonlinearity. Assuming that 

these contributions are uncorrelated, the combined uncertainty 

is calculated using the root-sum-of-squares method, as 

recommended by the GUM framework [8]: 
 

𝑢𝐶 = √𝑢𝐴
2 + 𝑢𝐵

2  (9) 

 

Substituting the Type A and Type B values for this 

experiment into Equation (9) the combined uncertainty for this 

setup is given in Table 9. It shows that for the temperature 

compensated values the uncertainty is determined by the 

factors of Type B. 

Table 9. Combined uncertainty of the sensors on both ports. 

 KG-2A@P2 KG-2A@P3 

 uA  uB uC uA  uB uC 

[°C] [mm] [mm] [mm] [mm] [mm] [mm] 

-20 0.0002 

0,0086 

0.0086 0.0004 

0,0086 

0.0086 

0 0.0002 0.0086 0.0005 0.0086 

20 0.0003 0.0086 0.0006 0.0086 

35 0.0004 0.0086 0.0007 0.0086 

50 0.0002 0.0086 0.0004 0.0086 

Full 

Span 
0.0001 0.0086 0.0086 0.0002 0.0002 0.0086 

If the values for Type A and Type B for this experiment are 

inserted into equation (9), the combined uncertainty is obtained 

as shown in Table 9. It can be seen that the combined 

uncertainty for the temperature-compensated values is 

essentially determined by the Type B uncertainties. 
 

Expanded uncertainty: 

To express the measurement uncertainty with a defined level 

of confidence, the expanded uncertainty U is calculated by 

multiplying the combined standard uncertainty uC by a 

coverage factor k as shown in Equation (10): 
 

𝑈 = k ∗ 𝑢𝐶  (10) 
 

with: 

𝑈  expanded uncertainty 
𝑘  coverage factor chosen with  
𝑢𝐶   combined uncertainty 

 

In this study, a coverage factor of k=2 is applied, which 

corresponds to an approximate 95% confidence level under the 

assumption of a normal distribution, as recommended in [8]. 

The resulting expanded uncertainty, as shown in Table 10, 

defines an interval around the measurement result within which 

the true value is expected to lie with a high degree of 

probability. This value is crucial for ensuring the reliability of 

decision thresholds and condition assessments in the presence 

of measurement variability, and serves as a practical limit for 

interpreting sensor data in structural health monitoring 

applications.  

Table 10. Expanded uncertainty of the sensors on both ports 

 uC [mm] U [mm] 

KG-A2@Port 2 0.0086 0.0172 

KG-A2@Port 3 0.0086 0.0172 

4 DISCUSSION AND RESULTS 

Previous studies have shown that sensor systems exposed to 

temperature fluctuations can exhibit irregular and inconsistent 

behavior with regard to the measured value to be recorded. In 

the present study, laboratory tests with wireless displacement 

sensors under the influence of temperature are carried out as 

examples. The displacement sensors are fixed to a steel plate in 

order to simulate guided deformation similar to an application 

on steel or reinforced concrete components with similar 

thermal expansion behavior. 

 Measurements (Figure 8) with wireless sensor nodes and 

displacement sensors have shown that the raw data on 

deformation deviates significantly from the expected thermal 

deformation of the steel. In addition, a temperature-dependent 

sensor response was observed during heating and cooling, 

which raises the question of how temperature influences and 

gradual changes can be handled and compensated for in on-site 

applications. Since convergence and reproducibility are 

achieved at different temperature holding points, it is possible 

to perform temperature compensation. In the present case, 

linear temperature compensation proved to be suitable for 

compensating for the influences from both the measuring 

system itself and the connected sensors. However, such 

temperature compensation is only possible if the sensors 

stabilize at a consistent value after reaching thermal 
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equilibrium. A special feature here is that the sensors under 

investigation themselves exhibit temperature expansion, which 

overlaps with the deformation to be measured on the 

component. It is therefore relatively difficult to carry out highly 

accurate measurements if the sensor temperature and the 

component temperature are unknown or even different, which 

can certainly occur in practice. This is particularly important 

when displacement transducers and discrete measuring paths of 

several centimeters are used to measure crack width changes in 

the hundredth of a millimeter range, as sensor and component 

expansion accompany the change in crack width. The same 

applies when displacement transducers are used to determine 

expansion with accuracies of approximately 10 µstrain.   This 

article has explained that the influences on measurement 

uncertainty can be very diverse. These range from 

measurement uncertainties of the measuring system itself, 

including uncertainties from the power supply, to uncertainties 

of the connected sensors, to measurement uncertainty regarding 

the sensor mounting on the object and a wide range of other 

external influences.  

In order to quantify and correct the influence of the 

measuring system, a special reference arrangement with a 

Wheatstone bridge consisting of identical high-precision 

resistors was implemented. This setup, which excludes 

mechanical components and deformations, shows the inherent 

temperature sensitivity of the mote and serves as the basis for a 

sensor node-specific correction function that ultimately also 

includes the individually connected sensors. For this purpose, 

temperature compensation functions were derived based on 

measurements at different temperature plateaus and 

measurement uncertainties were determined.  

A comprehensive uncertainty analysis based on the GUM 

framework shows that, after calibration, the dominant 

contribution to the total uncertainty is of type B, provided that 

the uncertainty contribution of type A could be significantly 

reduced by applying temperature compensation functions 

(determined by calibration in temperature change tests). The 

final expanded measurement uncertainty for the measurement 

system shown with two displacement sensors is therefore less 

than 0.02 mm (20 µm), whereby without temperature 

compensation, a measurement uncertainty of at best 

approximately 50 to 100 µm can be assumed, depending on the 

temperature range. 

CONCLUSIONS 

An important finding was that the thermal response of the 

sensor housing and mounting components largely matched that 

of the monitored steel structure. This resulted in a partial 

cancellation of thermally induced displacement, which 

highlights the need for proper system calibration and 

temperature compensation. A correction function derived from 

a temperature-controlled reference experiment and validated 

using stable measurement intervals effectively reduced 

systematic errors and extended uncertainty to less than 20 µm. 

Furthermore, the comparison of the two identically installed 

sensors revealed distinct response behaviors in the raw 

measurements. This indicates that in this case individual 

calibration is recommended for each sensor, rather than relying 

on batch calibration procedures.  

This study emphasizes the importance of considering the 

sensor and its mechanical integration as a unified measurement 

system. By demonstrating a reproducible calibration routine 

that considers electronic, mechanical and environmental 

influences, this study contributes to the practical 

standardization of wireless SHM devices. It therefore 

represents a step forward in providing information on the 

accuracy of sensors and sensor systems under real-world 

conditions. In the past, this was often not sufficiently taken into 

account, leading to misinterpretations of the measured values. 
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ABSTRACT: This paper presents time-synchronized wireless acceleration measurement nodes, named eNodes, capable of 

operating indoors by preserving timing information with a temperature-controlled crystal oscillator (TCXO). While GNSS-based 

time synchronization is commonly effective for outdoor measurements with available GNSS signals, it does not work indoors, 

such as inside high-rise buildings or box-girder bridges. To extend GNSS-based time synchronization to indoor applications, 

timing information is acquired outdoors both before and after the indoor deployment. The TCXO maintains this timing information 

accurately ensuring a stable and accurate frequency. Each eNode is equipped with an Epson M352 MEMS accelerometer, which 

offers extremely low noise of 0.2 µg/√Hz, and an ESP32 microprocessor unit. Real-time data transmission is enabled by a Wi-Fi 

mesh network. A series of experiments were conducted to evaluate the time-synchronization accuracy of the eNodes. 

KEY WORDS: Structural Health Monitoring, Wireless Sensor, Accelerometer. 

1 INTRODUCTION 

It is a challenging task to measure acceleration responses of 

large infrastructures such as long-span bridges, or high-raise 

buildings, due to long easy-to-tangle many wires between 

sensors and a DAQ system, up to several km’s. As an 

alternative to the conventional wired DAQ system, the idea of 

wireless sensors emerged a few decades ago, but it has brought 

a side-effect, the time-synchronisation problem between the 

nodes for a proper identification of mode-shapes. 

There have been a few wireless sensors developed and 

available commercially or academically. To the best 

knowledge of the authors, they were either not providing the 

accuracy of time-synchronisation, or not readily available to 

buy. Recently a few manufacturers emerged to provide time-

synch’ed wireless nodes (from Sensquake, or Guralp), however 

their main application was not perfectly aligned with the task 

of campaign-type ambient vibration measurement of 

infrastructures.  

This paper presents a realisation of wireless accelerometer 

nodes focusing on campaign type field measurement 

applications on civil infrastructures or high-raise buildings. The 

GNSS based time-synchronisation [1] method was used and 

extended to indoor measurements by combining the GNSS 

method with a stable clock source.  

2 WIRELESS ACCELEROMETER NODES 

 Accelerometer 

The accelerometer node, as shown in Figure 1, consists of a 

M5Stack Core2 based on esp32, a GNSS module (M5Stack 

GPS V2), an accelerometer module for an Epson M-A352 

sensor, a battery module (M5Stack Battery 13.2), and battery 

charging module (M5Stack M5Go). The company M5Stack 

provides a convenient modular structure for their MPU and 

modules, so that a user can easily add a feature by added 

another layer of module stacked below the M5Stack Core2. The 

Core2 MPU provides a 320x240 pixels LCD and a touchpad, 

enabling a convenient control and operation of the sensor node. 

 

 Figure 1. Accelerometer node eNode 

 

Figure 2 shows Epson M-A352 sensor module, which is 

interconnected to Core2 MPU with 30 GPIO pins as well as the 

modules stacked together. Epson M-A352 provides the noise 

floor of 0.2 ug/√Hz, which is extremely low, hence out-

performing for low-vibration measurement of civil 

infrastructures. M-A352 is a digital sensor with a built-in ADC 

and output data rates range from 50 Hz to 1000 Hz.  

 

 

Figure 2. Epson M-A352 Accelerometer module: (left) Top 

View, and (right) Bottom View 

eNodes: GNSS Time-Synchronised Wireless Accelerometer Measurement Nodes 

capable of operating indoors 

Ki-Young Koo, Miaomin Wang, Zuo Zhu, James Brownjohn 

1University of Exeter, UK 

M5Stack Core2 (with LCD/touchpad) 

GNSS Module: M5Stack GPS V2 

M-A352 Accelerometer sensor module 

Battery module: 1.5Ah, Li-Pol 

GNSS Antenna 

WiFi Antenna 

Charging module with 0.5Ah, Li-Pol 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-104 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 683 

 

Figure 3. M5Stack GPS V2 module: (left) Top View, and 

(right) Bottom View 

 

Figure 3 shows the M5Stack GPS V2 module, which plays 

the critical role for time-synchronisation. This outputs NMEA 

sentences and PPS (Pulse-Per-Second) signals to the Core2 

MPU, which combines these outputs to get a highly accurate 

timestamping on each measured acceleration. Details method 

is shown in [1]. 

Espressif IoT Development Framework (ESP-IDF) was used, 

rather than the Arduino platform, mainly for the full control on 

the lower-level timing operations of esp32. In addition, Mesh-

Lite was used to utilise a WiFi mesh network, extending 

maximum allowable distance between nodes, by multi-hops. 

3 SYNCHRONISATION ACCURACY 

Four different experiments were carried out from the ideal 

condition (Case #1), to the most realistic condition (Case #4) of 

the indoor capable eNodes with a temperature variation as 

shown in Table 1. 

 

Table 1. Experimental Cases of timestamping err measurement 

Case 

# 

GNSS 

signal 

Clock-Source Temp. 

dev. 

1 always GPTimer (10MHz) No 

2 always TCXO (32.768kHz) for RTC No 

3 limited TCXO (32.768kHz) for RTC No  

4 limited TCXO (32.768kHz) for RTC Yes 

 

 Case #1: Continous GNSS signals with a GPTimer  

Accuracy of time synchronisation for the hardware of the Core2 

and the GNSS module was measured using the setup shown in 

Figure 4. This setup assumed that GNSS signals were always 

available with a high-frequency General Purpose Timer 

(GPTimer) of 10 MHz as the basis of the ideal time-sync 

performance for a comparison with the following Cases #2-4. 

A common 10 Hz trigger signal was generated by a function 

generator, fed to the two identical nodes of Core2 and M5Stack 

GPS module. Each node was programmed to timestamp each 

trigger signal. GNSS signal was available all times during the 

experiment. In theory both nodes should produce the exactly 

same timestamps, but in reality they differ slightly. Their 

difference was measured and shown in Figures 5 and 6. 

 

 

 

Figure 4. Experimental setup for measuring time-sync 

accuracy for eNode 

 

 

Figure 5. Case #1: Difference in timestamps by two identical 

nodes 

 

Figure 6. Case #1: Histogram of difference in the timestamps 

 Case #2: Continuous GNSS signals with a TCXO 

Frequency of General Purpose Timer used in Case #1 is 

influenced by temperature variation, which drastically reduces 

timestamping accuracy during the period without GNSS 

signals. There are different ways to improve this using OCXO 

(Oven Controller Crystal Oscillator) or TCXO. In this study, a 

TCXO with 32.768 kHz was used as the clock-source for the 

Real-Time Clock of ESP32 to replace GPTimer of Case #1.  

Figure 7 shows the timestamping difference over 2 hours 

period, showing the step-wise errors between 61 usec. This 

can be explained two clock-oscillations error in the RTC clock-

counter, which only increases by 2. One clock oscillation of a 

32.768 kHz clock corresponds to 30.5 usec, and two clock 

oscillations correspond to 61 usec.  
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Figure 7. Case #2: Difference in timestamps by two identical 

nodes with TCXOs 

 Case #3: Limited GNSS signals with a TCXO 

When eNodes are deployed indoors, GNSS signals becomes 

unavailable. In this Case #3, it was assumed that GNSS signals 

were missed for 1 hour in the beginning and becomes available 

again afterwards. Due to the deviation of TCXO, the two 

timestamps by the identical nodes differ slightly more than 

Case #1. Figure 8 shows the measured time-stamping 

difference in the beginning, followed by the normal pattern 

observed in Figure 7 in the last half hour.  

 

Figure 8. Case #3: Difference in timestamps by two identical 

nodes with TCXOs 

 

 Case #4: Limited GNSS signals with a TCXO under 

temperature variation 

Temperature variation is a crucial factor to reduce 

timestamping accuracy in the nodes. TCXOs are designed to 

compensate the variation, but inevitably capable to do up to a 

certain degree. In this case, the timestamping difference under 

temperature variation was investigated. 

In this Case #4, a temperature variation was imposed on one 

node by putting it into a refrigerator whist the other node was 

kept in room temperature, resulting in 14C temperature 

difference. The measured timestamp difference is shown in 

Figure 9. It was clearly seen that additional error was 

introduced by temperature variation to the maximum 

timestamp difference of about 250 usec. 

 

 

Figure 9. Case #4: Difference in timestamps by two identical 

nodes with TCXOs 

CONCLUSION 

In this study, the time-sync accuracy of indoor capable 

acceleration nodes were measured. With the used hardware of 

32.768 kHz TCXO and ESP32, it was found that the maximum 

of 250 usec timestamping difference was observed for an hour 

measurement under 14C ambient temperature difference. 

Further study will carry out to validation tests including a 

laboratory OMA on a shear building frame and a field OMA 

for a high-rise building. 
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ABSTRACT: Despite advancements in electromagnetic wave-based communication, challenges such as high attenuation, medium 

variability, and large antenna requirements persist. Magnetic induction (MI) communication has emerged as a promising 

alternative, offering stable transmission characteristics and reduced near-field path loss. While previous studies have explored MI 

waveguide models and relay coil applications, experimental validation of through-the-ground MI transmission, particularly in 

homogeneous media, remains limited.This study investigates magnetic signal propagation in uniform underground environments 

through numerical simulations and experimental validation. A finite element model was developed using COMSOL to simulate 

magnetic signal transmission, focusing on coil geometry and medium properties. Experimental validation was conducted using a 

custom-built outdoor platform, where mutual inductance coils were employed to measure signal transmission in both air and soil. 

Key parameters, including coil spacing and medium permeability, were analyzed to evaluate path loss.Results demonstrate 

excellent agreement between simulations and experiments, confirming that soil’s air-like permeability results in minimal path loss 

over short distances. The study highlights permeability as the dominant factor in signal attenuation, with soil moisture and 

composition showing negligible effects. These findings validate the theoretical framework for MI transmission in homogeneous 

media and provide practical insights for optimizing MI-based communication systems in applications such as agricultural 

monitoring and underground utility networks. Future work should focus on long-distance transmission and the impact of enhanced 

power levels to further refine system performance in real-world scenarios. 

 

KEY WORDS: Magnetic Induction; Signal Propagation; Underground Communication; Path Loss; Steel fabric. 

 

1 INTRODUCTION 

Despite advancements in electromagnetic wave-based 

communication, challenges such as high attenuation, medium 

variability, and large antenna requirements persist[1]. Magnetic 

induction (MI)-based communication has emerged as a 

promising alternative, demonstrating stable transmission 

characteristics and reduced near-field path loss [2][3]. Early 

studies proposed MI waveguide transmission models with relay 

coils to extend communication range, successfully applied in 

underground pipeline monitoring [4]. 

Subsequent research expanded MI communication models, 

exploring interactions with underground conductive structures 

[5] and developing adaptive environmental sensing networks. 

Studies have improved MI transmission devices by analyzing 

coil behavior and optimizing system parameters [6]. More 

recent advancements include rotating permanent magnet pair 

(RPMP) antenna arrays for extremely low-frequency 

transmission [7] and tightly wound helix-toroidal coils for 

underground structural monitoring[8][9]. 

While significant progress has been made, gaps remain in 

experimental validation of through-the-ground MI 

transmission, particularly regarding the impact of soil eddy 

currents and complex underground conductive structures like 

rebar networks. To address these gaps, this study develops a 

detailed finite element model of rebar mesh, analyzing key 

parameters such as spacing, influence range, and diameter on 

MI signal path loss. Comparative experiments through soil and 

air further validate that soil's impact on MI transmission is 

minimal over short distances. This work highlights the need for 

expanded long-distance testing with enhanced transmission 

power to better understand soil's effect in practical scenarios. 

2 METHODS 

To investigate the propagation law of magnetic signals in 

underground structures, this study conducted a comparative 

analysis between numerical simulations and experimental 

investigations.  

The research consists of two phases: (1) numerical 

simulation of signal transmission in homogeneous media, and 

(2) experimental validation of signal transmission in 

homogeneous media of signal transmission in homogeneous 

media. 

 numerical simulation 

Firstly, this study performs parametric modeling of the 

magnetic signal transmission process based on COMSOL finite 

element software, establishes a magnetic induction signal 

simulation platform, and conducts multi-parameter analysis of 

the propagation characteristics of the magnetic signal.  

First, a numerical simulation of magnetic signal propagation 

through a uniform medium is performed: 

The coil domain consists of two concentric ring geometries: 

the primary coil and the secondary coil. These are controlled by 

the parameters: the Inner radius r2, the Outer radius r1, the 
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number of turns N, and the coil center-to-center distance d. The 

medium domain is a spherical region through which the signal 

is transmitted, and it is controlled by the parameter: region 

radius R. 

The coil domain material is copper, while the material of the 

medium domain is the propagation medium (soil/air). The 

material parameters include relative permeability, relative 

permittivity, and electrical conductivity. 

An excitation voltage V0=sin(t) is applied to the primary 

coil, where =2πf，f=50Hz. The geometric center of the coil 

set is placed at the center of the simulation domain, as shown 

in Figure 1 Numerical Model of Magnetic Signal for Mutual 

Inductance Coils. 

Based on the equipment in the reference experimental 

platform, the model parameters are set as Table 1 Simulation 

parameter value table: 

Table 1 Simulation parameter value table 

Parameter Value Description 

𝑟1 12cm Outer radius 

𝑟2 1cm Inner radius 

N 500 Number of coil turns 

d 40cm distance between coils 

R 5m Radius of the medium domain 

mu 1 Relative permeability of the 

medium 

 

 

Figure 1 Numerical Model of Magnetic Signal for Mutual 

Inductance Coils 

 experimental validation 

To investigate the propagation characteristics of magnetic 

signals in underground environments, validate the conclusions 

from theoretical and numerical simulations, and prepare for 

subsequent performance verification of magnetic signal 

equipment, an outdoor experimental platform for magnetic 

induction signal transmission was constructed, as shown in 

Figure 2. 

 

Figure 2 Schematic Diagram of Outdoor Transmission 

Experiment for Magnetic Induction Signal Using Mutual 

Inductance Coils 

The equipment used in this platform includes  

（1） Coil 1: Diameter 24 cm, 500 turns 

（2） Coil 2: Diameter 24 cm, 500 turns 

（3） Signal Generator (RIGOL-DG2052) 

（4） Regulated Power Supply (ZHAOXIN-PS-23005D) 

（5） Oscilloscope (Tektronix-TBS 2000 SERIE) 

 

Figure 3 Outdoor Transmission Experiment Platform for 

Magnetic Induction Signal Using Mutual Inductance Coils 

First, we connect the signal generator to the primary coil as 

the signal transmission node and the oscilloscope to the 

secondary coil as the signal receiving node, placing them in an 

interference-free open field (as shown in Figure 3 Outdoor 

Transmission Experiment Platform for Magnetic Induction 

Signal Using Mutual Inductance Coils). The two coils are fixed 

on a flat surface using mounting devices, ensuring that the coil 

axes are aligned and the coil planes are parallel. The distance 

between the coils is measured before each experiment. 

The signal generator is used to apply a 10V excitation to the 

transmitting coil (left side of  Figure 3), which induces a current 

in the receiving coil that is captured by the oscilloscope. 

By varying the coil spacing and recording the peak-to-peak 

voltage on the oscilloscope, the results can be calculated and 

visualized as shown in the figure. 

To verify that the magnetic signal does not experience 

additional path loss when passing through soil, we conducted 

an underground experiment similar to the above-ground 

magnetic induction signal transmission experiment. 

In the underground experiment, the excitation of the coil and 

the reception of the magnetic signal were the same as in the 

above-ground experiment. Here, we mainly describe the 

control of the transmission distance and coil attitude during the 

experiment. 

First, a 31 cm deep pit was dug in the open field, and the 

bottom surface was leveled. The receiving coil was placed at 

the center of the pit, and a 1 cm thick layer of soil was added to 

ensure the receiving coil was just covered by the soil (with the 

receiving coil's small diameter of 1 cm). Then, a 10 cm thick 

layer of soil was added, and the surface was leveled again. The 

transmitting coil was placed at the center of the pit, excitation 

was applied to the transmitting coil, and the peak-to-peak value 

from the oscilloscope was recorded. This procedure was 

repeated for depths of 10 cm, 20 cm, and 30 cm to measure the 

magnetic signal path loss, as shown in Table 2 Path Loss Above 

and Below Ground with 10V Transmission Signal. 

distance

between coils  

Radius of the medium domain  

Outer radius   
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Figure 4 Schematic of the mutual inductance coil magnetic 

induction signal through-ground transmission experiment 

An alternating signal generates a sinusoidal alternating 

magnetic field through the primary coil. The change in the 

magnetic field induces an electromotive force in the secondary 

coil, which in turn generates the corresponding induced signal. 

The voltage signal at the receiving end is recorded at different 

distances, and by combining the coil resistance, the induced 

power of the signal can be calculated, which allows for the 

calculation of magnetic signal transmission loss. The above-

ground experiment is shown in Figure 4 Schematic of the 

mutual inductance coil magnetic induction signal through-

ground transmission experiment. 

3 RESULTS AND ANALYSIS  

 Propagation in Homogeneous Media  

First, a trial calculation is performed under the conditions of 

a coil spacing d=50cm and a uniform medium. The path loss is 

44.16dB, which is in good agreement with the theoretical value. 

The model performs well, producing the simulation cloud maps 

shown in Figure 5, Figure 6 Magnetic induction strength 

contour plot between coils  

Next, the coil spacing d is scanned in the range of 20cm-

200cm with a step size of 10cm, keeping all other parameters 

constant. The path loss is calculated for the model and 

compared with experimental values (see Figure 8). 

 

Figure 5 Magnetic induction strength contour plot of the coils 

cross-section 

 

Figure 6 Magnetic induction strength contour plot between 

coils 

 

Figure 7 Magnetic Induction Intensity Cloud Map Between 

Coils 

The simulation data of magnetic induction signal variation 

with coil spacing is shown in Figure 8 Path loss variation with 

coil distance. 

The experimental values generally align well with the 

simulation results; however, some discrepancies are present 

due to the following reasons: 

(1)Background noise interference: At longer distances, 

unshielded noise added to the reception power calculation. 

(2)Coil attitude: During adjustments for distance, changes 

in coil angle affected the results. 

As a result, the power path loss in the above-ground 

experiment follows a distance-based decay of approximately 

the fifth power, while the theoretical equation suggests a sixth 

power, resulting in some discrepancy. It is believed that with 

improvements to the filtering equipment, a better match can be 

achieved. 

 

Figure 8 Path loss variation with coil distance 
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By comparing the path loss in the above-ground and 

underground experiments in Table 2 Path Loss Above and 

Below Ground with 10V Transmission Signal, and excluding 

experimental errors, it can be observed that the soil has no 

effect on the path loss of the magnetic signal, which is 

consistent with the theory. 

Table 2 Path Loss Above and Below Ground with 10V 

Transmission Signal 

Depth/d Above Ground 

Experimental Value 

Below Ground 

Experimental Value 

10cm 12.70 13.50 

20cm 26.40 27.51 

30cm 34.65 33.79 

 

4 CONCLUSION 

This study validates magnetic signal propagation theory in 

uniform underground media through numerical simulations and 

experimental measurements. The results demonstrate low path 

loss in soil environments due to their air-like permeability 

characteristics. Experimental data show excellent agreement 

with theoretical models, confirming permeability as the 

dominant factor in signal attenuation, while soil moisture and 

composition exhibit negligible effects. The consistent 

correlation between simulation and experimental results 

establishes a reliable framework for predicting magnetic signal 

behavior in homogeneous underground environments. These 

findings provide fundamental insights for developing magnetic 

induction-based communication systems in applications such 

as agricultural monitoring and underground utility networks. 
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ABSTRACT: Pavement subsurface deterioration can lead to catastrophic road failures, often caused by long-term settlements and 

moisture accumulation. These effects develop gradually and are difficult to identify through manual inspection. Although 

structural health monitoring (SHM) systems have been developed to address these challenges, most are insufficient to collect 3D 

spatial information due to their limitations. Current systems primarily focus on surface and base courses, neglecting subsurface 

courses which sustain loads and provide stability. Therefore, it is essential to develop a long-term and scalable monitoring system 

for subsurface courses. Radio frequency sensing system has great potential to fill the gap. 

 

This study aims to further quantify the uncertainty of using distributed embedded passive radio frequency (RF) sensors in 

pavement subsurface courses. Laboratory experiments were conducted to investigate the uncertainty sources of the relationships 

between channel information and structural changes. Key challenges include correlating collected data with subsurface changes 

and finding the sources of uncertainties. 

 

The results demonstrate the effect of system topology on the relationships between channel information and structural changes. 

These prove the system's applicability in subsurface spatial monitoring. By addressing implementation challenges and decoupling 

monitored parameters, the system could be further advanced for real-world deployment 

KEY WORDS: Structural health monitoring; Transportation monitoring; Pavement monitoring; RF sensing; Sensor network

1 INTRODUCTION 

Pavement road structures are essential and critical 

infrastructure to the urban transportation system. However, 

aging, massive urbanization, and overuse contribute to distress 

and even catastrophic failure events. For example, part of 

California State Route 1, which was 150 feet long, was washed 

out in a landslide, which led to the total cost of repairing and 

clearing being $11.5 million [1]. Meanwhile, the ASCE report 

card states that the grading evaluation on pavement roads is D+ 

[2]. Structural health monitoring systems can identify the 

pavement road’s deterioration or damage at an early stage, 

which reduces economic loss and increases life safety. 

 

Structural health monitoring (SHM) systems face a challenge 

in extracting large-scale spatial information in pavement 

subsurface courses at a reasonable cost. Current techniques are 

mainly limited to extracting one-dimensional or two-

dimensional information from the structure [3]. However, 

extracting three-dimensional information gathered throughout 

the volumes of structural material, such as detection, location, 

and quantification of distress behaviors (e.g., damage, 

deterioration, or loss of performance) at an early stage is 

impossible using current SHM techniques. Meanwhile, most 

SHM systems primarily focus on the surface and base courses 

instead of the subsurface course, which sustains loads and 

provides stability. Therefore, it is essential to develop a 3D 

spatial monitoring system for long-term and scalable 

subsurface course monitoring. The recent developments in 

radio frequency (RF) sensing can be the potential solution to 

the challenges. 

 

Recent research on radiofrequency (RF) sensing has resulted in 

hardware systems potentially suitable for the use in subsurface 

SHM [4]. RF sensors leverage channel information to monitor 

the 3D distribution of key parameters. A recent experiment 

demonstrates the feasibility of monitoring deformation and 

water content [5]. However, the uncertainty of monitoring 

deformation and water content has never been investigated. 

This study aims to investigate the uncertainty of monitoring 

deformation and water content using an RF sensing system. 

2 UNCERTAINTY IN DECODING 

Previous studies have shown that the displacement of sensors 

(measurand) is linearly related to the phase shift (encoding 

parameter) of the reflected signals. However, in the 

implementation scenarios, the exciter, which sends power to 

sensors, is mobile, and the sensors may have different initial 

mutual distances. The linear relationship, necessary to decode 

displacement from RF phase shift, can be affected by these 

different exciter locations and the initial distances between 

sensors. Therefore, the uncertainty in encoding function due to 

variable exciter locations and the initial distances between the 

sensors has to be investigated.  

 Method 

A set of experiments was performed to determine the change of 

displacement between sensors in various 1D settings, where the 

backscatter RF signal propagated through the air. The goal of 

the experiment setup was to verify the effects of exciter 

locations and the initial distance of sensors. The 1D 

experiments consisted of two sensors and one exciter. The 
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exciter was used to power the two sensors wirelessly. One 

sensor was placed on the mobile tripod which was installed on 

a camera slider such that the mobile tripod was displaced by a 

linear actuator along the slider. Another sensor was placed on 

a stationary platform. The two sensors were set up with three 

different initial distances 𝐷: 30 cm, 60 cm, and 126 cm. At each 

setup of 𝐷, the mobile sensor was displaced by the linear 

actuator with a change in distance ∆d = 1 cm at a time while 

the static sensor remained stationary. After each 1 cm 

displacement, data were collected for 10 minutes with a sample 

rate of 30 seconds. The total displacement was 16 cm. After the 

experiments were conducted with three different 𝐷, the exciter 

was moved to a different location with repeated experiments of 

the different initial distances. By varying the initial distance, 

the effect of different initial distances between sensors on the 

linear (decoding) relationship could be investigated. By 

changing the exciter location, the effect of variable exciter 

location on the linear relationship could be investigated. These 

experiments can also show which effects have a larger impact 

on the linear relationship between displacement and phase shift. 

The experimental setup was shown in Figure 1. The antenna 

icon represents the location of the sensors, and the left sensor 

was the mobile sensor. The star represents the locations of 

exciters for each experiment. A total of 12 experiments were 

conducted (three initial distance setups with four different 

exciter locations). 

 

Figure 1. Location of the sensor and various exciters for the 

experimental setup in the indoor laboratory 

 Discussion 

For each experiment, a linear relationship was obtained by 

fitting the median value of the recorded phase shift at each 

displacement, as shown in Figure 2. The slope of the linear 

fitting line represented the sensitivity of the system (the ratio 

between phase shift and displacement) Δ𝜃/Δ𝑑̂ . 

 

Figure 2. Experimental result of 𝐷 = 126 cm and the exciter 

location (red star); the red line indicated the linear fitting line 

Table 1. Δ𝜃/Δ𝑑̂  (°/cm) Comparison 

𝐷 Red 

Star 

Blue 

Star 

Green 

Star 

Black 

Star 

Max Min 

Diff. (%) 

30 cm 10.17 10.45 10.11 10.34 3.4 

60 cm 9.96 10.02 10.19 10.06 2.3 

126 cm 9.54 9.86 11.48 10.87 20.3 

Max Min 

Diff. (%) 6.6 5.98 13.6 8.05 

 

 

The results of 12 experiments are shown in Table 1. Maximum 

and minimum differences were also calculated across different 

exciter locations and sensor distances 𝐷. The maximum and 

minimum difference of each 𝐷 showed that as 𝐷 increased, the 

difference in Δ𝜃/Δ𝑑̂  also increased. This demonstrated that the 

variation of Δ𝜃/Δ𝑑̂  increased as the initial distance between 

sensors increased. The maximum and minimum difference of 

each location showed that the largest variation occurred when 

the excited was located at the green star, perpendicular to the 

communication line between sensors. However, this 

phenomenon was observed only with the case of 𝐷 = 126 cm. 

If the case of 𝐷 = 126 cm was removed, the variation of Δ𝜃/Δ𝑑̂  

was similar across different exciter locations. The initial 

distance between sensors was more impactful to the variation 

of Δ𝜃/Δ𝑑̂   comparing to the exciter location. 

 

The linear fitting errors were also investigated in these 

experiments. As shown in Figure 2, the fitting error was 

presented in the linear fitting line. The variation of fitting errors 

across different 𝐷 and exciter locations were shown in Table 2. 

The results showed that as the initial distance between sensors 

increased, the fitting error also increased. Meanwhile, the 

location of exciter had smaller effects on the fitting errors 

compared to the initial distances between sensors. 

Table 2 Fitting error (Δ𝜃/Δ𝑑̂  error) comparison 

𝐷 Red Star Blue Star Green Star Black Star 

30 cm 5.34 4.16 5.93 4.22 

60 cm 8.99 6.29 14.74 6.19 

126 cm 15.42 17.84 18.54 16.98 

 

The fitting error and the discrepancy of  Δ𝜃/Δ𝑑̂  with various 

sensor spacing issues were potentially caused by the signal 

multipath effects. Since the experiments were conducted in an 

indoor laboratory, the surroundings reflected the backscattered 

signal from the transmitter sensor to the receiver sensor. The 

superposition of the backscattered signal and reflected signal 

can potentially affect the accuracy of the data collection. 

Additional experiments must be conducted to verify the causes.  

 

In real applications, material inhomogeneity (e.g. moisture and 

density of fine aggregate) inside the structure can potentially 

affect the system’s accuracy. Previous studies have 

demonstrated the capability of detecting the change of water 

content using an RF system [5]. Therefore, the material 

inhomogeneity due to moisture content can be further 

decoupled. Meanwhile, the effects from other sources of 

material inhomogeneity have to be further studied. Uncertainty 

quantification can be used to preliminarily quantify the effects 

of those sources. 
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3 CONCLUSION 

This study investigates the uncertainties in the relationship 

between the channel phase (encoding parameter) and 

displacement (measurand) registered by RF sensors. Although 

distributed embedded passive radio RF sensors have great 

potential for 3D spatial pavement subsurface monitoring, the 

relationship between measurand and encoding parameter can 

be affected by the initial distances between sensors. As the 

initial distance between sensors increases, the uncertainty in the 

relationship also increases. Meanwhile, the location of the 

exciter has a smaller effect on the relationship. The reason 

behind this finding will be the subject of future work.  
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ABSTRACT: With the aging of civil infrastructures, strain monitoring is essential for predictive maintenance. However, current 

sensing technologies mainly rely on active battery powered sensors, leading to substantial expenses and low placement granularity. 

This paper proposes a wireless, passive RFID patch antenna strain sensor, characterized by a favorable linear relationship between 

its resonant frequency and the applied strain. In this paper, simulation is carried out by using the COMSOL multi-physics coupling 

software. The solid mechanics field is coupled with the electromagnetic field, and the frequency-domain scanning is conducted 

after the model generates strain. The simulation results are compared with the experimental results in the literature to determine 

their correctness. According to the simulation results of the scattering parameter S11, a patch antenna sensor is designed and 

fabricated, and corresponding experiments are conducted to detect the variations of the spectral curve before and after the sensor 

is embedded in concrete, thereby verifying its validity. Finally, the sensor is optimized based on the experimental results. 

KEY WORDS: Wireless; Passive; Strain Sensor; RIFD; Patch Antenna.

1  INTRODUCTION 

In the field of structural health monitoring (SHM), acquiring 

accurate, long-term, and stable monitoring data remains a core 

concern. Structural strain, a critical indicator reflecting the 

health status of structures, effectively characterizes local 

deformation and precisely reveals internal stress distributions 

and health conditions [1]. Traditional strain sensors typically 

employ wired connections using conductors or optical fibers as 

media. In large-scale structures, extensive cabling works are 

cumbersome, costly, and further exacerbated by the complexity 

of wiring and the need for relay devices, increasing economic 

burdens. Moreover, excessive cabling significantly amplifies 

resistance and introduces noise interference, severely 

degrading strain measurement accuracy and failing to meet 

high-precision monitoring requirements. 

Digital image-based methods [2] leverage precision optical 

instruments and advanced image processing algorithms to 

obtain high-accuracy strain data. However, these methods have 

notable limitations: they impose stringent requirements on light 

source conditions, limiting adaptability in low-light 

environments such as tunnels; they also demand extreme 

equipment stability, making sustained and accurate 

measurements challenging in complex outdoor settings. The 

complexity of algorithms and harsh measurement conditions 

restrict their long-term monitoring applications. 

Radio Frequency Identification (RFID) technology, a mature 

wireless information transmission method [3], has garnered 

substantial attention from scholars due to its compact size and 

low cost. Peng Guofeng et al. [4]proposed a wireless passive 

RFID humidity sensor based on U-shaped resonant units, 

achieving environmental humidity detection and encoding 

capabilities through grouped U-shaped resonators. Wang Xian 

et al.[5] designed a miniaturized wireless passive  strain 

sensor array using split-ring resonators to detect strain 

magnitude and direction on metal surfaces. Wang Bo et al.[6] 

developed a wireless passive metal crack sensor using RFID 

technology, detecting surface cracks by measuring radar cross-

section (RCS) values. 

Integrating RFID technology with sensors introduces a novel 

approach for structural strain measurement. This paper presents 

a rectangular patch antenna-based wireless passive strain 

sensor using RFID technology, simulated in COMSOL 

Multiphysics finite element analysis software. This sensor 

offers low cost, non-contact measurement, and passive 

operation, effectively addressing challenges such as 

cumbersome cabling, noise interference, and real-time power 

supply limitations in wired systems. Compared to other strain 

sensors, it features a simple structure and high sensitivity (4.45 

kHz/με), demonstrating significant advantages and promising 

applications in SHM[7]. 

 

2 THE PRINCIPLE OF ANTENNA STRAIN SENSOR 

 Relationship Between Strain and Resonant Frequency 

The patch antenna strain sensor achieves precise strain 

measurement by detecting shifts in the antenna’s resonant 

frequency. The resonant frequency, as the optimal operating 

frequency of the antenna, exhibits distinct electrical 

characteristics: when the antenna operates at its resonant 

frequency, the backscattered energy reaches its minimum while 

the received energy attains its maximum. The resonant 

frequency shift of the patch antenna is closely linked to changes 

in antenna dimensions. Specifically, alterations in antenna 

geometry inherently modify the electrical length. An increase 

in electrical length leads to a decrease in resonant frequency, 

whereas a reduction in electrical length results in an increase in 

resonant frequency. 

The RFID-based rectangular patch antenna wireless passive 

strain sensing structure is illustrated in Figure 1. The sensor 

consists of an upper radiating patch, a feed line, a dielectric 
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substrate, and a lower radiating patch. The upper radiating 

patch detects strain and facilitates signal transmission/reception, 

while the lower radiating patch grounds the sensor. The feed 

line serves dual purposes: providing electrical feed and 

impedance matching. Both radiating patches and the feed line 

are fabricated from copper. The dielectric substrate, positioned 

between the upper and lower radiating patches, is constructed 

from RO4003C material with a dielectric constant of 3.55. 

 

Figure 1. Sensor schematic diagram. 

According to classical theory, the initial resonant frequency 

of a rectangular patch antenna can be expressed as: 

 

 𝑓𝑅𝑂 =
𝑐

4√𝜀𝑒

1

𝐿1+2∆𝐿1
 (1) 

Where 𝑓𝑅𝑂 is the resonant frequency of the antenna under the 

initial condition；c is the speed of light in a vacuum; 𝜀𝑒 is the 

equivalent dielectric constant of the dielectric plate;；𝐿1 is the 

length of the upper radiation patch; ；Δ𝐿1 is the additional 

length of the antenna, which is related to the antenna width, 

thickness and material. 

When the antenna experiences strain ε in the length direction, 

the resonant frequency 𝑓𝑅 changes accordingly. For: Δ𝐿1≤𝐿1, 

𝑓𝑅  exhibits an approximately linear relationship with strain, 

expressed as: 

 𝑓𝑅 ≈
𝑐

4√𝜀𝑒

1

𝐿1(1+𝜀)
=

𝑓𝑅𝑂

(1+𝜀)
≈ 𝑓𝑅𝑂（1 − 𝜀） (2) 

From equation (2), it can be seen that 𝑓𝑅 is mainly affected 

by strain in the direction of antenna length, and 𝑓𝑅 has A linear 

relationship with ε, the slope is about equal to 𝑓𝑅0, that is, every 

1με strain occurs, the resonant frequency of the antenna will 

decrease 𝑓𝑅𝑂 × 10−6. 

Since the substrate thickness is much smaller than the length-

width size, the dielectric constant of the antenna substrate is 

approximately the same as the relative dielectric constant: 

 𝛽𝑟 =
𝛽𝑟0+1

2
+

𝛽𝑟0−1

2
[1 + 12

ℎ

𝑤
]−1/2 ≅ 𝛽𝑟0 (3) 

Where:𝛽𝑟 is the effective dielectric constant of the antenna 

substrate; h is the thickness of the substrate; 𝑤is the width of 

the substrate;𝛽𝑟0indicates the relative dielectric constant of the 

substrate at room temperature. 

 Resonant Frequency and Echo Reflection Coefficient  

With full The antenna’s echo reflection coefficient (𝑆11) is a 

metric that quantifies the ratio of reflected signal power to 

incident signal power at the antenna port, reflecting the degree 

of signal matching. A signal transceiver emits an 

electromagnetic wave with frequency f and power 𝑃𝑖𝑛 . The 

wave is reflected by the antenna and received by the transceiver 

with power 𝑃𝑟𝑒𝑓 . The echo reflection coefficient 𝑆11 at this 

frequency is calculated using Equation (4): 

 𝑆11 = 10lg [
𝑃𝑖𝑛

𝑃𝑟𝑒𝑓
] (4) 

By transmitting an electromagnetic wave spectrum to the 

antenna and using a signal transceiver to record the echo 

reflection coefficient 𝑆11 at each frequency, the echo reflection 

curve (i.e., the  𝑆11  curve) across the frequency band is 

obtained. The minimum point of the 𝑆11curve corresponds to 

the antenna’s resonant frequency under the given conditions. 

As theoretically derived in the previous section, the minimum 

point of the 𝑆11 curve shifts when strain is applied, indicating a 

change in the resonant frequency, as illustrated in Figure X. 

Here, fR0 denotes the initial resonant frequency, and  fR  

represents the resonant frequency after strain application. 

 

Figure 2. The shift of resonant frequency. 

3 SIMULATION AND PARAMETER OPTIMIZATION 

 Finite element modeling of the antenna 

The finite element analysis software used in this simulation 

is COMSOL. COMSOL's multiphysics coupling can accurately 

describe the interactions between different physical phenomena 

and achieve multi - field collaborative simulation by 

establishing and solving the coupled partial differential 

equations of each physical field. 

Following optimization, the Geometric Dimensions of the 

Sensor in [Table 1] below: 

Table 1. Geometric dimensions of the sensor. 

Thickness of substrate/ t1 0.8mm 

Thickness of metal/t2 35μm 

Width of patch/W1 20mm 

Length of patch /L1 16mm 

 Width of substrate/W2 40mm 

Substrate length/L2 36mm 

Width of feed line/W3 1.8mm 

Length of feed line/L3 18mm 

 

In addition, the dielectric constant of the dielectric substrate 

is 3.55. 
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Figure 3.Dimensional schematic diagram of the sensor. 

The simulation of the patch antenna strain sensor in this paper 

adopts the dual-physics-field coupling of the electromagnetic 

field and the solid mechanics field, enabling the calculation of 

the change in the resonant frequency of the antenna after strain 

occurs within a single model. The 3D model of this antenna is 

shown in the following figure. The outer shell-shaped 

structureis a perfectly matched layer (partially hidden) , which 

serves to absorb the electromagnetic waves propagating 

outward, thereby simulating the open boundary conditions 

without reflection. 

 

Figure 4. Sensor's finite element model. 

First, an adaptive frequency sweep is performed on the 

antenna under strain-free conditions, and the curve is plotted to 

obtain its initial resonant frequency, as shown in the following 

figure. 

 

Figure 5. Initial resonant frequency. 

 

Apply a specified displacement to the antenna in the 

length direction of the antenna through the solid mechanics 

field to simulate the generation of strain in the length direction 

of the patch antenna. The total strain is set to 4000 με, and the 

step size of strain increase each time is 400 με. Obtain the 

curves under different strain values, and according to the 

obtained results, plot the linear regression curve of the 

relationship between the strain and the resonant frequency. 

 

Figure 6. Schematic diagram of Strain. 

 Modeling Results 

 

Figure 7. The relationship between resonant frequency and  

microstrain. 

As shown in the figure, the regression coefficient is 0.979, 

indicating that there is a good linear relationship between the 

resonant frequency of the antenna and the strain in the length 

direction. The sensitivity of the antenna as a strain sensor is 

4.6136 kHz/με. The relative error between the simulation result 

and the theoretical calculation value of 4.45 kHz/με is 3.68%. 

4 CONCLUSION 

In response to the imperative for wireless strain detection of 

building structures within the domain of structural health 

monitoring, leveraging the pronounced radiation efficiency, 

minimal power dissipation, and elevated quality factor 

characteristic of rectangular patch antennas, a wireless passive 

rectangular patch antenna strain sensor was meticulously 

devised. This design is firmly grounded in Radio - Frequency 

Identification (RFID) technology. Concurrently, a 

comprehensive finite - element analysis (FEA) simulation of 

the sensor was successfully executed. 

The simulation outcomes unambiguously demonstrate that 

the sensor exhibits a sensitivity of 4.6136 kHz/με along the 

lengthwise dimension of the patch, with a linearity regression 
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coefficient of 0.959. These strain - related simulation results 

incontrovertibly validate the viability of deploying an RFID - 

enabled rectangular patch antenna as a wireless passive strain 

sensor. 

Looking ahead, the fabrication of the sensor will be 

expeditiously completed, and a series of well - designed tensile 

experiments will be carried out. These experiments are 

intended to rigorously verify the sensor's detection 

performance under diverse real - world working conditions. 

Post - experimentation, a secondary optimization of the sensor's 

structure will be implemented, with the explicit aim of further 

enhancing its sensitivity and thereby attaining a more superior 

strain - detection outcome. 
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ABSTRACT: The Tsing Ma Suspension Bridge in Hong Kong has been the world’s first batch of bridges equipped with a long-

term health monitoring system since 1997. For the first time, this study reports the first-hand field monitoring data of the bridge 

from 1997 to 2022. The 25-year data provide an invaluable and rare opportunity to examine the long-term characteristics of loads, 

bridge responses, and their relationships, thereby enabling the assessment of the bridge’s load evolution and structural condition 

over time. The current status and recent update of the health monitoring system are also reported. This study is the first to report 

the one-quarter-century status of a structural health monitoring system and the behavior of a long-span suspension bridge. This 

research provides a benchmark for many other bridge monitoring systems worldwide. 

KEY WORDS: Structural health monitoring, Long-span bridges, Long-term behavior, Load evolution. 

1 INTRODUCTION 

Large-span bridges are vital economic lifelines, and their 

failure can have catastrophic human and socio-economic 

impacts. Proactive maintenance is essential to ensure the 

serviceability and safety of long-span bridges that are subjected 

to complex loads (e.g., typhoons, earthquakes) and harsh 

environments (e.g., corrosion) during operation. Structural 

Health Monitoring (SHM) is essential for monitoring the health 

of bridges, assessing their safety, guiding their maintenance 

and providing early warnings. Although SHM systems are now 

being adopted in major bridges (e.g., Akashi Kaikyo Bridge, 

Runyang Bridge, etc.) and newly designed bridges around the 

world, there is a lack of long-term operational history data for 

SHM systems. This creates a research gap in analyzing long-

term data, actual structural degradation, and service life 

assessment [1-11]. 

The Tsing Ma Bridge (TMB), operational since 1997 with a 

pioneering SHM system, offers a unique 26-year dataset (1997-

2022). This study analyzes the long-term data, SHM system 

status of TMB and the health monitoring system, and 

investigating long-term trends in environmental loads and 

structural performance. 

2 THE TSING MA BRIDGE 

The Tsing Ma Bridge is a highway and railroad dual-purpose 

large-span suspension bridge with a main span of 1,377 m, a 

total bridge length of 2,160 m and a tower height of 206 m, 

which was opened to traffic in 1997. An elevation of the bridge 

is given in Figure 1. 

3 MONITORING DATA 

 Temperature 

The annual maximum bridge temperatures are given in Figure 

2. A linear regression analysis shows that the maximum deck 

effective and ambient temperatures increase at rates of 0.51 

℃/decade and 0.72 ℃/decade, respectively. The bridge 

temperature in 2022 is 44.9 ℃, close to bridge deign limit of 

46 ℃. 

 Deflections 

The bridge displacement is subject to the temperature and the 

traffic effects. The mid-span deflection without traffic load is 

shown in Figure 3, using data between 2:00 to 4:00 am to 

exclude the traffic effect. 

 

 

 

 
Figure 1 The elevation of the Tsing Ma Bridge 
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Figure 2 Annual maximum deck effective temperature of the Tsing Ma Bridge in 1997–2022 

 

 

 

 
Figure 3 Monthly mean mid-span deflection of Tsing Ma Bridge in 1997–2022 

 

CONCLUSIONS 

The operational condition of the Tsing Ma Bridge and its 

Structural Strength Monitoring (SHM) system has attracted 

much attention. In this paper, field monitoring data from the 

past 26 years are analyzed to study the long-term loading and 

response of the bridge. In addition, this paper discusses the 

current status and latest updates of the SHM system. The 

following conclusions are drawn from this study. 

 (1) Observed trends in bridge deck effective temperatures 

show significant increases over recent decades. Specifically, 

the maximum effective temperature has risen at a rate of 0.51 

°C per decade, while the mean effective temperature increased 

at 0.16 °C per decade. Critically, the recorded maximum values 

are now approaching the original design thresholds for the 

deck.  

(2) The monthly bridge midspan deflection show an 

increasing trend, the trend can be caused by the cracking and 

creep of materials.  
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ABSTRACT: Advancements in road infrastructure health monitoring through sensor networks offer a transformative solution to 

the limitations of traditional inspection methods by enabling more accurate, real-time assessments of structural conditions. 

However, once appropriate sensors are selected and deployed, a key challenge remains: converting raw sensor data into meaningful 

health indicators (HIs) that effectively capture structural changes indicative of potential damage. A health indicator (HI) is a crucial 

metric derived from structural health monitoring (SHM) data, designed to reflect the current condition and damage state of a 

monitored structure. This study presents a machine learning-based approach leveraging principal component analysis (PCA) to 

develop a sensitive and damage-specific HI by extracting and ranking the most relevant current features. The proposed method is 

first validated through experimental fatigue testing using a four-point bending machine under random thermal conditions. To 

further evaluate its effectiveness and reliability in real-world applications, the approach is applied to field data collected from a 

network of fiber Bragg grating (FBG) sensors embedded in asphalt pavement. By analyzing strain measurements, the study 

demonstrates that the PCA-based HI successfully detects structural changes, providing a robust and data-driven solution for real-

time infrastructure monitoring. 

KEYWORDS: Health indicator, Structural health monitoring, FBG sensor networks, Principal component analysis, Fatigue 

damage detection.

1 INTRODUCTION 

A significant amount of money is spent on maintaining 

infrastructure such as roads, bridges, and other critical 

structures. To reduce maintenance costs, various non-

destructive testing (NDT) methods have been employed to 

enable predictive maintenance strategies. However, these 

methods have certain limitations. For instance, most NDT 

techniques operate offline, making continuous structural 

evaluation impossible [1]. 

To address this challenges, extensive research has been 

conducted to integrate advanced sensor technologies for 

continuous and real-time Structural Health Monitoring (SHM). 

Sensors such as accelerometers [2-4], piezoelectric sensors [5-

7], and acoustic emission sensors [8-10] have been explored for 

their ability to collect SHM data continuously, providing 

valuable insights for early damage detection and improved 

maintenance planning. 

Recently, optical sensors have emerged as a promising 

technology for infrastructure monitoring due to their unique 

advantages, such as immunity to electromagnetic interference, 

lightweight design, and, most importantly, the capability for 

distributed or quasi-distributed measurements. These features 

make optical sensors highly suitable for real-time structural 

health monitoring, enabling continuous and precise data 

collection over long distances. Additionally, their durability 

and resistance to harsh environmental conditions enhance their 

reliability for long-term deployment in critical infrastructure 

such as bridges, tunnels, and pipelines [11-17].  

Although optical sensors offer these advantages, their 

application in large-span structures generates an enormous 

amount of data, requiring specialized strategies for processing, 

compression, and reduction. Efficient data management 

techniques are essential to handle this influx of information 

while preserving critical insights for future interpretation and 

analysis. Developing advanced algorithms and intelligent data 

filtering methods can help optimize storage and computational 

efficiency without compromising the accuracy and reliability 

of structural health monitoring [18].  

Various techniques can be integrated to accomplish this 

objective, including data reduction methods [19-20] and multi-

sensor data fusion [21-22] at different processing levels. A 

structured approach involves organizing these steps to derive a 

health indicator (HI) that enables straightforward monitoring of 

a system’s health status. HI is regarded as the most informative 

feature in SHM data [23] that can be obtained using different 

frameworks including statistical, signal processing, and 

machine learning . In the literature, different criteria have been 

proposed to define an optimal HI. First viewpoint (1VP) 

suggests that an ideal HI should exhibit monotonicity, which 

represents a consistent increasing or decreasing trend over time, 

prognosability, which reflects the distribution of a variable’s 

final values, and trendability, which measures the similarity 

between different variable trajectories [24]. 

Alternatively, second viewpoint (2VP) emphasizes that an 

optimal HI should possess detectability, referring to its 

sensitivity in identifying the presence of faults, particularly the 

smallest detectable fault signatures at a given false-positive 

rate. It should also ensure separability, which is its ability to 

effectively distinguish between faulty and healthy states. 

Additionally, trendability is crucial, as the degradation trend of 
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the HI should maintain a positive correlation with operational 

time following an initial fault. However, identifying an optimal 

HI that satisfies all three properties is not a straightforward task. 

In practice, once an HI demonstrates both detectability and 

separability, it can already be considered optimal [25].  In this 

study, the second point of view is adopted as the criteria for 

defining an optimal HI. The first perspective requires extensive 

run-to-failure data, which is often challenging to obtain in real-

world scenarios due to limited data availability. Ultimately, the 

developed HI can serve as an input for a prognosis model to 

estimate the remaining useful life (RUL), which will be 

explored in future studies. 

2 OBJECTIVE AND OVERALL METHODOLOGY  

The primary objective of this study is to propose a framework 

that integrates both data reduction and fusion techniques to 

construct health indicators that effectively represent the 

damage levels of infrastructures, such as roads, monitored 

using high-density FBG sensor networks. This method can be 

applied to individual FBG sensors or groups of sensors within 

a fiber, where data fusion can be performed at the data level. 

In this approach (see Figure 1), following data acquisition via 

an embedded FBG sensor network and the management of 

large-scale collected data, a series of signal processing steps is 

applied to the raw data to prepare them for further analysis [26]. 

Subsequently, time-domain FBG signal features—including 

peak width, peak duration, and energy—are extracted from 

each segment of the pre-processed data. 

After conducting long-term monitoring over a predefined 

period, these features are ranked based on their monotonicity 

metric to retain only the most significant ones. When new data 

arrive, the extracted features are normalized relative to the 

training dataset. Following normalization, a feature fusion 

technique based on principal component analysis (PCA) is 

implemented to project these features into a reduced-

dimensional space. Since the first principal component captures 

the direction with the highest gradient in the feature space, it 

serves as a suitable indicator for representing the health status 

of the structure. 

 
Figure 1. The overall framework of the study. 

As no data is available on damage conditions from the 

embedded FBG sensor network, two approaches are used to 

evaluate the proposed framework. The first involves 

conducting an experimental fatigue test, while the second 

utilizes available FBG data to generate synthetic damage 

scenarios to validate its applicability. The following sections 

discuss these two approaches in detail. 

3 METHODS 

 Data Acquisition  

3.1.1 Experimental Fatigue Test  

An experimental test was conducted to validate the proposed 

framework for large-scale, real-world damage detection 

applications. To achieve this, a stress-control fatigue 

experiment was performed using a four-point bending machine 

(see Figure 2) on a standard asphalt beam with dimensions of 

60×60×400 mm, made from the APO-A mixture. The loading 

frequency was 10 Hz, and the temperature was varied randomly 

to simulate real-world conditions. 

For the experiment, strain gauge (SG) sensors (3×10 and 

3×20 mm) were installed to monitor strain at the bottom of the 

beam throughout the fatigue test, in order to further investigate 

the effect of strain gauge length on strain readings in asphalt 

materials. However, a detailed analysis of this effect is 

considered outside the scope of the present study. These SGs 

glued using CC-33A×5 adhesive, provided by KYOWA, 

between two internal supports. Strain data were collected using 

a compact recording system (EDX-10) at a sampling frequency 

of 500 Hz and subsequently processed using DCS-100A 

software. 

 

Figure 2. Four-point bending setup for fatigue test. 

After the test ended, the sample was damaged at the SG2 

location, as shown in Figure 3a. The temperature recorded 

during the test is also presented in Figure 3b. Temperature data 

were collected using a thermocouple placed near the beam 

during testing. 
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(a) 

 
(b) 

Figure 3. Fatigue test: (a) Damaged sample, (b) Temperature 

variations. 

The strain data collected during the test using four strain 

gauges is presented in Figures 4a–4d. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. SG responses during fatigue test: (a) SG1, (b) SG2, 

(c) SG3, (d) SG4. 

As shown in Figure 4, all SG responses exhibit load-induced 

strain signals after filtering out low-frequency components 

caused by temperature-induced strain. However, fluctuations in 

temperature can still influence the amplitude of the load-

induced strain response due to temperature-dependent changes 

in material properties. As damage propagates, the responses of 

the strain gauges are affected depending on their location. If 

damage occurs at the sensor's location, an increasing trend will 

be observed due to strain concentration in that area. 

Conversely, if damage propagates near a sensor, its response 

will show a decreasing trend. However, this effect depends on 

the distance from the damaged region. 

3.1.2 Field Test using FBG Sensor Network  

In addition to the experimental fatigue test, strain and 

temperature data were collected using a FBG sensor network 

embedded in the asphalt layer at different locations on a 

constructed test track in the Port of Antwerp & Bruges. The 

sensor network configuration is shown in Figure 5, as can be 

seen this configuration includes 32 FBG in both lateral and 

longitudinal directions [27]. 

 
(a) 
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(b) 

Figure 5. Monitoring system using FBG sensor network: (a) 

Test track, (b) FBG sensor configuration 

 

After the construction of the test track, a continuous 

monitoring campaign was initiated from April 28, 2024, to 

October 17, 2024 (28/04/2024 to 17/10/2024), powered by a 

solar system and wind turbine. During this campaign, strain and 

temperature data were collected at a 100 Hz sampling 

frequency using an eight-channel, 2000 Hz FBG-Scan 708D 

interrogator. The collected data were then processed using 

ILLumiSense v2.3.5.5 software. Figure 6 shows the 

temperature variation in the asphalt during the monitoring 

campaign. 

Figure 6 Temperature during the monitoring campaign 

collected by FBG sensor 

 Data Management and Pre-processing 

During the monitoring campaign, 20 GB of data were generated 

daily, requiring efficient management to handle this large 

volume for future analysis. To address this, an automated 

system was developed to classify, merge, and prepare the data 

for subsequent steps, as outlined in Ref. [26]. 

Then, the data needs to be pre-processed using signal 

processing techniques to prepare it for the next steps. These 

steps include filtering, thresholding, concatenation, and 

windowing. Each technique is applied for a specific purpose: 

filtering removes strain caused by temperature variations, 

thresholding eliminates noise while preserving events, 

concatenation combines short-term monitored data into long-

term datasets, and windowing ensures the data contains the 

same number of events for better comparison, as discussed in 

Ref. [26]. Figure 7 shows an example of the daily collected data 

alongside the long-term pre-processed FBG data. 

 
(a) 

 
(b) 

Figure 7 Collected FBG data during monitoring campaign: (a) 

daily data (17/05/2024), (b) long-term preprocessed data 

 Feature Extraction  

Feature extraction plays a critical role in transforming raw data 

into meaningful, compact representations that can be efficiently 

used for analysis, classification, or prediction. As raw time-

series or signal data is often too complex to interpret directly, 

extracting relevant features helps reduce dimensionality and 

focus on the most informative aspects of the data. This process 

not only improves model performance by providing more 

relevant input but also enhances the results, making it easier to 

identify underlying patterns or anomalies. In this study, several 

signal features in the time domain are calculated for each 

window of data [23], as listed in Table 1, along with peak 

width, peak duration, and energy. These features are essential 

for capturing the temporal characteristics of the signal and 

provide valuable insights into its behavior over time. Peak 

width and peak duration help describe the shape and spread of 

the signal's key events, while energy quantifies the overall 

magnitude of the signal, contributing to a more comprehensive 

understanding of its dynamics. 

Table 1. Common statistical features in time-domain [23] 

No Equation No Equation 

1 𝑋𝑚 =
∑ 𝑥(𝑛)𝑁

𝑛=1

𝑁
 9 𝑋𝑐𝑟𝑒𝑠𝑡 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑚𝑠
 

2 𝑋𝑠𝑑 = √
∑ (𝑥(𝑛) − 𝑋𝑚)2𝑁

𝑛=1

𝑁 − 1
 10 𝑋𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =

𝑋𝑝𝑒𝑎𝑘

𝑋𝑟𝑜𝑜𝑡
 

3 𝑋𝑟𝑜𝑜𝑡 = (
∑ √|𝑥(𝑛)|𝑁

𝑛=1

𝑁
)

2

 11 𝑋𝑠ℎ𝑎𝑝𝑒 =
𝑋𝑟𝑚𝑠

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1

 

4 𝑋𝑟𝑚𝑠 = (√
∑ (𝑥(𝑛))2𝑁

𝑛=1

𝑁
) 12 𝑋𝑖𝑚𝑝𝑢𝑙𝑠𝑒 =

𝑋𝑝𝑒𝑎𝑘

1
𝑁

∑ |𝑥(𝑛)|𝑁
𝑛=1
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5 𝑋𝑟𝑠𝑠 = (√∑ |𝑥(𝑛)|2
𝑁

𝑛=1
) 13 

𝑋𝑝2𝑝

= max(𝑥(𝑛)) − min (𝑥(𝑛)) 

6 𝑋𝑝𝑒𝑎𝑘 = 𝑚𝑎𝑥|𝑥(𝑛)| 14-17 𝑋𝑘_𝑐𝑚 =
∑ (𝑥(𝑛) − 𝑋𝑚)𝑘𝑁

𝑛=1

𝑁
 

7 

𝑋𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

=
∑ (𝑥(𝑛) − 𝑋𝑚)3𝑁

𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
3  

18 𝑋𝐹𝑀4 =
𝑋4_𝑐𝑚

𝑋𝑠𝑡
4  

8 

𝑋𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠

=
∑ (𝑥(𝑛) − 𝑋𝑚)4𝑁

𝑛=1

(𝑁 − 1)𝑋𝑠𝑑
4  

19 𝑋𝑚𝑒𝑑 =
∑ 𝑡(𝑛)𝑁

𝑛=1

𝑁
 

𝑥(𝑛) indicates the signal sequence for 𝑛 = 1,2, … , 𝑁. 

𝑁 indicates the number of data points. 

𝑡(𝑛) indicates the moments of occurrence of 𝑥(𝑛) 

3.3.1 Feature Ranking  

To determine the most relevant feature and develop an 

appropriate indicator, researchers have employed a specific 

metric in various studies [28]. This metric, known as 

monotonicity, captures the dominant increasing or decreasing 

trend of a feature concerning the target variable. It assesses how 

consistently a feature progresses in a specific direction. The 

monotonicity of the 𝑖𝑡ℎ feature 𝑥𝑖 is computed using the 

following equation: 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑐𝑖𝑡𝑦 (𝑥𝑖) =

1

𝑚
∑

|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓 (𝑥𝑖
𝑗

)−𝑛𝑢𝑚𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑒𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓(𝑥𝑖
𝑗

)|

𝑛−1

𝑚
𝑗=1                         

(1) 

 

Where 𝑛 represents the number of windows, and 𝑚 denotes 

the number of monitored systems or structures, which, in our 

case, is 1. In this study, the metric is computed using the 

training datasets to identify the most important features for 

subsequent steps. 

 Feature Fusion  

In this step, the most important selected features need to be 

fused to create a more informative and compact representation 

in lower dimensions while preserving as much relevant 

information as possible. Feature fusion helps reduce 

redundancy and enhances the efficiency of subsequent 

analyses. In this study, PCA is employed as a dimensionality 

reduction technique to fuse the selected features. PCA 

transforms the original feature set into a new set of uncorrelated 

principal components, ranked by their ability to capture 

variance in the data.  

Before applying PCA, it is crucial to standardize the data to 

ensure that all features contribute equally to the analysis. 

Standardization prevents features with larger magnitudes from 

dominating the principal components. As a best practice, 

features should be normalized to the same scale before 

performing PCA. The mean and standard deviation used for 

normalization using z-score function, along with the PCA 

coefficients, are derived from the training data and consistently 

applied to the entire dataset.  

4 IMPELLIMENTATION  ON EXPERIMENTAL DATA 

Four strain data sets are available from the SGs for the 

experimental test, based on the proposed methodology. As the 

data has already been managed and pre-processed using the 

DCS-100A software, the next step is feature extraction. In this 

step, the features mentioned in Section 3.3 are calculated for 

the SG signals by segmenting the signals into windows of 2,000 

data points. Figure 8 presents examples of the features 

calculated for the SG signals. 

 
(a) 

 
(b) 

Figure 8 Examples of calculated features for SG sensors  

 

After calculating these features, feature ranking is performed 

using Equation (1). However, the features are smoothed to 

enhance the performance of the monotonicity function. In this 

study, a threshold value of 0.3 is applied to select features for 

fusion. Figure 9 illustrates the feature importance for each SG. 

This feature ranking step is conducted using the training 

dataset, which represents 40% of the total lifetime. 

 
(a) 

 

(b) 
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(c) 

 

(d) 

Figure 9 Feature importance: (a) SG1, (b) SG2, (c) SG3, (d) 

SG4  

Based on Figure 9, it can be concluded which features exhibit 

greater importance and maintain a more monotonic trend 

during the fatigue test. For instance, the standard deviation 

demonstrates the highest importance across all SG sensors. 

Therefore, all selected features that meet the predefined 

threshold will be utilized for fusion. 

For each SG sensor, the selected features are transformed to 

a lower-dimensional space using PCA, with normalization 

applied relative to the training dataset. The first principal 

component (PC) is chosen as it captures the maximum gradient 

in the feature space. Figure 10 illustrates the first principal 

component for each SG sensor based on the selected features. 

 
Figure 10 First principal component for each SG sensor 

 

As shown in Figure 10, the first PC appears to be a promising 

HI derived from the fused features, offering greater robustness 

compared to any single feature. For better visualization of the 

first PC as a health indicator, an exponential function is fitted 

to each curve, with all curves shifted to zero at the starting 

point, as shown in Figure 11. 

 
Figure 11 Constructed HI using SG sensor data 

As shown in Figure 11, the HI for SG sensor 2 reaches level 

5, which is recognized as the failure threshold. Therefore, this 

threshold can be used as a criterion for any new sample. 

However, due to the heterogeneous nature of asphalt, more 

experiments are required to establish a reliable threshold. Once 

validated, this HI can serve as an input to a prognosis model, 

such as an exponential degradation model, for estimating the 

remaining useful life. However, applying this approach in real 

field conditions remains challenging, as the exact failure point 

is still unknown. 

5 IMPLEMENTATION ON IN-SITU DATA 

Before implementing a method on in-situ data collected 

through an FBG sensor network embedded in the road, it is 

important to consider that, since the pavement sill is newly 

constructed, no damage is typically present, and the collected 

data can be labeled as "healthy." This dataset can then be used 

to generate synthetic data representing damaged conditions. 

Unlike experimental tests, where loading conditions are 

controlled, in this case, the loading is random, and no specific 

information about it is available. Based on experimental 

observations, damage affects sensor responses depending on its 

distance from the sensor. Therefore, two types of data can be 

generated: one where the damage occurs at the sensor location 

(G1) and another where the damage is not at the sensor location 

but within a detectable distance (G2). This can be achieved 

using an exponential function to generate synthetic data, as 

illustrated in Figure 12. 

 
(a) 
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(b) 

Figure 12 Generated synthetic data using available healthy 

data: (a) G1, (b) G2 

Now, these data can be used to implement the proposed 

method, beginning with feature extraction. For example, Figure 

13 shows the calculated features for both signals after 

segmentation into windows of 2,000 data points. 

 
(a) 

 

(b) 

Figure 13 Examples of calculated features for G1 and G2  

 

A threshold value of 0.3 is applied again to select features for 

fusion. Figure 14 illustrates the feature importance for G1 and 

G2. This feature ranking step is performed using the training 

dataset, which accounts for 40% of the total lifetime. 

 
(a) 

 

(b) 

Figure 14 Feature importance: (a) G1, (b) G2  

As shown in Figure 14, the important features vary in each 

case. For example, in the first case, central moment 3 is the top 

feature, whereas in the second case, it is not even among the 

selected features. This highlights the importance of feature 

ranking before fusion. Figure 15 illustrates the first principal 

component for each generated data based on the selected 

features. 

 
Figure 15 Feature importance: (a) G1, (b) G2  

For clearer visualization of the PC as a health indicator, an 

exponential function is fitted to each curve, with all curves 

adjusted to start at zero, as shown in Figure 16. 
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Figure 16 Constructed HI using generated data 

As shown in Figure 16, the Health Indicator (HI) for G1 

exhibits an increasing trend, while for G2, it shows a decreasing 

trend. This suggests that the HI can be used for health 

monitoring, even with real data. Although a specific threshold 

cannot be defined, an adaptive threshold could be a potential 

solution, requiring further investigation. 

6 CONCLUSIONS 

This study presents a framework to compress, reduce, and fuse 

raw data collected from a sensor network into a HI for 

monitoring road infrastructure using FBG sensor network that 

produces a sheer volume of data. The integration of sensor data 

processing, feature extraction, and machine learning methods 

enables the detection of damage in infrastructure, ensuring 

timely maintenance interventions. Key findings of this study 

are as follows: 

• Based on experimental tests, it has been confirmed 

that the sensor response is dependent on its distance 

from the damage. 

• The monotonicity metric is effective in identifying 

features sensitive to damage propagation and refining 

features before fusion. 

• The use of the first principal component as a health 

indicator demonstrates its effectiveness in tracking 

damage progression. In experimental tests, the health 

indicator’s trend helped identify damage once it 

exceeded a threshold, though further validation is 

needed to establish a universal failure threshold for 

real-world applications. 

• The proposed HI meets the key criteria for an optimal 

HI, including detectability and separability, making it 

acceptable based 2VP. Additionally, trendability can 

be achieved by taking the absolute value of the HI if 

needed.  

• The constructed HI can be used for RUL estimation 

using a prognosis model, provided the threshold is 

known. However, determining a reliable threshold 

remains a challenge for real-world applications. 

• The proposed framework is sensor-independent, 

except for some specific pre-processing steps that vary 

for each sensor. This framework can be implemented 

for infrastructure monitoring using large-scale sensor 

networks for efficient SHM. 

In conclusion, the methodology introduced in this study 

holds great promise for the future of infrastructure health 

monitoring. With further refinement and validation, it has the 

potential to make road maintenance more efficient and cost-

effective. 
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ABSTRACT: As global climate change drives rising sea levels, coastal regions face growing threats from seawater intrusion. This 

process increases groundwater salinity, accelerating steel corrosion and compromising the structural integrity of concrete 

infrastructure. However, addressing these challenges is limited by existing salinity monitoring technologies, which often suffer 

from slow response times and low sensitivity in in-situ conditions. This study proposes a salinity sensor based on Fiber Bragg 

Grating (FBG), enhanced by chemically etching the fiber cladding to create an etched FBG (EFBG). This modification improves 

sensitivity to external refractive indices for accurate salinity detection. A three-layer waveguide dispersion model simulated 

wavelength shifts during sensor etching and testing using MATLAB, revealing how etching diameters impact sensitivity and 

confirming a linear relationship between wavelength and seawater salinity. To improve EFBG durability and reduce hydrofluoric 

acid damage, the etching process was divided into rapid, stable, and fine stages. Results demonstrated that higher etching levels 

increased sensitivity, achieving a sensitivity coefficient of up to 29.432 pm/% in specific conditions. The EFBG salinity sensor 

offers high sensitivity, fast response, compact size, corrosion resistance, and interference immunity, making it ideal for in-situ 

groundwater salinity monitoring in aquifers and mitigating risks to coastal structural health. 

KEY WORDS: Salinity; Fiber Bragg grating (FBG); Chemical etching; Seawater Intrusion. 

1 INTROFUCTION 

Excessive groundwater extraction in coastal areas disrupts 

the natural balance between freshwater and seawater, driving 

inland migration of the saltwater-freshwater interface — a 

phenomenon known as seawater intrusion [1,2]. This process 

significantly increases groundwater salinity, which accelerates 

corrosion of steel reinforcements and compromises the 

structural integrity of concrete infrastructure in coastal regions, 

posing severe risks to long-term structural health and safety [3]. 

Monitoring groundwater salinity is crucial for assessing 

seawater intrusion severity and protecting infrastructure [4,5]. 

Existing monitoring techniques include electrical conductivity 

sensors, microwave remote sensing, and fiber optic sensors. 

Electrical conductivity sensors offer high accuracy, but 

inductive types are vulnerable to electromagnetic interference, 

while electrode types suffer from fouling, limiting long-term 

performance[6,7]. Microwave remote sensing enables large-

scale surface salinity observation, but it cannot penetrate below 

the surface or provide in-situ groundwater monitoring [8,9]. 

Fiber optic sensors have attracted increasing attention due to 

their compact size, immunity to electromagnetic interference, 

and high sensitivity [10]. Among them, Fiber Bragg Grating 

(FBG)-based salinity sensors can be divided into polymer-

coated FBGs and etched FBGs (EFBGs). Polymer-coated 

sensors, such as those developed by Jun Cong et al. (2002) [11] 

and Ping Lu et al. (2008) [12], achieve moderate sensitivity, but 

suffer from slow response and poor repeatability due to 

polymer swelling and hysteresis. 

To improve sensitivity, Kerstin Schroeder et al. (2001) [13] 

introduced a side-polished FBG, exposing the evanescent field 

for salinity detection, but the sensor exhibited non-linear 

response in varying temperature and salinity environments. 

Pereira et al. (2004) [14] used hydrofluoric acid to etch FBGs, 

achieving a salinity sensitivity of 1.28 pm/%, but this approach 

lacked robust in-situ adaptation for groundwater monitoring. 

Most existing EFBG sensors focus on biochemical sensing, 

with limited research targeting long-term groundwater salinity 

monitoring for seawater intrusion detection. This study 

develops a high-sensitivity, fast-response EFBG salinity sensor 

capable of salinity measurement, providing a compact and 

reliable solution for real-time in-situ groundwater salinity 

monitoring, contributing to the protection of coastal 

groundwater resources and infrastructure health. 

2 FUNDAMENTAL PRINCIPLE OF EFBG FOR 

SEAWATER SALINITY SENSING 

A Fiber Bragg Grating (FBG) is a reflective grating structure 

inscribed in the core of an optical fiber. When broadband light 

propagates along the fiber axis, the FBG reflects a specific 

wavelength, known as the Bragg wavelength, which is 

determined by the effective refractive index of the fiber core 

and the grating period, as shown in Figure 1 [15]. 

 
Figure 1. The schematic diagram of FBG sensing principle. 

 

The Bragg wavelength λB satisfies the following relationship 

[16]: 

 𝜆𝐵 = 2𝑛𝑒𝑓𝑓Λ (1) 

Etched fiber Bragg grating sensor-based groundwater salinity monitoring for 

seawater intrusion 

Hongtao Jiang1, Junyi Guo2, Bin Shi2, Mengya Sun3, Guangqing Wei4 

1 School of Geographic and Oceanographic Science, Nanjing University, No.163 Xianlin Avenue, 210023 Nanjing, China 
2 School of Earth Sciences and Engineering, Nanjing University, No.163 Xianlin Avenue, 210023 Nanjing, China 
3 School of Earth Sciences and Engineering, Hohai University, No. 8 Focheng West Road, 210098 Nanjing, China 

4 Suzhou Nanzee Sensing Technology Co., Ltd, No.150 Renai Avenue, 215123 Suzhou, China 

 

email: jianghongtao@nju.edu.cn, gjy@smail.nju.edu.cn, shibin@nju.edu.cn, smy@hhu.edu.cn, wgq@nzsensing.com 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-110 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 710 

where neff denotes the effective refractive index of the fiber core, 

and Λ represents the grating period. 

In conventional optical fibers, the presence of a complete 

cladding layer confines light within the fiber core, making the 

Bragg wavelength largely insensitive to changes in the external 

refractive index. However, by physically or chemically 

reducing the cladding thickness, a portion of the light 

propagating in the core extends into the surrounding medium 

as an evanescent field. This modification allows the effective 

refractive index neff to be influenced by the external refractive 

index, thereby shifting the Bragg wavelength λB. 

As the cladding thickness decreases, the optical fiber 

gradually forms a three-layer waveguide structure, consisting 

of the external medium, the remaining cladding, and the core. 

The modal characteristics of light propagation change 

accordingly, and the propagation constant β is also affected. To 

quantify the influence of cladding etching on the propagation 

constant, the corrected propagation constant for different 

etched diameters can be expressed as [17]: 

 𝛽 = 𝛽0 + 𝜅𝜂𝑃(𝑛𝑆𝑅𝐼 − 𝑛𝑐𝑙) (2) 

where β0 represents the propagation constant under normal 

conditions, k denotes the wave vector, and α is the power loss 

coefficient, representing the proportion of power loss in the 

etched region relative to the total guided power. next and nclad 

denote the refractive indices of the external medium and the 

cladding, respectively. 

From the definition of the propagation constant, the effective 

refractive index neff can be derived as: 

 𝜕𝑛𝑒𝑓𝑓 = 𝜕𝑛𝜕𝜂 (3) 

At the end of the etching process, the effective refractive 

index reaches a stable value, denoted as neff, final. Combining this 

with Equations (1), (2), and (3), the relationship between Bragg 

wavelength shift and external refractive index can be obtained: 

 𝜕𝜆𝐵 = 2Λη0(𝑛𝑆𝑅𝐼 − 𝑛𝑐𝑙) (4) 

This indicates that after etching to a certain diameter, the 

Bragg wavelength becomes highly sensitive to changes in the 

external refractive index. 

In practice, the primary salt component in seawater is sodium 

chloride (NaCl). Therefore, the salinity of seawater can be 

approximated using NaCl solution concentration. At constant 

temperature, the refractive index of NaCl solution exhibits a 

linear relationship with salinity [18]: 

 𝑐(%) = 𝑘𝑠𝑛𝑆𝑅𝐼 − 𝑘0 (5) 

where ks is the salinity coefficient, which remains constant 

under fixed external conditions when only salinity changes. In 

this study, ks is set to 540.5405, and k0 is 720.5946. 

3 NUMERICAL MODEL FOR EFBG SEAWATER 

SALINITY SENSING 

To further establish the quantitative relationship between 

EFBG wavelength shifts and seawater salinity, a numerical 

analysis was conducted using MATLAB. The calculation of the 

effective refractive index requires a fiber waveguide model, 

which can be divided into two-layer and three-layer structures, 

as shown in Figure 2. 

 
Figure 2. Two types of fiber waveguide models: (a) Three-

layer structure; (b) Two-layer structure. 

 

When the fiber cladding is fully etched away or the etching 

extends into the fiber core, the core and external medium form 

a simple two-layer circular waveguide model (Figure 2(a)). 

This type, known as the core-etched FBG, offers high salinity 

sensitivity. However, due to severe cladding removal, the 

mechanical strength is significantly reduced, resulting in poor 

robustness, which limits its suitability for long-term monitoring 

in harsh environments. To balance mechanical integrity and 

sensitivity, this study employs a partially etched FBG structure, 

modeled as a three-layer circular waveguide (Figure 2(b)). The 

dispersion equation for the three-layer fiber waveguide can be 

expressed as follows [19]: 
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The mathematical symbols and parameters used in the 

equation are defined as: 

 𝑍𝑚̂(𝑥) =
𝑍𝑚(𝑥)

𝑥𝑍𝑚+1(𝑥)
 (7) 

 𝑢 = 𝑎1(𝑘0
2𝑛1

2 − 𝛽2)1/2 (8) 

 𝑢′ = 𝑎2(𝑘0
2𝑛𝑐𝑙

2 − 𝛽2)1/2 (9) 

 𝑣′ = 𝑎2(𝛽
2 − 𝑘0

2𝑛𝑐𝑙
2 )1/2 (10) 

 𝑣 = 𝑎2(𝛽
2 − 𝑘0

2𝑛𝑆𝑅𝐼
2 )1/2 (11) 

 𝑐 =
𝑎1

𝑎2
 (12) 

where k0 denotes the vacuum wave number. The fiber 

parameters used in this model match the experimental optical 

fiber specifications discussed later. Jm and Ym represent the first 

and second kind Bessel functions, respectively, while Im and Km 

denote the modified first and second kind Bessel functions. 

Based on the above equations, MATLAB was used to 

calculate the relationship between FBG wavelength and fiber 

diameter during the etching process. Figure 3 illustrates the 

variation in Bragg wavelength as a function of fiber diameter 

when the external refractive index is set to 1.333. 
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Figure 3 Diagram of wavelength variation as a function of 

diameter during etching. 

 

As shown in Figure 3, at the initial stage of etching, the thick 

cladding confines the optical field within the core, making the 

wavelength almost insensitive to the external refractive index. 

As etching progresses and the cladding becomes thinner, the 

evanescent field begins to interact with the external 

environment. Due to the lower refractive index of the 

surrounding medium compared to the cladding, the Bragg 

wavelength decreases sharply as the diameter decreases. This 

trend provides a basis for real-time monitoring of fiber diameter 

during the etching process. 

The surface salinity of seawater typically ranges from 3.4% 

to 3.7%. To evaluate the feasibility of EFBG sensors for 

seawater salinity monitoring, MATLAB simulations were 

carried out to investigate the relationship between salinity and 

wavelength shift under low-salinity conditions. As shown in 

Figure 4, the smaller the fiber diameter, the higher the salinity 

sensitivity. Within the salinity range of 0–6%, EFBG sensors 

with different diameters all exhibit a clear linear relationship 

between salinity and wavelength shift. Higher etching levels 

consistently lead to increased salinity sensitivity, providing 

important design and fabrication guidelines for EFBG-based 

salinity sensors. 
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Figure 4 Relationship between wavelength variation and 

salinity at low salinity. 

 

4 EXPERIMENTAL DESIGN AND SALINITY SENSING 

TESTS 

 Etching Process 

The fiber optic sensing element used in this study is a single-

point fiber Bragg grating sensor with a central wavelength of 

1564 nm, a wavelength tolerance of ±0.2 nm, and a grating 

length of 10 mm. The fiber is coated with an acrylate layer, with 

a reflectivity of 88.3%, a 3 dB bandwidth of 0.23 nm, and a side 

mode suppression ratio of 22 dB. The core diameter is 9 μm, 

cladding diameter is 125 μm, and the coating diameter is 240 

μm, consistent with the parameters used in the numerical 

simulations. 

Hydrofluoric acid (HF), known for its strong corrosive 

properties on glass and silicon-based materials, was used to 

etch the fiber cladding. The initial HF concentration was 40%, 

which was diluted with distilled water to prepare solutions of 

lower concentrations for staged etching. During the etching 

process, the non-grating sections of the fiber were covered with 

paraffin wax to protect them from unnecessary etching. The 

fiber was also connected to an NZS-FBG-A01 interrogator 

(Suzhou Nanzhi Sensing Technology Co., Ltd.) via patch cords 

to monitor real-time Bragg wavelength shifts, allowing precise 

control over the final cladding diameter. The interrogator 

operates in the wavelength range of 1528-1568 nm with a 

resolution of 1 pm. To ensure the reliability of etching rate 

measurements, three bare fibers were fixed in parallel on a T-

shaped plastic holder and immersed in HF solutions for parallel 

etching experiments. Each etching session lasted 60 minutes, 

after which the fibers were thoroughly rinsed with deionized 

water to remove residual acid and air-dried in a ventilated area. 

The diameters of the fibers were measured under an optical 

microscope, and the average diameter of the three fibers was 

recorded for each condition. This process was repeated to 

determine etching rates at different HF concentrations. 

 

Figure 5. Microscope images of bare fibers etched by 

hydrofluoric acid at different concentrations: (a) 40% 

concentration; (b) 20% concentration; (c) 5.7% concentration. 

 

The results show that higher HF concentrations lead to faster 

etching rates but also create rougher fiber surfaces, as shown in 

Figure 5. To reduce surface irregularities, minimize residual 

stress, and improve the wavelength stability of the sensor, a 

staged etching process was employed. In this process, high-

concentration HF was first used for rapid bulk etching, 

followed by lower-concentration HF for gradual surface 

refinement. This method ensures a smoother grating surface 

and reduces unwanted stress-induced wavelength shifts. 

 Salinity Testing 

To simulate coastal groundwater conditions, artificial 

seawater with salinities ranging from 0% to 6% (in 1% 

increments) was prepared by dissolving NaCl in distilled water. 

The EFBG sensor was sequentially immersed in these solutions, 

and the Bragg wavelength was recorded in real time to evaluate 

its response to salinity changes. 
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Figure 6. Bragg wavelength variation at different salinities. 

 

The initial wavelength offset of the EFBG was 7.5 nm. Based 

on the diameter-wavelength relationship established through 

numerical analysis, the cladding diameter of the EFBG was 

calculated to be 14.82 μm. The measured Bragg wavelength 

shifts at different salinity levels are shown in Figure 6. As 

illustrated, the Bragg wavelength shift increases significantly 

with rising salinity and demonstrates a clear linear relationship 

with salinity. The EFBG sensor achieved a salinity sensitivity 

of 29.432 pm/%, confirming its potential for high-sensitivity 

salinity monitoring.  

5 CONCLUSION 

This study developed an etched fiber Bragg grating (EFBG) 

sensor for in-situ monitoring of groundwater salinity in coastal 

aquifers affected by seawater intrusion. A combination of 

numerical modeling, staged chemical etching, and salinity 

calibration experiments was used to evaluate sensor 

performance. The key conclusions are as follows:  

(1) A three-layer fiber waveguide model was established to 

simulate the effect of cladding etching on Bragg wavelength 

shifts. Numerical results confirmed that reducing the cladding 

diameter enhances evanescent field sensitivity, significantly 

improving salinity response. A clear linear relationship 

between Bragg wavelength shift and salinity was observed 

within the 0-6% salinity range. 

(2) A staged etching process using high and low 

concentrations of hydrofluoric acid was employed to optimize 

both the etching efficiency and surface smoothness. This 

approach minimized surface defects, reduced stress-induced 

wavelength drift, and ensured stable sensor performance. 

(3) Experimental results demonstrated that the EFBG sensor 

with a cladding diameter of 14.82 μm achieved a salinity 

sensitivity of 29.432 pm/%, with excellent linearity between 

Bragg wavelength shift and salinity. This high sensitivity, 

combined with the sensor's compact size, corrosion resistance, 

and real-time monitoring capability, makes it well-suited for 

long-term in-situ groundwater salinity monitoring in coastal 

areas. 

Overall, the proposed EFBG sensor offers a practical and 

effective solution for groundwater salinity monitoring, 

contributing to improved seawater intrusion early warning and 

the protection of coastal infrastructure and water resources. 
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ABSTRACT: As the geological body on which humans depend, rock and soil are constantly moving under the action of natural 

forces and human activities. Their instability often triggers geo-hazards, posing severe threats to the environment, infrastructure 

safety, and sustainable development. High-quality data acquisition and effective monitoring are essential for geo-hazard 

prevention and mitigation. The stability of rock and soil is governed by mechanical discontinuous interfaces, which are classified 

into material, state, and movement interfaces. This paper focuses on distributed fiber-optic sensing (DFOS) technology as an 

advanced tool for geo-hazard monitoring and early warning. The paper summarizes the authors' achievements over the past two 

decades in DFOS-based geo-hazard monitoring theory, sensing techniques, and application systems. Key advancements include 

strain-sensing coupling theory, moisture and seepage monitoring methods, disaster identification and prediction models, and 

integrated fiber-optic sensing technology platforms. Three representative cases are presented, demonstrating the application of 

DFOS to monitor the material interface of stope overlying rock, the state interface of land subsidence, and the movement interface 

of a reservoir slope. Finally, future research directions for fiber-optic sensing in rock-and-soil disaster monitoring are outlined. 

KEY WORDS: Rock-and-soil, Interface, Geo-hazard, Monitoring, Distributed fiber-optic sensing (DFOS), Application 

1 INTRODUCTION 

Earth habitability has become a critical scientific focus in the 

21st century, with rock and soil providing the fundamental 

foundation for human survival and infrastructure development. 

These geological bodies are constantly subjected to natural 

forces, such as earthquakes, rainfall, and landslides, as well as 

anthropogenic disturbances, including excavation, construction, 

and resource exploitation. Such internal and external forces 

continuously reshape the physical and mechanical properties of 

rock and soil, leading to instability that can trigger a variety of 

geo-hazards. These disasters pose severe threats to the 

ecological environment, engineering safety, and the sustainable 

development of society. 

The stability and evolution of rock and soil masses are 

primarily governed by mechanical discontinuity interfaces, 

which can be categorized into material interfaces, state 

interfaces, and movement interfaces, as shown in Figure 1. 

These interfaces play a decisive role in controlling the 

deformation, failure mechanisms, and overall stability of rock 

and soil systems under complex external loads. However, their 

concealed, heterogeneous, and dynamic nature makes real-time 

monitoring and early identification of potential disaster signals 

particularly challenging. 

Traditional monitoring methods, such as discrete point 

sensors, geotechnical instrumentation, and geophysical surveys, 

often suffer from limitations in spatial coverage, resolution, and 

long-term reliability. These limitations hinder the accurate 

depiction of internal mechanical evolution and early 

identification of critical hazard precursors, especially in large-

scale and complex geological settings. 

To overcome these challenges, distributed fiber-optic sensing 

(DFOS) technology has emerged as a highly promising tool for 

in-situ, real-time, and continuous monitoring of geo-hazards [1]. 

DFOS enables the long-distance, high-resolution, and 

distributed acquisition of strain, moisture, temperature, and 

other critical parameters along the entire length of a sensing 

cable, offering unparalleled advantages in capturing the spatial 

evolution of mechanical discontinuities and hazard precursors 

in rock and soil masses. 

 
Figure 1 Schematic diagram of rock and soil disasters 

and the three types of interfaces. 

 

This paper summarizes the key advancements achieved in 

DFOS-based geo-hazard monitoring by the authors' research 

group over the past two decades, covering areas such as strain-

sensing coupling theory, moisture and seepage monitoring 

techniques, disaster identification and prediction models, and 

integrated fiber-optic sensing technology platforms. 

Furthermore, three representative case studies are presented to 

demonstrate the practical application of DFOS in monitoring 

material interfaces, state interfaces, and movement interfaces in 
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complex geotechnical environments, highlighting its unique 

advantages and future potential in geo-hazard monitoring and 

early warning. 

2 DISTRIBUTED FIBER-OPTIC SENSING 

TECHNOLOGY 

DFOS enables continuous spatial and temporal monitoring 

by utilizing optical fibers as both transmission media and 

sensing elements. This technology encodes the measured 

parameter as a function of fiber length, allowing real-time data 

collection over large areas. By deploying sensing fibers in 

various configurations, DFOS effectively forms an integrated 

sensing network within geotechnical structures, providing 

critical insights into subsurface processes. 

DFOS primarily encompasses three key techniques: 

Distributed Temperature Sensing (DTS) for thermal 

monitoring, Distributed Strain Sensing (DSS) for strain 

measurements, and Distributed Acoustic Sensing (DAS) for 

vibration detection [2], as shown in Figure 2. Additionally, 

Fiber Bragg Grating (FBG) sensing, including the advanced 

Ultra-Weak Fiber Bragg Grating (UWFBG) technology, offers 

high-resolution quasi-distributed measurements. 

When embedded within soil and rock formations, DFOS 

enables real-time monitoring of stress, deformation, 

temperature, and fluid movement. This capability enhances the 

early detection of geo-hazards, supports infrastructure health 

monitoring, and improves disaster prevention strategies. Its 

ability to provide high-resolution, continuous data makes 

DFOS an essential tool for geotechnical applications. 

(a)  

 

(b) 
 

Figure 2 Schematic diagram of the distributed fiber optic 

sensing technology: (a) Optical principle of 3Ds; (b) 3Ds 

sensing scheme. 

3 FIBER-OPTIC SENSING THEORY AND 

TECHNOLOGY FOR ROCK-AND-SOIL DISASTERS 

The application of fiber-optic sensing technology in rock-

and-soil disaster monitoring requires addressing several key 

theoretical and technical challenges. The primary difficulties 

lie in understanding and improving the strain coupling 

mechanism between optical fibers and geotechnical materials, 

effectively detecting and quantifying moisture infiltration and 

seepage processes, developing reliable methods for identifying 

and predicting disaster-related signal events, and constructing 

an integrated fiber-optic sensing system tailored for geo-hazard 

monitoring. These challenges must be overcome to enhance the 

accuracy and reliability of fiber-optic sensing technology in 

geotechnical applications. The following sections summarize 

the advancements achieved by the authors' research team in 

these areas. 

 Strain-Sensing Coupling Theory 

The strain coupling mechanism between embedded fiber-

optic sensors and surrounding geotechnical materials plays a 

crucial role in ensuring accurate deformation monitoring. 

Through extensive theoretical and experimental research, the 

authors have established a progressive failure model for fiber-

soil interfaces, revealing the mechanisms governing interfacial 

bonding strength. On this basis, a criterion for evaluating fiber-

soil interfacial adhesion was proposed, alongside a calculation 

method for determining critical confining pressure and the 

optimal embedment depth of borehole-installed fibers [3,4]. 

These findings provide essential guidance for improving fiber 

installation strategies in geotechnical applications. 

To address the challenge of strain transfer in weak soil layers, 

a novel anchoring approach—fixed-point optical fiber 

technology—was developed. This technique enhances strain 

coupling by introducing controlled bonding points along the 

fiber, preventing signal attenuation due to excessive strain 

dissipation. By refining strain transfer mechanisms, these 

advancements have significantly improved the performance of 

DFOS in complex geological environments, ensuring the 

accuracy and stability of long-term geotechnical monitoring. 

 Moisture and Seepage Sensing Methods 

Moisture and seepage are fundamental factors affecting the 

stability of rock and soil masses. Moisture primarily pertains to 

unsaturated soils, while seepage involves fluid movement 
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within porous media, often serving as a key trigger for 

geotechnical failures such as slope instability and land 

subsidence. Conventional monitoring methods, such as the 

active heating distributed temperature sensing (DTS) technique 

proposed by Selker et al., have limitations in accuracy and are 

only applicable in environments above 0 °C[5]. To overcome 

these constraints, we introduced the thermal pulse fiber-optic 

method, which leverages the thermal conductivity variations of 

geological materials under different moisture and seepage 

conditions. By integrating optical fibers as active heat sources, 

this technique enables high-precision, all-weather detection of 

subsurface moisture and seepage dynamics[6]. 

To further enhance measurement accuracy, ultra-weak fiber 

Bragg grating (UWFBG) technology was employed, 

embedding thousands of ultra-low reflectivity gratings along a 

single fiber-optic cable. Encapsulated with conductive heating 

materials, this advancement significantly improved sensing 

resolution, increasing accuracy from 5% F.S. to 1% and 

enhancing thermal response sensitivity compared to 

conventional methods[7]. Once embedded in geological 

formations, this fiber-optic sensing system enables continuous, 

high-resolution monitoring of dynamic changes in moisture 

content, capillary rise, groundwater levels, and seepage 

velocities. This innovation provides a powerful tool for 

tracking hydrological processes in unsaturated zones, 

improving geotechnical disaster prevention strategies, and 

supporting sustainable groundwater management. 

 Geo-hazard Identification and Prediction 

Accurately identifying and predicting geo-hazards based on 

fiber-optic sensing data is essential for early warning and 

disaster prevention. The Random Forest algorithm, known for 

its efficiency and strong classification performance, has been 

applied to develop an intelligent multi-hazard classification 

system for underground engineering. Field tests in tunnels 

demonstrated its ability to distinguish construction activities 

(e.g., excavation, drilling) and sudden disasters (e.g., rockfalls, 

seepage) with 92.3% accuracy providing a reliable approach to 

geo-hazard detection [8]. 

For geo-hazard prediction, the Kalman Filter (KF) is widely 

used due to its precision and robustness. By integrating multi-

physics data from fiber-optic sensors, it enhances anomaly 

detection accuracy. Since traditional KF models are limited to 

linear systems, an extended Kalman Filter (EKF) incorporating 

Taylor series expansion was developed to handle nonlinear 

geotechnical processes. Genetic algorithm optimization further 

improved prediction accuracy, enhancing the capability of 

fiber-optic sensing in forecasting disaster events and supporting 

proactive risk mitigation [9]. 

 Fiber-Optic Sensing Technology Systems 

Building on advancements in geo-hazard sensing theory and 

technology, the research team has developed an extensive fiber-

optic sensing framework tailored for rock-and-soil disaster 

monitoring. Over 50 specialized fiber-optic sensing networks 

have been designed, alongside nearly 10 proprietary signal 

acquisition devices. Additionally, more than 10 intelligent geo-

hazard recognition systems have been established, forming a 

comprehensive and systematic approach to fiber-optic sensing 

for geotechnical disaster detection and early warning (Figure 3). 

This integrated technology system enhances the accuracy, 

efficiency, and applicability of distributed fiber-optic sensing 

in diverse geological environments, providing a robust 

foundation for large-scale geo-hazard monitoring and risk 

assessment [10,11]. 

 
Figure 3 Fiber optic sensing system for rock-and-soil 

disasters. 

4 APPLICATIONS OF DFOS IN ROCK-AND-SOIL 

DISASTER MONITORING 

DFOS has emerged as a transformative technology for 

monitoring rock-and-soil disaster mechanisms by providing 

continuous, real-time, and high-resolution data over large 

spatial extents. Unlike traditional geotechnical monitoring 

systems that rely on discrete measurement points, DFOS allows 

for full-scale sensing of deformation, stress redistribution, and 

hydrological changes that contribute to geotechnical 

instabilities. This section highlights key applications of DFOS 

in monitoring material, state, and movement interfaces, with a 

focus on underground mining operations, land subsidence 

monitoring, and reservoir slope stability assessment. 

 Monitoring Material Interfaces in Stope Overlying Rock 

In underground mining operations, the excavation process 

induces stress redistribution and fracture propagation within the 

surrounding rock mass. This often leads to instability in stope 

overburden, posing a significant risk of roof collapse, rock 

bursts, and ground subsidence. Material interfaces, such as the 

contact zones between ore bodies and surrounding rock or 

between different lithological formations, govern the 

mechanical response of the overlying strata and influence the 

failure mechanisms within the mine. 

DFOS technology has been successfully deployed in 

longwall mining, sublevel caving, and room-and-pillar mining 

operations to monitor stress changes and detect potential failure 

zones [12,13]. Optical fibers installed along critical interfaces 

allow for real-time strain measurement, enabling the 

identification of stress concentrations and early warning of 

geotechnical hazards. By tracking localized deformation trends, 

strain redistribution, and fracture initiation, DFOS provides 

mine operators with actionable insights for optimizing roof 

support systems, adjusting mining sequences, and 

implementing safety measures to prevent catastrophic failures. 

 Assessing State Interfaces in Land Subsidence 

Land subsidence is a widespread geo-hazard resulting from 

excessive groundwater extraction, soil consolidation, and 

hydro-mechanical interactions. The gradual settlement of soil 

layers due to subsurface compaction can cause structural 
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damage to buildings, differential ground deformation, and 

increased flooding risks, particularly in urban areas. State 

interfaces within subsiding soil formations represent the 

transition zones between stable and compacting soil layers, 

where changes in pore pressure, void ratio, and effective stress 

dictate the rate and extent of subsidence. 

DFOS has been increasingly utilized for long-term land 

subsidence monitoring by embedding fiber-optic sensors in 

boreholes and along subsiding zones to capture real-time 

compaction trends. By measuring strain variations, DFOS 

allows for the early detection of compaction-related 

deformations, enabling timely intervention to mitigate damage 

[14]. For example, in cities experiencing significant subsidence 

due to groundwater depletion, DFOS networks provide high-

resolution subsidence maps, allowing urban planners and 

engineers to develop effective groundwater management 

policies and infrastructure reinforcement strategies. 

Additionally, DFOS can be integrated with satellite-based 

InSAR (Interferometric Synthetic Aperture Radar) data to 

enhance the accuracy of subsidence monitoring by correlating 

surface deformation trends with subsurface strain variations. 

 Detecting Movement Interfaces in Reservoir Slopes 

Reservoir slopes are highly susceptible to landslides and 

slope failures triggered by hydrodynamic loading, seasonal 

water level fluctuations, and infiltration-induced weakening of 

slope materials. Movement interfaces within reservoir slopes 

define the boundaries between stable and actively deforming 

soil or rock masses, making them critical zones for monitoring 

slope stability and identifying potential failure mechanisms. 

DFOS-based monitoring has been successfully applied in 

reservoir embankments, natural slopes, and engineered slopes 

near hydropower stations to track shear strain accumulation, 

deep-seated creep deformation, and progressive failure 

development [15–17]. Fiber-optic sensors embedded along 

potential slip surfaces and slope reinforcement structures 

provide continuous measurements of strain evolution, allowing 

engineers to identify precursory signs of instability before 

catastrophic failure occurs. 

In large-scale reservoir projects such as the Three Gorges 

Reservoir in China, DFOS has been instrumental in monitoring 

slope deformation and evaluating landslide risks under varying 

hydrological conditions [18]. By integrating DFOS data with 

numerical slope stability models and geotechnical 

instrumentation, engineers can develop more reliable landslide 

prediction models, improve early warning systems, and 

implement targeted mitigation measures, such as slope 

drainage optimization and reinforcement design [19,20]. 

5 CONCLUSION 

The integration of DFOS technology into geo-hazard 

monitoring has significantly enhanced the ability to detect, 

analyze, and mitigate geological and geotechnical disasters. By 

providing continuous, real-time, and spatially distributed data, 

DFOS effectively overcomes the limitations of traditional 

point-based monitoring techniques, enabling more 

comprehensive and proactive disaster prevention, early 

warning, and risk assessment. The case studies presented in this 

paper demonstrate the broad application potential of DFOS 

technology in underground mining stability evaluation, land 

subsidence monitoring, and reservoir slope hazard 

management, highlighting its adaptability to complex 

geological environments and diverse hazard types. 

Future research should focus on further enhancing sensor 

durability and environmental adaptability, developing more 

refined data interpretation and inversion models, and 

integrating DFOS with artificial intelligence (AI), remote 

sensing, and multi-source data fusion to build intelligent, 

automated, and predictive hazard monitoring systems. The 

continuous advancement and interdisciplinary integration of 

DFOS technology will play a key role in safeguarding 

geotechnical stability, infrastructure resilience, and sustainable 

land use under increasingly complex environmental and 

engineering challenges. 
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ABSTRACT: Understanding the effects of temperature on structural behavior is critical in structural health monitoring (SHM), 

especially for prestressed concrete components with complex geometries due to their complicated internal strain distributions. 

Temperature-strain relationships in structural components can offer valuable insights into various structural properties, such as 

the coefficient of thermal expansion (CTE), and boundary and continuity conditions of structures. However, these relationships 

can be influenced by variability of ambient environmental conditions, especially ambient temperature variations, which can create 

thermal gradients and complicate the interpretation of relationships and identification of structural properties. 

This study presents a preliminary study on the structural behaviors of a prestressed slab with a double-T cross-section through a 

series of static and dynamic loading tests conducted across four seasons, with ambient temperatures ranging from 8°C to 24°C. 

The proposed approach utilizes long-gauge strain sensors embedded within the slab to continuously capture strain and temperature 

data. By analyzing the temperature-strain relationships derived from on-site loading test measurements, the study aims to evaluate 

how the structural behaviors of the prestressed double-T slab, which can reflect the structural properties, such as boundary and 

continuity conditions, change under different environmental temperatures. 

The preliminary results show clear variations in strain changes for the same loading condition under different temperatures. These 

variations suggest that environmental temperatures and thermal gradients could affect load response and boundary restraints. 

Furthermore, the findings demonstrate that the embedded long-gauge strain sensors effectively capture the temperature changes 

and strain distribution under the loadings, enabling the assessment of structural behaviors of the slab with seasonal effects. This 

research highlights the importance of accounting for environmental factors in structural health monitoring and provides new 

perspectives for understanding and predicting the behavior of structures with complex geometrical properties (e.g., double-T slab) 

under varying conditions. 

KEY WORDS: Prestressed concrete slab; Thermal behavior of structures; Temperature-strain relationship; Long-gauge fiber-

optic strain sensors; Complex geometrical and boundary conditions; Structural health monitoring.

1 INTRODUCTION 

Prestressed precast concrete components with complex cross 

sections, such as double-T slabs, are widely used in modern 

construction due to their high load-carrying efficiency [1]. 

However, their structural behavior is influenced not only by 

applied mechanical loading but also by environmental factors, 

most notably temperature [2,3]. Seasonal fluctuations in 

ambient temperature can cause significant strain variations 

within these components, even in the absence of mechanical 

loading, and complicate the interpretation of measurement data 

used in condition assessment and damage detection. In addition, 

temperature-strain relationships can provide valuable insights 

into material properties (e.g., help evaluate thermal expansion 

coefficient), restraint and boundary conditions, and the overall 

stiffness behavior of structural systems [4,5]. Understanding 

how these relationships evolve under different environmental 

conditions and loading scenarios is essential for assessing in-

situ structural behavior and for developing reliable long-term 

monitoring strategies. 

  This project is developed based on the real-life case study. 

More specifically, it is based on observation of the structural 

behavior of a prestressed double-T slab located in the Stadium 

Drive Garage, Princeton University, with a particular focus on 

the influence of seasonal temperature variations. The slab is 

instrumented with long-gauge Fiber Bragg Grating (FBG) 

sensors embedded within the concrete during construction. 

These sensors allow for simultaneous, continuous 

measurement of strain and internal temperature over extended 

periods.  

  To explore how environmental conditions influence the load 

response, four series of load tests were conducted over a period 

of nine months at different environmental temperatures. Each 

test series included static loading with various load cases, and 

dynamic testing. While the mechanical load applied during 

each test series remained similar, the environmental 

temperature varied significantly between tests, ranging from 

8°C to 24°C. This variation provides a unique opportunity to 

assess the interaction between thermal conditions and 

mechanical response in a controlled yet realistic setting. 

  The aim of this study is to observe how strain responses in a 

prestressed double-T slab vary under similar loading scenarios 

across different ambient temperatures, and to explore the 

potential for identifying temperature-related effects on 

structural behavior. Preliminary observations confirm that the 

environmental temperature affects the measured strain 

distribution under mechanical load.  

  The originality of this study lies in the following aspects. It 

combines seasonal on-site testing under varying ambient 

conditions with embedded long-gauge FBG, which captures 

internal strain and temperature responses that surface-mounted 

sensors could miss. In addition, the study focuses on a 

prestressed double-T slab with complex boundary conditions, a 
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structural form that presents significant challenges for SHM yet 

has been underrepresented in previous literature. 

  While full analysis is ongoing, this extended abstract 

summarizes the current progress by describing the 

instrumentation and load configurations and presenting 

preliminary observations of temperature-influenced structural 

behavior. 

2 METHODOLOGY 

 Sensor layout 

The double-T slab of Stadium Drive Garage contains 14 

embedded long-gauge FBG sensors, installed at locations 

denoted with A, B, C, E, F, D, G, and H, as illustrated in Figure 

1. The sensors are mostly, but not only, installed in parallel and 

crossed topologies. For pairs of parallel sensors, such as sensors 

at locations A, B, C, E, F, the top sensor is denoted as “1” (e.g. 

“A1”), and the bottom one as “2” (e.g. “A2”). The gauge length 

of sensors at locations A, B and C was 60 cm (1'11.6”), and all 

the other sensors in the double-T slab had a gauge length of 25 

cm (9.8”).  The gauge length of sensors was determined using 

principles developed in Glisic 2011 [6]. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Locations of embedded long-gauge FBG strain and 

temperature sensors in the prestressed double-T slab: (a) plane 

view, (b) elevation view, and (c) cross-sectional view; all 

dimensions are in meters [7]. 

 

 Experimental setup 

The measurement data analyzed in this paper was collected 

from FBG sensors in the double-T slab during four series of 

load tests conducted between fall 2024 and spring 2025 at 

different environmental temperatures. These tests were 

performed using a truck provided by the Princeton University 

Facilities (Civil Engineering group), loaded with sandbags in 

the cargo bed to achieve a target weight of 10,000 lbs (4536 

kg). This weight was selected to incur statistically significant 

strain, according to the results of previous research on the slab 

[8]. Each test series included two types of load tests: static and 

dynamic. This paper focuses on results of static tests only, 

while dynamic tests are described only for the purposes of the 

completeness of presentation. In the static tests, the procedure 

began with the beam unloaded for approximately one minute. 

The truck was then driven onto a designated position on the 

beam and held stationery for another minute before being 

removed, after which the beam remained unloaded for an 

additional minute. During these static tests, sensors recorded 

strain at a rate of 1 hertz (Hz), or one measurement per second. 

An example of the truck with its cargo bed loaded with 

sandbags positioned on the beam during a static test is shown 

in Figure 2.  

 

Figure 2. The truck on the slab in a static load test. 

 

  In the dynamic tests, the truck was driven across the width of 

the slab at variable speeds twice during each test series. After 

each impulse, the slab was allowed to vibrate freely for 

approximately one minute afterward. During these tests, the 

sensors measured at a rate of 100 Hz. 

Table 1. Summary of load cases in four test series. 

Load Case 
Test 1 

(15°C) 

Test 2 

(8°C) 

Test 3 

(10°C) 

Test 4 

(24°C) 

V – center     

V – web (w/ 

sensors) 
    

V – web (w/o 

sensors) 
    

V – seam (closer)     

V – seam (further)     

H – center     

H – neighbor slab 

center (closer) 
    

H – neighbor slab 

center (further) 
    

Column test     

Dynamic test (mph) 15, 20 22, 25 25, 29 28, 30 

 

  Table 1 shows the environmental temperatures during four 

test series, all load cases each test series contains, and the speed 

of the truck during dynamic tests. For the load cases with the 

dash sign, the “V” and “H” before dash stand for “vertical” and 

“horizontal” respectively, which mean whether the centerline 

of the truck is along the length or the width of the slab; after the 

dash is the position of the rear wheels of the truck; “closer” 

means the side closer to the sensors, and “further” means the 
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side further away from the sensors. The tick mark “” means 

the test series contains marked load case, and the cross “” 

means the test series does not contain the load case. 

3 PRELIMINARY OBSERVATIONS 

Figure 3 presents the strain response recorded by FBG sensors 

embedded in the slab during Test2 with the load case “V – 

center”. The total strain changes Δε are plotted over time, with 

different colored lines representing individual sensors. Notably, 

sensors B2 shows significantly larger responses compared to 

others, due to its proximity to the applied load and its position 

at the midspan of the slab. This observation supports the 

effectiveness of the sensor network in capturing localized 

events while providing spatial context for interpretation. 

 

 

 

Figure 3. Total strain changes from slab-embedded FBG 

sensors during a static test. 

 

 

Figure 4. Total strain changes of sensor B2 under the same 

load case but at different ambient temperatures. 

Figure 4 compares the strain measurement from one specific 

sensor (sensor B2) under the same type of load case but 

conducted under different ambient temperature conditions. 

Four curves represent four separate tests carried out when the 

slab was exposed to 8 °C, 10 °C, 15 °C, and 24 °C. Although all 

tests exhibit a similar response pattern (a rapid increase in strain 

during loading and a drop afterward), the magnitude of the peak 

strain differs across temperature conditions. This variation 

suggests that ambient temperature influences the sensor 

response—potentially due to changes in material stiffness, 

temperature gradient along cross section, or boundary restraint 

conditions. For example, the decrease in response with increase 

of temperature, for temperature higher than 10C may reflect 

thermal expansion effects that result in higher stiffness of 

restrained slabs; inverse behavior for temperature lower than 

10C may indicate change in boundary conditions or 

interaction at connections. Yet combined effects can be in play 

in both cases. 

These preliminary findings highlight two key observations: 

(1) the sensor network effectively captures localized strain 

patterns, and (2) environmental temperature influences the 

strain response, even under consistent loading scenarios. These 

effects will be further examined through more comprehensive 

analysis in future. 

4 CONCLUSION AND FUTURE WORK 

This study assesses the strain changes of a prestressed precast 

concrete slab with embedded FBG sensors under repeated 

localized loading and varying ambient temperatures. Through 

a series of static and dynamic load tests conducted across 

different seasons, it was observed that the same loading 

configuration caused different strain changes under varying 

ambient temperatures. The tests confirmed the effectiveness of 

the monitoring system and loading configuration. Furthermore, 

these preliminary observations highlight the significance of 

temperature as a factor affecting structural response and 

underline the importance of accounting for thermal effects in 

condition assessment and long-term monitoring. 

  Future work will focus on further examining the principles 

underlying the observed temperature-dependent strain 

variations, including the potential influences of thermal-

induced stiffness changes and boundary conditions. Additional 

analysis will aim to quantify these relationships to better 

interpret long-term monitoring data. Moreover, the study will 

be extended to evaluate the dynamic behavior of the structure 

under different environmental temperatures to gain deeper 

insights into the stiffness evolution and structural performance 

with seasonal effects. 

ACKNOWLEDGMENTS 

We would like to thank Gina Talt and Office of Sustainability 

of Princeton University for coordinating the project, Catherine 

Altadonna and Office of Capital Projects of Princeton 

University for providing funding and metadata related to 

project, George Hand, Ali Akber, and Jersey Precast, Hamilton, 

New Jersey, for their great assistance during the installation of 

sensors, Dan Polifroni and Whiting-Turner for their precious 

on-site help and coordination, Mauricio Pereira and Antti 

Valkonen, for installing the sensors, Elvis Le, for organizing, 

conducting, and recording the load tests, and for their 

contributions at various stages of the project. 

REFERENCES 

[1] Maguire, Marc, et al. “Structural Performance of Precast/Prestressed 

Bridge Double-Tee Girders Made of High-Strength Concrete, Welded 
Wire Reinforcement, and 18-Mm-Diameter Strands.” Journal of Bridge 

Engineering, vol. 18, no. 10, Oct. 2013, pp. 1053–1061, 

https://doi.org/10.1061/(asce)be.1943-5592.0000458.  
[2] Jiao, Yujie, et al. "Temperature Effect on Mechanical Properties and 

Damage Identification of Concrete Structure." Advances in Materials 

Science and Engineering, vol. 2014, Article ID 191360, 2014. 
https://doi.org/10.1155/2014/191360. 

[3] Teixeira Buttignol, Thiago Eduardo, and Telmo Nunes Bittencourt. "On 
the Effect of the Boundary Conditions of Plain Concrete Exposed to High 

Temperatures under Uniaxial Compression." Structural Concrete, vol. 23, 

no. 4, 2022, pp. 2030–2040. https://doi.org/10.1002/suco.202000582. 
[4] Lu, Lei, et al. "Application of Advanced Multi-Parameter Monitoring in 

Concrete Structure Defect Detection: Integrating Thermal Integrity 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-112 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 721 

Profiling and Strain Analysis." Buildings, vol. 15, no. 8, 2025, article 

1350. https://doi.org/10.3390/buildings15081350. 

[5] Wang, Dong, et al. "Experimental Study and Numerical Simulation of 
Temperature Gradient Effect for Steel-Concrete Composite Bridge 

Deck." Measurement and Control, vol. 54, no. 5–6, 2021, pp. 681–691. 

https://doi.org/10.1177/00202940211007166. 
[6] Glisic, Branko. "Influence of the Gauge Length on the Accuracy of Long-

Gauge Sensors Employed in Monitoring of Prismatic Beams." 

Measurement Science and Technology, vol. 22, no. 3, 2011, article 
035206. https://doi.org/10.1088/0957-0233/22/3/035206. 

[7] Liang, Yitian, and Branko Glisic. Identification of Prestress Losses under 

Early-Age Cracking in Prefabricated Prestressed Slabs with Complex 
Cross Sections Using Long-Gauge Sensors. Manuscript submitted and 

under review, 2025. 

[8] Le, Elvis. Stadium Drive Garage: Analyzing Effects of Complex 
Boundary Conditions on a Prestressed Beam Using FBG Strain Sensors. 

Unpublished manuscript, May 2024. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-113 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 722 

ABSTRACT: The paper outlines an ongoing research project, incorporating Fiber Bragg Grating (FBG) systems to measure and 

detect the vibration in a ship’s hull.  The causes of such vibration are due to the various engines and motors on board, as well as 

the force induced by the movement of the sea, and the vibration induced into the hull by the propellor.  Five ships in all have been 

monitored using the FBG system, using both 3 sensor rosettes, and chains of 10 sensors.  All the sensors used were glued to the 

ships’ hulls and various sea trials carried out.  The tests included gathering data with the engines switched off, the engines running 

at various speeds, both whilst stationary in the harbour as well as whilst sailing. 

Change detection is the main application of such monitoring, and such change is evident and detected due to a broken flange on 

one ship, and a new engine on one ship.  Data were gathered before and after such effects were changed.  The induced vibration 

due to the propellor is also evident. 

KEY WORDS: Fibre Bragg Grating, Deflection monitoring, frequency analysis, SHM. 

1 INTRODUCTION 

Previous work conducted by the authors has focused on using 

RTK GNSS [1, 2] to monitor the long-term deformations of 

large bridges [3] as well as measuring the short-term 

deflections of such structures [4, 5, 6, 7, 8, 9] and extracting the 

frequencies of the movements [4, 7, 10].  Such deflection 

measurements and resulting frequency analysis can be used to 

detect movement characteristics of the structure due to damage 

or long-term deterioration.  In parallel, the use of Fiber Bragg 

Grating (FBG) approaches was used to measure long term 

deformations of infrastructure such as roads and tunnels [11, 

12, 13]. 

Both approaches were brought together by the authors [14] to 

use the high data rate and very precise data of the FBG system 

to measure dynamic characteristics of ship structures.  Ships are 

structures that deform and deflect.  Such deflections are caused 

by various external forces, such as the force induced on the hull 

by the sea as well as vibrations in the structure of the ship 

caused by various engines and motors on board.  Ships, like all 

structures, can experience damage and long-term deterioration.  

These can result in deflections and vibrations in the ship’s 

structure changing in characteristics over time or even 

instantly.  The hypothesis of our research is that sudden 

changes in the characteristics of the ship’s structure, caused by 

damage, can be detected by measuring changes in the 

frequencies observed in the vibration and deflection of the 

structure.  The research objective of this current work is to be 

able to measure changes in the frequency response of the ship 

in relation to any damage or changes made to the ship.  This 

was done by carrying out measurements using a FBG system 

on several ships, three of which exhibited damage or changes 

in engines, which resulted in the frequency responses changing.  

We gathered data on such vessels before and after any damage 

was fixed or engine changes were made. 

FBG sensors were installed on a passenger ship in the Faroe 

Islands, and data were gathered at a rate of 1kHz during normal 

scheduled activity in 2017 and 2018 [14] and at a rate of 5kHz 
during the more recent tests.  The frequency responses of the 

data were extracted to identify the frequency characteristics of 

the structure i.e. ship.  The movements are caused by the ships’ 

engines, motors and external factors such as weather and sea 

effects.  In addition, vibrations are caused by the rotation of the 

propellor inducing force on the ship hull and causing 

vibrations.  Further, change detection in these characteristics is 

possible, therefore detecting early damage to such 

infrastructure. 

Following the initial sea trials, a three-year research project 

was undertaken to further this work. 

2 FBG SENSORS 

Fiber Bragg Gratings (FBGs) are patterns of refractive index 

changes inscribed in the core of a glass fiber with a typical 

length of about 1cm. When a broadband light source emits light 

into the fiber, the FBG behaves as a wavelength dependent 

mirror, meaning that only that portion of light with a 

wavelength corresponding to the spacing of the grating is 

reflected whereas other wavelengths can pass the grating 

unaltered, Figure 1. Hence, several gratings with different 

wavelengths can be placed along a single fiber enabling tens of 

sensor locations. The FBG sensors sample strain measurements 

at a rate of kHz with a precision of better than 1µε (= 1 ppm = 

1µm/m) and can be used for long term static monitoring as well 

as dynamic monitoring [11]. 
If local strain changes occur, the spacing of the patterns 

change and thus also the wavelength of the reflected signal 

peak changes. With appropriate calibration of FBG sensors [12] 
the recorded wavelength change can be reliably converted into 

a strain change. However, local temperature changes have an 

impact on the refractive index of the fiber and thus lead to a 
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wavelength change of the backscattered signal. A common 

method to numerically compensate the temperature impact is to 

place one or more FBGs along the sensing fiber, or to use a 

separate FBG, which are not coupled to the measurement object 

and thus only sensitive to temperature changes. The recorded 

wavelength changes of these gratings are in the processing 

subtracted from the measured wavelength changes from the 

rigidly connected FBGs. The remaining wavelength changes 

are then the real strains of the object. 

 

 

Figure 1. Principle of FBG measurements [14]. 

To monitor strains of the hull of the ship two different types 

of FBG sensor chains were used during the field tests. Firstly, 

a strain rosette, incorporating three FBG sensing elements, 

Figure 2. The rosette is an equilateral triangle, and the 

orientation of the three sensors of the strain rosette differs by 

60°. Hence with this layout it is possible to determine the 

magnitude and direction of the principal strain. However, with 

one strain rosette these values can only be determined on one 

location.   

 

In order to determine the strain distribution a secondary 

buffered FBG chain incorporating 13 FBG elements on the 

original Smyril tests conducted in 2017 and 2018, and 10 on all 

the more recent tests, Figure 3, were used. One of the sensors 

is loosely embedded in the chain and acts as temperature 

sensor, used for compensation measurements whilst the other 

12 or 9 are rigidly embedded and capture the strain of the hull. 

The FBG chains were laid out in a meander shape glued on the 

inside of the ship’s hull with sensors laid in the horizontal and 

vertical directions.  Both the strain rosette and the secondary 

buffered FBG chain were installed on the inside of the hull of 

the ships in the engine room. 

 

Figure 2. A strain rosette incorporating three FBG sensing 

elements [15]. 

 

Figure 3. A secondary buffered FBG chain incorporating 1 

temperature FBG sensor and 12 strain FBG element [15] 
positioned in both horizontal and vertical orientation. 

3 FIELD TESTS 

Five vessels were experimented upon, these being 
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• Smyril passenger ferry, operated by SSL (A 135m 

long passenger and vehicle ship, data were gathered 

before and after repairs were made to a flange) 

• Jákup Sverri research vessel, operated by 

Havstovan (55m long research ship) 

• Krosstindur, a fish farm vessel operated by Luna 

(15m long service vessel, we gathered FBG data 

before and after a new engine was installed) 

• Samson, tugboat operated by MEST  

• Gadus, a large fishing trawler owned by JFK (88.1 

long ship with vibrations detected at high speeds) 

 

The tests were conducted, where possible, under different 

conditions i.e. main engine on/off, propellor 

running/stationary, low speed passage and high-speed passage.  

The various parameters helped to identify the sources of the 

various vibrations detected using the FBG system.  The data 

from Gadus, Smyril and Jákup Sverri were gathered whilst the 

ships were operational at sea, whilst the other vessels were 

gathered in and around the harbour areas but being able to vary 

the speeds and when the engines were switched on and off. 

 

The sensors come in a number of different formats.  They are 

glued onto a very clean surface on the body of the ship, such as 

the inside of the hull. The surface of the hull is thoroughly 

cleaned of grease using alcohol-based products, and the surface 

is also rubbed with sandpaper in order to create a good surface 

for the glue to work on. We used a rosette sensor, that 

incorporates three sensors in an equilateral triangle shaped 

housing, as well as a chain of 10 sensors.   Figure 4 illustrates 

a rosette (left) and chain (right).  Both cost around 1000 euros.  

However, the rosette is far easier and quicker to install, and the 

three measurements are at 60° to each other, whereas the chain 

takes 10 measurements, and each individual sensor along the 

chain are 1m apart, so it can cover a larger area.  The chain also 

takes longer to install as each of the 10 sensors need to be 

attached individually using an epoxy resin glue. 

 

Figure 4. Rosette sensor on the Gadus (left) and chain sensor 

on the Jákup Sverri (right). 

Figure 5 illustrates the interrogator unit (left) and the 

software used to gather the data, showing the real time data 

from 13 FBG sensors on a chain located on the Smyril (right).  

The interrogator costs around 30,000 Euros, and this version 

gathers data at a rate of 5 kHz.  Up to four sensors can be 

attached to the interrogator unit at any one time.  The approach 

that we have is to install a number of FBG sensors on a number 

of vessels, and rotate the interrogator unit between them.   

 

Figure 5. The interrogator unit (left) and a screenshot of the 

software used to gather the data (right). 

A test rig was used in order to assess the precision of the 

system as well as the various sensor types.  This is a rotating 

motor, with weights attached to the drive wheel in order to 

cause vibrations.  Figure 6 illustrates the test rig used on a 

bench test with a rosette FBG sensor and an FBG chain attached 

to the table. 

The chain was co-located with the FBG in order to compare 

results, and a couple of the chain sensors located on the chair 

away from the vibrating table as a baseline.  

 

 

Figure 6. The vibrating test rig during a bench test, with a 

FBG chain and FGB rosette located on the table. 

 

Possible applications are as follows.  Once an initial 

installation of the sensors is carried out, subsequent data 
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collection can be compared to the initial data and change 

detection in the frequency response of the structure can be 

determined.  Such changes in frequency response can be down 

to several factors, such as damage to the ship, damage to the 

propellors, or gradual deterioration of the vessel.   

4 RESULTS AND DISCUSSION 

 Smyril 

The Smyril data was compared to historical data that we 

gathered in 2017 and 2018 using a similar system belonging to 

TU Graz.  During the initial tests, a flange was damaged at the 

stern of the ship, and vibration could be felt throughout the ship.  

We can see this in the data from 2017 and 2018, Figures 7 and 

8, and it being absent in the new data we gathered during this 

current project, Figure 9.   

 

Figure 7. Waterfall and FFT plots from the tests conducted on 

Smyril in 2017. 

The data from 2017 and 2018, Figures 7 and 8 respectively, 

illustrate the results showing more and noisier frequency 

characteristics than the more recent tests in 2023, Figure 9.  

This is especially true in the data in 2017 below 13Hz, Figure 

7.  The original setup consisted of a FBG rosette and a chain of 

13 sensors glued to the inside of the ship’s hull in the engine 

room.  However, the connectors to the rosette had been cut off, 

for some reason sometime between the 2018 and 2023 tests, so 

this sensor couldn’t be used in 2023.  However, the FBG chain 

worked perfectly well.  It is thought that the less frequency 

responses, and cleaner frequency characteristics are due to 

there being a broken flange at the rear of the vessel during the 

2017 and 2018 tests. 

 

Figure 8. Waterfall and FFT plots from the tests conducted on 

Smyril in 2018. 

 

Figure 9. Waterfall and FFT plots from the tests conducted on 

Smyril in 2023. 
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 Krosstindur 

 

Figure 10. The Krosstindur vessel. 

The Krosstindur vessel, Figure 10, was suffering from 

vibration, and a new engine was installed with a lower vibration 

characteristic.  Again, we gathered data before and after the 

engine was replaced, and we could see significant differences 

in the characteristics.  More vibrations can be seen in Figure 11 

(top) when the old engine was used, compared to the new 

engine, Figure 11 (bottom). 

 

Figure 11. FFT results from the tests conducted on 

Krosstindur before (top) and after (bottom) the engine was 

replaced. 

 Gadus 

Gadus is a relatively new fishing trawler/factory.  It is owned 

and operated by JFK.  Rosette sensors were installed next to the 

rudder housing, Figure 12 (bottom), as well as in the bridge, 

Figure 12 (top right), and FBG chains were placed in the chief 

engineer’s cabin, Figure 12 (top left), and in the engine room, 

Figure 12 (middle).  The data were gathered during one of the 

ship tours in the Baren Sea.  The interrogator spent periods of 

time attached to the various sensors during sailing and trawling, 

and notes were recorded of the ship speed, engine speed etc. 

 

Figure 12. Sensor locations on the Gadus. FBG chain attached 

to a structural girder in the Chief Engineer’s cabin (top left), 

Rosette attached to the structure in the bridge (top right), 

Engine room location of FBG chain (middle left) and the 

chain (middle right), Rosette located adjacent to the rudder 

(bottom). 

Figure 13 illustrates a selection of FFT plots resulting from 

the FBG chain sensor in the engine room.  All the results 

correspond to the same time series.  The graphs show the FFT 

for the four locations, marked a-d in Figure 12 (middle right).  

It can be seen that there are different frequency response 

characteristics for the four locations, even though they are 

relatively close to each other.  It is seen that the two horizontal 

results on the horizontal girder, a and b, show that there is a 

stronger vibration response in the bow to stern direction, and 

that the vertical girder results show that the vertical direction 

response has least vibration.  All such responses have been 

shown to the chief engineer to help understand the vibration 

characteristics of the ship.  These results illustrate that it is 

important to understand that the orientation of the sensor is 

important in order to measure specific frequencies. 
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Figure 13. FFT results from the tests conducted on Gadus in 

the engine room.  The graphs show the FFT response in the 

horizontal direction (stern to bow direction) on the horizontal 

girder (a.), the horizontal direction (port to starboard 

direction) on the horizontal girder (b.), the horizontal direction 

(port to starboard direction) on the vertical girder (c.), and the 

vertical direction on the vertical girder (left).  Figure 12 (d.) a, 

b, c, d respectively. 

Figure 13 (b.) illustrates the details of the FFT response at 

location b, Figure 12.  The engine at this instance was operating 

at 735 RPM, and the propellor rotating at a speed of 122 RPM.  

The corresponding frequencies to these values are 12.25 Hz and 

2.03 Hz respectively.  These correspond well to the values of 

12.24 Hz and 2.03 Hz in Figure 13 (b.).  Further to this, the 

propellor has four blades, and 4x 2.03 Hz is equal to 8.1 Hz, 

again corresponding to the value of 8.1 Hz in Figure 13. 

 

5 CONCLUSIONS 

The paper outlines the field tests conducted using the FBG 

sensors to measure the frequency characteristics of ships.  Two 

types of sensors are used, these being a FBG rosette and a FBG 

chain of 10 sensors.  We can clearly detect changes in 

characteristics, as well as detecting the vibrations induced into 

the ship by various elements of the ship such as the engine and 

propellor. 

The FBG sensors are relatively inexpensive, and can be 

installed on many vessels, then using a single interrogator to 
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gather data periodically, or when changes are thought to have 

occurred, in order to investigate any changes. 

Gathering such data on a vessel can then be used as a 

blueprint to compare future data. 

The measurements can be carried out at sea, so the vessel 

doesn’t need to return to harbour, resulting in minimal down 

time in the vessel’s activities. 

Sudden changes due to damage or gradual changes due to 

deterioration can be detected. 
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ABSTRACT: To reduce uncertainties associated with its structural re-assessment, the Zeeland Bridge in the Netherlands is 

currently the subject of a field lab, which will run for 2 years. In this contribution, the structural identification approach, the model 

updating concept and the first measurement campaign are presented, followed by some preliminary measurement results. The 

present stage focusses on load testing of the bridge to obtain insight into the possibly varying response in different spans of the 

bridge. Previously, parametric studies to expose input-output parameter dependencies were performed on a representative sub- 

system of the bridge, and the results are used to assist in the design of a measurement campaign and the development of a robust 

model updating strategy for the bridge. The results of the first measurements allow for evaluation of the actual performance of the 

bridge when subjected to heavy truck loads. This information will be used as a basis for further  development of the updating 

approach. 

KEY WORDS: Bridge monitoring; Structural identification; Concrete bridges. 

1 INTRODUCTION 

Bridges are vital infrastructure objects, with their availability 

critical for the operation of infrastructure networks. Many 

Western European bridges were built in the decades post WW-

II, and therefore approach the end of their design lifetime. 

Depending on the function of a bridge and its location, loads 

may have substantially increased over the operational period 

due to increased traffic. Moreover, various time-dependent 

degradation processes may start to affect the state of a structure 

and therewith its safety. Examples of prestress loss related 

effects for prestressed concrete bridges are given in [1] and [2]. 

This necessitates structural reassessments of existing bridges in 

order to evaluate their structural reliability and remaining 

lifetime. 

 

The models used for structural reassessments are developed 

based on design information, inspection results, and in some 

cases monitoring data. A key challenge in developing models 

for structural reassessments is uncertainty quantification. 

Bayesian techniques can be used to this end, combining data 

and expert knowledge to best estimate the actual state of a 

structure [7]-[10]. Where models are typically developed to 

predict the `normal' structural response in the governing load 

scenarios, their results may not represent reality in cases where 

local deviations of structural response occur. Examples include 

bridges where the level of damage in for instance orthrotropic 

steel decks varies significantly across spans, cable-stayed 

bridges suffering from damage concentrations in the deck 

structures at the location of specific cables, or concrete bridges 

showing regions with increased prestress losses. Response 

effects take place in such bridges, that seemingly result in load 

concentrations with locally increased damage potentials as a 

result. In such cases, tailored measurement campaigns might be 

needed to better understand the actual structural behavior.  

 

In this contribution, the measurement strategy for the Zeeland 

bridge and a selection from the first measurement results are 

presented, followed by an outlook towards upcoming future 

measurements. 

 

2 ZEELAND BRIDGE 

The Zeeland bridge is a 5 km multi-span cantilever balanced 

prestressed concrete bridge, forming an important connection 

between the islands of Noord-Beveland and Schouwen-

Duiveland in the Province of Zeeland in the Netherlands.  

 

 

Figure 1. The Zeeland bridge in the local road network 

 

The construction of the bridge was completed in 1964. The 

bridge spans are 95 m each, with a dowel connection at midspan 

connecting the two cantilever parts. Fig. 1 shows a picture of 

the bridge, with red ellipses indicating the locations of the 

dowel joints, the cantilevers, and 
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the foundations. These locations are related to the main sources 

of uncertainty in the bridge’s load-response behavior, namely 

the forces transferred at the midspan joints (Fig. 2), shear stress 

levels in the cantilever, and foundation support stiffnesses. 

 

 

Figure 2. The Zeeland bridge, showing the locations of main 

uncertainties. 

 

 

Figure 3. Longitudinal cross section of the Zeeland bridge 

sliding (left) and fixed (right) mid span joints. 

 

In essence, the outcome of a structural reassessment is 

determined by both structural resistance and internal forces. For 

specifically balanced cantilever prestress concrete bridges, 

prestress loss and concrete time-dependent effects (e.g. creep) 

may occur, resulting in ongoing deformations with a potential 

effect on resistance as well as on internal force distributions. 

The potential development of extreme load concentrations in 

cantilevers depend on the relative stiffness of the cantilevers 

and midspan joints, and foundation support stiffnesses. 

Prestress loss in these type of bridges materializes as 

deformations increasing over time and reductions in shear 

capacity. According to Borges [1], the level of ongoing 

deformations can vary substantially per bridge, and is a 

function of concrete properties, the construction process, and 

environmental effects. For the Zeeland bridge specifically, 

potential long-term differential behavior between cantilevers in 

combination with additional deformations in the foundation or 

subsoil may contribute to internal loads in the cantilevers as 

well. Visual inspection of the mid-span joints of the bridge 

revealed signs of ongoing deformation and permanent load 

transfer between cantilevers. On the resistance side, the 

reduction of shear capacity due to time-dependent effects has 

been estimated in the range 1-5% [1]. Internal force variations 

due to variable loads, however, can reach levels up to 20%. 

Adding to these variations the additional internal loads due to 

possible long-term differential behavior between cantilevers 

and additional deformation in the foundation or subsoil, it can 

be concluded that for the Zeeland bridge the uncertainty 

associated with extreme internal loads is larger than the 

uncertainty associated with the loss of resistance. As such, we 

first focus on the identification of the actual load-deformation 

behavior of the bridge. Estimation of the actual degree of 

prestress loss per span will not be possible based on measured 

deformations under operational loads [2]. For specific spans of 

concern, localized destructive or non-destructive 

measurements may at a later stage be considered to further 

investigate the actual degree of prestress loss. 

 

3 MODEL UPDATING FRAMEWORK 

In our project we intend to develop a Bayesian Network (BN) 

based model updating strategy. The BN forms the statistical 

model covering the  dependency structures between model 

parameters of interest and measurable response quantities. The 

BN will be developed based on both finite element simulation 

results and measurement data. Finite element simulation results 

are used as a basis for parameter dependency evaluation of 

structural properties (parameters) and load-response 

characteristics (measurands), for which one is referred to [3]. 

Measurement data is used to check and optimize the BN 

structure. 

 

Challenges and limitations that are associated with increasing 

numbers of model updating parameters in Bayesian inference 

are known as the curse of dimensionality [4]. In order to deal 

with this we follow the concept presented in [6], by defining a 

sub-system as a basis for our structural identification problem. 

This approach allows us to limit the number of parameters in 

the identification problem and focus on local measurements for 

the updating of local sub-system models. The sub-system 

includes one full span, existing of two connected cantilevers 

and their two supports, and the balancing cantilevers of this 

span. The sub-system, including parameters of interest and 

possible measurement variables, is shown in Fig. 3. The sub-

system parameters are the concrete effective stiffness in 

bending (Ec,i ), the mid-span joint vertical stiffness (kd,23), and 

the support rotational stiffnesses (ks,ij). The sub-system 

boundaries are set at the mid-span joints of the two outer 

cantilevers, and the load transfer at these locations is accounted 

for using a vertical model boundary spring (kbc,ij). The total sub-

system length is 190 m. In Fig. 3, the system parameters are 

shown in (a), and the possible measurement quantities in (b). 

 

 

(a) 

 

(b) 

Figure 4. Sub-system schematization 

 

The data used for model updating of the sub-systems is load-

response measurement data from load tests on the bridge. 

Displacement response of the bridge is measured in various 

ways, from which displacement influence lines are constructed. 

The combined information of the known load, known load 
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position and measured response quantities serves as input for 

the updating problem, and overcomes typical issues associated 

with operational variability. 

 

4 MEASUREMENT CAMPAIGN 

 

As a first test to identify the structural behavior of the bridge, a 

load test with two 50 tonnes 6-axle trucks and a mobile 

measurement setup is performed. The objective of this test is to 

obtain insight in the possibly varying response in different 

spans of the bridge. The measurement setup during the load test 

consists of measurements of the displacements at midspan 

relative to the supports, and the relative displacements of both 

cantilever ends at mid-span.  

 

Absolute displacements are measured during the load test using 

Koherent’s radio- based displacement measurement 

technology [12] and laser displacement measurements using 

GeoLaser L72 systems [13], verified by tachymeter 

measurements at some of the test locations. The results of the 

Koherent measurements are not yet included in this paper, 

because of time limitations and challenges associated with 

cleaning this data from radio wave reflections caused by the test 

vehicles.  

 

Midspan joint relative displacements are measured by custom 

built joint displacement measurement devices (Figure 6). These 

systems provide high precision relative displacement 

monitoring of the joints, aiming to identify the load position 

where the direction of force transfer in the joints reverses. This 

is an indicator of permanent load transfer across a joint. 

 

 

Figure 5. Laser receiver at midspan joint location 

 

 

 

  

Figure 6. Midspan joint custom displacement sensor 

The monitoring systems are applied in a mobile setup during 

the first phase load-test campaign, repositioning the systems 

repetitively across multiple spans of the bridge during a bridge 

closure by night (Figure 7). 

 

 

Figure 7. Multiple measurement locations in mobile load test 

setup 

 

The load test is conducted by driving 1 and 2 trucks over a 

distance of 4 span lengths over the bridge at a speed of 

approximately 5 km/h. The setup with a load by both 1 and 2 

trucks allows to evaluate the load level effect on the response. 

The 2 middle spans are equipped with the monitoring systems. 

By this means we generate influence lines of displacement 

response parameters for 2 spans.. This concept is illustrated by 

Figure 8.  During 1 night a dataset consisting of load-response 

data for loads applied to 14 spans was obtained. 
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Figure 8. Mobile load test setup 

 

5 PRELIMINARY MEASUREMENT RESULTS 

 

 Generation of response influence lines from 

measurement systems and GPS logging 

The test trucks are equipped with the Witteveen+Bos 

GeoSaFence RTK-GPS tracking system. The GPS  

antennas are mounted on the outside top of the truck cabin, 

approximately above the first axle. Raw GPS measurement data 

comprises date and time and the location of the truck antenna 

in geographic coordinates (latitude and longitude in degrees). 

The positioning data are converted to geographic coordinates, 

and a coordinate transformation is applied to align the X-

coordinate with the bridge’s axis. Missing samples are filled by 

interpolation and the Rauch-Tung-Striebal Kalman Filter is 

applied to smoothen the positions and remove spurious jumps 

in the positions which occur during some of the runs. The result 

maps the bridge responses measured as function of time to the 

associated truck position on the bridge. 

 

 Laser based displacement influence lines 

Laser measurements are performed to track the total 

displacements of the midspan joint relative to the adjacent pier 

at which the laser transmitter was positioned (see Figure 6). 

Figure 9 illustrates the laser measurement results for a single 

test run. The total displacement at midspan corresponded well 

with the model predictions. Displacements at the sliding joints 

are 10 to 30 % larger than the displacements at the fixed joints 

(Figure 3). Two trucks in convoy caused 10 to 20 % larger 

displacements than a single truck passage. It is interesting to 

note that displacements did not diminish to zero for trucks 

moving outside the test area: behavior was observed where the 

bridge deformations at some point do not seem to change with 

the truck position anymore, but rather some form of residual 

deformation remains. Possibly the trucks are not completely out 

of the zone where they influence the measurements, or time-

dependent effects may be associated with the dampers present 

in some midspan joints or effects in the soil-structure 

interaction response of the piers. All such effects may 

contribute to the observed behavior where displacements at the 

end of a test run did not return to zero. 

 

Laser receiver E, positioned 1 full span away from the 

transmitter, was meant as a reference receiver, allowing for 

correction of measured displacements for support rotations. 

Rotation of the pier where the laser transmitter is positioned is 

observed from this receiver. In Figure 9 the blue curve 

represents the reference receiver positioned at pier 17. A 

vertical displacement of +/- 1 mm are recorded by this receiver, 

for the truck moving backwards from pier 18 to pier 14. The 

data shows how the total midspan displacement consists of a 

bending component of the cantilever beam and a vertical 

displacement component associated with pier ‘support’ 

rotation, the latter being one order of magnitude smaller. The 

fact that the vertical displacement influence line for this 

reference receiver extends over a distance of 4 spans implies 

that the recorded vertical displacement in fact represents a 

rotation of the support where the laser transmitter is placed for 

this stage, and not an actual vertical deformation of the support 

where this receiver is positioned. 

 

 

Figure 9. Total vertical displacements of midspan joints 15-16 

and 16-17, and reference pier 17, measured by GeoLaser with 

transmitter positioned at pier 16 

 

Evaluating the performance of the GeoLaser system, we 

conclude that the technology did perform quite well. The 

lasers’ distance range was specified to be 100 m maximum. The 

50 m measurements at the nearest midspan joints did generally 

perform well. The laser transmitter and receivers’ glass screens 

however suffered from foggy circumstances during some 

measurement stages and runs, causing the reference receiver 

measurement to not be successful. For the adverse foggy 

conditions encountered during the test night the 100 m is 

concluded to be very much at the limit. 
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 Joint deformation influence lines 

The sliding and fixed joints depicted in Figure 2 are used in the 

Zeeland bridge in different configurations.. Going from North 

to South for pier 8 to 23 there are alternating sliding and fixed 

joints. This implies that this part of the bridge consists of sets 

of 2 coupled piers with balanced cantilevers forming a frame, 

having in the center a fixed dowel connection, and connected 

to the next part at the midspans of the outer cantilevers by 

sliding dowel connections. From pier 23 to 33 the pattern is 

different and all midspan joints are sliding joints. Figure 10 and 

Figure 11 show the joint relative displacements for joints 11-12 

and 12-13 and for joints 15-16 and 16-17. Joints 11-12 and 15-

16 are both sliding joints and 12-13 and 16-17 are fixed joints. 

In these figures the joint relative displacements at measurement 

location B and D (Figure 8), on both the East and West side of 

the bridge are presented. 

 

 

Figure 10. Joint displacements of joint 11-12 and joint 12-13 

 

The different joint configuration affects both the total vertical 

displacements measured by the laser receivers and the joint 

relative displacements. Clearly, very different vertical relative 

displacement response is observed. Where in the first figure a 

more gradual increase of vertical joint displacements is 

recorded, the second figure shows more abrupt displacements 

when the truck is approaching and when the axles are passing 

the sliding joint. Also it is clear that the joint relative 

displacement sensors at joint 15-16 (B_West and B_East) do 

already record substantial negative vertical displacement when 

the test truck is still at joint 16-17, i.e. one span away from the 

sliding joint. This behavior deviates from the typical behavior 

observed at all the other measured spans (e.g. Figure 10). 

Apparently some displacement allowance is present in this joint 

which is mobilized by the test truck when it is on the center of 

the next span. Further research is ongoing to explain the locally 

deviating behavior around piers 14 to 16. 

 

 

Figure 11. Joint displacements of joint 15-16 and joint 16-17 

 

It is interesting to note that, as observed for the total 

displacements measured by the laser, residual displacements 

are present in the joints at the end of test runs. A certain degree 

of ‘memory’ seems to be present in the bridge system when it 

is subjected to heavy truck loads. It could not be established 

from the data which physical mechanisms causes this typical 

behavior. This will be further investigated in the upcoming 

phase. 

 

From the figures is can also be observed that the fixed joint, 

where the two cantilevers are tied together with prestressed 32 

mm steel bars, still show some vertical horizontal displacement 

allowance of approximately 0.5 mm. Vertical displacements for 

this joint configuration are limited to tens of millimeters. This 

is interesting because the same cast iron dowels are present at 

all joints, also the sliding joints where larger displacements are 

measured. This implies that the fixation point seems to take 

over the load transfer from the dowel at the fixed joints, which 

is an important insight from the perspective of load introduction 

in the concrete structure. 

 

The part of the bridge with a joint configuration consisting of 

only sliding joints shows different behavior (Figure 12). The 

total vertical joint relative displacements are somewhat larger 

compared to the bridge part with alternating fixed-sliding 

joints. Horizontal joint relative displacements are much larger 

as well, up to 10 mm relative displacement amplitude, and 

shows, for both measured joints, a more or less symmetric 

response for the truck positioned at either side of the joint. The 

distance over which the joint relative displacement influence 

lines  show substantial displacement is longer for the part of the 

bridge with only sliding joints. Especially the vertical joint 

displacement influence lines show comparable levels of 

relative joint displacement when the truck axles are passing the 

measured joint and when the truck is at midspan of adjacent 

spans.  
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The system of balanced cantilevers coupled by only sliding 

joints behaves much more like a continuous chain of rigid 

rotating elements. Relatively large horizontal compared to 

vertical displacements indicate the relevance of global rotation 

of the bridge superstructure and the need for modelling of the 

degrees of freedom at the supports. These need to be properly 

accounted for in models. The freestanding height of the 

foundation piles is around 15 m, which means that the 

characteristic of the substructure supporting the superstructure 

is determined by bending  of foundation piles and soil-structure 

interaction of the bridge substructure and foundations. Both 

need to be integrated into lumped support springs in the model. 

The data of combined horizontal and vertical measured 

displacement allows to calibrate the model support 

characteristics. 

 

 

Figure 12. Joint displacements of joint 27-28 and joint 28-29 

 

6 OUTLOOK TO UPCOMING MEASUREMENTS 

 

The measurement results from the first tests have revealed 

interesting variations in the deformation response of certain 

cantilevers and spans, relative to others. These can be indicators 

for load concentrations in specific spans. In the next 

measurement campaign we will measure concrete stresses in 

the bridge indirectly by means of smart aggregates technology 

developed by TU Delft. These are installed in the box girder 

floor near 2 supports (locations indicated by σxx,I in Figure 4), 

which is in the compression zone of the cantilever gross cross 

section. Moreover, the mobile displacement measurements 

with laser and the custom joint sensors will be repeated at more 

spans to obtain a larger dataset and obtain insight in the 

response of more spans. 

 

7 DISCUSSION 

 

Load-deformation response is investigated for the Zeeland 

bridge to form a basis for full structural identification of the 

bridge.This paper builds on the previous paper [3] that 

introduced the model updating strategy for bridge structural 

identification. In the previous paper parameter dependencies 

between structural properties (parameters) and load-response 

characteristics (measurands) were investigated. The first phase 

measurement results that are now available form a basis for 

model updating of the sub-system models. However, given the 

quite different behaviour observed for the different spans one 

could question whether the model updating parameters set 

beforehand suffice to cover this spread in the observed 

behaviour. The measurement data indicates different ‘states’ of 

the sub-systems in terms of their neutral state, affecting their 

load-response behaviour when loaded by heavy test vehicles. It 

needs to be evaluated further how dependencies between input 

and output variables can contribute to the identification of the 

root cause or underlying mechanism that causes different 

behaviour of the spans. This will be one of the main topics 

considered in the upcoming phase of the project. Additional 

parameters that represent such different states might need to be 

added to the problem. In the upcoming phase it will be 

investigated how and through which parameters we can best 

represent the actual state in the updating problem formulation. 

 

8 CONCLUSIONS 

The present paper introduced the  Zeeland bridge field lab and 

research project as well as an initial measurement campaign 

and the obtained load testing results. Structural re-assessment 

of the bridge requires a reduction of the uncertainty associated 

with internal forces in the bridge structure The research project 

involves the development of a modular model updating 

approach for structural identification, based on load-response 

evaluation of sub-systems. Load-response influence lines 

constructed from measurement data are collected during the 

load tests with a mobile measurement setup  . The developed 

mobile measurement setup performed well for the purpose of 

structural identification of the load-response behaviour. The 

total vertical displacements measured with lasers and the joint 

relative displacements measured with custom joint deformation 

monitoring systems were successful. It is concluded from the 

first phase measurement results that different spans exhibit 

different load-response behaviour. Differences in observed 

behavior can partially be assigned to different joint 

configurations across the bridge, but could possibly also  be 

associated with a different ‘neutral’ state of the spans of this 5 

km long multi-span bridge. In the upcoming phase of the 

project, this will be further investigated from both a theoretical 

(finite element model based) and experimental perspective 

(additional, more expensive measurements).  
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ABSTRACT: Scotiabank Saddledome, an indoor arena in Calgary, Alberta, constructed in 1983 with a hyperbolic paraboloid 

(saddle shaped) roof, has concave cables running in the east west direction to support gravity loads and convex cables in the north-

south direction to support lateral loads. The stranded cables, encased in concrete and anchored into a ring beam, are not visible to 

detect the signs of corrosion. Events held in the arena require suspension of entertainment loads from the roof structure which, 

when coupled with snow loads, pose a major safety concern. 

The installation of an acoustic monitoring system in 1999 to detect breaks in cable strands did not perform as intended. In 2014 

the roof membrane was damaged by a significant hailstorm exposing concrete to moisture infiltration. In 2022, a Building 

Condition Assessment of the roof recommended further investigation of the bonded cable system. 

Learning from strand failures at the Arizona Veterans Memorial Coliseum resulting in costly remediation work, a Structural Health 

Monitoring (SHM) system with strategically mounted sensors and a laser-based deflection measuring device, was implemented 

in July 2023. The objective of this SHM program is to collect data on monitoring parameters for roof movements continually over 

a period of 3 years in order to identify trends and implement an active alarm system based on data collected in the first year.  

This paper presents the field application of SHM for risk management of a complex roof structure. 

KEY WORDS: Hyperbolic paraboloid roof; Monitoring program; Parameters; Loads; Cables; Risk management; Analysis

1 INTRODUCTION 

The Scotiabank Saddledome is a multi-use indoor arena located 

in Calgary, Alberta, Canada. Partnered with the City of 

Calgary, Calgary Sports and Entertainment Corporation 

(CSEC) maintains and operates the facility. The Saddledome 

was constructed in 1983 with a complex hyperbolic paraboloid 

(saddle) shaped roof. The arena hosts numerous events 

throughout the year requiring the suspension of entertainment 

loads from the roof structure. Event loads in combination with 

heavy snow loads during winter months lead to deformation of 

the roof structure. The roof structure’s safety performance is 

correlated with the condition of its constituting components. As 

the facility ages and deteriorates reliable methods are needed to 

assess the overall condition of the structure.  

Figure 1. Scotiabank Saddledome1 

A Structural Health Monitoring (SHM) system was installed on 

the underside of the roof structure in July 2023 to monitor 

deflection and movement at key locations. The system sends an 

email alert when deflection at any of the key locations exceeds 

its preset threshold. In addition, the system detects changes in 

vibration characteristics which could indicate strand failure. 

This allows the condition of the roof structure to be monitored 

continually to manage risk while minimizing exploratory 

destructive testing and interruptions to the daily operation of 

the facility.     

2 SADDLEDOME ROOF STRUCTURE 

The roof of the Saddledome is a complex structure consisting 

of sagging (concave) cables running in the east-west direction 

to support gravity loads on the roof and hogging (convex) 

cables running in the north-south direction to support lateral 

loads on the roof. The cables are anchored into a ring beam 

around the perimeter of the roof, which is supported on thirty-

two bearings, four of which are fixed A-frames at the low ends 

of the saddle. The sagging cables are spaced at 6 m on center 

and consist of two cables with twelve stainless steel strands 

each. The sagging cables in the center of the roof supporting 

the scoreboard consist of fifteen strands. The hogging cables 

consist of nineteen strands and are also spaced at 6 m on center. 

Precast panels are supported by intersecting cables to form the 

roof surface, as shown in Figure 2. Lightweight concrete was 

poured between the precast panels to encase the strands in 

concrete and form the ribs of the roof as shown in Figure 3. In 

addition to the bonded sagging and hogging cables, six 

unbonded post-tensioned strands are located within the ribs. 

These cables were most critical during construction and 
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contribute minimally to the roof’s capacity. A catwalk system, 

scoreboard, and other rigging for event loading are suspended 

from the main cable system. Entertainment and concert events 

can impose up to 22,700 kg (50,000 lbs) of load on the roof.   

Figure 2. Sagging and Hogging Cables2 

 

Figure 3. View of Embedded Cables in a Typical Rib3 

 

The main risk to this type of roof structure is deterioration of 

the anchor connections at the ring beam or the loss of tension 

in the cables. Moisture infiltration at the anchor connection can 

result in corrosion of the anchor plate or cable strands. Loss of 

tension in the cables can occur if one or more strands were to 

break. The load would be redistributed to the remaining strands 

increasing and possibly exceeding their tensile stress.  There 

are 4 main causes of strand failure: 

 

• Overloading of the structure 

If the load imposed on the structure exceeds the design 

load the strands can become overstressed and fail.  

• Physical damage  

During the life of a building new equipment may be 

installed requiring drilling or coring into the concrete. This 

can potentially cut or damage the strands.  

• Friction and wear 

At the points where the cables cross, if a bearing pad is not 

present, the cables can rub against each other as the 

structure deflects under load or expands and contracts with 

changes in temperature. This cyclical rubbing can wear the 

strands down causing them to break.  

• Corrosion 

The most common cause of strand failure is due to 

corrosion of the strand from moisture infiltration into the 

concrete or moisture build-up in void spaces.  

3 CONDITION ASSESSMENT OF THE ROOF 

STRUCTURE 

 Experience from Similar Structure  

The Arizona Veteran’s Memorial Coliseum, located in Phoenix 

Arizona, has a similar hyperbolic paraboloid shaped roof 

structure consisting of a grid of post-tensioned cables tied into 

a compression ring supporting precast roof panels. In 2006 a 

dip in the roof was discovered and further investigation 

revealed eleven cables had failed, one due to corrosion from 

past roof leaks and the others due to overloading. Costly 

emergency repairs were undertaken to replace the failed end 

anchorages. From the engineering team involved with the 

repairs it was understood that various non-destructive testing 

options to assess the condition of the cables were inconclusive. 

However, the change in shape of the roof surface was a sign 

that a loss of tension in the cables may have occurred. 

 Saddledome Structural Assessment History 

The Saddledome roof has experienced deterioration over the 

years. In 1999 an acoustic monitoring system was installed in 

the facility to record potential strand breaks. Since the system 

was installed, nine potential strand breaks were detected, four 

of which were in the sagging cables. In 2018 an unbonded post-

tensioned strand failed and erupted through the concrete panel 

at the bottom of the rib where a void in the concrete had formed 

during construction. This event was not detected by the 

acoustic monitoring system. It was found that the wi-fi system 

in the building was interfering with the monitoring system and 

the event was not recorded.  

In 2014 a significant hailstorm damaged the roof membrane 

exposing the system to moisture infiltration. Due to the strands 

being encased in concrete the condition of the strands could not 

be determined through visual assessment. 

In 2020 a consultant was engaged to complete a condition 

assessment of the cable anchors and cable system. The cable 

anchors were assessed from the roof and found in good 

condition4. Ground Penetrating Radar (GPR) scanning was 

completed from the roof surface to assess the cables and locate 

other void spaces in the ribs that may be present however, due 

to the depth of the concrete and concentration of material in the 

ribs the results were inconclusive. Completing scanning from 

below was also challenging due to the access issues. Five 

locations were then selected to remove the concrete from the 

underside and expose the cables for visual assessment and 

penetration testing (two at the midspan of the sagging cables 

near the center of the building where moisture was likely to 

collect and three near the perimeter). The cables were found to 

be in good condition with no corrosion or tension deficiencies5.  

A Building Condition Assessment (BCA) of the Saddledome 

completed in 2022 recommended further investigation of the 

bonded cable system to better understand the condition of the 

roof structure6. Given the inconclusive results of non-

destructive testing completed in the past and the challenges of 

accessing the underside of the roof structure, options for 

monitoring the roof structure were explored. A monitoring plan 

was established to measure the shape and movement of the roof 

on a continuous basis over the next 3 years. This allows the City 

of Calgary and CSEC to manage the safety risks associated 
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with the roof structure and better understand how the roof 

structure behaves under varying loading conditions. 

4 MONITORING PROGRAM AND FIELD 

IMPLEMENTATION 

SHM Canada Consulting Limited (SHM Canada) was engaged 

by CSEC to design, install, and operate a comprehensive 

structural health monitoring system at Scotiabank Saddledome 

to provide data on the performance of the saddle-shaped roof 

on an ongoing basis. The automated structural health 

monitoring system was installed and commissioned in late July 

2023. It is currently active and provides valuable information 

to help maintain structural integrity of the roof. 

 Instrumentation and Plan 

The Scotiabank Saddledome roof monitoring system consists 

of a combination of wired and wireless sensors. The arena roof 

is divided into three main monitoring zones: Zone-1, Zone-2, 

and Zone-3. These monitoring zones are equipped with a total 

of twelve vibrating-wire strain gauges, twelve reflective target 

prisms, twelve triaxial tiltmeters, and nine triaxial 

accelerometers: 

 

• Vibrating-wire strain gauges 

Installed on the roof soffit, these gauges measure strain-

related changes in the post-tensioned concrete beam 

network. These strain gauges are equipped with integrated 

temperature sensors that detect changes in the internal 

temperature of the arena. They are connected via signal 

cables to a datalogging system with highspeed acquisition 

modules capable of capturing burst strain data based on the 

required trigger points. The strain gauges were calibrated 

and set at the mid-range to ensure a sufficient offset for 

measuring both compression and tensile strain. Six strain 

gauges are installed in the direction of the two central 

sagging concrete ribs, while the remaining strain gauges 

are installed in the direction of the two central hogging 

concrete ribs. 

• Surveying system with reflective prisms 

The wireless system consists of a total station with a 

precision of 1 mm + 1 ppm and two types of reflective 

prisms. The target reflective prisms are installed in the roof 

soffit and the reference reflective prisms are installed along 

the peripheral wall. The total station measures the current 

baseline elevation and the roof elevation to provide precise 

roof deflection in the targeted regions. Six target reflective 

prisms track changes in roof elevation at the high-to-high 

direction along the two central sagging cables. The 

remaining six prisms record elevation changes at the low-

to-low ends along the two central hogging cables. The 

approximate locations of the target reflective prisms are 

shown in Figure 4. 

• Triaxial tiltmeters 

Installed on the roof soffit, the wireless triaxial tiltmeters 

measure angular changes in two directions: in-plane and 

out-of-plane. Similar to the target reflective prisms, the 

tiltmeters are placed along both the central sagging and 

hogging directions. They are positioned near the prisms to 

measure in-plane and out-of-plane angular movements 

caused by event-specific loading arrangements. 

 

• Triaxial accelerometers 

Mounted on the roof soffit, the wireless triaxial accelerometers 

measure the acceleration in three orthogonal directions. The 

accelerations are recorded based on the ambient and induced 

acceleration of the arena roof under regular and event-specific 

vibrations, impacts, and other dynamic forces. The 

accelerometers are capable of measuring trigger data depending 

on their preset threshold limits. Out of the nine accelerometers, 

five are placed near other monitoring sensors, and the 

remaining four accelerometers are positioned near the non-axis 

boundary. Figure 5 demonstrates the axis orientation of triaxial 

monitoring sensors. 

 

Figure 4. Approximate Positioning of the Survey Prisms 

 

Figure 5. Orientation of the Triaxial Sensors 

 

The monitoring sensors - strain gauges, reflective prisms, and 

triaxial sensors (including tiltmeters and accelerometers) - are 

installed in clusters positioned at the midpoint of cross ribs to 

maintain symmetry along the axes of the arena roof. The 

specific configuration of each cluster varies, allowing for 

tailored monitoring that addresses different structural 

requirements across the roof. This setup systemically provides 

comparative monitoring data based on the roof profile, helping 

identify any unbalanced loading effects and anomalies 

developing in the roof’s structural system. 

 Implementation 

Implementing an effective monitoring program can be a 

complex task, especially when faced with challenges inherent 

in the arena and its environment. Several factors can influence 

the design, implementation, and ongoing management of the 

monitoring program. A few notable challenges faced by SHM 
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Canada team during the implementation and management of 

this monitoring system include access for installing the 

monitoring sensors due to unique roof geometry, the height of 

the roof, existing electrical and electronic fixtures, and tight 

project timelines. 

 

One of the pressing challenges during the installation of 

monitoring equipment was the complex roof configuration and 

other hard to access areas. The limited access points, the 

concave and convex nature of the roof geometry, combined 

with existing fixtures on the arena roof, created significant 

complications in positioning, installing, calibrating, and 

maintaining proper line-of-sight (for reflective prisms) of the 

sensors. In addition to the roof geometry, sensor installation on 

the roof soffit of a significant height presented a time-

consuming process and required a team of specialized rope 

access professionals. 

 

 
Figure 6. Typical Sensor Cluster  

 

The Scotiabank Saddledome is considered the third busiest 

indoor arena in North America, hosting multiple professional 

sports teams as well as a variety of concerts and events 

throughout the year. As a result, the timeline for implementing 

the monitoring system posed a significant challenge due to the 

need to avoid disruptions to the packed event calendar. The 

limited timeline and opportunities to install the monitoring 

systems, perform pre-commissioning tests, and commissioning 

a fully functioning monitoring system without interfering with 

the arena’s operations were essential requirements. 

Successfully addressing each of these obstacles required 

careful navigation and an understanding of each challenge to 

plan and prepare tailored solutions, ensuring the monitoring 

system provides accurate, reliable data without interfering with 

arena operations. 

5 DATA ACQUISITION AND ANALYSIS 

The Scotiabank Saddledome monitoring system collects four 

different types of SHM data: strain, deflection, tilt, and 

acceleration at varying acquisition rates. Therefore, data 

acquisition, communication, and management procedures 

depend on the capabilities and requirements of the different 

monitoring sensors. The unprocessed data from various sensors 

collected by data-logging systems is then transferred and stored 

in SHM Canada’s server for reliability checks and further 

analysis. 

Figure 7 illustrates a typical flow diagram for the Saddledome 

monitoring program protocol related to data collection, storage, 

and analysis. This diagram visually illustrates the steps, 

sequences, and decisions within the monitoring process. Data 

collected from strain gauges, target reflective prisms, and 

tiltmeters are processed both individually and collectively to 

identify data trends, establish relationships, and perform 

statistical analysis. 

 

Figure 7. Data Acquisition and Analysis Process  
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The acceleration data is processed separately for peak-to-peak 

acceleration changes and spectral density analysis to 

understand the frequency response of the arena roof under 

ambient and excited conditions. The acceleration analysis helps 

to determine the overall performance and detect any significant 

changes in the dynamic behaviour of the arena roof. 

Furthermore, the city of Calgary is known for its highly 

variable weather, often experiencing dramatic shifts in a single 

day. Located on the eastern slopes of the Canadian Rocky 

Mountains in Alberta, the city’s proximity to the mountain 

system causes weather patterns to change quickly. During 

winter months, temperature can drop suddenly, while in the 

summer, warm spells can occur unexpectedly. Calgary 

“chinook” winds from the mountains, can raise temperatures by 

20˚C or more in a matter of hours, leading to a wide range of 

conditions throughout the year. Calgary’s snowfall can be 

unpredictable, with snowstorms occurring any time during the 

winter months even as late as April. The city often experiences 

light and dry snow that accumulates rapidly but doesn’t always 

accumulate for long. However, heavy snowfall can also occur, 

particularly in the winter and early spring.  

Saddledome data analysis, therefore, integrates daily external 

weather data details (e.g., external temperature, snow on 

ground, rain, and wind) from the Environment Canada weather 

station near the Scotiabank Saddledome, along with different 

loading scenarios for major concerts and events hosted in the 

arena. This analysis protocol helps explore and incorporate all 

available internal and external factors that could influence the 

structural behavior of the arena roof. 

The threshold limits are set based on the structure’s age and 

history, combined with engineering judgment, allowing for a 

10% increase or decrease over Year-1 recorded data. A 

notification system was implemented based on the established 

threshold limits to generate email alerts in the case of 

exceedance. 

6 KEY MONITORING RESULTS AND DISCUSSION 

This paper provides an overview of key monitoring results 

generated during the monitoring period from August 1, 2023, 

to January 31, 2025. 

During this period, the Scotiabank Saddledome hosted a total 

of 51 major concerts and other events. This does not include 

minor events and other sporting events (such as hockey, 

lacrosse, skating etc.) The major events and concerts are 

indicated as vertical lines in Figure 8, 9, 10, 11, and 12. It is a 

well-established fact according to the National Building Code 

of Canada (NBCC) that the snow on ground data does not 

precisely represent actual snow accumulation on the arena roof. 

Actual snow accumulation on the arena roof and the nature of 

the accumulated snow plays a significant role in the roof’s 

structural behavior. Due to limited information, the snow on 

ground data collected from the nearest weather station is 

integrated to provide context related to potential effects of 

heavy snow accumulation and snow drift. Any snowfall event 

is represented and incorporated by light-blue layers added in 

Figure 8, 9, 10, and 11. 

The monitoring results presented as part of this study are 

referenced from their individual baseline readings and do not 

account for preexisting conditions (strain, deflection, tilt) 

present on the arena roof. The sensor-specific data is primarily 

analyzed to understand the localized effects of changes related 

to the internal conditions inside the arena. In contrast, a 

comparative study of different types of sensors provides 

insights into the arena roof’s structural performance based on 

both internal and external variations. 

 Strain 

The strain gauges installed on the sagging concrete ribs 

primarily experience tensile forces, while those on the hogging 

concrete ribs experience compressive forces. Figure 8 presents 

differential strains in the most active strain gauges in both the 

sagging and hogging directions.  

 

 
Figure 8. Strain Data from Different Zones  

 

Analysis of the strain data revealed that the arena roof 

experiences event-specific changes in the strain levels both 

right before and after the events. These localized peak strain 

variations are primarily caused by the addition of event-specific 

mechanical and electrical fixture loads and their subsequent 

unloading from the arena roof. The strain levels are further 

increased due to snow accumulation and reduction in external 

temperatures. During these events, the internal temperature in 

the arena varied between 10°C and 22°C. The results also 

indicate that, during each scheduled event, the strain variations 

exhibited a similar pattern as the variation in the internal 

temperature inside the arena. The maximum tensile and 

compressive strain recorded by the strain gauge network is 148 

με and 140.5 με, respectively against the threshold values of 

110 με and 150 με. During this period, the absolute change in 

strain registered by a strain gauge was 230 με.  

 Deflection 

The deflection levels recorded by target reflective prisms are 

compared with prisms symmetrically positioned about the 

orthogonal axis of the dome to detect any unbalanced deflection 

conditions. The comparative differential deflection results 

showed some localized behavioral patterns. A steep increase in 

downward deflection is observed during the day of each 

scheduled event in the arena. When accompanied by snowfall 

events higher levels of deflection are recorded. Figure 9 

provides an overview of comparative differential deflection 

results from three different zones.  
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Figure 9. Deflection Data from Different Zones  

 

The prisms located within the central region of the roof 

experienced higher deflection levels compared to the rest of the 

prisms. This phenomenon can be directly attributed to the 

consistent and balanced loading from the Jumbotron digital 

display system. The peripheral prisms in the hogging direction 

encountered a sudden increase in deflection levels during each 

major event. These specific changes in deflection levels are the 

result of the additional suspended loading. The maximum 

upward and downward differential deflections recorded by the 

survey prism network were 39 mm and 216 mm, respectively 

against the threshold values of 50 mm and 195 mm. The central 

prism recorded a maximum change of 254 mm in overall roof 

deflection during this period. The upward movement of the 

arena roof occurred during the removal of the old Jumbotron 

and the installation of the new Jumbotron of similar weight. A 

few hours after lowering the Jumbotron to the arena floor, the 

central region of the arena roof lifted upwards by 39 mm. With 

the installation of the new jumbotron, the deflection levels at 

the central zone returned to their previous deflection levels. 

 Tilt 

The tilt levels are compared with respect to the in-plane and 

out-of-plane axes of the sensors at their symmetrical positions 

to infer any unbalanced rotation and its magnitude. The 

peripheral tiltmeters in both sagging and hogging directions 

recorded the maximum in-plane rotations. Steep changes in 

both the in-plane and out-of-plane tilt directions were observed 

mainly during the scheduled events. The maximum in-plane 

rotation for both high-to-high (sagging) and low-to-low 

(hogging) directional tiltmeters were 0.36 and 0.19 degrees, 

respectively. The absolute rotational range recorded by both 

high-to-high and low-to-low directional tiltmeters are 0.40 and 

0.28 degrees, respectively. Similar to strain and deflection, the 

tilt is also influenced by event and environmental loading. 

Apart from the in-plane rotation, the Zone-2 tiltmeters 

experienced noticeable out-of-plane rotation during scheduled 

events, with the maximum rotation recorded at about 0.1 

degrees. These out-of-plane rotations have primarily occurred 

due to the additional suspended loading and unloading during 

scheduled events. Figure 10 demonstrates the in-plane rotation 

in both the sagging and hogging directional tiltmeters. All the 

central tiltmeters showed a similar level of rotation on both 

planes when compared to the peripheral tiltmeters due to the 

consistent presence of Jumbotron loading. Similar to the 

deflection behavior, during the replacement of the Jumbotron, 

the tiltmeters recorded a reverse angular shift but regained their 

normal levels after installation of the new Jumbotron. 

 

 
Figure 10. Tilt Data from Different Zones  

 Acceleration 

The acceleration responses collected by triaxial accelerometers 

depending on two different acquisition modes: ambient and 

triggered, provided an understanding of the natural and induced 

frequency responses of the arena roof under different vibration 

levels and dynamic forces. The acceleration responses from 

different zonal accelerometers were analyzed using the Fast 

Fourier Transformation (FFT) and spectral density analysis. 

The peak frequencies were extracted and divided into four 

separate frequency bins based on their acquisition modes. 

Figure 11 presents the extracted ambient and induced 

frequency response from a Zone-2 accelerometer in the z-

direction. Overall acceleration analysis showed that the natural 

frequency range of the arena roof is between 0 to 20 Hz. During 

an excited scenario, the frequency range of the arena roof lies 

primarily between 30 to 40 Hz. 

 

 
Figure 11. Typical Frequency Response of Arena Roof  
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 Data Envelope and Discussion 

The data acquired from various monitoring parameters, as well 

as other internal and external factors, are integrated into the 

analysis program to provide a comprehensive and global 

understanding of the Scotiabank Saddledome’s roof behaviour 

under both environmental and operational conditions. 

The first year of the roof monitoring program at Scotiabank 

Saddledome helped SHM Canada understand the response of 

the arena roof, create a monitoring data envelope, and establish 

threshold limits for individual sensor groups based on their 

locations. These threshold limits are set to study the 

performance of this unique roof structure in the coming years. 

Figure 12 presents an overall monitoring data envelope based 

on the most active sensors in the system, with respect to 

external weather conditions. 

The global analysis shows that the arena roof experiences 

significant thermal-induced stresses and deformations, 

irrespective of their source being of internal or external origin. 

The changes in the concrete ribs’ strain, the overall deflection 

profile, and the tilt variation at different locations in the arena 

are primarily driven by the external weather conditions (such 

as external temperature and snowfall) as seen in figure 9 and 

figure 10. However, the steep changes in the monitoring data 

are attributed to the internal conditions (such as event-related 

loadings and internal temperature of the arena). 

In the later months of the year, primarily during the colder 

months, the monitoring sensors recorded significant variations 

in their monitoring ranges. The relationship between 

monitoring data (e.g., strain, deflection, and tilt), and outside 

temperature greatly influences changes in the roof components 

due to its unique shape and internal load positioning.  

The sagging concrete ribs in the arena roof are primary load-

carrying members, and the tensile strain data recorded by those 

sensors installed on the sagging ribs showed elevated levels of 

strain. This period coincided with the increase in deflection and 

tilt levels observed by the central prisms and peripheral 

tiltmeters, respectively. In contrast strain gauges and tilt meters 

installed on the hogging ribs showed lower levels of strain and 

tilt respectively.  

This behaviour can be attributed to movement in the arena roof 

caused by the temporary stretching of the sagging concrete ribs, 

the downward displacement of the central roof area, and the 

compressing of the hogging concrete ribs. In late 2024, 

accumulated heavy snowfall and additional event loading 

caused several deflection sensors to exceed their assigned 

thresholds, including a downward movement of up to 216 mm 

observed between November 25 and December 5. Upon 

clearing the accumulated snow, the roof rebounded to within 

acceptable threshold limits, indicating its elastic response to the 

loading conditions. The monitoring data indicate that changes 

related to external weather conditions are time-dependent 

rather than sudden. Additionally, the data analysis revealed a 

noticeable time lag between external weather changes and the 

corresponding monitoring data, likely due to the low thermal 

conductivity of the insulated concrete structure. 

 

 

Figure 12. Monitoring Data Envelope for Strain, Deflection, Tilt, Temperature, Snow on the Ground 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-115 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 744 

Figure 13 presents a Pearson correlation table between external 

temperature and deflection data from various reflective target 

prisms. Correlation analyses of other monitoring parameters 

not presented in this paper (strain and tilt) also show a high 

degree of correlation with external temperature.   

The weather starts getting colder in October and remains cold 

until April of the following year. During the same period, 

starting in December, the City of Calgary experiences snowfall, 

which continues until the end of April. During Year 1 of the 

monitoring period, from August 2023 to July 2024, Calgary’s 

lowest recorded temperature was -37˚C, and the highest was 

34˚C. So far, during the current period of 2024-25, the 

temperature has ranged between -28˚C and 31˚C. However, the 

snow on the ground data for the current period shows that the 

city recorded higher levels of snow on the ground for 

consecutive days compared to the previous year. Due to the 

height of the arena roof, combined with heavy winds and 

adverse weather conditions, the snow removal process from the 

arena roof can be challenging. This becomes an important 

factor to consider, particularly when it coincides with an 

ongoing scheduled event or a concert. 

 
Figure 13. Relationship between Deflection and External 

Temperature 

7 CONCLUSION 

As asset owner, the City of Calgary is responsible for managing 

risk and ensuring safety of their assets. As the Scotiabank 

Saddledome ages the City of Calgary has taken proactive steps 

to assess the condition of the structure and mitigate potential 

risks. The monitoring program has provided CSEC and the City 

of Calgary valuable insight into the behavior of the roof 

structure under different loading conditions. It has ensured that 

necessary steps are taken to mitigate the risk of overloading the 

roof structure when environmental and entertainment loads are 

imposed on the roof. It has minimized the need to complete 

destructive exploratory assessments of the roof structure that 

are cost-prohibitive, disruptive to facility operations, and do not 

provide a thorough review of the system. In addition, the 

monitoring system has provided a method for identifying 

potential strand failures and thus reducing the risk of safety 

incidents. Structural Health Monitoring programs such as this 

uphold the City of Calgary’s commitment to engineering 

excellence, ensuring the highest standard of care in maintaining 

and operating its infrastructure.  

Accounting for the effects of climate change, which is causing 

aggressive shifts in weather patterns, as well as the age of the 

arena and other contributing factors, the current monitoring 

program of Scotiabank Saddledome provides valuable insight 

into ensuring safety, functionality, and structural integrity, 

while also aiding in prolonging the lifespan of this iconic arena 

through proactive measures. Not only is it an important venue, 

but it also represents the pride, spirit, and cultural heritage of 

the City of Calgary.  
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ABSTRACT: The Grand-Mere Bridge in the province of Québec, Canada, built in 1977, is a cast-in-place, segmental box-girder 

bridge measuring 285 m (935 ft) in length. Several problems arose during the construction of this bridge and an increasing 

deflection combined with localized cracking were noted after only a few months of operation. These defects were mainly due to 

insufficient prestressing, causing high tensile stresses in the deck and possible corrosion of the prestressing steel. A few years after 

strengthening of the bridge in 1992, a long-term monitoring program was implemented, including vibrating wire sensors (strain 

and crack sensors), inclinometers and temperature sensors. So far, more than 20 years of data have been collected and processed, 

leading to the recommendation of the rehabilitation of the structure using stay cables to ensure that the structure performs well 

until its scheduled replacement. This paper presents the instrumentation strategies, the various trends observed in the data and the 

relevant interpretations derived from them. In the context of damage detection, finite-element models have been developed and 

calibrated on measurements. Data indicate that the addition of stay cables eliminated the progression of permanent deflection and 

provided the structural system with added strength and redundancy. Lessons learned from this investigation are presented, along 

with a discussion of the conditions required for successful electronic monitoring. 

KEY WORDS: Bridge monitoring; Bridge modeling; Data processing; Damage detection; Bridge rehabilitation. 

1 INTRODUCTION 

To manage all the structures under its responsibility, the 

Quebec Ministère des Transports et de la Mobilité durable 

(MTMD) has set up a periodic visual inspection program. The 

purpose of these inspections is to quickly detect defects that 

could reduce the strength of a structure or its durability. Defects 

that could jeopardize the safety of a structure are considered 

when assessing its theoretical load-bearing capacity. 

Assessing the capacity of a concrete bridge is a complex task. 

It is very difficult to accurately assess the impact on capacity of 

a specific deterioration. The loss of capacity associated with a 

defect depends on its nature, location and extent. Moreover, the 

deterioration process evolves over time, often to the detriment 

of structural capacity.  

The manager of a structure whose theoretical load-bearing 

capacity is inadequate can consider various approaches. Firstly, 

the structure can be reinforced or rebuilt in the very short term. 

Since financial resources are limited, this solution is only 

considered for structures with the most acute defects, or when 

the structure’s reliability in the very short term is questionable. 

Secondly, restrictions on bridge exploitation may be imposed, 

for instance, reducing the number of lanes open to traffic or 

limiting maximum allowable loads. In the case of many 

highway bridges, restrictive measures are often unacceptable. 

The complete closure of a bridge is also unacceptable when no 

detour route can be considered or when the length of the detour 

is important. 

When the reliability of a structure is questionable, it is 

possible, in some cases, to extend its useful life by placing it 

under electronic monitoring. One of the aims of such 

monitoring is to gather data that can be used to determine the 

rate of progression of the damage process. Monitoring may 

focus on structural properties such as equivalent stiffness, 

vibration frequencies or modal damping. It is also possible to 

monitor the evolution of local parameters such as concrete 

crack width. Electronic monitoring can therefore be used to 

ascertain that the bridge is performing adequately under site-

specific operating conditions.  

Note that only slowly progressive failure modes can be 

properly monitored, and redundancy within the structural 

system is highly desirable, if not mandatory. In all cases where 

remote monitoring is being considered, the reliability of the 

structure must be ensured in the immediate future and cannot 

be adversely compromised by any subsequent worsening of the 

defects. 

The Grand-Mère Bridge, in Québec, Canada, built in 1977 

and measuring 285 m in length, consists of a three-span 

continuous prestressed concrete box girder of variable inertia. 

The central span is 181.4 m in length, while the two end spans 

are 39.6 m in length. Figure 1 shows an elevation view of the 

structure. At both ends of the three continuous spans and over 

one pier (at points B, D and E), roller supports have been 

chosen to allow the horizontal movement of the box girder. Pin 

supports are considered at the top of one pier (point C). 

Figure 2 illustrates cross-section geometry. Designed to limit 

deadweight stresses, this section depth variation does not meet 

current design recommendations regarding depth-to-length 

ratios. Another special feature of this bridge is that instead of 

prestressing cables, up to 216 longitudinal prestressing bars 

were distributed over tensioned portions of the box-girder cross 

section (mainly over the piers and at bottom of center span). 

 

Figure 1. Elevation view of the bridge. 
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Figure 2. Cross-section geometry of the bridge. 

Unfortunately, this bridge has experienced various problems 

resulting, among other factors, from many defects introduced 

during construction, such as poor quality of concrete between 

points B and C and the use of sleeves (joining end-to-end bars) 

that do not have the expected mechanical properties (many of 

them snapped). Also, the sheaths chosen were too tight around 

the prestressing bar, making grouting difficult. As a result, the 

prestressing bars are partially bonded to the surrounding 

concrete over undetermined portions of their length. Poor 

grouting can also lead to corrosion problems. The result of 

these defects is an asymmetric permanent stress distribution in 

the structure having a ballast at only one end of the bridge 

(instead of both ends, as initially designed) and additional 

compensating prestressing bars placed over pier C. In addition, 

as soon as the bridge was commissioned, a deflection at mid-

span began to increase and shear cracking developed near the 

supports. 

It has been recognized that many of the bridge’s serviceability 

problems were due mainly to insufficient prestressing and 

limited knowledge at the time of design, especially regarding 

the estimation of creep and thermal stresses. While numerous 

studies showed that the short-term safety of the bridge was 

adequate, long-term integrity could be affected if short-term 

corrective measures were not taken [1]. Consequently, in 1992, 

the MTMD decided to strengthen the bridge by adding 

longitudinal prestressing cables in the box girder over piers C 

and D. Additional cables connected the bottom of the mid-span 

section of the bridge to the top of its ends. Since the 

deformation of the main span continued thereafter, a long-term 

monitoring program was initiated in 2001. The present paper 

briefly discusses a few of this program’s findings, which led to 

the rehabilitation of the bridge using stay cables. 

2 GENERAL CONSIDERATIONS FOR THE DESIGN 

OF THE BRIDGE’S STRUCTURAL HEALTH 

MONITORING SYSTEM  

 Overview 

The design of an appropriate structural health monitoring 

(SHM) system must be tailored to the structure’s behaviour 

under serviceability conditions. In the case of the Grand-Mère 

Bridge, in addition to its own weight, the dominant loads to 

which this structure is subjected are traffic loads and 

temperature variations. Traffic loads are transient loads acting 

over a short period of time, and fatigue problems associated 

with repeated loading cycles are not usually a concern for 

prestressed concrete bridges. Consequently, the bridge 

response under traffic loads is generally eliminated from long-

term monitoring data. Thermal loads vary on daily and seasonal 

basis and have a significant impact on the structure’s 

behaviour. Therefore, assessment of the bridge’s thermal 

response is mandatory prior to design and implementation of a 

suitable SHM program. 

 Bridge response to thermal loads 

The internal temperature variation over the depth of a given 

cross-section can be broken down into three components: a 

mean value (TM), a linear vertical temperature gradient (GT) 

and a self-balancing non-linear component [2]. Given its 

nature, the latter component does not induce internal forces and 

global deformation of the structure. Therefore, the bridge 

response to thermal loads mainly results from variations of TM 

and GT. To perform data analysis such as linear regression, 

temperature sensors ought to be recorded simultaneously with 

measurements characterizing the bridge’s response.  

The following deformations occur in a structure subjected to 

temperature variations: 

• The natural expansion and contraction of materials 

following a variation in the TM; these deformations are 

proportional and in phase with TM variations. 

• The flexure strains induced by a thermal gradient GT. 

Note that the presence of concrete cracks may lead to non-

uniform thermal strain distribution along the structure.   

As seen on Figure 2, the thickness of cross-section 

components is relatively uniform, varying from 279 mm to 

381 mm, except for the bottom flange, which gradually 

increases from 229 mm at the centre to 1,370 mm at the piers. 

This infers a much greater thermal inertia near supports and a 

delay in the thermal response of thicker components.  

In addition, the Grand-Mère Bridge is a complex hyperstatic 

structure having roller supports partially restrained that impede 

the free deformation of the structure. The partial restraint at the 

movable supports and the continuity of the spans above the 

piers at point C and D of Figure 1 give rise to additional thermal 

strains that may not be in phase with TM and GT variations. 

Given the complexity of the bridge’s thermal response, a 

finite element (FE) model has been developed (described at 

section 4) to predict its behaviour under specific loads. For 

instance, Figure 3 shows, schematically, the bridge 

deformation as predicted by the model of the Grand-Mère 

Bridge after a drop in the mean internal box girder temperature 

(TM). The restraint at roller supports generate axial tensile 

forces and associated positive strains. Consequently, sensor 

readings (such as extensometers or strain gauges) are expected 

to increase and are therefore out of phase with TM variations. 

In addition, as seen on Figure 3, a decrease in the TM also 

implies bending of the box girder and piers. Roller support 

restraint is responsible for these effects on the box girder. Pier 

bending causes a pair of horizontal forces (red arrows) acting 

in opposite directions at the bottom of the box girder and 

contributing to the lowering of the bridge profile. This pair of 

forces also induces axial tensile forces and bending moments 

in the girder. Depending on sensor location in the structure, the 

corresponding axial strains may or may not be in phase with 

TM variations. 

 
Figure 3. Deformation (amplified) of the structure subjected to 

a drop in the mean temperature (TM) in the box girder. 
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Figure 4 presents the bridge profile predicted by the FE 

model of the Grand-Mère Bridge subjected to a thermal 

gradient (GT) developing in winter (corresponding to a cooling 

of top section fibres). The continuity of the spans above the 

piers causes non-uniform bending moments along the bridge 

and raising of the bridge centre. Depending on sensor location, 

the corresponding bending strains may or may not be in phase 

with GT variations. Also seen on Figure 4, a winter GT implies 

the bending of the piers and another pair of horizontal forces in 

opposite directions acting at the bottom of the box girder, which 

attenuates the raise of the centre of the central span. Note that 

these horizontal forces act in the same direction as those 

associated with a TM drop (as seen on Figure 3).  

 

Figure 4. Deformation (amplified) of the structure subjected to 

a winter GT. 

A third factor affecting bridge response to thermal variation 

is the lengthening or shortening of the piers. Figure 5 

illustrates, schematically, the deformation of the box girder as 

the TM of the piers decreases, as observed in winter. As 

expected, the continuity of the spans gives rise to internal forces 

accompanying a drop in the centre of the main span and 

shortening of the top fibres along the entire length of the bridge. 

Note that temperature distribution across the width of a pier 

may not be uniform and might account for twisting movement 

of the box girder occurring over the piers.  

 

Figure 5. Deformation (amplified) of the structure associated 

with a drop in mean temperature in both piers. 

The Grand-Mère Bridge response to a specific profile of 

temperature variation is therefore the result of a combination of 

contributions that differ in importance from one another. The 

information provided by a numerical model enables a better 

understanding of bridge behaviour and the detection of possible 

damage processes.  

 Long-term effects 

Among long-term effects that may affect this bridge, creep, 

shrinkage, prestress losses and concrete cracking are the main 

factors.  

Creep, and to a lesser extent shrinkage, is a complex process 

that plays a major role in the gradual increase in deflection of 

such bridges [3]. Several models have been proposed in the 

literature [4] to predict the effects of creep over long periods of 

time. A suitable model ought to be adopted for long-term 

deflection and prestress losses predictions.  

In prestress concrete members, prestress losses [2] can lead 

to cracking of fibres in tension, which may promote more 

prestress losses, water intrusion in the concrete mass and 

relaunch of creep. Passive steel rebars help control the 

development of cracks. Predicting crack location is difficult, 

and the possible addition of sensors must be anticipated when 

designing the monitoring system. 

3 INSTRUMENTATION FOR THE STRUCTURAL 

HEALTH MONITORING OF THE BRIDGE 

 Objectives 

The objectives of this SHM program were mainly to track the 

progression of mid-span vertical deflection and to collect 

information relevant to ongoing damage processes (mainly 

cracking, concrete delamination and spalling, corrosion, and 

breakage of steel tendons). As mentioned earlier, consideration 

of the evolution of these measurements helped in the 

management of the structure, to ensure user safety and bridge 

sustainability. During the more than 20 years of the monitoring 

campaign, sensors have been added, dictated by the necessity 

to validate and cross-check collected data, better understand 

bridge behaviour and detect initially unexpected progressive 

failure modes.  

Considering the expected modes of failure of the Grand-Mère 

bridge and the selected structural health indicators, the SHM 

program features the following parameters. 

 Temperature measurement 

Since the bridge profile and internal forces are strongly 

influenced by the vertical thermal gradient and the mean 

temperature, these parameters had to be recorded. In 2001, 

24 resistance temperature detectors (RTDs) were installed at a 

cross-section located near the centre of the main span to 

measure internal temperature variations. Temperature sensors 

distributed over a section of the bridge allow for the calculation 

of the mean internal temperature as well as the thermal gradient 

(variation of internal temperature over the height of the 

section). Figure 6 presents TM and GT measured near the 

centre of the main span since 2001. Note the excellent 

performance of the monitoring system, which has experienced 

very few breakdowns over the past 24 years. As can be seen, 

GT is maximized in winter and TM and GT are almost perfectly 

out-of-phase. Mean temperature and vertical gradient may be 

useful for regression analysis of various parameters such as 

crack breathing, top pier rotations, etc. 

 

 

Figure 6. Internal average temperature and thermal gradient. 
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 Estimation of mid-span deflection and box-girder 

torsion using tiltmeters 

To estimate vertical deflection of the main span, a total of 

17 biaxial tiltmeters (sensors measuring rotation in both 

vertical planes) were used. Figure 7 shows the tiltmeter layout. 

These sensors were spaced approximately 15 m apart along the 

first two continuous spans. They were installed in the centre of 

the lower flange of the box girder. A numerical integration 

procedure ([7] and [8]) enables the estimation of the vertical 

deflection at each rotation measurement point. Measurements 

in the other vertical plan give indications on torsional behaviour 

of the box girder.  

 

Figure 7. Tiltmeter layout and main cross-section 

identification. 

 Strain measurement 

Thirty-two vibrating wire strain sensors located at the top and 

bottom of both webs allow the measurement of longitudinal 

strains at eight sections located in the central span at 

longitudinal coordinates 47, 70, 120, 125, 135, 140, 190 and 

213 m. Figure 7 shows five of these sections. Figure 8 

illustrates the layout of the vibrating wire sensors (VW_i). Note 

that these sensors are set to zero when installed, so that only 

strain variations are measured. 

Combining a realistic value of the concrete modulus of 

elasticity with four longitudinal strain measurements, the 

variation of the four internal forces present at a measuring 

section (axial force, two bending moments and distortion) can 

be estimated [5]. Note that these calculations are made using 

as-built section properties and measured elastic modulus is 

assumed constant over time. Also, given the small size of these 

sensors (125 mm in length), measurements are sensitive to 

cracks developing nearby. Therefore, care must be taken when 

interpreting the data. Localization of the neutral axis (NA) is 

useful in this respect. 

 

Figure 8. Typical vibrating wire sensor layout. 

 Rotation and displacement at abutments and at the top 

of piers 

Potentiometers were installed to measure the relative horizontal 

movement between the box girder and supports at points B, C, 

D and E. Tiltmeters were also added at the top of piers at points 

C and D to capture pier bending. A clockwise rotation at top of 

piers is considered positive. These sensors aimed to assess 

support mobility, as discussed at section 2.2. These restraints 

have an impact on main span vertical deflection. 

 Telescopic extensometers 

A total of eight telescopic extensometers were installed at 

different locations where cracks are expected in concrete. In the 

case of this bridge, the sensors were between 5 m and up to 

6.5 m in length. These sensors measure total longitudinal 

displacement and axial strains occurring between their anchor 

points. Should a new crack (oriented generally perpendicular to 

sensors’ axis) appear between sensor anchor points, the 

associated movement will be added up with the breathing of 

other existing cracks and the total movement will be captured 

by the sensors. The concrete thermal expansion response is also 

measured by these sensors, and only sensor thermal response is 

eliminated from the recordings. 

Four extensometers were installed in the main span on top of 

the box girder close to each pier (Extenso_44 Upstream and 

Extenso_44 Downstream, Extenso_216 Upstream and 

Extenso_216 Downstream) as tension may develop in those 

areas prone to concrete cracks. Two other sensors were also 

installed outside at the bottom of the box girder near the centre 

of the central span (Extenso_130 Upstream and Extenso_130 

Downstream), since cracks may also appear in that area. 

Figure 9 shows four extensometers, two that are 6.5 m long 

(Extenso_216) and two that are 5 m in length (Extenso_232 and 

Extenso_239), the latter installed under the top slab of the side-

span girder.  

 
Figure 9. Telescopic extensometer layout. 

4 FINITE ELEMENT MODEL 

Concurrently with the SHM of the bridge, a numerical 

finite-element model of the crack-free structure has been 

developed to provide accurate estimates of expected behaviour 

under given load cases. Prestressing tendons were not explicitly 

included in the model, which means that total strain estimates 

are not available. However, concrete prestressing allows for the 

assumption of the linear and elastic behaviour of concrete, in 

both traction and compression areas. This assumption implies 

that under serviceability conditions, the largest compression 

stress in concrete shall never exceed 45% of concrete strength.  

Moreover, prestressing forces are indirectly considered in the 

calibration process of the overall model. Calibration is done by 

adjusting the modulus of elasticity of different strategic 

structural components and the rigidity of the bearing devices. 

The objective of the calibration process is to have predicted 

vibration frequencies as close as possible to frequencies 

measured experimentally, in both bending and torsion. For 

instance, specific concrete properties have been established for 

certain portions of the webs, flanges and piers. Linear spring 

elements have been introduced to simulate actual support 

restraints. No rigidity is allocated for ballast weights.  
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The FE model has 48,830 nodes, 27,166 parabolic 20 noded 

brick elements for a total of 146,465 degrees of freedom. The 

piers have also been modelled (embedded at their base), since 

their flexibility significantly influences the overall behaviour of 

the structure, acting like elastic supports. Figure 10 presents a 

general view of the model, including the stay cables and the 

pylons that have been designed for the rehabilitation of the 

structure. Tensioning of all cables was completed in September 

2022. 

 

Figure 10. Isometric view of the rehabilitated bridge model. 

5 DATA PROCESSING 

This section presents some measurements gathered over the last 

22 years with the various sensors presented above. A brief 

interpretation of the data is also provided. 

 Modal analysis and load tests 

Modal analysis provides valuable information about the 

dynamic structural characteristics of a bridge. Recorded signals 

from accelerometers are analyzed and vibration frequencies 

and corresponding mode shapes are identified. A mode shape 

is a structural property that depends mainly on mass 

distribution and stiffness along the structure. Assuming mass 

remains constant over time, a change in the mode shapes or 

frequencies would indicate a change in rigidity resulting from 

cracks, concrete damage or changes to the support conditions. 

A total of 12 modal analyses have been carried out at the 

Grand-Mère Bridge, the first one in fall 2003 and the last one 

in fall 2022. Since temperature affects support conditions and 

mode shapes, it is important to compare results under similar 

thermal conditions to detect damage or structural deficiencies. 

As reported by Cremona [6], measured frequencies may vary 

up to 5% for a 15°C (27°F) variation of the ambient 

temperature. Fall has been chosen for in situ modal analysis 

because thermal gradients are minimal during this season, thus 

limiting the effects of temperature on the behaviour of the 

structure. Vibrations have been measured under ambient traffic 

conditions. 

Uniaxial and triaxial accelerometers individually connected 

to a data acquisition system have been distributed according to 

different schemes, for a total of 52 measuring points. The 

sampling frequency has been set at 200 Hz. In 2011, a wireless 

system was introduced, simplifying the data acquisition 

procedure. The location of the measuring points (schemes) has 

remained the same over the years. Representative results 

(flexural and torsional modes) of these modal analyses are 

gathered in Table 1.  

Comparing the results for 2003 with those for 2021 at 

approximately the same internal temperature, a very slight 

decrease of the first seven frequencies of vibration is noted 

under normal traffic conditions. Those small variations may be 

caused by the thermal response of the structure, which affects 

support conditions and internal forces, and are not necessarily 

the result of a damage process. In fact, the state of stress 

associated with thermal variations also depends on the weather 

conditions on the days preceding the in-situ modal analysis. 

To assess seasonal temperature changes on the bridge 

behaviour, Figure 11 presents variations of the fundamental 

frequency of vibration (Flex.1 in Table 1) of the bridge along 

with TM as a function of time. The frequency is minimal in 

summer (approximately 1.02 Hz) and maximal in winter 

(around 1.07 Hz). Bridge response to thermal variations 

indicates that roller supports are partially restrained and 

incidental bridge internal forces have an influence on modal 

frequencies. 

Structural rigidity has also been assessed through load 

testing. A total of eight load tests were performed in November 

of each of the following years: 2008, 2012, 2013, 2018 and each 

year thereafter until 2022. Load tests are intended to acquire 

data when the bridge is solely loaded by truck loads of known 

intensity. Generally, the loads consisted of semi-trailer trucks 

of about 40 tons each, for a total load never exceeding bridge 

service load. Measured data are used to validate the proper 

functioning of all sensors and provide valuable insight for FE 

model calibration. 

The number of trucks and their relative position on the deck 

varied according to predefined load cases. Associated 

longitudinal and lateral force distribution in the structure can 

be established and bridge symmetry under symmetric loading 

conditions may be ascertained. The linearity of the bridge 

response under increasing loads is also verified and upon 

unloading, recordings indicate if the bridge returns to its initial 

profile. Detailed analysis of the test measurements showed that 

no significant changes in structural rigidity were detected from 

one year to the next, even with the seasonal support restraints 

above-mentioned.   

Table 1. Measured frequencies [Hz] of some bridge’s modes. 

Modes 
FE model 

estimates 

Nov. 

2003 

June 

2013 

Nov. 

2021 

 

Mean 

temp.  
 1.5°C 20.4°C 1.0°C 

 

Flex. 1 1,038 1,034 1,024 1,025  

Flex. 2 2,177 2,134 2,117 2,124  

Flex. 3 3,644 3,712 3,668 3,687  

Tor. 1 

Flex. 4 

Tor. 2 

Flex. 5 

4,625 

5,498 

6,794 

7,441 

4,665 

5,664 

7,102 

7,480 

4,605 

5,551 

6,966 

7,444 

4,639 

5,615 

7,056 

7,397 

 

 

Figure 11. Variation of the fundamental frequency of vibration. 
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 Tracking of roller support longitudinal movements and 

top of pier rotations 

This section presents longitudinal movements recorded at each 

support. Figure 12 illustrates longitudinal support movement as 

a function of time. The dotted line added in many figures 

indicates when the stay cables have been tensioned. Very small 

relative movements are recorded at point C where a pin support 

is present. Maximum annual values are occurring in winter, as 

expected. Figure 13 shows top of piers rotations. Rotation 

recordings made at point C are the counterpart of those made at 

point D. Also, minimum rotation measurements at top of pier D 

occur in winter, as predicted by Figures 3 and 4. 

 

Figure 12. Box-girder longitudinal displacement relative to 

top of piers. 

Under similar thermal loads year after year, the annual 

longitudinal displacement range decreases gradually from 2018 

to 2022 (Figure 12), while top of pier rotation range is also 

decreasing (Figure 13). Measurements are linked together, and 

this result is in line with the gradual increase of mid-span 

deflection.  

 

Figure 13. Top of piers rotation. 

 Tracking of mid-span deflection 

Figure 14 shows mid-span daily average deflection as a 

function of time from November 2008, until February 2025. On 

the same figure, the blue dots represent bridge centre levelling 

and good agreement is observed. 

Considering that temperature gradients have a greater 

influence on vertical deflection than average temperature, 

maximum mid-span deflection occurs early in winter. 

Regardless of creep, the annual deflection range is about 30 

mm, close to the deflection caused by traffic serviceability 

loads (as confirmed by load tests). This result explains the 

significant variations that are observed in Figure 14, even with 

daily averages. This bridge is part of a freeway with an 

estimated average daily truck traffic of 1,600. The running 

average fit shown on the figure highlights the deflection trend 

over time. 

Under similar thermal loads year after year, the mid-span 

deflection has been increasing since the sensors started 

recording. Furthermore, the process is accelerating. 

Several factors have contributed to the increase in deflection 

at the centre of the bridge, including: 

• concrete cracking under recurrent thermal loads and traffic 

loads. 

• concrete shrinkage and creep. 

• prestressing losses from steel relaxation, concrete long-

term deformation, sleeve failure, bar corrosion, etc. 

In addition to these phenomena, the bridge’s response is 

influenced mainly by: 

• the different thermal expansion coefficients of the various 

materials. 

• the friction intrinsic to roller supports, which varies with 

temperature. 

• the various thermal inertia of the structure’s components 

(being a function of thickness and geometry). 

 

Figure 14. Mid-span deflection over the last 16 years. 

In addition, 32 external prestressing tendons added to 

reinforce the structure in 1992 are exposed to ambient 

temperature inside the box girder, unlike the internal 

prestressing tendons, which are embedded in concrete. 
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Ambient temperature in the box girder varies more rapidly than 

internal concrete temperature, and this fact justifies the multiple 

oscillations observed even on the running average display, and 

to the deflection which is not perfectly in phase with TM or GT. 

As seen on Figure 14, the tensioning of the cable stays caused 

the observed rise at the centre of the central span. The centre 

continues to rise months after tensioning, indicating a probable 

subsequent creep recovery. 

 Tracking the breathing of groups of cracks using 

telescopic extensometers 

As mentioned above, a total of eight telescopic extensometers 

were installed at longitudinal coordinates (length of the 

extensometer is indicated in parenthesis): two at coordinate 44 

(6.5 m), two at coordinate 130 (6.5 m), two at coordinate 216 

(6.5 m), one at coordinate 232 (5 m) and 239 (5 m) metres from 

B axis (Figure 1).  

Figure 15 presents maximum seasonal response predictions 

at different locations where telescopic extensometers have been 

installed. These predictions have been made using the 

calibrated crack-free FE model. Two support conditions have 

been considered, whether the roller at point D is free to move 

horizontally or is partially restrained. Having the reference 

temperature set at 15°C, the annual mean temperature varies 

from 15°C (from Figure 6, the maximum temperature is about 

30°C) to -35°C (the minimum temperature is approximately -

20°C). As seen on Figure 6, the annual GT varies from 9°C/m 

in winter to -12°C/m during the summer. 

Predictions indicate that a restraint at roller of point D (dark 

colours) reduces the annual total range of expected 

measurements. Also, a negative value is expected in summer 

for all sensors on the central span, meaning that these 

minimums are out of phase with mean temperature. For sensors 

of the side span (sections 232 and 239), expected maximum and 

minimum are in phase with mean temperature when roller at 

point D is restrained. With a free roller at D, maximum and 

minimum are out of phase with mean temperature. Depending 

on the stiffness of the restraint at the roller, a change in the sign 

of the bending moment can be observed from the central span 

to the approach span. 

Figures 16 and 17 show twelve years of data recorded from 

extensometers 44 and 216. A positive recording corresponds to 

an extension of the sensor and crack opening. Note that in this 

figure, all sensors record their maximum value in winter, when 

the deck shortens. The contrary is noted in summer. Similar 

observations can be made at section 130. 

 

Figure 15. Maximum and minimum expected responses at five 

extensometer sections and different roller conditions. 

 

Figure 16. Recordings by extensometers 216. 

At sections 44 and 216, measurements are therefore out of 

phase with concrete mean internal temperature, as predicted in 

Figure 15. However, the annual range of 2.5 mm is larger than 

expected with a crack-free model of the structure. This result 

seems to indicate the presence of active cracks. Recall that 

when a crack occurs, strain energy is released locally and 

thermal deformations along the prestressing bar are no longer 

uniformly distributed. Therefore, cracks may be considered as 

strain concentrators and if a sensor overlapped some of them, 

measurements can be amplified, especially when prestressing 

bars are not fully grouted. 

Furthermore, sensors 44 and 216 experienced a permanent 

drop of approximately 0.75 mm following tensioning of the 

stay cables in September 2022. This result combines 

compressive strains and crack closures, since compression is 

induced in that area by the stay cable tensioning.  

 

Figure 17. Recordings by extensometers 44. 

Contrary to what can be seen in Figures 16 and 17, Figure 18 

shows recordings from sensors 232 and 239 that are in phase 
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with internal temperature variations. In that area, side-span 

predictions (Figure 15) made with the roller partially restrained 

are confirmed. However, the recorded annual measurement 

range shown in Figure 18 are much larger than the range 

expected with the crack-free model of the structure. Once 

again, active cracks may be present, and the compression 

resulting from cable stays tensioning induced permanent 

closing of these cracks, as shown on Figure 18. 

As seen in Figure 18, Extenso_232 captured a permanent 

crack opening of 0.5 mm from the beginning of summer 2020 

to fall 2021. This expansion is apparently not sufficient to 

eliminate the prestressing effect (decompressing crack lips). 

Also, as the stay cables were tensioned, Extenso_239 

experienced a 0.75 mm shortening, which is in line with the 

negative bending moment expected in this portion of the 

rehabilitated bridge.  

Once cracks are closed, additional compression in concrete 

induces a minute variation in extensometer response. In winter, 

the deck shortens (see Figure 3), and compression in concrete 

decreases up to a point where the cracks re-open. The opening 

(breathing) of these cracks is captured by the extensometers and 

the measurements are amplified accordingly, as shown in 

Figures 16, 17 and 18. It should be emphasized that total or 

partial horizontal restraint at point D is mandatory for such 

crack breathing. Mean temperature and thermal gradient are 

then contributing. 

Also, it should be kept in mind that when cracks widen and 

concrete decompresses locally, the mechanical properties of the 

box girder at crack surroundings are locally modified and the 

axial and bending rigidities are significantly reduced. This may 

invalidate the estimate of local stress from strain measurements 

in the vicinity of cracks, as discussed later in this paper. 

 

 

Figure 18. Recordings by extensometers 232 and 239. 

 Tracking of internal forces 

In the case of the Grand-Mère Bridge, prestressing bars may be 

partially, if not fully, bonded to the surrounding concrete over 

most of their length. Consequently, the failure of a bar has 

generally a negligible effect upon vertical deflection and cannot 

be detected with strain sensors unless they are anchored close 

to the failure. However, cracking and delamination of large 

portions of concrete may significantly affect the intensity and 

distribution of the forces within the structure. Therefore, to 

grasp the effects of concrete deterioration, internal forces can 

be good estimators. It should be emphasized that measured 

strains (and resulting calculated stresses) do not represent the 

total strain (including the permanent state), but rather the strain 

increase that occurred after the sensors were installed. Also, it 

should be kept in mind that the average elastic modulus of 

prestressed reinforced concrete may depend on local conditions 

such as cracks, delamination, corrosion, and other disorders. 

Figure 19 shows the variation of bending moments computed 

at measuring sections 47 (near pier B), 70, 135 (near the 

centre), 190 and 213 (near pier D). As shown in that figure, 

although there were no significant permanent load variations, 

the bending moment gradually decreased at sections 47 and 70 

between fall 2008 and summer 2022. At the opposite side of the 

main span, measurements at section 190 (the counterpart 

section) also decreased, while a surprisingly slight increase has 

been observed at section 213. At the centre of the main span, 

bending moments increased, as we expected them to. 

Meanwhile, less significant decreases have been observed at 

sections 120 and 140 (not shown on the figure). Note the large 

variations observed after the tensioning of the cable stays in 

September 2022. These measurements have been useful in 

confirming the adequacy of the cable stay arrangement. 

 
Figure 19. Bending-moment variations over time. 

In a defect-free structure, bending moments vary according to 

the vertical deflection at the centre. To validate this statement 

and give insight to possible damage detection, a regression 

analysis has been performed between average daily bending 

moment Mz at a given cross-section and mean daily deflection 

at the centre as the explanatory variable. Figure 20 presents 

mean daily Mz at cross-section 47 as a function of mean daily 

deflection at the centre. The coefficient of regression for this 

distribution is equal to 0.85. Predictions from the defect-free 

numerical model are also presented. The comparison with the 

predicted behaviour indicates that for a given vertical 

deflection, the associated bending moment at section 47 is 

larger than expected.  
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Figure 20. Bending-moment variations and predictions as a 

function of mid-span deflection. 

The same regression analysis has been made with section 135 

(near the centre) and section 213 (close to pier D). Figures 21 

and 22 gather the results. At section 135, computed bending 

moments compare very well with predicted values, indicating 

that the bridge is behaving as expected under normal 

serviceability conditions. However, this is not the case at 

section 213 (Figure 22) where bending moments are not 

correlated with mid-span deflection (coefficient of regression 

for this distribution is less than 0.001). The comparison with 

the predictions (red line) makes this assessment apparent. 

 

Figure 21. Bending moment variations and predictions as a 

function of mid-span deflection. 

 

Figure 22. Bending moment variations and predictions as a 

function of mid-span deflection. 

 Tracking of mid-span box-girder torsional rotation 

Figure 23 shows the recordings of the tiltmeter installed at the 

bridge centre, which measures box girder torsional rotation. A 

positive rotation is measured when the downstream web shifts 

downwards with respect to the upstream web, which may rise 

accordingly. In other words, a clockwise rotation around the 

bridge’s longitudinal axis pointing east is assumed to be 

positive. 

The data trend shown in Figure 23 indicates that girder 

torsional rotations are greatly correlated with internal 

temperature variations (the coefficient of regression being 

greater than 0.9). Also, an “event” may be noted around the end 

of April 2012, characterized by a rapid decrease of about 

0.012° (from 0.0055° to -0.0065°) of the girder torsional 

rotation. Meanwhile, the internal temperature varies in the 

same way as in previous years. With permanent loads 

unchanged, this result suggests that structural damage took 

place, and the so-called event that occurred at the end of April 

2012 may be the starting point of this apparent damage process. 

In fact, it can be shown that damage to a portion of a 

symmetrical cross-section (becoming unsymmetrical) induces 

such a torsional deformation. In Figure 19, the bending moment 

at section 213 became desynchronized from the bending 

moment at section 47 at approximately the same time. 

 

 

Figure 23. Box-girder torsional rotation at mid-span. 

6 CONCLUSIONS 

The structure under investigation was monitored for many 

years before it was strengthened. In-situ modal analysis and 

controlled load tests were conducted and recorded data were 

used to calibrate a representative numerical model of the 

bridge. Insights from a numerical model greatly helped bridge 

behaviour understanding and eventual damage detection. The 

model, in conjunction with long-term monitoring data, allowed 

for the identification of the following findings: 

• Under ambient traffic conditions, 12 modal analyses have 

been carried out between 2003 and 2022. No significant 

changes were detected for the frequency of the first seven 

modes of vibration. Frequencies varied according to 
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internal concrete temperature and the sudden slips that may 

occur at the roller as the bridge expands or contracts. The 

numerical model showed that the rollers at points B, D and 

E needs to be partially restrained to fits the measured 

frequencies. 

• Free relative longitudinal movement was expected at the 

roller between the box girder and the top of D axis pier. 

Sensors showed that such movement was partially 

restrained, and that the piers bend according to internal 

temperature changes. The C axis pier is topped with pin 

bearings. Consequently, an horizontal force developed in 

the box girder between points C and D—compression in 

summer when the deck lengthens and traction in winter 

when the deck shortens. Incidentally, a permanent and 

progressive tilting was detected in these piers, a result that 

is in line with the observed permanent mid-span deflection. 

• In addition to a slow and progressive permanent mid-span 

deflection, there was no unexpected or spontaneous sag 

increase over time. Creep and prestress losses were the 

dominant parameters contributing to the permanent sag of 

the main span. 

• A permanent box-girder torsional rotation was detected at 

mid-span. Along with longitudinal stresses estimated at 

different sections along the deck, these observations 

revealed structural damage over the support at point D. 

Structural damage may take different forms, such as 

concrete cracking (accompanied by tension stress 

relaxation) or prestress loss (breaking of a tendon, loss of 

anchorage, corrosion), the latter being accompanied by 

compression stress relaxation. 

• Telescopic extensometers were used to track the breathing 

of groups of cracks. Recorded data indicate that concrete 

in the vicinity of some cracks is decompressed when the 

temperature is low. In winter, the deck shortens and 

compression in concrete reduces up to a point where cracks 

widen. Crack openings are picked up by extensometers and 

the detected amplitude is larger than expected. The frozen 

bearings mentioned earlier are mandatory for this 

behaviour to occur, and residual prestressing forces are not 

sufficient to prevent crack breathing. Consequently, 

prestress loss causes a reduction of the structure’s load-

carrying capacity. Moreover, breathing cracks and 

concrete decompression cause larger stress cycles in 

prestressed tendons. This phenomenon promotes the 

premature failure of tendons, especially those located in 

the top flange, which is a corrosion-friendly environment 

(de-icing salts are spread on the roadway). Note that this 

diagnosis is achieved with no information on total applied 

stress, only with the help of long-term electronic 

monitoring data. 

• The addition of cable stays was the solution chosen to 

strengthen the bridge. Since the cables have been 

tensioned, no progress has been observed in the damage 

processes of this structure. 

Given the low relative stiffness offered by the stay-cable 

structure compared to that of the prestressed concrete box 

girder, this reinforcement:  

• has little impact on the bridge’s overall live load and 

thermal load responses (deflections, stress distribution and 

intensity, etc.). 

• contributes to the bridge’s structural redundancy, by 

enabling alternative load paths in the event of failure or 

excessive deformation of the box girder. 

• introduces permanent stresses in the box girder that 

reduced the intensity of stresses caused by gravity loads, 

thus enabling some cracks to close and subsequent creep 

recovery. 

• does not contribute to segment joint decompression, 

though new cracks were visually detected near the centre 

of the bridge. 

Given the deficient design and erection problems affecting the 

strength and durability of this bridge, its reliability was 

questionable. Since the initial reinforcement of the structure, 

the electronic monitoring program presented has played a 

crucial role in managing this structure and keeping it in service 

for almost 50 years. The program has also enabled us to 

validate the structural effects induced by the reinforcement of 

the structure using stay cables. 
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ABSTRACT:  

It is common sense that civil infrastructure like tunnels or bridges are coming in age and needs to be renewed in the next years. 

These issues are, amongst others, related to massive increased traffic load nowadays compared to the time of construction and 

material issues which turned out after many years of operation. In concrete structures with tendons, the stress corrosion cracking 

of the used steel is one of the main issues and leads to tendon failure with significant impact on the stability of the structure. 

SHM with Acoustic Emission is used successfully for many years to detect tendon failures. The products on the market have been 

adapted since many years to the needs of the customers and the full measurement chain from a self-checking smart sensor network, 

high performance and scalable data acquisition systems to automate data analysis, processing and alarming is available. A cloud-

based dashboard rounds up the package and makes processed data available for customers. Since May 2024 a guideline from 

DGZfP “Richtlinie SE 05 Detektion von Spanndrahtbrüchen mit Schallemissionsanalyse” is available and give a general frame 

about the approach, definitions ad help to specify tenders in a correct way. 

KEY WORDS: Acoustic Emission, Structural Health Monitoring, Smart AE sensors, Wire break detection, SE 05 

1 INTRODUCTION 

Acoustic emission (AE) testing is a well-established 

nondestructive testing method for pressure vessel, pipeline and 

tank inspection in industry [1]. Integrity, leakage and corrosion 

tests are in the focus. Apart from these applications, the demand 

increases for continuous monitoring of civil structures like 

bridges and tunnels. The civil infrastructure e.g. in Germany is 

coming in age and was mainly constructed 50 or more years 

ago. The structures face nowadays a much higher traffic load 

than at the time of planning and it turned out that some of the 

materials used, especially the steel for tendons, had not the 

predicted quality in the long term perspective. The tendons are 

facing the risk of stress corrosion cracking which can lead to a 

catastrophic collapse of the structure in the worthed case. To 

ensure the availability of the structure, operators often choose 

various inspection and maintenance strategies. Therefore, 

acoustic emission (AE) can be an outstanding tool to support 

the operators. Davies [2], Nakasa [3], Allevato [1] and others 

have shown that acoustic emission is a suitable method for 

permanent monitoring applications. In the last years, the 

number of projects increased especially in Germany and more 

than 25 structures were equipped with Acoustic Emission to 

detect wire breaks. The time period of the projects varies 

between a few months to several years. To fulfill the 

requirements the Acoustic Emission hardware and software had 

been improved significantly to enable a continuous, reliable 

and available permanent monitoring of the structure. 

Civil infrastructure like bridges and tunnels are mainly in 

public hand and the size of monitoring projects requires  tender 

processes. The community in Germany developed over the last 

years a guideline as general frame about the approach, 

definitions and help to specify tenders in a correct way. The 

guideline “Richtlinie SE 05 Detektion von Spanndrahtbrüchen 

mit Schallemissionsanalyse” from DGZfP is availible since 

May 2024 [4]. 

 

2 ACOUSTIC EMISSION AND TENDON FAILURE 

DETECTION 

Acoustic Emission (AE) is a well-established NDT Methode 

and has been applied for many years in various applications in 

the industry like pressure vessel testing or testing of above 

ground storage tanks. The “passive” character of AE makes the 

method suitable for permanent monitoring of the structures and 

to “listen” for tendon failures. The available AE equipment was 

mainly driven by the requirements of the above-mentioned 

industrial applications, and it was the starting point for further 

investigations to adapt the AE equipment to the needs of 

permanent monitoring of civil infrastructures like concrete 

bridges. Several publications are available on the detection and 

location of wire breaks by Acoustic Emission [7-8]. 

Investigations were carried out to identify suitable AE sensors 

to detect wire breaks in concrete. In one internal feasibility 

study several sensors with different peak frequency sensitivities 

and preamplifications were mounted on a concrete beam 

(Figure 1) with tendons at different positions on the beam. 

Artificial AE was triggered with HSU-Nielsen source and 

several tendons where cut to see the behavior of the acoustic 

waves and the response of each individual sensor. It turned out 

that low frequency sensors around 30kHz peak frequency are 

suitable. 

Smart Structural Health Monitoring with Acoustic Emission  
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Figure 1: Evaluation of several AE sensors on a concrete 

beam to investigate the capability to detect wire breaks  

 

During the investigation it turned out that the typical artificial 

AE source, a HSU-Nielsen source (Figure 2 (top)), is suitable 

to verify the sensor mounting quality close to the sensor but the 

artificial source is not strong enough to be detected by an AE 

sensor in several meters distance to the sensor due to the high 

attenuating properties of concrete for the propagation of 

acoustic waves. After several tests, it turned out that a rebound 

hammer, which is normally used by civil engineers to evaluate 

the quality of concrete, is a suitable tool to trigger artificial 

sources. The rebound hammer (Figure 2 (bottom)) is spring 

loaded and a reproducible source. Detection of a rebound 

hammer hit in 20 to 30m distance to the AE sensor is possible.  

 

 
Figure 2: HSU-Nielsen source (0.5mm) to verify the sensor 

mounting quality (top).  

Rebound hammer to trigger reproducible artificial AE sources 

on concrete structures (bottom) 

 

Another difference between industrial applications and wire 

break detection is the preamplification of the sensor output. 

Observing the data after an artificial wire break, it turned out 

that measurement channels with a typical amplification for 

industrial applications like 34dB or 40dB were saturated related 

to the high energy released by the wire break. Based on the 

results, preamplification with 0dB is beneficial and the 

preamplifier purpose is to convert the sensor output to be 

transported over long cable distances (approx. 600m) without 

significant losses.  

 Permanent monitoring of a concrete bridge in southwest 

Germany 

The following example of the SHM is part of a bigger project 

and published in [5]. In autumn 2018, a concrete bridge in the 

southwest of Germany was equipped with a monitoring system 

consisting out of several NDT methods. A renewal of the bridge 

is required, and the existing structure should be permanently 

monitored during planning and approval phase. Apart from 

acoustic emission, various other parameters like temperature, 

displacement and strain (strain gauge) are part of the 

monitoring system. Acoustic Emission and temperature are 

recorded by an integrated system, whereas strain gauge and 

displacement parameters are fused and analyzed in post 

processing. 

Bridge construction was finalized in 1950 and traverses the 

river Danube (Figure 3). It has a length of 96 m and a max. span 

of 81m. The width is 18m and the bridge has 4 lanes and 2 

sidewalks. Damages caused by corrosion were found at the 

tendons of the bridge. Because the damage is unrepairable, a 

replacement of the bridge is planned. The bridge operator, an 

engineering office, a service provider and Vallen Systeme as 

measurement equipment provider are working together in this 

project [5]. 

 

 
Figure 3: Gänstorbrücke 

 

The Acoustic Emission measurement system and data analysis 

must run automatically, recognize changes in the condition and 

trigger alarms if predefined criteria are fulfilled. Low frequency 

AE sensors with IP68 rating were used for the installation and 

the first version of a spring-loaded mounting mechanism which 

can be screwed to the concrete was used in this approach. The 

mounting mechanism has protection covers to protect the AE 

sensors against vandalism and animals (e.g. birds). AE sensors 

were installed in a linear setup on the beams with sensors 

distances between 12 to 14m and the line of sensors follows the 

course of the tendons in the concrete as good as possible. The 

acoustic emission measurement system AMSY-6 with 36 

channels is stored in a cabinet which is installed in the bridge 

abutment at a height of 5m to guarantee flood protection. 

Besides acoustic emission measurement system, measurement 
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computer, communication equipment for a mobile network and 

additional measurement equipment for recording data of 71 

temperature sensors are included in the cabinet. AE and 

temperature measurements are recorded with a synchronized 

time stamp and so data analysis is comfortable for the service 

provider. The other NDT methods were recorded with separate 

equipment, but all data is transferred to a cloud-based 

dashboard and the service provider can do further analysis 

across all data [5]. 

The project is still running, and the monitoring concept 

provides the security to operate the bridge in a safe way till 

renewal is properly planned. 

 

 
Figure 4: First approach for a sensor mounting device 

including protection cover [5] 

 

 

 Tendon failure detection with AE and other NDT 

methods: “Altstädter Bahnhof” 

The following example is part of a bigger project published in 

[6]. The bridge at the “Altstädter Bahnhof in Brandenburg an 

der Havel” was opened in the year 1969 and tensioned concrete 

structure was used. The used steel, “Hennigsdorfer” steel, was 

state of the art at this time. Today it is known that this type of 

steel has a high risk for stress corrosion cracking. Inspections 

and investigation on the bridge revealed significant and 

irreversible damages and a new construction was decided. In 

the meantime, a monitoring system including Acoustic 

Emission was installed as early warning system in case of 

detected tension breaks. Before final removal of the “old 

bridge” several measurement techniques were applied on the 

bridge to investigate their potentials on such objects during 

artificial damaging of the structure. The approach was to cut 

parts of the bridge including the tendons with a “wire saw” 

(Figure 6). Two parts of the bridge were cut, one with known, 

existing damages and the other with no existing damages. The 

focus in this text is on Acoustic Emission results provided by 

Bilfinger Noell. The acoustic emission signals triggered by the 

wire breaks at the sensors are displayed by the acoustic 

emission system with a delay of a few milliseconds. The 

analysis of the acoustic emission data is carried out 

immediately on-site in monitoring and test mode. A 

classification of the data into the classes wire break, 

construction noise, background noise could be done 

immediately. The determination of the source location of the 

acoustic emissions was automatically done by the measuring 

system. The investigation showed that acoustic emission 

analysis is very well suited to detect wire breaks reliable and in 

real time. 

 

2.2.1 Construction of the bridge 

For the bridge at the Altstädter Bahnhof, the “clamping block 

method” was used on the main supporting structure in a 

longitudinal direction. Tension wires with a cross-sectional 

area of 35 mm² were used. Additionally, a larger tensioning box 

was necessary to accommodate the total of 392 individual wires 

and to be able to introduce a tension force of 12 MN per main 

girder. The 392 individual wires were installed in layers and 

secured in their position by spacers, as can be seen in Figure 5. 

                
Figure 5: Photography of the open concentrated tendon before 

grouting [6] 

 

The typical brand for such tendons at this time was 

“Hennigsdorfer” steel. The hardened and tempered tension 

wires were used as pretensioned steel.  

 

2.2.2 Monitoring concept and results 

Due to the described material properties of the tension wires, 

it was necessary to implement a monitoring strategy. This was 

the only way to ensure the safety of the traffic passing the 

bridge. The monitoring concept included a regular inspection 

combined with a permanent structural health monitoring. For 

the permanent monitoring, next to others, acoustic emission 

was selected as method to detect tendon breaks.  
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The acoustic emission system with 75 sensors was installed and 

put into operation in June 2020 by the company Bilfinger Noell. 

Until the demolition of the bridge in May 2021, 111 

spontaneous tension wire breaks were detected. There were no 

technically related downtimes during the runtime of the system. 

 

2.2.3 Comparison of NDT methods 

Due to the condition of the bridge, it was decided that the 

bridge has to be removed and replaced by a new construction. 

The bridge was selected by the Federal Ministry of Transport 

and Digital Infrastructure to do an extensive case study to 

compare different NDT methods. The following NDT 

techniques were used: Strain gauging, geodesic measurement, 

vibration analysis, fiber optic measurements, photogrammetry 

and acoustic emission. The approach was to cut parts of the 

bridge, including the tendons, with a “wire saw” [6]. Two parts 

of the bridge were cut, one with known existing damage and 

the other with no existing damage. 

Early-stage failure of this bridge, with concentrated tendons, 

is not indicated by flexural cracks at a span’s center. It was 

shown that for this bridge about one third of all wires in one 

concentrated tendon must fail before the cracks reach the 

concrete surface. One outcome of this evaluation study is that 

Acoustic Emission is the only technique that detects wire 

breaks in real-time and without the need to be close to the origin 

of the wire break. In addition, AE can locate the wire breaks 

origin. Vibration and geodesic measurements can detect 

changes in the rigidity of the structure if sensing elements are 

close to where failure occurs. Strain measurements, 

photogrammetry and fiber optic sensors are suitable for 

detecting cracks in the concrete structure [6] 

 
Figure 6: Wire saw to cut the concrete and tendons 

 

 

3 IMPROVED ACOUSTIC EMISSIONE EQUIPMENT 

FOR SHM 

It is necessary to provide a solution covering the entire 

measurement process, including data analysis, alerting and 

information dissemination workflows. Third-party acquisition 

modules need to be supported. Expandable and versatile 

monitoring systems can be configured using modular 

components and customized products where necessary. 

 

 
Figure 7: Example of a schematic Workflow of a monitoring 

system 

 

 AE sensors 

Sensors need to work reliably 24/7 throughout the monitoring 

period, withstand varying and extreme conditions, moisture, 

and rain as well as excessive heat and frost. Special, low 

frequency sensors are available meeting the harsh demands of 

permanent monitoring. The sensors are optimized for the 

specific requirements of the application. Each AE sensor is 

connected to the AE data acquisition system with a single cable. 

The commonly used acoustic emission sensor for monitoring is 

e.g. VS30-SIC-V2-0dB sensor or the specifically developed 

SHM-MP1 measurement point for structural health monitoring.  

The SHM-MP1(Figure 8) measurement point offers several 

advantages over conventional monitoring sensors: 

Vallen Smart LineTM sensor technology with automatic 

registration of the device at the monitoring hardware and 

reliable self-checking of its function and sensitivity that can be 

automatically triggered in regular intervals or on demand are 

some benefits. The reliable self-checking functionality enables 

the operator to verify the sensor mounting quality on a regular 

basis to proof the sensitivity of the sensor network without 

accessing the sensors personally which is beneficial in cases 

where the sensors are hard to access. The easy-to-install 

mechanical device, including strain relief and rugged 

protection lid is an additional improvement in sensor 

technology compared to the first approaches like in Figure 4. 

Both sensor types have integrated preamplifiers with 0dB 

amplification and the power for the preamplifiers is provided 

by the data acquisition system via phantom power along the 

sensor cable. The temperature range from -40°C to +85°C of 

both variants is designed for operation in all seasons of the year 

and covers cold and hot temperatures during winter and 

summer.  

 
Figure 8: SHM-MP1 Vallen Smart LineTM sensor 

 

 AE hardware and software 

The AE data acquisition hardware needs to be scalable and 

flexible in the number of channels to provide a suitable system 

size related to the structure. The AE system needs to be 

integrated into an enclosure specified for the environmental 
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conditions at the bridge. 19” racks are beneficial including data 

acquisition PC and mobile data communication. 

A reliable and state-of-the-art software complements the 

measurement hardware. Flexible analysis is required to be 

adjusted to specific requirements of a job. Even user-specific 

evaluation routines need to be implemented and executed 

during the measurement. Fast online location, even at high data 

rates from many channels, is a key aspect of data analysis. 

Criteria for alarms and warnings can be set and notifications 

received via email or digital outputs. 

On top of data analysis runs the Vallen Automation Manager 

software. It enables an autonomous operation of the data 

acquisition system and is an instance designed to inform the 

operator or other selected audience about alarms and the 

general status of the system. Amongst simple tasks is, for 

example, an automatic start-up of the monitoring system after 

a power outage, switching between data storage files in regular 

intervals and carrying out sensitivity checks of the installed 

sensors. Beneficial is the maintenance mode, which can be 

activated for a user defined time span. In this recording mode, 

all data is recorded but the alarm chain is blocked. It is used 

when, e.g. construction work is done on the bridge which will 

generate lots of activity and fails alarms. 

Additional to the software running on site at the local PC, 

processed data can be uploaded to a cloud-based dashboard. 

The Vallen Dashboard is an important part of the software 

solution if the monitoring results need to be distributed to a 

broad audience. It provides an encapsulated and safe 

environment for viewing and analyzing data. Access and 

rights/privileges for this service can be restricted based on user 

roles. Data available in the dashboard has been transferred to it 

from the acquisition PC avoiding the necessity to log-in and 

possible manipulation of the running monitoring system. 

It can be hosted on any Linux Ubuntu server. This may be 

rented services from local providers or a company-controlled 

internet server. Rented services can provide guarantees for 

accessibility, data safety (back up, but also storage locations in 

your own country) and security (access). An encrypted 

connection is established between the dashboard and the 

acquisition PC via internet.  

Data upload from the acquisition PC is automated. If the 

connection is interrupted, upload data is cashed and transferred 

once the connection is working again. The Dashboard engine 

informs selected users when the internet connection to the 

measurement system is lost.  

Under the hood, the Vallen Export processor and Uploader 

program running on the data acquisition PC are responsible for 

supplying the dashboard with data. Both pieces of software can 

be configured according to the requirements of the 

scope/job/user. One has full control of what is uploaded and 

how frequently it is uploaded. The Vallen Dashboard displays 

the information in a user-defined layout.  

The dashboard and layouts can be easily adapted and 

customized by the user. The administrator of the dashboard sets 

out the rules which information may be viewed, and which 

actions are available to certain users. Information can be 

displayed in bar charts, scatter plots, heat maps, line charts, 

tables, static images, and texts. Data can be downloaded for 

archiving purposes or offline analysis. The responsive design 

of the front-end enables equally well access experience from 

PCs and mobile devices. 

The open API of the Vallen Dashboard provides the 

possibility to integrate third-party time series measurement data 

to be uploaded, stored, and fused with acoustic emission data. 

This data does not even have to come from the acoustic 

emission data acquisition system or PC. The Vallen Dashboard 

is a true multi-source, multi-channel data management, 

visualization, and analysis tool from a single source. 

 

4 GUIDELINE TO “DETECT WIRE BREAKS WITH AE” 

The increasing demand of monitoring post-tensioned 

concrete structures in Germany and the complexity of how to 

setup such projects and how to involve all required parties 

motivated the development of a guideline to solve the issue. 

The German Society of Non-Destructive Testing (DGZfP) 

published in May 2024 the guideline “Richtlinie SE 05 

Detektion von Spanndrahtbrüchen mit 

Schallemissionsanalyse” [5]. The guideline is written by civil 

engineers, bridge responsible from the public authority, 

Acoustic Emission specialists and AE measurement equipment 

suppliers.  

It is a detailed guideline with more than 30 pages on the 

planning, tendering, installation and operation of monitoring 

systems to detect wire breaks. One focus of this guideline is, of 

course, the description of the use of Acoustic Emission in order 

for successful monitoring 

The guideline covers all required topics right from the 

beginning, like explanation of the terms e.g. how is a wire break 

defined or what artificial reference AE sources are available. It 

covers the topic Acoustic Emission and the capability for wire 

break detection, requirements for measurement equipment and 

data analysis as well as sensors, sensor distances and 

limitations. A summary of the requirements for the 

measurement technology is in Table 1 Next to the technical part 

another focus is on the project implementation and project 

participants, proposed sensor networks related to the different 

construction types like box girders, T-beams etc. It finally 

results in a guideline on how to set up the tender specifications. 
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Table 1: Overview of the recommended measurement 

equipment [5] 

  

It is common sense that each bridge is different, and it is not 

possible to copy one project 100% to another. It is 

recommended to do a feasibility study before tendering to 

evaluate amongst other parameters the noise level, the 

attenuation and the speed of sound. Artificial triggered AE can 

be used to evaluate the parameters and additionally it is 

recommended to open the concrete and remove a piece of the 

tendon for further analysis in the laboratory. In this case cutting 

of tendons are required and so a “real” wire break can be 

detected and the propagation of the waves in the structure 

evaluated. The target is to find a suitable sensor network with 

ideal sensor distances. It brings the public administration the 

position to make a clear and transparent tender specification 

about the size and dimension of the required monitoring 

system. 

Figure 9 shows the peak amplitude in dB(AE) from one wire 

break of a post-tensioned concrete bridge. It is part of the 

guideline and gives an orientation on the relation between wire 

breaks and the artificial source from a rebound hammer. 

Sensors were positioned at three different distances from the 

location of the artificial wire break. The acoustic emission 

signals from the wire break and from the use of the reference 

source were recorded. The reference source was triggered in the 

closest possible proximity to the wire break location. Each 

position has its own value of K. It is recommended to use the 

smallest value of K to calculate the maximum possible sensor 

distance. For example, the signal from the wire break at a 

distance of about +200 cm in Figure 9 is saturated with a 

maximum amplitude of 134 dBAE, which means that the true 

peak amplitude cannot be determined. Therefore, the smallest 

value of K from Figure 9 with 101 dBAE - 121 dBAE results 

in -20 dB. 

 

Figure 9: Representation of the peak amplitude(s) of a wire 

break and triggering of the reference source (rebound hammer 

type N) at three different distances in order to determine the 

value of K [4] 

 

The method described here represents one possibility for 

determining the maximum possible sensor distance. However, 

other procedures or procedures based on this are also 

conceivable. The maximum possible sensor distance is the 

maximum distance between sensors to allow reliable detection 

and localization of sources (here: wire break). The wire breaks 

differ from the reference source by the value of K in dB. This 

method is based on EN14584 [10], which describes the use of 

planar location for the testing of pressure vessels. The use of a 

fixed detection threshold is assumed. In contrast to EN14584, 

the reference source defined here is the rebound hammer type 

N and not the breakage of a pencil lead (Hsu-Nielsen source).  

 

5 CONCLUSION 

Wire break detection with Acoustic Emission is nowadays 

state of the art and a well-documented application. The NDT 

method AE has proved to be able to detect and locate wire 

breaks in concrete structures in many investigations and 

practical approaches and projects. 

AE hardware and software have been optimized over the last 

years to the needs of the engineering companies and service 

providers to be a reliable tool. Easy to install, comfortable to 

use and stable in the long run. The automated alarming makes 

it possible to handle several projects in parallel and next to 

routine checks detailed analysis is required in case of alarms. 

The alignment of more data sources in one platform like the 

dashboard gives more confidence and reduces the risk of false 

alarms. 

Finally, guideline SE 05 was established to line up all 

approaches and to create a common sense of the application, 

the benefits and limits of AE and give public administrations a 

tool to formulate tenders in a way to get what they require. 
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ABSTRACT: The events of September 11, 2024, will remain etched in the collective memory of Germany’s bridge engineering 

community. The sudden and unannounced partial collapse of a prestressed concrete bridge rightfully reverberated across society 

at large. The structure in question was the Carola Bridge in Dresden. This architecturally refined and exceptionally slender bridge 

is, with good reason, regarded by professionals as an icon of its time's structural engineering. Even by today’s standards, its design 

and construction would pose a considerable challenge. This paper presents the main findings from investigations undertaken to 

determine the cause of the collapse and attempts to reconstruct the failure process. Additionally, the acoustic monitoring system 

implemented to safeguard the remaining superstructures is also presented. 

KEY WORDS: Carola Bridge; Bridge Collapse; Prestressed Concrete; Stress Corrosion Cracking; Bridge Monitoring; Acoustic 

Emission Analysis; Forensic Engineering. 

1 INTRODUCTION 

The partial collapse of the Carola Bridge on September 11, 

2024, sent shockwaves not only through the city of Dresden but 

also across the engineering community. The abrupt failure of 

an urban structure of such infrastructural importance raised 

fundamental questions: How could such an incident occur? 

What mechanisms led to the structural failure? At which 

location did the critical deficit manifest? And why did early 

indications of the developing failure remain undetected for so 

long despite routine structural monitoring? 

These questions extend far beyond the technical assessment 

of a singular event. They also pertain to the derivation of 

potential implications for other structures that may be subject  

 

 

Figure 1. The Carola Bridge in the heart of Dresden’s historic 

city centre, photographed on December 12, 2024, from a 

south-westerly perspective, with the Frauenkirche 

prominently in the foreground and the Albert Bridge visible in 

the background (Photo: Alex Burzik). 

to previously undetected load-bearing deficiencies. Moreover, 

they address the issue of accountability for this structural 

failure, although a definitive attribution of responsibility may 

prove elusive. 

To investigate the incident, a comprehensive examination of 

both the collapsed section and the remaining superstructures 

was initiated. This paper presents the main findings of those 

investigations and elaborates on the subsequent failure 

analysis, with particular attention to the ad-hoc measures taken 

to assess the condition in the region of the fracture cross-section 

at axis D. In addition to material testing, an in-depth review and 

interpretation of the original construction documentation 

supplemented the analysis. This integrative approach enabled a 

reconstruction of the sequence of events leading to the collapse. 

Furthermore, the report outlines the monitoring that was 

enacted to ensure the continued operational safety of the 

remaining superstructures during their residual service life. 

2 THE STRUCTURE 

 Overview 

Based on the winning competition design, the new bridge over 

the river Elbe was designed by the state-owned VEB Design 

and Engineering Office for Road Construction (EIBS, Dresden 

division), under the leadership of Eckhardt Thürmer.  

The Dr.-Rudolfs-Friedrich Bridge, inaugurated for traffic on 

3 July 1971, was the longest-span prestressed concrete bridge 

in the German Democratic Republic (GDR) at the time [1], and 

has since become a defining feature of Dresden’s cityscape 

(Figure 1). In 1992, it was renamed the Carola Bridge. 

The approximately 400 m long structure, with five individual 

spans ranging from 44 to 120 m, has an overall width of 32 m 

and comprises three separate superstructures, each designed as 

a single-cell prestressed box girder (Figure 3). The fixed point 

is located at the pier in axis D, where the superstructure reaches 

its maximum structural height of 5.2 m. Towards the 
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abutments, the cross-section tapers to 1.6 m and 1.8 m, 

respectively. 

Due to pronounced moment variations under continuous 

beam conditions, the superstructure was subdivided by three 

hinges. This resulted in a two-span girder between axes A and 

C with a 12 m long cantilever towards the Elbe (hinge I). A 

single-span girder with two cantilever arms—44 m towards the 

Elbe (hinge II) and 10 m towards the Neustadt side 

(hinge III)—rests on piers D and E. A 64 m long suspended 

main-span beam bridges the gap between the cantilever arms. 

An additional suspended beam was placed in the edge span on 

the Neustadt side. 

Superstructures a and b carried two-lane roadways in 

opposing directions (bridge class 60), while superstructure c 

accommodated a double-track tramway. The outer edges of 

superstructures a and c featured 3.2 m wide sidewalks for 

pedestrians and cyclists [3]. Utility lines for district heating, 

gas, electricity, and water were integrated into the interior of 

the box girders. 

One of the design-specific challenges was developing an 

appropriate tendon layout. In the construction stage—before 

the installation of the suspended beams—positive bending 

moments prevailed in approximately 70% of the span between 

supports D and E. In contrast, the final state was characterised 

predominantly by negative bending moments. In addition, 

significant creep and shrinkage deformations were anticipated 

during the construction period. The chosen solution involved 

the use of three different types of tendons: permanent tendons 

to carry the dead load, construction-stage tendons for 

temporary stabilisation during erection, and post-tensioned 

tendons that were activated in the final state. From today’s 

perspective, this tendon strategy represents a key construction-

related contributing factor to the collapse, as some of the 

tendons were exposed to extended idle periods in ungrouted 

sheaths. 

Another noteworthy structural feature was the transverse 

connection at the location of hinge II, where the three 

individual superstructures were interconnected via a cross-

beam (Figure 2). During construction, vertical stressing jacks 

were used at this location to compensate for height differences 

between the successively erected superstructures. In the final 

state, the transverse connection equalised differential 

deflections between the three very slender and separate box 

girders, which resulted from shrinkage, creep, thermal effects, 

and traffic loading. Furthermore, it enabled the redistribution 

of transverse loads, effectively enforcing load-sharing between 

adjacent superstructures.  

3 MAINTENANCE AND REHABILITATION 

 Monitoring of Structural Deformations 

A prerequisite for the structural integrity of the bridge was 

sufficient prestressing of the coupling bolts between the steel 

hinges and the web tendons. Of the total 504 bolts installed 

across all joints, 121 were designed as measuring bolts. The 

existing bolt forces were inferred from the difference in 

elongation between the zero reading and the measurement 

under load, recorded using high-precision mechanical dial 

gauges. Data on bolt forces is available from the time of 

construction and subsequently from the years 1974, 1979, 

1982, and the early 1990s. 

Significant deflection at hinge II had been known since the 

1980s. A measurement campaign conducted in the early 1990s 

aimed to determine the causes and assess the impact on the 

usability of the structure. Within the box girder of 

superstructure c, inclinations, displacements, vibrations, and 

temperatures were recorded using various measuring 

instruments at different locations, partly over a period 

exceeding one year. The absolute values of the coupling bolt  

 

 

Figure 2. Building immediately after the collapse. 

 

 

Figure 3. Longitudinal section and ground plan of the Carola Bridge, from [2]. 
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forces exhibited large scatter and decreased continuously since 

the initial prestressing, though at a progressively slower rate. 

These force reductions were attributed to creep and shrinkage 

deformations and were thus considered explainable. At the 

time, damage to the prestressing tendons was not considered a 

possible cause. Nor was the structural safety called into 

question. 

The passage of a tram caused vertical displacements at hinge 

II in superstructure c of approximately +12 mm (downward) 

and –3 mm (upward). Deformations due to temperature 

variations were significantly larger, reaching up to 65 mm 

within 1.5 days. Relative to the zero position, deflections 

ranged from –20 mm to +80 mm. Based on measured data and 

theoretical evaluations, it was estimated that by early 1993, 

hinge II had experienced an average downward deflection of 

approximately 30 cm, equivalent to roughly 80% of the total 

deformation expected over the entire 80-year design life. 

In addition to long-term monitoring, short-term 

measurements were performed in 2004 as part of static and 

dynamic load testing on superstructure a, to assess the actual 

structural behaviour and the effective interaction with adjacent 

superstructures b and c. The tests did not reveal any plastic 

deformations. Movements of transverse cracks in the underside 

of the roadway slab remained minimal. Load redistribution 

through the transverse connection at hinge II was quantified at 

a maximum of 39–34–27% (superstructures a–b–c, 

respectively) under traffic loading applied to a. Neither the 

long-term nor short-term investigations indicated any critical 

implications for the global structural integrity. 

 Issue of Prestressing Steel 

The issue of stress corrosion cracking (SCC) in prestressing 

steel was already known in connection with the Carola Bridge. 

Structural inspections were conducted regularly, following 

DIN 1076 [4], and initially revealed no abnormalities. A first 

recalculation was carried out in 1996, following [5], which 

successfully demonstrated the structure’s failure annunciation 

behaviour. 

Transverse cracks have been definitively documented since 

the year 2000. Two leading causes were considered: excessive 

creep deformations or failure of the prestressing reinforcement, 

e.g. as a result of SCC. Since high creep deformation was 

known, it was plausibly assumed to be the primary cause of the 

cracking. Potential tendon failures were not taken into account. 

The cracks showed only minor widths, within the permissible 

limits for prestressed concrete structures. As the failure 

annunciation behaviour had been analytically verified, larger 

crack widths would have been expected in the event of an actual 

pre-failure condition. 

The limited rotational capacity of the cross-sections, caused 

by the high reinforcement ratio and high utilisation levels, was 

not sufficiently considered. Additionally, the transverse load 

distribution via the cross beam at hinge II was underestimated. 

The mutual support between superstructures resulted in 

minimal changes in crack width, even in the presence of critical 

damage in one of the superstructures. 

From 2004 onwards, deformation monitoring was performed 

by measuring crack widths and joint openings at hinge II. From 

today’s perspective, these measurements were not suitable for 

identifying early indicators of failure. 

 Chloride Exposure 

Sections of the three superstructures—especially between axes 

D and E—were affected by chloride-induced corrosion. The 

failure of a drainage line was the cause of this. The resulting 

damage was repaired. Following a non-destructive 

electrochemical chloride extraction, the interior surfaces of the 

box girders were sealed with a crack-bridging protective 

coating. 

During the structural investigation in autumn 2024, corroded 

prestressing steel and passive reinforcement were identified. 

However, these were not determined to be the cause of the 

collapse. 

 Other Aspects 

Throughout the bridge’s service life, numerous investigations 

were carried out. All irregularities were followed up, and the 

condition of the structure was continuously assessed. No 

serious deficiencies have been identified in the repair works. 

As a result, a rehabilitation programme was initiated, beginning 

with the superstructure a in 2020/21. Due to chloride 

contamination, this superstructure was considered particularly 

critical. Rehabilitation of superstructure c was scheduled to 

start in early 2025. Measures to enhance the durability of this 

structure were also planned. 

4 COLLAPSE 

In the early hours of September 11, 2024, at approximately 

02:58 a.m., the collapse of superstructure c of the Carola Bridge 

abruptly altered the Dresden cityscape. A camera operated by 

Sächsische Dampfschifffahrt, mounted on the bow of a ship,  

 

 

 

 

 

 

Figure 4. Recordings from a surveillance camera: initial state 

and moment of collapse. 
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captured the incident as it unfolded (Figure 4). Facing 

upstream, the camera recorded precisely the critical area—the 

river span between axes C and D. 

A frame-by-frame analysis of the footage reveals the 

sequence of events: initially, the region around hinge II began 

to subside, while a crack opened at the support cross-section in 

axis D. Moments later, the overhead tram catenary came into 

contact with the river. A flash of light illuminated the night sky, 

accompanied by a column of spray erupting from the water's 

surface.  

Just eight minutes before the failure, a tram had crossed this 

very span, likely initiating the kinematic chain leading to 

collapse. Fortunately, no pedestrians or cyclists were present 

on the structure at the time of failure. Only a delivery van 

travelling on superstructure a was crossing the river span as 

superstructure c gave way. 

5 MATERIAL INVESTIGATIONS 

 Ad-hoc Measures for Assessing the Damage Condition 

of Superstructure c 

In the very first hours following the collapse, an extensive 

photographic documentation of the general structural 

condition—and particularly of the fracture cross-section—was 

carried out. The aim was to ensure that the assessment of the 

exposed tendons and reinforcement would not be compromised 

by environmental influences or incipient corrosion. With the 

support of numerous contributors, nearly all components were 

documented on the day of the collapse itself. 

The condition of the prestressing tendons was evaluated 

visually and classified into damage categories. It became 

evident that the post-tensioned tendons in the roadway slab 

area, in particular, showed advanced pre-existing damage and 

had failed long before the collapse. These post-tensioned 

tendons had only been stressed after a time delay, following the 

installation of the suspended main-span beam; see also [2]. This 

conclusion was drawn from the almost black fracture surfaces 

of many tendons (top right in Figure 6), indicating an oxygen-

deficient environment within the still-intact sheathing. As such, 

these wire fractures occurred either during construction or 

shortly thereafter, but in any case, a considerable amount of 

time ago. 

 

 

Later microscopic investigations of fractured wires, 

conducted by the Federal Institute for Materials Research and 

Testing (BAM), Berlin, revealed mortar residues on some 

fracture surfaces—clear evidence that these fractures had 

occurred before or during the grouting process. Fresh fracture 

surfaces appeared metallic and glossy, without signs of 

corrosion, and also showed no ductile necking in the failure 

zone (bottom right in Figure 6). Even the prestressing steels 

without pronounced crack initiation lenses showed signs of 

embrittlement. 

A characteristic feature of the fracture cross-section—

beyond the failed prestressing tendons—was the presence of 

reinforcement bars that had been pulled out from the concrete 

section in the upper reinforcement layers (Figure 5). In several 

cases, the reinforcing bars exhibited no signs of fracture, 

necking, or cross-sectional loss. Only isolated and minimal 

indications of chloride-induced corrosion were visible 

externally (e.g. slight pitting corrosion at the ribs). 

Subsequent analyses of concrete samples taken from the 

fracture zone confirmed that chloride-induced pitting corrosion 

did not play a relevant role in this area. The tightly spaced 

arrangement of tendons and reinforcement bars likely impaired 

the bond performance, which may have contributed to the 

complete pull-out of some reinforcing bars from the roadway 

slab. 

 

 

Figure 5. Failed cross-section in axis D with pulled-out steel 

reinforcement. 

.

 

 

Figure 6. Results of photographic documentation of the condition of the broken prestressing wires at axis D of superstructure c, 

view direction Dresden-Neustadt (mid of December 2024). 
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6 ACOUSTIC MONITORING FOR THE 

SUPERSTRUCTURES A AND B 

As the Elbe River and the southern (Altstadt-side) riverbank 

were gradually cleared of the remnants of superstructure c in 

December 2024, increasing attention was directed toward 

reopening the waterway and ensuring the safe underpassage 

beneath the remaining superstructures a and b. However, a 

general opening of the adjacent banks and associated roads, 

footpaths, and cycleways was not pursued, as these areas would 

soon have to be closed again for the dismantling of the 

remaining bridge sections. In contrast, due to its role as an 

international waterway critical to freight transport for the 

Czech Republic, the navigability of the Elbe was given priority. 

An evaluation of the structural safety could not be guaranteed 

solely through static analysis under the prevailing conditions. 

Therefore, a prerequisite for reopening the Elbe to ship traffic 

was the implementation of acoustic emission monitoring to 

detect new wire break events [6], [7]. Shortly after the partial 

collapse, a small number of sensors were installed in the 

roadway slab above pier D in superstructures a and b to ensure 

safety during on-site diagnostic investigations. In January 

2025, this system was expanded to cover the entire main river 

span and the support regions at axis C (Figure 7 and Figure 8).  

As of February 3, 2025, controlled ship passages were 

permitted based on real-time monitoring data, solely for 

operationally critical transit (Figure 9). Initially, a ship-specific 

clearance protocol was applied. From 18 February onward, 

clearance was planned to be issued daily, allowing navigation 

within predefined time windows. However, on the morning of 

18 February at 04:50 a.m., the first wire break events were 

recorded. Several additional events followed within hours, 

concentrated on the axes and adjacent roadway slabs. At axis 

D, up to six spatially correlated events were detected within 24 

hours. This sudden development was most likely triggered by 

pronounced temperature differentials compared to previous 

days. 

In preparation for the monitoring program, quantitative 

threshold values were determined through static analysis for the 

monitoring region. Engineering assumptions were made to 

estimate the loading condition that, with high confidence, had 

still been acting on the superstructure shortly before the partial 

collapse. Based on this load model, the equivalent number of 

prestressing wires available as structural reserve was 

determined. For axis D, a calculated reserve of 14 locally 

correlated wire breaks was established. Approximately 40% of 

this reserve was consumed within a very short period. 

 

 

Figure 7. Overview of the monitoring area and the sensor layout for the acoustic emission monitoring system. 

 

Figure 8. Acoustic emission sensor in superstructure b. 

 

 

Figure 9. First ship passage after the collapse of the bridge 

and the installation of the monitoring system.  
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It was assumed that further significant temperature 

fluctuations would occur in the following weeks, which could 

again lead to an abrupt reduction in the remaining structural 

reserve. As an immediate response, a wire-break-free 

monitoring period of 72 hours was mandated before any further 

ship passages could even be considered. Subsequently, a day-

by-day clearance protocol was reintroduced. Ship passages 

were permitted only under direct real-time monitoring using the 

installed measurement systems. 

Ultimately, these events highlighted the vulnerable and 

undefined structural condition of the remaining bridge 

components, forming the basis for the decision to proceed with 

prompt deconstruction. 

7 CONCLUSION 

With knowledge of the brittle failure risk associated with the 

prestressing reinforcement, re-commissioning of 

superstructures A and B was deemed unacceptable. This 

decision was thoroughly examined and carefully weighed, as 

the Carola Bridge had represented an essential component of 

Dresden’s road infrastructure. Among the options considered 

was a controlled load test. However, such a test would have 

only provided a snapshot of the current load-bearing capacity. 

Its predictive value for future performance would have 

remained uncertain, as the damage mechanism—stress 

corrosion cracking—may temporarily cease under the alkaline 

conditions of the grouting mortar. Still, the progression of 

fatigue-related damage could not have been reliably assessed at 

the observed level of deterioration, even if a load test had 

returned positive results, a residual risk would have persisted, 

one that could not be ethically or technically justified. 

It must be acknowledged that the bridge had been inspected 

and monitored in accordance with established engineering 

standards. This highlights the need for a critical review and 

update of these standards. Current regulations prescribe 

recalculations, diagnostic investigations, and visual 

assessments from the exterior. However, it remains challenging 

to make definitive statements about the internal condition of 

structural components. Insights gained from the Carola Bridge 

investigations are now being systematically compiled and 

evaluated within the research initiative "Investigation and 

Verification of the Causes of the Carola Bridge Failure 

concerning the Review and Potential Revision of Concrete 

Bridge Design Codes" (Project No. FE-15.0729/2024/HRB). 

The objective is to assess the broader implications for similar 

structures and to initiate corresponding changes to design and 

inspection standards. 

Measurement-based monitoring techniques—such as 

acoustic emission monitoring for detecting wire breaks in 

prestressed tendons—are playing an increasingly important 

role in this context and must be formally incorporated into 

regulatory frameworks. Ultimately, this method remains the 

only available approach capable of directly detecting and 

localising wire breaks at the moment of occurrence, thereby 

enabling meaningful insights into the progression of damage. 

Within the broader context of the tragedy resulting from the 

partial collapse, the successful application of this technique 

stands out: it was only through this method that navigation on 

the river Elbe could be safely resumed at minimal residual risk. 
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ABSTRACT: Dynamic Messaging Signs (DMS) are much larger and heavier roadside signs than typically placed on their 

respective support systems. The excess weight and size of these signs, in conjunction with their breakaway support systems, 

introduces wind-induced vibration problems not seen in the past. The AASHTO LRFD Specification for Structural Supports for 

Highway Signs, Luminaires, and Traffic Signals (SLTS), including interim revisions through 2022, does not yet address vibration 

design for these nontraditional roadside signs. The DMS support system, specifically the friction fuse connection, is susceptible 

to the formation of stress concentrations and potential fatigue issues. A DMS was instrumented with strain gages, accelerometers, 

anemometers, and temperature sensors to characterize both the wind loading and response of the structure. A dynamic numerical 

model was validated with experimental field data and used to evaluate the fatigue life of the DMS instrumented in the field. The 

results of the dynamic analysis performed with the validated FEM model differed significantly from the analysis with the 

equivalent static pressure equation for natural wind gusts prescribed in the AASHTO Specification, which highlights the 

importance of considering the dynamic behavior of these heavier sign panels. Extension of the dynamic method to models of other 

large DMS in service showed a greater fatigue stress and corresponding shorter estimate of the fatigue life. 

KEY WORDS: Field Monitoring; Wind Loading; Sign Structures. 

1 INTRODUCTION 

Wind-induced vibrations are often a key consideration for the 

design of the structural supports of signs and signals. These 

vibrations introduce oscillations that can lead to fatigue 

concerns and potentially premature failure of the structure. The 

current AASHTO LRFD Specification for Structural Supports 

of Highway Signs, Luminaires, and Traffic Signals (SLTS) 

addresses fatigue design for overhead sign and signal structures 

and high mast light towers [1]. Fatigue design for roadside 

signs is not addressed because these are traditionally smaller 

and have not observed fatigue problems in the past. However, 

as roadside signs get heavier and larger, there is concern that 

these structures may be susceptible to fatigue under wind 

loading. 

Dynamic messaging signs (DMS) include luminous elements 

that display words, numbers, or symbols to communicate real-

time roadway and traffic information to drivers [2]. The 

roadside versions are often located in the clear zone alongside 

the roadway and as a result, must feature breakaway or yielding 

supports to limit injury to drivers and damage to vehicles that 

may swerve off the roadway [1], [3]. The DMS are much larger 

and heavier than signs typically placed on breakaway posts. 

The signs range from 1.8m x 4.3 m to 2.4m x 5.5m, weigh over 

680 kg, and have post heights that range from 4.7m to 6.7m [4]. 

The 2025 interim revision of the AASHTO 2013 (ASD) 

Specification for SLTS acknowledges the potential impact of 

the mass of dynamic messaging signs and requires their 

cantilevered support structures to be designed for fatigue [5]. 

However, the revision states that design of these structures will 

require considerations beyond the specification. This 

ambiguity leaves the designer to determine if equivalent static 

analysis or dynamic analysis is more appropriate to evaluate the 

fatigue life of the support structure. 

In this work, the behavior of roadside dynamic messaging 

signs under wind loading was investigated to determine which 

analysis method should be considered in design. A DMS was 

instrumented in the field and the experimental field data were 

used to characterize the wind loading and response of the 

structure. The field data was further used to update a dynamic 

numerical model for comparison with an equivalent static 

pressure analysis. Ultimately these were used to evaluate the 

fatigue life of these DMS support structures. 

2 DMS FIELD MONITORING 

A post-mounted DMS (DMS 169-142.45NB) located in 

Brooklyn Park, MN with a Type A support detail was 

instrumented in the field to investigate its structural 

performance under wind loading. The Type A support featured 

a slip base and a friction fuse connection just below the sign 

panel (Figure 1). The friction fuse consisted of two plates used 

to splice two lengths of the support post: (1) a fuse plate with a 

weakened portion designed to fracture under impact, and (2) a 

hinge plate designed to yield.  

The instrumentation consisted of two accelerometers, two 

cup and vane anemometers, one temperature probe, and 76 

strain gages. Figure 2 provides an overview of the 

instrumentation. The single-axis accelerometers were used to 

identify the natural frequencies of the structure. The cup and 

vane anemometers measured the mean wind speed and 

direction. The strain gages were used to measure the dynamic 

response of the support and friction fuse connection under wind 

loading. The supports were expected to undergo strong-axis 

bending, weak-axis bending, and potentially torsion. The post 
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strain gages included two strain rosettes on each face of the web 

as well as strain gages at the tip of the flanges. These strain gage 

sets were located at four different locations along the two 

support posts. The field data was collected over five months 

from August 2017 through January 2018. 

 
Figure 1. Type A breakaway connection: (a) slip base, (b) 

friction fuse. 

 

Figure 2. Overview of DMS field instrumentation. 

3 ANALYTICAL MODELS 

Three different models were used for analysis of the DMS 

structure: two simplified models and one finite element model. 

The simplified models consisted of a static beam model and a 

dynamic beam model. In the static beam model, the wind 

pressure applied to the sign was assumed to distribute evenly to 

the four panel support points. The resulting point loads on the 

cantilever posts were used to determine the stresses and the 

corresponding strains along the height. In the dynamic beam 

model, the inertial effects of the sign mass were considered by 

applying the mass of the sign to a rectangular prism that was 

supported by a cantilever beam with stiffness equivalent to the 

two columns. A single-mode dynamic model was used to 

capture the behavior of this system subjected to a dynamic drag 

forcing function due to the wind pressure on the sign face. 

The third model featured a linear elastic finite element (FE) 

model created to evaluate the fatigue stresses generated in the 

friction fuse connection during wind loading. The friction fuse 

connection was modeled as a separate detailed three-

dimensional component to capture stress concentrations, 

particularly in the fuse plate. The support posts were modeled 

with standard beam elements and the panel was modeled using 

standard four-node shell elements. The FE model was validated 

with the field data assuming the structure would have similar 

natural frequencies to those measured in the field. 

All three analytical models assumed ASTM A36 steel with 

an elastic modulus of 200 GPa and yield strength of 248.2 MPa. 

The posts were W8x24 cross-sections with a moment of inertia 

of 3442.3 cm4. Additionally, the dynamic models assumed a 

damping ratio of 0.02.  

4 RESULTS 

The two simplified models were compared using the measured 

wind demand and corresponding strain response. A change in 

the measured wind speed normal to the sign face corresponded 

to a change in pressure that was applied as a drag force to the 

sign supports. For the simplified static model, the expected 

change in strain at the base of the post was determined and 

compared with the measured change in strain in the cross 

section. For the dynamic model, a transient drag force due to 

the measured wind speeds and corresponding pressure was 

applied to the single degree-of-freedom system. The change in 

strain at the base of the post between two times of interest was 

determined from the transient response for comparison. The 

strain distributions predicted by the dynamic response aligned 

better with the measured strains than those strains predicted by 

the static model (Figure 3). The comparison of the two 

simplified models demonstrated that considering the effects of 

the inertia of the sign panel is important to capture the behavior. 

 

Figure 3. Comparison of the strains predicted by the 

simplified models and measured strains in the east post for a 

specific wind event. Error bars on predicted strains reflect the 

noise on the measured strains. 

Based on the comparison, a dynamic FEM was used and 

required dynamic wind loading functions as inputs to the model 

for fatigue analysis. To generate the limit-state wind loading, a 

representative wind spectrum was used to generate zero-mean 

wind speed time histories. A Davenport spectrum with a terrain 

coefficient of 0.005 for open, unobstructed terrain best 

characterized the power spectrum of the measured wind data 

during the deployment [6]. The spectrum was scaled to the 

mean hourly wind speed of the region and a corresponding 

filter was applied to white noise inputs with unit covariance to 

generate wind speed time histories [7].  The pressure loading 

functions were generated from these simulated wind speed 

histories using a variation of the method presented in reference 
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[8]. Typically, the stress range only due to the fluctuating wind 

load would be considered in the fatigue analysis. However, 

because the gravity load of the sign was thought to play an 

important role in the resulting stresses within the connection, 

the wind pressure function included both the mean and 

fluctuating pressure. The combined mean and fluctuating 

pressure were thought to provide a more realistic representation 

of the magnitude of the fluctuating tension stresses and whether 

these would overcome the compressive stresses due to gravity. 

Five independent pressure functions were applied to the 

dynamic FEM to determine an average wind-induced stress 

range. The fatigue limit-state stress range was taken as the 

resulting amplitude of the tension stress within the friction fuse 

connection. 

The fatigue demand in the connection was computed using 

two methods: (1) using the equivalent static pressure equations 

outlined in Article 11.7 of the AASHTO 2015 LRFD 

Specification for SLTS [1], (2) the dynamic FEM model with 

wind loading functions mentioned above. When using the 

equivalent static approach, the peak fatigue stress range was 

49.6 MPa. The dynamic FEM model resulted in a peak fatigue 

stress range of 63.9 MPa. Both results exceed the constant 

amplitude fatigue threshold (CAFT) of 48.3 MPa for an infinite 

fatigue life. Further, the equivalent static approach 

underestimates the stress range predicted by the dynamic 

model.  

5 CONCLUSION 

The additional weight of dynamic messaging sign (DMS) 

panels requires fatigue under wind loading to be considered in 

design. However, the AASHTO 2015 LRFD specification does 

not address fatigue design for these nontraditional roadside sign 

structures. Field monitoring of a DMS structure was used to 

validate simplified and detailed numerical models and 

determine the fatigue life of the instrumented DMS structure. 

Additionally, the effectiveness of the different modeling 

approaches to capture the behavior of the sign structure to wind 

loading was evaluated. 

A comparison of the modeling approaches to the field data 

highlighted the importance of considering the inertial effects of 

the sign panel mass on the response of the structure. Limit state 

pressure loading functions were generated as inputs to the 

validated dynamic FE model. The resulting fatigue stress 

demand in the breakaway connection was compared with the 

traditional equivalent static pressure analysis method. The peak 

stress demand from the dynamic FE model was 28% larger than 

the static approach further emphasizing the importance of using 

a dynamic model when evaluating these structures.  

The resulting stress demands were used to calculate the 

fatigue life of the instrumented DMS. The dynamic modeling 

technique can be extended to other in-service DMS support 

structures to estimate their fatigue life. 
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ABSTRACT: The rapid expansion of the wind energy sector has necessitated remote monitoring of wind turbines to ensure safe, 

reliable, and cost-effective operations. While traditional inspection methods remain in use, there is an increasing shift toward 

passively monitored, real-time solutions to detect and localize potential damage. The present study makes a novel attempt to 

explore the potential of 6-component seismic data for use in structural damage detection frameworks for wind turbine monitoring. 

Measuring both translational and rotational ground motions is a relatively recent advancement in Structural Health Monitoring, 

offering valuable insights into the dynamic behavior of towers. 

In the present study, two 6-component (6-C) seismometers were placed at the foundations of two different wind turbine types 

in the wind park of Kirchheilingen, Germany. The monitoring campaign lasted 7 weeks and focused on capturing vibrational data 

during operation. By analyzing these signals, in conjunction with Supervisory Control and Data Acquisition (SCADA) Data from 

the turbine operator, the research aims to identify patterns indicative of structural damage, such as changes in modal frequencies, 

damping ratios, or signal coherences. It will contribute to the development of scalable, cost-efficient SHM systems tailored for 

the wind energy industry. Furthermore, the insights gained could inform future design improvements and predictive maintenance 

strategies, ultimately supporting the sustainable growth of renewable energy infrastructure. 

 

KEY WORDS: Structural health monitoring; wind turbines; 6C-seismic data; damage detection; renewable energy; operational 

modal analysis; wind turbine tower 

 

1 INTRODUCTION 

Wind energy has become one of the key pillars in the global 

transition toward sustainable and low-emission power 

generation. As one of the most environment-friendly 

alternatives to fossil fuels, wind turbines contribute 

significantly to meeting international climate targets and 

reducing carbon footprints. However, as the number and size of 

installed wind turbines continue to grow, so do the demands on 

their structural integrity, operational efficiency, and service 

life. In this context, monitoring the condition and performance 

of wind turbines has emerged as a critical aspect for both 

industry and research. Modern sensor technology and data-

driven analysis methods allow for the continuous observation 

of dynamic loads, vibration behavior, and early detection of 

potential damage. A particular focus lies on the measurement 

and analysis of vibration signals and the identification of 

structural eigenfrequencies, as changes in these parameters can 

indicate material fatigue, loosened connections, or structural 

weakening. The development of reliable and efficient 

monitoring techniques is therefore essential — not only for 

extending the lifetime of wind turbines but also for ensuring 

economically optimized and safe operation. Previous work on 

wind turbine monitoring has primarily focused on using 

SCADA data, strain gauges, accelerometers, and optical fiber 

sensors [1], [2]. Seismic observations have also been utilized to 

assess the influence of wind turbines on ground motion and 

operational states [3]. However, to our knowledge, this study is 

the first to employ six-component (6C) seismic data — 

recording translational and rotational ground motion — 

specifically for the structural health monitoring of a wind 

turbine. 

2 METHODS 

 Location and instruments 

The experiment was conducted in a wind park near 

Kirchheilingen, containing multiple wind turbines. Two 

turbines, differing in tower construction — a steel tower 

(LDST) and a concrete hybrid tower (CHT) — were selected 

for detailed analysis. The two turbines, each with a height of 

166 meters, were commissioned in September 2022 and are 

therefore among the latest generation of models. 

 Their locations, highlighted in blue on the map in Figure 1, 

are situated only a few hundred meters apart. 

Inside each of these turbines at the ground (on the top of 

foundation), a BlueSeis 3A and a Trillium Compact 120s 

Seismometer have been placed for a timespan of about seven 

weeks. The BlueSeis 3A station measures rotations about the 

three axes and the Trillium compact 120s measures translations 

providing 6 degree-of-freedom (DOF) data. Figure 2 shows the 

setup inside of the towers. The rotational seismometer on the 
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right as well as the translational seismometer directly next to it 

forming a 6-component (6C) station. 

Additionally, two reference stations - marked in red in figure 

1 - were used to characterize the local noise field. Each 

reference station was equipped with two Trillium Compact 

120s seismometers. One station was placed directly next to the 

foundation of one of the turbines, while the other was located 

outside the wind park, behind a lake but near a road. During the 

days of setup of the two 6-component stations inside the tower 

these reference stations were setup to gain reference data. 

  

Figure 1. Location of the two wind-turbines in Kirchheilingen 

monitored using BlueSeis3A and Trillium Compact for 7 

weeks.  

 

 

 

Figure 2. Example setup of instruments 

 Data acquisition 

The experiment was carried out over a period of seven weeks, 

beginning on November 18, 2024, and concluding on January 

9, 2025. This specific timeframe was chosen to coincide with a 

period of typically high wind activity, increasing the likelihood 

of capturing a wide range of operational states of the turbine. 

Additionally, we aimed to collect data during non-operational 

hours, hoping to observe the tower’s behavior under different 

load conditions. The data of the 6-C stations was saved to local 

disks which were carried after the experiment. SCADA data 

(Supervisory Control and Data Acquisition) is collected by 

sensors at the turbine to provide engineers with valuable data 

for monitoring and maintaining the turbine. The data is 

collected in databases to which we have access. Data such as 

the rotor speed, windspeed and temperature are just a few of the 

environmental data. Combining these datasets, seismic and 

SCADA data might be good to get clearer insights into the 

dynamics of the tower and therefore for a setup on the structural 

health monitoring of the tower.  

 

3 DATA ANALYSIS & RESULTS 

The reference stations marked in Figure 1 already show 

expected results. The noise level at the outer station is 

significantly lower than at the directly next to the turbine. This 

meets the expectation. However, stable frequency bands are 

still observed between 1-10 Hertz and amplitudes are quite high 

for frequencies below 1 Hertz for the station which is far away. 

Figure 3 shows a spectrogram for the reference station which is 

near one turbine. The black line indicates the speed of the Rotor 

which lines up with the frequencies above 10 Hertz. There can 

be seen other frequencies such as this steady one between 25 to 

30 Hertz which is likely to be caused by turbine operation. The 

short peaks over a wide frequency band between 22:30 and 

23.00 local time could be related to the nacelle turning into the 

wind. 

 

 
 

Figure 3. Frequencies rotor speed 

 

To gain better insights into the frequencies recorded at the 

tower, Power Spectral Densities (PSDs) were calculated. The 

seismic signal from the Trillium Compact sensor was divided 

into two-minute time sections to ensure relatively constant 

conditions. For each of these sections, the corresponding rotor 
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speed was averaged and assigned to specific rotor speed ranges. 

The PSD for each time section was then calculated and colored 

according to its assigned rotor speed range. This approach 

allows differentiation of the PSDs based on the rotor speeds 

that drive turbine motion and induce seismic signals. Figure 4 

shows the PSD peaks for all time sections. Differences in both 

amplitudes and frequencies can be observed. For instance, the 

frequency peak above 10 Hz appears to increase in amplitude 

with higher rotor speeds. Higher amplitudes, particularly at low 

frequencies, seem to be associated with elevated rotor speeds. 

The dominant peak at 1 Hz is clearly visible. Furthermore, a 

shift from lower to higher frequencies around 14 Hz with 

increasing rotor speed can be clearly identified and connected 

to the generator speed. Spectrograms also revealed sudden 

changes in frequency over time, likely related to variations in 

generator behavior. 

 

Following the methodology of Neuffer et al. [1], we 

calculated hodograms for the translational seismic data at the 

bottom of the foundation. Hodograms provide a graphical 

representation of seismic motion in two dimensions over time. 

These hodograms illustrate the seismic movement of the 

turbine at the foundation, with time represented by color. By 

filtering for specific frequency bands, in this case between 0.9 

and 1.1 Hz, which covers the dominant frequency, we observe 

smooth movement in particular directions. 

 

 

Figure 4. Power Spectral Density with respect to Frequency 

plot 

 

The calculation was performed for all three planes: East-

North, East-Vertical (Z), and North-Vertical (Z) directions. 

Figure 5 illustrates the corresponding hodogram. Focusing on 

the East-North (E-N) plane, which represents the bending of the 

tower, it becomes evident that the bending is predominantly 

polarized in one direction, but changes over time, in this case, 

within approximately 6 seconds. There is a main direction of 

bending, which raises the question of whether the tower 

predominantly bends in alignment with the wind direction. To 

further explore this, we calculate the covariance matrices along 

with their eigenvectors and eigenvalues, which allows us to 

determine a linearity factor with a directional component. The 

linearity index L is defined as 1 minus the ratio of these 

eigenvalues. A value close to 1 indicates high linearity, while a 

value close to 0 suggests circular motion for the respective time 

sections. 

 

Figure 5. Hodograms for frequencies between 0.9-1 Hertz in 

the (a) East-North direction (b) Vertical-East direction and (c) 

Vertical-North direction. 

We calculated linearity indices and vectors over short time 

windows during which translational motion was dominant. By 

filtering for high linearity values, we minimize the effects of 

whirling motions and identify the principal direction angles for 

each time section. Figure 6 displays the principal direction 

angles for the wind turbine tower alongside the measured wind 

direction. The wind direction is taken from the SCADA data, 

with the angle of the wind being subtracted by 180 degrees. 

This means that if the tower were to bend in the direction of the 

wind, we would observe that in the data. However, we instead 

see an offset of about 30–50 degrees for both towers. 

Furthermore, we notice that the principal direction angles align 

with the wind direction, but the tower seems to exhibit some 

inertia when the wind direction changes, as the principal 

direction angles do not increase as much as the wind itself. We 

also observe different principal direction angles across various 

frequency bands, though the reason for this remains unclear. 

  

 
Figure 6. Principal direction angles for different frequency 

bands. 

 

4 FURTHER INVESTIGATION 

As the present study is one of the first to leverage the three-

component rotational ground-motions combined with 

translations for structural health monitoring of wind-turbines, 

we aim to determine how the 6-component measurements can 

be used to reliably replicate some of the SCADA data. One of 

the most important parameter measured as a part of SCADA 

data is the acceleration at the top of the tower. We aim to use 

this acceleration data from the top of the tower, located inside 

the nacelle, and compare it with the acceleration data at the 

bottom. By doing so, we may be able to predict the movement 

of the tower at the top. Additionally, we hope to extrapolate the 
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displacement at the bottom, assuming the stiff end is located 

inside or at the bottom of the foundation. This would allow us 

to measure the tower’s eigenmodes. Given the extended time 

span of the data, we aim to detect any differences in the 

eigenfrequencies and modes over time. If successful, this 

approach could help identify structural damage using 

directional information. Previous studies [4], [5] have 

demonstrated such damage identification based on translational 

acceleration data through operational modal analysis. 

 To further investigate the dynamics of the wind turbine 

tower, we plan to use Campbell diagrams, wavelet 

transformations, and stabilization diagrams. We want to 

investigate more signal coherences, damping ratios and the 

advantage of rotation motion measurements for the structural 

health monitoring.  

5 CONCLUSION 

In this study, we identified significant eigenfrequencies in the 

seismic data and successfully correlated them with 

environmental changes. The Power Spectral Densities (PSDs) 

revealed distinct peaks corresponding to these 

eigenfrequencies. Hodograms further demonstrated the linear 

movement of the tower, with a slight offset relative to the wind 

speed and noticeable differences across various frequency 

bands. These observations suggest that the tower’s behavior is 

influenced by both the wind and its structural dynamics. 

Ongoing investigations include the use of Campbell diagrams, 

wavelet transformations, and additional analyses to gain deeper 

insights into the tower’s dynamic response. 
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ABSTRACT: The demand for renewable energy sources is increasing, making it essential to develop effective maintenance 

plans for existing infrastructure. This study represents the initial step in a process designed to estimate the settlement of onshore 

wind turbine foundations, as well as its associated uncertainties. The method relies on high-resolution dual-orbit satellite data, 

which help to reduce cost and time required for instrument installation and on-site inspections. The turbine is modeled as a 1D 

rigid body and is assumed to be firmly constrained to the foundation slab. The proposed formulations allow for the estimation of 

the turbine motion components – translations in the W-E and vertical directions and rotation along the S-N axis –, which can be 

generally linked to foundation settlement. The components are determined by solving a linear system which accounts for the mean 

annual velocities of the Permanent Scatterers on the wind turbine surface, turbine height and incidence angles of satellite orbits. 

At the present stage, analytical formulations for the a posteriori estimation of the motion component uncertainties are proposed, 

with a particular focus on the positioning error in elevation of Permanent Scatterers. To assess the accuracy of these expressions, 

Monte Carlo numerical simulations are conducted. The strong agreement between numerical and analytical results demonstrates 

that the turbine motion components can be estimated with high accuracy. 

 

KEY WORDS: Structural Health Monitoring; Foundation settlement; Wind turbines; Monte Carlo simulations; Uncertainty 

evaluation. 

 

1 INTRODUCTION 

As stated by the Global World Energy Council [1], the 

necessity to install new renewable energy sources grows 

stronger every year. In fact, to pursue the Paris Agreement goal 

– reducing greenhouse gas emissions by 43% by 2030 to limit 

global warming to 1.5°C – it was estimated that by 2030, 2 TW 

of wind energy will be installed. As for now, 78 GW of wind 

power capacity, of which 68.8 GW provided by onshore 

installations, were added globally in 2022. 

In order to sustain the existing wind power structures, a solid 

maintenance plan is needed. Structural Health Monitoring 

(SHM) systems  can contribute significantly to enhance wind 

turbines reliability and ensure their optimal performance, 

through different management approaches [2]. Various parts of 

the wind turbine, in fact, can be affected by structural issues, 

such as corrosion and cracks on the tower, or surface damage 

to the rotor blades [3]. Furthermore, particularly in the case of 

onshore installations, foundation settlement may occur: 

differential settlement, which manifests as tower rotation, can 

lead to a reduction in turbine efficiency, potentially resulting in 

economic losses. This phenomenon can take several months, or 

even years, to develop.  

In [4], large vertical movements were observed in some 

onshore wind turbines, particularly in the case of concrete 

foundations in which embedded rings were used as connection 

systems, potentially leading to the sudden and catastrophic 

collapse of the turbine. Beyond the risk of structure failure, 

foundation settlement needs to be closely monitored for 

preserving the verticality of the tower and ensure an overall 

good health of the entire system. In particular, remote sensing 

techniques enable the investigation of foundation settlement 

while ensuring an off-site and non-invasive monitoring of the 

turbines.  

Satellite data based monitoring was largely applied to 

investigate landslides and ground deformation in non-urban 

areas [5, 6], but, in the past few years, it also gained popularity 

in the structural field [7, 8]. In fact, multi-temporal Differential 

Interferometric Synthetic Aperture Radar (DInSAR) 

techniques allow obtaining the displacement information of 

several points, called Permanent Scatterers (PSs) [9], both on 

the ground and on reflective elements with millimetric 

precision [10] – also thanks to the developments of X band 

SAR systems [11]. 

Combining displacement information from both satellite 

orbits – ascending (ASC) and descending (DES) – of PSs 

belonging to structure surfaces, it is possible to obtain 

displacement information about the structure itself [12, 13]. For 

instance, through the use of high-resolution dual-orbit satellite 

data, it is possible to estimate the 3D rigid motion components 

of buildings, which can be generally linked to their foundation 

settlement [14]. Specifically, rigid translations can be an 

indicator of total settlement, while rigid rotations may indicate 

a differential settlement. 

Besides the potential to investigate displacements over large 

areas with high accuracy, advantages of satellite data use in 

SHM include the possibility of portraying off-site and non-

invasive monitoring, thus reducing both time and costs of 

instrument installation. Moreover, traditional monitoring 

equipment does not allow for obtaining results in a reasonable 

time if the foundation settlement phenomenon is slow; on the 
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contrary, satellite techniques enable the analysis of past data - 

even 10 years before the time of analysis - proving to be 

effective when there is a need to obtain information from the 

past. 

As part of a broader effort to detect potential foundation 

settlements in wind turbines, this paper introduces the initial 

stage of a procedure to estimate the 3D motion components of 

wind turbines using high-resolution dual-orbit satellite data. 

Formulations provided by Bassoli et al. [14] were adapted to 

the wind turbine case, which is modeled as a 1D rigid body. 

Also, analytical formulations for evaluating uncertainties 

regarding each motion component are presented. The main 

sources of error are related to measurement and positioning. 

Specifically, the measurement error includes the unavoidable 

uncertainties associated with measuring the displacements of 

PSs along the lines of sight. The positioning error refers to the 

uncertainties involved in placing the scatterers along the height 

of the turbine. At the present stage, a posteriori estimates of the 

uncertainties are presented and validated based on simulated 

data. Monte Carlo simulations were conducted to generate 

synthetic satellite data and obtain results under various 

conditions – detailed in section 3 – accounting for both primary 

sources of error. This allowed for a thorough assessment of the 

reliability of the proposed analytical expressions and supports 

their applicability to real-world scenarios. In future research, 

the procedure will be further developed by proposing a priori 

estimates based on simplified hypotheses and by applying them 

to real wind farms. 

The paper is organized as follows. In section 777, analytical 

expressions relating 3D motion components of the turbine with 

displacement read along the line of sight are shown, as well as 

the procedure used to derive the uncertainties, with a specific 

emphasis on the positioning uncertainties. In section 3, the 

numerical simulations performed to verify the analytical 

expressions are outlined, while numerical and analytical results 

are presented and compared in section 4. Finally, conclusions 

are drawn. 

2 IDENTIFICATION OF RIGID MOTION 

COMPONENTS FROM SATELLITE DATA 

 Geometry and satellite data definition 

The wind turbine is modeled as a 1D rigid body firmly 

constrained to the foundation slab. Supposing that the slab-

turbine connection happens at the exact center of gravity of the 

foundation, a reference system can be built as described: origin 

in the center of gravity (G), and x, y and z axes along the W-E, 

S-N and vertical directions respectively. In Figure 1, satellite 

geometry as well as an example of the PSs placement along the 

turbine height are reported. Note that all PSs are assumed to be 

aligned along the turbine z-axis; therefore, the planar 

positioning error is not considered.  

In this study, all satellite geometry parameters — such as 

heading angles, measurement accuracy, and ground resolution 

— were assumed to match those of the COSMO-SkyMed 

constellation operating in StripMap mode over Italian regions. 

Specifically, the heading angles β𝐴 and β𝐷, representing the 

satellite orbit inclination with respect to the S-N direction, were 

set to β𝐴 = 350° and β𝐷 = 190°. The measurement accuracy 

was assumed to range from 1 to 2 mm/yr, and the ground 

resolution was taken as 3m×3m. 

 

Figure 1. Satellite geometry: incidence angles and PSs 

positioning (a) and heading angles (b). 

The same parameters were also used in the methodology to 

estimate rigid motion components and their associated 

uncertainties in [14]. The high resolution provided by this 

constellation makes COSMO-SkyMed data particularly well-

suited for structural monitoring applications. 

 3D motion component estimation 

In this study, the 3D rigid motion of wind turbines is estimated 

using the approach proposed by some of the authors in [14]. 

This method was originally developed to assess the motion of 

buildings modeled as 3D rigid bodies. Based on the structural 

geometry and satellite parameters, it allows for the evaluation 

of translations along the W-E and vertical directions, as well as 

rotations around the W-E, S-N, and vertical directions. The 

expressions proposed in [14] are adapted here to the case of 

wind turbines. Specifically, since the wind turbine is modeled 

as a 1D body, the rotation component along the z-axis was 

neglected. As with buildings, the translation along the S-N axis 

cannot be accurately assessed due to the limited sensitivity of 

SAR measurements in detecting displacements in the S-N 

direction [10, 15, 16].  

It is important to emphasize that, to evaluate the full 3D rigid 

motion of the turbine, displacements of PSs measured in both 

orbits are required [15].  

To avoid temporal misalignment of PSs displacements, the 

formulations are applied to the mean annual velocities of PSs 

(mm/yr), rather than to specific time instants. Additionally, due 

to the rigid motion assumption, spatial resampling to align PSs 

measured in ascending and descending orbits is unnecessary 

[17]: all permanent scatterers associated with the turbine 

contribute to the motion estimation. 

Considering clockwise rotations as positive, the 

displacement of the generic point P with respect to G can be 

written as: 

{

𝑣𝑥,P = 𝑣𝑥,G + Φ𝑦,G𝐷𝑧,P

𝑣𝑦,P = 𝑣𝑦,G − Φ𝑥,G𝐷z,P

𝑣𝑧,P = 𝑣𝑧,G

 (1) 

where 𝑣𝑥,G, 𝑣𝑦,G, 𝑣𝑧,G, represent the translations along the three 

directions while Φ𝑥,G and Φ𝑦,G are the rotations around the x- 

and y- axes. Finally, 𝐷𝑧,P indicates the elevation of point P 

relative to G. 

The displacement of point P is then projected along the 

ascending and descending lines of sight (LOSs) of the satellite 

constellation. Incidence angles α𝐴 and α𝐷 indicate the 

inclination of the satellite LOSs with respect to the vertical 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-121 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 778 

direction, while β𝐴 and β𝐷 are the heading angles. Adopting the 

values reported in section 2.1, sin β𝐴 and sin β𝐷 can be  

approximated as 0 while cos β𝐴 and cos β𝐷  can be 

approximated as +1 and –1, respectively. Based on these 

considerations, and since that the translation component along 

the y-axis cannot be estimated due the limited sensitivity of 

SAR data in S-N direction, the displacement of point P 

projected onto the ascending and descending LOSs can be 

expressed as: 

{
𝑑𝐴,P = 𝑣𝑧,G cos α𝐴 − 𝑣𝑥,G sin α𝐴 − Φ𝑦,G𝐷𝑧,P sin α𝐴

𝑑𝐷,P = 𝑣𝑧,G cos α𝐷 + 𝑣𝑥,G sin α𝐷 + Φ𝑦,G𝐷𝑧,P sin α𝐷
 (2) 

A system of two equations in three unknowns – that are the 

translations in W-E and vertical directions and the rotation 

along the S-N direction – is obtained. To determine 𝑣𝑥,G, 𝑣𝑧,G 

and Φ𝑦,G, at least three PSs from the two orbits are required. 

Assuming n PSs are available for the ascending orbit and m for 

the descending one, the system can be expressed as: 

[
 
 
 
 
 
𝑑𝐴,1

⋮
𝑑𝐴,𝑛

𝑑𝐷,1

⋮
𝑑𝐷,𝑚]

 
 
 
 
 

=

[
 
 
 
 
 
−sin 𝛼𝐴 cos 𝛼𝐴 (−𝐷𝑧,1sin 𝛼𝐴)

⋮ ⋮ ⋮
−sin 𝛼𝐴 cos 𝛼𝐴 (−𝐷𝑧,𝑛sin 𝛼𝐴)

sin 𝛼𝐷 cos 𝛼𝐷 (𝐷𝑧,1sin 𝛼𝐷)

⋮ ⋮ ⋮
sin 𝛼𝐷 cos 𝛼𝐷 (𝐷𝑧,𝑚sin 𝛼𝐷) ]

 
 
 
 
 

[

𝑣𝑥,G

𝑣𝑧,G

Φ𝑦,G

]  (3) 

and can be synthesized as: 

𝐌 =  𝐒 𝛝  (4) 

where M is a Ns×1 vector, being Ns=n+m, containing PSs 

displacements along the LOSs, ϑ is a 3×1 vector containing 

rigid motion components of the turbine, and S is a Ns×3 matrix 

containing satellite geometries and the height of PSs. 

Note that, due to measurement uncertainties thoroughly 

described in section 2.3, the theoretical displacement 

measurements in M are never exactly equal to the ones directly 

obtained from the satellite M*. Thus, to obtain the best ϑ 

estimate, the least square operation must be applied: 

𝛝̂  =  (𝐒𝐓𝐒)−𝟏 𝐒𝐓𝐌∗  (5) 

To assess the turbine motion relative to the ground, the terrain 

motion components must also be estimated and subtracted from 

the turbine motion. However, for the sake of simplicity, this 

study assumes the ground motion components to be zero. 

 Uncertainties estimation of rigid motion components 

This section outlines the evaluation of the uncertainties 

associated to the above estimated motion components 

according to the procedure proposed in [14]. As previously 

stated, there are two main sources of error working with PS 

displacement data: measurement and positioning errors. 

Measurement error concerns the inevitable uncertainty 

committed when detecting the PS displacements along the 

LOSs, while positioning error regards the placement of the PS 

inside the resolution cell [14]. In this case, since PSs are 

supposed perfectly aligned to G, positioning uncertainties only 

regard the PS placement along the vertical direction. Using the 

product rule for derivatives, the variation of the ϑ vector can be 

expressed as: 

Δ𝛝 = ΔBM + BΔM = ∑ (
∂B

∂𝐷𝑧,𝑘

)

k

MΔ𝐷𝑧,𝑘 + BΔM  (6) 

where 𝐁 =  (𝐒T𝐒)−1𝐒T represents the pseudo-inverse of 

matrix S, M contains the PSs displacements along the LOSs, 

and 𝐷𝑧,𝑘 is the elevation of the k-th PS. Lastly, k=1,..., n or 

k=1,..., m for the ascending or the descending PSs, respectively. 

Assuming that measurement and positioning errors are not 

correlated [14], the total covariance matrix Σ(𝛝) can be 

expressed as the sum of the measurement covariance matrix 

and the positioning covariance matrix as follows: 

𝚺(𝛝)  =  𝚺𝐌(𝛝) +  𝚺𝐏(𝛝)  (7) 

where the terms 𝚺𝐌(𝛝) and 𝚺𝐏(𝛝) indicate, respectively, 

contributions of measurement and positioning errors to the 

covariance matrix. Particularly, on the main diagonals, 

variances associated with each motion component can be 

found. 

The covariance matrix associated to the measurement error 

𝚺𝐌(𝛝) can be obtained as:  

𝚺𝐌(𝛝) = B 𝚺(M) BT (8) 

Under the non-correlation hypothesis among the measures of 

PSs, 𝚺(M) can be assumed as a Ns×Ns diagonal matrix with 

terms equal to σ̅M
2  on the main diagonal, representing the 

measurement accuracy. Thus, eq. (8) can be written as follows: 

𝚺𝐌(𝛝) = σ̅M
2 BBT = σ̅M

2 (STS)−1ST((STS)−1ST)T =

= σ̅M
2 (STS)−1

 (9) 

According to section 2.1, typical values for σ̅M for COSMO-

SkyMed data range from 1 to 2 mm/yr. However, to assess the 

applicability of the procedure, numerical simulations presented 

in the next section were conducted using values of 1, 2 and 5 

mm/yr. 

The positioning covariance matrix can be expressed as 

follows:  

𝚺𝐏(𝛝) = (
∂B

∂D
M)𝚺(D) (

∂B

∂D
M)

T

= J𝚺(D)JT (10) 

where J is the 3×Ns Jacobian matrix whose components can be 

expressed as: 

J𝑘 =
∂𝛝

∂𝐷𝑧,𝑘

=

[
 
 
 
 
 
 
∂𝑣𝑥,G

∂𝐷𝑧,𝑘

∂𝑣𝑧,G

∂𝐷𝑧,𝑘

∂Φ𝑦,G

∂𝐷𝑧,𝑘 ]
 
 
 
 
 
 

 (11) 

J𝑘 can also be written as: 

J𝑘 =
∂𝛝

∂𝐷𝑧,𝑘

=
∂[(STS)−1ST]

∂𝐷𝑧,𝑘

M =

1

|(ST
S)|

[−
∂|(STS)|

∂𝐷𝑧,𝑘

I +
∂[adj(STS)]

∂𝐷𝑧,𝑘

STS +

+adj(STS)
∂ST

∂𝐷𝑧,𝑘

S] 𝛝

 (12) 
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with adj(STS) and |(STS)| indicating the adjoint matrix and the 

determinant of (STS), respectively. Finally, 𝚺(D) is a diagonal 

matrix with elements σ̅P𝑧
2 , representing the positioning 

accuracy along the vertical direction.  

Monte Carlo simulations were carried out for estimating σ̅P𝑧, 

considering the resolution cell size of the COSMO-SkyMed 

constellation, equal to 3m×3m. The turbine tower can be 

divided into resolution segments RSs, which represent the 

projection of the ground resolution cell along the vertical 

direction. Random PS positions inside the ascending and 

descending resolution segments were simulated. The value of 

σ̅P𝑧 was defined as the standard deviation of the distance of the 

PS from the segment centre. For this specific case, the 

formulations were applied to incidence angles of α𝐴 = 32.64° 
and α𝐷 = 37.10°. The obtained results are displayed in Table 

1, while the trends of resolution segment lengths and standard 

deviations with the incidence angle are displayed in Figure 2. 

It is interesting to note that, since the resolution segment 

dimension depends on the incidence angles α𝐴 and α𝐷, 

scatterers measured in the ascending orbit will display a 

different resolution than those measured in the descending 

orbit. In summary, the analytical formulation of the total 

uncertainty affecting each motion component can be derived by 

directly applying the error propagation law to both 

measurement and positioning errors:  

σT(ϑ𝑟) = √σP
2(ϑ𝑟) + σM

2 (ϑ𝑟)  (13) 

where σM(ϑ𝑟) and σP(ϑ𝑟) indicate, respectively, the measuring 

and positioning errors associated with the generic r-th motion 

component.  

3 PROCEDURE FOR DATA SIMULATION  

This section presents the numerical analyses designed to assess 

the performance of the procedure described in section 2. The 

analysis is based on: (i) applying rigid motion to an 

hypothetical turbine, (ii) simulating satellite measurements 

with incorporated measurement and positioning uncertainties, 

(iii) evaluating the rigid motion as outlined in section 2.2, (iv) 

comparing the imposed and estimated displacements, and (v) 

assessing the variability of the results.  

The first step involved defining the geometric parameters of 

the wind turbine. A typical height of modern wind turbines is 

about 100 meters. For this reason, a maximum height D of 100 

m was assumed. Next, the satellite characteristics of the 

COSMO-SkyMed constellation are chosen according to section 

2.1. Incidence angles of the ascending and descending orbit are 

set equal to α𝐴 = 32.64° and α𝐷 = 37.10°, respectively.  

To simulate PS mean annual velocities and positions, motion 

component values needed to be imposed to the turbine, thus 

defining vector ϑ. Matrix S was reconstructed by incorporating 

 

Table 1. Positioning accuracy. 

Orbit Incidence 

angle α  

[°] 

Incidence 

angle α 

[rad] 

Resolution 

segment RS 

[m] 

Standard 

dev. σ̅P𝑧  

[m] 

ASC 32.64 0.57 4.684 1.351 

DES 37.10 0.65 3.967 1.144 

 

Figure 2. Trend of the standard deviation σ̅P𝑧 and of the 

resolution segment RS with the satellite incidence angle. 

the previously defined satellite geometries and a specific 

number of PSs, which was constrained by an upper limit based 

on the tower height and the resolution cells dimensions.  

To simulate the measurement errors, quantities extracted 

from a Gaussian distribution with zero mean and a standard 

deviation of σ̅M were added to the velocities in vector M. 

Measurement uncertainties were assessed in the cases of σ̅M=1 

mm/yr, σ̅M=2 mm/yr and σ̅M=5 mm/yr.  

To clearly evaluate the impact of measurement and 

positioning errors, three scenarios are analyzed: the 

contribution of measurement errors alone, the contribution of 

positioning errors alone, and the effect of both. To account for 

the contribution of only measurement errors, the PSs were 

positioned at the exact center of each resolution segment. The 

PSs velocities along the lines of sight were then computed 

applying eq. (4). Instead, to account for only positioning errors, 

the PS velocities were kept without any uncertainties, while 

random errors were introduced into the PS heights within 

matrix S. These errors shifted the PSs positions randomly 

within their resolution segments, displacing them from the 

center but ensuring they remained within the segment 

boundaries. Finally, the case where both measurement and 

positioning uncertainties are considered was evaluated. Total 

uncertainty for each motion component was numerically 

estimated by combining the two approaches: both the PS 

velocities in vector M and the PS elevations in matrix S were 

perturbed from their exact values by adding random quantities 

extracted as described above. For quantifying the analytical 

uncertainty, the measurement and positioning errors formulas 

were combined through the error propagation law (eq. (13)).  

For each of these three scenarios, the analytical error 

formulations were compared to the numerical ones across three 

different cases:  

1) The PS number was kept constant, while the motion 

components were varied in discrete steps, ranging from 

zero to their maximum values according to Table 2. 

2) The motion components were kept at a constant value – 

equal to the maximum one – while the PS number was 

varied from a minimum of two per orbit up to the 

maximum one; 
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Table 2. Ranges of variation of the imposed motion 

parameters. 

Motion component 
Min 

value 

Max 

value 
Step 

𝑣𝑥,G [mm/yr] 0 10 0.2 

𝑣𝑧,G [mm/yr] 0 100 2 

Φ𝑦,G [mrad/yr] 0 2 0.04 

 

3) The PS number was kept constant, while one motion 

component at a time was varied in discrete steps, as in 

case 1), with the others held at a constant zero value.  

For each step of the three cases, Monte Carlo simulations 

were performed to characterize the rigid motion component 

uncertainties, which are then compared with the analytical ones 

obtained from in eqs. (9), (10) and (13).  

4 RESULTS 

In this section, the results obtained for each of the cases 

outlined above will be discussed and presented in the form of 

graphs and tables. Note that, for simplicity, only the results 

related to the vertical translation and rotation of the turbine are 

shown, as they are considered the most representative of 

foundation settlement. However, the procedure can also be 

applied to W-E translation. 

 Measurement uncertainties 

The first scenario, which includes only measurement errors and 

excludes positioning errors, is presented in this subsection. The 

results are presented in terms of the uncertainty values of the 

rigid motion components as the value of the component itself 

and the number of PSs on the structure vary. 

4.1.1 Case 1: variation of the uncertainties with the motion 

amplitude 

The results are presented in graph form (Figures 3 and 4) for 

the cases of σ̅M=1, 2 and 5 mm/yr. Both the error and the 

coefficient of variation (CoV) associated with each motion 

component are shown as the corresponding motion component 

varies. For clarity, results for the maximum step are also 

provided in Table 3 for the case of σ̅M= 2 mm/yr, which is 

considered the most representative measurement precision for 

this specific case. 

As expected, both numerical and analytical uncertainties 

decrease as measurement accuracy increases – namely, the 

value of σ̅M decreases. Additionally, it is important to note that 

the measurement uncertainty is independent on the motion 

component amplitude. This result is expected because eq. (8) 

states that the value of σM(𝛝) is independent on 𝛝. On the other 

hand, the coefficient of variation of the uncertainty decreases if 

the motion component increases. As observed from both the 

tables and graphs, the numerical uncertainty appears to be well 

approximated by the analytical formulations at each motion 

step, indicating that the motion entity does not affect the 

accuracy of the analytical models. 

4.1.2 Case 2: variation of the uncertainties with the number 

of PSs 

The results are presented in Figures 5 and 6. The first graph 

depicts the values of σM(𝑣𝑧,G) and the CoV of 𝑣𝑧,G as a function 

of the number of PS in the ascending and descending orbits for 

the cases of σ̅M=1, 2 and 5 mm/yr, while the second one shows 

the values of σM(Φ𝑦,G) and the CoV of Φ𝑦,G under the same 

conditions. For simplicity, the results are presented for the case 

where both orbits have the same number of PSs; in fact, the 

final step involves the use of 21 scatterers per orbit. Note that, 

as stated in section 2.2, 𝑛 and 𝑚 indicate, respectively, the 

number of PSs available for ascending and descending orbit.  

Table 3. Measurement uncertainties on the rigid motion 

components - σ̅M=2 mm/yr, last step. 

Component 𝑣𝑥,G 

[mm/yr] 

𝑣𝑧,G 

[mm/yr] 

Φ𝑦,𝐺 

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 9.992 100.002 2.000 
    

σM(ϑ𝑟) 
Numerical  1.048 0.375 0.018 

Analytical  1.028 0.363 0.018 
     

CoV(ϑ𝑟) 
Numerical  10.48% 0.375% 0.917% 

Analytical  10.29% 0.363% 0.900% 

 

Figure 3. Influence of 𝑣𝑧,G on the measurement 

uncertainties: (a) σM(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 4. Influence of Φ𝑦,G on the measurement 

uncertainties: (a) σM(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 
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Figure 5. Influence of the PS number on the measurement 

uncertainties: (a) σM(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 6. Influence of the PS number on the measurement 

uncertainties: (a) σM(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

To obtain uncertainties, at least two permanent scatterers are 

required per orbit. The results corresponding to the maximum 

number of permanent scatterers align with those shown in 

Table 3 for the σ̅M= 2 mm/yr case. As expected, the 

uncertainties in the rigid motion parameters decrease as the 

number of PSs increases. For instance, in the case of S-N 

rotation Φ𝑦,G, the coefficient of variation approaches nearly 

20% if only 4 PSs are given and it decreases to a value less than 

4% in the case of a number of PS greater than 18. Additionally, 

the numerical uncertainties appear to be well approximated by 

the analytical formulations, regardless of the PSs number. 

However, when only 2 scatterers per orbit are considered, the 

analytical formulations tend to underestimate the uncertainty, 

especially at lower measurement accuracy values. It can be 

observed that, to obtain significant results, at least five 

scatterers are needed in each orbit.  

 Positioning uncertainties 

In this subsection, the results including only the positioning 

error are presented as a function of the amplitude of the motion 

component as well as of the number of observed PSs. 

4.2.1 Case 1: variation of the uncertainties with the motion 

amplitude 

Results are displayed in Figures 7, 8, and Table 4. The variation 

of σP(𝑣𝑧,G) and CoV of 𝑣𝑧,G with the value of 𝑣𝑧,G are shown 

in Figure 7, while the variation of σP(Φ𝑦𝐺) and CoV of Φ𝑦G 

with the value of Φ𝑦G are shown in Figure 8. 

Numerical simulations were performed by introducing 

random perturbations to each PS position, as described in 

section 3. In contrast, analytical errors were computed using the 

method and parameters described in section 2.3.  

The good agreement between the numerical and analytical 

uncertainties, as well as the CoVs for each motion component, 

demonstrates that the proposed analytical models provide a 

reliable approximation of the numerical errors, even in the case 

of positioning errors. It is also observed that, as predicted by 

eq. (12), positioning errors increase with the magnitude of the 

considered motion component, indicating that the positioning 

uncertainties do depend on the motion entity.  

 

 

Figure 7. Influence of t 𝑣𝑧,G on the positioning uncertainties: 

(a) σP(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G.  

 

Figure 8. Influence of Φ𝑦,G on the positioning uncertainties: 

(a) σP(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-121 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 782 

Table 4. Positioning uncertainties on the rigid motion 

components, last step. 

Component 𝑣𝑥,G 

[mm/yr] 

𝑣𝑧,G 

[mm/yr] 

Φ𝑦,𝐺 

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 10.166 99.999 1.997 
    

σP(ϑ𝑟) 
Numerical  0.718 0.259 0.013 

Analytical  0.723 0.258 0.013 
     

CoV(ϑ𝑟) 
Numerical  7.06% 0.259% 0.634% 

Analytical  7.11% 0.258% 0.631% 

 

 

Figure 9. Influence of the PS number on the positioning 

uncertainties: (a) σP(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 10. Influence of the PS number on the positioning 

uncertainties: (a) σP(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

 

4.2.2 Case 2: variation of the uncertainties with the number 

of PSs 

Figures 9 and 10 show the results as a function of the PS 

number. Specifically, Figure 9 illustrates the variation in 

positioning uncertainty σP(𝑣𝑧,G) and in the CoV of 𝑣𝑧,G, while 

Figure 10 presents the variation in positioning uncertainty 

σP(Φ𝑦,G) and in the coefficient of variation of Φ𝑦,G.  

Note that, in line with the measurement error case, the values 

of σP(𝑣𝑧,G) and σP(Φ𝑦,G) tend to increase as the number of PSs 

decreases. Specifically, although the numerical uncertainty is 

generally well approximated by the analytical formulations, 

when only 2 PSs per orbit are considered, the analytical 

formulations underestimate both the uncertainties and the 

coefficients of variation. 

4.2.3 Case 1: variation of the uncertainties with the motion 

amplitude 

As observed in the previous case, positioning error is indeed 

influenced by the motion entity. Therefore, it is crucial to 

identify which motion components have the greatest impact on 

the error. Figure 11, Figure 12 and Figure 13 show the variation 

in positioning uncertainty with the magnitude of the motion 

components. As shown, positioning errors seem to be 

uncorrelated with variations in 𝑣𝑥,G and 𝑣𝑧,G. Specifically, their 

values are in the order of 10−10 mm/yr and rad/yr.  

On the other hand, positioning errors appear to be strongly 

correlated with rotation; therefore, only the turbine's rotation 

can induce errors in the positioning of the PS.  

Regardless of the variations in motion components, 

analytical formulations appear to provide a good approximation 

of numerical errors. 

 Total uncertainties 

4.3.1 Case 1: variation of the uncertainties with the value of 

the motion component 

Figures 14 and 15 display the results in the form of graphs: as 

previously stated, the considered positioning precision is 

detailed in   

, while for immediacy measurement precision is fixed at σ̅M= 

2 mm/yr. Particularly, Figure 14 details how the variation in 

𝑣𝑧,G influences the total error σT(𝑣𝑧,G) and CoV of 𝑣𝑧,G, while 

Figure 15 illustrates the total error σT(Φ𝑦,G) and CoV of Φ𝑦,G 

as a function of Φ𝑦,G. For the sake of clarity, results regarding 

the maximum 𝑣𝑧,G and  Φ𝑦,G values are also displayed in table 

form in Table 5. 

 

Figure 11. Influence of 𝑣𝑥,G on the positioning uncertainties: 

σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 
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Figure 12. Influence of 𝑣𝑧,G on the positioning uncertainties: 

σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 13. Influence of Φ𝑦,G on the positioning 

uncertainties: σP of 𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

Numerical simulations of uncertainties were performed as 

outlined in section 3. In contrast, analytical errors were 

computed using the method and parameters described in 

Section 2.3; in particular, adopting the formula described in 

equation (13). The good agreement between the numerical and 

analytical uncertainties, as well as the CoVs for each motion 

component, demonstrates that the proposed analytical models 

provide a reliable approximation of the numerical errors, even 

in the case of total errors. Note that measurement errors seem 

to be the largest contributor to the total uncertainty, while 

positioning error becomes a more significant factor as the 

motion component increases. 

4.3.2 Case 2: variation of the uncertainties with the number 

of PSs 

In Figure 16, the variations of the total error σT(𝑣𝑧,G) and of 

the total CoV of 𝑣𝑧,G as a function of PSs number are displayed. 

Moreover, Figure 17 depicts the variation of the total error 

σT(𝑣𝑧,G) and of the total CoV of 𝑣𝑧,G as a function of PSs 

number. Note that, as anticipated, errors increase as the number 

of PSs decreases. 

 

Figure 14. Influence of 𝑣𝑧,G on the total uncertainties: (a) 

σ(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 15. Influence of Φ𝑦,G on the total uncertainties: (a) 

σ(Φ𝑦,G) and (b)CoV of Φ𝑦,G. 

Table 5. Total uncertainties on the rigid motion components 

- σ̅M=2 mm/yr, last step. 

Component 𝑣𝑥𝐺  

[mm/yr] 

𝑣𝑧𝐺  

[mm/yr] 

𝛷𝑦𝐺  

[mrad/yr] 

Imposed 10.000 100.000 2.000 

Simulated 10.143 99.996 1.997 
    

σT(ϑ𝑟) 
Numerical 1.273 0.447 0.022 

Analytical 1.248 0.444 0.022 
     

CoV(ϑ𝑟) Numerical 12.55% 0.447% 1.119% 

Analytical 12.31% 0.444% 1.092% 

 

Similarly to the cases of measurement and positioning 

uncertainties, the numerical uncertainty is generally well 

approximated by the analytical formulations. The only 

exception occurs when 2 scatterers per orbit are considered, 

where the analytical formulations underestimate the numerical 

errors. 
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Figure 16. Influence of the PS number on the total 

uncertainties: (a) σ(𝑣𝑧,G) and (b) CoV of 𝑣𝑧,G. 

 

Figure 17. Influence of the PS number on the total 

uncertainties: (a) σ(Φ𝑦,G) and (b) CoV of Φ𝑦,G. 

4.3.3 Case 1: variation of the uncertainties with the motion 

amplitude 

Results are presented in Figures 18, 19 and 20. In particular, the 

three graphs depict how the variations in 𝑣𝑥,G, 𝑣𝑧,G and Φ𝑦,G, 

respectively, influence the total errors σT(𝑣𝑥,G), σT(𝑣𝑧,G) and 

σT(Φ𝑦,G).  

As already observed in the positioning uncertainties case, the 

rotation appears to be the only motion component affecting the 

uncertainty, while the translations have no effect on the error. 

Specifically, an increase in Φ𝑦,G directly translates in an 

increase of the component total errors. In any case, the 

analytical formulations provide an effective approximation of 

the numerical errors: their quality is validated by their accurate 

approximation of numerical errors in each of the presented 

cases. 

CONCLUSIONS 

This paper proposes a method for estimating the 3D rigid 

motion components of wind turbines and the corresponding 

uncertainties using DInSAR satellite data.  

 

Figure 18. Influence of 𝑣𝑥,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 19. Influence of 𝑣𝑧,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 

 

Figure 20. Influence of Φ𝑦,G on the total uncertainties: σT of 

𝑣𝑥,G (a), 𝑣𝑧,G (b) and Φ𝑦,G (c). 
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Rigid motion of wind turbines can be generally associated 

with foundation settlement, a gradual phenomenon that can 

potentially cause damage to both structural and non-structural 

elements. Traditional Structural Health Monitoring techniques 

typically require extended acquisition times, making them 

economically impractical, particularly in foundation settlement 

cases. In contrast, satellite-based monitoring allows for the 

direct analysis of historical displacement time series without 

the need for on-site instrumentation, while enabling the 

monitoring of displacements over large areas with high 

accuracy. The proposed approach utilizes the mean annual 

displacement of permanent scatterers along the lines of sight, 

thereby eliminating the need for temporal and spatial 

resampling of satellite data.  

The accuracy of the proposed approach was evaluated using 

Monte Carlo numerical simulations, in which satellite data 

were generated while accounting for uncertainties in both the 

displacement of the considered scatterers (measurement errors) 

and their vertical positioning along the wind turbine 

(positioning errors). The numerical results were then compared 

with those derived from the analytical expressions initially 

presented in [14] and adapted for application to wind turbines. 

The satellite data parameters were based on those of the 

COSMO-SkyMed constellation, which is particularly well-

suited for structural monitoring applications. Numerical errors 

and analytical uncertainties were evaluated across various 

scenarios, including variations in the 3D motion components 

and the number of available PSs on the turbine. As expected, 

an increased number of available PSs leads to reduced 

uncertainties, while larger turbine rotations result in greater 

errors. In contrast, the uncertainties remain uncorrelated with 

both vertical and horizontal translations. 

The method presents certain limitations, including the 

approximation of the turbine as a purely rigid body, which 

necessitates fitting the data to a rigid model without accounting 

for possible structural deformations. Additionally, the approach 

relies on Permanent Scatterers (PS), which – depending on the 

processing technique – can be affected by noise due to both 

decorrelation and atmospheric effects, potentially impacting 

the accuracy of the results. Nevertheless, the strong agreement 

observed between numerical simulations and analytical 

predictions confirms the robustness of the proposed procedure 

in estimating the rigid-body motion of wind turbines and the 

associated uncertainties. The method demonstrates high 

precision, with uncertainties on the order of tenths of 

millimeters and/or milliradians per year. 

The next steps of the research involve attempting to obtain a 

priori estimates of the uncertainty based solely on the 

knowledge of the potential number of PS present, to assess 

whether satellite data can already provide the required accuracy 

during the phase of selecting the monitoring methodology. For 

this purpose, simplifications regarding the distribution of PS 

will be made. Additionally, data from a wind farm will be 

analyzed to evaluate the possibility of applying the 

methodology to real cases. 
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ABSTRACT: The decommissioning of wind turbine blades (WTBs) presents significant environmental challenges due to their 

non-biodegradable composition. To promote sustainable reuse and repurposing, it is essential to establish effective structural 

health monitoring (SHM) techniques that can accurately assess the residual performance of decommissioned WTBs. This study 

investigates the feasibility and applicability of distributed fibre optic sensing (DFOS) as an advanced monitoring tool for 

evaluating the structural integrity of decommissioned WTBs intended for reuse in civil engineering applications. A four-point 

bending test was conducted on a WTB segment, with DFOS deployed alongside other monitoring techniques, including strain 

gauges, and digital image correlation (DIC). The DFOS measurements demonstrated strong agreement with those obtained from 

strain gauges and DIC, with negligibly small variations in strain magnitude, validating its accuracy and reliability for continuous 

strain monitoring. The results further confirmed sufficient load-bearing capacity of the WTB segment, indicating its potential for 

second-life structural applications. This study highlights the capability of DFOS in providing high-resolution, distributed strain 

measurements, offering a promising approach for assessing the suitability of decommissioned WTBs for reuse. Future research 

aims to incorporate material characterisation studies and long-term monitoring to establish standardised frameworks for the 

sustainable repurposing of WTBs, contributing to a circular economy in the wind energy sector. 

KEY WORDS: Decommissioned wind turbine blades; Repurposing; Four-point bending test; Distributed fibre optic sensing.

1 INTRODUCTION 

Wind energy has become a cornerstone of sustainable energy 

solutions worldwide, significantly contributing to the reduction 

of carbon emissions. In Ireland, the expansion of onshore and 

offshore wind farms is expected to play a critically significant 

role in achieving the country's 2030 renewable energy targets, 

potentially reducing its carbon emissions by 51% [1]. However, 

as wind energy industry grows and matures, a growing 

challenge is the decommissioning of the wind turbine blades 

(WTBs). By 2025, approximately 11,000 tons of WTBs are 

expected to be decommissioned in Ireland alone [2]. These 

blades are predominantly made from glass fibre reinforced 

polymer (GFRP) composites, which are non-biodegradable and 

pose significant disposal challenges, often ending up in 

landfills and leading to environmental degradation [3]. 

Despite the environmental challenges, WTBs possess unique 

structural properties, including high strength-to-weight ratios 

and resistance to harsh environmental conditions, making them 

promising candidates for reuse and repurposing in civil 

engineering applications [4]. Previous studies have explored 

various repurposing strategies. For example, Martini and Xydis 

(2022) reviewed the common practice of WTB reuse and 

recycling in the United States, which included whole and 

partial blade reuse, and grinding material reuse [5]. In another 

study, Hasheminezhad et al. (2024) further reviewed its reuse 

for construction and infrastructure applications [4], such as 

powerline poles [6], slow-traffic bridges [7], picnic tables [8], 

playground [9], etc. 

However, despite the growing interest in repurposing WTBs, 

a critical challenge lies in understanding the residual structural 

performance after years of service. Long-term exposure to 

environmental influences, such as UV radiation, moisture, and 

cyclic loading, can degrade the mechanical properties of the 

GFRP composites used in WTBs, which may influence their 

structural integrity and impact their long-term performance and 

suitability for reuse in civil engineering applications. 

To enable the safe and sustainable reuse and repurposing of 

decommissioned WTBs, effective condition monitoring and 

structural health assessment is essential. While traditional 

monitoring methods, such as strain gauges, provide valuable 

insights, they are often limited to their discrete measurements. 

In contrast, distributed fibre optic sensing (DFOS) offers a 

high-resolution, continuous, and long-term monitoring solution 

capable of capturing detailed strain distributions over large 

structural elements. DFOS has been successfully implemented 

in various infrastructure applications such as tunnels [10], but 

its feasibility and applicability for monitoring the residual 

structural performance of decommissioned WTBs remains 

largely unexplored. 

This study aims to evaluate the feasibility of DFOS as a 

monitoring technique for assessing the residual performance of 

a decommissioned WTB segment subjected to four-point 

bending tests. The segment was instrumented with DFOS, 

alongside other monitoring techniques such as strain gauges, 

linear variable differential transformers (LVDTs), and digital 

image correlation cameras to enable a comparative assessment 

of measurement accuracy and reliability. By examining the 

strain distribution and mechanical behaviour of the WTB 

segment, this study aims to determine the suitability of DFOS 

for structural health monitoring in second-life applications of 

decommissioned WTBs. The findings will contribute to the 

development of robust monitoring frameworks for WTB reuse 
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in civil engineering, supporting a circular economy in the wind 

energy sector and enhancing the sustainability of wind turbine 

decommissioning. 

2 METHODOLOGY 

 Wind turbine blade preparation 

The decommissioned wind turbine blade used in this study was 

sourced from a V42/600 wind turbine manufactured by Vestas 

in Denmark. Each turbine has a power rating of 600 kW and 

consists of three blades. The turbines have a rotor diameter of 

42m, and each blade has a total length of 21 meters from root 

to tip. A 4-meter long segment was cut from the tip side for 

laboratory testing. In the initial preparation stage, the geometry 

of this blade segment was measured using vernier callipers, as 

illustrated in Figure 1(a). Surface stains were cleaned to 

facilitate a visual inspection for any potential damage. 

Subsequently, the blade segment was divided into 500 mm-

long sections using a measuring tape and a chalk line. To 

accurately identify the location of the spar on the tip side, the 

final 500 mm portion at the blade tip was removed. The centre 

of the blade segment was then marked, with 600 mm measured 

on each side of the centreline to designate the positions for the 

spreader beams. A line was drawn connecting the top spar on 

the root side to the top spar on the tip side of the blade segment. 

To accommodate the installation of spreader steel beams, 

which are designed to transfer loads onto the spar cap, 110 mm 

square sections were cut from both the high-pressure and low-

pressure sides of the blade aerofoil at the points where each 600 

mm mark intersected with the spar cap line. This process is 

depicted in Figure 1(b). 

 
(a) Geometry of the WTB segment [11] 

 
(b) WTB segment preparation for testing 

Figure 1. Geometry of the WTB segment 

 Loading arrangement 

The blade was positioned in the edgewise direction with the 

trailing edge facing upward and was supported by two timber 

saddles, each placed 170 mm from the ends to avoid areas of 

local skin damage. Loading was applied using two hydraulic 

jacks acting on both spreader beams, simulating a four-point 

bending test. Load cells beneath each jack recorded the applied 

force. Two four-point bending tests were conducted on the 

blade segment. In test 1, a total load of 30kN was applied, while 

in test 2, the total load reached 50kN. The objective was to 

maintain loading within the blade's elastic range, enabling 

multiple repetitions if necessary. In both tests, loading was 

applied stepwise: for the 30kN test, a designed step loading of 

2-5kN was used, whereas for the 50kN test, increments of 10kN 

were used. Figure 2 illustrates the loading system. The four-

point loading was carried out by manual handling of two 

hydraulic jacks due to the dysfunction of the automatic system. 

The loading details of both tests were shown in Figure 3. 

 
Figure 2. Illustration of the four-point bending test 

 
Figure 3. Loading details of both tests 

 Monitoring system setup 

To monitor the strain and displacement development of the 

WTB segment under four-point loading tests, a comprehensive 

monitoring system was implemented to capture multiple sets of 

displacement measurements, enabling a thorough assessment 

of its mechanical performance. This system incorporated 

diverse techniques, including strain gauges, LVDT, DIC) and 

DFOS. The setup of each monitoring system is detailed below. 

A general view of the installed monitoring systems on the WTB 

segment is shown in Figure 4. 

Strain gauge and LVDT: Two strain gauges were deployed 

on the back of the WTB segment, as shown in Figure 4. The 

strain gauge fixed at the upper part of the blade segment is 80 

mm from the top and the other gauge fixed at the lower level is 

80mm from the bottom of the segment. Both strain gauges were 

deployed in the middle span of the blade segment. Three 

LVDTs were installed at three distinctive locations on the back 

of blade segment, as demonstrated in Figure 4. The LVDT 

mounted on the left was placed at a distance of 63mm below 

the bottom of the left spreader beam, while the one mounted on 

the right was at a distance of 70mm from the bottom of the right 

spreader beam. The middle one was fixed at 430mm from the 

top of the blade in the vertical direction. 
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Figure 4. Monitoring system setup on the WTB segment 

DIC and DFOS: One DIC camera was positioned to capture 

and monitor the deformation and displacement of the front side 

of the WTB segment. Line gauges and reference points were 

marked at key locations to facilitate deformation tracking. 

These markers were symmetrically aligned on the front face 

with the two strain gauges and three LVDTs positioned on the 

back of the segment, as shown in Figure 5. To get continuous 

strain measurements of the WTB segment, a Brillouin-based 

DFOS system was deployed. DFOS cables were installed on 

both the front and back surfaces of the segment, with two fixed 

loops: one horizontal and one vertical, as shown in Figures 4 

and 5. The data logger used in this experiment was the VISION 

dual interrogator, manufactured by Omnisens, which integrates 

Brillouin Optical Time Domain Reflectometry (BOTDR) and 

Brillouin Optical Time Domain Analysis (BOTDA), enabling 

short- to long-distance strain measurements over a single fibre.  

 
Figure 5. Line gauges and points to mark locations for DIC 

 DFOS instrumentation details 

Theoretically, the four-point bending of the WTB segment is 

expected to induce the highest strain in its top and bottom 

regions, while the central portion is supposed to experience the 

lowest strain magnitude. Consequently, the monitoring systems 

are strategically positioned around the top and bottom areas to 

capture the most significant strain responses. To ensure 

consistency and comparability in the monitoring program, 

DFOS was deployed at locations corresponding to the strain 

gauges and LVDTs, as illustrated in Figure 6. The front and 

back surfaces of the WTB segment were instrumented with a 

single loop of longitudinal DFOS cable, which was virtually 

divided into three segments on the front and three on the back 

(Figure 6(a)). In addition, an out-of-plane loop comprising five 

loops was installed at the mid-span of the segment and virtually 

segmented into ten sections on both the front and back surfaces 

(Figure 6(b)). Figure 6 provides a schematic representation of 

the DFOS instrumentation design for the WTB segment. 

 
(a) Deployment of DFOS longitudinal loop 

 
(b) Deployment of DFOS out-of-plane loop 

Figure 6. DFOS deployment on the WTB segment 

The DFOS cables used for monitoring strain development in 

the WTB segment are single-mode fiber optic cables. These 

cables were affixed to the front and back surfaces of the WTB 

segment using Loctite EA 3421 adhesive. For the longitudinal 

loop of DFOS cables, the top section was installed horizontally 

along DIC marker Line 1, as indicated in Figure 4-6, rather than 

being aligned parallel to the top edge of the WTB segment. The 

middle and bottom sections were also affixed horizontally. The 

vertical spacing between the top and middle section is 295 mm, 

while the distance between the middle and bottom sections is 

210 mm, with the bottom section positioned 80 mm from the 

lower edge of the segment. The deployment sequence of the 

longitudinal loop followed the following order: Section 1-

Section 2-Section 4-Section 3-Section 5-Section 6.  

For the out-of-plane loop of DFOS cables, five sub-loops 

were installed on both the front and back surfaces of the WTB 

segment. The deployment sequence followed the order: Section 

2-Section 1-Section 3-Section 4-Section 6-Section 5-Section 7-

Section 8-Section 10- Section 9. The spacing between adjacent 

sub-loops was approximately 190 mm. Loop 1 was positioned 

170 mm from the right load-spreader beam, while Loop 5 was 

located 188 mm from the left load-spreader beam. 

Once the DFOS cables were installed, they were left 

undisturbed for approximately 48 hours to allow the adhesive 

to cure fully and ensure a secure bond between the cables and 

the segment surface, preventing slippage. Following the curing 

period, laser beams were used to verify the integrity of the 

DFOS deployment. Once the installation was confirmed to be 

intact, the formal testing phase commenced. 
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3 MONITORING RESULTS 

 DFOS measurements 

Figure 7 presents the monitoring results obtained using DFOS 

under test 1 and test 2 for the longitudinal loops, alongside the 

strain gauge (SG) and DIC measurements for comparison. As 

previously discussed, the middle section of the WTB segment 

(Section 3 and Section 4) is theoretically expected to exhibit the 

lowest strain magnitude, which is corroborated by the results in 

Figure 7. Given the minimal strain observed in these sections, 

their performance will not be further analysed in this paper. 

 

 
Figure 7. DFOS monitoring results of longitudinal sections 

under (a) test 1 and (b) test 2 

Figure 8 presents enlarged graphs of the measurements 

obtained in Section 2 and Section 5, corresponding to locations 

where the DFOS sensors were positioned adjacent to two strain 

gauges. These graphs provide further insights into the bending 

behaviour of the WTB segment and facilitate a comparative 

analysis of different monitoring techniques. As illustrated in 

Figure 6, Section 1 and Section 2 were affixed to the back and 

front surfaces of the turbine blade, respectively, at the same 

height. Theoretically, the bending patterns observed in these 

areas should be similar under both test 1 and test 2, a hypothesis 

that is confirmed by the results presented in Figures 8(a) and 

8(c). A comparable trend was observed in Sections 5 and 6, 

further validating this expectation. The consistency in bending 

patterns across these sections underscores the repeatability and 

reliability of the DFOS system employed in this study. 

 

 

 

 
Figure 8. Enlarged graphs of section 2 and section 5 under test 

1 (a and b) and test 2 (c and d) 
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 Test results comparison 

Figure 9 presents a comparative analysis of the monitoring 

results obtained using different techniques. The detailed values 

recorded by the strain gauge, DIC, and DFOS at the top and 

bottom area of the WTB under test 1 and test 2 are summarised 

in tables 1 and 2, corresponding to the conditions where total 

loadings of 30kN and 50kN were reached, respectively. 

 

 

Figure 9 illustrates that measurements obtained using different 

monitoring techniques exhibit consistent deformation patterns 

in the turbine blade under both test 1 and test 2. The results 

indicate that the upper region of the blade experienced tensile 

stress, while the bottom region was subjected to compressive 

stress. Furthermore, as the external loading increased, the 

measured strain values exhibited an approximately linear 

increase, confirming the expected mechanical response of the 

WTB structure. 

Overall, the DFOS measurements in both tests exhibited strong 

agreement with the results obtained from strain gauges and DIC, 

confirming its reliability. However, fluctuations were observed 

in the first two measurements of DFOS-bottom under test 1, 

which may be attributed to inaccuracies in the manual control 

of the loading increment. Despite these initial variations, the 

results affirm the effectiveness and reliability of DFOS as an 

innovative structural health monitoring technique for analysing 

the performance of decommissioned WTBs for repurposing. 

Table 2. Monitoring results under test 2 

Strain/με 10kN 20kN 30kN 40kN 50kN 

DFOS-top -379.0 -846.8 -1346.8 -1766.2 -2153.2 

SG-top -426 -888 -1323 -1758 -2191 

DIC-top -553.3 -832.1 -1439.7 -1847.9 -2296.4 

DFOS-bottom 204.6 445.2 702.5 943.8 1185.1 

SG-bottom 228 479 717 960 1213 

DIC-bottom 286.6 548.1 909.7 1152.3 1403.1 

 

Figure 9. Comparison of monitoring results under (a) test 1 

and (b) test 2 

 

 

Table 1. Monitoring results under test 1 

Strain/με 6kN 11kN 14kN 16kN 18kN 20kN 24kN 26kN 30kN 

DFOS-top -272.6 -637 -574.2 -675.8 -765.1 -871.5 -1041.4 -1155.9 -1334.4 

SG-top -274 -516 -624 -721 -811 -896 -1073 -1175 -1350 

DIC-top -239.6 -506.7 -696.2 -802.2 -840.5 -927.3 -1136.4 -1221.2 -1246.1 

DFOS-

bottom 
119.6 284.7 337.4 393.8 446.4 479.5 581.8 644.7 717.2 

SG- bottom 147 282 334 386 435 481 579 634 729 

DIC-bottom 150.9 295.5 353.2 420.6 524.8 641.4 727.2 824.3 912.3 
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4 CONCLUSION 

This study evaluated the suitability and applicability of 

distributed fibre optic sensing for monitoring the second-life 

performance of decommissioned wind turbine blades in reuse 

and repurposing scenarios. Four-point bending tests were 

conducted on a decommissioned WTB segment, with DFOS 

deployed alongside strain gauges, digital image correlation, and 

linear variable differential transformers to assess its residual 

structural performance. The results revealed consistent strain 

measurements obtained from DFOS, strain gauges, and DIC, 

with only negligible differences in magnitude, confirming the 

accuracy and reliability of DFOS in capturing strain 

distributions in the WTB. 

Through comparative analysis, this study confirms that 

DFOS is a viable and effective monitoring technique for 

assessing the structural behaviour of decommissioned WTBs, 

supporting their reuse in civil engineering applications. The 

tested blade exhibited adequate static load resistance and beam-

like behaviour under bending loads, indicating its suitability for 

structural applications such as bridges and other load-bearing 

elements. Considering the growing demand for sustainable 

construction materials, the reuse of decommissioned WTBs, 

coupled with advanced sensing techniques like DFOS, can 

contribute to a circular economy in the wind energy sector, 

reducing waste generation and environmental impact. 

However, to ensure the long-term reliability and safety of 

decommissioned WTBs in civil infrastructure, further research 

is recommended. Future studies should incorporate material 

characterisation tests to better understand the degradation 

effects of aging, UV exposure, and cyclic loading on GFRP 

composites. Additionally, long-term monitoring under real-

world environmental conditions is necessary to validate the 

feasibility of DFOS for field applications. These steps will help 

establish standardised design and assessment frameworks, 

facilitating the widespread adoption of repurposed WTBs in 

civil engineering applications. 
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ABSTRACT: Tropical cyclones (TCs) stand as one of the most destructive extreme weather events, posing significant threats to 

human safety and urban infrastructure. One critical phenomenon associated with TCs is the occurrence of strong winds; thus, 

accurate prediction of urban wind speed during TCs can provide essential information for decision-making, which is vital for 

enhancing urban resilience. This study proposes a deep learning-based model that accounts for the spatial and temporal 

dependencies of wind speed data collected from sensors of meteorological stations while addressing the impacts of climate change. 

The model integrates temporal and spatial encodings with measured time series data, enabling the capturing of long-term temporal 

dependencies that reflect periodic weather patterns and climate change through the attention mechanism of a Transformer 

architecture. The outputs derived from this computation are further utilized to identify dynamic patterns of wind speed during 

TCs. Additionally, a graph neural network (GNN) is integrated to capture spatial dependencies, considering the non-Euclidean 

distribution of meteorological stations. To evaluate the performance of the proposed model, wind speed measurements from Hong 

Kong between 2000 and 2023 are used for training and testing. Comparative analyses with sequence-to-sequence models and 

GNN-recurrent neural network or GNN-Transformer hybrid models demonstrate that the proposed model enhances prediction 

performance. 

KEY WORDS: Tropical cyclones; Wind speed; Transformer; Graph neural network. 

1 INTRODUCTION 

Urban wind speed is a critical factor influencing human 

comfort, safety, and urban resilience [1] [2]. Its dynamics 

directly affect energy management systems [3], infrastructure 

durability, and ecological balance [4], while extreme wind 

events, such as tropical cyclones (TCs), pose significant threats 

to life and property. Rapid urbanization and climate change 

exacerbates these challenges by intensifying urban heat island 

effects and creating complex wind environments [5][7], further 

complicating prediction efforts. Accurate forecasting of urban 

wind speed, particularly during TCs, is thus essential for 

effective disaster mitigation, early-warning systems, and urban 

planning [8]. 

There are three primary methods for analyzing and predicting 

urban wind speed: physical models, statistical models, and 

hybrid models [9]. Physical models rely on geographic 

information and meteorological fields to solve complex 

physical equations. For instance, the Weather Research and 

Forecasting (WRF) model is often combined with complex 

urban canopy models to predict urban wind speed profiles 

during TCs [10] [11]. Additionally, WRF can be integrated 

with computational fluid dynamics (CFD) to investigate time-

series wind speed data [12]-[14]. However, these models are 

typically time-consuming and computationally intensive, 

which may introduce time lags, and they are sensitive to 

parameter settings, particularly during extreme TCs. 

In contrast, statistical models utilize historical data to 

develop statistical regressions for predicting future wind speeds. 

For example, autoregressive moving average (ARMA) models 

and generalized autoregressive conditional heteroskedasticity 

(GARCH) models have been employed to forecast seasonal [15] 

or hourly [16] wind speed. Moreover, model decomposition 

methods are often integrated with ARMA to enhance wind 

speed predictions [17]. While statistical models offer rapid 

inference, they may sacrifice accuracy, especially when wind 

speed exhibits strong nonstationary behavior [18]. Hybrid 

models, which combine physical and statistical approaches, 

aim to leverage the strengths of both methodologies, though 

they also inherit the limitations of each model type. 

Recent advancements in deep learning have attracted 

considerable attention across diverse fields, such as medicine, 

transportation, civil engineering, and aerospace, and the 

application of deep learning for predicting wind speed has also 

been explored. One approach treats wind speed prediction as a 

sequence-to-sequence task, employing recurrent neural 

networks (RNN)-based or convolutional neural networks 

(CNN)-based models. For instance, long short-term memory 

(LSTM), gated recurrent unit (GRU), CNN, and CNN-LSTM 

architectures have been assessed for their performance in long-

term wind speed predictions, with forecast horizons ranging 

from 6 months to 5 years [19]. In addition to long-term 

predictions, LSTM models have been utilized to forecast 10-

minute wind speeds using data from only two measurement 

sites [9]. Furthermore, ConvLSTM has been employed to 

predict 10-minute wind speeds based on weather-related 

images, considering six measurement sites [3]. Beyond RNN- 

and CNN-based models, Transformer has emerged as a popular 

alternative for sequence-to-sequence predictions. Various 

Transformer-based models have been compared for predicting 

10-minute wind speeds at three meteorological stations [20]. 

Another approach incorporates spatiotemporal correlations, 

rather than treating the problem purely as a sequence-to-
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sequence task. A notable example of this is the development of 

a temporal graph convolutional network (TGCN), which 

combines graph neural networks (GNN) and GRU to predict 

hourly wind speeds based on data from six measurement 

stations [21]. However, it is evident that the studies mentioned 

primarily focus on a limited number of measurement sites, with 

temporal resolutions typically set at 10 minutes or longer. The 

prediction of urban wind speed during TCs remains an area 

requiring further exploration, particularly regarding the 

application of Transformer-based models that account for 

spatiotemporal dependencies. 

The contributions of this study are three-fold: Firstly, a dense 

meteorological station network that covers most urban areas is 

selected, enabling 1-minute resolution wind speed predictions 

during TCs—an improvement over existing sparse, low-

frequency datasets. Secondly, the study develops a novel 

Transformer-GNN hybrid model that explicitly captures spatial 

topology through GNN while leveraging Transformer for 

temporal dependencies, thus advancing beyond conventional 

sequence-to-sequence approaches. Lastly, a comparison is 

conducted against current mainstream models, including pure 

sequence-to-sequence models, GNN-RNN, and GNN-

transformer hybrids, demonstrating superior accuracy in 

extreme wind scenarios and providing valuable insights into 

spatiotemporal feature engineering for urban meteorology. 

The remainder of this paper is structured as follows: Section 

2 details the problem formulation, data source and processing, 

and model architecture. Section 3 presents experimental results 

with comparative analysis and ablation study, while Section 4 

concludes the main findings of this study. 

2 METHODOLOGY 

 Problem statement 

The prediction of urban wind speed during TCs can be framed 

as a task where, given a series of wind speed measurements 

from the past P time steps 𝑋𝑃 ∈ ℝ𝑃×𝐶 , the wind speed for the 

future F time steps 𝑋𝐹 ∈ ℝ𝐹×𝐶  can be predicted by, 

 𝑋𝐹 = 𝑓(𝑋𝑃) (1) 

where C represents the number of meteorological stations, 

and 𝑓(∙)  denotes the deep learning-based models trained. 

Additionally, the meteorological station network can be 

described as a graph structure 𝐺 = (𝑉, 𝐸, 𝐴) , where V 

represents the nodes (the stations), E indicates the edges, and A 

denotes the adjacency matrix. The adjacency matrix is 

established based on the geographic distances between the 

stations. 

 Data source and processing 

Hong Kong is located in the southeast of the Pearl River 

Estuary in southern China, facing the vast South China Sea to 

the south. It features a long coastline, with most of its low-lying 

areas concentrated along the coast. Additionally, Hong Kong 

has a high urbanization rate and is characterized by high-rise 

buildings, such as the International Finance Centre [22]. These 

urban and geographical characteristics make Hong Kong 

vulnerable to TCs [23]. In this study, urban wind speed data 

collected by 28 meteorological stations from the Hong Kong 

Observatory (HKO) is used to train and test model performance. 

It is important to note that the map and locations of the stations 

shown in Figure 1 are for illustration purposes only; for official 

information, please refer to the HKO website. The 28 stations 

cover the main areas of Hong Kong and have maintained 

continuous data collection over a long period. 

 

Figure 1. Schematic of distribution of meteorological stations.  

The data is recorded at a 1-minute interval. A TC is 

considered to have an effect on Hong Kong if a TC signal has 

been issued by the HKO. Consequently, data from the entire 

lifecycle of each TC is extracted. The extracted data for the 

years 2000-2019 is used as the training set, for 2020-2021 as 

the validation set, and for 2022-2023 as the test set, as 

summarized in Table 1. Linear interpolation is employed to 

address missing data, while the mean and standard deviation 

are used for normalization and de-normalization. 

Table 1. Summary of three data sets. 

Data sets No. of TCs No. of samples Rate 

Training set 98 920,258 82% 

Validation set 11 88,391 8% 

Test set 10 115,210 10% 

 Model architecture 

The model architecture is shown in Figure 2, and it is similar to 

the logic referenced in [21] [24]-[26]. However, urban wind 

speed is significantly influenced by TC intensity, which varies 

with climate change [27], as well as the distance between the 

TC location and the city. Therefore, this study incorporates 

long-term dependency, short-term dependency, and spatial 

dependency to effectively predict future 3-h urban wind speed 

during TCs using historical 3-h measurements from the 

meteorological station network. Specifically, both the input 

length and output horizon are set to 180. 

Patch embedding and positional encoding: To improve 

computational efficiency, this study employs patch embedding 

to partition the input. Given the input 𝑋𝑃 ∈ ℝ𝑃×𝑁, patch length 

L is used for patch embedding to obtain the patched sequence 

𝑋𝑃 ∈ ℝ𝐿×𝑁×𝐶 , where N is the number of patched blocks. 

Positional encoding PE(∙) is added to the patched blocks using 

the commonly employed sinusoidal method in Transformer 

architectures [28], resulting in, 

 𝑋𝑒𝑛𝑐 = 𝑋𝑃 + PE(𝑋𝑃) (2) 
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Figure 2. Overview of model architecture. 

Temporal encoding and spatial encoding: Climate change 

[27] and the distance between the TC location and the city 

significantly influence TC intensity, which in turn affects urban 

wind speed. However, these factors are not explicitly 

incorporated into the training process. Regardless of climate 

change or distance, both are directly related to temporal 

evolution, which spans from days (for distance) to years (for 

climate change). Therefore, temporal encoding is necessary to 

account for both temporal scales. 

In this study, temporal encoding is derived by considering 

various time components: the minute of the hour 𝐸𝑠, the hour 

of the day 𝐸ℎ, the day of the month 𝐸𝑑, the month of the year 

𝐸𝑚, and the year 𝐸𝑦. This encoding embeds more time-related 

information using linear layers. The components of the 

temporal encoding are concatenated as follows, 

 𝐸𝑇 = concat[𝐸𝑠, 𝐸ℎ , 𝐸𝑑 , 𝐸𝑚, 𝐸𝑦] (3) 

where each 𝐸𝑠, 𝐸ℎ, 𝐸𝑑, 𝐸𝑚, and 𝐸𝑦 has a shape of 𝐿 × 𝑑/5 

(with d being the embedding dimension), resulting in a final 

temporal embedding 𝐸𝑇 with shape 𝐿 × 𝑑. 

Given that meteorological stations are located in various 

regions with different latitudes, longitudes, and altitudes, it is 

important to consider the spatial characteristics that may 

influence urban wind speed. In this study, spatial encoding is 

employed. Specifically, the normalized Laplacian matrix is 

calculated as, 

 Δ = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 (4) 

where I and D are the identity and degree matrices, 

respectively, and the adjacency matrix is calculated using the 

latitude, longitude, and altitude of each station. Following this, 

eigenvalue decomposition is performed as, 

 Δ = 𝑈𝑇Λ𝑈 (5) 

where U and Λ are the eigenvector and eigenvalue matrices. 

The k smallest non-trivial eigenvectors are then used to 

generate the spatial encoding 𝐸𝑆 ∈ ℝ𝐶×𝑑  through linear 

transformation. 

Long-term dependency: Based on the temporal and spatial 

encodings, temporal dependencies can be more effectively 

captured by the attention mechanisms of the Transformer 

architecture. It is important to note that the terms "long-term" 

and "short-term" differ from those used in the weather 

prediction field; they are merely used to distinguish between 

the different horizons considered in this study. 

In addition to the long-term effects of climate change on 

urban wind speed, wind speed exhibits different characteristics 

across seasons, demonstrating periodic behavior [29]. Thus, 

long-term dependencies can be implicitly considered, as 

temporal information is encoded from minutely to yearly. 

Specifically, long-term dependency is addressed according to 

the temporal encoding as follows, 

 𝑄𝑙
ℎ = 𝑤𝑞𝑙

ℎ (𝐸ℎ𝑖𝑠
𝑇 + 𝐸𝑆) (6) 

 𝐾𝑙
ℎ = 𝑤𝑘𝑙

ℎ (𝐸𝑓𝑢𝑡
𝑇 + 𝐸𝑆) (7) 

 𝑉𝑙
ℎ = 𝑤𝑣𝑙

ℎ 𝑋𝑒𝑛𝑐  (8) 

where 𝐸ℎ𝑖𝑠
𝑇  is the temporal encoding derived from known 

historical temporal information, while 𝐸𝑓𝑢𝑡
𝑇  is the temporal 

encoding derived from future temporal information. The 

attention mechanism, along with aggregation using the 

computed attention matrix, can be used to capture the long-term 

dependency as follows, 

 𝑋𝑙
ℎ = softmax (

𝑄𝑙
ℎ𝐾𝑙

ℎ𝑇

√𝑑ℎ
)𝑉𝑙

ℎ (9) 

where 𝑤𝑞𝑙
ℎ , 𝑤𝑘𝑙

ℎ , and 𝑤𝑣
ℎ are learnable parameters for heads h, 

and 𝑑ℎ is the scaling factor. 

Short-term dependency: In addition to long-term 

dependency, urban wind speed during TCs may vary 

significantly within a short period as the TCs approach and 

make landfall in the city. Therefore, short-term dependency is 

also considered to capture these dynamics. The short-term 

dependency is addressed by the Transformer architecture based 

on the known sequence, enabling 𝑋𝑙
ℎ to be used to derive the 

query, key, and value through commonly used linear layers as 

follows, 

 𝑄𝑠
ℎ = 𝑤𝑞𝑠

ℎ 𝑋𝑙
ℎ (10) 

 𝐾𝑠
ℎ = 𝑤𝑘𝑠

ℎ 𝑋𝑙
ℎ (11) 

 𝑉𝑠
ℎ = 𝑤𝑣𝑠

ℎ 𝑋𝑙
ℎ (12) 

where 𝑤𝑞𝑠
ℎ , 𝑤𝑘𝑠

ℎ , and 𝑤𝑣𝑠
ℎ  are learnable parameters. The short-

term dependency can be computed as follows, 
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 𝑋𝑠
ℎ = softmax (

𝑄𝑠
ℎ𝐾𝑠

ℎ𝑇

√𝑑ℎ
)𝑉𝑠

ℎ (13) 

Spatial dependency: Spatial dependency is addressed using 

a graph convolutional neural network (GCN) as follows, 

 𝐺 = 𝛿[𝛼𝑋𝑠 + (1 − 𝛼)(𝑤𝑔𝐴̅𝑋𝑠)] (14) 

where 𝑤𝑔  are the learnable parameters and 𝐴̅  is the 

normalized adjacency matrix. After aggregating spatial 

information, 𝛼  balances the previous information with the 

aggregated information, and 𝛿  is a function used to reduce 

overfitting. 

Residual connections are then utilized as follows, 

 𝑂(𝑙) = SwiGLU[RMSN(𝐺(𝑙) + 𝑂(𝑙−1))] + 𝐺(𝑙) (15) 

where 𝑂(𝑙)  and 𝑂(𝑙−1)  represent the outputs of layer l and 

layer l-1 of the aforementioned spatiotemporal dependency 

computation layer, respectively. Here, SwiGLU denotes the 

activation function, and RMSN represents the RMSNorm [30]. 

 Experimental setup 

In this study, three types of models are selected to compare their 

performance with the proposed model, representing three 

typical categories: statistical model, pure sequence-to-sequence 

models, and hybrid models combining GNN-RNN or GNN-

Transformer architectures. The ARMA model is chosen as the 

baseline for statistical models, while LSTM, GRU, and vanilla 

Transformer models are selected as pure sequence-to-sequence 

models. For hybrid models, TGCN [26] is chosen for the GNN-

RNN approach, and PDFormer [25] is selected for the GNN-

Transformer approach. 

The model setup for ARMA is derived from [16], where 

sensitivity analysis is performed. The configurations for TGCN 

and PDFormer follow the original papers [25] [26]. For GRU 

and LSTM, the number of RNN layers and embedding 

dimensions match those of TGCN [26], while the number of 

blocks and embedding dimensions for the Transformer align 

with the proposed model in this study. The specific 

configurations include an embedded dimension of 250, a 

Laplacian dimension for generating spatial encoding of 8, five 

heads for computing temporal dependency, a depth of 3 for 

spatiotemporal dependency computation, a drop rate of 0.1 for 

attention computation, and a linear drop rate within the range 

of [0, 0.1] for each depth. 

 Evaluation metrics 

To evaluate the model's performance, three metrics are used: 

mean absolute error (MAE), root mean square error (RMSE), 

and the R2 score. 

 MAE =
1

𝑛
∑|𝑦 − 𝑦̂| (16) 

 RMSE = √
1

𝑛
∑(𝑦 − 𝑦̂)2 (17) 

 R2 = 1 −
∑(𝑦−𝑦̂)2

∑(𝑦−𝑦̅)2
 (18) 

where 𝑦 , 𝑦̂ , and 𝑦̅  represent the target values, predicted 

values, and mean value of urban wind speed, respectively, 

while n denotes the total number of urban wind speed values. 

A lower MAE and RMSE signify superior model performance. 

Additionally, a higher R2 score reflects improved model 

performance. 

 Optimization details 

For each model, training is conducted three times, with the best 

result selected for performance evaluation. Each training 

session is set for a large number of epochs, and an early 

stopping mechanism is implemented to avoid overfitting. The 

batch size is set to 256, the learning rate is 0.0003, and Adam is 

employed as the optimizer. Mean squared error is chosen as the 

loss function. The programming is carried out using Python and 

PyTorch, with models trained on an RTX-6000 Ada GPU card 

featuring 48GB VRAM and 512GiB of system memory. 

3 RESULTS AND DISCUSSIONS 

 Evaluation of model’s performance 

The model's performance is summarized in Table 2. It is 

evident that the conventional statistical model struggles to 

deliver reliable predictions in scenarios involving extreme wind 

speeds across the entire network of stations. The MAE of the 

ARMA model is approximately three times greater than that of 

the other deep learning models listed in Table 2, while the 

RMSE for ARMA is five times larger than that of the other 

models. Additionally, the R2 score indicates that the predicted 

results exhibit greater fluctuations compared to those generated 

by the deep learning models. 

Table 2. Summary of model’s performance. 

Models MAE RMSE R2 

ARMA 3.230 7.600 0.6539 

LSTM 1.103 1.593 0.8638 

GRU 0.990 1.464 0.8849 

Transformer 0.909 1.376 0.8985 

TGCN 0.919 1.372 0.8989 

PDFormer 0.914 1.360 0.9007 

Proposed 0.902 1.348 0.9026 

Regarding the sequence-to-sequence models, the results 

indicate that the Transformer outperforms the other two models 

(GRU and LSTM) across all metrics, including MAE, RMSE, 

and R2 score. This demonstrates the Transformer's superior 

ability to capture temporal dependencies. However, compared 

to the GNN-RNN and GNN-Transformer hybrid models, the 

pure sequence-to-sequence models tend to yield less reliable 

predictions. This suggests that spatial dependencies are not 

adequately addressed in these models, leading to decreased 

performance. Notably, both LSTM and GRU exhibit larger 

errors compared to TGCN and PDFormer. While the 

Transformer has a smaller MAE, it also shows a larger RMSE 

and a lower R2 score compared to the two hybrid models. This 

indicates that, despite the Transformer's average performance 

being slightly better than that of TGCN and PDFormer, it may 

be less effective in predicting extreme values. 

Regarding the hybrid models, the proposed model 

demonstrates superior performance in predicting urban wind 

speed across all metrics. It exhibits smaller errors compared to 

the other two hybrid models that also incorporate spatial 

dependency computation, as well as the pure sequence-to-

sequence models. Notably, while TGCN and PDFormer have 

larger MAE values than the Transformer, the proposed model 

achieves smaller error rates than all other models listed in Table 
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2. This highlights the effectiveness of the proposed model in 

addressing both temporal and spatial dependencies in urban 

wind speed prediction. 

 Ablation study 

To illustrate the role of the modules in the proposed model, an 

ablation study is conducted. The first experiment (Delete-LTD) 

involved removing the long-term dependency module, the 

second experiment (Delete-STD) removed the short-term 

dependency module, and the third experiment (Delete-SD) 

eliminated the spatial dependency module. In these three 

additional experiments, all other components (except for the 

deleted modules) are maintained exactly as in the proposed 

model (Full). The MAE, RMSE, and R2 scores from these 

experiments are presented in Figure 3. 

 

Figure 3. Performance comparison of ablation study 

experiments. 

The results indicate that removing any component from the 

proposed model leads to a decrease in performance based on 

the evaluation metrics. This finding clarifies the contributions 

of each module to the overall effectiveness of the model, 

underscoring the significance of long-term, short-term, and 

spatial dependencies in achieving accurate predictions. Each 

module plays a crucial role in enhancing the model's ability to 

capture the complexities of urban wind speed dynamics. 

When the GNN module is removed, the model resembles the 

vanilla Transformer, resulting in the outcome of experiment 

Delete-SD being closer to that of the vanilla Transformer listed 

in Table 2. However, the result of experiment Delete-SD is 

slightly better than the vanilla Transformer. This can be 

explained by the fact that the vanilla Transformer primarily 

focuses on correlations within the known sequence (the short-

term dependencies in this study). When both short-term and 

long-term dependencies are incorporated, the performance 

improves slightly. On the other hand, the experiment Delete-

SD does not perform as well as the proposed model due to the 

absence of the GNN module. This highlights the importance of 

the GNN in enhancing the performance of urban wind speed 

prediction. The presence of the GNN significantly contributes 

to capturing the spatial dependencies, resulting in more 

accurate predictions. 

In the experiments Delete-LTD and Delete-STD, the results 

are similar, but neither provides better predictions than the 

proposed model. This indicates that both long-term and short-

term dependencies are crucial for achieving accurate 

predictions. Furthermore, the results of these two experiments 

are better than those of the Delete-SD experiment, which 

further underscores the importance of spatial dependency in 

enhancing model performance. This highlights the necessity of 

integrating all three types of dependencies for optimal 

prediction accuracy in urban wind speed prediction. 

 Case study 

 

Figure 4. Wind speed prediction of four stations during 

Typhoon Saola. 
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To illustrate predicted urban wind speeds, two case studies are 

conducted: Typhoon Saola and Typhoon Koinu. Saola, the 

third TC in Hong Kong in 2023, prompted signal No. 10, the 

first since Super Typhoon Mangkhut in 2018. Koinu triggered 

signal No. 9 and brought heavy rain, with 369.7 millimeters 

recorded—over three times the normal monthly total and the 

highest daily rainfall for October. 

 

Figure 5. Wind speed prediction of four stations during 

Typhoon Koinu. 

For Typhoon Saola, four stations—Hong Kong International 

Airport (HKA), HKO, Sai Kung, and Shek Kong—are selected 

to illustrate the predicted wind speed, as shown in Figure 4. The 

selection of these stations is based on two key principles: first, 

HKA and HKO were chosen for their strategic locations; 

second, the remaining stations were selected due to their 

relatively higher measured wind speed during the cyclone, with 

an emphasis on decentralization. Similarly, for Typhoon Koinu, 

HKA, HKO, Lau Fau Shan, and Tseung Kwan O were selected 

to represent the predicted wind speed, as depicted in Figure 5. 

The proposed model demonstrates strong predictive 

capabilities for the two selected cases. The trends in the 

predictions align closely with the target measurements, even as 

wind speeds increase when the TCs approach Hong Kong. 

However, it is evident that the model tends to underestimate the 

peak values, which may be attributed to the inherent tendency 

of neural networks to produce smoother outputs—a 

phenomenon commonly observed in many deep learning 

models. Additionally, the results for Typhoon Saola are more 

consistent with the measurements than those for Typhoon 

Koinu. This discrepancy may be partially due to the fewer local 

peaks observed during Typhoon Saola, as well as the model's 

limitations in effectively capturing peak wind speeds. 

4 CONCLUSIONS 

In this study, a novel deep learning-based spatiotemporal model 

is proposed for predicting urban wind speed during TCs. The 

following key conclusions can be drawn: 

• The proposed model achieves better prediction 

accuracy compared to the statistical model and pure 

sequence-to-sequence models, with a MAE of 0.902. 

This represents a 0.78% improvement over the vanilla 

Transformer, a 9.76% improvement over GRU, and a 

22.28% improvement over LSTM. Additionally, it 

outperforms GNN-RNN and GNN-Transformer 

hybrid models by more than 1%. 

• The vanilla Transformer demonstrates potential in 

predicting urban wind speed during TCs. The 

proposed model's integration of long-term, short-term, 

and spatial dependencies significantly enhances its 

performance compared to the vanilla Transformer. 

This improvement underscores the importance of 

considering various types of dependencies in 

achieving more accurate predictions in complex 

environments like urban areas during TCs. 

• The proposed model effectively captures the trends in 

urban wind speed during TCs. Specific case studies 

reveal strong performance in predicting peak values 

for Typhoon Saola; however, some smoother 

predictions were observed for Typhoon Koinu. 
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ABSTRACT: As the most vulnerable part of the infrastructure transportation network, bridges will inevitably encounter problems 

such as aging and degradation throughout their entire service life [1]. The maintenance costs for all bridges within the region are 

increasing year by year [2]. When the financial conditions are insufficient to fully cover the costs, many domestic provinces and 

cities adopt the maintenance and repair plans based on single bridges relying on experience and the "fire-fighting" post-event 

repair mode [3]. There are few scientific management models that focus on the overall service performance of the regional bridge 

clusters. This leads to either excessive or insufficient detection and maintenance. Therefore, there is an urgent need for a systematic 

intelligent assessment framework for existing bridge clusters. However, current research on service performance evaluation and 

prediction for large-scale bridge networks suffers from multiple limitations, such as limited research objects, simplified modeling 

forms, difficulty in quantitative assessment, generalized prediction outcomes, and insufficient consideration of maintenance 

decision-makings [4].  

Therefore, this study focuses on graph network representation and intelligent evaluation for service performance of bridge 

clusters. Firstly, a systematic comparative analysis of two distinct graph network representation methodologies (undirected and 

directed network) is conducted based on actual bridge cluster cases of different scales. Secondly, Second, tailored intelligent 

assessment frameworks of vulnerability are developed for each representation. Finally, benchmarking against evaluation outcomes 

reveals critical performance differentials across methodologies. This work thus establishes a theoretical foundation for intelligent 

operation and maintenance strategies in bridge network management. 

(1) For the undirected graph network representation methodology 

As shown in Figure 1, the National highway (NH) network in the northeast of China connects 11 cities and 37 counties, and 

has 1772 bridges. It can be seen hat the bridge assessment states are unevenly distributed. Funds for maintaining expressway 

bridges are abundant, and thus such bridges are in relatively good condition. Meanwhile, ordinary highway bridges, especially in 

poverty-stricken counties near the border, are underfunded.  

 

 
Figure 1. NH network with evaluated bridges. Figure 2. modelling result of the NH bridge network. 

 

As a bridge network contains a significant amount of information, modelling a large-scale bridge network is complex. In this 

study, a undirected bridge network can be treated as an overlay of a topological graph and the corresponding information network. 

The nodes and edges in the topological graph of a bridge network represent intersections (or cities) and highways between nodes, 

respectively. Regarding the information group, a bridge network should contain the properties of nodes and edges, including the 

city (or node) name, the actual length of each edge (or NH) between nodes, and the assessment state of bridges on each edge. The 

NH bridge network is established as shown in Figure 2.  

The intelligent assessment framework for the undirected bridge network adopts vulnerability as an indicator, utilizing 

backward thinking to evaluate network resilience. It  methodology intentionally disrupts a portion of the network and quantifies 
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component importance by comparing pre- and post-damage performance indices. In detail, the proposed vulnerability index 

accounts for both bridge failures and their impact on bridge network performance from a probabilistic perspective. Additionally, 

the probability of bridge network connectivity, denoted as P(C), is used to evaluate the performance of bridge networks with 

unreliable components. Therefore, the vulnerability index of the ith bridge ( )bridgeV i  and the bridge network ( )networkV G   are 

defined as:  

 ( ) ( ) ( ) ( )|bridge i iV i P C P C B P B = −                                                                                     (1)
 

                              ( ) ( ) ( ) ( )|
i

network i i

B G

V G P C P C B P B


 = − 
                                                                            (2)

 

Herein, G  represents the undirected bridge network, and C  and C  indicate the events of the bridge network being connected 

and disconnected, respectively. 
iB and

iB indicate the event of the ith bridge safety and failure, respectively. ( )iP B and ( )| iP C B  

are the ith bridge failure probability and the network connectivity probability given the ith bridge failure, respectively. Evidently, 

( )| iP C B  demonstrates the effect of a bridge failure on network connectivity performance from a probabilistic view. The results 

indicate that vulnerability index of the NH bridge network is 4.80×10-3, and the vulnerability of each equivalent bridge in the NH 

bridge network is shown in Figure 3. This approach effectively identifies critical bridges that elude detection by conventional 

indicators, a finding that should be emphasized in the future maintenance strategies formulated by the provincial management 

department. 

 
Figure 3. Vulnerability index of each equivalent bridge in the undirected NH bridge network. 

 

(2) For the directed graph network representation methodology 

As shown in Figure 4, it considered a city located in the southern part of the Yangtze River Delta, China. As an important 

economic centre, a well-functioning transportation network is the foundation of regional economic development. Therefore, based 

on the inspection information of 299 actual bridges in the city, the directed bridge network was established by fully considering 

the direction of the streets (one- or two- way street) and bridge types (single- or double- deck bridge) between all nodes in 

the urban city. As shown in Figure 5, the topological model contained 63 nodes and 216 directed edges, including 107 two-way 

edge pairs and two one-way edges are constructed. 

 
 

Figure 4. Physical location of the bridge network. Figure 5. modelling result of the directed bridge network. 

 

1 5 10 15 20 25 30 35 40 45 50 55 60 65 68

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0

 

V
u

ln
e
ra

b
il

it
y

 i
n

d
e
x

 o
f 

b
ri

d
g

e
 V

b
ri

d
g
e

The numbering of equivalent bridge

48

45 4322

11

14

2

3 4 5 6

7 8 9 1012

13

15

16

17

18

19 20 21

23

24 25

26

27

28 29

3031

32

33

34

35

3637

3839

4042 41

44

4647

49505162

5253

54

5556

57

58

59

60

61

63

1

3
0

3
1

2
1

1

2
1

2

2
0

5

2
0

6

2
0

9

2
1

0

2
0

3

2
0

4

1
9

9

2
0

0

197

198

194

193

1
9

0

1
8

9

1
8

5

1
8

6

128

127

1
2

5

1
2

6

180

179

178

177

176

175

174

173

172

171

1
6

9

1
7

0

166

165

1
6

7

1
6

8

162

161

150

149

1
5

1

1
5

2

1
6

3

1
6

4

160

159

1
5

7

1
5

8

154

153

1
5

5

1
5

6

148

147

1
4

5

1
4

6

1
4

3

1
4

4

142

141

138

137

1
3

9

1
4

0

1
3

3

1
3

4

130

129

1
3

1

1
3

2

122

121

1
2

3

1
2

4

118

117

1
1

9

1
2

0

116

115

1
1

3

1
1

4

110

109

112

111

106

105

1
0

3

1
0

4

9
7

9
8

95

96

9
3

9
4

89

90

9
1

9
2

83

84

8
1

8
2

76

75

79

80

7
7

7
8

73

74

67

68

63

64

59

60

6
1

6
2

57

58

5
5 5
6

54

5
2

5
3

48

49

42

43

44

45

3
8

3
9

36

37

32

33

28

2927

19

20

13

14

1 23 4

5

6

9

10

7 8 1
1

1
2

1
5

1
6

1
7

1
8

2
1

2
2

24

23

2
5

2
6

3
4

3
5

4
0

4
1

4
6

4
7 5
0

5
1

6
5

6
6 6
9

7
0 7
1

7
2

8
7

8
8

99

100

1
8

2

1
8

1

1

Two-way edges with double-deck bridge

Two-way edges with single-deck bridge

Two-way edges with double & single-deck bridges

One-way edge with edge number 27

Nodes

27

Two-way edges without bridges



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-124 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 802 

To describe the different edge dependencies in the directed bridge network, an extended network model and importance index 

( ),i j
 
is proposed, and simulation methods are applied to calculate the results.  

( )extended 1 2G , , , mV E E E=  
(3)

 

 

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

( )
( )

, | , 1,2,3

, , , ,

| , , | , ,

, ,
, , , 4,5,6

i j

i j i j i j i j i j

i j i j j i i j j i

i j j i i j j i i j j i i j j i

i j j i i j j i

i j j i i j j i

Num G e
e P G e P G e P e P e m

N

e P G e e P G e e

P G e e P e e P G e e P e e

Num G e e Num G e e
P e e P e e m

N N





→

→ → → → →

→ → → → →

→ → → → → → → →

→ → → →

→ → → →

= = = =

= +

= +

= + =

  

(4)
 

where ( )Num G   represents the number of connected states to the bridge network, given the state of edge i je →  or edge 

pair ( , )i j j ie e→ →  in N samples.  

Figure 8 shows the importance ranking of all edges (equivalent bridges) with non-zero failure probability in the directed 

bridge network during 2018. It can be observed that the importance of the upstream and downstream edges of an edge pair is not 

equal. It is related to the position and direction of the edge and the failure probabilities of single- and double-deck bridges. It is 

proved that the proposed index can effectively distinguish the relative importance of all edges in a network, thereby providing 

important guidelines for the designing novel network-level maintenance strategies.  

 
Figure 6. Important index of the directed urban bridge network. 

KEY WORDS: Bridge clusters; Service performance; Graph network representation; Intelligent evaluation. 
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ABSTRACT: Vision fundamental models demonstrate considerable competitiveness in structural surface crack segmentation due 

to their strong generalization ability. Vision fundamental models improve the fitting capacity for various objects by increasing 

image encoder complexity. However, for crack segmentation, the excessive number of these parameters leads to slow running 

speeds and large space occupation. This paper presents a lightweight Segment Anything Model (SAM)-based crack segmentation 

method using model distillation technology, aiming for consistent crack image embedding. Firstly, end-to-end automatic crack 

segmentation is achieved by modifying the SAM model through the addition of a crack segmentation head. Secondly, model 

distillation is employed to transfer features from the heavy-parametric encoder in SAM with minimal loss. Comparative analysis 

of cutting-edge crack segmentation techniques across eight frequently utilized datasets demonstrates their effectiveness and 

precision. The findings reveal the potential of mobile deployment of civil structure damage identification based on vision 

fundamental models. 

KEY WORDS: Crack segmentation, vision fundamental model, model distillation, lightweight, deep learning, bridge damage 

1 INTRODUCTION 

Crack is a kind of critical apparent damages in civil structures, 

and crack identification serves as a fundamental basis for 

evaluating structural condition and determining maintenance 

strategies [1,2]. Currently, structural surface crack 

identification heavily relies on visual inspection by engineers, 

which suffers from limitations such as low efficiency and 

subjectivity. To address this issue, researchers have started to 

replace human eye inspection with visible light cameras, 

enabling the automatic identification of cracks through the 

acquisition of structural visual images and the design of 

corresponding algorithms. Common methods of image 

acquisition include portable digital cameras, fixed monitoring 

systems, smartphones, unmanned aerial vehicles, climbing or 

underwater robots, etc., which significantly reduce the cost and 

risk associated with obtaining apparent structural information 

[3,4]. 

After obtaining structural visual images, researchers employ 

digital image processing algorithms for structural surface crack 

identification. Considering the impressive advancements of 

deep learning (DL) in various fields, there is a gradual shift 

within the field of crack identification towards automatic 

feature extraction utilizing deep learning models [5,6]. 

Researchers have employed DL-based object classification 

algorithms to classify multiple patches cut from crack images 

to judge the presence or absence of cracks, achieving patch-

wise crack identification [7-9]. Another important direction in 

this type of research is using DL-based object detection 

algorithms to find crack locations in crack images 

automatically, enabling box-wise crack identification [10-13]. 

However, the accuracy of patch-wise and box-wise crack 

identification may not meet the requirements for assessing the 

apparent condition of structures. As a result, DL-based pixel-

wise crack identification (i.e., crack segmentation), has 

emerged to address this limitation. 

DL-based crack segmentation methods can be categorized 

into two main groups: convolutional neural network (CNN)-

based and transformer-based. CNN-based crack segmentation 

mainly employs "encoder-decoder" architecture, including 

fully convolutional network (FCN) and its variants, as well as 

generative adversarial network (GAN). For FCN, Li et al. [14] 

proposed using FCN for pixel-to-pixel segmentation of various 

damages in civil structures. Chen and Jahanshahi [15] 

developed a rotation-invariant FCN to explicitly consider the 

rotational invariance of crack images. Hoskere et al. [16,17] 

introduced a FCN-based multi-class semantic segmentation 

approach using multi-task learning, which achieved better 

results than training multiple tasks independently for multi-

type structural materials and defects. To address the high noise 

and background interference in pavement crack images, Huyan 

et al. [18] established the CrackU-net framework with a 

modification on U-net, which also addressed the false-positive 

crack detection issue. Jiang et al. [19] applied attention 

mechanisms to U-net for detecting corrosion defects in steel 

box girders. Liu et al. [20] introduced a framework for concrete 

crack segmentation and quantitative calculation that considers 

the weight of crack boundaries. Xiang et al. [21] proposed a 

crack image augmentation method using active learning to 

enhance the accuracy of crack segmentation methods. Nguyen 

et al. [22] discussed the influence of different training loss 

functions using U-net on different crack datasets. Xu et al. [23] 

proposed a limited-supervised deep learning framework for 

damage segmentation (including cracks) using meta learning 

based on U-net. 

For GAN, Zhang et al. [24] aimed to address the severe 

imbalance between cracks and backgrounds with a crack-patch-

only GAN framework. Kim et al. [25] tackled the issue of data 
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scarcity in detecting cracks in steel structures using laser 

thermography for data augmentation by employing GAN. 

Similarly, to overcome the issue of limited training data, Ma et 

al. [26], Jin et al. [27], Li and Zhao [28], as well as Zhang et al. 

[29], utilized various variants of GAN to generate various crack 

images. 

Transformer models have demonstrated significant progress 

in vision-based crack segmentation. Shamsabadi et al. [30] 

introduced Vision Transformer (ViT) into this area and attained 

higher detection accuracy in asphalt and concrete surface crack 

segmentation than CNNs. Wang and Su [31] developed a multi-

level structure Transformer as an encoder to output multi-level 

features and fuse different levels of features. Ding et al. [32] 

analyzed the characteristics of crack recognition and proposed 

a boundary refinement Transformer for automatic 

segmentation of crack images obtained by drones. Guo et al. 

[33] used Swin Transformer to encode road crack images and 

employed UperNet to generate segmentation results. Tong et 

al. [34] combined Dempster-Shafer theory and Transformer 

network to construct a crack segmentation framework 

considering uncertainty and proposed a corresponding training 

strategy. Zhang et al. [35] proposed a segmentation 

Transformer framework called ShuttleNet v2, which can detect 

not only cracks but also multiple other diseases simultaneously. 

Furthermore, the amalgamation of CNNs' local modeling 

capability and Transformers' global modeling capability to 

build more powerful crack segmentation models is also an 

important research direction. Zhou et al. [36] fused Swin 

Transformer blocks and inverse residual blocks based on 

Deeplab v3 plus framework and combined channel attention 

mechanism to improve crack segmentation accuracy. 

With the emergence of vision fundamental models, the 

inherent paradigm of object segmentation has been disrupted. 

These vision fundamental models, characterized by a massive 

number of network parameters and extensive training data, 

exhibit unprecedented robust generalization capabilities, 

allowing for precise segmentation of most common objects in 

zero-shot and few-shot forms [37]. However, when applied to 

crack segmentation tasks, vision fundamental models face two 

primary issues: (1) the need for specific prompts during 

application or a lack of semantic information for automatic 

segmentation; (2) the excessive number of network parameters 

in vision fundamental models leads to slow segmentation 

speeds and deployment difficulties in hardware-constrained 

environments. 

This paper’s primary goal is to significantly lighten the vision 

fundamental model while preserving its strong generalization 

ability, to achieve precise and efficient segmentation of cracks. 

To achieve this objective, this paper proposes the following two 

innovative approaches: (1) modifying SAM structure by adding 

a crack segmentation head to incorporate semantic information 

for automatic segmentation, and (2) utilizing model distillation 

techniques to substantially reduce the parameters of SAM and 

significantly improve its running speed, with only acceptable 

loss in segmentation accuracy. 

This paper's primary contributions are twofold: (1) it 

represents an early attempt to apply vision fundamental models 

to automatic crack segmentation, providing a feasible approach 

for the application of such models in civil engineering, thereby 

offering valuable reference results for future research; (2) it 

verifies the feasibility of lightweighting crack segmentation 

networks based on vision fundamental models, enabling 

effective transfer of the powerful generalization ability of these 

models under hardware-constrained conditions. 

The remaining content of this paper are structured as follows. 

Section 2 provides an overview of the advancements in DL-

based crack segmentation. Section 3 delves into the intricate 

framework of the proposed lightweight vision fundamental 

model-based crack segmentation approach. Section 4 outlines 

the implementation specifics. Section 5 offers the testing results 

under both full supervision and limited supervision, as well as 

the results evaluated on hardware-constrained platforms. 

Lastly, Section 6 concludes the paper. 

2 METHODOLOGY 

The proposed lightweight vision fundamental model-based 

crack segmentation method comprises a lightweight crack 

encoder and a crack segmentation head (shown in Figure 1). 

The former extracts the robust features of the crack image to 

generate crack image embeddings, while the latter uses high-

quality embedding to complete pixel-level crack segmentation. 

The lightweight crack encoder's initialization weight originates 

from the SAM original heavy-parametric vision fundamental 

model through the utilization of model distillation technology 

(using common object segmentation dataset), the distillation 

objective is set to minimize the embedding difference of the 

image after the encoder. Finally, the crack segmentation model 

proposed here undergoes fine-tuning using the crack dataset. 

 

 

Figure 1. Overall architecture of the lightweight vision 

fundamental model-based crack segmentation method. 

 Lightweight crack encoder using model distillation 

The heavy parameter encoder in SAM adopts the ViT model. 

To ensure the uniformity of the architecture, this study uses the 

lightweight TinyViT [38] as the crack encoder. TinyViT adopts 

a hierarchical vision transformer, serving as the foundational 

architecture, which can better integrate multiscale features for 

downstream tasks. TinyViT comprises four stages, leading to a 

gradual reduction in the resolution of the feature map. Each 
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stage includes a feature extraction (FE) layer and a down-

sampling (DS) layer. The FE layer of stage 1 adopts MB_Conv, 

and stages 2-4 adopt transformer. The DS layer of all stages 

adopts the MB_Conv. TinyViT has been efficiently designed 

from three aspects: the sliding window mechanism 

corresponding to the FE layer (limiting the transformer 

attention mechanism to the window to reduce the 

computational complexity), the hierarchical design mechanism 

corresponding to the DS layer (taking advantage of the CNN to 

save the amount of calculation while extending the window 

attention to the global) and the model size control mechanism 

(customizing models of different sizes by adjusting the model 

control parameters). 

To make full use of the effective information in the vision 

fundamental model SAM, this paper proposes to transfer the 

features in the heavy-parametric encoder of SAM to the 

proposed lightweight crack encoder by means of model 

distillation. That is, SAM is used as the teacher model, and the 

student model is employed as the proposed model. By setting 

the optimization goal, the knowledge in the teacher model is 

transmitted to the student model as lossless as possible. 

It is assumed that the output image of the ith image Ii after 

entering the SAM’s heavy-parametric encoder is embedded as 

, and the output image of the proposed lightweight encoder 

is embedded as . The crack segmentation head of the 

proposed framework directly uses image embedding as input, 

so it is not necessary to minimize the segmentation error after 

adding the crack segmentation head to SAM, but only to 

minimize the difference between the two embeddings [39] 

(illustrated in Equation (1)), where N represents the total count 

of training crack images required for model distillation, MSE 

is the least square error function, and  is the trainable weight 

parameters of the proposed lightweight encoder. 

  (1) 

 

Figure 2. Processing procedure of model distillation. 

Specifically, as shown in Figure 2, there are two stages 

during model distillation, the encoder parameters in the original 

SAM are frozen (untrainable), while the proposed lightweight 

encoder parameters are trainable. In stage 1 (embedding 

preparation), the image to be trained is input into the original 

SAM in advance to obtain the corresponding image embedding 

 and then stored locally. In stage 2 (lightweight encoder 

training), the image is fed into the proposed lightweight 

encoder to obtain the image embedding ,  can be 

queried from the local storage. The optimization goal of 

training can be directly calculated. Taking such a training 

strategy will greatly reduce the time and cost of training while 

ensuring the distillation effect. 

 Crack segmentation head 

To assist object segmentation, SAM employs prompts through 

the integration of incorporating prompt encoder and mask 

decoder into image embedding process. This encompasses the 

handling of image and prompt embedding, and output tokens 

subsequent to the image encoder. However, since the crack 

segmentation task in this study is automatic and does not 

require prompt input, the latter part of SAM needs to be 

modified. To address this, this paper introduces a crack 

segmentation head to fulfill the necessary functions. 

The crack segmentation head is composed of several key 

components, including two transposed convolution layers, a 

multiscale convolution layer, a convolution layer with the size 

of 1×1, and two interpolation layers (shown in Figure 1). The 

transposed convolution layer is designed to increase the 

resolution of the encoded crack image embedding by a factor 

of 2, thereby restoring spatial information. The multiscale 

convolution layer is utilized to leverage feature fusion at 

different scales, enabling the model to learn information in 

various ranges around crucial pixels through backpropagation 

gradient. Figure 3 illustrates the detailed architecture of the 

multiscale convolution. According to the channel dimension, 

features from n channels of the transpose convolutional layer 

are partitioned into k groups. To retain features at the current 

scale, a 1×1 convolution is applied to the first group. For the 

remaining k-1 groups, 3×3 convolutions with varying dilation 

rates are utilized to capture features at different scales, where 

the dilation rate is determined by the number of groups minus 

1 [40]. The 1×1 convolutional layer is responsible for 

integrating information from different channels and adjusting 

the output dimension accordingly. Finally, the interpolation 

layer further upsamples the output to fine-tune the output 

dimension. 

 

Figure 3. Architecture of the multiscale convolution. 

A combined loss ( ) comprising binary entropy ( ) 

and Dice ( ) is set as the objective of fine-tuning the 

proposed method, as illustrated in Equations (2)-(4). Here, N 

denotes the image’s pixel number, while yi and pi respectively 
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denote the annotated label and predicted value for the ith pixel. 

Additionally, Y and  represent the crack mask annotations 

and predictions, respectively. 

                 (2) 

            (3)  

              (4) 

3 IMPLEMENTATION DETAILS 

 Dataset 

Distillation on common object dataset SAM’s powerful 

segmentation generalization ability comes from the large-scale 

segmentation dataset SA-1B. The dataset is generated by 

SAM’s data engine and is divided into three stages: preliminary 

manual, semi-automated, and fully automated. During the 

initial stage, SAM aids the annotator to annotate the mask, akin 

to the traditional interactive object segmentation scenario. 

During the second stage, SAM is capable of autonomously 

producing the mask for certain objects by proposing their 

potential locations, and the annotator annotates the remaining 

objects, which helps to increase the diversity of the mask. In 

the last stage, the regular grid prompt SAM of the foreground 

point is employed to produce approximately one hundred high-

quality masks for each image. Ultimately, SA-1B generates 

over 1 billion object masks across 11 million images. Since the 

proposed crack segmentation framework uses a lightweight 

encoder, the parameters are much smaller than the original 

SAM encoder. Therefore, 0.1% of the SA-1B dataset (11,000) 

is randomly sampled according to the literature results as the 

training dataset of the model distillation [39]. 

Fine-tuning on crack dataset Lately, crack recognition field 

have achieved significant progressions, and several crack 

segmentation datasets have been released to the research 

community. While many studies have trained and evaluated 

models on specific datasets, there is a lack of comprehensive 

testing across multiple datasets, which hinders our 

understanding of the generalization capabilities of crack 

segmentation models [41]. To address this limitation, this paper 

selected eight influential datasets for evaluating the proposed 

method. These datasets include CFD, Crack500, Cracktree200, 

DeepCrack, EugenMiller, GAPs, Rissbilder, and Volker 

(referred to as Datasets 1-8) [41]. These datasets exhibit 

significant variations in terms of structural materials, structural 

parts, image quality, and quantity, thereby enabling an effective 

evaluation of the generalization abilities of crack segmentation 

models. Figure 4 offers a summary of the quantity of training 

and testing images contained within each of the eight datasets. 

The entire set of training images, amounting to 7754, is 

partitioned into training subset (90%) and validation subset 

(10%). The testing images, collectively referred to as the testing 

subset, are employed to evaluate the segmentation methods 

proposed in this paper. 

 

Figure 4. Numbers of training and testing images of eight 

datasets. 

 Distillation and fine-tuning strategy 

During the model distillation, the image embedding vector of 

the training image through the SAM heavy-parametric encoder 

has been calculated in advance and saved to the local storage. 

The training image only needs to go through the lightweight 

encoder to obtain the new image embedding vector, and then 

read the previously saved SAM embedding vector and calculate 

mean squared error (MSE). During the training, a single GPU 

was used, the batch size was 2, and a total of 50,000 iterations 

were performed. The MSE value obtained by the final 

convergence was 0.977, indicating the effectiveness and 

accuracy of the model distillation. 

Throughout the proposed crack segmentation model fine-

tuning, the initial learning rate was established as 1e-5. The 

total training iteration count was determined as 24,000. A 

multi-step learning rate change approach was employed, where 

it was reduced to 0.1 times the previous value at the 16,000th 

and 20,000th iterations, respectively. The fine-tuning process 

implemented an early stopping strategy. The parameters at this 

iteration were taken as the final model weights. In addition, the 

batch size was 2. 

The configuration utilized for fine-tuning and evaluating the 

proposed method comprised an Intel Xeon(R) E5-2620 v4 

central processing unit (CPU), complemented by a robust 

Nvidia RTX 3090 graphics processing unit (GPU) offering 

24GB memory. Additionally, the system was equipped with an 

ample 128GB of memory. 

 

4 RESULTS AND DISCUSSIONS 

The quantitative and qualitative results of the proposed 

lightweight crack segmentation method under full supervision 

and limited supervision conditions are illustrated in this section, 

and the state-of-the-art CNN-based method Deeplab v3 plus 

(with MobileNet v3) [42] and transformer-based Segformer 

[43] are employed to be comparison. Additionally, the weight 

file space occupation, the running speed on different hardware 
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platforms and the possibility of mobile deployment of the 

proposed method are discussed. 

 Testing results under full supervision 

Full supervision refers to training on the entire training subset 

(6,978 pairs of crack images and masks) and testing on the 

entire test subset (955 crack images). This condition facilitates 

the transfer of feature parameters from vision fundamental 

models to the domain of crack segmentation, enabling 

exploration of the segmentation accuracy limits across different 

models.  

Table 1 elucidates the testing Dice scores (×100%) for eight 

datasets under full supervision, as well as the total parameter 

numbers of different algorithms and their GPU memory 

occupancy during training (with an input size of 1024×1024×3 

and a batch size of 2). In Table 1, SAM represents the crack 

segmentation method based on vision fundamental models that 

employs the heavy-parametric encoder from the original SAM. 

Compared to Deeplab v3 plus, the proposed method 

significantly improves the Dice score by 13.6, and although the 

parameter count increases to twice that amount, the required 

GPU memory during training decreases to 36%, which is the 

most direct assessment of algorithm training expenses. 

Compared to Segformer, the proposed method is on par in 

terms of accuracy, but with a 45% reduction in parameter count 

and a 37% reduction in required GPU memory. Compared to 

the original SAM-based method, the proposed approach 

experiences a 5.4 decrease in Dice score, but with a parameter 

count reduced to 7% and at least an 85% reduction in required 

GPU memory. In summary, the proposed method not only 

maintains segmentation accuracy in comparison to other 

cutting-edge methods but also significantly reduces training 

costs. 

Table 1. Testing Dice scores (×100%) on eight datasets, total 

parameter numbers and GPU memory occupation under full 

supervision 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 52.6 51.8 68.5 56.1 

2 54.9 68.4 71.1 65.6 

3 24.3 24.4 37.6 24.4 

4 69.6 72.8 79.9 68.8 

5 36.2 56.1 57.7 53 

6 25.8 28.9 45.4 44.77 

7 30.9 50.1 54.9 50.8 

8 60 67.5 75.5 68.7 

Average 44.4 58 63.4 58 

Params 3.2M 13.6M 89.8M 6.2M 

Mem 10.3G 10.1G >24G 3.8G 

Figure 5 displays representative results of crack 

segmentation using different methods, where each row 

corresponds to a representative crack image from each dataset, 

and each column represents the original image, ground truth, 

and the test results using Deeplab v3 plus, Segformer, the 

original SAM-based method, and the proposed method, 

respectively. Whether they are concrete or asphalt surface 

cracks, whether they are dot-like, strip-like, or mesh-like, the 

crack segmentation results of methods based on vision 

fundamental models are superior in terms of integrity and 

connectivity compared to CNN-based and transformer-based. 

While the proposed method's segmentation effect is slightly 

lacking in local detail handling compared to the original SAM-

based crack segmentation method, it exhibits evident 

advancement over other methods, demonstrating the proposed 

method’s efficacy in enhancing accuracy. 

 

Figure 5. Representative testing results: (a) raw image, (b) 

annotation, (c) DL v3p, (d) Segformer, (e) SAM, (f) the 

proposed method. 

 Testing results under limited supervision 

In contrast to prior CNN-based and transformer-based object 

segmentation approaches, the primary advantage of object 

segmentation methods grounded on vision fundamental models 

is their robust generalization capability. This means that they 

can achieve high segmentation accuracy with minimal domain-

specific supervision information. Hence, this part showcases 

the proposed method’s strong generalization ability by 

comparing the test accuracy of different methods under two 

limited supervision cases (1%-shot and one-shot). The 1%-shot 

case refers to training with 1% of the training subset of full 

supervision (77 crack image-mask pairs), while the one-shot 

case refers to training with only one crack image-mask pair per 

dataset (a total of 8). These two cases provide an extreme test 

of the generalization capabilities of different methods. 

The testing Dice scores of different algorithms under limited 

supervision are illustrated in Table 2. Consistent with 

(a) (b) (d) (e)(c) (f)
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theoretical analysis, the crack segmentation method based on 

vision fundamental models significantly outperforms those 

based on CNNs and transformers in terms of segmentation 

accuracy in both the 1%-shot and one-shot cases. 

Table 2. Testing Dice scores (×100%) on eight datasets under 

limited supervision 

Data size 1%-shot 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 39.6 47.2 54.2 46.8 

2 53.7 60 65.8 57.4 

3 23 17.3 21.1 24 

4 66.4 65.6 70.5 63.2 

5 23.4 44.8 48.1 38.2 

6 9.7 23 32.9 19 

7 26.7 47 48.3 50.3 

8 54.5 64.2 66.8 66.1 

Average 40.4 52.5 56.3 52.8 

Data size one-shot 

Method 
DL 

v3p 
Segformer SAM Proposed 

Dataset 

1 35 47 44.8 49.2 

2 21.4 22.4 34.1 25 

3 20.1 22.2 16.5 20.3 

4 48 51.4 59.3 67.1 

5 46.1 48.7 54.2 53.9 

6 29.3 34.8 34.7 24.2 

7 24 36.1 39.3 42.8 

8 48.3 58.9 58 56.8 

Average 27.4 34.3 39.9 38 

Notably, in the one-shot case, the proposed method improved 

the Dice score by 3.7 compared to Segformer and only 

decreased by 1.9 compared to the original SAM-based method. 

Considering that the proposed method has fewer parameters 

and lower training costs, it is substantiated that the approach 

can reach high precision with maintaining operational 

efficiency. Former transformer models necessitated a 

substantial volume of supervised training data to attain elevated 

segmentation precision, although vision fundamental models 

are also based on transformer architectures. Preliminary 

judgments can also be made based on experimental results, the 

vision fundamental model-based crack segmentation method 

demonstrates good generalization capability even under 

extremely limited supervision conditions. 

 Deployment of the proposed method 

Although the vision fundamental model has strong 

segmentation generalization ability, its deployment difficulty 

and cost are high, which aligns with the primary research 

concentration of this paper. Therefore, this subsection deploys 

the original SAM-based and the proposed lightweight vision 

fundamental model-based crack segmentation models on 

different hardware platforms to illustrate the advantages of the 

latter. 

The weight file space occupancy serves as a metric for gauging 

the complexity of the model, encompassing all parameters and 

configurations stored on the disk. Table 3 demonstrates that the 

space occupancy of SAM-based models based on backbones of 

different sizes is 404MB, 1230MB, and 2665MB, respectively, 

while the proposed model is only 70MB (17% of the minimum 

SAM-based). 

Table 3. Weight file space occupancy and running speed of 

the proposed method 

Method 
Space 

occupancy 
Running speed 

SAM 

ViT-B 404MB 

GPU 0.107s 

x86 5.498s 

arm / 

ViT-L 1230MB / / 

ViT-H 2665MB / / 

Proposed 70MB 

GPU 0.016s 

x86 0.637s 

arm 2.245s 

The running speed is the most direct indicator to measure the 

complexity of a model. Although it is affected by factors such 

as code implementation, the relative speed of different models 

can still be compared after controlling variables. This paper 

tests on three common hardware platforms (GPU, x86 CPU and 

arm CPU), and the results are shown in Table 3. With 1024 × 

1024 images as input, the SAM-based model takes 0.107 s and 

5.498 s on GPU and x86 CPU respectively. Because the model 

is too complex to be deployed on the arm CPU used in this 

experiment. Meanwhile, the proposed model consumes 0.016 s 

and 0.637 s on GPU and x86 CPU (15% and 12% of SAM-

based, respectively), and 2.245s on arm CPU (twice as fast as 

SAM-based on x86 CPU). 

It is worth noting that the arm CPU used in this experiment 

is Kirin 970, a consumer and low-cost chip released six years 

ago. Compared with the current mobile phone CPUs, the 

performance difference is huge. Employing the most cutting-

edge chip would significantly enhance the performance of the 

proposed method. Figure 6 illustrates the exemplary testing 

outcomes of the deployed proposed method on a mobile phone. 

 

Figure 6. Representative testing results on mobile phones 
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5 CONCLUSIONS 

A novel crack segmentation method using lightweight vision 

fundamental model is developed in this paper. The approach 

incorporates model distillation techniques to substantially 

decrease the model parameters and enhance operational speed 

while maintaining the robust generalization capabilities of the 

vision fundamental model to the greatest extent possible. In 

light of the findings, the following conclusions can be inferred: 

(1) By substituting the ViT encoder in the original SAM with 

the lightweight encoder TinyViT and using model distillation 

techniques with image embedding consistency as the 

optimization goal, effective transfer of the vision fundamental 

model's generalization ability is achieved. (2) Under full 

supervision, the proposed method surpasses current cutting-

edge methods based on non-vision fundamental models, 

achieving a segmentation Dice score of 58.0. Moreover, 

relative to the original SAM, the model's parameter count is 

reduced to 7%, and the required GPU memory is decreased to 

15%, with only a 5.4 decrease in Dice score. (3) Under limited 

supervision, the proposed method comprehensively surpasses 

methods based on non-vision fundamental models in terms of 

segmentation accuracy and algorithmic efficiency, with Dice 

scores reaching 52.8 (1%-shot) and 38.0 (one-shot). 

Furthermore, as the degree of available supervision information 

decreases, the proposed method demonstrates a heightened 

advantage, resulting in a diminished disparity with respect to 

the original SAM. (4) The proposed method achieves a sixfold 

and eightfold acceleration on GPU and x86 CPU, respectively, 

compared to the original SAM, and has been successfully 

deployed on cost-effective ARM CPUs. 

The crack segmentation method developed from lightweight 

vision fundamental model serves as a reference for the efficient 

application of vision fundamental models in the field of 

automatic identification of civil engineering damages. 

Nevertheless, there remains potential for enhancing the detailed 

recovery of crack identification outcomes in this study. Future 

work will concentrate on incorporating crack boundary 

constraints into the loss function and bolstering the post-

processing methodologies within the crack segmentation 

framework to enhance the precision of crack detail 

identification. To facilitate practical applications, follow-up 

research should further develop a quantitative measurement 

and evaluation module for crack dimensions. 
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ABSTRACT: Recent research for correlation prediction from spatial-temporal monitoring data of bridge groups has explored 

graph neural networks and state space models, offering new angles and advanced algorithms. However, current research still faces 

significant challenges: (1) constructing suitable graph structures to accurately reflect complex spatial-temporal correlations, (2) 

designing an effective spatial-temporal neural network to capture spatial-temporal dependencies during the service state evolution 

of bridge groups, and (3) fully making use of spatial-temporal monitoring data to boost prediction accuracy and efficiency. To 

tackle these challenges, this study introduces a graph selective state space model for spatial-temporal prediction of environmental 

temperature and traffic flow for bridge groups. Firstly, a spatial-temporal graph structure is set up to account for data characteristics 

in both spatial and temporal aspects and forecast the dynamic evolution of bridge group system. Then, a state space model is built 

to produce a structured state space sequence and introduce a selective mechanism to dynamically adjust model behaviors and 

optimize computational resources. Lastly, through decomposing and reintegrating spatial-temporal features of monitoring data for 

bridge groups under different complexities, validation experiments are performed to show the efficacy, universality, and efficiency 

using multi-type, multi-scale, and multi-granularity spatial-temporal monitoring data of environmental temperature and traffic 

flow. 

KEY WORDS: Spatial-Temporal Correlation; Time Series Prediction; Graph Model; Environmental Temperature; Traffic Flow. 

1 INTRODUCTION 

The rapid progression of urbanization in China has made the 

consistent serviceability of bridge groups a pivotal factor in 

determining the efficiency and safety of urban traffic. As urban 

transport system essentials, bridge groups consist of multiple 

interconnected bridges with interdependent serviceability. 

These bridges inside a city region are exposed to various related 

factors including environmental conditions and traffic flow, 

which can notably affect their structural integrity and 

operational efficiency. Accurately predicting the serviceability 

of bridge groups is crucial for traffic safety and maintenance 

strategy optimization. Traditional methods employed for 

predicting the service state of bridge groups often focus on 

individual bridges, neglecting the spatial-temporal correlations 

amongst different bridges in the group. This can cause 

inaccurate predictions and thus insufficient maintenance 

strategies, potentially causing significant safety risks and 

leading to considerable economic losses. 

Recent deep learning advances have created new ways to 

predict the service state of bridge groups. Graph neural 

networks (GNNs) have shown great ability in dealing with data 

that has complex relational structures, like the interactions 

between different bridges in a group. Additionally, state space 

models (SSMs[1-4]) have drawn increasing interests due to their 

capability to model dynamic systems and capture the temporal 

evolution of structural service states. But even with these 

advances, current research faces big challenges. A main 

challenge is building a suitable graph structure that can truly 

reflect the complex spatial-temporal correlations embedded in 

the monitoring data of bridge groups. Another challenge is 

designing an effective neural network architecture that can 

capture both spatial and temporal dependencies during the 

dynamic evolution of service states for regional bridges. 

Furthermore, it is crucial to leverage the abundant spatial-

temporal data available for bridge groups to enhance prediction 

accuracy and efficiency. 

To tackle these challenges, this study proposes a graph 

selective state space model for spatial-temporal prediction of 

environmental temperature and traffic flow for bridge groups. 

The model uses the core capacities of GNNs and SSMs to 

achieve comprehensive and accurate predictions of spatial-

temporal variables. The main contributions of this study are as 

follows: 

• An adaptive multi-granularity data fusion is designed to 

integrate multi-granularity data of recent, cyclic, and trend 

information from bridge groups. This fusion method not 

only captures various temporal patterns but also assesses 

their impacts on operational states of bridges. This 

approach strengthens the model's ability to handle complex 

spatial-temporal dependencies, thereby improving 

prediction accuracy. 

• A novel spatial-temporal graph convolution module 

(STGCM) is introduced to consider the spatial-temporal 

correlation of environmental temperature and traffic flow. 

• A graph selective state space module (GSSSM) is 

developed to model how spatial-temporal dependencies in 

regional monitoring data evolve for bridge group, which 

dynamically adjusts the model's learning behavior and 

optimizes computational resources. The GSSSM 

prioritizes the most relevant parts of regional monitoring 

data for environmental temperature and traffic flow, 
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thereby enhancing the model capacity to capture spatial-

temporal correlations. 

2 RELATED WORKS 

 Spatial-Temporal Graph Neural Networks 

Most spatial-temporal graph neural networks (STGNNs) are 

categorized into three types: those based on recurrent neural 

networks (RNNs), those based on convolutional neural 

networks (CNNs), and those based on attention mechanisms. 

Seo et al. (2018)[5] presented a graph convolutional recurrent 

network, capturing spatial-temporal dependencies by filtering 

inputs and hidden states in a recurrent unit via graph 

convolution. Later works adopted different strategies, for 

example, Li et al. (2017)[6] developed a diffusion convolutional 

recurrent neural network, integrating diffusion convolution 

with gated recurrent units (GRUs) to grasp spatial and temporal 

dependencies at the same time, and Zhang et al. (2018)[7] 

proposed gated attention networks, which combine GNNs with 

a convolutional subnetwork to assess the importance of each 

attention head. Another parallel work was that Jain et al. 

(2016)[8] used node-level and edge-level RNNs in their work to 

handle different aspects of temporal information. The main 

drawbacks of RNN-based approaches are that they become 

inefficient for long sequences and the gradients are more likely 

to explode when combined with graph convolution networks 

(GCNs). CNN-based approaches combine graph convolutions 

with standard 1D convolutions, for example, Yu et al. (2018)[9] 

proposed a spatial-temporal graph convolution network 

(STGCN), combining GCNs with temporal convolutional 

networks (TCN[10]) to capture spatial and temporal 

dependencies. A recent work about attention-based approaches 

is that Li et al. (2023)[11] proposed GCN-Informer, which 

combines GCNs with Informer to capture long-term 

dependencies in time series data. Although these three types of 

approaches are computationally efficient, they generally need 

to stack multiple layers or use global pooling to expand the 

neural network model's receptive field, which is a limitation 

that the proposed Spatial-Temporal Graph Selective State 

Space Model (STGSSSM) addresses by employing stacked 

dilated casual convolutions to capture temporal dependencies 

more effectively with fewer layers. 

 State Space Models 

State Space Models (SSMs) are powerful tools for modeling 

dynamic systems, offering flexible frameworks to capture 

temporal evolution through state transitions influenced by 

external inputs. The recent fusion of SSMs with GNNs has 

achieved promising results in managing complex spatial-

temporal graph-structured data. 

For instance, Zhao et al. (2024)[12] proposed the graph state 

space network, the first model to incorporate SSMs into the 

spectral filter design of GNNs, thus overcoming the limitations 

of conventional methods in dealing with complex graph spectra. 

Behrouz et al. (2024)[13] introduced graph mamba (selective 

state space model) networks, an SSM-based framework for 

graph learning, which uses neighborhood tokenization, token 

ordering, bidirectional SSM encoder, and local encoding to 

efficiently handle long-range dependencies and heterophilic 

graphs. Wang et al. (2024)[14] presented graph-mamba, a novel 

graph model that uses a mamba module for efficient context 

selection, achieving linear complexity and superior 

performance in long-range graph tasks. Yuan et al. (2024)[15] 

proposed dynamic graph-mamba, a dynamic graph structure 

learning framework that combines mamba and a kernelized 

dynamic message-passing operator to efficiently learn dynamic 

graph structures and capture long-range dependencies.  

Although these approaches can dynamically adjust the 

learning behavior of the model and has high computational 

efficiency, they are relatively singular in feature extraction and 

lack in-depth extraction of spatial-temporal features, which is a 

limitation that the proposed STGSSSM addresses by utilizing 

STGCM to extract diverse spatial-temporal features. 

 Spatial-Temporal Traffic Forecasting 

Traffic forecasting is crucial for optimizing urban 

transportation systems. Recent progress in spatial-temporal 

graph neural networks have greatly boosted the prediction 

accuracy by capturing complex spatial-temporal dependencies. 

Spatial-temporal traffic forecasting has been also investigated 

by RNN-based, CNN-based, and attention-based approaches. 

For example, Zhao et al. (2019)[16] combined GCN with GRU 

to model temporal dynamics, effectively capturing long-term 

dependencies and achieving validation on the Los-loop dataset. 

Wu et al. (2019)[17] developed Graph WaveNet, using dilated 

causal convolutions to grasp long-term dependencies. Wu et al. 

(2020)[18] proposed the multivariate time series graph neural 

network (MTGNN), which integrated GCN and TCN for 

adaptive graph learning, delivering high performance on the 

large-scale METR-LA and PEMS-BAY datasets. In the 

attention-based approach, Zheng et al. (2020)[19] proposed 

graph multi-attention network, which utilized multi-attention 

mechanisms to weigh the significance of different nodes and 

time steps, achieving high accuracy on Xiamen and PeMS 

datasets. Guo et al. (2021)[20] developed an attention-based 

spatial-temporal graph neural network, combining dynamic 

GCN with transformers to adapt to dynamic traffic patterns, 

and showing robustness on the PEMS dataset. 

 Spatial-Temporal Temperature Forecasting 

Environmental temperature greatly affects the service state 

of bridge groups, and spatial-temporal graph models can 

conduct highly efficient and accurate temperature predictions, 

which are summarized from RNN-based, CNN-based, and 

attention-based aspects. 

Zhao et al. (2024)[21] presented an adaptive spatial-temporal 

graph recurrent network model. It used dynamic graph 

structures with a spatial-temporal recurrent network for sea 

surface temperature forecasting. Yang et al. (2023)[22] 

introduced a hierarchical graph recurrent network which 

utilized adaptive node embedding and hierarchical graph 

convolution to predict global sea surface temperatures 

accurately. Yu et al. (2021)[23] proposed a spatial-temporal 

graph neural network model that integrated graph attention 

networks and GRU for air temperature forecasting. Guo et al. 

(2025)[24] introduced spatial-temporal fusion graph neural 

networks with mixed adjacency, a model that leveraged spatial-

temporal fusion GNNs with mixed adjacency and integrated 

GNNs with self-attention mechanisms to capture both long-

term temporal periodicity and short-term spatial-temporal 

dependencies for temperature forecasting. Xu et al. (2024)[25] 

proposed the dynamic graph former model, a physics-guided 
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dynamic graph neural network for weather forecasting which 

combined GNNs and the Reformer architecture for temperature 

forecasting. 

Despite the progress in traffic and temperature forecasting 

based on novel deep learning models, some challenges remain 

in multi-granularity data fusion, in-depth extraction of spatial-

temporal features, dynamic adjustment of learning behavior 

and computational efficiency. This study addresses these 

limitations by integrating the multi-granularity data fusion, 

STGCM and GSSSM to enhance the prediction accuracy and 

efficiency.  

3 METHODOLOGY 

In this section, the mathematical definition is first formulated 

for the investigated issue of environmental temperature and 

traffic flow prediction of bridge groups in this study. Then, the 

overall schematic of the proposed STGSSSM is presented, 

along with detailed descriptions of its two core modules, i.e., 

spatial-temporal graph convolution module (STGCM) and 

graph selective state space module (GSSSM), which are 

combined together to capture the spatial-temporal 

dependencies. 

 Problem Definition 

A graph of bridge groups can be represented as 𝐆𝑡 =
(𝐕, 𝐄𝑡 , 𝐀) , where V denotes the set of nodes, representing 

bridges in a bridge group; 𝐄𝑡  denotes the set of edges 

(connections), describing the relationships between different 

bridges at time step t; and A denotes the adjacency matrix with 

elements 𝐴𝑖𝑗  representing the connection weight between 

nodes𝑣𝑖and𝑣𝑗. The input feature matrix of the bridge group at 

time step t is denoted as X𝑡 ∈ ℝ𝑁×𝐷, where N is the number of 

bridges in a bridge group, and D represents the number of 

feature dimensions, i.e., D = 1 represents the investigated 

variable of environmental temperature or traffic flow.  

The graph-based spatial-temporal prediction task is to use 

the graph of bridge groups 𝐆𝑡 and feature matrix X𝑡  to learn a 

mapping function f (the proposed STGSSSM) which can 

accurately predict the prospective environmental temperature 

and traffic flow of bridge groups. 

Assuming a future time step T, the prediction process can be 

expressed as: 

 [X𝑡+1, ⋯ , X𝑡+𝑇] = 𝑓[(X𝑡−𝑇+1, ⋯ , X𝑡) ;(G𝑡−𝑇+1, ⋯ , G𝑡)] (1) 

where [X𝑡+1, ⋯ , X𝑡+𝑇] ∈ ℝ𝑁×𝐷×𝑇  is the predicted 

environmental temperature or traffic flow in the future T time 

steps, (X𝑡−𝑇+1, ⋯ , X𝑡) ∈ ℝ𝑁×𝐷×𝑇 is the observed 

environmental temperature or traffic flow in the current T time 

steps. 

 Overall Schematic of STGSSSM 

The proposed STGSSSM comprises two primary modules of 

STGCM and GSSSM for environmental temperature and traffic 

flow prediction of bridge groups, as depicted in Figure 1. 

Three temporal granularities of input data, recent data X𝑟 , 

cyclic data X𝑐  and trend data X𝑞  are individually fed into 

STGCM, which consists of N ST-Blocks and an output layer 

that consists of the ReLU activation function and a linear layer, 

each ST-Block employs a series of layers including 1×1 

convolution, gated temporal convolution (Gated TC), self-

attention diffusion graph convolution (SADGC), residual 

connection (Add), and batch normalization (BN); and 

adaptively fused after being passed through N layers of spatial-

temporal graph convolution blocks (ST-Block) with skip 

connections and the output layer; In each ST-Block, the result 

of Gated TC is processed via a 1×1 convolution, and the 

resulting output is skip-connected to the result of the last ST-

Block. 

Furthermore, X𝑟  is fed into GSSSM, which consists of M 

GSSS-Blocks. Each GSSS-Block incorporates a series of layers 

including layer normalization (Layer Norm), m parallel 

dynamic filter graph convolution (Dynamic Filter GC), 

concatenation and linear layer (Concat & Linear), graph state 

space selection mechanism (GSSS-Mechanism) which consists 

of two main algorithms of Parameter Calculation and Graph 

Selective Scan, linear layer and residual connection (Linear & 

Add). N, M and m are hyperparameters. 

The outputs of three STGCMs are first fused using an 

adaptive fusion module and then adaptively fused with the 

output of GSSSM. The final fusion result of STGCM and 

GSSSM is then passed through a fully connected layer to obtain 

the final output X𝑝𝑟𝑒𝑑 . 

The regularized mean squared error (MSE) is used for 

training the proposed STGSSSM and defined as 

 𝐿 =
1

𝐵
(∑ (

1

𝑇𝑁𝐷
∑ ∑ ∑ (𝑋̂𝑖,𝑗,𝑘

𝑏 − 𝑋𝑖,𝑗,𝑘
𝑏 )𝐷

𝑘=1
𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1

2
)𝐵

𝑏=1 + 𝜆𝑅(Θ)) (2) 

 

where 𝑋𝑖,𝑗,𝑘
𝑏 ,𝑋̂𝑖,𝑗,𝑘

𝑏  represents the model-predicted and ground-

truth data for the b-th segment; i, j, k denote the indexes of time 

step, bridge node, and feature dimension; B and D denote the 

number of batch size and considered feature dimension (i.e., D 

= 1 represents environmental temperature or traffic flow); λ is 

the regularization coefficient, and R(Θ) is the regularization 

term. 

 

Figure 1. Overall schematic of the proposed STGSSSM. 

4 EXPERIMENT STUDIES 

 Datasets 

Two real-world datasets are utilized here to assess the 

proposed approach for spatial-temporal prediction of 

environmental temperature and traffic flow for bridge groups. 

Training samples for time series are typically obtained by 

sliding a window of length P + T across the original time series. 

Here, the first P time steps are used as historical data, and the 

subsequent T time steps are used as future data; and the datasets 

are detailed as follows: 

• KnowAir[26]: This temperature dataset contains spatial-

temporal temperature data from weather stations across 

184 main cities in China from September 1, 2016, to 
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January 31, 2017. It contains 184 nodes (weather stations) 

and 11688 time steps of temperature data with a 1-hour 

time interval; and the adjacency matrix of the graph is 

constructed based on the geographical locations of the 

weather stations. In the released KnowAir dataset, P = 

7×24, and T = 12. 

• PEMS04[9]: This traffic dataset consists of spatial-

temporal traffic flow data on California road network from 

January 1, 2018, to February 28, 2018. It contains 307 

nodes (traffic monitoring stations) and 16992 time steps of 

data with a 5-minute time interval; and the adjacency 

matrix of the graph is constructed based on the 

geographical locations of the traffic monitoring stations. In 

the released PEMS04 dataset, P = 7×24×12, and T = 24 or 

36. 

 Experimental Setup 

All the datasets are split with a ratio of 7:1:2 for 

training/validation/testing sets, respectively. Before starting the 

model training process, all the data samples are normalized into 

range [0,1] with min-max normalization. The batch size is set 

as 48, and AdamW is employed as the optimizer. Model 

training epochs is set as 200. The number of ST-Blocks is set 

as N = 8 with a sequence of dilation ratios R = 1 or 2, and the 

number of GSSS-Blocks is set as M = 4. The diffusion step K 

= 2 in Eq. (5), and the number of parallel Dynamic Filter GC, 

m = 3 in Eq. (7). Hyperparameters in Eq. (3) of MSE loss 

function are set as the regularization coefficient λ of 1e-2 and 

the learning rate of 1e−4. 

All experiments are conducted under the software 

environment of PyTorch 1.12.1 and Python 3.8.10 with a 

NVIDIA GeForce RTX 3090 24GB GPU to accelerate neural 

computing. The training process requires nearly 4h for 

obtaining a well-trained model with acceptable accuracy. 

 Comparative Studies with Baseline Models 

Two recent Graph-based spatial-temporal predictive model 

of STGCN[9] and MTGNN[18] are utilized as baselines for 

comparative studies. STGCN integrates graph convolutional 

layers to model spatial dependencies and gated temporal 

convolutional layers to capture temporal dynamics in traffic 

data. MTGNN considers the features in the time-series to be 

multivariate and captures spatial dependencies through a 

learned graph structure, which uses a mix-hop propagation 

layer to handle spatial dependencies and a dilated inception 

layer for temporal dependencies.  

In comparative studies with STGCN and MTGNN models, 

to ensure fairness, several trials are conducted to select an 

acceptable model with good accuracy though not necessarily 

optimal. For STGCN, the graph and temporal convolution 

kernel sizes are set to 3. Chebyshev polynomial approximation 

and first-order approximation are used in STGCN. For 

MTGNN, the propagation depth and dilation factor are set to 2 

and 1, respectively. During training, the Adam optimizer is 

employed with a 1e-3 learning rate, a regularization coefficient 

of 1e-4, and a dropout rate of 0.3. These adjustments made sure 

that the baseline models performed well on our datasets, which 

enable a fair comparison of model performances and a better 

evaluation of the proposed STGSSSM's strengths. 

Evaluation metrics of mean absolute error (MAE), root mean 

squared Error (RMSE), and mean absolute percentage error 

(MAPE) are utilized to measure and assess the accuracy of 

various methods. 

The MAE is defined as 

 MAE𝑡𝑒𝑠𝑡 =
1

𝑇𝑁𝐷
∑ ∑ ∑ |𝑋̂𝑖,𝑗,𝑘 − 𝑋𝑖,𝑗,𝑘|

𝐷
𝑘=1

𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (3) 

The RMSE is defined as 

 RMSE𝑡𝑒𝑠𝑡 = √
1

𝑇𝑁𝐷
∑ ∑ ∑ (𝑋̂𝑖,𝑗,𝑘 − 𝑋𝑖,𝑗,𝑘)

2𝐷
𝑘=1

𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (4) 

The MAPE is defined as 

 MAPE𝑡𝑒𝑠𝑡 =
100%

𝑇𝑁𝐷
∑ ∑ ∑ |

𝑋̂𝑖,𝑗,𝑘−𝑋𝑖,𝑗,𝑘

𝑋̂𝑖,𝑗,𝑘
|𝐷

𝑘=1
𝑁
𝑗=1

𝑡+𝑇
𝑖=𝑡+1  (5) 

Table 1 shows the performance comparison of the proposed 

STGSSSM with baseline models of STGCN and MTGNN. In 

the experimental results, 12 hours with a time interval of 1 hour 

corresponds to 12 time steps for temperature prediction; 6 hours 

with a time interval of 5 minutes corresponds to 72 time steps 

for traffic flow prediction; 9 hours corresponds to 108 time 

steps for traffic flow prediction. 

Table 1. Performance comparison of the proposed STGSSSM 

with baseline models of STGCN and MTGNN. 

KnowAir 
12h 

MAE RMSE MAPE 

STGCN 0.35 0.51 3.77% 

MTGNN 0.33 0.48 3.34% 

STGSSSM 0.28 0.44 3.02% 

PEMS04 
6h 

MAE RMSE MAPE 

STGCN 14.21 20.85 12.95% 

MTGNN 13.28 19.67 12.34% 

STGSSSM 13.39 19.47 12.12% 

PEMS04 
9h 

MAE RMSE MAPE 

STGCN 17.60 26.39 14.96% 

MTGNN 16.76 25.13 14.39% 

STGSSSM 16.37 24.01 14.23% 

 Ablation Study 

To assess the effectiveness of each model component within 

STGSSSM, three kinds of model variants are first designed, 

and their forecasting performance is evaluated on the KnowAir 

and PEMS04 datasets: (1) the full model of STGSSSM, (2) 

GSSSM without STGCM, (3) STGCM without GSSSM. 

To further evaluate the effects of three temporal granularities 

of recent, cyclic, and trend data, another three kinds of model 

variants are designed: (4) STGSSSM without cyclic and trend 

data, (5) STGSSSM without cyclic data, (6) STGSSSM without 

trend data. 

Table 2. Model performances of ablation study for different 

modules of STGSSSM. 

KnowAir 
12h 

MAE RMSE MAPE 

STGSSSM 0.28 0.44 3.02% 

GSSSM w/o STGCM 0.39 0.54 4.15% 

STGCM w/o GSSSM  0.31 0.47 3.27% 

STGSSSM w/o cyclic 

and trend 
0.40 0.55 4.27% 

STGSSSM w/o cyclic 0.30 0.45 3.16% 

STGSSSM w/o trend 0.29 0.44 3.13% 

PEMS04 
6h 

MAE RMSE MAPE 
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STGSSSM 13.39 19.47 12.12% 

GSSSM w/o STGCM 18.86 28.94 15.72% 

STGCM w/o GSSSM 14.48 21.46 12.29% 

STGSSSM w/o cyclic 
and trend 

13.94 20.25 12.22% 

STGSSSM w/o cyclic 13.51 19.57 12.01% 

STGSSSM w/o trend 13.45 19.63 11.93% 

PEMS04 
9h 

MAE RMSE MAPE 

STGSSSM 16.37 24.01 14.23% 

GSSSM w/o STGCM 18.99 29.21 15.66% 

STGCM w/o GSSSM 18.38 27.86 15.11% 

STGSSSM w/o cyclic 

and trend 
16.83 24.92 14.81% 

STGSSSM w/o cyclic 16.39 24.36 13.95% 

STGSSSM w/o trend 16.38 24.27 13.93% 

The results in Table 2 show the contributions of each module 

to the overall performance. 

(1) Influence of STGCM: The STGCM, which processes 

recent, cyclic, and trend data through a series of spatial-

temporal graph convolution operations, is essential for 

capturing complex spatial-temporal dependencies. The results 

show that removing the STGCM leads to a substantial decline 

in performance across both datasets. For instance, on the 

KnowAir dataset, the MAE, RMSE, and MAPE increase from 

0.28, 0.44, and 3.02% (full model) to 0.39, 0.54, and 4.15% 

(GSSSM w/o STGCM), respectively. Similarly, on the 

PEMS04 dataset, the MAE, RMSE, and MAPE rise from 

13.39, 19.47, and 12.12% (6h prediction) to 18.86, 28.94, and 

15.72% (GSSSM w/o STGCM). This shows that the STGCM 

greatly boosts the model's ability to handle multi-granularity 

data and extract meaningful spatial-temporal features. 

(2) Influence of GSSSM: The GSSSM, which models the 

evolution of spatial-temporal dependencies and optimizes 

computational resources, also makes a significant contribution 

to the model's performance. Removing the GSSSM results in a 

significant decline in performance. On the KnowAir dataset, 

the MAE, RMSE, and MAPE increase to 0.31, 0.47, and 

3.27%, respectively. On the PeMS04 dataset, the MAE, RMSE, 

and MAPE rise to 14.48, 21.46, and 12.29% (6h prediction). 

This demonstrates the importance of the GSSSM in 

dynamically adjusting the model's behavior and focusing on the 

most relevant parts of the data. 

(3) Influence of Multi-Granularity Data Fusion: The fusion 

of recent, cyclic, and trend data is another critical aspect of the 

model. The results illustrate that removing both cyclic and 

trend data (STGSSSM w/o cyclic and trend) results in a 

significant decline in performance. On the KnowAir dataset, 

the MAE, RMSE, and MAPE increase to 0.40, 0.55, and 

4.27%, respectively. On the PEMS04 dataset, the MAE, 

RMSE, and MAPE rise to 13.94, 20.25, and 12.22% (6h 

prediction). This shows that the fusion of multi-granularity data 

is crucial for seizing diverse temporal patterns and enhancing 

prediction accuracy. 

(4) Influence of Individual Data Components: The results 

also illustrate the contributions of individual data components 

(cyclic and trend data). Removing only the cyclic data 

(STGSSSM w/o cyclic) or only the trend data (STGSSSM w/o 

trend) leads to moderate performance declines. On the 

Temperature dataset, removing cyclic data results in MAE, 

RMSE, and MAPE of 0.30, 0.45, and 3.16%, while removing 

trend data results in 0.29, 0.44, and 3.13%. On the PEMS04 

dataset, removing cyclic data leads to MAE, RMSE, and 

MAPE of 13.51, 19.57, and 12.01% (6h prediction), while 

removing trend data results in 13.45, 19.63, and 11.93%. These 

results indicate that both cyclic and trend data boost the model's 

performance, with cyclic data having a slightly more significant 

impact. 

The proposed STGSSSM model gains from the integration 

of the multi-granularity data fusion, STGCM and GSSSM, 

which jointly deliver accurate and efficient spatial-temporal 

predictions for bridge groups. 

5 CONCLUSION 

This study introduced a Graph Selective State Space Model 

(STGSSSM) for predicting environmental temperature and 

traffic flow in bridge groups, integrating Graph Neural 

Networks (GNNs) and State Space Models (SSMs). The main 

contributions of the model include adaptive fusion of multi-

granularity data, a Spatial-Temporal Graph Con-volution 

Module (STGCM), and a Graph Selective State Space Module 

(GSSSM). Experiments on real-world datasets (KnowAir and 

PEMS04) show STGSSSM outperforms state-of-the-art 

models like STGCN and MTGNN in prediction accuracy and 

efficiency. Ablation experiments validate that each component 

is effective, necessary, and enhances accuracy in capturing 

complex spatial-temporal dependencies. The proposed 

STGSSSM achieves overall prediction accuracy improvements 

of environmental temperature at the ranges of [13.70%, 20.00%] 

and [8.30%, 15.15%] and traffic flow at the ranges of [4.90%, 

9.00%] and [1.02%, 4.46%] compared with STGCN and 

MTGNN, respectively. Specifically, the reported STGCM, 

GSSSM and multi-granularity data fusion decreases the relative 

prediction error at the ranges of [7.93%, 28.99%], [1.32%, 

13.80%], and [0.49%, 29.50%], respectively.  

Future work may extend the model to more complex data and 

other infrastructure systems. 
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ABSTRACT:  

Introduction: 

Concrete girders are a type of widely used structures in small and medium span bridges. The ultimate flexural strength of 

concrete main girders serves as a critical foundation for assessing the structural performance of small and medium span simply 

supported girder bridges, and is essential for ensuring their safe operation. After the installation of prefabricated concrete girders, 

cement and asphalt concrete are sequentially poured on the top surface of the girders as bridge decks. The bridge deck pavement 

and concrete girder jointly bear the overall external loads. However, during the design and operation stages, the bridge deck 

pavement is typically regarded as secondary dead load when estimating bearing capacity, without considering its inherent 

reinforcement effect on the main girder. Thus, understanding the damage mechanism and destructive behaviour of concrete girders 

whilst considering the deck pavement effect is crucial for bridge safety assessment. The currently prevalent laboratory-based 

research method using scaled models can effectively elucidate the failure mechanisms of concrete girder members by controlling 

the experimental environment, the findings cannot be directly extrapolated to evaluate the service performance of actual bridge 

structures. 

Description of the serving concrete main girders: 

This study focused on retired concrete main girders from real-world service environments, conducting ultimate flexural 

strength tests. The full-scale retired prestressed concrete girder used in this study was taken from a highway bridge in Northeast 

China. The bridge span, deck width, and structural form are typical representatives of medium and small-sized highway concrete 

girder bridges in this region. The superstructure is a post-tensioned prestressed concrete hollow slab girder with a calculated span 

of 17.60 m. The total width of the deck is 13 m, and the width of the motor vehicle lane is 12 m. The deck pavement is made of 

10 cm thick cement concrete and 8 cm thick asphalt concrete. When the bridge was demolished, the top layer of asphalt concrete 

was milled off first, and then a cutting machine was used for longitudinal cutting to remove the cement concrete deck pavement 

along with the main girder as a whole. The research object of this paper is one of the middle girders, with a girder height of 90 cm 

and a width of 124 cm. Both the main girder and the deck pavement are made of C40 concrete. The stirrups of the top slab use 

HPB300 steel bars with a diameter of 12 mm, while the remaining stirrups and longitudinal bars use HPB300 steel bars with a 

diameter of 8 mm. The specification of the prestressed steel strands is 1 × 7 φs15.2, with a standard strength of 1860 MPa and a 

low-relaxation high-strength steel strand, and the initial tensile stress is 1178 MPa. 

To study the crack development and failure mode of full-scale prestressed hollow slab girders in combination with the bridge 

deck pavement layer, the material properties of the test girders were tested. The compressive strength test of concrete was carried 

out in accordance with the "Technical specification for inspecting of concrete compressive strength by rebound method" (JGJ/T 

23 - 2011). Before the failure test, rebound tests were conducted on the web and bottom slab of the girder. A total of 18 test areas 

were selected on the web and bottom slab of the test girder at intervals of 1 m, with 16 test points in each area. The average 

carbonation depth was tested using alcohol phenolphthalein solution, which was 2.5 mm. The rebound values of the concrete in 

each test area of the web and bottom slab of the test girder were basically the same, with an average value of Rmc = 52.2. The 

concrete strength was converted using a unified strength curve, which was 56.1 MPa. 

During the test, to restore the boundary conditions as accurately as possible, fixed and sliding supports were respectively set 

up at both ends of the test girder, with a center distance of 17.30 m. The loading points were arranged at 7 m and 11 m away from 

the girder ends, and four-point bending loading was carried out using reaction frames and jacks. The 4 m range at the mid-span of 

the test girder was the pure bending section. A pressure sensor with a range of 2000 kN was installed between the jack and the 

reaction frame to monitor the pressure value in real time. To prevent the stress concentration effect from crushing the bridge deck 

pavement concrete, a 0.5 m × 0.5 m pad was placed between the jack and the test girder. Strain gauges and displacement 

transducers (Linear Variable Differential Transducers, LVDTs) were used to monitor the response of the test girder under static 

loading. Measuring points were arranged vertically at intervals of 20 cm on both side webs, and were densified at the variable 

cross-section positions. LVDTs were installed below the webs at 1/4 span, mid-span and 3/4 span of the test girder to monitor the 

deflection. Considering that the supports would deform downward during loading, LVDTs were arranged below the sliding and 

fixed supports to calibrate the actual deformation of the test girder. LVDTs were arranged along the longitudinal direction of the 

girder at the end of the sliding support, and a high-speed camera was placed in front of the web in the pure bending section to 

record the crack propagation process. Loading and sensor arrangement for flexural test can be seen in Fig.1.  
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bridge deck pavement 
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Fig.1. Loading and sensor arrangement for flexural test: (a) overall layout; (b) jack and pressure transducer; (c) strain gauge 

arrangement in mid-span; (d) strain gauge arrangement at shear position 

 

Establishing of FEMs: 

To further investigate the mechanical behavior of the failure process of retired prestressed concrete girders and the influence 

of bridge deck pavement, two three-dimensional FEMs were established based on ABAQUS, namely the model with bridge deck 

pavement (Model 1) and the model without bridge deck pavement (Model 2). Then, the global response (deflection) and local 

response (strain and cracking) at each load level were calculated. The dimensions of each component in Model 1 were the same 

as those in the test field. Reference points were established and connected to the action surfaces of the supports and loading points 

through "coupling", and the boundary conditions and loads were controlled through the reference points. The main girder, bridge 

deck pavement, loading block and supports were simulated using continuous linear three-dimensional stress elements (C3D8R) 

with a mesh size of 5 cm. The prestressed steel strands were simulated using linear three-dimensional truss elements (T3D2), and 

the "embedded" constraint method was used to bond the prestressed steel strands with the surrounding concrete elements. The 

prestress was applied to the steel strands through the thermal stress method. Python scripts were used to batch establish line 

elements between the top plate of the main girder and the bridge deck pavement and specify them as sliding plane elements. The 

FEMs can be seen in Fig. 2. 

 
Fig.2. Establishing the FEMs 

 

During the test, when a certain load was applied, a slip occurred between the bridge deck pavement layer and the main girder. 

This indicates that in the FEM, the connection between the bridge deck pavement and the main girder cannot be simulated by the 
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"binding" consolidation method. In this paper, the detachment of the bridge deck pavement is simulated by the failure of the 

connecting element. This study refers to the shear strength proposed by Mohama, considers the adhesive effect of concrete and 

the shear friction effect between components, and modifies the expression. Based on the results of experimental tests and FEM 

calculations, the coefficient corresponding to the peak bond force was derived according to the load at which the bridge deck 

pavement and the main girder cracked. The coefficient of concrete friction force was derived based on the load when the bridge 

pavement completely slipped. The derived formula is as follows: 

( ) ( )pm0.237 0.3978

t pm n0.2378e 0.5479
R

f R = +  

Through the observation of the test phenomena, the failure process of the test girder can be divided into three stages. The first 

stage is the elastic stage, during which the test girder is in an intact state as a whole, and the mid-span deflection increases linearly 

with the load. The second stage is the working stage with cracks. After reaching the cracking load, the cracks extend from the 

bottom plate to the web. As the load increases, the length and width of the cracks gradually increase, and they no longer extend 

when they approach the top plate. Cracks first appear between the bridge deck pavement and the main girder, and then they 

completely separate. The test girder enters the third stage of the failure process. At this time, the main girder mainly bears the load, 

and the strengthening effect of the bridge deck pavement on the main girder basically disappears. With the further increase of the 

load, the test girder completely breaks. 

 

 
Fig.3. The three stages of main girder failure 

 

Results and analysis: 

The load-deflection curve at mid-span is the most direct indicator for evaluating the bearing capacity of the test girder, which 

can be seen in Fig.4. The state of the test girder can be divided into three stages: the first stage is the elastic state, where the load 

is within the range of 0 to 200 kN, and the load-displacement curve is basically linear. When the load reaches 200 kN, the 

deflection-span ratio of the test girder is 1/1193; the second stage is the working state with cracks, when the load is greater than 

200 kN, as the cracks extend towards the top slab, the stiffness of the test girder significantly decreases, and the mid-span 

displacement begins to increase at a larger rate. When the load reaches 541.5 kN, the bridge deck pavement layer completely 

detaches from the main girder, at which point the deflection-span ratio is 1/95. The structural system undergoes a sudden change, 

and the load suddenly decreases; in the third stage, the test girder enters the plastic state, loses its bearing capacity, and the mid-

span displacement increases significantly before complete fracture. Without considering the effect of the bridge deck pavement, 

the bearing capacity of model 2 is significantly lower than that of model 1. Due to the reduction in section height, the displacements 

corresponding to the cracking point and the inflection point of the curve are slightly larger than those in model 1. Similar to model 

1, the inflection point of the curve lags behind the cracking point. The slope of the load-deflection curve can be used to characterize 

the stiffness of the test girder. In the elastic stage, due to the strengthening effect of the bridge deck pavement layer, the overall 

stiffness of the test girder increases by 27.7%, the cracking load increases by 16.4%, and the load at the state inflection point 

increases by 16.7%. After the bridge deck pavement layer is completely separated from the main girder, the strengthening effect 

of the pavement layer disappears, and the load is mainly borne by the main girder. The load at the complete fracture of the test 
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girder is 496.7 kN, and the ultimate load before the bridge deck pavement detaches is 541.5 kN. Under the strengthening effect of 

the bridge deck pavement layer, the ultimate load of the test girder increases by 9.0%. 

 

  
Fig.4. Load –displacement in mid span curves: (a) entire process; (b) local zoom in red box of (a) 

 

The widths of key cracks under each loading step were recorded using a crack tester during the experimental process. Fig. 5 

shows the maximum width of cracks under critical loads. According to the Specifications for design of highway reinforced 

concrete and prestressed concrete bridges and culverts (JTG 3362 – 2018), the maximum allowable crack width for PC components 

using steel strands in freeze–thaw areas under normal use is 0.10 mm. According to the test results, when the load was 170 kN 

(corresponding mid-span moment of 1190 ), the crack width reached the limit allowed by the specifications. The “condition rating” 

recommended by the International Atomic Energy Agency guidelines defines three types of damage levels based on the maximum 

crack width: grade I (minor damage: < 0.2 mm), grade II (moderate damage: 0.2–1.0 mm), and grade III (critical damage: > 1.0 

mm). Based on the maximum crack width, the structure had minor damage when the load was 210 kN, when the load was 

approximately 210–320 kN, the structure was moderately damaged, and when the load exceeded 320 kN, the structure was 

critically damaged. 

 

 
Fig.4. Maximum crack width in critical loads 

 

In fact, for prestressed concrete girder bridges, whether in the design or inspection process, the strengthening effect of the 

bridge deck pavement on the main girder is not considered when calculating the bearing capacity of the main girder. Instead, it is 

applied to the main girder as a second-stage dead load. If its strengthening effect is taken into account, the design and inspection 

results are often overly conservative. The research on the strengthening effect of the bridge deck pavement on the main girder in 

this paper is not aimed at guiding the design optimization of prestressed concrete girder bridges. During the dynamic and static 

load inspection of prestressed concrete simply supported girder bridges in cold regions, the bridge deck pavement is also regarded 

as a second-stage dead load without considering its strengthening effect on the main girder. This will lead to an inability to grasp 

the true state of the main girder when inferring the bridge's bearing capacity from the inspection results, and thus an inaccurate 

assessment of its safety performance. If the structural state of the main girder does not meet the standards for normal use, the 
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inspection results may still meet the requirements under the strengthening effect of the bridge deck pavement, which will pose 

potential risks during the operation of the bridge. If the strengthening effect of the bridge deck pavement is considered in the 

simulation calculation, the threshold for the safety assessment of prestressed concrete girder bridges can be corrected, thereby 

more accurately evaluating the safety margin of the bridge structure. At this time, it is very necessary to consider the reinforcing 

effect of the bridge deck pavement. 

 

KEY WORDS: Bridge engineering, Full-scale concrete main girders, Bridge deck pavement, Ultimate flexural strength, 

Numerical simulation 
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ABSTRACT: Passive sensor technologies offer a robust solution for monitoring concrete structures. These technologies utilize 

advanced methods to measure critical parameters such as moisture, corrosion, and temperature within the concrete. By 

employing RFID technology, the sensors operate wirelessly and require no maintenance. With a lifespan exceeding 80 years, 

passive sensors enable comprehensive and efficient long-term structural monitoring. 

 

This article provides insights into the installation methods, the benefits of the cloud-based data platform, and how this 

technology contributes to improved safety, durability, and the preservation of infrastructure. 

KEY WORDS: SHMII-13; Full paper; Corrosion monitoring; Moisture monitoring; Passive RFID sensors; Bridge rehabilitation

1 INTRODUCTION 

1.1 The importance of preventive monitoring of concrete 

structures 

In modern structural monitoring, the early detection of 

damage plays a central role. 

Concrete structures such as bridges are exposed to extreme 

loads and environmental influences on a daily basis. The 

increasing demands on the safety and durability of such 

structures make continuous monitoring indispensable [1]. 

Preventive monitoring helps to identify potential damage at an 

early stage and to initiate appropriate measures before costly 

repairs or even critical failures occur [2]. 

 

In this context, the passive sensor technology CorroDec2G by 

Infrasolute offers innovative solutions. This technology 

enables long-term monitoring of structural integrity by 

capturing key parameters such as moisture, corrosion 

progression, and temperature within the concrete. Since 2018, 

these sensors have been used in various reinforced concrete 

structures and have established themselves as a reliable early 

warning system. The robust design of the sensors and their 

easy integration into existing structural elements facilitate 

their use in both new constructions and retrofit applications. 

 

The advantages of this technology lie particularly in its 

passive nature—meaning it does not require an external power 

supply, which reduces maintenance costs. In addition, the 

sensors deliver precise long-term data that can be processed 

using modern data analysis systems to identify trends and 

potential damage patterns at an early stage. 

 

This article uses two practical examples (Figure 1) to explain 

how Infrasolute’s sensor technology works, how installation is 

carried out, and what kind of data is collected. These case 

studies demonstrate how the use of CorroDec2G technology 

can extend the service life of structures and improve 

operational safety. 

1.2 Moisture as a risk factor 

In the case of durability-relevant bridge damage, moisture 

penetration is the most common cause, which can lead to 

corrosion-related damage to prestressing steel in older bridges 

[3]. Therefore, both the determination of the amount of 

moisture and the moisture condition are of great importance—

on the one hand to monitor the long-term functionality of 

structures, and on the other to quantify the direction of 

moisture flow. This enables timely and effective decisions 

regarding necessary maintenance measures. 

 

Moisture can be measured either directly or indirectly. Direct 

moisture measurement methods are usually based on 

extracting the amount of water from the material and 

determining it directly [4]. This approach allows for very 

accurate results; however, it is considered a destructive 

method and is therefore only suitable to a limited extent for 

use on bridges [5]. 

 

Alternatively, the moisture content can be determined 

indirectly by measuring certain material properties of the 

water that are functionally related to the moisture level. For 

example, by measuring the conductivity of the water, the 

actual moisture content can be inferred using specific 

calibration curves [5]. Indirect methods are well-suited for 

continuous measurements; however, the results can be 

influenced by various parameters such as temperature, 

density, material composition, and conductivity [4]. 
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2 FUNCIONALITY AND MEASUREMENT PRINCIPLE 

The CorroDec2G sensors from Infrasolute are based on the 

indirect measurement method. They are characterized by their 

passive mode of operation. In contrast to active sensors, they 

do not require any cables or batteries to collect measurement 

data. Developed in cooperation with the Fraunhofer Institute 

for Microelectronic Circuits and Systems (IMS) in Duisburg, 

the sensors are designed to remain fully enclosed and 

maintenance-free within the concrete for the entire service life 

of a structure—at least 80 years—while transmitting data 

(moisture, temperature, corrosion) from within the structure 

[6]. 

 

The energy required for passive operation is supplied 

externally via RFID (radio-frequency identification) 

technology. RFID is a technology also used in everyday 

applications such as contactless credit card payments and 

enables wireless, contactless data transmission. With a reading 

range of up to 30 cm through concrete, the sensors can be 

reliably interrogated [10]. A specially designed antenna setup 

can extend this range up to 100 meters. In such cases, the 

measuring unit is embedded in the concrete, for example in 

the center of the roadway, while the reading unit is positioned 

in a strategically advantageous location outside the flow of 

traffic, allowing data retrieval without disrupting traffic. 

 

The system's special design ensures that no component 

extends beyond the concrete surface, thereby eliminating 

potential weak points in the structure. This concept not only 

protects the structural integrity but also significantly extends 

the service life of the sensors by shielding them from 

environmental influences such as moisture, temperature 

fluctuations, and mechanical stress [5]. Such innovative 

RFID-based systems represent an important step toward 

sustainable structural monitoring, as they are cost-efficient in 

the long term and do not interfere with the structure's 

operation. 

3 INSTALLATION METHODS 

3.1 New construction and rehabilitation 

The installation of the sensors can be carried out both in new 

construction and during rehabilitation works. In new 

construction projects, as illustrated in Figure 2, the sensors are 

directly attached to the reinforcement using binding wires to 

ensure stable anchoring and to maintain their position during 

concreting—preventing, for example, floating within the fresh 

concrete. During rehabilitation works, such as after 

hydrodemolition (high-pressure water jet removal), the 

sensors can likewise be installed by affixing them to the 

exposed reinforcement. This allows for effective integration 

of the monitoring system even in existing structures without 

major modifications. 

 

 
Figure 2. Attachment of moisture sensors in a new 

construction project using binding wires directly on the 

reinforcement (Copyright: Christian Steffes, Infrasolute).

Figure 1. A selected practical example: Elevated Road Oberwerth, B327, in Koblenz (Copyright: Christian Steffes, Infrasolute). 
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Such precise installation procedures are particularly important 

to ensure accurate measurement data, which are crucial for 

condition assessment and maintenance planning [5]. 

 

3.2 Retrofitting installation 

The sensors can be retrofitted into existing structures using 

core drilling. As shown in Figure 3, a core hole with a 

diameter of 100 mm allows the sensors to be embedded into 

the concrete without significantly affecting the structural 

integrity of the building. The sensor is placed in a thin layer of 

a special mineral-based, open-pored coupling mortar. This 

layer ensures optimal bonding with the existing concrete. 

 

After installation, the coupling process begins. During this 

phase, moisture measurements can be used to monitor the 

drying of the surrounding coupling mortar. Once equilibrium 

moisture content is reached, the sensor can deliver precise 

data about the surrounding environment. The design of the 

coupling mortar ensures effective moisture migration from the 

existing concrete to the sensor. 

 

To avoid creating a structural weak point, a sealing mortar is 

applied above the sensor after installation. This ensures a 

durable and secure integration into the structure while 

maintaining the mechanical and protective properties of the 

original concrete.  

 

 

  
Figure 3. Core drilling with a diameter of 100 mm and 

installation of the sensor using coupling mortar (Copyright: 

Eugen Kronhardt, Infrasolute). 

 

 

4 SENSORS AND DATA TRANSMISSION 

4.1 Sensor variants 

The corrosion sensor developed by Infrasolute can be 

identified by its characteristic red housing and the four 

surrounding wire layers (Figure 4). 

The measurement method is based on the principle of proxy 

corrosion, in which the properties of the wires are specifically 

designed to closely replicate the corrosion behavior of 

reinforcement steel. Over time, the wires corrode in response 

to the surrounding environmental conditions [7]. 

 

The wire layers arranged around the sensor provide 

information about the presence and progression of corrosion, 

acting as indicators for the location of the passivation front. 

By analyzing the depth-wise arrangement of the wires, it is 

possible to determine at what depth the passivation has broken 

down and how quickly the passivation front is advancing 

toward the reinforcement. 

 

This data is critical for assessing the condition of the structure, 

planning further structural investigations, and initiating timely 

countermeasures to prevent the progression of corrosion [7]. 

 

 
Figure 4. Corrosion sensor with two measurement wire layers 

(Copyright: Christian Steffes, Infrasolute). 

 

The sensor operates using a redundant system, in which two 

circumferential wires form a single measurement layer. This 

design enhances the reliability of the measurement results and 

reduces potential sources of error. In addition, the corrosion 

sensor also measures temperature within the concrete, as 

temperature fluctuations can significantly influence corrosion 

dynamics [8]. The combination of corrosion monitoring and 

temperature measurement makes the corrosion sensor a vital 

tool for long-term monitoring and for implementing 

preventive maintenance strategies in reinforced concrete 

structures. 

 

The moisture sensor (Figure 5) measures both moisture and 

temperature within the concrete. The moisture condition is a 

critical parameter in the formation of corrosion, as it affects 

the electrophysical environment required to initiate corrosion 

processes. By combining moisture and temperature data, it is 

possible to gain detailed insights into moisture development 

within the concrete. Early detection of moisture fluctuations 

allows for minimization of potential damage and contributes 

significantly to extending the service life of the structure. 
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Figure 5. Moisture sensor (Copyright: Christian Steffes, 

Infrasolute). 

 

By combining a corrosion sensor and a moisture sensor placed 

approximately 15 cm apart, early information on corrosive 

processes and anomalies can be obtained. This spatial 

proximity enables detailed observation of the correlation 

between changes in moisture levels and the dynamics of 

corrosion processes, providing a deeper understanding of the 

environmental conditions that influence structural 

degradation. 

 

4.2 Data acquisition and transmission 

There are two methods for retrieving data from the sensors 

embedded in the concrete. One option is to enable continuous 

data transmission, allowing the data to be accessed remotely 

at any time. For this purpose, a gateway, as shown in Figure 6, 

is installed near the sensor. This gateway both powers the 

sensor and transmits the collected data directly to the 

Infrasolute cloud platform. 

 

Data transmission is carried out via NB-IoT (Narrowband 

Internet of Things), a communication standard specifically 

designed for reliable, energy-efficient data transfer in 

monitoring applications [7]. 

 

 
Figure 6. Solar-powered gateway (Copyright: Christian 

Steffes, Infrasolute). 

 

As a low-bandwidth radio technology, NB-IoT (Narrowband 

Internet of Things) enables highly energy-efficient data 

transmission, allowing sensors and gateways to operate with 

minimal power consumption [10]. The technology also 

provides excellent building penetration, ensuring reliable 

signal transmission even through thick concrete structures 

(e.g., the new IT center in Koblenz, ground floor, wall 

thickness approx. 80 cm). 

 

Thanks to support from existing mobile networks, NB-IoT is 

widely available, making it ideal for use in remote or hard-to-

reach structures. Additionally, the low data transmission rate 

results in reduced operating costs, making NB-IoT a cost-

effective solution for long-term monitoring applications. 

 

The gateway is flexible in terms of power supply and can be 

operated via mains power, a long-life battery, or solar energy, 

depending on the construction site and local infrastructure. 

This flexibility enables deployment even in locations with 

limited access to conventional power sources. The 

combination of NB-IoT and energy-autonomous gateways 

represents a significant advancement in structural monitoring, 

as it not only improves data quality but also reduces 

maintenance efforts. 

 

Alternatively, there is the option of using a handheld reading 

device to manually retrieve sensor data on-site. The device 

shown in Figure 7 has been specially developed for this 

application. The process of collecting a sensor’s measurement 

takes only a few seconds and is often carried out during 

routine bridge inspections by simply bringing the handheld 

device close to the sensor, enabling contactless and wireless 

data acquisition [7]. 

 

 
 

Figure 7. IoT handheld reader for manual sensor data 

acquisition (Copyright: Christian Steffes, Infrasolute). 

 

The data collected by the handheld reader is transmitted 

directly to the cloud-based data platform via NB-IoT 

technology. This enables immediate verification and 

visualization of the measurement values on-site at the 

structure [8]. Both the gateway and the handheld reader 

transmit their data wirelessly via NB-IoT after sensor readout. 

 

The sensor data is stored, referenced, visualized, and analyzed 

in the cloud platform by comparing it with previous 

measurements to enable precise trend analyses. Users can 

define threshold values, which—when exceeded—trigger 

automatic alerts, allowing potential issues to be identified at 

an early stage. 

 

The platform also allows the integration of collected data into 

existing monitoring systems and can proactively send reports 

via email to all relevant project stakeholders. The data 

generated on the platform is presented in a user-friendly and 

easily understandable format, enabling all involved parties—

regardless of their technical background—to effectively 

interpret the information. 

 

5 SENSORS AND DATA TRANSMISSION 

5.1 Südtangente in Koblenz – sensor variants 

The Südtangente in Koblenz (Figure 8), constructed between 

1972 and 1975, is a major traffic artery located just before the 

South Bridge crossing the Rhine River. It plays a key role in 

reducing urban traffic congestion. With a daily traffic volume 

of approximately 45,500 vehicles, including around 3% heavy 

goods traffic, it is considered part of the region's critical 

infrastructure [9]. The bridge connects important 
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transportation routes and is essential for both regional and 

long-distance traffic. 

 
Figure 8. Südtangente in Koblenz (Copyright: Martin Lichtl, 

Infrasolute). 

 

To meet the demands of increasing traffic volumes and to 

ensure the long-term durability of the bridge, the Südtangente 

in Koblenz has been undergoing comprehensive rehabilitation 

since 2020. As part of these measures, the roadway surface, 

structural waterproofing, guardrails, edge beams, and drainage 

systems have been renewed. In addition, all concrete surfaces 

have been repaired to enhance the load-bearing capacity and 

improve protection against environmental influences. 

 

5.2 Sensor installation 

As part of the rehabilitation, a comprehensive monitoring 

system was installed. The foundation for this was the 

execution of a potential field measurement, which enabled the 

precise localization of corrosion hotspots within the concrete. 

The results served as the basis for the targeted placement of 

sensors. 

 

During the first two construction phases of the rehabilitation 

of the South Bridge in Koblenz, a total of 22 corrosion sensors 

and 62 moisture sensors were installed. The sensors were 

placed at critical and representative locations such as low 

points, expansion joints, waterproofing areas, structurally 

sensitive points, reference zones, and the corrosion hotspots 

identified by the potential field measurement. The final sensor 

placement was defined in coordination with the planning 

team. The installation layout is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Potential field measurement and sensor positioning 

(Copyright: Christian Steffes, Infrasolute). 

 

 

 

The sensors were installed into the existing concrete using 

core drilling (Figure 10). To optimize data retrieval, they were 

equipped with remote antennas. This allowed the readout units 

to be placed within the box girder of the bridge, providing 

protection from mechanical stress and weather conditions. 

 

The gateways, which are connected to the existing power 

supply within the box girder, handle the data transmission. 

Each gateway collects the measurement data from four 

sensors and transmits the data wirelessly via NB-IoT to the 

Infrasolute cloud platform. 

 

 
 

Figure 10. Installed sensors with remote antennas (Copyright: 

Benedikt Seuss, Infrasolute). 

 

5.3 Measurement data and analyses 

The continuous monitoring of the Südtangente in Koblenz, 

which has been carried out since the installation of the first 

sensors in the initial construction phase at the end of 2020, has 

so far shown no signs of corrosive activity. 
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An exception was one measurement point that reported 

corrosion on the first wire level three months after installation 

(Figure 11). The cause was identified as a construction-related 

weakness in the waterproofing, which was subsequently 

corrected during post-processing. Following this measure, the 

sensors detected no further corrosion progression. 

 
Figure 11. Data analysis in the software – display of a 

corrosion sensor showing corrosive activity at the first 

measurement wire level (Copyright: Christian Steffes, 

Infrasolute). 

 

When corrosion is detected at the first wire level, the indicator 

K1 is no longer displayed within a green circle with a “0”, but 

instead within a red circle with a “1”. This provides a clear 

and unambiguous indication that corrosion has occurred at the 

first measurement wire level. The K2 value represents the 

status of the underlying wire level, allowing the progression 

of corrosion into deeper areas to be monitored and enabling a 

multi-layered condition analysis [7]. The values S1 and S2 

serve the system’s internal self-referencing. These reference 

mechanisms ensure the accuracy and validity of the 

measurement data by automatically detecting any internal 

deviations or errors. This significantly enhances the reliability 

of the monitoring system and minimizes the risk of false 

diagnostics [8]. In addition, the sensor temperature within the 

concrete is shown under the indicator “Temp. Sensor”, 

providing essential information on the thermal conditions that 

may influence corrosion dynamics. The temperature of the 

gateway, located at the surface of the concrete inside the 

bridge’s box girder, is displayed separately as “Temp. 

Gateway”. In all other areas of the bridge, the moisture 

sensors showed a normalization to equilibrium moisture levels 

within the first six months after installation, without any 

notable irregularities or significant fluctuations. These results 

confirm both the effectiveness of the rehabilitation measures 

and the stability of the moisture conditions within the 

structure.  

 

5.4 Conclusion 

By implementing sensor technology, the operator of the South 

Bridge gains the ability to monitor the success of 

rehabilitation measures in the short term. At the same time, 

the 24/7 online monitoring allows for the long-term 

observation of the internal condition of the structure, enabling 

the early detection of damage and the proactive initiation of 

maintenance actions. This minimizes the risk of unexpected 

damage and supports a preventive maintenance strategy that 

significantly enhances operational safety [7]. 

 

5.5 Structure overview: Dieblich Bridge 

The bridge along federal road B 411 near Dieblich serves as 

an important connection to the motorway network and 

functions as a regional access route. Compared to the heavily 

trafficked South Bridge in Koblenz, the traffic volume on this 

structure is significantly lower. The two-lane bridge spans a 

length of 92 meters and is used by both passenger vehicles 

and agricultural traffic. 

In 2023, a comprehensive concrete rehabilitation was carried 

out after elevated chloride levels were detected in the 

concrete. As part of the refurbishment, it was also necessary 

to partially replace the reinforcement to ensure the continued 

structural integrity and durability of the bridge. 

 

5.6 Sensor positions and installation 

With a budget of under €10,000, an efficient moisture 

monitoring system was implemented to continuously provide 

data on the structural moisture content. This monitoring serves 

to track moisture levels following the rehabilitation measures 

and to draw conclusions about the success of the repair works 

and the containment of corrosive processes. 

 

In the first step, the most critical areas of the structure were 

identified. This was achieved through a combination of a 

previously conducted potential field measurement and a 

detailed analysis of the structural topology. This 

comprehensive assessment allowed for the precise localization 

of potentially vulnerable zones. 

 

Based on this analysis, it was jointly decided to install the 

moisture sensors at the lowest points of the structure, as these 

areas are particularly susceptible to moisture accumulation 

due to their proximity to the drainage system, as illustrated in 

Figure 12. The sensors were equipped with remote antenna 

configurations, allowing the actual measurement point to be 

positioned directly in the drainage area, while the readout unit 

was installed at a central, traffic-independent location behind 

the safety barrier near the expansion joint. This strategic 

positioning ensures easy maintenance and data retrieval 

without interfering with traffic. 

 

For secure placement, the sensors were directly attached to the 

exposed reinforcement, as depicted in Figure 13. 

 

 
Figure 12. Potential field measurement and positioning of 

sensors and the readout point (Copyright: Christian Steffes, 

Infrasolute). 

 

Moisture Sensor Readout Point for the four 

sensors 
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Figure 13. Installation of a moisture sensor on the 

reinforcement (Copyright: Eugen Kronhardt, Infrasolute). 

 

 

 

5.7 Data acquisition and transmission 

Data acquisition is performed using an IoT handheld reader. 

The readout process takes less than 5 seconds and can be 

carried out at any time on-site from a centralized location. In 

this project, the readout point was placed at the beginning of 

the bridge, behind the guardrail, at the height of the bridge 

cap. 

 

By surveying and documenting the sensor installation 

positions on the structural plan, and marking them on-site 

with reference markers, the sensors and their readout points 

can be easily relocated during follow-up inspections. 

 

Furthermore, the selected location allows for the optional 

retrofitting of a gateway to enable automated and remote data 

acquisition in the future. This ensures that the system remains 

flexible and scalable for long-term monitoring needs. 

 

5.8 Measurement data and analyses 

Since their installation, the moisture sensors have shown a 

continuous drying trend without any irregularities. The 

moisture levels are visualized on the data platform and can be 

correlated with precipitation data from the nearest weather 

station. 

 

This type of analysis enables a deeper understanding of 

moisture changes within the structure and helps determine 

whether these changes are caused by temperature variations or 

external influences, such as heavy rainfall events. 

 

6 SUMMARY 

The CorroDec2G monitoring system developed by Infrasolute 

offers a durable and forward-thinking solution for the 

structural health monitoring of concrete. With a lifespan 

exceeding 80 years, the system operates entirely without 

batteries, cables, or external power sources, making it 

uniquely suited for both new construction and retrofit 

applications. It enables the measurement of moisture, actual 

temperature, and corrosion activity—without compromising 

the structural integrity of the concrete. The wireless and 

battery-free technology, based on RFID, enables long-term 

and maintenance-free monitoring of structural conditions. 

Particularly noteworthy are the system’s high reliability and 

energy efficiency, which are specifically tailored to meet the 

demanding requirements of structural diagnostics. 

 

Thanks to its simple data retrieval process, the system is 

especially user-friendly. Measurement data can be collected 

within seconds, without the need for specialized expertise, and 

analyzed immediately. This significantly lowers the entry 

barrier for application and facilitates the integration into 

existing maintenance and monitoring workflows. Moreover, 

the data is presented in a clear and understandable format, 

enabling well-founded decisions regarding maintenance and 

repair actions to be made efficiently. This transparency 

benefits not only structure operators but also engineers and 

planners in ensuring the long-term safety and durability of 

concrete structures. 

 

The primary advantages of CorroDec2G include its extremely 

long service life, energy independence, user-friendliness, and 

cost-efficiency. It supports condition-based maintenance 

strategies, contributes to the extension of structural service 

life, and helps optimize life-cycle costs by enabling the early 

detection of degradation mechanisms. Its rugged design and 

wireless operation allow for reliable performance in harsh 

environments such as underground garages or bridge 

structures. Moreover, its modular setup allows for flexible 

configurations and scalable integration into both small-scale 

and complex monitoring scenarios. Another key advantage of 

the CorroDec2G system is its cost-effectiveness. Continuous 

monitoring allows for the early detection of damage, 

minimizing expensive repairs and unforeseen failures. This 

not only contributes to the extension of the structure’s service 

life but also supports sustainable resource use and optimizes 

maintenance costs. 

 

Sensor data is accessible anytime and from anywhere, 

enabling efficient monitoring of multiple structures 

simultaneously. This is especially beneficial for critical 

infrastructure, where it supports effective prioritization of 

maintenance tasks and optimal use of resources [8]. 

 

Despite its strengths, CorroDec2G has inherent limitations. As 

a point-based early warning system, it provides localized data 

and does not offer full-surface or high-resolution spatial 

coverage. Strategic sensor placement - especially in critical 

zones identified by structural engineers - is therefore essential 

to obtain meaningful results. Furthermore, the system is not 

designed for high-frequency dynamic measurements but 

rather for long-term trends and early anomaly detection. Its 

value lies in its simplicity, reliability, and practical 

applicability in real-world construction environments 

 

In an increasingly data-driven world, precise and reliable data 

collection plays a pivotal role. Advanced technologies such as 

Artificial Intelligence (AI), which are becoming more 

significant in the field of structural health monitoring, are also 

built upon such high-quality data. As a result, CorroDec2G 

serves as a bridge between traditional engineering and modern 

data science. 

 

In summary, the CorroDec2G system provides an effective, 

forward-looking solution that actively promotes the safety, 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-128 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 830 

functionality, and preservation of concrete structures over the 

long term. 
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ABSTRACT: Publicly accessible vehicle measurements for testing and validating drive-by bridge monitoring techniques are 

currently insufficient. Although relevant monitoring campaigns have been conducted, their results are limited and generally 

inaccessible to the research community. Consequently, this paper introduces a numerical dataset designed to advance drive-by 

monitoring methods. The dataset is freely available and can be downloaded from an online repository. It comprises numerically 

simulated vehicle responses generated using an open-source vehicle-bridge interaction model. The repository includes over half a 

million individual vehicle crossing events, covering various monitoring scenarios, bridge spans, damage locations, damage 

magnitudes, road profile conditions, and vehicle properties. This dataset is intended to serve as a reference solution and benchmark 

for future developments in drive-by bridge monitoring. 

KEY WORDS: Indirect Monitoring; Damage Detection; Vehicle-Bridge Interaction; Drive-By Inspection. 

1 INTRODUCTION 

To facilitate the advancement of data-driven drive-by bridge 

damage assessment techniques, this paper presents an openly 

accessible dataset [1]. The dataset consists of numerically 

simulated vehicle responses from crossings over diverse bridge 

spans with varying damage conditions. Additionally, it 

includes results that consider variations in road profiles, vehicle 

models, mechanical properties, and speeds. The objective is to 

offer the research community a valuable resource that serves as 

a reference for testing and benchmarking new developments in 

the field. 

2 THE DATASET 

This section offers an in-depth overview of the NuBe-DBBM 

dataset (Numerical Benchmark for Drive-By Bridge 

Monitoring methods), which is available to the public in [1]. 

The dataset encompasses vehicle response data from over half 

a million numerically simulated vehicle-bridge crossings, 

spanning a broad spectrum of road, bridge, and vehicle 

conditions. Furthermore, the repository provides additional 

materials to support users of the dataset. 

The dataset was generated using VBI-2D [2], an open-source 

MATLAB tool designed to simulate vehicle-bridge interaction 

(VBI) for road traffic crossing bridges. This tool allows for the 

specification of various vehicle models, road irregularities, 

bridge characteristics, and structural conditions. In VBI-2D, 

bridges are modelled as beams within a finite element 

framework, while vehicles are represented as mechanical 

systems with multiple degrees of freedom. The coupled 

vehicle-bridge response is determined through direct 

integration of the corresponding equations of motion. For more 

detailed information on the numerical model, solution method, 

and user manual, readers are referred to [2]. Figure 1 provides 

a schematic overview of VBI-2D’s simulation capabilities. 

Specifically for the dataset, simulations involved simply 

supported bridge configurations of single vehicles crossings at 

constant speeds under varying road, vehicle, and bridge 

conditions. 

 

Figure 1. Illustration of VBI-2D model. 

The dataset consists of individual MATLAB files, each 

containing information and vehicle responses for a single event. 

An event is defined as a single vehicle traveling at a constant 

speed over a specified road profile while crossing a bridge 

without any initial vibrations. The dataset includes five primary 

problem variables: Bridge length (B), Damage location (DL), 

Damage magnitude (DM), Vehicle type (V), and Profile (P). It 

is further divided into two subsets, named DSA and DSB, 

corresponding to two distinct monitoring scenarios. For each 

possible combination of problem variables and monitoring 

scenarios, 800 events are included, with vehicle properties 

randomly sampled. 

The dataset comprises numerical results for six distinct 

simply supported bridges with span lengths varying from 9 m 

to 39 m, increasing in 6 m increments. These bridges are 

modelled as finite element representations using beam 

elements, each 0.25 m in length. The numerical properties of 

the beam models were chosen to represent typical bridges of 

these span lengths, with detailed values of the properties for the 

beam models provided in [3]. 

Bridge damage is modelled as a decrease in stiffness 

affecting either 2 or 4 elements, which equates to bridge lengths 

of 0.5 m or 1 m. The severity of the damage is expressed as a 

percentage reduction in stiffness, with the dataset providing 

results for three levels: 0% (undamaged bridge), 20%, and 

40%. Furthermore, two damage locations are examined, 
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specified in relation to the bridge span L, namely at quarter-

span (L/4) and at mid-span (L/2). 

The dataset encompasses results for three distinct vehicle 

models, which are numerically represented through 

combinations of concentrated masses, rigid elements, springs, 

and dashpots. These models, generated using the open-source 

tool VEqMon2D [4], are schematically depicted in Figure 2, 

illustrating the names of all mechanical properties, relevant 

dimensions, and degrees-of-freedom (DOF) notation. The 

vehicles are classified based on their total number of axles: a 1-

axle model (V1), a 2-axle model (V2), and a 5-axle model (V5). 

The V1 model, often referred to as a quarter-car model, has 

been extensively utilised in previous studies to evaluate the 

performance of drive-by methods. The V2 model represents a 

car or a 2-axle heavy vehicle, such as a van or truck. The V5 

model characterises an articulated heavy vehicle, comprising a 

tractor and trailer connected by an articulation. 

 

(a) 

 

 

(b) 

 

 

(c) 

 
Figure 2. Vehicle models; (a) V1: 1-axle vehicle model; 

(b) V2: 2-axle vehicle model; (c) V5: 5-axle articulated 

vehicle model. 

 

Each event in the dataset models the response of one of the 

vehicle types. For each simulation, the actual speed, along with 

the mechanical and geometrical properties, are randomly 

sampled based on probabilistic descriptions provided in the 

repository [1]. The variability in vehicle model parameters is 

intended to represent fleets of similar vehicles, although no two 

are identical. While the geometry of all vehicles within a 

specific model type remains consistent, their mechanical 

properties differ between simulations. This mirrors real-world 

conditions, where vehicles vary due to differences in payloads, 

suspension characteristics, and tyre pressures. 

The dataset also incorporates the impact of road conditions. 

Some simulations assume a perfectly smooth road surface, 

labelled as P00. Additionally, the dataset features simulations 

with two randomly sampled Class A road profiles, generated 

according to the standardized procedure specified in ISO 8608. 

To simulate the actual wheel footprint, a moving average filter 

with a window size of 0.25 m is applied to the generated 

profiles. These profiles are 600 m in length, with their reference 

system centred at the midpoint. The profiles are consistently 

used across all bridge spans, with the left beam support 

positioned at the origin of the profile’s reference system. For 

all simulations, vehicles include a 100 m long approach 

distance before crossing the bridge. 

The dataset encompasses two distinct monitoring scenarios. 

Scenario A (DSA) depicts a situation where the target bridge 

has substantial damage, necessitating more controlled and 

detailed drive-by inspections while maintaining regular 

operational conditions. In this scenario, the bridge damage 

spans 4 elements (1 m), and the vehicle fleet gathers signals at 

high sampling rates while travelling at controlled, nearly 

uniform speeds. Scenario B (DSB), in contrast, represents 

normal operational conditions aimed at detecting early signs of 

bridge deterioration. Here, the damage spans only 0.5 m (2 

elements), with vehicles travelling at varying permitted speeds 

(resulting in high variability) and signals collected at a lower 

sampling rate. Table 1 outlines the specifications for both 

scenarios, reflecting different levels of difficulty for drive-by 

methods. Scenario A, with more extensive bridge damage and 

less variability in vehicle speeds, is anticipated to enhance the 

performance of data-driven damage detection methods. 

Conversely, Scenario B presents a more challenging 

environment due to smaller damage and greater variability in 

operational conditions. 

Table 1. Monitoring scenarios specifications. 

Dataset code name DSA DSB 

Number of damaged elements 4 2 

Sampling rate of signals (Hz) 1024 (210) 256 (28) 

Speed variation (km/h) 70 to 80 30 to 80 

 

Table 2 gives an overview of all dataset dimensions together 

with their possible values. 

Table 2. Summary of dataset’s dimensions. 

Property Notation Possible values 

Monitoring 

scenario 
DS + letter DSA – DSB 

Bridge B + span in m 
B09 – B15 – B21 – 

B27 – B33 – B39 

Damage 

location 

DL + location in 

% of span 
DL25 – DL50 

Damage 

magnitude 

DM + % of 

stiffness reduction 

DM00 – DM20 – 

DM40 

Vehicle 
V + number of 

axles 
V1 – V2 – V5 

Road profile 
P + Class + 

Number 
P00 – PA1 – PA2 

Event number E + number 
E0001 – E0002 – ... 

– E0800 
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As mentioned earlier, the dataset consists of individual files 

containing numerical results and other relevant details for each 

vehicle crossing event. Each file is uniquely named to indicate 

the specific characteristics of the simulated event based on the 

dataset dimensions (see Table 2). The naming convention for 

each file is: 

 

DSa + _ + Bbb + DLcc + DMdd + Ve + Pfg + Ehhhh + .mat 

 

for: 

 

DSa = Dataset name, where a indicates either A or B 

monitoring scenario 

Bbb = Bridge type, where bb indicates span length 

DLcc = Damage location, cc indicates the location as % of 

span length 

DMdd = Damage magnitude, dd indicates % of stiffness 

reduction 

Ve = Vehicle type, e indicates the number of axles of the 

vehicle model 

Pfg = Profile, f indicates the class of profile (A), and g is the 

profile number 

Ehhhh = Event number, hhhh indicates the event number 

 

For example, the event file 

DSA_B15DL50DM20V5PA2E0327.mat corresponds to event 

number 327. This event features a 5-axle truck traversing the 

2nd Class A profile and a 15 m simply supported bridge, which 

has a 20% stiffness reduction at mid-span, under monitoring 

scenario A. 

The dataset includes 518,400 events, totalling 52GB of files 

that are freely available for download [1]. These files are 

organised into compressed subfolders based on bridge span and 

monitoring scenario. Each event file contains the simulated 

acceleration responses from all degrees of freedom (DOFs) of 

the vehicle model, including both off-bridge and on-bridge 

responses, i.e., the vehicle's responses while approaching and 

crossing the bridge. The file also records the exact time the 

vehicle enters the bridge. Additionally, it includes the specific 

realisation of the vehicle's mechanical properties for the 

simulated event, along with the corresponding natural 

frequencies of the vehicle model. 

Moreover, the repository includes supplementary files that 

detail the vehicle models and their DOF notation 

(Vehicles_DOF.zip), the road profiles used in generating the 

dataset (Profiles.zip), and the bridge model parameters 

(Bridges.zip). It is important to note that the vehicle responses 

in the dataset are clean signals. To simulate real measurements, 

these signals should be corrupted with noise. To assist with this, 

the file Noise.zip offers two equivalent implementations (for 

MATLAB and Python) to add noise to the signals. 

Readers are referred to the documents ReadMe.pdf available 

in the repository [1] for further information about the stored 

content and practical guidelines to read the event files. Also 

refer to the original publication [3] for additional details about 

the problem variables, vehicle property variability, and the 

stored information within the dataset. 

3 CONCLUSION 

This paper has introduced a publicly accessible dataset 

designed as a benchmark for drive-by monitoring techniques. 

The dataset comprises numerically simulated vehicle responses 

during bridge crossings. A wide array of configurations and 

conditions have been modelled and systematically stored in 

files, which are readily available at [1]. The dataset's variability 

includes different bridge spans, damage locations, damage 

magnitudes, road profile irregularities, monitoring scenarios, 

and vehicle properties. It contains over half a million files with 

vehicle responses and additional information for individual 

crossing events. This paper encourages the research community 

to employ this dataset to test and enhance drive-by monitoring 

methods. 
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ABSTRACT: Structural health monitoring (SHM) has gained significant attention in recent decades due to several structural 

failures and the increasing maintenance demands from stakeholders. This urgency has been further amplified by the impact of 

predictive climate changes worldwide. Footbridges, as critical components of modern transportation systems, play a vital role in 

daily life and therefore require meticulous attention to their health conditions. Traditionally, monitoring footbridge conditions 

involves installing many sensors directly on the structure, which is often cost-prohibitive in engineering applications. Recent 

advancements have highlighted the indirect method of bridge health monitoring, where sensors are mounted on passing vehicles 

rather than the bridge itself. This approach is not only more economical but also easier to implement in practical engineering 

scenarios. This paper further extends the indirect monitoring method to classify footbridge damage using the responses of shared 

scooters. Advanced deep learning techniques are utilized to predict the severity of damage to the footbridge based on the vibrations 

recorded from shared vehicles. The proposed method was validated through field tests involving scooters and a footbridge. 

Furthermore, to interpret the outputs of the deep learning model, SHapley Additive exPlanations (SHAP) values were calculated, 

offering insights into the decision-making process of the model. 

KEY WORDS: structural health monitoring; footbridge; damage classification; convolutional neural networks; SHAP.

1 INTRODUCTION 

The assessment of bridge health has gained significant attention 

over the past decades due to widespread aging and deterioration. 

This concern stems from the fact that many of these structures 

were built in the previous century, with a large proportion 

having been in service for over 50 years. For instance, in 

Finland, the Finnish Transport Infrastructure Agency reported 

that, as of 2023, 882 out of 17,351 highway bridges (5.1%) 

were in poor condition, with aging structures from the 1960s 

and 1970s accumulating a growing maintenance backlog [1]. 

The European Commission has noted that bridges constructed 

after 1945 were typically designed for a lifespan of 50 to 100 

years. In 2001, it was reported that bridges in France, Germany, 

and the UK showed deficiency rates of 39%, 30%, and 37%, 

respectively [2]. These figures highlight the urgent need for 

effective health monitoring of in-service bridges, which can 

provide critical information on their condition and support 

informed decision-making by stakeholders. 

Traditional bridge inspections rely heavily on human vision, 

requiring engineers to conduct on-site visits and determine 

whether maintenance is needed [3]. However, as modern bridge 

construction becomes more extensive and complex, this 

approach faces several limitations, including being labor-

intensive, inefficient, and time-consuming. At the beginning of 

this century, structural health monitoring (SHM) systems 

gained popularity [4]. These systems involve installing various 

sensors on bridges to continuously collect different types of 

data. In practice, however, this approach has proven to be 

expensive. It typically involves a one-to-one setup, where the 

monitoring system is customized for a specific bridge and 

cannot be easily transferred to others. Moreover, the cost of 

installing numerous sensors can be high. As the number of 

aging and newly built bridges continues to rise, there is an 

increasing need for cost-effective and scalable monitoring 

technologies. 

In 2004, Yang et al. [5] proposed the indirect method, where 

sensors are installed on passing vehicles instead of the bridge 

itself. This approach is based on the vehicle-bridge interaction 

(VBI) process. During this interaction, the dynamic 

characteristics of the bridge are transferred to the vehicles 

equipped with sensors, allowing the vehicles to act as moving 

sensors that collect information about the bridge. In this 

pioneering study, the bridge was simplified as a simply 

supported beam, and the vehicle was modeled using a spring-

mass system. Under these assumptions, the authors 

demonstrated that the fundamental frequency of the bridge 

could be extracted from the vehicle’s response, laying the 

groundwork for future research in this area. 

In recent studies, researchers have further investigated the 

extraction of bridge modal shapes and damping ratios from 

vehicle response [6,7]. For example, Yang et al. [8] proposed 

using the Hilbert Transform to extract mode shapes from 

filtered vehicle responses, while González et al. [9] introduced 

a method for retrieving damping ratios by minimizing the errors 

in identified road roughness between the front and rear axles. 

In 2018, Yang et al. [10] introduced the concept of contact-

point (CP) response, which represents the response at the 

interface between the vehicle and the bridge. This response was 

found to be independent of vehicle characteristics, making it 

useful for identifying bridge properties from vehicle data [11]. 

In addition to vehicle influence, road roughness is another 

major source of interference when identifying bridge dynamic 

parameters from vehicle accelerations. This issue can be 

mitigated by using residual CP responses between vehicle axles, 
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which eliminates the effects of road roughness [12–14]. 

However, in practical applications, modal parameters often 

show limited sensitivity to structural damage and may be 

significantly affected by operational conditions. Moreover, 

most existing studies on the indirect method have focused on 

road bridges. Although footbridges play an essential role in 

modern transportation and logistics, they are rarely equipped 

with SHM systems and have received little attention in indirect 

monitoring research. 

Over the past decade, advancements in computer science 

algorithms and hardware have significantly enhanced deep 

learning techniques, particularly through the widespread use of 

neural networks. Technologies such as large language models 

(LLMs) have transformed many aspects of daily life and have 

also made a notable impact on SHM for bridges. Researchers 

have increasingly applied machine learning and deep learning 

methods to assess bridge health using structural responses [15]. 

In the context of the indirect method, vehicle responses 

typically consist of three components: vehicle dynamics, road 

roughness, and bridge vibrations [16,17]. This complexity 

makes it challenging to isolate bridge-specific information for 

use as damage indicators. However, deep learning models are 

sensitive to subtle signal variations, making them well-suited 

for detecting damage-related changes in vehicle responses. For 

example, Li et al. [18] applied support vector machines and 

Mel-frequency cepstral coefficients (MFCCs) to predict the 

severity of bridge damage based on vehicle responses. Unlike 

earlier studies that focused only on low-frequency signals [19], 

this research also explored high-frequency responses. In 

addition, Corbally and Malekjafarian [20] used convolutional 

neural networks (CNNs) to classify the type, location, and 

severity of bridge damage using drive-by data. In their study, 

particle swarm optimization was employed to fine-tune the 

vehicle model, and the resulting simulated data were used to 

train the CNN. Laboratory experiments validated the 

framework, demonstrating its ability to accurately detect and 

classify damage in most cases. These studies highlight the 

promising role of deep learning in bridge health monitoring. 

However, most research to date has focused on road bridges, 

with footbridges largely overlooked [21]. Additionally, deep 

learning models are often applied without adequate explanation 

of how features are selected or interpreted, limiting the 

transparency and broader adoption of these approaches. 

In this paper, an explainable deep learning-based method is 

proposed to detect and classify damage in footbridges. Shared 

scooters equipped with smartphones are used to assess the 

health condition of footbridges when they pass the footbridge 

structures and collect dynamic data. 2D CNN is employed to 

extract key features from the time-frequency representations 

(TFRs) of the scooter’s response as it moves over the 

footbridge. A field test is conducted to validate the 

effectiveness of the proposed method. The structure of the 

paper is as follows: Section 2 introduces the fundamental 

scheme of the proposed method and architecture of the used 2D 

CNNs. Section 3 describes the field test setup and discusses the 

results. Finally, Section 4 presents the conclusions of the study. 

2 PROPOSED METHODOLOGY 

 Data collection 

 

In this study, smartphones were mounted on a scooter to record 

vibration data. The scooter first crossed the bridge multiple 

times when it was in a healthy state to establish a baseline. After 

the bridge had been in use for several months or years and 

potential damage had developed, the scooter was used again to 

collect vibration data. These recordings, from both healthy and 

possibly damaged states, were used to train neural networks for 

predicting the bridge’s health condition. 

 Data processing 

Before feeding scooter data into the 2D CNNs, signals are 

preprocessed in 3 steps: (1) synchronization: two smartphones 

on different scooter parts are synchronized using Unix time to 

align data collection; (2) channel formation: only vertical and 

pitch accelerations, the most relevant signals, are retained. 

Signals from misaligned sensors are combined to extract these 

components; (3) segmentation: only data collected while the 

scooter is on the footbridge is kept, removing unrelated signals 

before and after crossing. This ensures clean, relevant input for 

2D CNN training. 

 2D CNN 

CNNs are widely used for extracting damage-sensitive features 

from signals. In this study, the 2D CNNs based on a simplified 

Visual Geometry Group (VGG)-16 [22] architecture (with two 

instead of four fully connected layers) were developed to 

analyze scooter vibrations for footbridge monitoring. When 

sensors are mounted on a scooter, fewer measurement points 

are available, but key inputs: vertical body acceleration (𝑧̈𝑠) , 

angular acceleration (𝜃̈𝑠) , and front wheel acceleration (𝑧̈𝑡), 

can be collected using two smartphones. The 2D CNN uses 

TFRs of scooter vibrations as input. To standardize input size, 

signals are first truncated to a uniform time length (5 s in this 

study), then transformed into 2D representations using methods 

like short-time Fourier Transform [23]. Each CNN channel 

uses 2D kernels (kernel_size=3) with zero padding to keep the 

input size. The max-pooling (kernel_size = 2, stride = 2) is 

utilized to extract key features. Activation function was 

selected as rectified linear unit (ReLU), and the Cross-Entropy 

(CE) loss was employed [24]. The architecture of the 2D CNNs 

are shown in Table 1. 

Table 1. Architecture of the 2D CNNs. 

Layers Output shape Kernel size Activation 

Input 3 × 402 × 257 - - 

Conv 2D 64 × 402 × 257 3 ReLU  

Conv 2D+MaxPooling 64 × 201 × 128 3 ReLU  

Conv 2D 128 × 201 × 128 3 ReLU  

Conv 2D+MaxPooling 128 × 100 × 64 3 ReLU  

Conv 2D 256 × 100 × 64 3 ReLU  

Conv 2D 256 × 100 × 64 3 ReLU  

Conv 2D+MaxPooling 256 × 50 × 32 3 ReLU  

Conv 2D 512 × 50 × 32 3 ReLU  

Conv 2D 512 × 50 × 32 3 ReLU  

Conv 2D+MaxPooling 512 × 25 × 16 3 ReLU  

Conv 2D 512 × 25 × 16 3 ReLU  

Conv 2D 512 × 25 × 16 3 ReLU  

Conv 2D+MaxPooling 512 × 12 × 8 3 ReLU  

Flattened 49152 - - 

Fully connected 4 - - 
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3 FIELD TESTS AND DISCUSSIONS 

 Field test setups 

Field tests were carried out using scooters equipped with two 

smartphones to validate the proposed footbridge damage 

detection method (see Figures 1 and 2). Smartphone 1 (iPhone 

12) was mounted on the scooter body, and Smartphone 2 

(iPhone 8) on the front wheel. The scooter passed the 

footbridge multiple times under similar road roughness. A short 

acceleration zone was used for the scooter to reach a top speed 

of 20 km/h, which can be powered by an electric motor without 

human pedaling force. MATLAB Mobile was used on 

smartphones to collect data with sampling frequency of 100 Hz. 

The footbridge investigated in the field tests is shown in Figure 

3. To simulate experimental damage cases (EDCs), different 

masses (people standing at the center) were used, which is a 

practical approach and has been validated in prior studies [25–

27]. The added masses were 55 kg, 125 kg, and 185 kg for 

damage cases 1, 2, and 3, respectively. EDC 0 refers to the 

undamaged case with no added mass.  

 

Figure 1. Scooter with two smartphones. 

 

Figure 2. Scooter with a rider. 

 

Figure 3. Experimental damage cases. 

All EDCs and corresponding scooter runs are detailed in 

Table 2. Impulse excitation was applied by having a person 

jump on the bridge to assess the effect of added mass. A 

smartphone placed at the 1/4 span of the footbridge recorded 

the resulting vibrations. For EDC 0, accurate natural 

frequencies cannot be obtained with this method, as at least one 

person is required to apply the excitation. Instead, an alternative 

approach using the bridge’s free vibration after scooter crossing 

is utilized. Frequency values for all EDCs are listed in Table 2, 

where 𝑓𝑏1 − 𝑓𝑏4  represent the first four frequencies of the 

explored footbridge. It can be seen that when more people are 

standing on the footbridge, the first two frequencies of the 

footbridge 𝑓𝑏1  and 𝑓𝑏2  decrease apparently. However, for the 

third and fourth frequencies 𝑓𝑏3 and 𝑓𝑏4, the frequency values 

sometimes remain unchanged due to the measuring accuracy. 

Even though the frequency changes can be observed from the 

first two frequencies, the change ratio can be minor, say 1.22% 

for the fundamental frequency in EDC 1 compared to that of 

EDC 0. It can be challenging to determine the damage 

condition only based on the changes in frequencies. Therefore, 

the following will investigate the use of data-driven methods 

for damage detection of the footbridge using scooter vibrations.  

Table 2. Footbridge frequencies in all EDCs. 

EDCs People mass 𝑓𝑏1 𝑓𝑏2 𝑓𝑏3 𝑓𝑏4 Runs 

EDC 0 0 kg 4.028 Hz 4.468 Hz 10.486 Hz 11.316 Hz 124 

EDC 1 55 kg 3.979 Hz 4.443 Hz 10.486 Hz 11.304 Hz 65 

EDC 2 125 kg 3.955 Hz 4.431 Hz 10.486 Hz 11.304 Hz 63 

EDC 3 185 kg 3.918 Hz 4.370 Hz 10.437 Hz 11.304 Hz 60 

 

 Results and discussions 

For analysis, 63 runs were randomly selected from EDC 0, 

yielding a total of 251 runs in the experimental dataset. Of 

these, 70% were used for training and 30% for testing. The 

CNN configurations matched those used in simulations. 

Hyperparameters were set as follows: batch size = 32, 

optimizer = Adam, learning rate = 1𝑒−6, weight decay = 1𝑒−5, 

loss function = CE loss, activation = ReLU, and number of 

epochs = 400. CE loss and damage prediction accuracy are 

shown in Figure 4. 

 

Figure 4. Loss and accuracy using 2D CNNs. 

Figure 4 showed that the 2D CNN achieved early and sharp 

drops in both training and testing losses. The training loss 

nearly reached zero, and despite a minor rise in testing loss after 

150 epochs, testing accuracy remained consistently above 90%.  

To further interpret these findings, Shapley Additive 

Explanations (SHAP) were used to explain the 2D CNN’s 

predictions. SHAP values reveal each feature’s contribution to 

the model’s output [28,29]. One sample from each EDC was 

analyzed to show how the 2D CNN classified bridge conditions. 

Figure 5 displays the SHAP values and predicted probabilities 
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for each TFR image. Red pixels (positive SHAP values) 

support the model’s prediction, blue pixels (negative SHAP 

values) oppose it, and grey pixels have little impact. 

The SHAP value images reveal that most significant features, 

those with strong positive or negative contributions, are 

concentrated in the 0–30 Hz range. This aligns with the fact that 

the bridge’s natural frequencies, identified through impulse 

excitation (Table 2), also lie below 30 Hz. In EDC 0, for 

instance, image 2 shows that key features appear between 0.5–

3.5 s as distinct non-horizontal lines and points, corresponding 

to peaks in the footbridge’s frequency response. The 2D CNN 

confidently classified this sample as EDC 0 with a 99.98% 

probability. Images 4 and 5 contain blue regions indicating 

features that helped the model rule out EDCs 2 and 3. However, 

image 3 shows some overlap with EDC 1, resulting in a small 

0.01% probability being assigned to that class. In EDC 1 

(image 8), time-varying features near 1.5 s played a critical role, 

especially in distinguishing it from EDC 2. Because of the 

resemblance to EDC 0 around the same time, the model 

assigned a minor 0.08% probability to EDC 0. For EDC 2, 

distinct features were noted at 2.5 s and 4 s, while in EDC 3 

(image 20), key contributions appeared around 4 Hz and 20 Hz. 

Although EDC 3 shared similar patterns with EDC 0 between 

1.5–2.5 s, additional higher-frequency features around 1.5 s 

enabled the 2D CNN to correctly identify it as EDC 3. 

 

Figure 5. Explanation of 2D CNNs (P: Probability). 

These observations confirm that the 2D CNN identifies 

damage-sensitive features based on both time and frequency 

information. Therefore, using TFRs as input to a 2D CNN 

provides good damage detection performance in the indirect 

method with vehicle-mounted sensors. This advantage stems 

from the inherently non-stationary dynamics of VBI systems, 

where both vehicle and bridge frequencies shift during 

interaction [30–32]. Therefore, by preserving time-varying 

characteristics, the 2D CNN in this study can effectively 

identify key features in scooter vibrations. 

4 CONCLUSIONS AND FUTURE WORK 

This paper proposes a method for detecting and classifying 

footbridge damage by analyzing scooter vibrations collected 

via smartphones and processed through explainable deep 

learning. Specifically, TFRs of scooter vibrations were used 

with a 2D CNN to assess damage severity. The method was 

validated through real-world field tests. It was found that the 

2D CNN can accurately predict the damage severity of the 

footbridge by using the TFRs of scooters. The 2D CNN’s 

superior performance is linked to its ability to capture the non-

stationary characteristics of VBI responses. SHAP analysis 

confirmed that damage-sensitive features vary over time in the 

scooter’s vibrations.  

Future work will focus on enhancing the practicality and 

robustness of the proposed method by exploring alternative 

smartphone placements (e.g., on the standing slab or handlebar), 

considering the behaviors of the drivers, incorporating 

influential factors such as temperature, road roughness 

variations, and pedestrian presence, and reducing reliance on 

labeled data through unsupervised learning. Furthermore, the 

authors understand that using standing people on the footbridge 

to simulate synthetic damage scenarios can not fully represent 

the real damage in practical engineering. In our future studies, 

we would like to test the proposed method on other bridges with 

real damage to evaluate the generalization. 
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ABSTRACT: The drive-by bridge modal identification (BMI) method, which employs a sensory system mounted on a moving 

vehicle, offers an efficient and cost-effective alternative for monitoring the health of bridge structures, particularly for short- to 

mid-span bridges. This technique allows for real-time, large-scale bridge assessments without the need for stationary sensors or 

traffic disruptions. However, extracting accurate modal parameters, such as frequencies and damping ratios, from vehicle 

responses is challenging due to the influence of multi-source excitations, including road surface roughness, random traffic loads, 

and dynamic vehicle-bridge interactions. These factors introduce noise and complexity that can compromise the reliability of the 

BMI method. 

To address these challenges, this study integrates an adaptive signal decomposition technique, Successive Variational Mode 

Decomposition (SVMD), with Operational Modal Analysis to accurately identify the modal frequencies and damping ratios from 

drive-by measurements. The impact of multi-source excitations on the vehicle-bridge interaction process is systematically 

investigated, and key factors affecting the accuracy and reliability of BMI under such conditions are analyzed. Based on these 

findings, recommendations are made to improve the robustness and precision of the drive-by BMI method. This work might 

contribute to advancing the practical implementation of BMI in real-world bridge health monitoring applications. 

KEY WORDS: Drive-by Modal Identification; Vehicle-Bridge Interaction; Successive Variational Mode Decomposition; 

Operational Modal Analysis; Multi-source Excitations. 

1 INTRODUCTION 

Vehicular onboard sensing technology dynamically collects 

bridge response data through moving vehicles, offering 

advantages such as wide coverage and low cost (Yang et al. 

2020). . However, its application in bridge monitoring still 

faces multi-faceted challenges. On one hand, multi-source 

random excitations (e.g., road roughness, the simultaneous 

operation of multiple vehicles, and environmental loads) 

induce time-varying non-stationarity and strong uncertainty in 

the dynamic responses of the vehicle-bridge coupled system. 

On the other hand, the coupled interference from system 

transfer characteristics, speed fluctuations, and environmental 

noise results in multi-component mixing and quality 

heterogeneity in the collected data, significantly 

compromising the reliability of bridge vibration characteristic 

identification and condition assessment (Zhu and Law, 2015). 

The extraction of bridge related dynamic information from the 

multi-component vehicle responses for bridge condition 

assessment is the key task of drive-by bridge monitoring (Tan 

et al. 2019).  

Successive variational mode decomposition (SVMD) 

(Nazari and Sakhaei 2020) has been used to accurately extract 

the mono-component from the multi-component dynamic 

signal without much manual parameter setting or adjustment. 

Li et al. (2022) investigated its feasibility and effectiveness for 

the extraction of bridge related dynamic components from 

vehicle response considering a random Class A road surface 

roughness. This paper studies the feasibility of SVMD for the 

drive-by bridge modal identification considering the multi-

source excitation.  

2 VBI MODELING CONSIDERING RANDOM 

OPERATIONAL EXCITATIONS

Figure 1 The model of drive-by bridge inspection in operational condition
 

The VBI model for the drive-by bridge modal identification is 

shown in Figure 1. The vehicle parameters are:  mv the mass 

of vehicle, ks and cs the stiffness and damping of suspension 

spring and damper, respectively. The equation of motion of 

vehicle can be expressed as 

mvÿv(t) + cvẏv(t) + kvyv(t) = Fcp(t)         (1) 

where yv is the displacement response of vehicle. Fcp(t) =

kvdcp(t), and dcp(t) = w(x̂1(t), t) + r(x̂1(t)) is the 

displacement input to the sensing vehicle at location x̂1(t). 

The multi-source excitations are considered as the road profile 

and a moving random operational load P (Sadeghi et al., 2020). 

he operational load enters the bridge ahead of the sensing 

vehicle with a moving speed v1 and the speed of the sensing 

vehicle is v2. The road surface roughness is given as follows: 

Drive-by bridge modal identification under multi-source excitations 
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r(x) = ∑ √4Sd(fi)∆f
Nf
i=1 cos (2πfix +θ

i
)         (2) 

where Sd(f) is the displacement power spectral density of road 

surface roughness; fi = i∆f is the spatial frequency(cycles/m); 

∆f =
1

Nf∆
 , and ∆ is the distance interval between successive 

ordinates of the surface profile; Nf is the number of data 

points; θ
i
 is a set of independent random phase angle 

uniformly distributed between 0 and 2π. The degree of road 

roughness is determined by the Sd(f0) value, where f0(=
0.1 cycles/m) is the reference spatial frequency. Class A road 

roughness defined using specified Sd(f0) value in ISO 

specification is considered. 

The flowchart of the proposed drive-by bridge modal 

identification is shown in Figure 2.  

 

 
Figure 2 Flow chart of the bridge modal identification using 

moving test vehicle 

 

3 DRIVE-BY BRIDGE MODAL IDENTIFICATION: 

NUMERICAL STUDY 

Numerical study is conducted to analyze the effectiveness of 

the method for extracting mono-components from vehicle 

responses and drive-by bridge modal identification. The 

properties of the bridge are: length 𝐿 = 35m, density 𝜌 =
5000 kg m⁄ , and flexural rigidity 𝐸𝐼 = 2.178e10Nm2. The 

damping ratio is set as 0.01 and the theoretical values of the 

first three bridge modal frequencies are 2.68, 10.71 and 

24.09Hz, respectively. The properties of the sensing vehicle 

are: body mass mv=466.5kg, suspension stiffness ks=9.00e5 

N/m, suspension damping cs=0.14e3 N s/m and its 

fundamental frequency fv is 6.99Hz. The vehicle speed is set 

as 2m/s and the operational load to simulate the traffic on the 

bridge is a randomly generated load.  

The dynamic modes decomposed by SVMD are used to 

estimate the bridge frequencies. To evaluate the accuracy of 

the proposed drive-by bridge modal identification method, the 

Monte Carlo method with 50 simulations is used to generate 

the vehicle response dataset to simulate multiple passes of the 

sensing vehicle considering random operational load. Each of 

these responses is analyzed by SVMD, and the components 

related to the first two dynamic modes of bridge are used for 

the identification of frequency and damping ratio. Three 

different damping ratio values of bridge, i.e., 0.01, 0.02 and 

0.03 are considered in simulating vehicle responses. The mean 

values and the standard deviation (std) of the identified 

frequencies for 50 passes are presented in Table 1. It can be 

seen that the mean values are very close to the theoretical 

values and the errors are all less than 1.5%. The results confirm 

that the bridge modal frequencies can be identified with high 

accuracy using the developed method.  

 

 

 

Table 1 Identified frequency considering different damping ratios 

 

 

 

 

 

 

 

4 CONCLUSIONS 

This study investigates drive-by bridge modal identification 

under multi-source excitations based on the adaptive 

decomposition of vehicle responses using SVMD. The 

investigation confirms that the SVMD can be incorporated 

with the NExT/RDT to analyze the bridge related dynamic 

components to estimate the modal frequencies and damping 

ratios. The bridge modal frequencies are identified accurately 

by computing the mean value of multiple tests to reduce the 

effects of the multi-source random excitations. A more 

sophisticated operational traffic model is required to meets 

more realistic situation in the simulation. Besides, 

experimental investigations on actual bridges in operational 

condition are necessary to further verify the effectiveness and 

robustness of the proposed method.  

 

Identified frequency (Hz) 

Damping ratio 0.01 0.02 0.03 

 mean std mean std mean std 

First mode 2.674 0.0561 2.667 0.0419 2.658 0.085 

Second mode 10.589 0.0842 10.559 0.1012 10.549 0.182 
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ABSTRACT: To explore the potential application of the tunnel damage identification method based on train acceleration, a three-

axis accelerometer was installed on a metro train carriage to collect acceleration signals. The original signals are segmented and 

aligned according to the stations, with data analyzed in terms of station sections. Next, the probability density distribution, fast 

Fourier transform spectrum, and one-third octave spectrum of the signal are calculated. A time-frequency domain fast analysis 

software for acceleration data is then developed. By comparing changes in time-frequency domain features, the anomalous section 

of the tunnel is identified. The results confirm that the tunnel damage identification method based on train acceleration is applicable 

for real-world metro tunnels. 

KEY WORDS: Field test; Probability density distribution; Fast Fourier transform; One-third octave. 

1 INTRODUCTION 

With the rapid pace of urbanization, metro systems are playing 

an increasingly vital role in alleviating urban traffic congestion 

[1]. As a critical support infrastructure for metro trains, metro 

tunnels can experience issues such as settlement, water leakage, 

and lining cracks during their operational period [2]. These 

problems can arise from the combined effects of geological 

conditions, material aging, dynamic loads from trains, and 

nearby construction activities, all of which can compromise the 

structural integrity of the tunnels [3]-[4]. Therefore, monitoring 

the health condition of metro tunnels and performing timely 

maintenance are crucial for ensuring the safe and efficient 

operation of the metro system [5]. 

Li [6] proposed a method that involves installing acceleration 

sensors on metro trains to identify tunnel damage or anomalies 

by analyzing changes in train acceleration. The feasibility of 

this approach was demonstrated theoretically. This method 

offers advantages such as high efficiency and low cost, 

providing a novel approach to metro tunnel health monitoring. 

Following this, damage indicators based on wavelet packet 

energy change rates [6], spectral kurtosis change rates [6], and 

relative entropy of wavelet packet energy [7] were introduced 

for analyzing train acceleration signals to identify tunnel 

anomalies. Deep learning techniques, including convolutional 

variational autoencoders (CVAE) [7], convolutional neural 

networks (CNN) [8], and long short-term memory (LSTM) [8] 

networks, have been applied to classify tunnel damage types, 

with their performance validated through model tests. 

Compared to traditional damage indicators, deep learning 

methods effectively reduce the interference from noise and data 

inconsistencies. Although the feasibility of the tunnel damage 

identification method based on train acceleration has been 

theoretically and experimentally verified, real-world 

acceleration data from metro trains have yet to be collected to 

assess the feasibility of the method in field conditions. 

In this study, a three-axis accelerometer was installed on a 

metro train carriage to collect the train acceleration. The time-

frequency domain features of the acceleration signals are then 

calculated. By analyzing the changes in these features, the 

anomalous section of the tunnel is identified. The results 

confirm that the tunnel damage identification method based on 

train acceleration is feasible for real-world applications.  

2 FIELD TEST 

In this study, a field test was conducted on a complete metro 

line in a certain city, which includes two tunnels on the up and 

down lines, with a total of 19 stations. A wireless three-axis 

accelerometer, with a measurement range of 2g and a sampling 

frequency of 4000Hz, was installed under the seat in the middle 

of the train carriage to collect the train acceleration. The test, as 

outlined in Table 1, was conducted in three phases from April 

16 to September 20, 2021, spanning a total of 24 days. For each 

test day, a set of acceleration data was recorded from the 

starting station to the terminal station, with separate data sets 

collected for both the up and down line tunnels. 

Table 1. Test dates. 

Phase Dates 

Phase 1 April 16 - April 28 

Phase 2 May 12 - May 21 

Phase 3 September 20 

 

3 TEST DATA ANALYSIS 

 Original data 

The original signal is segmented and aligned based on the 19 

stations, dividing the line into 18 station sections for sectional 

data analysis. Taking a specific section as an example, the 

acceleration signal is shown in Figure 1. In this figure, the X 

direction represents the forward direction of the train, while the 

Z direction is perpendicular to the ground of the carriage. The 

acceleration in the X direction shows a clear ascending or 

Field test on tunnel indirect damage identification from moving train response 
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descending trend due to changes in train speed, whereas the 

acceleration in the Y and Z directions exhibits similar patterns 

of variation. 

In this study, the Z direction is selected to analyze the 

changes in train acceleration. The acceleration in the Z 

direction for 18 sections is shown in Figure 2. The number 

above each curve corresponds to the section's serial number. 

Due to variations in tunnel length, geological conditions, and 

track irregularities across the sections, the time-domain 

waveforms of acceleration exhibit distinct differences. 

The acceleration in the Z direction for 6 days in the same 

section is shown in Figure 3. The numbers above the curves in 

the figure represent the corresponding dates, with April 19 

recorded as 4.19, and so on. Since the train's speed and the mass 

of the carriage vary slightly each day, the acceleration values 

in the same section show some differences in amplitude. 

 
(a) 

 
(b) 

Figure 1. Acceleration signals in the X, Y, and Z directions: 

(a) Up line; (b) Down line. 

 

 
(a) 

 
(b) 

Figure 2. Acceleration signals in different sections: (a) Up 

line; (b) Down line. 
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(a) 

 
(b) 

Figure 3. Acceleration signals on different dates: (a) The 1st 

section of the up line; (b) The 18th section of the down line. 

 

 Probability density distribution 

The probability density distribution curve of the acceleration 

signals for 6 days within the same section is shown in Figure 4, 

with the FIT curve representing the normal distribution fit. The 

mean acceleration values within the same section are similar, 

while there are differences in variance. 

 
(a) 

 
(b) 

Figure 4. Probability density distribution curves of 

acceleration signals on different dates: (a) The 1st section of 

the up line; (b) The 18th section of the down line. 

 

 Fast Fourier transform 

The acceleration signals from 24 days are analyzed using fast 

Fourier transform (FFT), converting the time-domain signals 

into the frequency domain. As shown in Figure 5, the blue 

curve represents the average of the FFT results from all the 

signals. The signal energy is concentrated between 200 and 800 

Hz, with peaks around 450 Hz and 700 Hz. 

 
(a) 

 
(b) 
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Figure 5. Fast Fourier transform spectrum of acceleration 

signals: (a) The 1st section of the up line; (b) The 18th section 

of the down line. 

 

 One-third octave 

Figure 6 shows the one-third octave spectrum of the 

acceleration signals over 24 days, illustrating the distribution of 

signal energy across different frequency bands. The blue curve 

in the figure represents the average energy of all the signals. 

Similar to the FFT spectrum, the signal energy exhibits a peak 

around 700 Hz. 

 
(a) 

 
(b) 

Figure 6. One-third octave spectrum of acceleration signals: 

(a) The 1st section of the up line; (b) The 18th section of the 

down line. 

 

 Time-frequency domain fast analysis software 

As shown in Figure 7, a time-frequency domain fast analysis 

software for acceleration data is developed using MATLAB 

App Designer. First, click “Data loading” to read the train 

acceleration signal from the input “File na e”. Next, select or 

enter the line direction (Left, i.e., Down, or Right, i.e., Up), 

section number, date, and acceleration direction (X, Y, or Z). 

Finally, by clicking the “Ti e do ain data”, “Probability 

density curve”, “Fast Fourier transfor ”, and “One-third 

octave” buttons, users can quickly co pute and visualize the 

time-frequency domain features of the signal, facilitating 

further comparative analysis. 

 
(a) 

 
(b) 

Figure 7. Time-frequency domain fast analysis software for 

acceleration data: (a) Software interface; (b) Visualization of 

analysis results. 

 

4 DATA ANALYSIS OF ANOMALOUS SECTION 

 Time domain analysis 

As shown in Figure 8 and Figure 9, during the data analysis, it 

is observed that the acceleration signals in the 2nd section of 

the up line and the 17th section of the down line show 

significant changes over time. These two sections correspond 

to the left and right tunnels of the same station segment. 

Comparing this with the section's operation and maintenance 

records reveals that, during the field test, the tunnel linings of 

this station segment experienced excessive uplift, which altered 

the tunnel's stiffness and boundary conditions. This change is 

reflected in noticeable differences in the train's vibration signal 

waveforms. Additionally, on the test day, September 20, which 

was a rainy day, the tunnel's boundary conditions were further 

modified, resulting in a significant increase in the train's 

acceleration amplitude. 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-132 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 846 

 
(a) 

 
(b) 

Figure 8. Acceleration signals of the anomalous section: (a) 

The 2nd section of the up line; (b) The 17th section of the 

down line. 

 

 
(a) 

 
(b) 

Figure 9. Probability density distribution curves of 

acceleration signals in the anomalous section: (a) The 2nd 

section of the up line; (b) The 17th section of the down line. 

 

 Frequency domain analysis 

Further analysis of the frequency domain features for the 

acceleration signals in the anomalous section, shown in Figure 

10 and Figure 11, reveals an increase in energy around 700 Hz 

compared to the normal sections.  

The discovery of the anomalous section validates the 

feasibility of tunnel damage identification method based on 

train acceleration for field applications. By analyzing the 

changes in the time-frequency domain features of the train's 

acceleration signals, tunnel anomalies can be indirectly 

identified. 
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(b) 

Figure 10. Fast Fourier transform spectrum of acceleration 

signals in the anomalous section: (a) The 2nd section of the up 

line; (b) The 17th section of the down line. 

 

 
(a) 

 
(b) 

Figure 11. One-third octave spectrum of acceleration signals 

in the anomalous section: (a) The 2nd section of the up line; 

(b) The 17th section of the down line. 

 

5 CONCLUSIONS 

In this study, a three-axis accelerometer was installed on the 

train carriage to collect acceleration signals throughout the 

entire journey. The time-frequency domain features of the 

signals are analyzed. The main conclusions of this study are as 

follows: 

 ) The acceleration in the direction of the train’s  otion 

shows distinct ascending or descending segments due to 

changes in train speed. The acceleration in the two directions 

perpendicular to the train’s  otion exhibits a si ilar trend.  

2) The train acceleration signals in normal sections on 

different dates show slight differences in amplitude due to 

variations in train speed and carriage mass. In contrast, the train 

acceleration signals in anomalous sections on different dates 

exhibit significant differences in waveform, caused by changes 

in the tunnel's stiffness and boundary conditions, with more 

substantial fluctuations in signal amplitude. 

3) By calculating the probability density distribution, fast 

Fourier transform spectrum, and one-third octave spectrum of 

the acceleration signals, changes in the time-frequency domain 

features can reveal anomalous sections of the tunnel. This 

analysis validates the feasibility of tunnel damage identification 

method based on train acceleration in real-world applications. 

Future work will involve selecting additional metro tunnels, 

installing sensors on trains to collect field data, and building a 

comprehensive dataset. Machine learning or deep learning 

techniques will then be applied to further identify tunnel 

anomalies. 
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ABSTRACT: Population-based Structural Health Monitoring (PBSHM) provides insights based on data derived from comparing 

multiple structures' responses, providing a shift towards an integrated data domain. This presents significant challenges in data 

collection and integration of data across diverse structural populations, such as sensor systems, environmental data, and 

maintenance records and requires substantial engineering effort. This fragmentation of data across different formats and systems 

creates substantial engineering overhead when integrating new data sources, limiting the practical implementation of population-

based approaches. This paper introduces a structured data flow architecture for systematic data collection and aggregation in 

PBSHM ecosystems by defining distinct functional components within the data collection process and enabling the structured 

integration of diverse data sources. The results establish a foundation for scalable PBSHM data collection, supporting the broader 

transition towards integrated structural health monitoring ecosystems. 

KEY WORDS: Population-based Structural Health Monitoring (PBSHM); Data integration architecture; Data collection; Data 

aggregation

1 INTRODUCTION 

Structural health monitoring (SHM) has the potential to reduce 

operational costs and increase infrastructure safety by 

augmenting existing primarily qualitative condition 

management processes using quantitative sensor data to track 

an asset’s condition over time. More recently, population-based 

structural health monitoring (PBSHM) has been proposed to 

exploit the similarities between data from multiple structures to 

gain additional insights into their condition. 

To date, the development of SHM sensing systems has 

largely been application-driven, such as in the Intersection 

Bridge 5 (IB5) [1] and the Telegraph Road Bridge [2] projects. 

As data acquisition (DAQ) systems were largely developed in 

isolation due to commercial interests, differing approaches to 

data measurement and transport for SHM exist. Consequently, 

there is no broadly agreed way to integrate these diverse, 

competing technical solutions into a PBSHM system. One 

potential approach is to develop a process that adapts all 

existing SHM sensing systems to support data representations 

compatible with current PBSHM data domains. However, this 

is largely impractical due to the complexity, cost, and time 

required to modify numerous existing systems. 

To address this issue, this work proposes a methodology for 

the design, implementation, and operation of PBSHM data 

collection systems, allowing data to be merged from various 

sources to provide a unified view. This process is essential for 

analysing and making informed decisions based on 

comprehensive datasets in PBSHM. 

A degree of data integration exists in existing SHM systems; 

for example, when utilising multiple vendors’ sensors on a 

single structure. In this case, the operator may require that all 

the data be accessible from a single data system, therefore 

transforming data from multiple sources into a single database. 

A common approach to transforming data makes use of an 

extract, transform, load (ETL) process, where the data is first 

extracted from the original data source, transformed into the 

target format and loaded into the new data store. The 

methodology proposed here permits the integration of sensing 

systems for a wide variety of structures (incl. bridges, wind 

turbines, masts, etc.) into a collection system for PBSHM data, 

that allows the aggregation and translation of data from a given 

structure to the shared PBSHM standard, in a defined, 

consistent manner. Additionally, the methodology is applicable 

to both existing and future systems. 

Our architecture proposes a PBSHM integration pipeline that 

offers a flexible, modular approach to aggregating data from 

multiple existing SHM data sources. To demonstrate our work, 

we present a design study based on the existing IB5 and 

Telegraph Road Bridge monitoring systems, that illustrates 

how these may be integrated with a wider PBSHM ecosystem. 

This design study is presented using UML component diagrams 

due to its widespread use in system modelling [3]. 

The main contributions of this work are: 

• Introduction of the concept of PBSHM integration 

pipelines for systematic data collection and aggregation 

in PBSHM ecosystems; 

• An architecture for these integration pipelines, including 

functional definitions for the mandatory and optional 

components within these; and  

• Demonstration of the application of the design principles 

of our approach to integrate two existing bridge 

monitoring systems into a PBSHM system. 

The paper is structured as follows: Section 2 describes the 

current landscape of PBSHM research and identifying key 

challenges; Section 3 describes data pipelines that enable the 

integration of individual structure data collection systems; 

Section 4 describes the functionality in the pipelines; Section 5 

details a design study that demonstrates the efficacy of the 

proposed architecture with conclusions given in section 6. 
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2 BACKGROUND 

To design a robust data architecture for supporting PBSHM, it 

is essential to first identify the benefits and requirements of 

PBSHM. Additionally, a thorough examination of the current 

landscape of SHM systems and existing data silos is necessary 

to pinpoint the needs and challenges for the data architecture. 

 PBSHM and the associated data ecosystem 

As the availability of SHM data for a given structure is 

incomplete, a population-based SHM approach by collecting 

data from a group of similar structures to infer the condition of 

one structure. Bull et al. [4] showed that it is possible to 

represent the behaviour of these structures using a general form 

of the population that encapsulates behaviour of all structures 

within the population of "strongly homogeneous" or nominally 

identical structures. This is particularly useful for large 

populations that are manufactured identically and experience 

similar conditions, such as a farm of wind turbines where each 

turbine undergoes near-identical manufacturing and 

construction processes. 

This concept, however, can be expanded to include structures 

that only share significant structural similarities otherwise 

known as homogenous populations [5], [6] with the challenge 

to identify those which are similar enough to transfer data 

between, without compromising model quality. Gosliga et al. 

[5] proposed an irreducible element (IE) model to represent 

such structures which solely captures the geometric properties 

of a structure, whereas a finite element (FE) model contains 

additional construction information. Brennan et al. [7] 

introduced an expanded IE model using a set of reduction rules 

which eliminate author ambiguity, ensuring that each is created 

using a consistent canonical form while maintaining all 

structural knowledge. Representing structures with IE models 

allows the creation of an attributed graph (AG) from the model, 

which can then be processed using a graph-matching algorithm 

to determine a "similarity score" between two structures. 

Using this similarity score, it is possible to predict the 

possibility of positive data transfer across heterogeneous 

populations of structures. Gardner et al. [6] show that features 

and labels can be mapped from a source structure to a target 

structure, even among topologically different structures, by 

using IE and AG representations to extract the similarity 

between structures within a heterogeneous population. 

Given the diverse and extensive data required for the 

successful realisation of PBSHM, meaningful comparisons 

between multiple data sources are needed. This requires the 

data to be standardised to allow large-scale analyses and 

efficient data processing. Attempts to extend open standards 

such as Bridge Information Management (BrIM) in Jeong et al. 

[8], look to address this shared-data problem within their 

specific regions, but extending to PBSHM is non-trivial. 

As such, PBSHM has introduced a standard for its associated 

shared data.  Brennan et al. [7] introduced a PBSHM technical 

ecosystem made up of the PBSHM Network, Framework, and 

Database. The Network is the shared data domain in which the 

similarity between structures is represented; the Database is the 

shared-data domain in which PBSHM data is stored in a 

common format and; the Framework is the computational 

domain in which all algorithms (both similarity and knowledge 

transfer) exist. Each domain is valid in its own right, but 

independent from others.  

This comprehensive PBSHM ecosystem integrates data 

storage and software but can be expanded to accommodate 

larger databases and additional software modules. It may store 

various data categories, including sensor data, IE and FE 

models, reports, features, information and similarity metrics. 

The authors use a NoSQL database for the PBSHM ecosystem 

due to its increased flexibility over relational ones allowing the 

expansion of the database to accommodate any data that may 

be used in the future to develop PBSHM. Brennan et al. 

implemented the database using MongoDB, using a detailed 

"PBSHM Schema" to standardise and store the aforementioned 

data categories, ensuring compatibility and allowing efficient 

data retrieval and analysis. The flexibility provided by these 

choices allow for current knowledge to be embedded within the 

schema, however, allows for the future needs of PBSHM by 

enabling the adaptation of the schema to include yet-unknown 

data at a future date. 

 SHM data acquisition systems for civil infrastructure 

Many SHM systems collect data for civil infrastructure and 

are made up of either one or multiple data acquisition systems. 

Various vendors can be used and provide comprehensive 

DAQs that manage data capture and storage, but these cannot 

be integrated across vendors, requiring the creation of bespoke 

SHM systems. Whilst this has the potential of creating a 

comprehensive system for an SHM structure, it may produce 

data that is incompatible for the purposes of PBSHM and will 

not easily be shared. 

To highlight this, two bridges, the Intersection Bridge 5 (IB5) 

and the Telegraph Road Bridge have been selected, due to their 

extensive sensor networks and well-documented cyber-

physical systems. 

IB5 - IB5 is designed to continuously monitor the structural 

health of the bridge by recording and analysing various signals, 

using a variety of high-precision sensors that capture data on 

vibrations, strain, temperature, rotation, and other parameters. 

Data acquisition units collect the sensor data and convert it into 

a digital format suitable for real-time wireless transmission to 

a central server, which processes the data to detect any 

anomalies. The system includes an application programming 

interface (API) for authorized users to access the data remotely, 

facilitating ongoing monitoring and analysis. Additionally, 

power supply units ensure reliable operation of all components, 

even in harsh environmental conditions [1]. 

Telegraph Road Bridge - The Telegraph Road Bridge in 

Michigan employs a network of wireless sensors, including a 

variety of sensors that measure strain, acceleration, and 

temperature and are strategically placed to capture detailed data 

on the bridge's response to truck loading and thermal variations. 

Data acquisition units collect and digitize the sensor data, 

which is then transmitted to a central server. This bridge utilises 

a solar-powered wireless sensor network architecture that can 

also be used in hard environmental conditions [2]. 

Following the observations made on both systems [8], [9], 

[10], differences between the storage and representation 

between the two systems are described in Table 1. 
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Although both monitoring systems may appear very similar 

(each having a physical layer, cyber-physical layer and data 

storage/processing capability), the systems differ in their 

underlying data management technologies. Both display a well-

thought-out, cyber-physical architecture; however, the systems 

have been developed largely in isolation, with differing goals 

leading to a clear difference in data representations. This 

presents a challenge when trying to compare both structures in 

a PBSHM context for reasons discussed in section 2.1.   

Therefore, for PBSHM to be effective, it can be deduced that 

data integration needs to occur across the two structures. 

3 ARCHITECTURE 

One of the key processes within SHM is gathering and 

capturing monitoring data to ultimately determine the health 

state of a structure. This is the same for PBSHM, but the 

process is compounded when considering the very nature of the 

population-based approach is to accumulate knowledge across 

multiple structures and types. 

While the aforementioned PBSHM technological domains 

encompass knowledge when in a central ecosystem, they lack 

the understanding, definitions, and details of the procedures of 

migrating data from the SHM capture systems associated with 

the structures and the central system. This part focuses on 

proposing the missing link between the existing SHM systems 

– henceforth referenced as data generators – and the PBSHM 

technical ecosystem introduced by Brennan et al. [11]. 

 Data Generators 

A data generator is any entity that can produce data 

potentially valid within the PBSHM schema. As data 

generators can consist of existing SHM data acquisition 

systems, data generators can produce many different possible 

representations of SHM data. Therefore, to preserve this, data 

representation within the PBSHM data domains needs to be 

facilitated. This gives two possible options: a) development of 

a process to adapt existing data formats to representations that 

are supported in the existing PBSHM data domains or, b) 

retroactive adaption of existing SHM capture systems to 

support this as well as every future representation. This is 

significantly hindered by the need for commercial systems to 

remain compatible with existing solutions. 

Thus, we define data pipelines which allow the transport of 

data from these existing, and future, data generators to the 

PBSHM data-domains. 

 PBSHM Integration Pipelines 

The process of getting data from the aforementioned data 

generator into the PBSHM Framework is referred here to as a 

data pipeline. Pipelines describe the overall transmission of 

data from the location(s) at which the data is first introduced 

into the PBSHM domain to the desired end location.  

 Pipeline organisation 

Through this data pipeline, it is important to denote the 

responsibility of each actor within this pipeline, by dividing it 

into sections. These divisions will furthermore be referred to as 

scopes with their own set of responsibilities, purpose and 

defined goals for any data requirements, transformations, and 

formats that may occur within its remit. 

Whilst we must acknowledge that each data pipeline will be 

unique to the requirements of the data generator(s), there is still 

an abstract delimitation between each scope area. As such, this 

paper proposes the following aspects (see Figure 1): 

Structure: The structure scope describes all the cyber-

physical infrastructure required to capture information 

regarding a physical attribute of a structure. This scope 

provides an interface that allows this information to be 

provided to the next scope in the pipeline. Any solution 

implemented to this scope is specific to the set of measurements 

desired for a given structure. 

Aggregation: The aggregation scope is defined by a generic 

set of processes that universally apply to every application to 

allow the communication of data from the structure scope to the 

PBSHM database and vice versa. It receives data from the 

previous scope and transmits this to the next. 

PBSHM Network, Framework and Database: This 

establishes the shared data domain for which the relationships 

between structures, the shared domain in which PBSHM-

specific algorithms and computations reside and the database 

where PBSHM data resides. 

 

 

Figure 1. Pipeline flows through the aggregation scope from 

data generators to the PBSHM Framework 

Due to the segregation of responsibility within the data 

pipeline, when acting within one scope, it is necessary to view 

the other scopes within the pipeline as black box systems. 

When implementing within the aggregation scope, it may not 

                       

                      

           

    

          

    

           

    

           

           

          

           

          

    

           

     

         

Table 1. Comparing data representation between IB5 and 

Telegraph Road Bridge monitoring systems 

Structure IB5  Telegraph 

Road Bridge 

Database 

Technology 

PostgresSQL Apache 

Cassandra 

Sensor Information 

Storage 

Database Entry OpenBrIM 

Sensor Information 

Schema 

“ID”, “Type” and 

“Location” fields 

in database 

User-defined 

OpenBrIM 

Object 
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be possible to modify or understand the implementations and 

behaviours within the structure and PBSHM server scopes. 

4 FUNCTIONALITY 

To describe the functionality required in the pipeline, a roles-

based approach is used. Each role dictates the functionality that 

is required to produce a valid PBSHM data integration system. 

Each role provides an interface through which data is 

communicated. Data flows describe the transfer of data from 

one role to the next. By utilising the abstract form of a roles-

based approach to describe the implementation of data flows, 

we can define a consistent terminology within the context of 

the PBSHM ecosystem, allowing the methodology to apply to 

not just existing technologies, but future technologies. In 

principle, roles can be described as actors, which perform some 

operation on data within the pipeline. 

Figure 2 outlines mandatory and optional roles. Mandatory 

roles (which are denoted in grey) must be implemented to 

create a valid data pipeline from a data generator to the PBSHM 

server and the optional roles (denoted in pink) describe 

additional functionality that can be added to the system. Arrows 

are used to describe the data flows where the arrowhead 

indicates which direction the data flow is initiated. 

 Mandatory Roles 

Initially, there is some required functionality that must be 

implemented to allow the movement of data from a given data 

generator to the PBSHM core. It is important to note that data 

generators may encompass a wide variety of data i.e. channel 

data, feature data, reports, etc. 

A pipeline may be configured as follows: Initially, data is 

generated by the data generator contained within the structure 

scope. These roles provide some interface to the aggregation 

layer. 

 

 

Figure 2. PBSHM data integration roles 

Cache roles play a simple yet vital role in the PBSHM data 

integration pipeline. By utilising a buffer to store incoming data 

from data generators, we can aggregate multiple data streams 

at the cache to group the incoming data. In a PBSHM system 

where it can be expected to have many structures each with 

many data generators, it becomes infeasible to have each data 

generator directly interact with the PBSHM Framework. 

Finally, the purpose of the transit role is to serve as the 

gateway between the data cache and the PBSHM Framework. 

Data provided by the transit role must be in the PBSHM schema 

format to allow compatibility with the PBSHM database. This 

will then perform redundancy checks, parity checks etc. 

 Optional Roles: Config & Health 

Additionally, there is potential within the PBSHM integration 

pipelines to anticipate the need for reconfigurability and insight 

into downstream aspects of the data pipeline from the PBSHM 

Framework to allow effective data infrastructure management 

and support decision systems. Therefore, it is possible to 

introduce the health and config roles. The function of the health 

role is to provide statistics and system state information to the 

PBSHM framework whereas config provides an interface of the 

components within the aggregation and structure scope to be 

modified with supported configuration options. 

Both health and config roles pose a significant challenge due 

to the unending complexity of both existing and future 

technologies due to both differing configurable attributes of 

data generators and differing statistics provided by data 

generators. Furthermore, cache roles can take multiple 

technical forms, with a further set of differing configurable 

attributes and properties on which insight could be desired. 

For the most part, these roles are beyond the scope of this 

work and will be covered in more depth in future work.  

5 DESIGN STUDY 

The objective is to validate and demonstrate the effectiveness 

of the proposed data integration architecture for PBSHM by 

demonstrating the integrity of live data transfer from various 

sensor systems to a central PBSHM server. Also demonstrated 

is interoperability by integrating different sensor types and data 

formats into a cohesive pipeline. To reflect the existing 

landscape of SHM deployments, the design study uses the two 

examples given in Section 2.2. We first establish the existing 

methods that the systems use to access collected data. 

 Existing data retrieval mechanisms and assumptions 

IB5 supplies a representational state transfer (REST) API 

(built using Fast-API) that allows researchers or stakeholders 

to access both stored raw and processed data. This enables end-

users to access stored data of the digital twin, including raw 

sensor data from the physical implementation [9]. Although the 

cyber-physical system supporting the IB5 bridge is a 

comprehensive and well-designed example of developing a 

digital twin for a bridge, the REST API implemented for the 

IB5 is not publicly documented, highlighting the data 

integration challenges in the current SHM landscape. 
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Figure 3. Assumed XSD of the API response from the IB5 

monitoring system 

As such, some assumptions have been made about the 

structure of their API queries and the resultant data that can be 

retrieved. The following fields are presumed necessary for the 

query: (1) Sensor IDs, and (2) Time window. It is assumed that 

the data is returned in an XML document is returned in the 

structure dictated by an XML schema definition (XSD) 

presented in Figure 3 where the values returned are: 

• Sensor ID(s) 

• An array of: 

o Timestamp 

o Value from sensor 

An example of an object returned by the assumed API can be 

seen in Figure 4. 

 

 

Figure 4. Example XML file based on the XSD of Figure 3 

The monitoring system of the Telegraph Road also provides 

its own API to retrieve data. Its bridge information repository 

framework contains an Apache Cassandra database which 

provides the Cassandra Driver API for retrieving data. This 

used in conjunction with its “data mapper” (which maps the 

time series data stored in the database with the BrIM sensor 

information) provides the data necessary by the PBSHM 

schema via the “Sensor data retrieval” service which provides 

a REST API. This allows the system to be integrated into the 

PBSHM ecosystem. Literature on the Telegraph Road Bridge 

both details the structure of the API queries and provides 

examples of data returned [10]. 

 The proposed data integration system 

Using the information supplied about the two systems’ APIs, 

and details inferred in section 5.1, it is possible to propose an 

integration system based on the architecture and roles detailed 

in sections 3 and 4. These roles are set out in Table 2. 

This proposed integration system is defined in terms of a 

UML component diagram (shown in Figure 5). In this case, 

each component is a distinct software service. Relationships 

between the components which show how they interact, are 

drawn between each component. These components are 

grouped to detail in which deployment environment these 

would be implemented. Most have been implemented in the 

“PBSHM Integration Cloud Server”; however, an additional 

component has been added to the “PBSHM Integration Cloud 

Server” to show an additional module that could be added to 

the PBSHM Framework that would allow the insertion of 

records to the PBSHM Database over HTTP(S). 

An important observation from Table 2 is the designation of 

the IB5 and TRB fetchers as data generators. Although these 

are part of the structure scope, in this case, they have been 

implemented in the “PBSHM Integration Cloud Server”. As 

data generators must be the actors of any data transaction to the 

cache (Figure 2), it is necessary to add a component that fetches 

from the existing APIs provided by both bridges and 

subsequently pushes the results to their respective RabbitMQ 

caches. To avoid changing the existing back-ends of both 

structures, these are implemented in the “PBSHM Integration 

Cloud Server”. However, this is an example of a deployment 

environment implementing roles across two scopes. 

Within the proposed data integration system, most of the 

components could be implemented by a multitude of 

technologies. However, where new data transfer components 

are required, RabbitMQ has been chosen as the technology to 

represent to reception of these data transfers.  

Table 2. Identifying how each role is fulfilled by components in 

the proposed PBSHM data integration system for IB5 and 

Telegraph Road Bridge 

Role IB5 Component TRB Component 

Data 

Generator 

IB5 Fetcher TRB Fetcher 

Cache IB5 Queue 

(RabbitMQ) 

TRB Queue 

(RabbitMQ)  

Transit PBSHM Framework 

Loader 

PBSHM Framework 

Loader 

PBSHM 

Core 

REST API REST API 
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Whilst these components could most likely be replaced with 

similar technologies or even a more traditional data transfer and 

storage method, RabbitMQ has been chosen as it both dictates 

the protocol in which messages are sent/read and provides a 

data store in the form of the message queue. Furthermore, it is 

open-source and well-documented, allowing ease of use 

without complications surrounding licensing [12], [13]. 

As stated, no changes have been made to the functionality 

provided by either the IB5 or Telegraph Road back-ends. 

Therefore, to bring data into the “PBSHM Integration Cloud 

Server”, two “Fetcher” components (each for their respective 

monitoring system) have been added which periodically sends 

requests to their respective APIs to check whether new data has 

been added to the databases and then fetches and loads it onto 

a RabbitMQ, therefore fulfilling the role of the data generator. 

An example application provided in [10] documents how 

automated data retrieval could be implemented for the 

Telegraph Road Bridge.  

Once the sensor data from each bridge has been loaded into 

their respective message queues, sensor data from both bridges 

is then extracted from their message queues into ETL 

components. The purpose of these ETL components is to 

transform the data in the message queues from their respective 

data formats and schemas into a JSON format that follows the 

PBSHM schema. Whilst the data from both bridges is 

undergoing similar processes to be transformed into PBSHM 

schema, the underlying technologies will take significantly 

different methods to undertake this due to the difference in the 

data format and structure (schema) of the data generators. The 

key differences being: 

• In IB5, data is assumed to be returned in XML format 

whereas Telegraph Road returns data in JSON format. 

• It is assumed that IB5 returns data in a similar schema 

to that shown in Figure 3 whereas Telegraph Road 

produces data in its schema (examples given in [10]). 

Once the data from either structure has been transformed into 

PBSHM Schema, this can then be loaded onto another 

RabbitMQ labelled the “Ingest Buffer”. 

By transforming the data into the PBSHM schema data 

integrity and interoperability are ensured as the schema 

provides a unified way to represent sensor data and contains 

information about the origin of the data. 

From this point, as the data from both bridges is in the same 

structure and format it can be manipulated by the same 

components through the rest of the pipeline. The data is then 

extracted by the ingest buffer and loaded onto “PBSHM 

Server” via a REST API with an HTTP(S) request at which 

point the “PBSHM Server” API will load the data onto the 

database. 

6 CONCLUDING REMARKS 

This paper presents a methodology for the design, 

implementation and operation of PBSHM data collection 

systems. By defining mandatory roles for data transfer from 

structure to PBSHM Network, Framework and Database scope 

and demonstrating their application to real-world, bridge 

monitoring systems, it is shown how diverse existing SHM data 

acquisition systems can be integrated into a PBSHM 

ecosystem, whilst maintaining data integrity and 

interoperability as provided by the standard PBSHM schema. 

Future work will focus on refining the optional components 

within the aggregation scope, particularly the config and health 

role which present significant challenges due to the variability 

in configurable attributes and operational performance. Robust 

reference implementations of the aggregation scope 

components will also be developed to provide practical 

guidance for SHM system operators seeking to integrate their 

monitoring systems with PBSHM systems, thereby 

accelerating the adoption of PBSHM. Furthermore, work will 

include the development of software modules   for the PBSHM 

framework that allow for the use of external software tools by 

Figure 5. Universal markup language diagram showing the proposed population-based structural health monitoring data 

integration system for the Intersection Bridge 5 and Telegraph Road Bridge 
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providing interfaces to the data collected as defined by security 

policies. 
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ABSTRACT: The practical implementation of Population-based Structural Health Monitoring (PBSHM) often involves 

distributed which face challenges from limited compute resources, power budgets, and variable communication bandwidths, for 

example, IoT devices with battery-powered wireless sensor network gateways uploading data over metered connections. Building 

upon the data flow architecture presented in our first paper in this special session, this paper demonstrates how inherent state 

within data streams' can be leveraged for optimisation. This paper introduces a novel, plug-and-play aggregation pipeline 

specifically designed to address these limitations. We present an optimised data representation and transmission strategy that 

minimises computational and bandwidth requirements at the network edge. By leveraging efficient data serialisation techniques, 

our pipeline achieves a significant reduction in data payload size with negligible information loss, thereby enhancing the scalability 

and financial viability of PBSHM systems. This work validates an enabling technology for the real-world deployment of large-

scale, low-power monitoring ecosystems. It does so by comparing two data formats, JavaScript Object Notation (JSON) and 

Concise Binary Object Representation (CBOR), using monitoring data from a long-term bridge campaign. The results show a 

reduction in the volume of transmitted data by up to 12.2 times. 

KEY WORDS: Population-based Structural Health Monitoring (PBSHM); Resource-constrained systems; data optimisation; data 

serialisation.

1 INTRODUCTION 

Infrastructure monitoring requires methods to track structural 

condition and optimise maintenance schedules. Structural 

health monitoring (SHM) has developed considerably in recent 

years [1]. Population-Based SHM (PBSHM) offers potential 

advantages over traditional SHM approaches by analysing data 

across multiple structures rather than analysing each 

independently. This approach enables knowledge transfer 

between similar structures, improving damage detection and 

diagnostic capabilities [2], [3], [4], [5]. 

While the definition of a computing framework for PBSHM 

is established [6], the practicalities of data logistics in 

heterogeneous, resource-scarce environments remain a 

significant research gap. Implementing PBSHM systems 

requires the integration of data from many different monitoring 

systems. Previous work has developed a methodology for the 

transmission of data from a data generator, to the PBSHM 

database [7]. 

Practical deployment faces challenges that haven't been fully 

addressed to date, for example, many monitoring scenarios 

such as wireless sensor networks, remote sites, and temporary 

deployments operate with limited resources. These systems 

must operate within constraints on bandwidth, computing 

power, energy supply, and storage capacity. These limitations 

become more significant as PBSHM networks expand to 

include more structures and sensors.  

The focus of this work lies in the creation of a holistic and 

optimised data aggregation pipeline tailored for resource 

constrained systems on the network edge. We directly address 

the challenge of minimising data footprints prior to their arrival 

at a central repository, a critical step that has hitherto been 

underexplored. This paper thus provides a foundational 

component for the next generation of truly scalable and 

deployable PBSHM systems. 

This paper presents a stateful, connection-oriented approach 

to PBSHM data transmission designed for resource-constrained 

environments. Our transmission process establishes session 

contexts for data generators, handling metadata exchange 

during session initialisation rather than with each data sample 

for the period of the session. This reduces redundant 

information while maintaining schema compliance and plug-

and-play functionality, allowing new data generators to join the 

system with minimal configuration. Functionality that becomes 

particularly useful for temporary monitoring campaigns or 

rapid PBSHM monitoring system rollout. 

The main contributions of this work are: 

• Development of a stateful, session-oriented pipeline 

architecture for PBSHM data transmission that 

reduces redundancy through session payload 

optimisation while retaining plug-and-play data 

generator integration. 

• Demonstration and validation of a resource-

efficient aggregation pipeline, using empirical 

evaluation with field monitoring campaign data to 

demonstrate its feasibility for real-world PBSHM 

applications. 

The paper is organised as follows: Section 2 introduces the 

concept of a session-oriented pipeline; Section 3 details the 

case study used to validate the data and a proposed pipeline 

design; Section 4 analyses the results; and Section 5 concludes 

with a summary and future directions. 

2 METHODOLOGY 

To optimise data flow from a structure to a PBSHM server, a 

key aspect that must be considered is the data representation 
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used. The PBSHM schema defines the representation that must 

be provided to the PBSHM Framework. 

 The PBSHM data integration pipeline (Figure 1) segments 

the process from the data generator, which is an entity that 

produces data either already compliant with or transformable to 

the PBSHM schema, to the PBSHM Network, Framework, and 

Database, using defined scopes [7]. Using this definition, 

anything in and transmitted to the PBSHM Network, 

Framework and Database scope must be within the PBSHM 

schema representation.  However, this approach allows data 

within scopes preceding the PBSHM Network, Framework, 

and Database to take any form, as long as it can be reconciled 

with the PBSHM schema, even if it does not initially conform 

to it. By exploiting this, we can attempt to optimise the data 

representation in the “structure” and “aggregation” scopes. 

 

Figure 1. The PBSHM data integration system in which copes 

where data representations are not enforced is highlighted 

Although the data representation is not explicitly defined 

within these scopes, there are significant advantages to 

developing a reusable implementation, particularly for time 

series channel data. Optimising data representations is crucial 

when considering the application of streaming techniques to 

handle vast amounts of data efficiently. Given the potential for 

integrating multiple data generators to monitor a single system, 

such as data from various sensors in an SHM system, SCADA 

data, and weather data from an application programming 

interface (API) - a unified aggregation pipeline can provide a 

sensible solution. This approach would support all these 

sensors cohesively, ensuring efficient and effective data 

management. Creating a generic data representation that 

reduces redundancy within that data and therefore 

communications bandwidth utilisation would allow systems 

with resource constraints to share data integration pipelines 

which increases scalability while maintaining acceptable 

bandwidth utilisation. 

A primary motivation for performing data reduction and 

standardisation directly on the sensor node is to achieve a truly 

'plug-and-play' and interoperable system. While it is possible to 

offload metadata enrichment to a gateway or middleware server 

in its entirety, such an approach creates a dependency, binding 

the sensor node to a specific gateway with the requisite 

processing capabilities. This method, by contrast, ensures that 

each sensor node transmits a self-contained, efficient, and 

standardised data packet. This makes the capable of being 

integrated into any PBSHM ecosystem with a compatible 

endpoint, without requiring specialised intermediate hardware. 

This approach enhances deployment flexibility, as a node can 

be replaced or relocated with the guarantee that it will function 

correctly with the central server, independent of the local 

network topology or available gateway resources. This is 

particularly advantageous in large-scale, heterogeneous 

deployments where multiple vendors and network types may 

coexist. 

For a plug-and-play aggregation pipeline, enough 

information must be encoded into the data representation to 

enable compliance with the PBSHM schema when the data is 

transmitted to the PBSHM server whilst reducing the 

redundancy of information within said data representation. To 

achieve this, we must first identify the key aspects of the 

PBSHM schema that must be retained. 

In this paper, we focus on time series channel data. Therefore, 

the key information that’s encoded into a channel data object 

and must therefore be recoverable is: 

• Structure name 

• Population name 

• Timestamp 

• Channel name(s) 

• Channel type(s) 

• Channel unit(s) 

• Channel value(s) 

First, we must consider implementing this in such a way that 

all this information is explicitly stated for each timestamp. To 

illustrate this, consider two JavaScript object notation (JSON) 

objects compliant with the PBSHM schema that represent 

multiple sensor readings at two different time stamps one 

second apart as shown in Figure 2. 

We can identify multiple items of redundant information 

across the two objects (i.e., structure name, population, channel 

names, channel types and channel units). 

Many communication protocols incorporate mechanisms for 

tracking the origin of messages, enabling the inference of the 

communication state. For instance, protocols like TCP/IP and 

MQTT include metadata that identifies the sender and the 

context of the message. This capability allows us to avoid 

sending redundant information, as we can pair existing data 

with the sender's identity. 

Therefore, we can split up the object into duplicated and non-

duplicated data (when considering multiple objects from the 

same data generator) as shown in Table 1. As can be seen; by 

only transmitting updated data (or non-duplicated fields), we 

can significantly limit the number of fields that have to be 

transmitted for every object. 

Table 1. Identifying duplicated and non-duplicated fields 

within the PBSHM Schema when considering multiple time 

series objects 

Duplicated Fields Non-duplicated Fields 

Structure name Timestamp 

Population name Channel value(s) 

Channel name(s)  

Channel type(s)  

Channel unit(s)  

 

 

As such, we can define two new objects, the initialisation in 

which all the duplicated fields for a given data generator are 

                       

                      

           

    

           

    

           

    

           

           

          

           

          

    

           

               



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-134 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 858 

represented and the sample in which we represent the non-

duplicated fields.  

With these new objects, we can define the process by which 

communications take place. For the data generator, first, we 

send the initialisation object, and then we send every sample 

object available as shown in Figure 3. These sample objects can 

optionally be added to a buffer to increase the efficiency of 

communications (i.e. only turning on radios for brief periods or 

trying to limit the number of packets sent). For the case in 

which each sample object is sent individually the buffer size 

would be one. 

With these communication processes if there was a need to 

change the format of the sample objects (i.e. adding a channel, 

removing a channel or changing properties about a channel) 

this could also be achieved by closing the communication 

session and re-opening it with the new channel information in 

the same way the session is initialised as described previously. 

Furthermore, if the data generator was disabled for any reason 

the communications would be closed, and the process would 

also have to be re-initialised. In such cases, any incomplete 

sample objects and session state affected by the disconnection 

would be discarded. Any samples still in the send buffer would 

then need to be retransmitted where de-duplication would take 

place between the transit and the PBSHM framework, network 

and database. 

Within the aggregation scope (shown in Figure 4), we then 

receive the initialisation message from the data generator and 

then receive the buffer (which fulfils the role of the cache 

from the PBSHM data integration system). From the buffer, 

we add the “redundant fields” to the sample to make a JSON 

object compliant with the PBSHM Schema and then transmit 

said object to the PBSHM Framework. We then wait to 

receive a new buffer or close the communication. 

 

 

Figure 3. Data generator communications process 

These two processes allow the use of a reduced 

communication schema to reduce the bandwidth utilised in the 

transmission of PBSHM data from a given data generator. 

Open

Ready

 end Initialisation

Add  ample to

Buffer
N   Buffer  i e

 end Buffer

N  Buffer  i e

No Data to  end

Close

Figure 2. Two example JSON documents containing multiple sensor readings one second apart 
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Figure 4. Aggregation pipeline communication process 

3 CA E  TUDY 

 
The structure under test is a bridge that supports a dual 

carriageway, which consists of two lanes designated for one-

way traffic, as well as a footpath for pedestrians. The structure 

of the bridge is composed of 13 concrete Y beams that provide 

support for a reinforced concrete deck. Adjacent is an older 

masonry arch bridge. These two bridges are constructed 

without any visible gap between them, making it unclear how 

much the concrete bridge deck is restrained on one side. 

 

Figure 5. The structure under test in the case study 

The SHM system implemented for this bridge was designed 

with versatility and ease of installation in mind. This system 

allows for the accelerometer to be installed directly on the 

surface of the bridge deck. The placement of the accelerometer 

is optimised by accounting for the variations in bridge types. It 

comprises a single MEMS accelerometer and an environmental 

sensor. The accelerometer employed is the Multifunction 

Extended Life (MEL) Data Logger from Gulf Coast Data 

Concepts. This device measures acceleration in three axes 

within a range of ±2 g and includes a real-time clock to 

timestamp each acceleration measurement. The acceleration 

data collected by the sensor is stored locally on an SD card at a 

sampling rate of 128 Hz, and the sensor is powered by two D-

cell batteries, which provide a run-time of up to 60 days of 

continuous recording. The MEL accelerometer is housed in an 

enclosure that is securely attached to the deck of each bridge. 

An example of one of these enclosures is shown in Figure 6. 

 

Figure 6. MEL accelerometer and enclosure 
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Figure 7. MEL sensor in place 

In addition to the accelerometer, the SHM system includes an 

environmental sensor that measures both air temperature and 

humidity. To ensure accurate temperature readings, the 

environmental sensors are not placed within the enclosure to 

avoid the effects of solar gain. Instead, these sensors are 

positioned out of direct sunlight, to provide a representative 

measurement of the local air temperature. 

 Data description 

The data provided by the system is in a comma-separated 

values (CSV) format, of which an example showing ten values 

is shown in Table 2. Within the CSV document, the first 9 rows 

contain contextual information about the samples. The 

following rows contain time series data. 

Table 2. Extract from the CSV data provided by the data 

logger containing headers and 15 samples 

;Title http://www.g

cdataconcept

s.com 

x2-2 Kionix 

KXRB5

-2050 

 
 

;Version 1107 Build 

date 

Oct 20 

2015 

SN:CC

D 

C10022

6A4EB2 

 

;Start_time  2018-11-08 11:48:2

3.440 

  
 

;Temperature 13 deg C Vbat 3076 mv 

;Gain high 
    

;SampleRate 128 Hz 
   

;Deadband 0 counts 
   

;DeadbandTimeout 0 sec 
   

;Headers time Ax Ay Az 
 

0.222 49 328 -13136 
  

0.229 28 314 -13129 
  

0.237 7 296 -13099 
  

0.245 21 296 -13101 
  

0.253 30 324 -13136 
  

0.261 33 341 -13161 
  

 

To evaluate the efficacy of the proposed pipeline 

architecture, a 30-minute window of the data has been selected. 

This can be seen represented in Figure 10.  

 Test pipeline models 

As such, we can develop a pipeline that would allow 

transmission of data from the bridge under test to the PBSHM 

server which is shown at the top of the Universal Markup 

Language (UML) diagram of Figure 8. This model of the 

pipeline first extracts the data from the GCDC data store and 

converts it to the PBSHM schema format. Data in the PBSHM 

schema format is then loaded into the PBSHM Schema Cache 

on the Docker Server, where it is then loaded into the PBSHM 

server via a Representational State Transfer (REST) API. 

Figure 8. Universal markup language diagram showing two data integration pipelines (PBSHM Schema rep. above, 

reduced data rep. below) 
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Figure 10. Single-axis raw acceleration over 30 minutes 

measured using the MEL accelerometer 

The diagram at the bottom of Figure 8 shows a similar 

pipeline, however, this uses a reduced data representation as 

discussed in Section 2. Within the on-premises computer, data 

is extracted from the GCDC store and transformed into an 

initialisation object (which contains all the duplicated fields 

shown in Table 1) and a set of samples objects. The 

initialisation object, of which an example is given at the top of  

Figure 11, is first transmitted to the Reduced Representation 

Cache which resides on the docker server. Samples, an example 

of which is shown in the bottom of Figure 11, are then 

transmitted to the Reduced Representation Cache. These 

samples are then transformed into PBSHM Schema compliant 

files which are then uploaded to the PBSHM server via the 

PBSHM server. 

From these models, we can simulate the performance of the 

multiple data representations (namely the PBSHM schema in a 

JSON format and concise binary object representation (CBOR) 

format as well as a reduced representation in both JSON and 

CBOR formats) using real-world data captured from the line 

bridge over a simulation test bench. 

 

Figure 11. Initialisation object (above) and sample object 

(below) in the reduced data representation 

Figure 9. Universal markup language diagram showing the simulation test bench (PBSHM Schema rep. 

above, reduced data rep. below) 
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4 RE ULT  

To assess the performance of the methodology presented in 

Section 2 a simulation of the systems shown in Figure 8 was 

developed using individual docker containers running on a 

docker server (with the PBSHM schema version of the pipeline 

shown above in Figure 9 and the reduced representation version 

shown below). 

This simulation test bench emulates all of the components in 

the systems described in Figure 8, however, integrates all the 

components that were shown to be implemented with on-

premises equipment in the Docker Server to allow for greater 

control of the data pipeline and easy access to metrics. 

In this paper, the size of the total payload for the selected 30-

minute window is the metric used to evaluate the efficacy of 

the pipeline. This was chosen as within this setting, the size of 

the data transmitted over the period will likely impact 

bandwidth requirements and power requirements for resource-

constrained systems. 

This test bench was used to evaluate multiple data 

representations. The PBSHM Schema in JSON format was 

used as a benchmark data representation as it provides all the 

necessary context for the PBSHM server. This was then 

repeated by the reduced representation in JSON format. 

Finally, both tests were repeated with CBOR which allows a 

1:1 mapping with JSON allowing it to be implemented with 

little to no modification to the existing PBSHM schema. 

Table 3. Size of a 30-minute capture (230,400 samples of tri-

axis acceleration data) in CSV, PSBHM Schema, and reduced 

representation data formats 

Format Size (MiB) Ratio to CSV 

CSV 5.14 1.00 

PBSHM Schema (JSON) 131.42 25.58 

Reduced (JSON) 34.30 6.68 

PBSHM Schema (CBOR) 45.26 8.81 

Reduced (CBOR) 10.77 2.10 

 

From the results captured and presented in Table 3, it can be 

concluded that using the PBSHM schema in a JSON format 

dramatically increases the storage required for the 30-minute 

sample window compared to the original CSV data. This can 

be significantly reduced using a compressed format like CBOR, 

reducing the data size by 2.9x. 

However, by using the reduced data representation, this can 

be further reduced. In the JSON format, the reduced data 

representation offered a 3.8x size reduction whilst the CBOR 

format of the reduced data representation offered a 12.2x size 

reduction when compared to the PBSHM Schema in JSON 

format. These results are plotted as shown in Figure 12. 

By utilising the reduced data representation in the CBOR 

format, the ultimate size of data to be transmitted is 2.1x the 

original CSV data. 

 

Figure 12. Bar chart plotting the different data representations 

and formats of a 30-minute capture (230,400 samples of tri-

axis acceleration data) 

 

5 DI CU  ION, LIMITATION  AND  UTURE WORK 

The findings presented in this paper provide a strong proof-of-

concept for the proposed pipeline; however, several limitations 

should be acknowledged, and these point towards avenues for 

future research. 

The results in Table 2 show a reduced file size from CSV 

format produced by the data acquisition system when compared 

to the schema under test. This shows that in situations in which 

an aggregation pipeline can be implemented on a case-by-case 

basis dependent tailored to the data produced by the data 

generator there is an inherent advantage to doing so. This will 

be true in almost all cases where this is possible as no extra 

information is required to allow the transformation of data 

produced by the data generator into the PBSHM schema 

format. However, as stated, this requires that each 

implementation of the aggregation scope be tailored to the 

specific data generator. 

By utilising this plug and play aggregation pipeline design, it 

is possible, to reuse components across multiple data 

generators. This limits the effort required to develop new 

tailored aggregation components for each data generator as 

well as allows data from many data generators to be integrated 

into the PBSHM data ecosystem using few data aggregation 

components. 

However, the validation was conducted using a homogenous 

set of accelerometer data. The “plug-and-play” architecture is 

designed to be extensible, yet its performance with a more 

diverse array of sensor modalities, such as strain gauges, 

acoustic emission sensors, or environmental sensors has not yet 

been empirically validated. Future work will focus on 

developing and testing data models for these sensor types 

within the pipeline. 

Furthermore, while our work focuses on data representation, 

it does not currently incorporate specific protocols for secure 

data transmission. For deployment on critical infrastructure, 

ensuring data integrity and confidentiality through 

authenticated encryption schemes (e.g., using TLS/DTLS) 

could be employed. 

A key focus of our future work will be on hardware-in-the-

loop testing, further developing robust reference 

implementations of the technology demonstrated within the 
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aggregation scope to provide practical guidance for both 

current and future SHM system operators seeking to integrate 

their monitoring within PBSHM data domains. 

6 CONCLUDING REMARK  

This paper has presented the potential of session-defined 

communication for PBSHM data within PBSHM data 

aggregation pipelines. By defining the processes that would be 

undertaken to achieve reduced bandwidth utilisation, we have 

demonstrated how to achieve reduced bandwidth requirements 

whilst maintaining plug-and-play functionality for PBSHM 

monitoring systems. 

We demonstrate that it is possible to reduce the amount of 

data required to provide the necessary context for PBSHM 

when transmitting sample data providing a method to reduce 

the required data by 12.2x. This results in a transmission size 

that is 2.1x the original data size, which whilst a marked 

increase, allows for reasonable requirements for resource-

constrained PBSHM monitoring systems. 
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ABSTRACT: Population-Based Structural Health Monitoring (PBSHM) is an emerging field in Structural Health Monitoring that 

leverages data from multiple structures to enhance the assessment of individual structures. Unlike traditional SHM, which 

generally relies on data from a single structure, PBSHM utilises collective knowledge from a population to facilitate increasing 

the knowledge on an individual structure. Transfer learning enables the inference from a source structure to a target structure 

within the population. One of the limitations of this method is that a lot of transfer-learning methods require data models that are 

trained using substantial amounts of high-quality data which can be difficult to obtain. To support PBSHM research, the concept 

of the Population-based SHM Engineered Asset Resource (PEAR) has been introduced. PEAR is conceptualised as a benchmark 

dataset containing semi-realistic structures and associated data intended to drive the development and validation of PBSHM 

methodologies. This work advances the PEAR prototype by developing complete populations for two types of bridges, along with 

their associated data. The pipelines for generating these populations are presented, detailing how they produce structural data and 

PBSHM-specific models. Additionally, a simple analysis of the generated populations is conducted, demonstrating their utility in 

PBSHM research and showcasing the potential of PEAR as a resource for current and future PBSHM research.   

KEY WORDS: SHMII-13; Population-based Structural Health Monitoring, Benchmark Dataset, Irreducible Element Model, 

Bridges

1 INTRODUCTION 

In traditional Structural Health Monitoring (SHM), benchmark 

datasets such as the S101 [1] and Z24 [2] bridges have been 

pivotal in advancing the field. These datasets have provided 

researchers with common platforms to test, validate, and 

compare new SHM methods and algorithms. However, in the 

emerging field of Population-Based Structural Health 

Monitoring (PBSHM), data are leveraged from multiple 

structures to enhance the assessment of individual assets, no 

equivalent benchmark datasets currently exist. This gap is not 

only a reflection of the relative recency of PBSHM but also the 

inherent complexity of gathering multi-structure data 

necessitated to form a meaningful population. 

To address this challenge, the Population-based SHM 

Engineered Asset Resource (PEAR) was devised as a potential 

solution. The foundational principles and envisaged structure 

of PEAR were outlined in a previous conference paper [3], 

laying the groundwork for a benchmark dataset that integrates 

curated synthetic populations. The envisioned PEAR dataset 

aims to serve as a standard for evaluating and advancing 

PBSHM methodologies by providing researchers with readily- 

accessible, semi-realistic data representative of various 

structural populations. 

The fundamentals of the PEAR database have been 

established, this paper extends that work by developing two 

specific bridge populations for inclusion in the PEAR dataset. 

This work not only demonstrates the feasibility of generating 

synthetic populations but also how these populations can serve 

as a practical resource for PBSHM research.  

 

The remainder of this paper is structured as follows. First, a 

background section provides an overview of PBSHM, detailing 

existing databases, schemas, and benchmark datasets, and 

highlighting the motivation for this work. This section is 

followed by an overview of the foundations of PEAR and the 

specific requirements for creating a benchmark dataset that is 

applicable for a population-based approach. Next, the 

"Developing Bridge Dataset" section describes the process of 

generating the two initial bridge populations, focussing on the 

design of semi-realistic bridge structures and the simulation of 

their structural response data. Subsequently, the "Bridge 

Datasets" section presents the developed populations, including 

a simple analysis to showcase their utility in PBSHM methods. 

Finally, the paper concludes with a discussion of the current 

dataset’s limitations, potential avenues for future expansion, 

and the broader implications for advancing PBSHM research. 

2 BACKGROUND 

Population-Based Structural Health Monitoring (PBSHM) 

represents a shift from traditional SHM by focussing on the 

analysis of data from multiple structures within a related 

population. This approach not only provides valuable insights 

into the collective behaviour of the population but also 

enhances the understanding of individual structures. In contrast 

to conventional SHM methods that typically concentrate on a 

single structure, PBSHM enables the application of advanced 

techniques such as transfer learning, where knowledge gained 

from one task or structure is leveraged to improve performance 

on a related task in another structure. This methodology allows 

models to be adapted rather than built from scratch, thereby 
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enhancing efficiency and potentially making inferences about 

the condition of a structure that would otherwise be missed. 

A critical aspect of implementing transfer learning in 

PBSHM is the careful identification of structural similarities 

across the population. Without a clear understanding of these 

similarities, there is an increased risk of negative transfer, 

where inappropriate model adaptation could degrade 

performance. To combat this risk, techniques such as 

Irreducible Element (IE) models combined with graph-based 

approaches have been developed [4], [5]. These methods are 

instrumental in identifying and quantifying both the similarities 

and variations among structures, ensuring that transfer learning 

is applied only where it is most appropriate. This framework 

for similarity assessment forms the foundation for effective 

knowledge transfer across structures. 

Despite these methodological advancements, a significant 

challenge in PBSHM remains: the scarcity of comprehensive 

data representing populations of structures. Previous studies 

have attempted to address this gap by collecting data from 

similar populations, for example, one study collected data from 

four beam-and-slab bridges and two pedestrian footbridges [6]. 

Other research efforts have simulated populations using models 

with 10 degrees of freedom [7] or even toy structures  to 

validate PBSHM transfer-learning methods and graph-

matching algorithms [8]. However, these approaches have been 

limited in scope, so the developed datasets cannot always be 

used to test novel PBSHM methods. 

It is within this context of data scarcity and the development 

of new PBSHM methods that the need for benchmark datasets 

in PBSHM becomes evident. A robust benchmark dataset 

would not only facilitate the testing and validation of new 

methodologies but also drive forward the development of 

PBSHM research. This motivation underpins the development 

of the Population-based SHM Engineered Asset Resource 

(PEAR) dataset, which aims to provide the PBSHM community 

with a dedicated set of synthetic populations that represent real-

world structures and realistic structural behaviours for 

algorithm development and benchmarking. 

3 PEAR OVERVIEW 

This section gives an overview of the PEAR database, 

including its key requirements (Section 3.1), how the database 

is structured (Section 3.2), and the stages involved with 

producing populations of structures and data (Section 3.3). 

 Requirements 

Requirement 1: 

The primary objective for the dataset is to function as a robust 

testbed for both established and emerging PBSHM methods. It 

must support the development and evaluation of methods and 

techniques across the entire remit of PBSHM. This remit 

includes the calculation of similarity scores and transfer-

learning methods. Moreover, the dataset should facilitate 

structural comparisons via similarity metrics, including IE 

models and graph-matching algorithms, which are essential for 

guiding successful knowledge transfer. The datasets should 

also be compatible with various machine-learning techniques, 

ensuring high-quality data are available for training and 

validation purposes. 

 

Requirement 2:  

The dataset should be designed for ease of searchability, 

enabling users to quickly locate and extract relevant data 

subsets. To ensure this level of accessibility, the dataset must 

be thoroughly indexed so that key variables, such as the type of 

structure or, in the case of bridges, the number of spans, are 

easily queried and filtered. 

Requirement 3:   

The methodologies employed to generate the structures 

within the dataset must be transparent, clearly documented, 

and, whenever possible, grounded in real-world structural 

design practices. This approach guarantees that the simulated 

structures accurately reflect their real-world counterparts. 

Additionally, the dataset should capture the natural variability 

seen in practice, for instance, differences in span lengths, beam 

dimensions, and deck thicknesses in bridge designs, thus 

representing the diversity found in actual structural stocks. 

Requirement 4: 

A shared-data domain is fundamental to the success and 

broad adoption of PBSHM practices. Building on the work of 

Brennan et al. [5], the dataset will adhere to the PBSHM 

schema, a standardised format that ensures consistency in data 

storage and interpretation for PBSHM. All data and future 

additions to the dataset must comply with this schema. In cases 

where the current PBSHM schema does not accommodate 

certain data components, it will be necessary to propose and 

integrate an extension to the PBSHM schema to incorporate 

this data. 

 Dataset Structure 

Designing the dataset’s structure is important to ensure 

effective data retrieval and utilisation. A well-structured dataset 

will facilitate users to quickly access the specific data they 

need, making it easier to perform tasks with the datasets and 

subsets of the data. In the context of PEAR, the structure is 

crafted not only to organise the data logically for easy retrieval 

but also to accommodate the addition of new data without 

disrupting existing records. 

Figure 1 illustrates the four-level hierarchical organisation of 

the PEAR dataset: root category, subtype, dataset, and scenario. 

To illustrate how these levels interact, consider the analogy of 

a file system. At the highest level is a main “PEAR” folder. 

Inside this folder, there is a separate folder for each root 

category. Each root category folder contains folders for its 

various subtypes, which differentiate structures based on 

design or purpose. Within each subtype folder, there are 

individual dataset folders; each dataset represents a collection 

of structures forming the population. At this level of the 

database a descriptive file outlining the general forms of the 

population and allowable variations of these structures will be 

stored. The IE models and the meta data about each structure 

will also be stored at this level. The final level, scenario, is 

analogous to a load case in a structural model, for example, 

applying a 40-ton load to the mid-span of a bridge would 

constitute a single scenario. 

 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-135 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 866 

Figure 1: The hierarchical structure of the PEAR dataset 

 

In this hierarchical structure, a root category groups 

structures that are typically classified together, such as 

aeroplanes and bridges. Within each root category, subtypes 

further differentiate the structures. For example, within the 

aeroplane category, subtypes may be single-engine and multi-

engine, while the bridge category could be divided into truss 

bridges and suspension bridges. 

During the initial planning phase for PEAR, three primary 

root categories were identified for inclusion: bridges, masts, 

and wind turbines. Figure 2 shows the initial dataset organised 

into root and subtype levels. This work specifically generates 

data for two bridge populations: a beam-and-slab bridge 

population and a ladder-deck bridge population, each 

accompanied by a corresponding scenario. 

 

Figure 2: The initial ‘root categories’ and ‘subtypes’ for 

PEAR 

 

 Dataset Stages 

PEAR has been designed from the ground up to develop over 

time by iterations and expansion of the data included within. 

Defined stages serve as clear milestones, enabling collaborative 

efforts across the diverse disciplines involved in PBSHM. The 

initial design of the structure within any population is 

undertaken in Stage 0, the development of IE models in Stage 

1 and the simulation of structural responses in Stage 2+. By 

breaking the development into stages, different teams can 

contribute depending on their area of research. For example, 

one team can focus on constructing the IE models needed to 

derive similarity metrics (Stage 1) while another develops 

simulations for scenario data (Stage 2). Importantly, each stage 

builds exclusively on the data from the preceding stages; for 

instance, any Stage 2 processes rely only on the outputs from 

Stages 0 and 1. 

For a dataset to be integrated into PEAR, it must, at a 

minimum, complete Stage 0 and Stage 1. Once a dataset 

reaches this milestone, it is assigned a unique reference within 

PEAR, and the structures it contains are fixed to ensure 

consistency and reproducibility of results. The specific 

processes of Stage 2 are left flexible, allowing researchers to 

select the most relevant structural responses for their research 

as well as the most appropriate simulation method. The overall 

staging structure is designed to be generic, applying to all 

datasets regardless of their root category or subtype. 

Stage 0: Design of the Dataset Population 

In this initial stage, realistic structures are generated with 

pseudo-random properties drawn from a predefined range of 

parameters. These parameters, along with the methods used for 

their selection, are detailed and stored in the dataset. For each 

structure, a Structural Information (SI) model is created 

alongside a structural report. The report offers a detailed, 

human-readable description, while the SI model provides a 

computer-interpretable format that facilitates indexing and 

querying.  

Stage 1: IE Models 

At this stage, Irreducible Element (IE) models are developed 

for each structure in the population, i.e. one IE model for each 

SI model in Stage 0. The typical workflow for producing IE 

models will be using the parameters defined in the SI for each 

structure to create detailed IE models. After the completion for 

Stage 1 the dataset may be included in PEAR. 

Stage 2+: Scenario Data 

Using the data from Stages 0 and 1, simulated scenarios are 

then produced using the information in the generated IE 

models. Although PEAR does not prescribe specific simulation 

methods, the simulation outputs must be saved back into the 

dataset as valid PBSHM Schema data. Scenarios might include, 

but are not limited to, static-load displacements, natural 

frequencies, mode shapes, or frequency response functions. 

Moreover; a scenario can simulate conditions where the 

structure is considered 'healthy' or introduce 'damage' prior to 

simulation, with the results documented accordingly. 

4 DEVELOPING BRIDGE DATASETS 

This section outlines the process by which the two initial bridge 

populations have been developed for the PEAR dataset. The 

development process is divided into two major phases. The first 

phase focusses on designing semi-realistic bridges and creating 

their associated Irreducible Element (IE) models, 

corresponding to Stage 0 and 1 of the dataset. The second phase 

involves simulating the structural responses of these bridges, 

which represents Stage 2. This section describes these 

processes to create both a beam-and-slab bridge population and 

a ladder-deck bridge population.  

 General Form of Population 

For each population included in PEAR, the first step is to define 

the general form of the structure. This general form specifies 

the primary structural components and their arrangement, 

ensuring a consistent yet flexible framework for generating 

individual structures. Once the general form is established, a 

set of rules and parameters is defined to guide the creation of 

each structure within the population. These rules, grounded in 

engineering principles, ensure that the generated structures are 

PEAR Database 

├── 1. Bridges 

│    ├── 1.1 beam-and-slab 

│    ├── 1.2 ladder-deck 

│    └── 1.3 truss 

├── 2. Wind Turbines 

│    ├── 2.1 monopole-tower 

│    └── 2.2 lattice-tower 

└── 3. Masts 

     ├── 3.1 monopole-tower 

     └── 3.2 lattice-tower 

Root Category  

└── Subtype  

└── Dataset  

└── Scenario 
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both realistic and representative of real-world variations. The 

diversity within each population is achieved by systematically 

varying these parameters, allowing for a range of structures that 

share a common form while exhibiting meaningful differences. 

The following subsections detail the general forms and 

parameterisation approaches for the beam-and-slab bridge 

population and the ladder-deck bridge population. 

4.1.1 Beam-and-Slab Bridge 

The general form of a beam-and-slab bridge consists of precast 

concrete beams that serve as the primary structural components 

of the bridge. These beams are typically lifted into place, where 

they are supported by piers or abutments that have been 

constructed in advance. Once the beams are positioned, an in 

situ concrete deck is poured over them to form the main deck 

of the bridge. Below are the main components and a brief 

description of a typical beam-and-slab bridge: 

• Precast Prestressed Bridge Beams: These are the 

primary load-bearing components of the bridge. 

Precast off-site and prestressed to increase their load-

carrying capacity, these beams are designed to resist 

the main traffic loads of the bridge. 

• Reinforced Concrete Deck: The reinforced concrete 

deck is poured in situ on top of the precast beams, 

forming the main surface of the bridge.  

• Diaphragm: The diaphragm is a transverse structural 

element placed between the bridge beams. Its primary 

function is to distribute loads evenly across the bridge 

and provide lateral stability, and help transfer load to 

the supporting structure of the bridge. 

• Columns: Columns are vertical structural supports 

that transfer the load from the bridge deck and beams 

down to the foundation. 

4.1.2 Ladder-Deck Bridge 

The general form of a ladder-deck bridge consists of steel 

girder beams that serve as the primary structural components of 

the bridge. These beams are situated at the edge of the bridge 

with smaller steel girder beams spanning transversely, 

connecting the main beams. Once the beams are positioned and 

connected, an in situ concrete deck is poured over them to form 

the main deck of the bridge. Below are the main components 

and a brief description of a typical beam-and-slab bridge:  

• Longitudinal Girder Beams: These are primary load-

carrying members that run along the length of the 

bridge (parallel to the roadway). They bear the main 

loads from the deck and transfer them to the piers or 

abutments. These are typically made of steel and are 

placed at the two edges of the bridge.      

• Transverse Girder Beams (Cross Beams): These are 

secondary beams that span between the longitudinal 

girders, providing lateral support and distributing 

loads from the deck to the longitudinal girders. These 

are also typically made of steel.      

• Concrete Deck: The reinforced-concrete deck is 

poured in situ on top of the longitudinal and transverse 

beams, forming the main surface of the bridge.  

• Columns: Columns are vertical structural supports 

that transfer the load from the bridge deck and beams 

down to the foundation. 

 Structural Parameters  

This section outlines the parameters that can be adjusted within 

the general forms described in the previous section. These 

parameters are the tools used to create a varied population of 

structures while ensuring that each model remains realistic and 

grounded in sound engineering principles.  Methods have been 

developed to select these parameters, ensuring that any 

variations still adhere to the constraints of real-world structural 

behaviour. For clarity, the parameters are divided into two 

groups: 

1. Generic Bridge Variables: These parameters are 

common to all bridges, such as the number of spans 

and overall bridge length. 

2. Subtype-Specific Parameters: These parameters are 

unique to each bridge subtype. For instance, in a 

beam-and-slab bridge, a key parameter might be the 

selection of the precast beam geometry. 

By systematically varying these parameters, the PEAR 

dataset is able to generate diverse yet realistic bridge structures. 

Generic Bridge Parameters 

The generic bridge parameters define common 

characteristics shared by both bridge populations, such as the 

number of spans, span lengths, deck dimensions, column 

details, and material properties. The selection process for these 

parameters combines random selection from predefined ranges 

with engineering constraints to ensure that the resulting 

structures remain realistic and consistent with real-world 

practices. For example, the number of spans is determined by 

randomly choosing a value within a range that typically mirrors 

actual bridge stocks, usually between one and five spans. Once 

the number of spans is set, the span lengths are similarly 

selected from a defined range. However, to avoid unrealistic 

configurations, such as pairing an exceptionally long span with 

an extremely short one, an additional constraint is imposed. All 

selected span lengths must fall within 70% of each other, 

ensuring a realistic design. 

Other parameters, like the width and thickness of the deck, 

are also chosen from ranges that reflect standard practices in 

bridge construction. The inclusion of columns is treated as a 

variable feature; whether columns are present is determined 

randomly, and if they are included, further details, such as their 

height and quantity, are specified. These column characteristics 

are based on established engineering principles; for instance, 

the minimum column height adheres to government standards 

for bridge clearance. Material properties, too, are selected from 

realistic ranges that reflect common construction materials, 

contributing to the overall authenticity of the generated 

structures while proving realistic variation in the population. 

Subtype-Specific Parameters 

Subtype-specific parameters are the parameters that are only 

relevant to each bridge subtype. For the beam-and-slab 

population, some key parameters include the beam centre-to-

centre distance, the number of primary beams, the geometry of 

both primary and edge beams, and the diaphragm geometry. 

For the ladder-deck bridges, the parameters include the number 

of transverse beams and the geometry of both the primary and 

secondary girders. The methods for selecting these parameters 

tend to be more involved than those used for generic bridge 

variables to ensure that each choice results in realistic 

engineering practices.  
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The process of selecting these parameters is highly dependent 

on the subtype and the accepted process for designing the 

structure. For instance, when determining the primary bridge 

beam geometry for each beam-and-slab bridge, the process 

begins with a list of common bridge beam types. Beam types 

that are incompatible with the given span length or bridge width 

are eliminated using span tables provided by bridge beam 

manufacturers. From the remaining viable options, a beam type 

is then randomly selected. This method ensures that the chosen 

beam geometry is suitable for that span length while allowing 

for variation in the population. 

Similarly, for the ladder-deck subtype, the main structural 

component is determined using a range of acceptable span-to-

depth ratios sourced from the encyclopedia for UK steel 

construction (SteelConstruction.info). A random ratio is 

selected from this range and, together with the predetermined 

span length, used to set the depth of the girder. Additional 

properties such as flange width and thickness are subsequently 

determined using comparable ratios from the same source. 

The parameterisation strategy for the two bridge datasets 

employs a total of 17 distinct parameters for beam-and-slab 

bridges and 23 for ladder-deck bridges. By integrating 

randomness while adhering to sound engineering principles, 

the established general form and corresponding parameter sets 

create a robust framework for generating a diverse yet realistic 

population of bridge structures. This approach not only mirrors 

real-world variability but also enables the production of 

thousands of unique and plausible structures, significantly 

enhancing the utility of the PEAR dataset for PBSHM research. 

 

 Dataset Scenarios 

A scenario is defined as a specific set of actions applied to the 

generated structures within a given population. These scenarios 

are designed to simulate various conditions or loads to 

determine the structural responses. The scope of the scenarios 

is flexible and can vary considerably based on the intended 

requirements. There is no single prescribed workflow for 

transforming the generated population into simulated structural 

responses, provided that the outputs remain compliant with 

PBSHM standards. In this work, we implement a simple 

scenario for both bridge types by employing finite-element 

models (software: LUSAS) to simulate their structural 

responses. However, alternative approaches, such as 

computational fluid dynamics, might be more appropriate for 

other applications, leaving the choice of methodology to the 

scenario authors. 

4.3.1 Description of the Implemented Scenario 

In this study, two simple scenarios were implemented to 

evaluate the structural response of the two generated bridge 

populations. Scenario 1 was the application of only the dead 

load on the bridge. Scenario 2 was the application of a point 

load of 40 kN at the mid-span of every span on each structure. 

After the mid-span load is applied, the maximum displacement 

and its corresponding location are extracted and recorded in a 

PBSHM-compliant format. This scenario is intentionally 

simple, which facilitates basic validation, such as comparing 

the self-weight of the structures with reaction forces of the FE 

models. 

The implementation of this scenario can be defined using the 

following three actions.  

1. The Irreducible Element (IE) models are converted 

into Finite Element (FE) models. This conversion 

uses the detailed information contained within the 

IE models to generate FE model files.  

2. Loading parameters are defined by extracting 

necessary information from the Structural 

Information (SI) models. This step involves 

producing scripts for each load case, with one script 

generated per span for each bridge.  

3. The generated loading scripts are integrated with the 

FE models to run simulations. Once the simulations 

are complete, the mid-span vertical displacements 

and reaction forces are extracted from the 

simulation results and stored in the output folder in 

the correct PBSHM format. 

4.3.2 Validation of Structures and Data 

Validation of the populations ensures that the generated 

structures and associated data are reliable, accurate, and true to 

the design intentions. By confirming that both the individual 

models and the overall dataset behave as expected, researchers 

can trust the integrity of the PEAR dataset and confidently use 

it for their PBSHM research. 

During Stage 0 (design of structures), there are two main 

validation checks. The first is to check if the produced IE 

models comply with the required PBSHM schema. They are 

required to comply with the format to ensure consistency and 

that the developed PBSHM methods can be used on the IE 

models. The second validation step during Stage 0 is the 

examination of dataset statistics. These statistics verify that the 

composition of the populations aligns with the predetermined 

design process. Analysing parameter distributions and other 

statistical metrics ensures that the variability within the 

population matches what is expected based on the defined 

ranges and engineering principles. A discussion of the two 

populations developed for this work can be found in Section 

5.1. 

Further validation is carried out during the scenario stage by 

comparing simulated structural responses with theoretical 

predictions. The specifics of this will depend on the workflow 

to obtain the structural responses of the structure. For 

illustration purposes, the validation methods that were used in 

this work will be described. These methods are expected to be 

applicable when FE models are used as part of the workflow. 

After converting the IE models to FE models, two key 

validation methods are employed. First, dead-load reaction 

forces are extracted from the FE models and compared with the 

calculated weights of the structures as determined in Stage 0. 

This comparison confirms that the transition from the IE model 

to the FE model has maintained the integrity of the original 

design, ensuring that the overall weight remains consistent. 

Figure 3 presents the percentage difference between the design 

self-weight and the reaction forces from the produced FE 

models. With the average percentage difference being 1.69% 

and 1.55% for the beam-and-slab population and the ladder-

deck population, respectively, there is very good agreement 

between the design stage and the FE model stage. For the 

second validation, a point load was applied to the structures, 

and displacement across the deck was recorded from the FE 
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simulation. These displacements were checked to ensure there 

were no discontinuities in the deformed mesh. This comparison 

serves to verify that the FE models are simulating sensible 

structural behaviour. 

 

 

Figure 3: Percentage difference between the design self-

weight of the bridges and the reaction forces from the FE 

models for (a) beam-and-slab population and (b) Ladder-deck 

population 

As a further validation step data from all stages will go 

through a testing phase here the data will be accessible to the 

public for review and comments for a period of time. Following 

this review period it will be uploaded to the published version 

of the PEAR database. 

5 BRIDGE DATASETS 

In this section, the populations for both beam-and-slab bridges 

and ladder-deck bridges are presented. Firstly the structural 

composition of each population is examined, detailing how the 

individual structures come together to form a representative 

population of each bridge subtype. Following this, a simple 

analysis of the outputs from the scenario described in Section 

4.3 is presented to demonstrate the practical application of 

these populations within the PBSHM framework. Finally, a 

similarity analysis of the populations is presented in section 5.3. 

This analysis serves to highlight how the PEAR dataset can be 

used as a valuable benchmark resource for evaluating transfer 

learning and other advanced PBSHM methods. 

 Dataset Statistics 

Examining the overall composition of the two generated bridge 

populations provides insights and validation at the population 

level. By presenting a range of statistics, including the 

distributions of key parameters and variability, this analysis 

provides an insight into the composition of the populations. The 

main purpose of examining the dataset statistics is to ensure 

that the variations in the dataset reflect realistic engineering 

principles and expected real-world trends. Additionally, these 

statistical insights serve as a validation step, confirming that the 

methods used to select the parameters yielded the expected set 

of structures. 

For illustration, Figure 4 below displays the distributions of 

four key parameters for the beam-and-slab bridge dataset: the 

number of spans, the centre-to-centre spacing of the beams, the 

number of primary beams, and the width of the deck (subplots 

(a) to (d), respectively). The distribution of the number of spans 

is approximately even between one and five, which aligns with 

expectations, given that this value is selected randomly without 

influence from other design factors. In contrast, the 

distributions for the centre-to-centre spacing, the number of 

primary beams, and the deck width are less uniform because of 

their interdependent selection processes. 

In Figure 4(b), the distribution of the centre-to-centre spacing 

reflects the specific weighting applied during parameter 

selection, following a ratio of 4:2:3:1:1, which is clearly visible 

in the resulting histogram. Figure 4(c), which shows the 

number of primary beams, indicates a skew towards higher 

numbers. Although the number of beams is randomly chosen 

between 4 and 10, this selection is further refined by ensuring 

that the combination of the number of beams and the centre-to-

centre spacing produces a bridge width within the range of 6 to 

20 meters. This constraint necessitates reselecting the number 

of beams when the initial combination falls outside the 

acceptable range, thereby skewing the distribution toward 

larger values. Finally, the distribution seen in Figure 4(d) for 

the deck width is a direct consequence of the deck width being 

determined by using the centre-to-centre spacing and the 

number of primary beams. 

 

 

Figure 4: Beam-and-slab population statistics (a) the number 

of spans (b) the centre-to-centre spacing of the beams (c) the 

number of primary beams and (d) the width of the deck  
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Figure 5 presents the distributions of four key parameters for 

the ladder-deck bridge dataset: the number of spans, the width 

of the deck, the height of the main girder, and the height of the 

cross girders (subplots (a) through (d), respectively). The 

number of spans is distributed approximately evenly between 

one and five, similar to the statistics for beam-and-slab bridges. 

In contrast, the deck width, shown in Figure 5(b), displays a 

roughly even distribution as well; this is because of its 

independence from other design parameters in ladder-deck 

bridges, unlike in the beam-and-slab case. 

The height of the main girders, illustrated in Figure 5(c), is 

determined using defined span-to-girder depth ratios and so is 

dependent on the length of the spans, with the span limitations 

setting clear upper and lower bounds for the distribution. 

Similarly, the height of the cross girders, depicted in Figure 

5(d), is selected based on specific span-to-girder depth ratios, 

but with the additional constraint that they must not exceed the 

depth of the main girder.  

 

 

Figure 5: Ladder-deck population statistics (a) the number of 

spans (b) the width of the deck (c) the height of the main 

girder and (d) the height of the cross girders 

 Scenario Analysis 

In this section, the results from the two implemented scenarios 

and conduct a simple analysis are presented. The aim is to 

provide the reader with a clear example of the types of data that 

can be generated from the populations, illustrating the 

applications of the PEAR dataset within PBSHM research.  

Figure 6 illustrates the displacement responses of a 

representative ladder-deck bridge under the various loading 

conditions simulated. In Figure 6(a) the vertical displacement 

of the bridge under dead load is presented. Figure 6(b) to (d) 

present the displacement responses when a 400 kN load is 

applied at the mid-span of each of the three spans, respectively. 

From the displacement results shown in Figure 6, the maximum 

displacement values for each load case were extracted. These 

values were then compared against the corresponding 

maximum displacements from the rest of the population.  

 

 
 

Figure 6: Vertical displacement output from FE model for (a) 

dead load (b) 400 kN applied to span 1 (c) 400 kN applied to 

span 2 (d) 400 kN applied to span 3 

Figure 7 presents the combined maximum displacement 

values extracted from all of the FE models from the ladder-deck 

population, plotted against the span length where the point load 

was applied. In this figure, the colour of each data point 

represents the height of the main beam, with blue indicating the 

smallest beam depths and yellow indicating the largest. The 

displacements vary from 0.0018 m to 0.0653 m. This figure 

illustrates the relationship between the span length, the main 

beam depth and the displacement of the bridge. One of the key 

observations from the figure is the presence of distinctive 

bands. These bands show that as the span length increases, 

there is a corresponding increase in the depth of the beams, a 

trend that is consistent with design principles used for the 

ladder-deck bridges. 
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Figure 7: Span length vs the max displacement with the 

datapoints coloured with respect to main beam depth 

 Similarity Analysis 

In this section, a basic similarity analysis between the 

populations will be presented. As stated in the prior, similarity 

assessments are key to PBSHM as they show where it is 

appropriate to undertake transfer learning between structures. 

In this work, the Jaccard index, a method used in graph theory 

[9], is employed to measure the similarity between IE models. 

The method used here will be slightly amended by embedding 

a geometry attribute of the elements in the IE model, specific 

details of this method can be found in [5]. The goal of this 

section is to highlight the suitability of the data in the PEAR 

being used for similarity analysis. Figure 8 shows the similarity 

matrix for a subset of 125 ladder-deck bridges. In the figure 

each pixel represents the similarity of one ladder-deck structure 

with another with dark blue representing least similar and 

yellow representing most similar. In this figure the structures 

are grouped by how many spans the bridges have; one-span 

bridges being grouped in the first 25 structures (indicated by 

the red box) and two-span bridges grouped in the next 25 

positions and so on. Grouping in this way means that pattens 

can be observed about the relationship between the number of 

spans a bridge has and the similarity of other bridges with the 

same number of spans. In the case presented in Figure 8 it can 

be seen that the one-span bridges show a higher level of 

similarity with each other than with bridges of differing span. 

This pattern is repeated with the two-span bridges but the 

pattern seems to be diminished as the numbers of spans 

increase.  

 

 

Figure 8: Similarity matrix for a subset of 125 ladder-deck 

bridges grouped by number of spans 

To investigate this pattern further the similarity scores can be 

averaged across bridges with the same number of spans. This 

average is presented in Figure 9 and confirms the pattern seen 

in Figure 8. The bridges with the highest similarity are those 

with one span and as the number of spans increases the level of 

similarity decreases.  

 

 

Figure 9: Similarity matrix for a subset of 125 ladder-deck 

bridges averaged by number of spans 

This process was repeated for the beam-and-slab bridge 

population and the results are presented in Figure 10. This 

population largely follows the same pattern however the 

variability seems to be higher than that compared to the ladder-

deck population this is most likely because of the other 

variations (other than number of spans) in the population 

affecting the similarity score. 
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Figure 10: Similarity matrix for a subset of 125 beam-and-slab 

bridges averaged by number of spans 

The similarity analysis in this section is the result of the 

question of how the number of spans of structures effects the 

similarity score between other members of the same 

population? This was chosen as an illustrative example of how 

a similarity analysis may be undertaken; however, it is only a 

single example of what may be considered in a similarity 

analysis. This produced dataset allows for a bespoke similarity 

assessment based on the needs of the specific research. 

 

6 CONCLUSION 

A fundamental challenge in Population-Based Structural 

Health Monitoring (PBSHM) is the need for data spanning 

multiple structures within a population. Ideally, these data 

would be sourced from real-world structures; however, 

acquiring comprehensive datasets across similar populations is 

challenging because of practical constraints, including data 

availability, monitoring costs, and access limitations. To 

address this issue, the database presented in this paper provides 

a synthetic dataset specifically tailored to the requirements of 

PBSHM research. 

This work serves as a proof of concept for generating realistic 

populations of structures and associated data within a 

structured database. Two distinct bridge populations, beam-

and-slab bridges and ladder-deck bridges, have been developed 

using engineering principles to maximise their realism. These 

structures have been validated via statistical analysis and 

comparison with theoretical expectations obtained from FE 

simulations. The FE models enabled structural responses under 

different loading conditions to be obtained.  

The processes outlined in this work have been developed to 

be generalisable, meaning that aspects of engineering design 

can be incorporated into the population, such as varying 

material properties to adjust the material's strength. More 

complex design aspects, such as the amount of reinforcement 

or prestressed reinforcement, can be incorporated if the 

numerical simulation (e.g., an FE model) allows for it.  

The results presented in this study demonstrate that it is 

feasible to create synthetic bridge populations that exhibit 

realistic structural behaviours, making them suitable for 

PBSHM development and validation. Although the analysis 

performed in this paper is relatively simple, it highlights the 

potential of the database for a range of PBSHM methodologies, 

including data-driven condition assessment and transfer-

learning applications.  

The approach outlined in this paper has been intentionally 

designed to be flexible, allowing for the generation of both 

bespoke structural populations and corresponding datasets 

depending on specific research needs. Future work will build 

on this foundation by expanding the database with additional 

structural populations and scenarios, further enhancing its 

applicability for PBSHM research and facilitating broader 

adoption within the field. 
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ABSTRACT: A major limitation in data-driven Structural Health Monitoring is the scarcity of labeled data for training machine 

learning models. Transfer Learning addresses this by enabling knowledge sharing across similar structures, reducing datasets 

distribution shift. This study proposes a novel Transfer Learning framework for damage identification in operational viaducts with 

similar spans, using modal frequencies as damage-sensitive features. Domain Adaptation is performed via Normal Condition 

Alignment, to map source and target features in a shared latent space. A baseline normal condition is established on source features 

through a linear regression model. Gaussian Mixture Models are trained on source residuals, and used to detect anomalies in the 

target domain, based on residual distributions. A real viaduct for which long-term monitoring data are available is used as a case 

study. The structure comprises two homogeneous datasets collected on the deck of similar spans. Source data pertain to a deck 

with extensive measurements, whereas target data refer to a second deck with a reduced dataset, due to sensor malfunctions. 

Damage is simulated in the target dataset by reducing the measured frequencies. Validation using data from real damaged scenarios 

will enable future scaling of the proposed framework to operational conditions, providing a practical tool for data-driven SHM of 

viaducts, enabling damage detection in under-instrumented areas by leveraging data from other spans. 

KEY WORDS: Domain adaptation; transfer learning; operational viaduct; SHM; anomaly detection; GMM; linear regression; 

temperature variations. 

1 INTRODUCTION 

The deterioration of infrastructures poses a considerable 

challenge to the safety and efficiency of Europe's roadway 

network, as evidenced by the significant number of bridges that 

are nearing the conclusion of their service life [1]. The 

implementation of permanent monitoring systems, designed to 

observe the evolution of structural behavior over time, is 

imperative to support effective management of the structure, 

planning of maintenance activities and timely interventions. 

However, the financial implications associated with the 

deployment of such systems across an entire bridge network 

constitute a major obstacle to the widespread implementation 

of continuous monitoring campaigns. Consequently, less costly 

alternatives are often considered, as point-in-time monitoring 

campaigns or the selective installation of sensors in critical 

sections or structural components.  

To tackle the limitations imposed by cost-saving measures 

and limited investments, while still guaranteeing an adequate 

level of safety, a promising solution involves transferring 

knowledge acquired from heavily instrumented structures or 

components to others with limited data availability to  support 

the assessment of their structural behavior. This can be 

achieved through Transfer Learning (TL), a method which has 

recently gained significant attention among researchers in the 

field of civil infrastructure monitoring, as a means to overcome 

the issue of scarcity of labelled data for operating structures [2], 

[3], [4]. The concept of leveraging data – and, by extension, 

knowledge – from multiple structures to inform inferences 

about a target structure was introduced for the first time within 

the Population-Based SHM framework [5], [6], [7], [8], [9]. 

Notably, Poole et al. [10] proposed a domain adaptation 

approach, referred to as Normal Condition Alignment (NCA), 

that aligns source and target datasets in a shared latent space, 

preserving the intrinsic meaning of damage-sensitive features, 

a capability not offered by other non-statistical approaches, 

such as DL. This statistical alignment technique has proven 

effective in several works concerning experimental and 

numerical datasets [11], [12], [13], in supervised settings with 

labelled data. 

This paper investigates the application of NCA to an 

operational bridge equipped with a permanent monitoring 

system. Data from a well-instrumented span are leveraged to 

allow anomaly detection on a second span, where sensor 

failures have resulted in intermittent data acquisition.  

The novelty of the proposed approach consists in the 

integration of a simple yet effective temperature compensation 

procedure following domain adaptation, to mitigate the 

confounding effect of temperature-induced variability on 

modal frequencies.  

In the considered case study, no damage has been identified 

through field inspections, thereby the data from the source span 

are assumed to represent the undamaged state. For the target 

span, only the first year of monitoring data is considered 

representative of the undamaged configuration. Damage 

scenarios are synthetically introduced into the target dataset by 

increasingly reducing natural frequencies, to perform a 

sensitivity analysis of the proposed anomaly detection 

framework.  

After domain adaptation is performed, a baseline normal 

condition for the source domain is established using a linear 

regression to model the relationship between temperature and 

natural frequencies. Residuals from this model are 
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subsequently employed to train a Gaussian Mixture Model 

(GMM) that is then used for anomaly detection in the target 

domain. The proposed approach is compared to a baseline 

method, where the GMM is trained directly on domain-adapted 

features of the source domain, and tested on domain-adapted 

features of the target. The results, evaluated in terms of F1-

score, indicate that training the GMM on residuals improves 

performance, particularly when a moderate temperature-

frequency correlation is present. 

This study demonstrates the effectiveness of a simple domain 

adaptation technique and regression framework in enhancing 

novelty detection for bridge monitoring. The proposed 

framework offers a practical and cost-effective solution for 

optimizing the use of available monitoring data for critical 

infrastructure integrity management. 

The remainder of the paper is organized as follows: Section 

2 illustrates the methodology, Section 3 describes the case 

study and the datasets, Section 4 discusses the results, and the 

final section provides conclusion remarks. 

2 METHODOLOGY 

 Domain Adaptation via NCA 

Traditional machine learning algorithms rely on the assumption 

that training and testing data originate from the same 

underlying distribution [14]. When transferring knowledge 

from a source domain to a target domain, this assumption not 

necessarily holds, due to possible differences in the statistical 

distributions of the two domains. These differences may lead to 

degraded performance and increased generalization error. 

Domain Adaptation addresses this limitation mitigating the 

distribution shifts between source and target domains, aligning 

feature distribution into a shared latent space.  

In this work, source and target domains are aligned into a 

common feature space exploiting NCA. This statistical 

alignment technique incorporates prior knowledge about the 

health state of the structure: alignment is achieved by matching 

both the mean and standard deviation of the normal-condition 

data distributions to effectively reduce domain discrepancy 

between the source and the target datasets. 

Let 𝐷𝑆 = {𝒙𝑠,𝑖 , 𝑦𝑠,𝑖}𝑖=1

𝑛𝑠
  be the source domain, with 𝒙𝑠,𝑖 the 

source feature vector, 𝑛𝑆 the number of observations and 𝑦𝑠,𝑖 

the labels associated with each instance of the feature vector. 

Let also 𝐷𝑇 = {𝒙𝑡,𝑙 , 𝑦𝑡,𝑙}𝑙=1

𝑛𝑡
  be the target domain, with 𝒙𝑡,𝑙 the 

target feature vector, 𝑛𝑡 the number of observations and 𝑦𝑡,𝑙 the 

labels associated with each instance of the feature vector in the 

target domain. NCA is developed in two steps. First, the source 

domain is standardized:  

 𝒛𝒔,𝑖 =
𝒙𝒔,𝑖−𝝁𝒔

𝝈𝒔
 (1) 

being 𝝁𝒔, 𝝈𝒔 respectively the mean and the standard deviation 

of the source domain dataset. Then, the subset of the source 

domain consisting only of healthy instances 𝒙𝑠,𝑛,𝑖 is considered, 

and its statistics are computed 𝝁𝒔,𝒏, 𝝈𝒔,𝒏.  

Assuming that the target domain includes data associated 

with the undamaged configuration, reasonably identified as 

those collected from the start of the monitoring activity up to 

one year later, the statistics of this subset are computed and the 

following transformation is applied:  

 𝒛𝒕,𝑙 =
𝒙𝒕,𝑙−𝝁𝒕,𝒏

𝝈𝒕,𝒏
𝝈𝒔,𝒏 +  𝝁𝒔,𝒏 (2) 

being 𝝁𝒕,𝒏, 𝝈𝒕,𝒏 respectively the mean and the standard 

deviation of the target undamaged subset. 

In this paper we assume that the entire source dataset is referred 

to the undamaged configuration of the structure, hence 

resulting in 𝝈𝒔,𝒏 = 𝟏 and 𝝁𝒔,𝒏 = 𝟎. 

 Linear regression 

Natural frequencies are sensitive to the influence of 

environmental and operational fluctuations, being temperature 

the most significant source of variability. To filter out the effect 

of temperature on the modal properties of the structure, 

regression models have been widely proven effective, being 

able to characterize the relationship between temperature and 

eigenfrequencies [15], [16]. 

Considering the frequencies time history depicted in Figure 

2, a linear dependency of the modal parameters on temperature 

can be appreciated. Hence, following the alignment of source 

and target data in the latent feature space, we train a linear 

regression model on the source features 𝒛𝒔,𝑖 to learn the 

expected, temperature-dependent behavior of the structure. By 

doing so, the regression model establishes a baseline that 

characterizes the normal behavior of the source span.  For each 

mode, the linear regression model reads as follows: 

 𝒛̂𝒔,𝒊 = 𝛽0 + 𝛽1𝑻𝒊 (3) 

being 𝒛̂𝒔,𝒊 the predicted source feature in the latent space, 𝑻𝒊 the 

temperature corresponding to the i-th source feature 𝒛𝒔,𝑖 in the 

latent space, and 𝛽0, 𝛽1 the regression coefficients. 

We then use this model to predict the features for both the 

source and the target domain, using the temperature values 

pertaining to each of them. The residuals, defined as the 

differences between the observed and predicted features values, 

are subsequently analyzed to detect potential anomalies or 

deviations from the expected structural behavior. 

 Gaussian Mixture Models for anomaly detection 

Gaussian Mixture Models (GMMs) are probabilistic models 

employed in unsupervised machine learning for identifying 

clusters in data. They assume that data are generated from a 

mixture of multiple Gaussian distributions, each with unknown 

parameters. This assumption makes them suitable for 

modelling real-world monitoring data, which often exhibit 

multimodal distributions characterized by overlapping 

Gaussian components, due to changes in the data induced by 

factors such as temperature fluctuations and potential structural 

damage. Formally, the probability density function of the 

GMM is defined as:  

 𝑝(𝒙) =  Σ𝑘=1
𝑁 𝜋𝑘𝑁(𝒙|𝝁𝒌, 𝚺𝒌) (4) 

where 𝜋𝑘 is the mixing coefficient (the weight) for the k-th 

Gaussian component, satisfying 0 ≤  𝜋𝑘 ≤  1 and Σ𝑘=1
𝑁 𝜋𝑘 = 1, 

and 𝑁(𝒙|𝝁𝒌, 𝚺𝒌) is the k-th Gaussian distribution of the 

mixture, having 𝝁𝒌 mean vector and 𝚺𝒌 covariance matrix. The 

parameters of the GMM are estimated via the Expectation 

Maximization algorithm, which iteratively optimizes them by 

maximizing the likelihood of the observed data [14], [17]. 

GMMs are soft clustering algorithms, as they assign samples 

to a cluster based on the likelihood that each data point belongs 
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to that cluster in particular. In this paper we use the GMMs for 

anomaly detection. Specifically, for each mode, we train a 

GMM on the source domain residuals. Once the model is fitted, 

the log-probability density function (log-PDF) of each instance 

is evaluated and a detection threshold is established based on a 

low quantile of the log-PDF distribution, to distinguish normal 

from anomalous data points. The trained GMM is then applied 

to the target domain residuals and the log-PDF is computed and 

compared to the previously defined threshold. Instances falling 

below this threshold are identified as anomalies, indicating a 

deviation from the normal behavior modeled using source data. 

Last, we compare the results of the proposed anomaly 

detection framework, combining linear regression and GMM, 

to those obtained using GMM alone. This is to assess the 

effectiveness of the integrated approach versus a direct 

application of GMM. More specifically, a separate GMM is 

trained, for each mode, using a dataset comprising the 

frequency and temperature vectors associated with the source 

domain in the latent space. Each GMM employs full covariance 

matrices to capture the correlations between frequency and 

temperature, and the optimal number of components for each 

model is selected based on the Akaike Information Criterion 

(AIC), to balance model complexity and goodness of fit. Then, 

for each mode, each GMM is tested against the target dataset in 

the latent space, including once again the frequency and 

temperature vectors associated with the selected mode. 

 Performance evaluation 

To assess the performance of the proposed anomaly detection 

framework, the number of true positives (TP), true negatives 

(TN), false positives (FP), false negatives (FN) is computed. 

These quantities enable the evaluation of precision and recall 

metrics, which in turn are used to compute the F1 score. 

Precision measures the proportion of detected anomalies 

among all instances (TP / (TP + FP)), while recall measures the 

fraction of correctly detected anomalies (TP / (TP + FN)) [14]. 

Then, the harmonic mean of the two metrics is computed, 

resulting in the F1-score:  

 F1 − score = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

The F1-score is a commonly used metric to assess the 

performance of classification algorithms in presence of 

unbalanced dataset, a common issue in SHM datasets, where 

the number of healthy instances often exceeds the number of 

damaged ones by far. 

3 CASE STUDY 

 The viaduct 

The structure under consideration in this study is an operational 

viaduct located in northern Italy. Constructed in 1968, the 

viaduct comprises 41 spans, extending for a total length of 

1673.5 meters. The deck features continuous pre-stressed 

Gerber beams, each resting on two cast-in-place piers, and 

suspended Gerber spans (Figure 1). Of particular note is the 

monitoring of eleven spans that intersect with a river bed. In 

this section, the piers are spaced 61.5 meters apart, with a total 

length of 676.5 meters.  

The instrumentation installed on the eleven monitored spans 

comprises a total of 219 biaxial MEMS inclinometers and 100 

triaxial MEMS accelerometers, installed in 2020 to monitor the 

dynamic characteristics of the bridge and trigger alarms when 

fixed thresholds are exceeded. The accelerometers are not 

distributed uniformly across each span; rather, they are 

positioned on only half of each span. 

The present study focuses on accelerometer data collected 

from May 2022 to December 2024. The structure is found to be 

in normal condition and is currently in service. Consequently, 

no damage configuration labels are available, as there is no 

evidence of damage to the structure. Temperature information 

is available for each of the set of eigenfrequencies obtained 

from the acceleration time histories. 

 Description of the dataset 

The objective of this study is to leverage the large volume of 

monitoring data available for a single span of the viaduct (the 

source) to perform anomaly detection on another similar span 

(the target), with reduced data availability due to sensors 

malfunction. Two continuous spans are considered. Both the 

source and target dataset consist of time series observations that 

include the first three eigenfrequencies and the corresponding 

temperatures measured at each time step. Specifically, the 

source dataset comprises 4346 observations organized in a 

4346 × 4 matrix, while the target dataset includes 2143 

observations structured in an analogous 2143 × 4 matrix. 

As previously stated, according to available inspection 

records, there is not any evidence of damage affecting the 

viaduct so far. Hence, both the source and target dataset 

considered contain observations which are reflective of the 

normal condition of the relative spans. For the source dataset, 

this condition is treated as factual throughout the study. Instead, 

we assume that only the observations acquired during the first 

year of monitoring of the target span are associated with its 

undamaged configuration. Additionally, we simulate the 

Figure 1. Part of the longitudinal section of the viaduct. Span 34 is the source one. In magenta the 

accelerometers installed. 
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occurrence of damage in the target by reducing the frequency 

values acquired from August 2024 by 2% and 5%. This enables 

us to conduct a sensitivity analysis on the performance of the 

anomaly detection procedure implemented. 

The study is conducted in an unsupervised setting. However, 

to assess the performance of the framework in detecting 

anomalies in a real scenario, labels are assigned to the target 

dataset to mark the instances of reduced frequencies simulating 

damage, making it possible to compute the F1-score. 

Figure 2 illustrates the first three natural frequencies for both 

source and target spans. The fundamental frequency f1 is 

approximately equal to 1.5 Hz for both the spans, and exhibits 

a similar trend for both domains. The second natural frequency 

f2 oscillates around 2.6 Hz. In this case, while there is a marked 

dependency of the source f2 on temperature, the corresponding 

target frequency displays a smoother trend. Finally, the third 

natural frequency of the two spans differs significantly, with f3 

of the source domain having a mean value of 4.4 Hz, whereas 

f3 of the target dataset is lower, with a mean value of 3.6 Hz. 

Furthermore, a strong sensitivity to daily temperature 

fluctuations can be appreciated in the third eigenfrequency of 

the source span, with respect to the target one. Figure 3 depicts 

the temperature measurements recorded by the accelerometers 

installed on both spans. Figure 4 illustrates the time histories of 

f1, f2 and f3 of the target domain, highlighting the artificially 

reduced frequencies starting from August 2024 onward to 

simulate damage. 

Figure 2. First three natural frequencies for source (in blue) 

and target dataset (in red). Frequencies f1 and f2 range around 

1.5 and 2.6 Hz respectively, while f3 is around 3.6 Hz for the 

target domain and higher, around 4.3Hz, for the source 

domain. 

 

Figure 3. Source and target dataset temperature records. 

 

 
a) 

 
b) 
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c) 

Figure 4. Original and synthetic data for the target domain. 

Frequencies of the target domain are reduced by 2% and 5% 

starting from August 2024 to simulate damage. Subfigures a), 

b), c) refer respectively to the first, second, and third natural 

frequencies. 

4 RESULTS 

Normal Condition Alignment has been applied to the source 

and target datasets, and the resulting features in the latent space 

are depicted in Figure 5 and Figure 6. Figure 5a and Figure 6a 

are relative to the case where damage is simulated as a 2% 

reduction in natural frequencies, while Figure 5b and Figure 6b 

refer to a 5% frequencies reduction. 

As a result of the application of NCA, when a 5% frequency 

reduction is introduced to simulate damage (Figure 5b and 

Figure 6b), we see that the normal instances of the target 

domain overlap the healthy features of the source. In contrast, 

the simulated damage instances tend to form distinct and distant 

clusters in the latent space. On the other hand, when damage is 

simulated through only a 2% reduction in frequencies, the 

corresponding damage instances of the target tend to cluster 

closely with, and even overlap, the healthy source and target 

features (Figure 5a and Figure 6a).   

 

 
a) 

 
b) 

Figure 5. Source and target features (z1 and z2) after domain 

adaptation. Figure 5a depicts the scenario in which damage is 

simulated through a 2% reduction in natural frequencies, 

whereas Figure 5b corresponds the case of a 5% frequency 

reduction. 

 
a) 

 
b) 

Figure 6. Source and target features (z1 and z3) after domain 

adaptation. Figure 6a depicts the scenario in which damage is 

simulated through a 2% reduction in natural frequencies, 
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whereas Figure 6b corresponds the case of a 5% frequency 

reduction. 

In the following, the results associated with the 5% reduction 

in frequencies will be first illustrated, while those associated 

with the 2% frequency reduction for damage simulation will be 

discussed in the remainder of this section. 

Separate linear regression models have been trained for each 

of the three source features (Figure 7, Figure 8,  

Figure 9) to capture their relationship with the corresponding 

temperature values. Each trained model has then been utilized 

to make predictions on both source data and target data, and the 

residuals between the actual feature values and the predicted 

ones have been computed. 

 

Figure 7. Linear regression of feature z1 of the source domain 

vs temperature. 

 

Figure 8. Linear regression of feature z2 of the source domain 

vs temperature.

 
Figure 9. Linear regression of feature z3 of the source domain 

vs temperature. 

A Gaussian mixture model has been independently trained on 

the source residuals for each mode. Following the training, the 

log-PDF of each GMM was evaluated, and a detection 

threshold was established at the 5th quantile for modes 1 and 3, 

and at the 1st quantile for mode 2. Subsequently, the trained 

GMMs have been applied to the target residuals for the 

corresponding modes, enabling anomaly detection by 

comparing the log-PDF values for the target against the 

predefined thresholds. The results are illustrated in  

Figure 10, Figure 11, and  

Figure 12, and the performance metrics are listed in Table 1.  

Table 1. Anomaly detection results using GMMs trained on 

source residuals, evaluated on the target dataset with synthetic 

damage simulated by a 5% reduction in natural frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 219 95 0 1829 0.70 1.00 0.82 

f2 219 475 0 1449 0.32 1.00 0.48 

f3 219 14 0 1919 0.94 1.00 0.97 

 

As we can see from the table, the GMMs tested on target 

residuals are in all cases able to detect the true damage 

instances, while detecting few false positives for z1 and z3. In 

the case of z2, the number of false positives is considerable, and 

this is probably due to the fact that frequency f2 of the target 

does not exhibit the same strong temperature dependence that 

is inherently present in the second natural frequency of the 

source domain. 

Comparing these results with those obtained by training, for 

each mode, a GMM directly on the source features and 

temperatures (Table 3) in the latent space, a slight improvement 

in the F1-score can be appreciated when residual analysis is 

applied. As a matter of fact, from Table 2 we can see that, even 

though also in this case all the true anomalies are correctly 

identified, the baseline GMM produces a slightly higher 

number of false positives with respect to the residual-based 

approach. This demonstrates that the proposed framework can 

enhance the anomaly detection process by reducing the false 

alarms that would otherwise arise from applying the GMM to 

latent variables directly. 
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Table 2. Anomaly detection results using GMMs trained on 

source features directly, evaluated on the target dataset with 

synthetic damage simulated by a 5% reduction in natural 

frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 219 126 0 1798 0.63 1 0.78 

f2 219 520 0 1404 0.30 1 0.46 

f3 219 57 0 1867 0.79 1 0.88 

 
Figure 10. Target anomalies detected by GMM trained with 

source features residuals r1. The threshold is set to the 0.05 

quantile of the log-PDF. 

 
Figure 11. Target anomalies detected by GMM trained with 

source features residuals r2. The threshold is set to the 0.01 

quantile of the log-PDF. 

 
Figure 12. Target anomalies detected by GMM trained with 

source features residuals r3. The threshold is set to the 0.05 

quantile of the log-PDF. 

 

Table 3. F1 scores comparison on the target dataset with 

synthetic damage data, reduction of 5%. 

5% 

reduction 

GMM 

trained on 

source 

features 

GMM 

trained on 

source 

residuals 

F1-score 

improvement 

f1 0.78 0.82 5.13 % 

f2 0.46 0.48 4.35 % 

f3 0.88 0.97 10.23 % 

 

Finally, Table 4 illustrates the results for the scenario where 

damage is simulated via a reduction of the actual target 

frequency values by 2%. In this case, we can see that the 

performances of the GMMs trained on source residuals are 

slightly worse than in the case with the 5% frequency reduction, 

standing the same detection thresholds. Nevertheless, the F1-

scores computed for the residual-based anomaly detection 

approach still exhibit higher values than those achieved by 

GMMs trained on source latent features (Table 5), registering 

an increase in the F1-score value up to 10.5% for the third 

natural frequency (Table 6). This outcome highlights that the 

proposed framework is effective even when the damage is 

subtle, helping to mitigate the number of false positives that can 

occur in such cases.  

Table 4. Anomaly detection results using GMMs trained on 

source residuals, evaluated on the target dataset with synthetic 

damage simulated by a 2% reduction in natural frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 202 94 17 1830 0.68 0.92 0.78 

f2 178 472 41 1452 0.27 0.81 0.41 

f3 168 14 51 1910 0.92 0.77 0.84 
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Table 5. Anomaly detection results using GMMs trained on 

source features directly, evaluated on the target dataset with 

synthetic damage simulated by a 2% reduction in natural 

frequencies. 

 TP FP FN TN Precision Recall F1 

score 

f1 201 126 18 1798 0.61 0.92 0.74 

f2 180 543 39 1381 0.25 0.82 0.38 

f3 171 62 48 1862 0.73 0.78 0.76 

 

Table 6. F1 scores comparison on target dataset with synthetic 

damage data, reduction 2%. 

2% 

reduction 

GMM 

trained on 

source 

features 

GMM 

trained on 

source 

residuals 

F1-score 

improvement 

f1 0.74 0.78 5.41 % 

f2 0.38 0.41 7.89 % 

f3 0.76 0.84 10.53 % 

 

5 CONCLUSIONS 

In this paper, we have proposed a novel domain adaptation 

framework aimed at enhancing unsupervised anomaly 

detection in operational viaduct components. We have utilized 

the Normal Condition Alignment algorithm to leverage the 

extensive dataset available for a source span, to support 

anomaly detection in a target span with limited observations 

due to sensor malfunction. The novelty of this work lies in the 

use of a linear regression model to capture the dependency 

between frequency and temperature in the source domain after 

domain adaptation. This enables the establishment of a baseline 

normal condition for the source span in the latent space, which 

can then be “transferred” to the target span. Residuals from the 

source linear regression model have been used to train a 

Gaussian Mixture Model for each mode, enabling the detection 

of deviations from the expected normal behavior in the target 

domain when the trained models are tested against the target 

residuals.  

We have compared the results of our residual-based 

framework against those obtained by training and testing the 

GMMs directly on domain-adapted features. The outcomes 

have highlighted that our method reduces the number of false 

positives, especially for modes where the natural frequencies 

are strongly influenced by temperature fluctuations, and even 

in the case in which the presence of damage is subtle, such as 

when frequencies from the normal condition are reduced by 

2%. This is particularly relevant considering that even slight 

shifts in natural frequencies may correspond to severe 

structural damage.  

Furthermore, from Figure 5a and Figure 6a we have seen that 

in the case of a 2% frequency reduction, the damaged instances 

of the target domain tend to overlap the healthy clusters of both 

source and target domains in the latent space. Relying solely on 

source features to train the GMM, without accounting for 

temperature in the establishment of a baseline normal 

condition, would have led to even poorer performances 

compared to using both features and temperatures. In fact, 

overlapping damaged instances would likely be misclassified 

as healthy, thus increasing the number of false negatives. 

In conclusion, the findings of this study underscore the 

significance of explicitly incorporating environmental 

variability into the knowledge transfer process. Future research 

will focus on examining the applicability of the proposed 

framework in contexts involving dissimilar source and target 

spans, as well as datasets with substantial data gaps. 

Additionally, validating the framework with data from actual 

damaged scenarios will pave the way for its future application 

to operational conditions. This will support the development of 

a practical, data-driven SHM tool for viaducts, capable of 

detecting damage even in under-instrumented spans by 

leveraging information from other ones. 
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ABSTRACT: This study investigates the effectiveness of photomonitoring as a remote sensing technique for cultural heritage 

conservation, focusing on the Aurelian Walls (Rome) and the Church of Santa Apollonia (Ferrara), Italy. Using mobile devices 

such as smartphones and tablets, structural changes—including brick detachment and vegetation growth—were detected through 

Structural Similarity Index (SSI) mapping. The results highlight both the advantages and limitations of mobile-based monitoring, 

emphasizing its flexibility and rapid deployment. Key challenges include variations in pixel size and lighting conditions, which 

influence data consistency. Despite these limitations, the study supports the potential of citizen science integration to enhance 

spatial and temporal data collection. By leveraging crowdsourced imagery, monitoring efforts can become more comprehensive 

and cost-effective. The findings align with broader citizen science initiatives, demonstrating how non-invasive, mobile-based 

techniques can contribute to sustainable heritage preservation. Future research should focus on optimizing data acquisition and 

processing methodologies to improve the robustness of this approach. 

KEY WORDS: Photomonitoring, Structural Similarity Index, Cultural Heritage Monitoring, Mobile Sensing, Citizen Science, 

Remote Sensing, Image-Based Analysis 

 

1 INTRODUCTION 

The preservation of cultural heritage is a crucial endeavor, 

safeguarding the tangible expressions of human history and 

identity. The monitoring of immovable cultural assets—

including monuments, archaeological sites, and historic 

buildings—is essential to ensure their longevity and structural 

integrity. While traditional monitoring methods have long been 

utilized in heritage conservation, recent advancements in image 

analysis techniques, coupled with the growing role of citizen 

science, have significantly enhanced these practices. Cultural 

heritage sites face numerous threats, including environmental 

factors such as weathering, pollution, and natural disasters, as 

well as human-induced damages such as vandalism and urban 

expansion. Regular monitoring is essential for detecting early 

signs of deterioration, enabling timely interventions to prevent 

further damage and preserve the historical value of these sites. 

Additionally, continuous assessment supports informed 

decision-making regarding conservation strategies and 

resource allocation. 

Historically, cultural heritage monitoring has relied on several 

established techniques. Visual inspections remain a 

fundamental approach, with conservators and archaeologists 

conducting systematic assessments to identify surface 

anomalies, structural cracks, or material degradation. However, 

this method is inherently subjective and may fail to capture 

subtle changes over time. Standard photography has been 

widely used to document sites, facilitating comparative 

analysis, yet it is often insufficient for detecting underlying 

structural issues or material compositions. Furthermore, 

environmental monitoring devices such as dataloggers provide 

valuable data on temperature, humidity, and vibrations 

affecting cultural assets. While effective, these sensors often 

require intrusive installation, which may pose risks to fragile 

structures. 

In recent decades, the integration of advanced image analysis 

techniques has revolutionized cultural heritage monitoring, 

offering precise and non-invasive methods for assessing and 

preserving historical sites. The fusion of image analysis with 

geomatics and remote sensing technologies has significantly 

expanded heritage monitoring capabilities. The use of satellite 

imagery, such as data from Sentinel-2, allows for large-scale 

monitoring of archaeological sites, providing critical insights 

into environmental impacts and structural changes over time 

[1]. The incorporation of artificial intelligence (AI), 

particularly deep learning algorithms, has enhanced damage 

assessment accuracy in cultural heritage conservation. 

Automated detection and classification of deterioration patterns 

improve the efficiency of preservation efforts [2]. 

Moreover, linking hyperspectral imaging with other non-

destructive analytical methods has further advanced research 

potential in this field. The integration of hyperspectral imaging 

with tensor-based learning models has improved the automated 

inspection of cultural monuments, allowing for detailed 

material characterization and defect classification, enhancing 
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the accuracy of preservation strategies [3]. The application of 

unsupervised clustering techniques to hyperspectral images has 

been explored for monitoring cultural heritage degradation, 

enabling the detection of decomposition and corrosion levels, 

providing valuable data for conservation efforts [4]. Deep 

learning methods, such as autoencoders and Generative 

Adversarial Networks (GANs), have been successfully 

employed for anomaly detection on ancient stone stele surfaces 

[5], while convolutional neural networks (CNNs) have been 

utilized to identify structural damage in heritage buildings [6]. 

By processing high-resolution images, these AI-driven 

techniques facilitate the timely detection of defects, supporting 

proactive conservation efforts. 

These image-based techniques offer several advantages over 

traditional methods: they are non-invasive, minimize direct 

interaction with artifacts, and generate high-resolution data that 

can be quantitatively analyzed. Furthermore, their digital nature 

allows for the creation of permanent records that can be 

revisited for future studies or restoration initiatives. 

In 2022, the Italian Ministry of Culture and the CERI Research 

Center at the University of Rome Sapienza entered into a 

collaboration agreement to develop new guidelines for the 

monitoring of deformations that affect cultural heritage sites. 

Within this framework, our research group is testing various 

innovative, non-invasive monitoring techniques, from the 

landscape scale down to individual cultural heritage buildings. 

Photomonitoring has emerged as a cost-effective, precise, and 

rapid alternative to traditional analytical methods [7; 8]. By 

leveraging low-cost tools such as smartphones and entry-level 

cameras, photomonitoring enables accurate multitemporal 

analysis to detect vegetation growth, mortar detachment, and 

structural deterioration. Based on Digital Image Processing 

principles, this approach extracts both qualitative and 

quantitative insights into structural changes by analyzing and 

comparing images of the same area taken at different time 

intervals [9;10]. This paper explores the potential of 

photomonitoring through case studies, including the Aurelian 

Walls in Rome and S. Apollonia Church in Ferrara. The results 

demonstrate its effectiveness in providing detailed insights into 

structural changes, offering a sustainable solution for heritage 

management. 

Having established the reliability of photomonitoring, the next 

objective is to involve communities in data collection through 

mobile and web applications. Initiatives such as IntelligEarth 

exemplify the intersection of technology and citizen science. 

This startup aims to revolutionize heritage monitoring by 

integrating crowdsourcing systems and citizen participation, 

enabling real-time reporting and analysis of environmental 

risks to cultural sites. 

Citizen science—the active involvement of non-professional 

researchers in scientific initiatives—has become an invaluable 

component of cultural heritage monitoring and conservation. 

Integrating citizen science not only complements traditional 

monitoring efforts but also democratizes the preservation 

process, fostering a sense of collective responsibility. Equipped 

with smartphones and digital cameras, individuals can capture 

and upload images of heritage sites, contributing to large-scale 

monitoring databases. This approach significantly expands the 

spatial and temporal scope of data collection beyond what 

professional teams alone can achieve. Furthermore, engaging 

the public in heritage monitoring raises awareness about 

cultural preservation. Educational programs and workshops 

can empower communities to take an active role in 

conservation efforts. 

Recent case studies highlight the effectiveness of citizen 

participation in heritage monitoring. The Tirtha project, 

launched in 2023, exemplifies the integration of technology and 

public engagement in cultural heritage preservation. This web 

platform enables crowdsourcing of heritage site images to 

generate detailed 3D models using advanced photogrammetry 

techniques. Contributors submit photographs that are processed 

to create accurate three-dimensional representations of cultural 

landmarks [11]. Monitoring and documenting remote heritage 

sites pose significant challenges for large heritage 

organizations. By encouraging tourists and local residents to 

share images captured during their visits, organizations can 

collect valuable data to assess the condition of sites, especially 

those that are unstaffed or in remote locations. This approach 

proved particularly valuable during the COVID-19 pandemic, 

ensuring continued monitoring despite travel restrictions [12]. 

The role of citizen science in cultural heritage conservation 

extends beyond data collection, fostering increased public 

awareness and community engagement. A compelling example 

of this dynamic is presented in the study of Kumar [13], which 

analyzed the response to the 1966 Florence flood and 

demonstrated how crowdsourcing efforts—long before the 

internet era—enabled effective heritage recovery through 

monetary donations, volunteer labor, and material support. The 

study further identified key motivational factors for public 

participation in such initiatives, including direct calls to action, 

media influence, and personal connections to affected cultural 

assets. These findings suggest that properly structured citizen 

science initiatives have the potential to mobilize extensive 

public participation in cultural heritage conservation, even in 

the aftermath of disasters. 

The monitoring of immovable cultural heritage is a complex 

yet evolving field that has been greatly enhanced by 

technological advancements. While traditional methods have 

provided the foundation for conservation practices, the 

integration of sophisticated image analysis techniques has 

significantly improved the precision and efficiency of 

monitoring efforts. Simultaneously, the rise of citizen science 

has introduced a collaborative dimension, enriching data 

collection and fostering public involvement. Together, these 

advancements contribute to more effective and inclusive 

strategies for preserving the invaluable cultural legacies of 

humanity. 
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2 MATERIALS AND METHODS 

2.1 Instrumentation and Source Data 

In the frame of this work, the acquisitions have been performed 

with two different sensors, one for each site. In both cases, it 

has been chosen a multi-temporal approach to monitor the 

evolution of the phenomenon over time, providing a more 

comprehensive and accurate perspective. 

The first dataset of images was taken using a Tablet Samsung 

Galaxy Tab S7+, whose features are shown in Table 1. 

Table 1 - Samsung Galaxy Tab S7+ characteristics  

Sensor 13 MP 

Sensor size 1/3.4" 

Focal length 3 mm 

 

To acquire the second dataset, a Smartphone Samsung Galaxy 

A54 was used, whose characteristics are shown in Table 2. 

Table 2 - Samsung Galaxy A54 characteristics  

Sensor 12 MP 

Sensor size 1/1.56" 

Focal length 6 mm 

 

As for the acquisitions, the images taken with the tablet were 

captured manually, while a tripod was used for those acquired 

with the smartphone. In order to keep the same position and the 

same camera orientation between one acquisition and another, 

it has been used the software of feature tracking CARE, that 

allows to obtain the same exact position of the previous 

acquisition. This is essential to ensure the best performance 

during the analysis, giving a more accurate result in the co-

registration process. 

Data collection lasted for more than a year. The tablet dataset 

has been collected in two phases, the first one from November 

to December 2022; the second one from December 2023 to 

November 2024. The smartphone dataset has been acquired 

over a period of one year, from February 2024. 

 

Table 3 - Images characteristics  

Subject Date Dimensi

ons 

Dista

nce 

Pixel 

Size 

K11-K12 

section 

27-12-

2022/19-01-

2024 

6.27 MB 

– 5.84 

MB 

30 m 19,3 

mm 

K12-K13 

section 

19-01-

2024/19-09-

2024 

6.67 MB 

– 6.19 

MB 

32 m 20,6 

mm 

Sant’ 

Apolloni

a Church 

13-06-

2024/26-09-

2024 

9.56 MB 

– 8.39 

MB 

6 m 2,67 

mm 

 

  
Fig. 1 Map showing the Aurelian Wall cases of study and the 

positions of acquisition (a). Frame of the K12-K13 section (b). 

Frame of the K11-K12 section (c).  
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Fig. 2 Map showing Santa Apollonia Church case of study and 

the positions of acquisition (a). Frame of acquisition (b).  

 

2.2 Methodology  

The data acquired for this study were processed using Change 

Detection (CD) algorithms. Change Detection is a Digital 

Image Processing (DIP) technique that allows to identify 

variations between images acquired at different time intervals 

by comparing a reference image (master) with one or more 

successive images (slave) [14]. Digital images, represented as 

numerical matrices, enable the identification of features such as 

points, lines, patterns, color, brightness, and contrast. The 

comparison of these features between temporally successive 

images allows for the precise detection of changes within the 

area of interest [9]. Several Change Detection methods have 

been developed to date. Pixel-based approaches directly 

compare intensity values between successive images. 

Statistical approaches, such as the Mean Squared Error (MSE) 

and the Peak Signal-to-Noise Ratio (PSNR), quantify 

variations based on error metrics [14, 15]. Perceptual-based 

methods, such as the Structural Similarity Index (SSIM), 

analyze changes while accounting for human visual perception 

[16]. The accuracy of Change Detection, regardless of the 

method adopted, depends on the quality of the acquired images 

and the ability to distinguish actual structural modifications 

from variations induced by atmospheric conditions or 

illumination differences. Additionally, the presence of 

distinctive patterns or appropriate speckle models in the scene 

is also essential to ensure robust identification of corresponding 

features in successive images. Therefore, accurate image co-

registration is essential to guarantee proper spatial alignment 

between consecutive datasets, minimizing geometric 

distortions that could compromise the analysis [16]. The CD 

approach implemented within the software utilizes the 

Structural Similarity Index (SSIM) method [16; 17]. SSIM is 

an algorithm developed to quantify image similarity by 

analyzing three fundamental components: luminance, contrast, 

and structure [17]. Compared to conventional metrics such as 

MSE and PSNR, SSIM is based on a perceptual model, offering 

a more accurate assessment of visually perceptible 

modifications [16]. This method has demonstrated 

considerable potential for detecting changes due to its 

robustness and accuracy [18]. 

The SSIM index is defined by the following equation (Eq. 1): 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)  = [𝑙(𝑥, 𝑦)]𝛼 × [𝑐(𝑥, 𝑦)]𝛽 × [𝑠(𝑥, 𝑦)]𝛾 (1) 

where l(x,y) represents luminance, which evaluates the 

difference in brightness between the two images, c(x,y) 

expresses contrast, which differentiates the intensity range 

between the brightest and darkest regions of the images, and 

s(x,y) represents structure, which compares the local luminance 

pattern between two images to assess similarity and 

dissimilarity. The exponents α, β and γ are positive constants 

that govern the weight of each component in the final 

computation. The algorithm is applied to local windows within 

the images and returns a value ranging from 0 to 1, where 0 

indicates a complete change and 1 indicates an area where no 

changes have been detected. Intermediate values suggest partial 

variations, indicating potential structural modifications or 

illumination changes. The Change Detection analysis in the 

IRIS software begins with the selection and uploading of the 

master and slave images, followed by an additional image co-

registration phase to achieve perfect dataset alignment [7]. The 

next step involves selecting the Window Size (WS) parameter. 

This parameter is crucial as the software employs a sliding 

window approach, computing the SSIM index on patches 

defined by the Window Size (WS) and assigning the calculated 

SSIM value to the central pixel of each patch. 

 

Fig. 3: Conceptual scheme illustrating the process of change 

detection (CD) analysis. Two images are compared to identify 

changes that occurred during the time interval t0–t1 

Once the desired Window Size is selected, the next step 

involves assigning the weight of the individual contributions in 

the SSIM computation. This step is critical for ensuring the 
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correct execution of Change Detection. The software allows for 

adjustment of the α, β and γ exponents, exponentially 

increasing the analysis sensitivity based on specific cases. 

Operating at a local scale, the software iteratively evaluates 

image similarity within small pixel subsets defined by the WS, 

enabling the automatic detection of change regions.  

The choice of the Window Size (WS) is fundamentally 

informed by the expected scale of detectable changes within the 

monitored structures. A properly defined WS allows the analyst 

to selectively filter out minor disturbances or non-structural 

changes that are not relevant to the analysis objectives. This 

tuning capability is particularly useful when addressing noise 

induced by lighting variations or acquisition-related 

inconsistencies, such as slight displacements, shadows, or 

differences in ambient conditions. 

To further refine the detection process, the software supports 

semi-automatic calibration of the exponential weighting factors 

α, β, and γ within the SSIM algorithm. These parameters 

respectively control the contribution of luminance, contrast, 

and structural components, and their adjustment is essential for 

minimizing false positives caused by non-structural changes 

(e.g., shadow displacement or illumination shifts). By 

modulating these parameters in accordance with the selected 

WS, it is possible to enhance the robustness of the analysis, 

isolating meaningful structural variations while attenuating the 

influence of irrelevant fluctuations. This methodological 

flexibility is key to adapting photomonitoring workflows to 

diverse environmental and acquisition conditions. 

 

The result of this analysis is a raster map that visualizes SSIM 

values for each individual pixel through a color gradient. Green 

indicates an SSIM value of 1, implying no change, while blue 

represents an SSIM value of 0, indicating a complete change. 

3 CASE STUDY 

One of the selected case studies is the Aurelian Walls in Rome, 

a monumental archaeological structure that once served as the 

primary defensive boundary of the city and now forms a 

significant part of Rome’s UNESCO World Heritage 

designation. As the largest surviving monument in the city, the 

walls hold immense historical and architectural value. 

However, they are increasingly threatened by invasive 

vegetation, including species such as Hedera helix L., Ficus 

carica L., and Capparis orientalis Veill. (Capparis spinosa L.), 

with Ailanthus altissima emerging as the most invasive and 

difficult species to control [19, 20, 21, 22].  

Geologically, the Aurelian Walls are located in an area 

characterized by Quaternary volcanic formations and Holocene 

alluvial deposits from the Tiber River. Constructed under 

Emperor Aurelian between 270 and 275 AD, with subsequent 

completion under Emperor Probus, the walls originally 

extended approximately 19 km, though only 12.5 km remain 

today due to partial demolitions. Structurally, they consist of a 

combination of tuff and brick masonry, with an inner core 

composed of loosely bonded tuff blocks. Over the centuries, 

conflicts and environmental factors have contributed to their 

deterioration, prompting numerous restoration interventions. 

Notably, during the 16th century, Pope Pius IV commissioned 

extensive reinforcements to enhance their stability [23, 24]. 

More recently, the Capitoline Superintendence has undertaken 

conservation projects aimed at safeguarding the remaining 

sections and preventing structural collapses.  

The second case study focuses on the Church of Santa 

Apollonia in Ferrara, a city recognized as a UNESCO World 

Heritage Site since 1995. Originally built in the 15th century, 

the church underwent significant reconstruction in 1612, 

transforming into an oratory with an expanded classical 

octagonal layout. Further modifications were made in 1662, 

including the incorporation of the portal from the Church of the 

Holy Spirit (Chiesa dello Spirito Santo), which had been 

demolished in 1839. The church remained closed since 1975 

and was later deconsecrated. Over time, it has fallen into severe 

neglect and structural decay. Santa Apollonia has since been 

placed under state management as part of a broader restoration 

and redevelopment initiative aimed at repurposing its interiors 

into an exhibition space for the nearby National Archaeological 

Museum of Ferrara. The building, like many others in the 

region, is constructed on permeable fluvial sand deposits, 

which have contributed to significant water infiltration and 

accelerated degradation. Located north of the so-called Isola di 

Sant’Antonio, the structure exhibits pronounced signs of 

moisture-induced deterioration, with severe cracking observed 

along the left lateral wall, highlighting the urgent need for 

intervention. 

4 RESULTS 

Over a time span of more than a year, numerous changes have 

been identified in the two datasets. The changes observed 

during this period affect the vertical external curtain of the 

Aurelian Walls and the wall facing of Santa Apollonia church 

and consist mainly in detachments of bricks or mortar and 

vegetation growth. The product of the analysis is shown as a 

Structural Similarity Index Map where the changes are 

differentiated on the SSI values. Areas where no changes are 

present are highlighted in green, while changes are highlighted 

in red/purple, depending on their magnitude.  

 

4.1 Aurelian Walls 

K11-K12 section: The map in Fig. 4 c) shows some brick 

detachment on the external curtain. These bricks have a low 

similarity index value and are highlighted in red. Although the 

primary objective of the analysis was to detect structural 

changes, in this specific case the SSIM mapping also revealed 

variations associated with the growth of invasive vegetation 

(see upper-left portion of the image). These changes, while not 

structural in nature, contribute to the overall degradation of the 

wall surface and are thus relevant for conservation monitoring.  
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Fig. 4 - Detail of the Change Detection Map showing the bricks 

detachment from the K11-K12 section.  

 

K12-K13 section: The map in Fig. 5 c) shows the vegetation 

growth. The areas of growth can be seen in red due to their low 

similarity index value.  

 

Fig. 5 - Detail of the Change Detection Map showing 

vegetation growth from the K12-K13 section. 

 

 

 

4.2 Sant’Apollonia Church  

Sant’Apollonia Church: The map in Fig. 6 c) shows a brick 

detachment in conjunction with the pre-existing crack.  

 
 

Fig. 6 - Detail of the Change Detection Map showing the brick 

detachment from the facing wall of Santa Apollonia Church. 

Sant’Apollonia Church: In the Change Detection map in Fig. 7 

c) it is shown, in purple, a mortar detachment connected to a 

pre-existing crack. 

 

 

Fig. 7 - Detail of the Change Detection Map showing mortar 

detachment from the facing wall of Santa Apollonia Church. 

 

5 DISCUSSIONS 

The results of this study highlight both the effectiveness and the 

limitations of using mobile devices, such as smartphones and 

tablets, for environmental and cultural heritage monitoring. A 

key logistical advantage observed during field activities was 

the increased speed of repositioning and orienting the sensor 

when used manually compared to tripod-mounted systems. In 

this context, the tablet proved more efficient than the tripod-

mounted smartphone, allowing for immediate sensor 

realignment and reducing the time required for data acquisition. 

This aspect is particularly relevant in scenarios where 

monitoring must be performed rapidly or in spatially 

constrained environments, confirming previous findings on the 

advantages of mobile device-based monitoring methodologies 

[12]. 
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The type of changes detected by the two sensors was 

comparable, suggesting that smartphone and tablet cameras can 

provide similar results in image-based monitoring. However, a 

critical aspect to consider is pixel size, which depends not only 

on the intrinsic characteristics of the sensor but also on the 

distance from the observed object. In field conditions, this 

distance is often dictated by logistical constraints rather than 

experimental design, making it a variable that is not always 

controllable. Since pixel size directly affects the level of detail 

in image analysis, these factors must be carefully considered 

when designing a monitoring approach based on mobile 

sensors. Previous studies on cultural heritage monitoring 

through crowdsourcing emphasize the importance of such 

considerations, particularly when comparing images acquired 

with different devices under varying shooting conditions [13, 

25]. 

Another critical factor influencing data quality was the 

variability in lighting conditions. Sudden changes in natural 

light posed challenges for image acquisition, affecting both 

processing and interpretation of results. This issue is well-

documented in the literature, particularly regarding the impact 

of brightness variations on image-based analyses [25]. In some 

cases, excessive differences in lighting conditions between 

successive images introduced artifacts or inconsistencies in the 

final data, highlighting the need for adaptive calibration 

techniques or post-processing corrections to minimize these 

effects.  

To address these lighting-related challenges, during this study 

we experimented with the adjustment of the α, β, and γ 

exponential parameters in the SSIM computation. Fine-tuning 

these parameters proved effective in minimizing the influence 

of illumination variation between successive image 

acquisitions. By reducing the contribution of luminance and 

contrast inconsistencies, the analysis becomes more sensitive 

to actual structural changes rather than to superficial alterations 

induced by light fluctuations. As a result, this approach 

enhances the robustness of the change detection process by 

suppressing noise and emphasizing the “true” changes that are 

structurally relevant to the monitored object. 

An alternative but more computationally intensive strategy 

could involve the use of a redundant analytical framework, 

leveraging a broader image database for each observation. This 

would allow for comparative filtering and normalization across 

multiple acquisitions, thereby reducing the risk of localized 

errors introduced by individual source images. While this 

method could significantly improve result stability, it requires 

higher processing power and longer computation times, which 

may limit its applicability in real-time or field-based contexts. 

Additionally, adjusting the Window Size (WS) also contributed 

to filtering the results based on the expected scale of the 

changes of interest. Smaller WS values allowed for detection 

of fine-grained alterations, while larger WSs enabled the 

system to disregard minor fluctuations and focus on broader 

structural modifications. This flexibility supports the 

customization of the methodology to different conservation 

goals, depending on whether fine detail or macroscopic patterns 

are prioritized. Moreover, the application of photomonitoring 

for field-based heritage monitoring must also consider several 

site-specific environmental factors that may compromise the 

accuracy and interpretability of the results. As discussed in 

[26], there are a number of additional techniques and 

methodological improvements that can be adopted to enhance 

the overall accuracy, precision, and sensitivity of the analysis. 

However, the effective implementation of these advanced 

strategies requires careful calibration and expert knowledge, 

underscoring the importance of involving trained professionals 

in the design and interpretation of photomonitoring protocols. 

Future studies should explore solutions such as High Dynamic 

Range (HDR) imaging or automated color correction 

algorithms to mitigate the impact of uncontrollable lighting 

variations and improve the robustness of mobile-based 

monitoring techniques. Alternatively, integrating the workflow 

presented in this study with Citizen Science approaches would 

enable the collection of large datasets with high temporal 

resolution, allowing for the calibration of AI models and 

mitigating the issue of varying lighting conditions and/or 

shadows. 

Despite these challenges, the results demonstrate that effective 

monitoring can be achieved without the installation of fixed 

cameras or permanent sensors, relying solely on mobile 

devices. This outcome is particularly significant in the context 

of non-invasive cultural heritage monitoring, where 

minimizing physical interference is often a priority. Similar 

conclusions have been reached in Citizen Science studies, 

which emphasize how mobile technology can be leveraged for 

large-scale data collection while maintaining high 

methodological rigor [27, 28]. The ability to conduct fully 

contactless monitoring without requiring pre-installed 

instrumentation broadens the applicability of these 

methodologies, particularly in remote or sensitive sites where 

conventional instrument installation is impractical. 

Overall, these findings support the potential of mobile device-

based monitoring approaches as viable alternatives to 

traditional fixed-sensor systems, offering a flexible and 

scalable solution for environmental and cultural heritage 

analysis. However, further refinement of data processing 

techniques is needed to account for environmental variability 

and ensure consistency across different devices and 

observational conditions. 

6 CONCLUSIONS 

The primary objective of this study was to assess 

photomonitoring as a remote sensing technique for the 

monitoring and preservation of cultural heritage. The results 

demonstrate that photomonitoring represents an effective and 

non-invasive approach to detecting structural variations, such 

as mortar detachment in the masonry of the Aurelian Walls and 

the Church of Santa Apollonia in Ferrara. The use of widely 

accessible devices, including smartphones, tablets, and entry-

level cameras, makes this methodology not only cost-effective 

but also adaptable to the specific requirements of different 

monitored sites. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-137 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 889 

The potential integration of citizen science into this framework 

presents a promising opportunity for expanding spatial and 

temporal data collection. Volunteers, acting as "sensor-

visitors," could contribute images and observations that 

complement the work of professional conservation teams. This 

collaborative approach has the potential to enhance data 

coverage, bridging the gaps between scheduled professional 

surveys and ensuring more continuous monitoring of 

degradation dynamics. As noted by Bonney et al. [27], citizen 

science has been successfully implemented across various 

scientific fields, significantly improving data collection and 

public engagement. The economic implications of 

photomonitoring are particularly relevant, considering the 

extraordinary volume of images generated daily. It is estimated 

that in 2023, approximately 4.7 billion photographs were taken 

per day, predominantly using smartphones (93%), resulting in 

an annual total of approximately 1.8 trillion images. This 

statistic highlights an immense, yet largely untapped, visual 

resource that could be harnessed for cultural heritage 

monitoring. Through crowdsourcing and advanced data 

analysis, the simple act of taking a photograph can be 

transformed into a valuable tool for conservation. This 

approach not only reduces costs but also increases the 

frequency and geographical coverage of observations. As the 

quality of images and computational capabilities continue to 

improve, the integration of citizen-generated data into heritage 

conservation strategies could evolve into a sustainable and 

scalable solution [12]. 

The findings of this study align with a broader context of citizen 

science initiatives, which have demonstrated dual benefits: 

enhancing scientific productivity and democratizing research. 

Unlike basic crowdsourcing, citizen science projects are 

designed to achieve specific scientific objectives, involving 

non-expert volunteers in both data collection and analysis [26]. 

Contributions from participants are not limited to quantitative 

data but often include qualitative observations, reports of 

unauthorized interventions, and even personal narratives 

related to historic sites. As highlighted in studies such as that 

of Constantinidis [28], these elements provide valuable 

contextual information that can influence both short-term 

conservation decisions and long-term management strategies. 

Looking ahead, the integration of photomonitoring with 

structured citizen science programs could be further explored 

through collaborations with other institutions (i.e. 

Superintendences for Cultural Heritage), and local 

governments. A promising development in this direction is the 

potential use of civil service programs for structured 

photomonitoring campaigns. By engaging volunteers through 

civil service initiatives, it would be possible to create 

systematic and large-scale monitoring efforts that ensure 

sustained data collection and improved methodological rigor. 

This approach could also provide training opportunities, 

fostering a new generation of conservation advocates equipped 

with digital skills relevant to heritage preservation. 

As imaging technologies and computational capabilities 

continue to advance, the integration of citizen-generated data 

into professional conservation strategies could evolve into a 

sustainable and idely adopted practice. Future research should 

focus on refining methodologies to optimize data acquisition 

and processing while exploring policy frameworks that support 

the ethical and effective implementation of citizen science in 

heritage conservation. By embracing photomonitoring as a 

collaborative tool, the preservation of cultural heritage can be 

made more accessible, inclusive, and resilient to emerging 

threats. 
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ABSTRACT: While Structural Health Monitoring (SHM) has potential to aid bridge managers, its adoption has been limited, 

with one of the challenges being determining a bridge’s condition without a historical reference point for that structure. 

Researchers have started investigating Population-Based Structural Health Monitoring (PBSHM) to tackle this, facilitating the 

sharing of data from comparable structures. The key advantage of PBSHM is that it potentially enables us to use data from one 

structure to make inferences about the health of another structure in the same population. 

Whilst, to date, populations that have been used for PBSHM have been defined using structural similarities alone, you might be 

missing out on information that could be useful for bridge managers, which raises the question: Could we define populations in 

a different way? This research investigates if it is potentially useful to define a population of bridges based on whether they 

experience the same environmental conditions. To answer this, long-term natural frequency data from two bridges close to each 

other are analysed to determine the level of correlation between them. This work shows that it may be potentially useful to 

define populations based on factors other than structural similarities, which allows greater opportunities for PBSHM. 

KEY WORDS: Structural Health Monitoring (SHM); Population-Based Structural Health Monitoring (PBSHM); Bridge 

Monitoring; Natural Frequencies; Environmental Effects; Correlation Analysis; Temperature Influence; Vibration Data; Graph-

Based Structural Similarity; Machine Learning in SHM.

1 INTRODUCTION 

 Challenges in current bridge inspection 

Bridges are vital pieces of infrastructure, enabling the 

movement of goods and people [1]. Currently, bridges are 

monitored primarily through periodic visual inspections, which 

provide valuable insights. However, these visual inspections 

can be subjective, and some defects, such as internal cracks or 

corrosion, may not be visible during routine inspections. 

In the worst-case scenario, undetected structural deficiencies 

can lead to catastrophic bridge failures, resulting in substantial 

financial costs and loss of life. For example, in 2018 the 

Morandi Bridge failed, killing 43 [2]. Additionally, the 

subjectivity of visual inspections makes it challenging to 

efficiently allocate limited resources. In 2024, the Carola 

Bridge in Dresden, Germany, collapsed due to hydrogen-

induced stress corrosion cracking in the bridge’s steel 

components [3]. The aftermath of the collapse can be seen in 

Figure 1. This type of corrosion began during the bridge’s 

construction between 1967 and 1971 and progressed internally 

over decades, remaining undetectable through standard visual 

inspections. The eventual collapse of the Carola Bridge is a 

good example of highlighting a significant limitation of 

traditional monitoring methods. 

 

Figure 1. Carola Bridge (Dresden, 1971). 

 Background on Structural Health Monitoring (SHM) 

Over the past 30 years, there has been increasing interest in 

using quantitative data, such as acceleration or displacement, to 

assess bridge health, a practice known as Structural Health 

Monitoring (SHM) [4]. Its widespread adoption has been 

limited, however, with one of the challenges being determining 

whether a bridge is healthy or damaged without a historical 

reference point for that structure. This process is challenging 

because SHM systems often rely on baseline data to detect 

structural deterioration. If you do not take measurements from 

the ‘healthy’ state, it is difficult to determine the difference 

between normal changes (caused by things like weather or 

traffic) and real damage, which raises the risk of false alarms 

or missed defects [4]. 

Correlation of natural frequencies of bridges that are under similar environmental 

conditions. 
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 Overview of Population-Based Structural Health 

Monitoring (PBSHM) to date and current limitations 

Researchers have begun exploring Population-Based Structural 

Health Monitoring (PBSHM) as a solution to address the 

challenges in traditional SHM, enabling the sharing of data 

across comparable structures. It allows data from one structure 

to be used to make inferences about the health of another 

structure within the same ‘population’ [5]. 

The foundations of PBSHM have been established through a 

series of published papers Towards Population-Based 

Structural Health Monitoring [6, 5, 7, 8, 9, and 10]. These 

papers examine methods for representing structures as graphs 

and developing similarity measures to compare them. 

PBSHM extends traditional SHM by focusing on monitoring 

populations of structures rather than individual assets. Unlike 

conventional SHM, which relies on baseline data for a single 

structure, PBSHM enables the transfer of knowledge across a 

group of similar structures. By leveraging data from one 

structure, engineers can make inferences about the condition of 

others within the population, helping to mitigate the challenge 

of missing baseline data [5]. 

However, for PBSHM to be effective, the population must 

consist of sufficiently similar structures. If the differences are 

too significant, knowledge transfer may become inaccurate, 

leading to negative transfer; indeed, the application of insights 

from one structure can act to introduce error rather than 

improving understanding [7]. 

In practice, populations of bridges in PBSHM are typically 

formed by identifying structures that are structurally similar. 

For instance, Gosliga et al. [11] identified a pair of similar truss 

footbridges and a group of two beam-and-slab bridges. These 

bridges were represented as graphs, and using a graph matching 

algorithm, a high similarity metric was observed. Following 

field testing, the authors compared their dynamic responses and 

confirmed that the frequencies and mode shapes of bridges 

identified as similar through graph matching were indeed 

consistent [12]. 

If populations are defined solely based on structural 

information, potentially valuable factors that could aid in SHM 

might be overlooked. This raises the question: Could 

populations be defined differently? For example, a population 

could include bridges within the same geographical area, 

meaning they would be subject to the same environmental 

conditions. While populations in PBSHM have thus far been 

considered based on structural similarity, exploring alternative 

conceptualisations of populations may prove to be equally 

useful. 

 Contribution of this work 

To explore whether bridges located in close proximity and 

therefore notionally experiencing the same environmental 

conditions could potentially form a population, long-term 

natural frequency data from two bridges 540 metres apart were 

analysed to determine the level of correlation between them. 

The results suggest that defining populations based on factors 

other than structural similarities could be potentially valuable, 

offering greater opportunities for PBSHM. 

2 BRIDGE SITES USED AND TEMPERATURE 

CORRELATION BETWEEN SITES 

 Bridge selection and data collection 

For this study, two bridges located 540 metres apart along the 

same river were selected. Bridge 1 is a 98-metre-long, 27-

metre-wide bowstring girder bridge (Figure 2a), while Bridge 

2 is a 76-metre-long, three-span composite concrete and steel 

bridge (Figure 2b). The proximity of these bridges allowed for 

a controlled investigation of how environmental factors 

influenced their dynamic behaviour. 

(a) 

 
(b) 

 

Figure 2. (a) Schematic of Bridge 1 (b) Schematic of Bridge 2. 

As described by O’Higgins et al. [13], long-term vibration 

data was collected using a single accelerometer on each bridge. 

It was observed that positioning the sensor near the quarter-

span point on both bridges allowed it to detect most modes and 

frequencies. 

The Structural Health Monitoring (SHM) system used for 

long-term monitoring consisted of one MEMS accelerometer 

and one environmental sensor. The accelerometer employed 

was the Multifunction Extended Life (MEL) Data Logger from 

Gulf Coast Data Concepts. This accelerometer was housed in 

an enclosure, which was then attached to the deck of each 

bridge. One of these enclosures is shown in Figure 3. 

The environmental variables were measured using an 

environmental sensor capable of recording both air temperature 

and humidity. To ensure accurate temperature readings, the 

sensors were not placed within the enclosure to avoid the 

effects of solar gain. Instead, they were positioned out of direct 

sunlight to provide a representative measure of the local air 

temperature. On each bridge, the temperature sensors were 

placed on the abutment shelf or at the base of an abutment, both 

out of direct sunlight. 

 

Figure 3. Monitoring enclosure and MEL data. 
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 Correlation of temperature data 

A key objective of this study was to determine whether the two 

bridges experienced similar environmental conditions. To 

assess this, temperature data from both bridges were compared 

using a hexbin plot (Figure 4). A hexbin plot is a 2D histogram 

where the bins are hexagonal, and the colour intensity 

represents the number of data points within each bin. 

Figure 4 shows a strong positive correlation between the 

temperature measurements of both bridges, with a correlation 

coefficient of 0.98, indicating that higher temperatures on 

Bridge 2 correspond to higher temperatures on Bridge 1. This 

suggests that the two bridges experience nearly identical 

environmental exposure. 

However, some variability was observed between January 6 

and February 17, during which Bridge 1 exhibited slightly 

higher temperatures in the 0-5°C and 5-10°C ranges. The cause 

of these anomalies remains uncertain, but potential 

explanations include differential shading and differences in 

material thermal properties. 

While these discrepancies are noticeable in the plot, they do 

not significantly impact the overall trend. There are up to 

14,000 data points in the yellow bins and fewer than 2,000 data 

points in the dark blue bins, reinforcing the stability of the best-

fit line. This indicates that most of the data follows a linear 

relationship, with only a brief period showing anomalous 

values. 

 

Figure 4. Temperature data from Bridge 1 versus temperature 

data from Bridge 2. 

3 NATURAL FREQUENCY ANALYSIS 

 Extraction of Natural Frequency 

As per O’Higgins et al. [13], acceleration data was segmented 

into 30-minute intervals and processed using the Stochastic 

Subspace Identification (SSI) method to extract the bridge 

frequencies. The data was recorded from October 2018 to May 

2021, though some gaps occurred due to limited personnel 

availability for data collection and disruptions caused by the 

COVID-19 pandemic. 

For this work, a simple outlier analysis was undertaken on 

natural frequency data so that the complexity of data analysis 

was reduced and data visualisation was clearer. Any data point 

that was more than three scaled median absolute deviations 

from the median of the data was removed. 

 Time-domain work 

Figure 5 presents the time-series data for the natural 

frequencies of both bridges. Bridge 1 exhibits five natural 

frequencies ranging from approximately 1.2 Hz to 5.2 Hz, 

while Bridge 2 has five natural frequencies ranging from 

approximately 2.7 Hz to 9.3 Hz. Overall, Bridge 2 demonstrates 

higher frequency values compared to Bridge 1. 

 

Figure 5. All frequency data over the whole monitoring 

period. 

Figure 6 consists of two subplots, both illustrating the 

relationship between bridge frequencies and temperature over 

time. Frequency and temperature are plotted against the left and 

right vertical axes, respectively. 

In plot (a), the temperature (purple line) exhibits seasonal 

variations, with distinct peaks and troughs. When analysing 

annual data, a seasonal trend is observed for frequency 5 of 

Bridge 1 and frequency 4 of Bridge 2, with evidence of an 

inverse correlation between the frequencies and temperature. 

Additionally, Bridge 1 and Bridge 2 appear correlated, with 

both bridges showing an inverse relationship with temperature 

on an annual scale. 

In plot (b), which focuses on daily temperature cycles, there 

is some correlation between the two frequencies. As seen in 

plot (a), higher temperatures correspond to lower frequency 

values, a trend that is even more noticeable in plot (b). This 

aligns with expectations, as increasing temperature may cause 

a reduction in structural stiffness, leading to lower natural 

frequencies [14]. 
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Figure 6. Frequency 5 of Bridge 1 and frequency 4 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

 Frequency correlation work 

Figure 7 presents hexbin plots for all the frequencies of Bridges 

1 and 2, with the correlation coefficient displayed in the top left 

corner of each plot. The histograms on the diagonal illustrate 

the distribution of each frequency. 

The figure reveals a strong correlation between frequencies 

within the same bridge (rows 1-5, columns 1-5). However, the 

most relevant information is in the top right section of the 

figure, highlighted by a dashed black box, which shows the 

correlation between frequencies of Bridge 1 and Bridge 2. The 

column references (1 to 10) are displayed at the top, while the 

row references are shown on the right. 

For example, the plot in row 1, column 6 represents the 

correlation between frequency 1 of Bridge 1 and frequency 1 

of Bridge 2, with a correlation coefficient of 0.31, indicating a 

relatively weak correlation. Similarly, the plot in row 1, column 

7 shows the correlation between frequency 1 of Bridge 1 and 

frequency 2 of Bridge 2, with a coefficient of 0.5. A zoomed-

in view of the area inside the dashed black box in Figure 7 is 

shown in Figure 8. Figure 8 illustrates the varying correlations 

between frequencies, with correlation coefficients ranging 

from 0.13 to 0.64.

 

 

Figure 7. All correlation plots for all the frequencies. 
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Figure 8. Correlation between pairs of frequencies in Bridge 1 and Bridge 2.

The highest correlation of 0.64 is observed between 

frequency 3 of Bridge 1 and frequency 2 of Bridge 2 (shown in 

row 3, column 7 in the dashed red box in Figure 8), and this is 

shown on a larger scale in Figure 9. 

 

Figure 9. Most correlation between frequencies. 

The lowest correlation of 0.13 is observed between frequency 

4 of Bridge 1 and frequency 3 of Bridge 2 (shown in row 4, 

column 8 in the dashed magenta box in Figure 8), and this is 

shown on a larger scale in Figure 10. 

 

Figure 10. Least correlation between frequencies. 
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Having identified the pair of frequencies with the highest 

correlation (Figure 9) and the lowest correlation (Figure 10), 

we now look at the time series plots associated with these 

frequencies to try and get further insight into why some are 

better correlated than others. To this end, Figure 11 presents the 

pair of frequencies with the highest correlation, specifically 

frequency 3 of Bridge 1 (plotted against the left-hand vertical 

axis) and frequency 2 of Bridge 2 (plotted against the right-

hand vertical axis). Plot (a) displays data spanning the entire 

monitoring period from October 2018 to May 2021, while plot 

(b) focuses on a 7-day period. The strong correlation between 

these frequencies is evident from the synchronised sinusoidal 

patterns observed in both bridges. 

 

Figure 11. Frequency 3 of Bridge 1 and frequency 2 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

Figure 12 shows the least correlated frequencies between 

both bridges, specifically frequency 4 of Bridge 1 and 

frequency 3 of Bridge 2. This figure follows the same format 

as Figure 11, with the overall monitoring period shown in plot 

(a) and the same 7-day period shown in plot (b). When plotted 

as a time series, these natural frequencies exhibit a lower 

correlation to those shown in Figure 11, which is consistent 

with the expectations based on the hexbin plot in Figure 10. 

 

Figure 11. Frequency 4 of Bridge 1 and frequency 3 of Bridge 

2 (a) Whole monitoring period (b) A week of monitoring data. 

4 CONCLUSION 

Temperature data from two bridges located near each other 

shows a strong correlation (with a correlation coefficient of 

0.98), suggesting that the bridges experience similar 

environmental conditions. The natural frequencies of the two 

bridges also exhibit significant correlation, with coefficient 

values for some pairs of frequencies reaching up to 0.64. 

Traditionally, Population-Based Structural Health Monitoring 

(PBSHM) has defined populations based on structural 

similarities. This paper suggests the potential for defining 

populations based on shared environmental conditions. Given 

the sufficient correlation in temperature and frequency data, it 

may be possible to infer information about Bridge 1 based on 

the data collected from Bridge 2. This will be further explored 

in future work through correlation analysis, such as 

cointegration on the data. 

Future studies will examine a wider range of bridge types to 

determine whether the same correlations apply. Additional 

research could also explore the conditions under which these 

correlations remain valid and when they begin to break down. 
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ABSTRACT: Structural Health Monitoring (SHM) plays a vital role in ensuring the safety, durability, and operational efficiency 

of critical infrastructure. Traditional SHM methods often fall short in detecting subtle damage patterns, particularly when faced 

with noisy signals, missing data, or the complex, time-varying behavior of real-world structures. To address these challenges, this 

study presents a hybrid framework that integrates Discrete Wavelet Transform (DWT) with a deep learning architecture combining 

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. The proposed approach begins by 

segmenting long-duration acceleration signals into fixed-length windows and applying DWT to extract informative time–

frequency features. CNN layers are then used to learn spatial representations from the transformed data, while LSTM layers 

capture temporal dependencies critical for detecting structural changes over time. The model is trained and evaluated using 

benchmark SHM datasets under both healthy and damaged states. Moreover, supervised learning is utilized for accurate damage 

severity classification, while unsupervised learning are used to facilitate anomalies detection without relying on labeled samples. 

Experimental results demonstrate improved performance in classifying damage conditions compared to conventional machine 

learning approaches. This framework offers a robust and scalable solution for data-driven SHM, supporting more accurate 

diagnostics and paving the way for predictive maintenance in complex monitoring environments. 

 

KEY WORDS: SHM; Deep Learning; Damage Detection; Wavelet; Hybrid AI Models. 

1 INTRODUCTION 

Structural Health Monitoring (SHM) has become an essential 

field across civil, mechanical, and aerospace engineering, 

ensuring the functionality, longevity, and safety of critical 

infrastructure. SHM enables periodic or continuous assessment 

of structural performance and supports the early detection of 

system degradation. This allows for timely maintenance 

interventions and reduces the risk of unexpected failures. As 

infrastructure systems age and endure increasing stress from 

environmental and operational loads, effective SHM plays a 

crucial role not only in ensuring safety but also in optimizing 

life-cycle costs and extending service life. 

Over the past few decades, SHM has evolved significantly, 

with numerous techniques developed to detect and assess 

damage and degradation in critical infrastructure. Conventional 

SHM approaches frequently rely on manual feature extraction, 

threshold-based anomaly detection, and classical signal 

processing techniques such as the Fast Fourier Transform 

(FFT) and Principal Component Analysis to extract frequency-

domain features and reduce data dimensionality [1]. While 

these methods have demonstrated effectiveness in controlled 

environments or specific applications, they often struggle in 

real-world conditions where non-stationary signals, sensor 

noise, and data loss are prevalent. Moreover, they are often 

inadequate for capturing the complexity of real-world 

structures, particularly those exhibiting nonlinear and time-

varying behavior. The reliance on expert-defined thresholds 

and manual feature selection further limits their scalability and 

suitability for automated or large-scale SHM deployment. 

These limitations underscore the need for more adaptive, 

intelligent, and data-driven SHM methodologies capable of 

handling the dynamic behavior of structural systems. 

To address these limitations, classical machine learning (ML) 

methods such as Decision Trees, k-Nearest Neighbors (k-NN), 

and Support Vector Machines (SVM) have been progressively 

applied to SHM tasks such as damage detection and anomaly 

classification [2]. These models offer greater adaptability than 

rule-based techniques and have shown effectiveness in certain 

SHM scenarios. However, they largely depend on handcrafted 

or engineered features, which may fail to capture the full 

complexity of structural responses. Also, classical ML 

algorithms often struggle with noisy, sequential data, or high-

dimensional, limiting their scalability and generalizability in 

complex monitoring environments. 

In response to the limitations of classical machine learning 

approaches, deep learning techniques have gained significant 

attention in SHM due to their ability to automatically learn 

hierarchical and abstract representations from raw sensor data. 

Models such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and their variants have 

shown promising results in tasks such as damage localization, 

classification, and prognostics. Unlike traditional methods, 

deep learning (DL) models can effectively capture nonlinear, 

time-dependent patterns in complex vibration signals without 

the need for manual feature engineering. Their robustness to 

noise, scalability to large datasets, and suitability for end-to-

end learning make them especially well-suited for real-world 

SHM system operating under dynamic and uncertain 

conditions. 

More recently, DL models, mainly CNNs and Long Short-

Term Memory (LSTM) networks have demonstrated notable 
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success in processing spatial and temporal data for SHM 

applications. CNNs are well-suited for extracting spatial 

features from raw sensor data or transformed representations 

such as spectrograms [3], while LSTMs effectively model long-

term dependencies in time-series signals [4]. Several studies 

have also proposed hybrid CNN–LSTM frameworks that 

jointly capture spatial and temporal patterns, resulting in 

improved damage detection accuracy, especially in complex 

structural systems [5].  
Despite these advancements, significant challenges remain in 

applying AI to SHM, including the presence of noise, missing 

data, and the continued need for domain-specific feature 

engineering. Furthermore, many existing AI-based SHM 

approaches tend to overlook the advantages of time–frequency 

domain analysis an essential component for capturing complex, 

transient structural responses [6]. To address this gap, wavelet 

transforms have garnered significant attention in SHM due to 

their ability to localize features simultaneously in both the time 

and frequency domains. Unlike the FFT, which provides only 

a global view of frequency content, wavelet analysis enables 

the detection of localized, transient events such as those caused 

by impact damage or cracking [7]. The Discrete Wavelet 

Transform (DWT) has been widely used for feature extraction, 

denoising, and time–frequency characterization in structural 

vibration signals. 
However, wavelet-based methods typically require the 

manual selection of proper mother wavelet and decomposition 

level, and often depend on thresholding heuristics. Also, 

wavelets are often used only as preprocessing tools, rather than 

being fully integrated into modern AI systems [8]. These 

limitations constrain their effectiveness in contemporary deep 

learning–based SHM frameworks. Although progress has been 

made, a clear gap remains in the integration of wavelet-based 

signal processing with advanced AI architectures. Existing 

approaches often either apply wavelets solely for noise 

reduction without enabling feature learning, or use DL models 

without exploiting the time–frequency structure inherent in 

SHM signals [9], [10]. 

To bridge these gaps, this study proposes a novel deep 

learning framework that seamlessly integrates the DWT with a 

hybrid CNN–LSTM architecture. The DWT is employed to 

extract multiscale time–frequency features from segmented 

acceleration signals, capturing both transient and stationary 

structural behaviors. These wavelet-derived features are then 

processed by a CNN to learn spatial patterns, followed by an 

LSTM network that models temporal dependencies across time 

steps. The framework supports both supervised damage 

classification and unsupervised anomaly detection, making it 

adaptable to a wide range of SHM scenarios and contributing 

to the advancement of intelligent, data-driven infrastructure 

monitoring. 

2 PROPOSED FRAMEWORK 

This section describes proposed SHM, which integrates 

wavelet-based signal processing with a hybrid deep learning 

combining CNN and LSTM networks as shown in Figure 1. 

The framework is designed to extract meaningful spatial and 

temporal features from structural vibration signals to enable 

reliable damage detection and anomaly identification under 

complex monitoring scenarios. 

The process begins with long-duration signals, which are 

preprocessed and segmented into fixed-length time windows to 

standardize the input size and ensure consistency. Each 

segment is then processed using the DWT, which decomposes 

the signal into multiscale time–frequency components. These 

wavelet coefficients capture both localized and global signal 

characteristics and serve as rich input features for the deep 

learning model. 

The CNN component s used to extract spatial features from 

the wavelet coefficients, while the LSTM network captures 

temporal dependencies across time window. This combination 

allows the system to recognize both long-term structural trends 

and transient events, improving its effectiveness in both 

damage classification and anomaly detection tasks. Both 

learning strategies are supported within the framework: 

supervised learning uses labeled damage states, while 

unsupervised learning applies autoencoders and clustering on 

latent features. 

This integrated architecture leverages the strengths of both 

wavelet-based signal processing and DL: it enables automated 

feature learning from rich time–frequency data, enhances 

robustness to noise and nonstationary, and improves 

classification and anomaly detection performance across a 

variety of structural conditions. The following sections detail 

the data preprocessing, wavelet-based signal decomposition, 

and the architecture and training process of the DL model. 

 
Figure 1. Hybrid methodology combining wavelet-based 

signal processing with deep learning. 

3 EXPERIMENTAL VALIDATION USING TIANJIN 

YONGHE BRIDGE MONITORING DATA 

The proposed framework was validated using data from the 

Tianjin Yonghe Bridge, a cable-stayed structure located in 

China connecting Tianjin and Hangu. The bridge spans 510 m, 

consisting of a 260 m main span and two 25.15 + 99.85m side 

spans. The bridge wide is 11m (9m for vehicles and 2x1m for 

pedestrians [21]. Originally constructed in 1983 and opened to 

traffic in 1987, the bridge began exhibiting structural 

degradation after nearly two decades of service, including the 

development of 2 cm cracks in the midspan and signs of 
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corrosion in the stay cables. To address these issues, major 

repairs were carried out between 2005 and 2007, including full 

replacement of all stay cables and reinforcement of the midspan 

girder [16], [17]. Following these repairs, a SHM system was 

installed by the Harbin Institute of Technology to monitor the 

bridge’s condition under both undamaged (January 17, 2008) 

and damaged (e.g., July 31, 2008) states. The system included 

over 150 sensors at critical structural components such as the 

deck, towers, and cables including 14 single - axis 

accelerometers installed along the deck and a dual-axis sensor 

mounted at the top of the south tower. 

The vibration data collected by this SHM system were used 

to evaluate the effectiveness of the proposed wavelet-based 

CNN–LSTM framework for damage detection and anomaly 

identification. The signals were segmented and preprocessed to 

ensure consistency, then processed using discrete wavelet 

transform before being fed into the hybrid deep learning model. 

This case study demonstrates the applicability of the proposed 

method to complex, real-world SHM scenarios and confirms its 

potential for robust damage classification and condition 

assessment. 

 
Figure 2. General view of Tianjin Yonghe bridge 

Figure 3. Tianjin Yonghe bridge elevation and health 

monitoring system 

 Visualization of structural acceleration data 

To illustrate the structural vibration data characteristics, Figure 

4 shows time-domain acceleration signals recorded from the 

bridge deck over a duration about 3600 s for healthy and 

damaged conditions state. These signals reflect the structure 

dynamic response under operational conditions. As shown, 

there is transient spikes, variations in amplitude and frequency 

content indicate changes in structural behavior, making them 

suited for SHM applications. Also, the acceleration data show 

nonstationary behavior that motivate the use of advanced time–

frequency analysis.  In this study, long-duration acceleration 

signals were segmented into fixed-length windows (15 

minutes) to standardize input size and increase the number of 

training samples. Figure 5 shows segmentation of a 1-hour 

acceleration signal into four 15-minute windows. Each segment 

is color-coded and vertically offset for clarity. This approach 

facilitates data preparation for time-series learning models and 

ensures consistency across training samples [4]–[6]. Also, these 

visualizations help highlight differences in dynamic response 

and support the need for data-driven SHM approaches. 

 

 
Figure 4. Acceleration signals for Sensor 1 (a) and Sensor 2 

(b), showing healthy (bottom) and damaged (top) states. 

 
Figure 5. Segmentation of a 1-hour acceleration signals into 

four 15-minute windows 

(a) 

(b) 
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4 SIGNAL DECOMPOSITION USING DISCRETE 

WAVELET TRANSFORM 

To capture both time and frequency characteristics of structural 

vibration signals, the DWT was employed for signal 

decomposition. Unlike the FFT, which provides only global 

frequency information, DWT enables multiresolution analysis 

by breaking the signal into approximation and detail 

coefficients across multiple levels. This allows transient events 

and localized structural responses often indicative of damage to 

be effectively identified. In this study, each acceleration signal 

segment was decomposed using an appropriate mother wavelet 

and a predefined number of levels, facilitating the extraction of 

discriminative time–frequency features suitable for both 

supervised and unsupervised learning models. Based on our 

previous studies [11], [12], the db3 wavelet was selected as due 

to its effectiveness in capturing signal characteristics relevant 

to structural changes and level 4 was chosen as optimal level 

for further analysis based on optimal energy and classification 

performance observed in all extracted features Figure 5.  

 

 
Figure 6. correlation index, root mean square and relative 

energy versus decomposition level 

The signal is decomposed up to level 4, resulting in one 

approximation signal (A4) and four detail signals (D1–D4). In 

wavelet analysis, signal decomposition is carried out by 

projecting the signal onto subspaces of scaling and wavelets 

basis functions at different scales and their transmission. Figure 

7 shows multi-level wavelet decomposition process of the 

signal. The original signal is recursively decomposed into 

approximation and detail components. Each approximation 

captures low-frequency trends (global behavior and long-term 

structure), while the corresponding detail captures high-

frequency information related to transient events or damage. 

After 4 levels, the final detail and approximation components 

are used for damage detection and anomaly identification. 

 
Figure 7. multi-level wavelet decomposition process of the 

signal. 

Figure 8 illustrates the four-level wavelet decomposition of the 

second 15-minute segment of the acceleration signal using the 

db3 wavelet. The signal is decomposed into detail coefficients 

(CD1–CD4) capturing high- to low-frequency components, 

and an approximation (CA4) representing the global, low-

frequency trend. This multilevel decomposition enables the 

extraction of both transient and long-term structural behaviors, 

supporting more effective damage detection and anomaly 

identification in SHM applications.  

 
Figure 8. Multi-Level Discrete Wavelet Coefficients of the 

Acceleration Signal (db3, 4 Levels) 

 Features extraction  

Feature extraction is a vital step in data-driven structural health 

monitoring (SHM), converting raw acceleration signals into 

meaningful representations that support effective damage 

detection and classification. In this study, wavelet-based time–

frequency decomposition is applied to one signal segment, and 

from each of the four detail sub-bands (D1 to D4), seven 

statistical features are computed: mean, standard deviation, root 

mean square, energy, skewness, kurtosis, and Shannon entropy. 

This results in 28 features for that segment, as summarized in 

Table 1. While additional segments and features were extracted 

in the full analysis from detail and approximation coefficients, 

only this representative example is presented here due to space 

constraints. These features serve as inputs to deep learning 

models, enabling them to learn complex structural dynamics 

and behavioral patterns. 

Table 1. Extracted Wavelet-Based Statistical Features 

 
To improve model interpretability and efficiency, feature 

importance analysis is carried out to select the most informative 

variables, allowing the AI model to concentrate on features 

with the highest predictive value. Figure 9 shows feature 

importance ranking showing the relative effect of each input 

variable on the model’s prediction. Features with higher 

importance values contribute more to decision-making, 

highlighting the most critical parameters for accurate structural 

condition assessment. 
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Figure 9.  Feature importance ranking illustrating the 

relative influence of each input variable 

5 NEURAL NETWORKS MODEL 

Neural networks have widely used in SHM due to their ability 

to model complex data patterns. Deep architectures like CNNs 

and LSTMs are mainly effective for capturing spatial and 

temporal features. A CNN usually includes convolutional 

layers, pooling operations, and one or more fully connected 

layers. These components collaboratively extract and refine 

informative features from input data. The fully connected 

layers serve as the classifier based on the learned features. 

Through a sequence of operations, the CNN can reduce the 

dimensionality, which improves computational efficiency and 

support more effective model training [15]. LSTM is a variant 

of recurrent neural networks designed to learn long-term 

dependencies in sequential data. Its internal structure includes 

memory cells and gating mechanisms, exactly the input, forget, 

and output gates, which control the info flow through time. This 

architecture allows the LSTM to retain relevant time-based 

features and discard irrelevant ones, making it effective in time-

dependent tasks [16]. Combining these models offers improved 

performance in analyzing dynamic, time-varying signals. This 

hybrid model is well-suited for SHM tasks, as it can capture 

both spatial features, such as vibration signatures, and temporal 

patterns, such as degradation over time   both of which are 

critical for accurate classification and anomaly detection. A 

detailed summary of the proposed hybrid CNN-LSTM 

configuration is given in Table 2. Further architectural 

specifications and theoretical background can be found in [12]. 

 

Table 2. A detailed summary of the proposed hybrid CNN-

LSTM configuration 

 

6 RESULTS AND DISCUSSION 

All experiments were executed in MATLAB R2023a using 

built-in toolboxes for signal processing and deep learning. 

Signal processing tasks and wavelet analysis, were done using 

DWT with db3. Features were extracted from detail 

components obtained through decomposition, up to level 4. For 

supervised classification tasks, SVM, Random Forest, CNN, 

LSTM, and CNN-LSTM hybrids models were trained with 

appropriate layer configurations. A max of 100 epochs was 

used with early stopping if validation performance stagnated 

for 10 epochs. The Adam optimizer with a learning rate of 

0.001, cross-entropy loss, mini-batch size of 64, and dropout 

(rate = 0.3) were used to ensure convergence and prevent 

overfitting. For unsupervised anomaly detection, autoencoders 

were trained using wavelet-based features extracted from 

database. MSE between reconstructed and raw signals was used 

as the reconstruction loss. Thresholds were determined from 

the 95th percentile of reconstruction error on training data. To 

assess performance, multiple evaluation metrics were used, 

accuracy, precision, recall, F1-score, and area under the ROC 

curve. Visual diagnostics such as ROC curves were generated 

for comprehensive interpretation. Model strength was validated 

using 5-fold cross-validation with stratified sampling to 

preserve balanced class distributions across damage states. The 

proposed WCNN-LSTM framework outdid existing SHM 

methods across many assessment metrics. The CNN-LSTM 

without wavelet achieved 86–accuracy, and wavelet-based 

models exceeded 89 accuracies, with notably higher F1-scores 

and. The WCNN-LSTM hybrid further contributed by 

capturing both spatial and temporal features, leading to better 

generalization across damage types and environmental 

conditions. As shown in Table 3, model assessment using 

metrics such as accuracy, precision, and recall confirms that the 

proposed framework's robustness.  

Table 3. Model assessment using metrics such as accuracy, 

precision, and recall 

 
For unsupervised anomaly detection, autoencoders were 

trained using wavelet-based features extracted from database. 

To evaluate classification performance across five classes, we 

compared per-class ROC curves for the baseline CNN and the 

enhanced WCNN model. The comparison of ROC curves in 

Figure 10 highlights that the Wavelet-Combined CNN 

(WCNN) model offers more balanced and robust performance 

across all damage classes compared to the conventional CNN. 

While the CNN model achieves higher AUC values in some 

individual classes (e.g., Class 4), it performs poorly in others 

(e.g., Class 0). In contrast, the WCNN demonstrates more 

consistent AUC scores across all classes, indicating improved 

generalization and reliability for multi-class damage detection. 

This suggests that integrating wavelet-based time–frequency 

features enhance the model’s ability to capture both transient 
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and global signal characteristics, leading to superior 

classification performance in structural health monitoring 

applications. 

 

 
Figure 10. ROC curves for both CNN and WCNN models 

 

Figure 11 shows the progression of training and validation 

accuracy over 100 epochs. While both curves show consistent 

improvement and reach above 93%, a slight performance gap 

remains, particularly toward the final epochs. The training 

accuracy marginally exceeds the validation accuracy, 

suggesting that some degree of overfitting may still be present. 

Also, the flattening of both curves indicates that the model has 

reached a learning plateau, beyond which additional training 

yields diminishing gains. This suggests that while the current 

architecture is effective, there is still room for enhancement, 

particularly in improving generalization, increasing robustness 

across classes, or reducing confusion between structurally 

similar samples. Future improvements could include 

techniques such as attention mechanisms, hybrid feature fusion, 

or advanced assembling strategies to push performance beyond 

the current ceiling. 

 

 
Figure 11. Receiver Operating Characteristic in Class 1 vs. 

Rest AUC = 0 

Figure 12 shows the reconstruction errors distribution for 

normal and anomalous data. Normal samples exhibit low 

reconstruction errors, predominantly below the threshold of 

0.03, indicating accurate reconstruction by the model. In 

contrast, irregular samples show higher reconstruction errors, 

with important portion exceeding the threshold. This separation 

reveals the effectiveness of reconstruction error as a 

discriminative feature for anomaly detection, with the threshold 

serving as a decision boundary between damaged and healthy 

states. The results confirms that error of reconstruction 

effectively separates anomalous and normal states, supporting 

its use as a reliable indicator for anomaly detection in SHM. 

 

 
Figure 12. Wavelet-Autoencoder Reconstruction Error 

Distribution 

7 CONCLUSION AND FUTURE WORK 

This paper presented a wavelet-based deep learning framework 

for structural health monitoring (SHM) using benchmark data. 

By combining Discrete Wavelet Transform (DWT) for time–

frequency feature extraction with a hybrid CNN–LSTM 

architecture, the method aimed to address some of the 

limitations in conventional SHM approaches, particularly 

under noisy and complex signal conditions. Experimental 

results showed that the proposed approach offered 
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improvements over baseline ML and standard DL models in 

terms of classification performance, including accuracy and 

AUC. The framework supported both supervised and 

unsupervised learning modes, making it adaptable to different 

data labeling scenarios. 

Nevertheless, further research is needed to improve the 

framework’s performance and adaptability under more diverse 

operational conditions, larger datasets, and real-time 

deployment constraints. Future work may focus on optimizing 

the model architecture, exploring additional feature 

representations, and validating performance under real-world 

deployment scenarios. 

REFERENCES 

[1] H. Sohn, C.R. Farrar, F.M. Hemez, J.J. Czarnecki, D.D. Shunk, A Review 
of Structural Health Monitoring Literature: 1996–2001, Los Alamos 

National Laboratory Report LA-13976-MS, 2003. 

[2]  K. Worden, G. Manson, The application of machine learning to structural 
health monitoring, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 

365, no. 1851, pp. 515–537, 2007. https://doi.org/10.1098/rsta.2006.1938 

[3] Y.J. Cha, W. Choi, O. Büyüköztürk, Deep learning‐based crack damage 
detection using convolutional neural networks, Comput.-Aided Civ. 

Infrastruct. Eng., vol. 32, no. 5, pp. 361–378, 2017. 
[4] N.S. Gulgec, M. Takáč, S.N. Pakzad, Convolutional neural network 

approach for robust structural damage detection and localization, J. 

Comput. Civ. Eng., vol. 33, no. 3, p. 04019005, 2019. 
[5] S. Sony, K. Dunphy, A. Sadhu, M. Capretz, A systematic review of 

convolutional neural network-based structural condition assessment 

techniques, Eng. Struct., vol. 226, p. 111347, 2021. 
[6] Z.P. Szewczyk, P. Hajela, Damage detection in structures based on 

feature-sensitive neural networks, J. Comput. Civ. Eng., vol. 8, no. 2, pp. 

163–178, 1994. 

[7] L. Deng, D. Yu, Deep Learning: Methods and Applications, Found. 

Trends Signal Process., vol. 7, no. 3–4, pp. 197–387, 2014. doi: 

10.1561/2000000039 
[8] R. Yan, R. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: 

A review with applications, Signal Process., vol. 96, pp. 1–15, 2014. doi: 

10.1016/j.sigpro.2013.04.015 
[9] A. Silik, M. Noori, R. Ghiasi, T. Wang, S.C. Kuok, N.S. Farhan, J. Dang, 

Z. Wu, W.A. Altabey, Dynamic wavelet neural network model for 

damage features extraction and patterns recognition, J. Civ. Struct. Health 
Monit., vol. 13, no. 4, pp. 925–945, 2023. 

[10] E.P. Carden, P. Fanning, Vibration based condition monitoring: a review, 

Struct. Health Monit., vol. 3, no. 4, pp. 355–377, 2004. 
[11] A. Silik, M. Noori, W.A. Altabey, R. Ghiasi, Selecting optimum levels of 

wavelet multi-resolution analysis for time-varying signals in structural 

health monitoring, Struct. Control Health Monit., vol. 28, no. 8, p. e2762, 
2021. 

[12] A. Silik, M. Noori, W.A. Altabey, R. Ghiasi, Z. Wu, Comparative 

analysis of wavelet transform for time-frequency analysis and transient 

localization in structural health monitoring, Struct. Durab. Health Monit., 

vol. 15, no. 1, p. 1, 2021. 

[13] Z. Xue, C. Xu, D. Wen, Structural damage detection based on one-
dimensional convolutional neural network, Appl. Sci., vol. 13, no. 1, p. 

140, 2022. 

[14] M.R. Kaloop, J.W. Hu, Stayed‐Cable Bridge Damage Detection and 
Localization Based on Accelerometer Health Monitoring Measurements, 

Shock Vib., vol. 2015, no. 1, p. 102680, 2015. 

[15] V. Ahmadian, S.B.B. Aval, M. Noori, T. Wang, W.A. Altabey, 
Comparative study of a newly proposed machine learning classification 

to detect damage occurrence in structures, Eng. Appl. Artif. Intell., vol. 

127, p. 107226, 2024. 
[16] H.N. Li, D.S. Li, G.B. Song, Recent applications of fiber optic sensors to 

health monitoring in civil engineering, Eng. Struct., vol. 26, no. 11, pp. 

1647–1657, 2014. 
[17] M.R. Kaloop, Assessment of bridge performance based on SHM system 

data, Int. J. Civ. Struct. Eng., vol. 1, no. 2, pp. 138–147, 2010. 

[18] M.R. Kaloop, et al., Signal analysis for damage detection in cable-stayed 

bridges, Meas., vol. 63, pp. 103–112, 2015.Pan, H., Azimi, M., Yan, F. 

and Lin, Z., 2018. Time-frequency-based data-driven structural diagnosis 

and damage detection for cable-stayed bridges. Journal of Bridge 
Engineering, 23(6), p.04018033. 

[19] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector 

Machines and Other Kernel-Based Learning Methods, Cambridge 

University Press, Cambridge, UK, 2000. 
[20] S. Li, H. Li, Y. Liu, C. Lan, W. Zhou, J. Ou, SMC structural health 

monitoring benchmark problem using monitored data from an actual 

cable‐stayed bridge, Struct. Control Health Monit., vol. 21, no. 2, pp. 
156–172, 2014. 

https://doi.org/10.1098/rsta.2006.1938


13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 905 

 
 
 
 
 

 
 
 
 
 
 
 

                 Session 24 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Advancements in Vibration-Based 
Bridge Health Monitoring 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-140 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 906 

ABSTRACT: Vibration-based Structural Health Monitoring is of the foremost importance for critical civil infrastructures, 

especially concerning the safety of the train transport network. In fact, even minor structural changes might cause derailment and 

potentially fatal accidents. This contribution reports some preliminary analyses carried out on 52 accelerometric recordings 

collected over two consecutive days from three spans of a railroad bridge. The acquisitions include several train passages and the 

quiet periods between them, when the structure was excited only by ambient vibrations (i.e. random microtremors), thus allowing 

Ambient Vibration Testing (AVT). Specifically, a newly developed Automated Operational Modal Analysis (AOMA) algorithm 

was applied. Its results are here compared to state-of-the-art commercial software (ARTeMIS). Some considerations regarding 

the effects of train passages are also briefly reported, as well as directions for current and future research work in this field. 

 

 

KEYWORDS: automated operational modal analysis, railway bridge, structural health monitoring, operational modal analysis, 

vibration-based monitoring 

 

1 INTRODUCTION 

Railways are an essential component of civil infrastructures, 

representing one of the most critical parts of national and 

transnational transportation and communication systems. In 

particular, railway bridges are a crucial element in this context. 

Being affected by degradation processes of various natures and 

durations, they constitute the most vulnerable elements for the 

safety of the whole railway infrastructure, with potential 

consequences for the safety of goods and people. 

In fact, considering that different parts of every railway 

infrastructure are connected from the superstructure, i.e. the 

ballast and the rails, even minor structural changes without 

complete structural failure might cause derailment and 

potentially fatal accidents. 

For all these reasons, a robust understanding and awareness 

of the daily operations and safety concerns is required, given 

that many passengers use railway lines daily. In Europe, 35% 

of the more than 300,000 railway bridges, which are distributed 

over a total of 200,000 km of railways, exceed 100 years of 

operational life [1]. In particular, in Italy, the majority of 

railway viaducts built between the 1950s and 1970s consist of 

prestressed concrete bridges (PRC); hence, special attention 

should be granted to these ageing infrastructures [2]. 

Railway bridges are exposed to several factors which cause 

degradation. These include harsh environmental conditions, 

significant live loads – mainly due to the increase of traffic 

loads in the last decades, including high-speed trains – material 

ageing, and other rare or extreme events (i.e. impacts from 

accidents, earthquakes, etc.). Other than material ageing, PRC 

bridges are subjected to damages due to: corrosion of normal 

reinforcement steel bars as well as prestressing tendons; 

prestressing losses; construction errors (incorrect grouting of 

tendons ducts, for example); and many other potential natural 

or human-made hazards [3]. Inadequate maintenance is also a 

practice that could result in further damages, often non-

recoverable. Finally, hidden grouting defects of prestressing 

sheaths can lead to corrosion, reducing the area of prestressing 

steel with consequent bearing capacity decrease. 

As a result, all these factors contribute to the potential 

development and growth of structural damage over time.  

Per established tradition, visual inspection still plays an 

essential role in identifying superficial defects and evaluating 

the overall condition of the examined structure. However, 

visual inspections are labour-intensive, time-consuming, and 

often rely on the operator's experience level, which 

significantly impacts the accuracy, objectiveness, and 

reliability of structural condition evaluations. 

Hence, the application of automated and objective anomaly 

detection is fundamental. This is the paradigm of Structural 

Health Monitoring (SHM) solutions [4]; their application to 

railway bridges is important to maintain operational safety, 

expand the structure's lifespan, and reduce maintenance costs. 

In particular, Vibration-Based SHM, which relies on analysing 

the vibrational response of structures to identify damage 

indicators, is one of the most used techniques to identify and 

monitor changes in the dynamic properties of a structure. In this 

framework, to identify such pathologies, the first step involves 

extracting the target structure's damage-sensitive features 

(DSFs) from the monitoring data – that is, natural frequencies, 

damping ratios, and associated mode shapes from acceleration 

time series. Possible changes in modal parameters over time 

could be a manifestation of both global and local damages.  

Preliminary results from a field application of dynamic monitoring on three spans of 

a railway bridge 
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In particular, natural frequencies are mainly sensitive to 

global damages and structural modifications. However, the 

global stiffness of a structure is often influenced by variations 

in normal environmental factors, such as temperature, and their 

influence (daily or seasonal gradients) can be significant 

enough to mask the presence of certain damages. Notably, local 

damage up to moderate severity has a minor influence on 

eigenfrequencies. On the other hand, mode shapes are more 

sensitive to local damages than natural frequencies and less 

sensitive to temperature variations [5], [6]. The main 

disadvantage is that a dense sensor grid is required to ensure 

effective damage localisation, a choice which is generally 

costly when conventional sensors, such as accelerometers, are 

employed. 

Nevertheless, in both mode shape-based and natural 

frequency-based SHM, the key point is to extract high-quality 

modal parameters from the recorded time series; henceforth, 

accurate identifications are strictly required. 

This short contribution presents the results of a novel output-

only System Identification (SI) algorithm, applied to an 

experimental test campaign on a prestressed reinforced 

concrete railway bridge. In this context, the present study 

focuses on analysing the recorded accelerometric monitoring 

data of the viaduct’s deck.  

The case study presented here has been equipped with highly 

sensitive accelerometers on three spans, collecting data for two 

consecutive days. The acquired acceleration data are processed 

using the proposed Automated Operational Modal Analysis 

(AOMA) approach based on the SSI-COV algorithm [7] using 

a code developed in MATLAB environment. Dynamic 

identifications obtained considering ambient vibrations provide 

repeatable and directly comparable results between identical 

spans. Furthermore, as a benchmark, the results are compared 

to the ones obtained with the commercial software (ARTeMIS). 

The remainder of this paper is organised as follows. Section 

2 describes the structure, the dynamic monitoring system and 

the data acquired. In Section 3, the Automated Operational 

Modal Analysis procedure for dynamic monitoring is briefly 

described. The results obtained considering the environmental 

excitation of the structure are then reported in Section 4, 

followed by the analyses repeated with the commercial 

software ARTeMIS; such results are then compared. Finally, 

the conclusions of the study carried out for this structure follow 

in Section 5. 

2 EXPERIMENTAL TEST CAMPAIGN 

 Description of the structure 

The railway viaduct under investigation consists of 46 spans, 

each equal to 20 m, for a total length of 920 m. The individual 

spans are characterised by a simply supported static scheme and 

consist of eight prestressed concrete girders with I cross-

sections, connected by a 20 cm thick upper slab, and four 

transversal beams having rectangular cross-sections. The main 

beams are 1.40 m high and have 1.20 m spacing, such that, 

considering the two lateral cantilever slabs supporting the 

parapets, the total width of the deck is approximately 12.40 m, 

allowing the support of two train tracks (see Figure 1 and 

Figure 2). The beams' prestressing reinforcement is arranged in 

the lower flange and, according to the original design drawings, 

consists of a total of 29 cables arranged in 3 rows, sheathed in 

ducts at the supports. As mentioned, PRC beams are widely 

used in railway bridges, where dynamic loads from passing 

trains demand high stiffness and serviceability. The 

prestressing process introduces compressive forces into the 

concrete; these forces counteract tensile stresses, preventing 

cracking and the resulting stiffness reduction. This, compared 

to a beam of equivalent size in conventional (non-prestressed) 

RC, results in lower deflections under load and allows for larger 

spans. At the same time, lower amplitude vibrations are 

generated under working conditions, which is useful for safety 

and comfort in operating conditions but makes AVT and 

output-only identifications more challenging, requiring high-

quality accelerometers.  

 

 

Figure 1: View of a typical span of the railway viaduct. 

The standard pier has a pseudo-rectangular reinforced 

concrete geometry (maximum dimensions 11.0 x 1.50 m). The 

45 piers range from a minimum height of 2.5 m to a maximum 

of 5 m along the longitudinal direction. The foundation of the 

piers consists of a RC plinth lying on deep foundations (i.e. 

piles). 

 

 

Figure 2: Intrados view of a typical span of the case study with 

the PRC beams. 
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 Structural health monitoring (SHM) system 

Because of the extension of the viaduct and its static scheme, 

with simply supported and nominally equal spans, only a part 

of the entire structure has been investigated. Specifically, three 

spans have been instrumented. Four uniaxial accelerometers 

were installed for each span under study in the positions 

showed in Figure 3 and with the numbering indicated. 

Measurements of only the vertical acceleration components 

were acquired for two consecutive days. This placement aimed 

to associate the obtained frequencies with both vertical and 

torsional vibrational modes.  

Due to the high stiffness of prestressed reinforced concrete 

railway bridges, accelerometers with high sensitivity and low 

background noise are required. In the present case, PCB 

piezoelectric accelerometers model 393B12 were used, with a 

sensitivity of 10 V/g and a noise of 0.32 μg/√Hz on the 10 Hz 

band. 

 

 

 

Figure 3: Scheme of the typical span (a) and position of the 

accelerometers on the main beams near the cross beams (b). 

The numbers in red (1 to 4) indicate the different output 

channels. 

The instrumentation configuration differs between the spans 

as follows: 

o in one span, the four accelerometers were installed at the 

end of the cross beams (transverse distance 9.6 m). 

o in the other two spans, the four accelerometers were 

installed on the web of the main beams in proximity of 

the cross beams (transverse distance 8.6 m, see Figure 3 

(b). 

The experimental tests were designed to identify the bridge's 

modal parameters and verify the structure's response under 

normal operating conditions. For this reason, some signals 

would inevitably contain train passages alongside ambient 

vibrations. 20 recordings were acquired for the first span; 16 

other recordings were taken for the other two spans, referred to 

as numbers 2 and 3. All acquisitions were made with a sampling 

frequency fs = 100 Hz and a 24-bit acquisition system. That 

provides a wide margin with respect to the highest natural 

frequency of interest (16 Hz, as will be shown in the following 

Sections, thus well below the Nyquist limit fs/2 = 50 Hz). The 

duration of each measurement was about 15 minutes. Examples 

of recorded time series of the raw acceleration data for one of 

the instrumented spans, showing all acquisition channels, are 

displayed in Figure 4.  

The vertical acceleration signals acquired by the four 

acquisition channels for each instrumented span were analysed 

after the cleaning and pre-processing phase. In particular, after 

identifying the signals containing train passages, the 

corresponding signal portions were isolated and saved 

separately. The remaining parts, thus corresponding to ambient 

excitation, were likewise isolated, stored separately, and 

analysed in the subsequent steps. In this way, 80 signals were 

obtained, of which only those of appropriate length (> 4 

minutes) were used for the successive identification steps. The 

signal duration was found to be consistent with the range 

recommended in [8] for accurate damping estimation, i.e. 1000-

2000 times the natural period of the first mode (2 to 4 minutes 

in the present case study), thus reliable results are ensured even 

when signals are segmented.  

 

 

 

Figure 4: Example of a signal acquired in one of the spans under 

ambient vibration conditions (a) and with a passing train (b) 

after the pre-processing. 

3 AUTOMATED OPERATIONAL MODAL ANALYSIS 

(AOMA) FOR SHM 

The objective of any Automated Operational Modal Analysis 

(AOMA) procedure is the extraction of modal parameters 

through the analysis of vibration measurements. The procedure 

is a multi-stage process that involves several sequential steps. 

It begins with data pre-processing and the choice of the optimal 

algorithm parameters, followed by the system identification 

phase, then the sifting of the identified modal parameters, and 

finally, the estimation of cluster-wide values and their 

validation, as well-documented in [9] and [10]. In this context, 

the core of the procedure, i.e. the system identification phase, 

is carried out by applying the Stochastic Subspace 

Identification (SSI) method, which is a popular parametric time 

( )
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domain algorithm based on state-space identification [7]. 

Several authors have proposed AOMA procedures to try to 

address the aspect of automating the interpretation of the 

stabilisation diagram and the following extraction of the 

physically meaningful modes of the structure [8], [11], [12]. 

 AOMA algorithm and modal parameters’ selection 

In the present study, the dynamic identification of the structure 

decks was performed using the well-known SSI (Stochastic 

Subspace Identification) Operational Modal Analysis 

algorithm with clustering analysis (DBSCAN - Density-Based 

Spatial Clustering of Applications with Noise) to facilitate the 

identification of actual vibration modes [13], [14]. 

SSI returns all identified modal parameters, which are 

generally represented in a stabilisation diagram, which is a 

visual tool used to facilitate the interpretation of results 

showing the poles (modes) characterised by the natural 

frequencies, damping ratios, and eigenvectors identified in 

relation to the order of the dynamic system chosen a priori. 

However, these identified poles include the physical modes as 

well as many spurious modes; the latter ones, which are due to 

measurement noise misidentified as vibration modes, need to 

be disregarded to identify only valid results correctly. In the 

stabilisation diagram, poles aligned in a vertical line are stable 

as the model order changes and, therefore, are deemed to 

represent a physical mode. The automatic cleaning and 

interpretation phase of the stabilisation diagram consists of 

defining a set of criteria to distinguish physical poles from 

spurious and mathematical ones. The steps enabling this 

procedure are briefly outlined below: 

o hard validation criteria (HVC), consisting of the 

elimination of poles with negative or excessively high 

damping ratios (> 20%) and those with eigenvectors not 

coming in complex conjugate pairs;  

o soft validation criteria (SVC), concerning the introduction 

of comparison parameters between the modal parameters 

of the different poles (hence the distance in the 

stabilisation diagram) and elimination of those that do not 

fall within the selected thresholds, following the work 

done by Mugnaini et al. [15]; 

o application of the DBSCAN algorithm to group the poles 

with similar modal characteristics and discard any other 

outlier poles according to parameters that vary for each 

dataset. Each identified cluster individuates a set of 

probable physical modes; therefore, the modal parameters 

representative of an entire cluster are estimated as the 

average of the cluster values fm, ξm [10].  

Determining the corresponding mode shape is essential to 

discern the modes with actual physical significance. 

 ARTeMIS software 

The commercial dynamic identification software ARTeMIS 

was used as a benchmark to validate the results obtained from 

the developed AOMA code. ARTeMIS is a powerful 

operational and experimental modal analysis software. The 

results are obtained through a Data-Driven Stochastic Subspace 

Identification algorithm implementation.  

 

4 DISCUSSION OF RESULTS 

 AOMA results 

SSI needs the definition of two fundamental parameters: 

- the range of model order, going from nmin= 20 to nmax = 130, 

- the number of block rows of the Hankel matrix, defined as 

fs/2 [7].  

For a fair comparison, these parameters were set once and 

kept untouched for all analyses (all signal tracts of all spans). 

The comparison parameters for the stabilisation diagram [13] 

reported above are set equal to: 

- df < 0.005 

- 0 < dξ < 10 % 

- (1 - MAC) < 0.05 

Figure 5 shows   ‘cle ned’ st  ilis tion di gr    t the end of 

the clustering phase (in fact it can be seen how each cluster is 

identified by a different colour), taken by one example of one 

of the instrumented spans. In this particular case, the frequency 

range of interest goes from 8 to 20 Hz, where clear peaks can 

be observed. In the same way, a diagram of the damping ratios 

versus natural frequencies is represented in Figure 6. The 

identified clusters are linked to the ones in Figure 5, i.e. 

displayed with the same colours. 

 

Figure 5: Example of stabilisation diagram with identified 

clusters. 

 

Figure 6: Example of frequencies vs damping ratios diagram 

with identified clusters. 

Finally, Figure 7 shows the occurrence of the values of 

identified natural frequencies for the deck of one of the 

instrumented spans, considering all the ambient vibration 

signals used. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-140 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 910 

By comparing all the results obtained from the different 

signals, the natural frequencies with the highest occurrence and 

corresponding to mode shapes with physical significance were 

identified. The following figure (Figure 8) shows the 

experimental vibration modes of the structure, with distribution 

diagrams of the natural frequencies and an axonometric view 

of the mode shapes with an indication of measurement points 

for each identified mode. 

Concerning the 2nd mode, it is noteworthy to point out the 

fact that it has been identified twice. Although the identified 

mode shape seems to indicate that it is the same mode, there is 

no certainty as to the exact corresponding frequency. One could 

conservatively assume that one of the two estimated modes 

corresponds to some residual effects of a lateral mode. Still, 

since all output channels are vertical, the algorithm can only 

extract the mode shape of the closest mode with vertical 

components, i.e., the first torsional. Here and for the rest of the 

article, these are referred to as modes ‘  ’  nd ‘  ’  Instead, the 

1st mode can be identified as the first flexural mode of the deck.  

 

 

Figure 7: Histogram representing the occurrence of natural 

frequency estimates of probable physical vibration modes. 

For the mode identified  s ‘ ode  ’ in Figure 8, given the 

positioning and limited number of sensors, the corresponding 

mode shape is similar to the first flexural one. It could be 

assumed that the mode in question is instead related to a local 

mode of the deck, whose shape could only be detected with a 

denser sensor network. However, it should be noted that for the 

practical purposes of detecting damage structural phenomena 

for this type of structure, the first two modes are generally 

significant, as they are also identifiable with greater accuracy 

and repeatability. The estimated damping ratios are around 2 % 

for most identifications, except for mode 3, for which it is about 

1 %. 

Table 1 shows the values of the identified natural frequencies 

for each span. The first torsional mode identified twice with 

different frequencies is reported  s ‘mode   ’  nd ‘mode   ’  

Furthermore, the low standard deviation values confirm that the 

three instrumented spans, nominally identical, are very similar 

in terms of dynamic response (and thus mechanical properties). 

This suggests that any damage in one of them would be easily 

detected not only by comparing the historical and current 

response of the span in question but also by comparing it with 

the other spans contemporaneously monitored – i.e. a sort of 

population-based SHM [16]. Indeed, this approach falls into the 

concept of population-based SHM. 

Table 1: Summary of the natural frequencies identified by the 

MATLAB code (all values in Hz) for the relevant modes in 

the three instrumented spans, with average and standard 

deviation values (St.Dev). 

 Mode 1 Mode 2a Mode 2b Mode 3 

Span 1 8.148  9.205  10.084  15.873  

Span 2 8.117  9.181  10.112  16.020  

Span 3 8.126  9.142  10.123  15.907  

Average 8.130  9.176  10.106  15.933  

St.Dev 0.016  0.032  0.020  0.077  

 

 

 

Figure 8: Distribution diagram of the identified natural 

frequencies and axonometric view of the identified mode 

shapes with an indication of the measurement points in red for 

mode 1 (a), modes 2a (b), and 2b (c), and local mode 3 (d). 

Notably, the first mode shape was found to be slightly 

asymmetric, with the vibrations on one side ~20% larger than 

the other. This behaviour was confirmed in all acquisitions with 

both the MATLAB code and ARTeMIS (see next Section). 

Conversely, the other three mode shapes behave very 

symmetrically, with differences <4% between the two sides. 

 ARTeMIS results comparison 

The results from the ARTeMIS software were obtained by 

importing, via a .cfg text file, the geometric model of the 
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individual deck and the information regarding the actual 

position of the sensors, which was the same for the three 

instrumented spans. The acceleration time histories used are 

those from the pre-processing phase described in Section 2.2 

and relative to ambient vibrations. The results showed in this 

section refer to a single example file belonging to one of the 

instrumented decks, but the overall outputs, analysed manually, 

are in line with those of the other acquisitions on the same span 

and the others. All results refer to the analysis with ambient 

noise, i.e. eliminating train passages.  

At first, Frequency Domain Decomposition (FDD) was used, 

a frequency domain features extraction technique with manual 

peak selection to perform a preliminary analysis; the results 

obtained with this method are shown in Figure 9 on the left side. 

All natural frequency values estimated for the first three modes 

are very similar to those verified by MATLAB code on the 

entire dataset of available signals. As already observed through 

the AOMA code, there is a substantial similarity between the 

first and third modes. Moreover, as better detailed below, for 

each span, just one of the two modes named  s ‘ ode  ’ can be 

estimated by applying FDD. 

Stochastic Subspace Identification with Unweighted 

Principal Component (SSI-UPC) [7] was then used. Regarding 

the definition of the SSI parameters, the same model order 

range as selected in the MATLAB code, i.e. from nmin = 20 to 

nmax = 130, was set for direct comparability. Relative to the 

same example presented and discussed so far, the obtained 

results are shown in Figure 9 on the right side. 

Although only the representation of the mode referred to 

above as ‘mode 2a’ is shown here, the results for both modes 

2a and 2b are still identified with the same mode shape. 

Moreover, as can be noticed for the representative case here 

depicted, but is valid for all three instrumented decks, the 

estimated damping ratios for the first and second modes are 

slightly higher than those estimated and reported in the 

previous section.  

At the bottom of the images in Figure 9 (d), (e), and (f) the 

Modal Assurance Criterion (MAC) can be observed to verify 

the similarity between the identified modes. As already 

observed through the MATLAB AOMA code, a substantial 

similarity is observable between the first and fourth (denoted as 

Mode 3) modes. Similarly, it is possible to visualise complexity 

plots, which make it possible to indirectly verify whether a 

mode is physical or, for example, due to numerical effects or 

acquisition noise, given its complexity. 

Finally, the results in terms of identified frequencies for the 

different system identification approaches used are reported in 

Table 2. The analysis carried out on the signals of the three 

spans using commercial software ARTeMIS, using the FDD 

and SSI-UPC techniques and considering the first three modes, 

indicates a good correlation in terms of natural frequencies, 

while a discrepancy is noted in the estimation of modal 

damping, which on average is higher in ARTeMIS than in the 

MATLAB code. However, this parameter is known to be the 

most uncertain of those to be estimated [17] and, for this very 

reason, is generally not considered in terms of structural 

monitoring. Given the low standard deviation values, the same 

conclusions as in Section 4.1 can be replicated here.

 

 

Figure 9: Results obtained in ARTeMIS by applying the FDD method on the left, reporting mode 1 (a), mode 2 (b) and mode 3 

(c) manually selected from the signals PSD; and by applying SSI-UPC on the right, showing mode 1 (d), mode 2a (e) and mode 

3 (f) estimated automatically. 

( )

( )

(c)

(d)

(e)

(f)
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Table 2: Summary of the natural frequencies identified by 

ARTeMIS (all values in Hz) for the relevant modes in the 

three instrumented spans with the FDD and SSI-UPC 

methods, with computation of the average and standard 

deviation values (St.Dev). The sign ‘-’ indicates unidentified 

modes. 

  Mode 1 Mode 

2a 

Mode 

2b 

Mode 3 

F
D

D
 

Span 1 8.562 9.684 - 15.789 

Span 2 8.255  9.365 10.101  16.034  

Span 3 8.297  - 10.108  16.219  

Average 8.371 9.524 10.104 16.014 

St.Dev 0.166 0.226 0.005 0.216 

S
S

I-
U

P
C

 

Span 1 8.461 9.631 10.030 15.777 

Span 2 8.171  9.168 10.197  16.092  

Span 3 8.125  9.231  10.320  16.217  

Average 8.252 9.343 10.182 16.029 

St.Dev 0.182 0.251 0.145 0.227 

 

Finally, the mode shapes identified in Section 4.1 through the 

AOMA algorithm developed in MATLAB and those obtained 

with the two methods implemented in ARTeMIS, as in the 

present Section, are compared based on Modal Assurance 

Criterion (MAC), defined as [18]: 

𝑀𝐴𝐶(𝛷𝑗, 𝛷𝑘) =  
[(𝛷𝑗) ∗ (𝛷𝑘)]

2

[(𝛷𝑗) ∗ (𝛷𝑗)][(𝛷𝑘) ∗ (𝛷𝑘)]
 (1) 

 

The MAC correlation matrices for the instrumented span 1 are 

summarised in Table 3. The top part of the table shows the 

MAC values computed between the MATLAB-identified mode 

shapes and those obtained via the ARTeMIS SSI-UPC method, 

while the bottom section reports the MAC values with the FDD 

method. For the other couple spans the results are consistent 

with those presented.  

The resulting MAC values for the modes indicated as 1, 2a, and 

3 are reported, with the values of interest highlighted. Such 

values indicate a high correlation between the two sets of mode 

shapes.  

Table 3: MAC correlation matrices of mode shapes identified 

for span 1 computed between MATLAB code vs ARTeMIS 

SSI-UPC (top part) and MATLAB vs ARTeMIS FDD 

(bottom part). 

  MATLAB AOMA 

A
R

T
eM

IS
 

S
S

I 

 Mode 1 Mode 2a Mode 3 

Mode 1 0.9948 0.0202 0.9846 

Mode 2a 0.0455 0.9980 0.0046 

Mode 3 0.9667 0.0001 0.9958 

    

A
R

T
eM

IS
 

F
D

D
 

Mode 1 0.9846 4.44e-05 0.9882 

Mode 2a 0.0031 0.9697 0.0044 

Mode 3 0.9974 0.0189 0.9971 

    

The results suggest that the modes obtained from the SSI-

UPC automated method present excellent comparability with 

those obtained in MATLAB, showing a better reliability with 

respect to the FDD identifications. 

It is noteworthy to notice the high MAC values between modes 

1 and 3 in both cases, as expected by the nature of the mode 

shapes (see Figure 8 and Figure 9).  

 Effects of train passages 

The dynamic data recording included train transit events, 

presenting signals with much higher acceleration amplitudes 

but extremely short durations. The analysis of such portions of 

signals could be of particular interest in the case where less 

performing accelerometers are used, and as a consequence, are 

not able to detect vibrations due to environmental excitation, or 

in the case where load tests need to be performed on the 

structure, since in such loading conditions the identified modal 

parameters are in general more sensitive to longitudinal 

prestressing losses. These signals, if taken in their entirety (i.e. 

including train passages), become non-stationary and, 

therefore, difficult to analyse with algorithms intended for 

stationary analysis, such as SSI. For this reason, if one wants to 

exploit the excitation given by the passage of trains to extract 

damage-sensitive modal parameters, it is necessary to resort to 

other algorithms designed for modal identification and 

exploiting the excitation contained in the free vibration 

following a train passage. This aspect will be further explored 

as part of future developments of this project. 

5 CONCLUSIONS 

The primary aim of this study was to evaluate the 

applicability of a novel Automated Operational Modal Analysis 

(AOMA) algorithm for continuous Structural Health 

Monitoring (SHM) of a railway bridge. Three spans of this case 

study were instrumented with high-performance 

accelerometers. The workflow followed here, from the pre-

processing phase of the ambient vibration measurements data 

to the Automated OMA, made it possible to identify natural 

frequencies, damping ratios, and mode shapes for the first 

relevant modes in the frequency range from 0 to 20 Hz, 

discarding spurious identifications.  

The comparison between the AOMA algorithm developed in 

the MATLAB environment and the commercial software 

ARTeMIS shows that both approaches provide consistent and 

reliable results. The similarity in outcomes confirms the 

validity and robustness of the proposed method, ensuring its 

applicability. Since the bridge spans are nominally identical, 

the approach followed for this research study enables the 

estimation of the variability of the results under the same 

analysis methodology.  

Overall, in view of a broader approach to infrastructure 

monitoring, maintenance, and management, these findings 

validate the feasibility of using AOMA for continuous SHM of 

railway bridges and damage detection. 
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ABSTRACT: In Japan, visual inspections have been conducted as every five years duty since 2014. To improve the quality of 

inspections, it is necessary to record the evaluation of the structure's condition and its performance until the next inspection. 

However, methods and technical level depend on the judgement of the road administrator. A city of Kitami, Hokkaido, Japan 

where our university is located, was merged with one city and three towns in 2006, and has the largest area ranking in Hokkaido 

area and 4th in Japan. The total number of bridges, viaducts and functional culverts over 2.0 m length became more than doubled 

to 524 bridges compared to before the merger. Therefore, it is necessary to establish a labor saving and cost-effective method to 

assess the performance of bridge structures. In recent years, it has become possible to easily measure structural responses by the 

improvement of sensor performance, and more research has been conducted on maintenance management methods. Among those, 

vibration characteristics have a significant effect on the stiffness and mass of a bridge member and will be the index that grasps 

easily various damage effects. In this study, a damage location screening method was investigated for concrete slab bridges where 

segregation was suspected, based on correlation between mode shapes by using the COMAC. As a result, it is shown that these 

techniques will identify the damaged location and be used as an effective method to screen damaged locations. 

KEY WORDS: Damage screening method; Mode shape; Concrete slab bridge; Maintenance. 

1 INTRODUCTION 

In Japan, visual inspections have been conducted as every five 

years duty since 2014. Under the established inspection 

specification, to improve the quality of inspections, it is 

necessary to record the evaluation of the structure's condition 

and its performance until the next inspection. However, 

methods and technical level depend on the judgement of the 

road administrator [1]. A city of Kitami, Hokkaido, Japan 

where our university is located, was merged with one city and 

three towns in 2006, and has the largest area ranking in 

Hokkaido area and 4th in Japan. Farmland is spread out in the 

suburbs and road network is expanding widely. The total 

number of bridges, viaducts and functional culverts over 2.0 m 

length became more than doubled to 524 bridges compared to 

before the merger [2]. Therefore, it is necessary to establish a 

labor saving and cost-effective method to assess the 

performance of bridge structures. 

In recent years, it has become possible to easily measure 

structural responses by the improvement of sensor 

performance, and more research has been conducted on 

maintenance management methods [3], [4]. Among those, 

vibration characteristics have a significant effect on the 

stiffness and mass of a bridge member and will be the index 

that grasps easily various damage effects. Our research group 

has been studying a maintenance method using the COMAC 

focusing on a pedestrian bridge slab [5]. Consequently, it was 

shown that damage screening by co-relationship between mode 

shape is effective. 

In this study, a damage location screening method was 

investigated for concrete slab bridges where segregation was 

suspected, based on correlation between mode shapes by using 

the COMAC. 

2 TARGET BRIDGE 

 Bridge specifications 

The target bridge of this study is a reinforced concrete slab 

bridge. Since there is no detailed information such as 

construction records and drawing, shape measurements on site 

were taken as shown in Figure 1.  

 

  

 
a) Side view 

 

   
b) Cross section view 

 

Figure 1. General arrangement drawing (unit: mm). 
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 Inspection results 

Visual inspection was conducted to grasp degree of damage of 

each component by our research group in 2023. As a result of 

this inspection, widespread flaking has been found at the 

pavement on both sides, and corrosion and free lime can be seen 

on the reinforcement steel plates underside of the slab. 

Especially, icicle-like free lime has been found upstream side 

on the A2 abutment. Since this bridge does not have a 

waterproof layer on the concrete slab, it was suspected that 

segregation of the slab surface occurred more than in other 

areas. However, the pavement and steel plates make it difficult 

to see damage directly. A non-destructive survey by using 

electromagnetic waves was conducted on the pavement, but it 

did not obtain a clear waveform from the surface of the slab. 

Inspection status and results are shown in Figure 2 and Figure 

3. 

3 VIBRATION MEASUREMENT 

 Measurement conditions 

Vibration characteristics were identified from acceleration data 

obtained by passing vehicle. The location of the accelerometer 

and passing situation of the vehicle are shown in Figure 4. Since 

this bridge has a short span and a roughly square planar shape, 

nine accelerometers were installed at equal spacing on the 

pavement surface to identify the bowl-shaped vibration mode 

shapes. In addition, accelerometers of number 1~3 and 7~9 

were located under the tire lane, so they were moved 300mm 

outward. 

Accelerometer is 3-axis MEMS type manufactured by Japan 

Aviation Electronics Industry, shown in Figure 5, with a 

sampling rate of 2000Hz. The vehicle passed over the bridge at 

20km/h and measurements were taken 3 times in each direction. 

   
 

   
Figure 2. Inspection photos. 

 

  
a) Pavement surface                                                       b) Slab bottom surface 

 

Figure 3. Inspection results. 
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Figure 4. Measurement position and the test vehicle.                        Figure 5. Accelerometer (JA-70SA). 

    
a) 1st mode: 17.3Hz                                                   b) 2nd mode: 29.5Hz 

    
c) 3rd mode: 47.5Hz                                                   d) 4th mode: 68.8Hz 

    
e) 5th mode: 101.3Hz 

Figure 6. Mode shapes. 
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 Conditions for data processing 

The data processing was carried out by the following steps. 

First, the power spectrum of each set of acceleration data was 

obtained by Fast Fourier Transform (FFT). Next, natural 

frequencies were identified by the peak picking method. Finally, 

mode shapes were estimated from the filtered wave amplitude 

in each sensor node. 

 Measurement results 

As shown in Figure 6, the five vibration modes were identified 

from the experiment. In addition, the points at both ends where 

no accelerometers are plotted as zero value to make the mode 

shape easier to understand. 

As a result, the first mode was the lower vertical symmetric 

bending mode. The second mode was the lower torsional mode. 

The third mode was the unsymmetric bending mode. The fourth 

mode was the higher torsional mode. And the fifth mode was 

the higher vertical symmetric bending mode. 

4 ESTIMATION OF DAMAGE AREA BY MODE SHAPE 

CORRELATION 

 Estimation method 

As a result of the inspection shown in Figure 3, icicle-like free 

lime has occurred upstream side on the A2 abutment, then it is 

thought the segregation has progressed more than in other areas. 

At the relationship between sensor position and icicles position 

shown in Figure 7, it shows that the icicle-like free lime is near 

the sensor number 3. In this study, the COMAC (Coordinate 

Modal Assurance Criterion) [6] technique is adopted to try to 

identify the damaged location. This technique is the calculation 

of correlation values at each coordinate over all the correlated 

mode pairs via the use of equation (1). 

 

                 
COMAC(𝑗) =

∑ |{𝜙𝑜}𝑖
𝑗
{𝜙𝐷}𝑖

𝑗
|𝑁

𝑖=1

2

∑ [{𝜙𝑜}𝑖
𝑗
]
2

𝑁
𝑖=1 ∑ [{𝜙𝐷}𝑖

𝑗
]
2

𝑁
𝑖=1

         (1) 

 

Where, j is sensor number, N is the number of the modes, {co.}a 

and {rd.}i are the mode vectors in different situations 

respectively. In this study, the sensors were set at 9 locations, 

and the modes are 5 as total identified modes. 

Now, there was no initial data for this bridge, it wasn’t able to  

 

 

 
Figure 7. The icicle-like free lime and the position. 

 

   
                                     a) Pattern-1: Basic arrangement                                  b) Pattern-2: cross swapping 

 

   
                                  c) Pattern-3: swapping left and right                              d) Pattern-4: swapping upper and lower 

 

Figure 8. Swapping mode vectors. 
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calculate the COMAC. Therefore, the following assumption 

was assumed. Since the planar shape of this bridge is biaxially 

symmetrical, it was assumed that the mode vectors at the 

measurement points on the diagonal line can switch each other 

as shown in Figure 8b). The same assumption was also assumed 

for the axes at the center of the span and the center of the width 

as shown in Figure 8c) and Figure 8d). Hence, the COMAC 

was calculated by the four patterns combination as shown in 

Figure 8. However, since the sensor number 5 is located in the 

center, it cannot swap. And even numbered sensors are limited 

to only two patterns. Here, considering bridge shapes of small 

span concrete slab bridges that were managed by Kitami City. 

Since many of these bridges are almost symmetrical shape 

include skew angles, this swapping approach method is widely 

applicable. Many of bridge located on suburban routes with 

little traffic and cracks do not tend to occur on the underside of 

the slab. In addition, the cross section of the pavement has a 2% 

drainage gradient, and the ends of the girders are prone to 

damage due to pooled water. Therefore, simply identifying 

damaged areas at the four corners of the slab provides 

extremely useful information for maintenance. 

 Result of estimation 

The calculated results of the COMAC are shown in Figure 9. 

The vertical axis of this graph indicates the COMAC value, and 

the horizontal axis indicates the sensor number of the basic 

arrangement as shown in Figure 8a). As the COMAC 

approaches 1.0, it indicates that the correlation between these 

two different situations is high.  

In the COMAC comparison between patterns 1 and 2, it shows 

the values at sensors 3 and 7 are relatively low. Also, in the 

COMAC comparison between patterns 1 and 4, it shows the 

values at the sensor number 3 and 9 are more clearly lower. On 

the other hand, the COMAC result between patterns 1 and 

patterns 3 is less clear than the others, it barely lowered sensors 

1 and 3. From these results, the COMAC value at sensor 

number 3 is generally low. Here, a graph of the three results 

multiplied together is shown in Figure 8d) in order to clarify 

the difference in the COMAC values for each sensor. The 

correlation at the sensor number 3 was the single lowest. 

As a result of the above, it was considered that the COMAC 

value of sensor number 3 which was located near the icicle-like 

free lime was the lowest, the rigidity of the concrete slab may 

have been reduced by the pooled water at the invisible inside, 

it affected the mode shape of the sensor number 3. It was also 

shown that even without initial structural values or historical 

measurement data, it is possible to screen for the damaged 

locations by swapping vibration mode vectors, even the 

locations are limited. 

5 CONCLUSIONS 

In this study, a damage location screening method was 

investigated for concrete slab bridges where segregation was 

suspected, based on correlation between mode shapes by using 

the COMAC. The results of this study are as follows: 

・ According to the inspection results for the reinforced 

concrete slab bridge, it was suspected that segregation of 

the slab surface at the upstream side on the A2 abutment. 

・ Vibration characteristics were identified from acceleration 

measurement by vehicle passing, six vibration modes and 

natural frequencies were obtained.  

 

 
a) correlation Pattern-1 and Pattern-2 

 

 
b) correlation Pattern-1 and Pattern-3 

 

 
c) correlation Pattern-1 and Pattern-4 

 

 

 
d) multiplication between a) - c) 

 

Figure 9. COMAC results. 
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・ From the results of COMAC, the sensor number 3 which 

was located near the icicle-like free lime was the lowest. 

The rigidity of the concrete slab may have been reduced by 

the pooled water at the invisible inside, it affected the mode 

shape of the sensor number 3. 

・ Since many of these small span concrete slab bridges that 

were managed by Kitami City are almost symmetrical 

shape include skew angles, this swapping approach 

method is widely applicable. 
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ABSTRACT: This paper explores the use of single-pass Synthetic Aperture Radar (SAR) images to remotely measure the 
vibrational response of reflective ground targets, aiming to support vibration-based Structural Health Monitoring (SHM) of civil 
infrastructure. A Sub-Pixel Offset Tracking (SPOT) technique is applied to SAR imagery to reconstruct the time history of radial 
velocity, using the principle of micro-motion (m-m) effects induced by vibrating targets. Validation is by comparing SAR-
extracted velocity profiles with synchronous ground measurements of a vibrating Corner Reflector (CR). Three representative test 
cases— including single-frequency, and amplitude-modulated vibrations—with maximum displacement values of 24.1 mm, 1.1 
mm and 0.5 mm are analyzed using SAR images collected by the Umbra X-band SAR constellation. The extracted vibrational 
features are evaluated through time-domain correlation, spectral accuracy, and error metrics. Results confirm that SPOT can 
reconstruct velocity time histories and frequency content reliably for medium-to-high velocity scenarios (> 10 mm/s) and single-
frequency signals. Even under low-velocity, complex signal conditions, the main frequency peaks are detectable, with negligible 
frequency errors and correlations of 0.61 (time) and 0.82 (frequency). This study demonstrates the potential of SAR m-m 
processing for fully remote vibration-based SHM, offering a scalable, installation-free alternative for assessing structural 
dynamics. 

KEY WORDS: Structural Health Monitoring, Remote sensing, SAR-Imaging, Micro-Motion, Micro-Doppler, Modal Analysis. 

1 INTRODUCTION 

 Background 
Structural Health Monitoring (SHM) traditionally relies on 
contact-based sensors such as accelerometers to detect changes 
in a structure dynamic response [1]. While its claimed 
effectiveness in extracting the modal parameters – such as 
natural frequencies, damping ratios and modeshapes – they 
often face limitations in terms of costs, installation complexity, 
and sensor coverage [2], especially for large civil 
infrastructure. The need for prompt, scalable, and contactless 
sensing has led to increasing interest in remote sensing 
technologies [3]. Among these, spaceborne Synthetic Aperture 
Radar (SAR) stands out. SAR uses radar signals emitter from a 
sensor mounted on a satellite, to create images of the Earth 
surface. A SAR image appears as a complex matrix in range 
and azimuth coordinates, range corresponding to the radial 
direction (sensor to ground target) and azimuth to the direction 
of velocity of the platform (e.g., the satellite) motion [4]. 

 

 
Figure 1.1. SAR image (from Umbra Sensor [5]) reflectivity 

map of the Stonecutters Bridge (Hong Kong harbor) 
compared to its optical image. 

SAR has gained considerable attention thanks to its ability to 
cover large areas – ranging from 5 km to 200 km in width [6], 
[7] – and to detect ground movement through Interferometric 
SAR (InSAR), which reconstructs displacement trends by 
combining multiple images of the same area acquired over time 
[8]. Whilst InSAR is a widely recognized technique for 
measuring millimetric precision displacements [9], it requires a 
large dataset [10] and cannot extract SHM-related information 
from a single pass (i.e., single image). In contrast, recent 
literature shows that it is possible to overcome these limitations 
of InSAR and use single-pass SAR images to extract 
vibrational information from reflective ground targets, through 
different techniques based on the measurement of micro-
motions (m-m) using the micro-Doppler (m-D) phenomenon 
[11]. 

 Micro-motion in SAR images 
In a SAR image, each pixel contains magnitude (reflectivity) 
and phase information. Targets with strong reflectivity, such as 
metallic objects with sharp geometries, are prominently visible 
in the reflectivity map. Figure 1.1 shows an example of a 
reflectivity map alongside its corresponding optical image of 
the Stonecutters Bridge in Hong Kong. 

The spatial resolution of the SAR image – defined as the size 
of each pixel in meters along the range and azimuth directions 
– depends on several factors, particularly the acquisition time 
(𝑡𝑡a) in the azimuth direction. Acquisition time refers to the 
duration over which the satellite observes the same ground 
target, from the start to the end of the collection. This duration 
can vary significantly depending on the type of satellite sensor 
and the acquisition mode employed.  

Feasibility of micro-motion from SAR imagery for vibration-based SHM 
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Figure 1.2. SAR acquisition geometry in case of spotlight 

acquisition mode. 

In this work, SAR imagery collected in spotlight mode is 
studied. In this acquisition mode, the radar beam is 
continuously steered (or "squinted") to remain focused on the 
same ground area for an extended duration – typically between 
5 and 20 seconds – greatly improving azimuth resolution. An 
example of the geometry of the SAR collection is shown in 
Figure 1.2. For spotlight acquisitions, the azimuth resolution 
Δ𝑥𝑥 is given by Eq. (1): 

 Δ𝑥𝑥 = 𝜆𝜆 𝑅𝑅
2 𝑣𝑣p 𝑡𝑡a

 (1) 

where λ is the wavelength of the SAR sensor (typically 25-40 
mm for X-band radars), 𝑅𝑅 is the radial distance to the ground 
target, 𝑣𝑣p is the platform (satellite) velocity in the azimuth 
direction, and 𝑡𝑡a is the acquisition duration (or illumination 
time). When generating a SAR image, the scene is typically 
assumed to be static – i.e., objects still on the surface. However, 
when a target is moving, its position in the image will be shifted 
in the range-azimuth plane due to uncompensated signal phase 
shift associated with the motion (imparted by the Doppler 
effect), causing a defocusing and smearing of the object. A 
point moving at constant speed, will be displaced mainly in the 
azimuth direction by a distance governed by Eq. (2) [12]: 

 𝑥𝑥 = 𝑣𝑣r 𝑅𝑅
𝑣𝑣p

 (2) 

where 𝑣𝑣r is the radial velocity of the object, 𝑅𝑅 is the radial 
distance to the ground target, and 𝑣𝑣p is the platform velocity in 
the azimuth direction. Since it is the change in radial velocity 
𝑣𝑣r relative to the moving satellite that produces this effect, the 
radial velocity is the key quantity of interest in this study.  

Micro-motions of a target, such as vibrations, cause periodic 
fluctuations in the radar signal frequency due to the Doppler 
effect, where this is specifically referred to as micro-Doppler 
(m-D) [13]. In SAR imagery, this effect results in the formation 
of paired echoes along the azimuth direction around the real 
target [14], as shown in Figure 1.3. These effects are visible in 
the reflectivity image and can be exploited to measure the 
vibrations of reflective ground targets. The faster the velocity 
of vibration, the more evident these echoes appear.  
The earliest studies in this field, such as [15], explored how to 
extract vibrations and rotations from moving targets. Later 
works investigated the potential of employing this principle for 
SHM in civil engineering, applying it to a dam and a bridge, 
respectively [11], [16]. 

 

 
Figure 1.3. Micro-Doppler from an isolated target, vibrating 
vertically with an amplitude of 45 mm and frequency 0.8 Hz. 

 Research objective 
The objective of this work is to assess the feasibility of using 
single-pass SAR images to extract vibration characteristics (i.e. 
micro-motions) from isolated reflective targets. Specifically, 
the performance and limitations of the extraction technique are 
assessed under different conditions of target vibrational 
amplitude, frequency, and movement time history complexity. 
Three representative test scenarios are used, and synchronous 
ground truth measurements are used as validation benchmarks. 

The paper is structured as follows: Section 2 introduces the 
algorithm used to implement the m-m SAR method. Section 3 
provides an overview of the experimental validation setup and 
the SAR datasets employed. Section 4 presents the results along 
with a detailed discussion. Lastly, Section 5 reports conclusions 
and summarizes the key insights of the study. 

2 METHODOLOGY 

 Sub-Pixel Offset Tracking (SPOT) 
The m-m SAR technique uses single-pass SAR imagery to 
estimate the radial velocity time history of a ground target 
within the observation window of the SAR image. The core 
algorithm used for this purpose is the Subpixel-Offset-Tracking 
(SPOT), as the one used in [11] and [16]. After cropping the 
area around the target (Region of Interest – ROI), SPOT 
segments the SAR image (full-aperture), into N sub-images 
(sub-apertures), each focused from a fraction of the full image 
observation time. To achieve this, a Fast Fourier Transform 
(FTT) is performed on the ROI along the azimuth dimension to 
convert the data from range versus azimuth to range versus 
azimuth-frequency. A segmentation in sub-apertures along the 
azimuth frequency axis is then performed using window 
lengths defined by the aperture fraction 𝛼𝛼 (see Figure 2.1): 

 𝛼𝛼 = 𝑡𝑡sap
𝑡𝑡a

 (3) 

where 𝑡𝑡sap represents the duration in time of the sub-aperture, 
and 𝑡𝑡a the acquisition duration (full aperture). Adjacent sub-
apertures can share portions of the azimuth frequency domain 
(and therefore time); as controlled by the overlap ratio Ω: 

 Ω = 𝑡𝑡ol
𝑡𝑡sap

 (4) 

where 𝑡𝑡ol is the overlap duration between adjacent sub-
apertures.  
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Given 𝛼𝛼 and Ω, the total number of sub-apertures 𝑁𝑁 can be 
computed as: 

 𝑁𝑁 = 𝛼𝛼−1−Ω
1−Ω

 (5) 

The 𝑁𝑁 azimuth-frequency sub-apertures are individually 
transformed into to 𝑁𝑁 range versus azimuth images by means 
of an Inverse FFT. The target azimuth displacement 𝑥𝑥 is then 
tracked across the sequence of sub-apertures using 2D cross-
correlation. Each target azimuth shift 𝑥𝑥𝑘𝑘 – given a specific k-th 
sub-aperture – depends on the instantaneous value of the radial 
velocity 𝑣𝑣r,𝑘𝑘. Therefore, it is possible to invert Eq. (2) to obtain 
the value of the radial velocity given the azimuth shift 𝑥𝑥𝑘𝑘: 

 𝑣𝑣r,𝑘𝑘 =  𝑥𝑥𝑘𝑘 𝑣𝑣p
𝑅𝑅

 (6) 

The time vector associated with the reconstructed velocity is 
a linearly spaced sequence of 𝑁𝑁 values, starting at 𝑡𝑡sap/2 and 
ending at 𝑡𝑡a − 𝑡𝑡sap/2. The temporal resolution is then given by: 

 Δ𝑡𝑡 = 𝑡𝑡a−𝑡𝑡sap
𝑁𝑁−1

 (7) 

To ensure the desired frequency content is captured by the 
time series, the sampling frequency must satisfy the Nyquist 
criterion for the maximum frequency, 𝑓𝑓max, to be observed: 

 𝑓𝑓s = 1
Δ𝑡𝑡
≥ 𝑓𝑓max (8) 

There are two main ways to increase the sampling frequency: 
reduce the aperture fraction 𝛼𝛼, or increase the overlap ratio  
Ω. It should, however, be noted that reducing the aperture 
fraction shortens the illumination time for each sub-aperture 
and consequently worsens the azimuth resolution of each sub-
aperture image. When the aperture fraction becomes too small, 
the target may no longer appear as a distinct feature, thereby 
degrading the tracking performance. This imposes a practical 
limit on how finely the aperture can be segmented, although 
this can be mitigated by increasing the overlap. 
 

 
Figure 2.1. Top: range versus azimuth ROI (with highlighted 
and the azimuth shift 𝑥𝑥); bottom: FFT of ROI along azimuth, 

yielding range versus azimuth frequency data, with the 
segmentation of sub-aperture data indicated. 

The fundamental steps of the SPOT algorithm are as follows: 
1. Crop the SAR image around the ROI; 
2. Apply an FFT along azimuth to convert the ROI to the 

range versus azimuth-frequency domain; 
3. Segment the azimuth-frequency spectrum into 𝑁𝑁 sub-

apertures according to selected parameters 𝛼𝛼 and Ω; 
4. Apply IFFT to obtain 𝑁𝑁 range versus azimuth sub-

aperture images; 
5. Track the azimuth pixel displacement of the target across 

sub-apertures; 
6. Compute the velocity and the associated time-vector. 

3 EXPERIMENTAL VALIDATION 

 Tests sites and ground instrumentation 
To evaluate the effectiveness of the m-m SAR technique, 
controlled experiments were conducted using artificially 
vibrating targets with ground truth data measured 
synchronously with the satellite passage. Tests took place in 
open fields in Trento, Italy, and Glasgow, UK, to avoid 
interference from nearby objects (see Figure 3.1).  

The instrumentation setup included a Corner Reflector (CR) 
mounted on a shaker device, with motion captured using a 
Linear Variable Displacement Transducer (LVDT) (see Figure 
3.2). The sensor recorded vertical displacement at a sampling 
rate of 50 Hz, where this was later projected onto the satellite 
radial direction and synchronized to match the satellite passage. 
As the m-m SAR algorithm measures velocity rather than 
displacement, the ground displacement signals were 
numerically differentiated to obtain the synchronized radial 
velocity profiles. This allowed for a direct comparison between 
SAR measured velocities and ground truth data. This study 
focuses on three representative test configurations, summarized 
in Table 1. The shaker was set to simulate various amplitudes 
and types of vibrational signals, including single-frequency 
sinusoidal oscillations and amplitude-modulated waveforms. In 
the context of civil engineering, the amplitude of structural 
vibrations can vary considerably depending on the structural 
type. For long-span bridges, typical displacements range from 
0.1 mm to 5 mm, corresponding to radial velocities of 
approximately 1–10 mm/s or lower. To replicate these 
conditions, the test campaign was designed to progressively 
study vibrations beginning with well-defined, high-amplitude 
motions to those of lower-amplitude more relevant to SHM of 
bridges. The maximum target velocities for Tests 1, 2, and 3 
were 95.5 mm/s, 10.8 mm/s, and 3.1 mm/s, respectively, 
corresponding to peak vertical displacements of 24.1 mm, 
1.1 mm, and 0.5 mm. 

To refine the analysis, the SAR measured velocity time 
histories were fitted using a model based on the superposition 
of multiple sinusoidal components. First, the SAR velocity 
spectra were upsampled by a factor of four, and dominant 
frequencies were identified from the FFT. For Tests 1 and 2, 
the frequency corresponding to the primary peak was selected, 
while for Test 3, being amplitude modulated, the three most 
dominant frequency components were extracted. These 
extracted frequencies were then used to fit sinusoidal models 
by optimizing amplitude and phase only. This procedure 
allowed for the reconstruction of refined, high-resolution 
velocity time histories. 
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 SAR acquisitions 
Satellite data were collected by the Umbra X-band SAR 

constellation, capable of high-resolution spotlight-mode 
imaging. Spotlight acquisition was selected to maximize the 
collection time, and therefore the azimuth resolution.  

Commonly, SAR providers deliver Multi-Look Complex 
(MLC) images, which are generated by averaging multiple 
looks in the azimuth and/or range directions from the same 
observation in order to reduce speckle noise. While this 
averaging improves image interpretability, it also reduces the 
effective resolution (due to lower acquisition time) and 
suppresses the micro-motion effects (i.e., paired echoes), that 
are critical to this study. To preserve these effects, images were 
provided by Umbra in the form of Single-Look Complex (SLC) 
products, containing a single, unaveraged observation in both 
range and azimuth directions. These were processed using the 
polar format algorithm.  

The three SAR images were acquired using sensors operating 
at a central frequency of 9.6 GHz, corresponding to a 
wavelength of λ = 31 mm. The main characteristics of the SAR 
acquisitions used in the three tests are summarized in Table 1. 

 Evaluation of the performance 
The ground-measured radial velocities served as a validation 
benchmark to quantify the performance of SPOT in 
reconstructing the time history of radial velocity of the target, 
during the SAR acquisition. To achieve this, the accuracy was 
evaluated according to the following metrics: 
• Root Mean Square of the Error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅), computed in the 

time domain by comparing the SAR-reconstructed and 
ground-measured velocities at matching timestamps. 

• Frequency error (𝜖𝜖𝑓𝑓), evaluated as the residual between 
the true frequency and the frequency measured with m-m 
SAR, corresponding to the highest peak of the FFT; 

• Correlation in time (𝜌𝜌𝑡𝑡) and frequency (𝜌𝜌𝑓𝑓) domains. 

 

Table 1. Test configurations. The table reports: type of signal 
tested (Signal type), principal frequency of vibration (𝑓𝑓), 
maximum ground vertical displacement (𝑑𝑑max), maximum 
radial velocity value (𝑣𝑣𝑟𝑟,max), SAR sensor name (Sensor), Pulse 
Repetition Frequency (PRF), acquisition duration (𝑡𝑡a), 
incidence angle (𝜃𝜃), platform velocity (𝑣𝑣p), slant-range distance 
(𝑅𝑅), range resolution (Δ𝑥𝑥), and azimuth resolution (Δ𝑥𝑥). 

Quantity Test 1 2 3 
Signal type  [-] SIN SIN AM 
𝑓𝑓  [Hz] 1 2 1 
𝑑𝑑max  [mm] 24.1 1.1 0.5 
𝑣𝑣𝑟𝑟,max  [mm/s] 95.5 10.8 3.1 
Date [d/m/y] 18/11/23 14/03/24 30/01/25 
Time UTC [H:M:S] 20:46:27 21:29:22 10:46:27 
PRF [kHz] 5.75 6.31 7.75 
𝑡𝑡a  [s] 6.04 5.95 14.70 
𝜃𝜃  [°] 54.8 49.4 34.5 
𝑣𝑣p  [km/s] 7.69 7.67 7.65 
𝑅𝑅  [km] 844 795 683 
Δ𝑦𝑦  [mm] 0.18 0.17 0.13 
Δ𝑥𝑥  [mm] 0.22 0.21 0.07 

 
(a) (b) 

Figure 3.1. Tests Locations in (a) Trento, Italy; and (b) 
Glasgow, UK. 

 
(a) (b) 

Figure 3.2. Instrumentation employed: (a) shaker and 
acquisition system, (b) Detail of CR and LVDT. 

4 RESULTS AND DISCUSSION 
This section highlights the results of the SPOT m-m 
measurement technique, as well as the performance evaluation 
through the comparison with ground data. The comparison is 
performed both graphically (see Figure 4.1, Figure 4.2, Figure 
4.3) and numerically (Table 2), using error metrics such as 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, frequency error, and Pearson’s correlation coefficients 
in time and frequency domains. Results focus on Tests 1, 2, and 
3 as representative cases for varying vibration conditions. Each 
test was processed using the workflow described in Section 2, 
with extraction parameters summarized in Table 2.  

Table 2. Metric results. The table reports for each test: 
maximum radial velocity value (𝑣𝑣𝑟𝑟,max), acquisition duration 
(𝑡𝑡a), aperture fraction (𝛼𝛼), overlap ratio (Ω), number of sub-
apertures (𝑁𝑁), sampling frequency (𝑓𝑓s), frequency resolution 
(Δ𝑓𝑓), 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 relative to max velocity value 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅%), frequency residual error (𝜖𝜖𝑓𝑓), correlations in time 
(𝜌𝜌𝑡𝑡) and frequency (𝜌𝜌𝑓𝑓) domains for the raw m-m SAR signal. 

Quantity Test 1 2 3 
𝑣𝑣𝑟𝑟,max  [mm/s] 95.5 10.8 3.1 
𝑡𝑡a  [s] 6.04 5.95 14.70 
𝛼𝛼  [%] 7.6 4.3 4.5 
Ω  [%] 35 40 49 
𝑁𝑁  [-] 23 38 42 
𝑡𝑡sap  [s] 0.46 0.27 0.66 
𝑓𝑓s  [Hz] 3.23 6.49 2.92 
Δ𝑓𝑓  [Hz] 0.18 0.18 0.07 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  [mm/s] 30.4 6.7 1.2 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅%  [%] 31.8 62.0 38.7 
𝜖𝜖𝑓𝑓  [Hz] 0.03 0.06 0.02 
𝜌𝜌𝑡𝑡   [-] 0.89 0.65 0.66 
𝜌𝜌𝑓𝑓  [-] 0.98 0.79 0.71 
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Figure 4.3. Test 3: results and comparison with ground data. 

Figure 4.1. Test 1: results and comparison with ground data. 

Figure 4.2. Test 2: results and comparison with ground data. 
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Figure 4.7. Test 3: results of model fitting on the SAR measurement, using frequencies of 0.80 Hz, 0.99 Hz, 1.16 Hz. 

Figure 4.6. Test 2: results of model fitting on the SAR measurement, using a frequency of 2.01 Hz. 

Figure 4.5. Test 1: results of model fitting on the SAR measurement, using a frequency of 1.02 Hz. 

Figure 4.4. Upsampled SAR FFT spectra compared to ground truths. Plots shows the most dominant frequencies extracted. 
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 Test 1 – High-velocity, single-frequency vibration 
Test 1, presented in Figure 4.1, features the simplest case, 

with a low single-frequency oscillation (1 Hz) and relatively 
high vibration velocity (𝑣𝑣𝑟𝑟,max = 95.5 mm/s). The parameters 
to obtain the best extraction possible were an aperture fraction 
𝛼𝛼 = 7.6% and overlap ratio Ω = 43%, resulting in a sub-aperture 
duration of 𝑡𝑡sap = 0.39 s and sampling rate of 𝑓𝑓s = 3.23 (well 
above the Nyquist rate for the frequency of interest, 1 Hz). The 
limited acquisition time led to a spectral resolution of Δ𝑓𝑓 = 
0.18 Hz. The extracted signal closely matches the ground truth 
in both time and frequency domains, proved by high Pearson’s 
correlation coefficients, with 𝜌𝜌𝑡𝑡 = 0.89 and 𝜌𝜌𝑓𝑓 = 0.98 for time 
and frequency, respectively. 

The dominant vibration frequency is accurately identified 
with frequency residual error of 𝜖𝜖𝑓𝑓 = 0.03 Hz (lower than the 
frequency resolution), as well as a correct estimation of the 
amplitude of the peak in the frequency spectrum. The RMSE in 
the extraction of the velocity time history is 30.4 mm/s 
(corresponding to a 31.8% relative to the true peak velocity 
value).  

 Test 2 – Mid-velocity, single-frequency vibration 
Test 2, shown in Figure 4.2, presents another constant 
frequency extraction, however with a frequency of 2 Hz and a 
vibration amplitude reduced by an order of magnitude to 𝑣𝑣𝑟𝑟,max 
= 10.8 mm/s, making it a more challenging case. Here, the 
aperture fraction 𝛼𝛼 was decreased to 4.3%, and the overlap ratio 
Ω set to 40%, resulting in a sub-aperture duration 𝑡𝑡sap of 0.27 
seconds and a sampling rate 𝑓𝑓s  of 6.49 Hz.  

The main frequency component is correctly identified, being 
the error 𝜖𝜖𝑓𝑓 = 0.06 Hz (lower than the resolution Δ𝑓𝑓 = 0.18 Hz). 
Some local discrepancies appear in the time-domain signal, 
including underestimation and overestimation of peak values. 
Despite the lower absolute RMSE (6.7 mm/s), the relative error 
is 62.0% due to the lower ground truth amplitude. The time-
domain correlation decreases significantly due to the impact of 
measurement noise, with 𝜌𝜌𝑡𝑡 = 0.65, while frequency domain 
correlation remains satisfactory at 𝜌𝜌𝑓𝑓 = 0.79. The spectrum also 
shows minor spurious peaks at 1 Hz and 2.7 Hz. 

 Test 3 – Low-velocity, amplitude-modulated vibration 
Test 3, represented in Figure 4.3, involved a more complex 

amplitude-modulated signal with significantly lower velocity 
magnitude of 𝑣𝑣𝑟𝑟,max = 3.1 mm/s, which is more representative 
of vibrations from long span bridges or viaducts. An aperture 
fraction 𝛼𝛼 of 4.5% and an overlap ratio Ω = 49% were used. 
This configuration resulted in a sub-aperture duration of 0.66 
seconds and a sampling frequency of 𝑓𝑓s = 2.92 Hz. In this case 
spectral resolution was finer, of 0.07 Hz, thanks to the longer 
acquisition time.  

Despite the reduced signal energy, the algorithm extracts the 
carrier frequency, with a low residual error of 𝜖𝜖𝑓𝑓 = 0.02 Hz 
(within the frequency resolution Δ𝑓𝑓 = 0.07 Hz) and a frequency 
domain correlation 𝜌𝜌𝑓𝑓 = 0.71 – both comparable to Test 2. Time 
domain correlation is satisfactory at 𝜌𝜌𝑡𝑡 = 0.66, while the RMSE 
for this extraction is 1.2 mm/s, with a relative error of 38.7%, 
the latter being more comparable to Test 1. This suggests that 
the dominant frequency of vibration has an impact on the 
quality of the extraction.  

 SAR data fitting 
Fitting the SAR-extracted data significantly improved the 
quality of the time-domain signal, both visually and 
quantitatively. As shown in Figures 4.5, 4.6, and 4.7, temporal 
resolution was enhanced through model-based fitting without 
altering the extraction parameters α or Ω. For each test, the 
dominant frequency components were identified from the 
upsampled FFT (upsampling factor = 4), and a sum of sinusoids 
with those frequencies was then fitted to the SAR data by 
optimizing only amplitude and phase. Results are as follows: 
• Test 1: From the upsampled FFT, a frequency of 1.02 Hz 

was extracted. A single sinusoid was fitted, yielding an 
RMSE improvement from 30.34 to 17.34 mm/s, and a time-
domain correlation increase from 0.89 to 0.97. 

• Test 2: The extracted frequency was 2.01 Hz. After fitting, 
RMSE dropped from 6.72 to 1.58 mm/s, and ρₜ improved 
from 0.79 to 0.98. 

• Test 3: Multiple dominant frequencies were identified at 
0.80, 0.99, and 1.16 Hz. Fitting a sum of three sinusoids led 
to an RMSE reduction from 1.20 to 0.72 mm/s, and a 
correlation increase from 0.76 to 0.86. 

These results demonstrate that using prior knowledge about 
the expected oscillatory behavior can significantly enhance the 
extraction quality. By narrowing the solution space to plausible 
signal shapes, fitting allows more accurate recovery of the 
target vibration profile. 

5 CONCLUSIONS  
This paper presented a feasibility study on the use of single-

pass SAR images for extracting vibration characteristics from 
oscillating ground targets via the Sub-Pixel Offset Tracking 
(SPOT) micro-motion measurement technique. The algorithm 
was validated through a series of experimental tests, involving 
an isolated moving Corner Reflector (CR). The performance of 
the technique was assessed against synchronously acquired 
ground truth data. 

Results demonstrate that SPOT can accurately reconstruct 
vibration-based information, capturing the dominant 
frequencies of motion with frequency errors well under the 
spectral resolution, even under varying conditions of signal 
amplitude, frequency, and complexity. The algorithm is also 
able to reconstruct the time histories of radial velocity with 
correlation values ranging from 0.65 to 0.98 (for the worst case, 
and best extraction case, respectively) and relative errors 
RMSE% from 31.8% to 62.0%. For high-velocity, single-
frequency oscillations, SPOT achieves excellent correlation 
with ground truth in both time and frequency domains, 
respectively at 0.88 and 0.95, with relative RMSE values below 
32%. When applied to more challenging low-velocity and 
amplitude-modulated cases, the method still proves effective in 
detecting the carrier frequency (with frequency correlations 
spanning 0.71 to 0.79) and producing meaningful velocity 
profiles, although the quality declines as vibration velocity 
decreases, and as frequency content becomes more complex.  

Using prior knowledge about the expected oscillatory 
behavior can significantly enhance the extraction quality. 
Results from model fitting feature a significant reduction in 
RMSE and an improvement in correlation, even for the lowest 
velocity amplitude modulated case, improving from 1.20 mm/s 
to 0.72 mm/s (with a correlation increase from 0.66 to 0.86). 
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Limitations concerning m-m SAR measurements are 
primarily attributed to SAR acquisition constraints, such as 
short acquisition time, noise and image clutter. Alternative 
processing strategies could be explored to overcome these 
issues, particularly those using the phase information rather 
than the reflectivity. Additionally, the noise-affected velocity 
profile, in combination with limited acquisition durations, 
limits the application of m-m SAR for time domain modal 
extractions, to reconstruct not only the natural frequency but 
possibly the modeshapes and damping coefficients. On the 
other hand, the algorithm proves to be quite effective for 
extracting the frequency spectrum. 

Despite these challenges, the study confirms that SAR m-m 
measurement opens new possibilities for remote vibration-
based SHM. Future work will focus on refining the 
methodology by optimizing the extraction parameters, 
integrating phase-domain information, improving noise 
suppression models, and validating the algorithm on real-world 
bridge structures. 
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ABSTRACT: The data-driven approach to vibration-based Structural Health Monitoring aims to detect anomalies in the monitored 

modal properties. A key step in this framework is compensating for the normal variability in the data, which is due to the strong 

influence of environmental and operational variables on the structure’s dynamic behavior. The decision-making process is then 

formulated as a binary classification problem, supported by an appropriate alarm threshold to distinguish between normal and 

anomalous structural conditions. The threshold is typically set on the statistical distribution of the novelty index computed during 

the training phase, often assuming a Gaussian distribution of the data. However, anomaly detection requires a more refined 

modeling of the distribution tails. The present paper investigates the use of Extreme Value Theory for threshold setting, focusing 

on the Block Maxima sampling technique and the Generalized Extreme Value distribution. A comparison with conventional 

approaches demonstrates the significant accuracy achievable through the extreme value theory. The natural frequency time 

histories of the KW51 bridge are used as benchmark data to highlight the method’s effectiveness in improving the reliability of 

early damage detection. 

KEY WORDS: Data-driven Structural Health Monitoring; Novelty detection; Threshold setting; Environmental and operational 

variables; Extreme Value Theory. 

1 INTRODUCTION 

The remote and automated evaluation of the structural 

conditions through Structural Health Monitoring (SHM) is 

crucial in the modern management of civil engineering assets. 

SHM enables a transition from the traditional scheduled 

maintenance approaches to proactive strategies that exploit the 

early damage identification, thereby enhancing safety and 

reducing long-term maintenance costs [1]. In the context of 

SHM, damage detection is the first step of damage 

identification, and it is commonly approached through data-

driven methodologies. In this framework, the damage detection 

problem is cast as a novelty detection one [2], [3]. This strategy 

involves extracting damage-sensitive features (DSFs) from 

sensor data through automatic Operational Modal Analysis 

(OMA) techniques, which are further analyzed to detect 

deviations from a baseline condition. As such, damage 

detection is framed as a binary classification problem, aiming 

to distinguish the anomalous structural behavior, caused by 

either progressive degradation or sudden events, from the 

normal operating state [4]. 

In vibration-based SHM the modal properties or other related 

parameters are often selected as DSFs. Several applications 

reported in the literature consider the natural frequencies as 

DSFs because they can be easily obtained from measurements 

of the ambient vibration response of structures by a few, 

appropriately located sensors. Even if natural frequencies are 

relatively easy to monitor and informative for the first level 

damage detection, they are also very sensitive to the influence 

of environmental and operational variables (EOVs), such as 

temperature changes over time. An accurate damage detection 

therefore requires the application of appropriate compensation 

techniques to isolate the changes in the structural behavior due 

to damage or degradation phenomena from environmental and 

operational effects on the selected DSFs [5], and, as a 

consequence, enhance the reliability of the SHM outcomes. 

Such a compensation relies on setting data normalization 

models developed with reference to data collected in a training 

phase. 

After the data normalization stage, the DSFs are transformed 

into novelty indexes (NIs), which are scalar indicators used to 

quantify how much a given observation deviates from the 

expected behavior. In order to assess whether the observed 

structural response should be considered anomalous, 

appropriate threshold values must be set, so that if the NIs 

overcome the threshold a warning can be issued. This is, 

therefore, another key step in the implementation of reliable 

modal based SHM strategies, in addition to the previously 

mentioned compensation of environmental and operational 

influence on DSFs (Figure 1). 

A critical aspect in threshold setting is related to the need of 

defining it in an unsupervised context, that is to say, by using 

only data from the reference (nominally, healthy) condition of 

the structure. In the common practice, a Gaussian distribution 

for NIs is often assumed for the sake of threshold setting. 

However, this assumption is frequently inadequate for the 

novelty detection tasks [1]. As a result, setting the threshold 

based on a predefined data distribution can be misleading. 

Moreover, this approach does not take into account that 

detecting rare, extreme deviations is the focus of any SHM 

strategy, and, as such, an appropriate data-driven threshold 

setting approach should rely on the careful analysis of the tails 

of NI distribution. 
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Figure 1. Flowchart of a typical data-driven SHM framework. 

The Extreme Value Theory (EVT) represents a suitable 

alternative to the approaches based on the assumption of a 

Gaussian data distribution, as it focuses on the tail of the 

distribution – where anomalies are most likely to occur – 

thereby enabling a more precise threshold estimation [6]. 

This paper discusses the problem of the appropriate alarm 

threshold setting in the context of modal-based damage 

detection. A comparative assessment of different threshold 

setting strategies is presented by processing a benchmark 

dataset available in the literature. The analysis starts from the 

computation of NIs from natural frequency time histories 

through the combination of Gaussian Mixture Model (GMM) 

and Mahalanobis Squared Distance (MSD) to mitigate the 

influence of EOVs [7]. Afterwards, an EVT-based approach is 

applied for threshold setting. It resorts on the Block Maxima 

(BM) method to identify extreme observations and to model 

them according to the Generalized Extreme Value (GEV) 

distribution [8]. The effectiveness of the proposed approach in 

enhancing the robustness of novelty detection in modal-based 

SHM systems is demonstrated through quantitative 

comparisons with standard threshold setting methods. 

The paper is structured as follows: after the introduction, 

Section 2 describes the methodological framework, detailing 

both the compensation strategy for data normalization with 

respect to the EOV influence and the computation of the NI 

time series. Moreover, Section 2 also outlines the EVT-based 

procedure for threshold setting. Section 3 presents the 

applicative case study and the characteristics of the benchmark 

dataset, followed by the analysis and discussion of results. The 

key findings of the study are finally summarized in the 

conclusions. 

2 METHODOLOGY 

 Multivariate modeling of damage sensitive features 

under EOV influences 

The present section describes the approach adopted for the 

compensation of EOV effects on DSFs and the computation of 

the NI. In this context, the matrix X ∈ ℝ𝑛×𝑚 represents the 

training dataset, holding n observations of the natural 

frequencies of m vibration modes. These are experimentally 

collected under varying environmental and operational 

conditions at the beginning of the monitoring period or, more 

generally, in a reference monitoring period.  

GMM is herein applied to represent X as a finite mixture of 

multivariate Gaussian distributions. The objective of this data 

processing stage is the effective modeling of the dominant 

feature clusters associated with the reference states of the 

monitored structure. The mixture density function is formally 

defined as: 

 𝑓𝑚𝑖𝑥(𝒙) = ∑ 𝜂𝑞𝑓𝑞(𝒙|𝝁𝑞 , 𝚺𝑞)

𝑄

𝑞=1

 (1) 

Here, 𝑓𝑞(𝒙|𝝁𝑞 , 𝚺𝑞) denotes the multivariate Gaussian 

probability density function of the q-th component, fully 

characterized by the mean vector 𝝁𝑞, the covariance matrix 𝚺𝑞, 

and the mixture weight 𝜂𝑞. The model parameters are obtained 

by the Maximum Likelihood Estimation (MLE) method, where 

the maximization of the likelihood function is achieved by the 

Expectation-Maximization (EM) algorithm [9]. 

The optimal number of components Q in Equation (1) is 

determined by minimizing the Bayesian Information Criterion 

(BIC), a standard model selection metric that penalizes model 

complexity to prevent overfitting [7]. This probabilistic 

framework supports the implementation of a robust anomaly 

detection methodology by leveraging the different components 

of the mixture model while inherently accounting for the 

influence of EOVs.  

In order to obtain the NI time series for anomaly detection, 

the MSD is adopted as a multivariate metric to measure the 

distance between the observed DSFs and the GMM 

components. It incorporates both variable scales and 

correlations [10], and, given the generic test observation z, its 

MSD relative to each GMM component can be computed as 

follows: 

 𝑀𝑆𝐷𝑞(𝒛) = (𝒛 − 𝝁𝑞)𝚺𝑞
−1(𝒛 − 𝝁𝑞)

𝑇
 (2) 

where 𝝁𝑞 and 𝚺𝑞 denote the mean vector and covariance matrix 

of the q-th GMM component, respectively. The NI 

corresponding to the generic test observation z is then given by 

the minimum distance across all components: 

 𝑁𝐼(𝑧) = min{𝑀𝑆𝐷𝑞(𝒛)} (3) 

Following the above-described approach, if a new observation 

is consistent with the reference structural condition, it will be 

close to one of the GMM components computed in the 

reference training period, and it will yield a low NI value. 

Conversely, if the structure has transitioned to a damaged state, 

the new observations will significantly diverge from all the 

GMM components in the training stage, resulting in larger NI 

values with respect to the undamaged condition. 

 Threshold setting methods for Novelty Detection 

In the context of novelty detection, the EVT-based approach 

provides a robust statistical framework for threshold 

determination. This method is grounded in the theorem stating 

that the distribution of extreme values can converge only to one 

of three canonical forms: Gumbel, Weibull, or Fréchet 

distributions. To simplify the process, the GEV distribution is 

D t  c u s t o 

 utom t c OM  

                         

 t t st c  mode     
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employed, as it unifies all three types within a single parametric 

family. The GEV distribution is expressed as follows [8]: 

 𝐺(𝑌) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑌 − 𝜆

𝜎
)]

−
1
𝜉

} (4) 

where ξ, σ and λ are the shape, scale, and location parameters, 

respectively. It is defined on the set of maxima Y, satisfying the 

condition 1 + 𝜉(𝑌 − 𝜆)/𝜎 > 0, with 𝜆 and 𝜉 real-valued 

parameters, and  𝜎 > 0. The unknown parameters are estimated 

by using the MLE method. 

In order to define the population of extreme values to be fitted 

by the GEV distribution, the BM method is employed. Thus, 

the NI time series in the training period is divided into non-

overlapping blocks of equal length, and the maximum value is 

selected in each block. Assuming that the structure is initially 

undamaged (null hypothesis), and selecting a significance level 

𝛼, the threshold can be defined as the corresponding quantile 

of the fitted distribution [8]: 

 𝑡 = {
𝜆 −

𝜎

𝜉
[1 − {−𝑙𝑜𝑔(1 − 𝛼)}−𝜉], 𝜉 ≠ 0

𝜆 − 𝜎𝑙𝑜𝑔{−𝑙𝑜𝑔(1 − 𝛼)},                   𝜉 = 0
 (5) 

In addition to the previously described approach based on EVT, 

in this study also a more conventional method for threshold 

setting is considered for the purpose of comparative 

assessment. It consists in setting a predefined False Alarm Rate 

(FAR), interpreted as the tolerable proportion of false alarms in 

the training data. The threshold t is then calculated as the cut-

off value that satisfies [11]: 

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 (𝑡)

𝑛
= 𝐹𝐴𝑅 (6) 

Another widely adopted strategy for threshold setting is based 

on the assumption of Gaussian distribution of the DSFs and the 

use of MSD as the novelty index. Under these assumptions, the 

NI follows a 𝜒2 distribution, and the threshold can be directly 

obtained as the quantile of the distribution at the significance 

level 𝛼 [7]. 

For the sake of the comparative performance assessment of 

the considered threshold setting approaches, the following 

parameters are computed: the number of false positives (FPs), 

the number of false negatives (FNs), and the Youden index. 

The latter, derived from the Receiver Operating Characteristic 

(ROC) curve, provides a measure of the balance between 

sensitivity (the true positive rate) and specificity (the true 

negative rate) and results in a single value that reflects the 

overall diagnostic performance of the considered approach 

[12]. 

3  N LY I  OF THE BENCHM RK D T  ET 

The data collected from the SHM system installed on the 

KW51 bridge in Belgium are processed for the objectives of the 

present study. The KW51 bridge is a steel bowstring railway 

bridge located in Leuven, Belgium (Figure 2). A detailed 15-

month monitoring program was conducted between late 2018 

and early 2020 to capture the dynamic behavior of the bridge 

under operational conditions [13]. Acceleration data collected 

during this period were processed using Operational Modal 

Analysis techniques [14], allowing the identification of the first 

14 natural frequencies of the bridge. 

 

 

Figure 2. KW51 bridge in Leuven, Belgium [13]. 

During the monitoring period, the bridge was retrofitted to 

correct a construction defect identified during inspection. The 

intervention involved strengthening the connection between the 

diagonals, arches, and bridge deck by welding a steel box 

around each original bolted joint. Specifically, the bridge was 

monitored before the retrofit intervention between October 2nd, 

2018, and May 15th, 2019, and after that in the period between 

September 27th, 2019, and January 15th, 2020. 

In the application of the data processing and threshold setting 

approaches described in Section 2, the natural frequency time 

series corresponding to modes 1, 2, 7, 8, 10, 12, and 14 were 

excluded from the analysis due to significant data gaps that 

prevented successful monitoring of these modes. This was 

made in agreement with similar considerations reported in [13]. 

Thus, only the natural frequency time series of modes 3, 4, 5, 

6, 9, 11, and 13 were considered for the present analysis. Minor 

data gaps in these time series were filled by linear interpolation. 

In addition to mode selection, since the retrofit intervention 

introduced a significant shift in the considered natural 

frequency time histories, the difference in the average value of 

corresponding natural frequencies before and after the 

intervention was intentionally reduced to make more 

challenging the appropriate alarm threshold setting as a result 

of a reduced change in the observed structural behavior.  

Specifically, the frequency scatter was scaled down to 25% of 

its original value to avoid a straightforward or even trivial 

novelty detection (Table 1). 

Table 1. Reduced scatter between average frequency before 

and after the retrofitting. 

Mode 
Frequency scatter 

Original Reduced 

3 0.53% 0.13% 

4 1.17% 0.29% 

5 0.33% 0.08% 

6 2.07% 0.52% 

9 0.76% 0.19% 

11 2.02% 0.51% 

13 1.44% 0.36% 
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Indeed, without this correction, the frequency shift due to 

retrofit results in an overly obvious differentiation between pre- 

and post-intervention states, thereby undermining the relevance 

of the novelty detection process and threshold setting 

procedure. 

A detailed inspection of the collected natural frequency time 

histories also reveals some sharp increases in frequency values 

in the first monitoring period (Figure 3). A detailed 

investigation about the occurrence of these particular patterns 

is reported in [13], where the correlation between the natural 

frequencies of the bridge and the measured temperature has 

been evaluated. That study showed that those singular patterns 

occur when the temperature falls below 0 °C. Indeed, before 

the retrofit intervention, the observed structural behavior is 

characterized by a bilinear trend in the frequency-temperature 

relationship, with a knee-point around 0 °C. The interpretation 

of this phenomenon has been guided by insights gained from 

similar previously analyzed case study where a similar 

relationship was observed and attributed to the freezing of the 

asphalt layer [15]. Further investigations specifically focused 

on the KW51 case study, also supported by finite element 

model updating, confirmed that the observed singularities in the 

natural frequency patterns were associated with the freezing of 

the porphyry ballast layer beneath the railway tracks. 

Excluding the period during which the intervention took 

place, the dataset employed in this study comprises 6287 

observations of the seven selected natural frequencies of the 

bridge, 3977 of which were collected before the retrofit 

intervention, while the remaining 2310 were gathered after the 

completion of the works. 

In the context of the present study, the first 3579 samples 

collected before the retrofit – approximately corresponding to 

90% of the available observations in the same period – have 

been used to train the GMM and to define threshold values for 

the subsequent comparative analyses. The remaining 10% of 

the dataset collected before the structural intervention has been 

used as a validation set, in order to check that no structural 

changes are detected before the onset of the retrofit. The whole 

natural frequency time series collected after the retrofit 

intervention are instead employed as the test data (Figure 3) to 

assess the accuracy of the different novelty detection strategies. 

The trained GMM has been specifically designed to model 

the variability induced by EOVs, including the effects of 

freezing conditions observed between late January and early 

February 2019. The optimal number of GMM components has 

been selected as discussed in Section 2.1, resulting in a five-

component GMM, which has been identified as the appropriate 

representation of the training dataset. Once the model of the 

operational variability of natural frequencies has been 

established, the NI time series has been computed according to 

Equations (2) and (3). The resulting NI values, shown in Figure 

4, demonstrate the mode ’s c   bility to effectively account for 

the influence of EOVs. Specifically, the NIs computed over the 

training data exhibit a consistent and stable behavior, indicating 

that the model successfully captures the normal variability of 

data, even under freezing conditions. Moreover, the NIs 

Figure 3. Time histories of the seven selected natural frequencies and partitioning of the dataset into training, 

validation and testing sets. 

Figure 4. NIs time series during the entire monitoring period. 
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calculated on the validation set remain aligned with those 

obtained during the training period, thus confirming the 

generalization capability of the considered model.  

In contrast with these results, a marked upward shift in the 

NI trend can be observed when data collected after the retrofit 

intervention are considered, clearly suggesting the transition to 

a different structural state. This result confirms the 

effectiveness of the proposed approach in distinguishing 

between the normal environmental and operational variability 

of the selected DSFs and that associated to the occurrence of 

changes in the structure as a result of damage or, as in the 

present case, of a retrofit intervention. In the context of the 

novelty detection framework, an alarm threshold has been 

established based on the NIs computed from the training data. 

To this aim, a combination of the BM method and the GEV 

distribution fitting has been applied, as further illustrated 

hereafter. 

The training NI time series has been divided into consecutive, 

non-overlapping blocks, and the maximum value from each 

block has been extracted to collect a set of extreme values. The 

choice of the number of blocks plays a critical role in the 

process [8]. In this work, the number of blocks has set equal to 

300. 

Figure 5 shows the comparison between the empirical 

cumulative distribution function (CDF) of the extracted 

maxima and the CDF of the fitted GEV distribution. The close 

agreement between the two curves indicates that the GEV 

distribution effectively describes the statistical variability of the 

observed maxima. 

 

 

Figure 5. GEV distribution modeling: comparison between 

empirical CDF and fitted GEV distribution. 

The fitted GEV model has been exploited to determine the 

alarm threshold corresponding to a significance level 𝛼 of 0.05, 

as per Equation (5). Figure 7a illustrates the application of the 

determined threshold for novelty detection analysis of the full 

dataset, highlighting the occurrences of misclassification. 

During the training and validation periods, corresponding to the 

structural condition before the retrofit intervention, only a few 

isolated points exceeded the threshold, indicating a low false 

positives rate and, therefore, a high specificity of the proposed 

approach in characterizing the structural behavior in this state. 

Notably, after the retrofit intervention, only a very limited 

number of observations remained under the threshold. This 

demonstrates also the high sensitivity of the method in 

detecting the transition to a new structural condition, as it 

successfully identifies nearly all test data points, referring to the 

structural response after the retrofit intervention, as anomalous. 

For the comparative assessment of the effectiveness of the 

method for threshold setting based on the GEV distribution, 

threshold values are also determined by means of the 

previously mentioned alternative procedures. The related 

results are presented in Figures 7b and 7c. 

Table 2 summarizes the resulting threshold values, along 

with the corresponding number of misclassifications. Setting a 

fixed cut-off threshold is the most straightforward approach for 

the present task. For the considered application, a fixed cut-off 

threshold has been defined by setting the FAR to 0.05, meaning 

that up to 5% of the training data points are tolerated as FPs, in 

agreement with Equation (6).  

As a second alternative approach, a threshold has been set 

based on the assumption of normal distribution of the natural 

frequencies in the training stage. As a result, the NIs derived 

through the MSD are expected to follow a 𝜒𝑚
2  distribution, with 

𝑚 = 7 degrees of freedom (with m corresponding to the 

number of modes considered). From this distribution, a 

threshold corresponding to a given significance level 𝛼 has 

been determined. 

The analysis of the results reported in Table 2 indicates that, 

although the threshold values obtained as the 95% cut-off value 

or through the 𝜒2 CDF achieve a zero false negative rate – 

meaning that all observations in the testing stage are correctly 

classified as anomalous –, they still suffer from a relatively high 

number of FPs, which can jeopardize the reliability and 

practicality of the monitoring system (Figure 7b and 7c). On 

the other hand, the EVT-based method for threshold setting 

yields a small number of FPs as well as a small number of FNs. 

While this method might appear less conservative, it establishes 

a threshold that better approximates the optimal balance 

between FPs and FNs. This can be demonstrated by looking at 

the coordinates associated with the various thresholding 

strategies when they are plotted on the ROC curve (Figure 6). 

Table 2. Number of misclassifications for the different 

threshold setting procedures. 

Approach Threshold FPs FNs 

BM-GEV 21.2 24  29  

Cut-off 12.4 199  0 

𝜒2 CDF 14.1 120 0 

 

 

 

Figure 6. ROC curve and points corresponding to different 

threshold setting approaches. 
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Indeed, the proximity of a point to the top-left corner of the 

ROC space – representing a low false positive rate and a high 

true positive rate – serves as a qualitative measure of the model 

classification performance. In addition, the distance of each 

threshold point from the bisector (corresponding to the line of 

no-discrimination) quantified by the Youden index provides a 

quantitative measure for the selection of the most effective 

threshold value. 

The Youden index values have been computed for each 

threshold setting method, and they are reported in Table 3. The 

results indicate that the threshold derived through the BM-GEV 

method lies very close to the optimum, corresponding to the 

maximum Youden index. Furthermore, it outperforms the other 

considered approaches, confirming an excellent balance 

between sensitivity and specificity. 

Table 3. Youden index values corresponding to different 

thresholds values. 

Approach Youden index 

Max 0.987 

BM-GEV 0.981 

Cut-off 0.950 

𝜒2 CDF 0.970 

 

 

Figure 7. Novelty detection according to: EVT-based threshold (a), 95% cut-off threshold (b), and 𝜒2 distribution-based 

threshold (c). 

(a) 

(b) 

(c) 
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The analysis presented thus far follows the chronological order 

of data acquisition, corresponding to the subdivision of the 

dataset into training, validation, and testing sets. Since the 

retrofitting was intended to correct a construction defect, it led 

to an improvement in the structural condition of the bridge. As 

such, the post-retrofitting state can be regarded as the actual 

healthy condition. 

An additional analysis is conducted by applying the proposed 

methodology using post-retrofitting data for model training and 

validation, and subsequently testing the model on pre-

retrofitting observations. Once again, the novelty analysis 

results (Figure 8) confirm the mode ’s ability to compensate for 

EOVs effects and demonstrate strong generalization 

performance, as evidenced by the NIs of validation data 

aligning closely with the training trend. The distinct structural 

condition characterizing the pre-retrofitting period is clearly 

revealed. Furthermore, a noticeable spike in the NIs time series 

during the freezing period highlights the presence of a transient 

condition within the pre-retrofitting state. In this case as well, 

applying EVT-based threshold yields an excellent balance 

between FPs (0.5%) and FNs (0.1%). 

CONCLU ION  

The present study has focused on the comparative performance 

assessment of different methods for determining a reliable 

threshold for anomaly detection to be applied in the context of 

data-driven, modal-based SHM. The natural frequency time 

series of the KW51 bridge served as the benchmark dataset for 

the performance assessment. It has been processed using a 

method that combines GMM and MSD to compute the NI time 

series and compensate the normal variability of the selected 

DSFs due to changing environmental and operational 

conditions. An approach based on EVT has been applied and 

compared with alternative approaches for threshold setting. 

The EVT-based approach started from the identification of a set 

of maxima in the NI time series at the training stage according 

to the BM method; the GEV distribution was afterwards fitted 

to the collected maxima and used to define the alarm threshold. 

Comparing the performance of the EVT-based method with 

other approaches for threshold setting has shown that, for the 

considered dataset, the BM-GEV approach appears to be the 

most precise, with an optimal balance between FPs and FNs, as 

confirmed by the value of the Youden index derived from the 

ROC curve. 
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ABSTRACT: Structural monitoring is crucial for extending the service life of civil structures. Vibration-based monitoring is 

widely employed across various applications, leveraging both traditional and innovative sensing technologies. Among these, 

video-based methods have emerged as a promising and cost-effective approach for evaluating structural displacements at critical 

points. This paper presents a novel vision-based procedure enabling accurate three-dimensional structural displacement 

measurement using only a single camera. The method applies to assessing dynamic effects on bridges subjected to dynamic loads. 

The algorithm extracts displacements by tracking predefined targets over time. Special attention is given to reconstructing small 

3D displacements from videos that inherently capture two-dimensional projections of the scene. The procedure is validated 

through experiments on a steel frame in a controlled environment, comparing displacement time histories with imposed vibrations 

from a shaking table. The originality of this work lies in achieving accurate 3D measurements with minimal equipment, offering 

a practical and innovative solution for structural health monitoring. 

KEY WORDS: Vision-based monitoring; Structural vibrations; Displacement tracking; Laboratory tests; Experimental validation.

1 INTRODUCTION 

Structural Health Monitoring (SHM) is a crucial component of 

modern infrastructure management, offering valuable insights 

into the condition of structures and helping prevent catastrophic 

failures while extending their service life. SHM utilizes a 

combination of sensors, data analysis methods, and 

computational models to evaluate the performance and safety 

of civil infrastructure such as bridges, buildings, dams, and 

other critical structures. The main objective of SHM is to detect 

changes in the structural integrity or behaviour of a structure, 

often before visible damage occurs, ensuring continued safety, 

preventing collapses, and reducing maintenance and repair 

costs. 

SHM systems typically employ a range of sensors to monitor 

structural responses, such as strain, displacement, and 

acceleration. These sensors, including accelerometers, strain 

gauges, displacement transducers, and fibre optic sensors, 

generate reliable data but they often offer limited spatial 

coverage and necessitate the installation of dense sensor 

networks, requiring the structure to be accessible. This can pose 

challenges during extreme events or when access is restricted, 

such as during periods of heavy traffic, in remote locations, or 

unsafe structures. A significant advancement in SHM has been 

the integration of contactless technologies, which enable the 

installation of sensors without the need for extensive cabling 

and, therefore, without interrupting the operation of the 

structure [1, 2, 3].  

These contactless systems allow for easier deployment, even 

in hard-to-reach or remote areas. With that premise, non-

contact monitoring has become increasingly popular. 

Contactless technologies for civil monitoring encompass a 

range of methods, including global navigation satellite systems 

(GNSS) [4, 5], satellite remote sensing [6, 7], terrestrial radar 

interferometry [8], and vision-based techniques [9]. Among 

these, vision-based techniques stand out as the only remote 

sensing approach that can reduce dependence on expensive 

industrial products [10]. Indeed, these methods have shown 

considerable promise even when using consumer-grade devices 

such as standard video cameras or smartphones [11, 12]. This 

progress is largely attributed to the development of low-cost 

technologies that provide high resolution and high frame rates, 

enabling accurate monitoring of large-scale structures in both 

static and dynamic fields.  

These technologies use video feeds to track structural 

displacements, vibrations, and deformations, providing a 

flexible, cost-effective alternative to traditional methods and 

potentially eliminating the need for direct contact with the 

structure. The primary objective of such a system is to 

automatically and reliably transform video data into actionable 

insights. The fundamental concept behind vision-based 

monitoring is simple: a video of the structure being monitored 

is recorded, and the individual frames are analyzed, either in 

real-time or afterward, to extract motion data. This process 

generates displacement time histories, which can be further 

used to calculate strains, velocities, and accelerations. Vision-

based methods offer several technical advantages, such as 

directly measuring displacements, which eliminates the need 

for the double integration of accelerations. Additionally, a 

single camera sensor can provide distributed monitoring, 

enabling the extraction of displacement data from multiple 

points on the structure within one video recording. 

Beyond these technical benefits, the vision-based approach 

allows for substantial cost savings and significantly reduced 

setup efforts compared to traditional monitoring systems. Due 

to these advantages, vision-based techniques have garnered 

increasing attention in civil engineering research. Recent 

studies, including those by [13, 14, 15, 16], extensively review 

vision-based applications, including tests on bridges [17, 18, 

19], and footbridges, [20, 21, 22]. 

A vision-based monitoring campaign and set up requires 

careful consideration and pre-planning, tailored to the specific 

structure being monitored. In civil engineering, two-

dimensional measurements are typically favored because of 

their practicality and effectiveness. These measurements are 
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commonly employed to monitor vertical and transverse 

vibrations of bridges, as well as the horizontal displacements of 

buildings and towers. In vision-based applications, a-priori 

estimating the expected displacements of the structure is crucial 

for selecting the right camera parameters and determining the 

optimal camera-to-structure distance, ensuring accurate 

detection of displacements. While a single camera is usually 

sufficient for detecting in-plane movements, capturing the full 

3D motion of all relevant points can be challenging. Typically, 

this requires the use of multiple synchronized cameras, each 

focusing on different parts of the structure. Differently, the 

proposed procedure enables the reconstruction of 3D motion 

using just a single camera. This approach simplifies the 

installation, eliminates the need for video synchronization and 

the geometrical merging required in stereovision. 

In addition to the camera(s), it is essential to identify the 

sections of the structure to be monitored. In this regard, it is 

possible to choose intrinsic notable elements of the structure 

itself [15, 23], such as prominent details, corners, holes, or 

bolts, or install artificial high-contrast targets on the sections of 

interest. The first option does not require access to the structure, 

avoiding traffic disruption, but the second option generally 

provides more accurate results. 

While highly effective in many applications, vision-based 

monitoring is featured by critical aspects that cannot be 

overlooked. A key limitation is the sensitivity to environmental 

conditions, such as vibrations of the camera or its support due 

to user intervention or wind, non-uniform air refraction caused 

by temperature differences between the camera and the 

monitored object, ambient light condition, weather, and 

visibility, all of which can affect data accuracy. Literature on 

the assessment of environmental uncertainties in vision-based 

monitoring includes theoretical analyses and laboratory testing 

[16, 24], but outdoor experiments are still limited. 

The accuracy of measurements relies not only on the camera 

technical specifications (hardware) but also on video post-

processing (software), which includes challenging tasks such 

as camera calibration, target tracking and pixel-to-metric 

conversion. This paper presents a vision-based approach for 

accurately assessing the condition of civil structures and 

infrastructure, with particular focus on the transformation of 

image units into real-world units, which is crucial in large-scale 

civil constructions where perspective distortions can 

significantly affect measurement accuracy. Aiming to propose 

a reliable and validated vision-based method for real-world 

applications, this study evaluates the procedure in a controlled 

environment, focusing on detecting the dynamic displacement 

of a laboratory steel frame subjected to controlled shaking. For 

validation purposes, the vision-based results are compared to 

reference displacements, highlighting the potential of this 

method for accurate monitoring. 

The paper is organized as follows: Section 2 outlines the 

procedure framework, detailing each step of the proposed 

method, from the setup of the monitoring campaign to the post-

processing of the recorded video. Section 3 presents the 

experimental test, specifically designed to assess the 

performance of the procedure across different camera-to-

structure distances. Finally, Section 4 addresses conclusions 

and future perspectives. 

2 PROCEDURE FRAMEWORK 

The proposed vision-based procedure aims to determine the 

actual dynamic displacement of a structure within its reference 

system, effectively filtering out camera vibrations and ensuring 

independence from the camera position and orientation.  

The vision-based procedure relies on different transformation 

of coordinates. To provide clarity, the reference systems 

involved are described progressively as follows: 

1. The 2D image reference system (π), which is related to 

camera sensor reference system by means of the focal 

length (f) and optical center (o) in a camera pinhole model. 

Specifically, the image reference system can be scaled and 

mirrored (with respect to the optical center) in order to 

obtain the sensor reference system. The image coordinates 

of this system are denoted as η and ξ. 

2. The 3D real-world reference system (W) located in the 

optical centre, which represents millimeter displacements, 

derived from pixel displacements via a three-dimensional 

mapping process. One axis of the system points in the 

viewing direction of the camera, along the optical axis. The 

remaining axes define the plane orthogonal to the optical 

axis, representing the front side of the camera. 

3. The structure reference system defined by the coordinates 

(x, y, z), which uniquely defines displacements along the 

main directions where structural motion occurs, ensuring 

that the results are independent of the camera pose. 

The extraction of displacements within the image-plane (π) 

is straightforward and it is carried out by comparing image 

coordinates (η, ξ) across sequential frames. However, deriving 

the displacement time series in the structure reference system 

requires careful consideration of several key aspects. 

 These include the precise calibration of camera intrinsic 

parameters, accurate detection and frame-by-frame tracking of 

the target position within the image plane, establishing the 

correspondence between 2-D points in the image coordinate 

system (π) and their corresponding 3-D points in the real-world 

coordinate system (W) to account for potential perspective 

effects, roto-translating the results to align with the motion axes 

of the structure being analyzed, and filtering out unintended 

camera shaking to ensure measurement reliability.  

To this end, a brief overview of the procedure is provided as 

follows:  

• Stage 1: Monitoring set-up. 

• Stage 2: Calibration of the camera. 

• Stage 3: Post-processing of the recorded video, with the 

detection and the tracking of specific features. 

• Stage 4: Perspective-3-Points method to establish the 

relationship between 2-D coordinates in the image-plane 

(π) and their corresponding 3-D points in the real-world 

(W). 

• Stage 5: Transformation from real-world (W) to structure 

(x, y, z) reference system. 

• Stage 6: Filtering of camera unintended vibrations. 

 Stage 1: Monitoring set-up 

A vision-based monitoring system requires careful pre-

planning based on the specific characteristics of the structure 

under observation. First and foremost, it is essential to identify 

the sections of the structure to be monitored, with each selected 

section being associated with distinguishing features to be 
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tracked. These may either be intrinsic, notable characteristics 

of the structure itself or artificial high-contrast targets placed in 

areas of interest, yielding more accurate results at the expense 

of the need to directly access the structure. Specifically, the 

procedure is designed for high-contrast artificial targets 

featuring a checkerboard pattern.  

Additionally, it is crucial to estimate the expected structural 

displacements, as the magnitude of these displacements helps 

determine the necessary level of accuracy. This, in turn, guides 

the selection of the camera specifications, including the 

camera-to-structure distance, which depends on factors such as 

obstacles or finding a stable vantage point; the optical lenses 

with an appropriate range of focal length (f) to ensure the 

desired field of view at that distance; and the frame rate, 

selected to adequately sample the expected vibration 

frequencies. For civil structures such as bridges and buildings, 

dominant modal frequencies typically lie below 10 Hz, 

indicating that frame rates of 30 frames per second (FPS) are 

generally adequate. This allows for the utilization of consumer-

grade cameras, which is increasingly feasible thanks to recent 

technological advancements. 

 

 Stage 2: Calibration of camera parameters 

Calibrating camera parameters is a crucial step for 

understanding how the sensor captures and processes visual 

data. In the current procedure, the calibration is performed 

according to the diffused approach proposed in [25]. This 

involves determining several parameters, including mm-to-

pixel transformation factor (from sensor to image reference 

system), focal length (f), and lens distortion coefficients (which 

account for geometric distortions introduced by the lens). 

Calibration outcomes will be employed in Stage 4 for the 

derivation of the relationship between 2-D points in the image-

plane (π) and their corresponding 3-D points in the real-world 

(W). 

 Stage 3: Post-processing of the recorded video 

Video post-processing is composed of three basic steps: 

definition of the Regions of Interest (ROIs), feature detection 

and feature tracking. 

ROIs are defined in the first frame of the video as areas 

surrounding specific targets located on the structure or on the 

ground. Targets on the structure are key points of interest for 

dynamic characterization, while targets on the ground are used 

for camera vibration filtering.  In the application case study, 

checkerboard targets are adopted. 

The definition of a ROI for each target allows to narrow the 

operational area within the video frames, where the features of 

the targets are detected, thus accelerating the automated 

analysis. The defined ROIs are managed as matrices of pixels, 

where each pixel is characterized by its 2-D coordinates 

(expressed in pixels relative to the frame upper-left corner) and 

a unique RGB intensity value. 

The next step involves the detection of sparse feature points, 

also known as key points, which characterize the digital 

representation of each target. A key point is generally a small 

region of the image characterized by unique and invariant 

features, described by a matrix or a vector that encodes its 

characteristics. A wide variety of key point types have been 

proposed in the literature, along with specific algorithms for  

  

Figure 1. Feature detection via Harris function. 

detecting and describing them [15]. In the presented procedure, 

the Harris-Stephens algorithm [26] is used to detect the internal 

corners of each checkboard target (see Figure 1 for an 

illustrative example). A corner represents the intersection of 

two edges, where an edge is characterized by a sharp change in 

image brightness. In addition to their distinctiveness due to 

RGB intensity contrast, corners exhibit geometric invariance 

properties, making them robust features for various 

applications. Their stability under transformations such as 

translation, rotation, and changes in scale or illumination 

enhances their suitability for tasks like detection and tracking. 

Once the checkboard corners are identified in the initial 

frames of the video, their locations in the subsequent frames are 

tracked with the Kanade-Lucas-Tomasi algorithm [27, 28], a 

well-established technique for visual tracking applications. In 

this process, the movement of the key points is determined 

through optical flow estimation. The output of this stage 

consists of a time series of coordinates in pixel units, for each 

corner of every checkboard target. 

It should be carefully considered that the obtained 

displacement time series η and ξ solely represent the motion of 

the features within the image-plane (π). To determine the actual 

displacements of the structure, additional analysis is required, 

such as establishing the relationship between 2-D points in the 

image-plane (π) and their corresponding 3-D points in the real-

world (W), mapping the movements to the real-world 

coordinate system and accounting for any unintended camera 

shaking. 

 Stage 4: Perspective-3-Points method to relate the 2-D 

image-plane coordinates to 3-D the real-world position 

The mapping of the observed 2-D image-plane (π) coordinates 

into their actual 3-D real-world positions can be obtained by 

solving the so-called Perspective-n-Point (PnP) problem for the 

target corner coordinates at each frame. This implies to 

determine the 3D position and orientation of the camera based 

on a set of n 2D image points and their known corresponding 

3D world coordinates. This is a fundamental problem that was 

first explored in the photogrammetry literature and later 

extended to the field of computer vision. The P3P method is a 

specific case of the PnP problem, where n = 3, namely the 

camera pose is computed according to the correspondence 

between 3 points. 
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Figure 2. Geometric interpretation of the P3P method. 

The solution of the P3P framework used here has its origins in 

the studies of Grunert [29], and for nearly two centuries it has 

remained relevant in various research and applications. In this 

paper, the PnP method is used to define the position and 

orientation of both targets on a structure and the camera. The 

position of targets on the structure is determined by assuming 

the camera is not moving while the structure undergoes 

movement; the motion of the camera is obtained using a fixed 

target placed outside the shaking structure. 

With reference to Figure 2, the intuitive procedure for solving 

the P3P problem is grounded in the resolution of the law of 

cosines, which is fundamental for calculating distances and 

angles in both the image-plane (π) and the real-world (W). The 

geometric interpretation of Figure 2 refers to a single triplet of 

checkboard corners, but it can be extended to every possible 

combination of corners. The law of cosines is first employed 

for the computation of the angles between the line of sight and 

the corners in the real-world system. In this phase, the results 

of Stage 2 and Stage 3 are exploited, namely the calibration 

outcomes and the coordinate time series of the corners. Then, 

the law of cosines is re-employed to compute the actual 

distances between the optical center and the corners of the 

physical target. This has been the subject of several studies due 

to the non-linear nature of the problem [30]. Here, the solution 

of Finsterwalder [31] is used for its high accuracy, as it does 

not involve any numerical approximations. 

For each target, the P3P method is applied to every 

combination of triplets of corners, resulting in the distance 

between the optical center and each corner in real-world 

multiple times. Finally, the distance values related to the same 

corner are averaged to enhance the accuracy of the estimates. 

The procedure is repeated for each video frame, associated to a 

time instant through the frame rate, to obtain the target position 

at each time step. In this way, the reconstruction of the target 

displacement with respect to the camera optical center over 

time is carried out.  

This approach is an alternative to the common approach 

relying on the simple scale factor for unit conversion. The latter 

only provides accurate results when the camera-to-target line 

of sight is perpendicular to the target plane. The proposed 

approach is more flexible, and it can adjust for perspective 

distortions caused by varying angles between the camera and 

multiple targets. This is particularly common when monitoring 

civil structures due to their large scale and/or the presence of 

unavoidable restrictions on camera positioning. 

 Stage 5: Coordinate transformation to the structure 

reference system 

At this stage, a transformation of coordinates into the structure 

reference system is proposed to ensure a rapid and clear 

interpretation of the structural behaviour. If the target is 

positioned in such a way that it aligns as closely as possible 

with the directions of the main structural movements, two axes 

of the structure reference system are considered to be parallel 

to the target directions, and the third one is perpendicular to the 

target plane. Once this reference alignment is established, a 

matrix-based change of basis is applied for coordinate 

transformation.  

This involves roto-translating the real-world reference 

system W into the structure reference frame. The process 

includes both rotation and translation operations to account for 

the differences in orientation and position between the two 

coordinate systems. The core of the transformation is the least-

square fitting of a plane to the coordinates of the checkboard 

corner in the real-world reference system. This transformation 

allows the representation of displacements in the structure 

reference system, which is independent of the location and 

orientation of the camera.  

 Stage 6: Filtering of camera unintended vibrations 

Up to this stage, the procedure provides the relative 

displacements between the camera and each target, expressed 

in the world coordinate system. However, these displacement 

time series can be affected by camera shaking, which can arise 

from external factors such as wind or unintended user 

interactions. To obtain accurate estimates of absolute 

displacements, it is essential to account for and eliminate these 

camera-induced contributions. This is achieved by using 

reference targets placed on the ground in stable positions. 

These targets are assumed to remain stationary throughout the 

observation period. Consequently, any apparent displacement 

they exhibit in the world coordinate system reflects movement 

of the camera, rather than motion of the targets themselves.  

The same tracking procedure outlined in the previous stages 

can be applied to the ground-based targets to quantify their 

apparent displacements. The absolute displacements of the 

targets on the structure can therefore be obtained by subtracting 

the apparent displacements of the ground-based targets from 

the relative displacements of the targets on the structure.  

In laboratory settings, the camera can often be stably fixed, 

and the environment is controlled (e.g., no wind), which 

reduces the need for this correction. In the field, maintaining 

comparable stability is more challenging, making this filtering 

step essential. However, since this study focuses specifically on 

laboratory conditions, field-related considerations are not 

addressed further. 

3 PROCEDURE ASSESSMENT PERFORMED UNDER 

CONTROLLED CONDITIONS 

In this Section, the validation of the procedure described in 

Section 2 is performed through a laboratory test. The aim is to 

evaluate the performance of the designed vision-based 

monitoring procedure and to assess its potential applicability in 
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outdoor scenarios. The test involves the monitoring under 

controlled conditions of a scale steel frame subjected to 

excitation from a shaking table (see Figure 3). High-contrast 

artificial targets with a checkerboard pattern, measuring 250 

mm by 250 mm, have been used. Two of them are connected to 

the base and the top floor of the frame, while a third one is 

located on the laboratory floor to identify potential camera 

movements.  

The video-monitoring system consists of a Panasonic Lumix 

GH6 camera and Samsung S23 smartphone recording video in 

4K and 8K resolution at 50 and 30 frames per second (FPS), 

respectively. The results presented below are based on videos 

captured by the camera, which has a lower resolution compared 

to the smartphone, making it more sensitive to the noise. Three 

different scenarios are considered by varying the location of the 

camera sensor. The distance between the camera and the steel 

frame for the three examined scenarios is listed in Table 1, 

measured using a laser meter. In both the scenarios, the angle 

of incidence between the line of sight and the target plane is 

nearly zero, implying an almost frontal view of the scene. 

Several input excitations have been applied to the frame base 

during the tests. The results presented in the following refer to 

the Irpinia earthquake ground motion excitation [32], recorded 

on November 23, 1980, and reproduced by the shaking table 

along the x-axis of the structure, which is nearly horizontal to 

the recorded scene. 

The accuracy of the vision-based monitoring system is 

assessed by comparing the estimated dynamic displacements 

with reference time histories. For the target at the base of the 

frame, the reference displacements are those imposed by the 

actuator of the shaking table. To validate the vision-based 

displacement for the target at the top of the frame, a Linear 

Variable Displacement Transducer (LVDT) is specifically 

positioned near the target for this purpose. The adopted LVDT 

measures displacements within the range [0, 100 mm], with 

sensitivity of 80 mV/V, excitation voltage equal to 10 V, and 

sampling frequency set at 200 Hz.  

 Results 

The results of the monitoring conducted during the 

experimental test are discussed in this Section. Since the vision-

based results for the target at the top of the frame exhibit similar 

accuracy, the following focuses on presenting the results for the 

target at the base of the frame.  

The displacements of the frame base target in the 2-D image 

coordinate system, expressed in pixels and identified as 

detailed in Section 2.3, are shown in Figure 4 and Figure 5 for 

scenarios 1 and 2, respectively (similar conclusions can be 

drawn for scenario 3).  

It can be observed that the vertical component of the motion, 

, is approximately zero in both scenarios, since the imposed 

motion is horizontal to the structure and the camera is 

perpendicular to the target plane, implying no perspective 

effects. The difference between the amplitude of the horizontal 

displacement, , in the two example scenarios is related to the 

distance between the camera and the frame, which is about 2 m 

for scenario 1 and 10 m for scenario 2, implying different pixel 

coverage on the examined target, as indicated in Table 1. 

In this regard, it is specified that the target -displacement 

time history in pixels (for example, Figure 5 for scenario 2) is 

 

Figure 3. Laboratory experiment framework. 

 

Table 1. Monitoring scenarios. 

ID Measured 

distance [m] 

Target area 

[103 pxl2] 

1 1.84 186.75 

2 

3 

10.90 

25.21 

93.02 

18.22 
  

calculated by averaging the results obtained by separately 

tracking the motion of the corners of the checkerboard target 

(see Figure 6, which shows the motion of four out of sixteen 

monitored corners, specifically the outer ones: points 1, 4, 13, 

16 with numbering following Figure 1), a step that allows for 

an increase in the accuracy. Indeed, this approach minimizes 

errors from individual tracking by leveraging multiple data for 

a more reliable measurement. 

Afterwards, following the procedure indicated in Section 2.4, 

Section 2.5, and Section 2.6, pixel displacements related to the 

image system are converted into 3D real-world displacements, 

projected into the structure reference system, and cleared from 

uncontrolled camera shaking, measured by evaluating the 

apparent motion of the fixed ground-based target. The vision-

based dynamic displacement along the x-direction in the 

structure coordinate system, expressed in millimeters, is 

represented in Figure 7 and Figure 8 for scenarios 1 and 2, 

respectively, along with a comparison to the corresponding 

reference displacement. In this, the reference is the known 

displacement time history set by the shaking table, which 

demonstrates excellent validation of vision-based results for all 

the scenarios. 

As discussed in Section 2.4, a key aspect in determining the 

three-dimensional mapping between image and real-world 

systems is the evaluation of the distance between the optical 

center and the monitored target, determined by means of the 

P3P method. This method allows the calculation of the 

distances between the camera and any triplet of checkerboard 

corners within each frame, after which the time-varying  
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Figure 4. Scenario 1 - Image-plane horizontal and vertical 

displacements in pixel unit, η and ξ respectively. 

 

Figure 5. Scenario 2- Image-plane horizontal and vertical 

displacements in pixel unit, η and ξ respectively.  

 

Figure 6. Scenario 2 - Image-plane horizontal displacement, η, 

obtained by tracking the four outer checkerboard key corners. 

 

Table 2. Vision-based method accuracy. 

ID Estimated 

distance [m] 

σ(0-5)s  

[mm] 

σ(5-25)s  

[mm] 

1 1.85 0.0072 0.2220 

2 

3 

10.94 

25.27 

0.1033 

0.1904 

0.1382 

0.3807 
  

Table 3. Peak values compared with the scale factor approach. 

ID Reference 

displacement 

[mm] 

Estimated 

displacement 

[mm] 

Scale factor 

displacement 

[mm] 

1 9.48 9.30 9.74 

2 

3 

9.48 

9.48 

9.17 

9.37 

9.28 

9.07 

 

Figure 7. Scenario 1 - Horizontal displacement in the structure 

coordinate system.  

 

Figure 8. Scenario 2 - Horizontal displacement in the structure 

coordinate system.  

 

Figure 9. Scenario 2 - Variation of the estimated distance 

between the camera and the target centroid along time. 

 

Table 4. Peak displacement relative error.  

ID Proposed 

method error 

[%] 

Scale  

factor error 

[%] 

1 1.90 2.95 

2 

3 

3.27 

1.05 

2.11 

4.32 

 

distance between the target centroid and the camera is 

evaluated by averaging the triplet estimates.  

The variation of the estimated camera-to-target distance 

along time is investigated in Figure 9, related to scenario 2. The 

estimation error is less than 1 mm, which is very small 

compared to the actual distance of 10.9 m. However, this error 
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is larger than the small change in the real distance caused by 

the maximum allowed horizontal displacement (about 10 mm). 

This explains why accuracy decreases as the distance camera-

to-scene increases. The camera-to-target distance from the P3P 

method, averaged over time, is shown in Table 2. P3P-based 

estimates (Table 2) are in close agreement with the distances 

measured on-site using a meter laser (Table 1), with relative 

errors of 0.1, 0.4, and 0.2 % for scenarios 1, 2, and 3. 

As a metric in evaluating the reliability of the method, Table 

2 also presents the standard deviation σ(0-5)s of the vision-based 

displacement time series in the first 5 seconds of the tests. 

During this interval, no excitation is transmitted by the shaking 

table, so the standard deviation reflects the signal noise and can 

be considered a measure of the accuracy. The obtained σ(0-5)s is  

of the order of one-hundredth of mm for scenario 1, denoting a 

very high accuracy. It reduces to about one-tenth of mm for 

scenarios 2 and 3, highlighting the impact of the target-to-

camera distance on vision-based results. 

To further quantify the noise, the standard deviation σ(5-25)s of 

the difference between reference- and vision-based 

displacement time histories is calculated for the time interval 

between 5 and 25 seconds, as reported in Table 2. The standard 

deviation of the error ranges between 0.1 and 0.4 mm including 

the three scenarios. Considering that the maximum 

displacement experienced by the examined (base) target is 

approximately 10 mm, the accuracy of the measurements is 

deemed satisfactorily high, with a standard deviation-to-

amplitude ratio below 4%, even for the more distant case 

scenario, indicating reliable measurement accuracy. 

Finally, a comparison of the results is presented to assess the 

accuracy of the P3P method in relation to the scale factor, a 

simpler and more widely used method in the literature. 

Scenario 1 is selected as an example, characterized by minimal 

uncertainty resulting from the (reduced) camera-to-target 

distance, allowing the error to be entirely attributed to the 

method employed. The scale factor is calculated as the ratio 

between the target side in metric units (250 mm) and its side in 

image units (432 pixel, based on the target area shown in Table 

1), resulting in a value of 0.58 mm/pixel.  

Using the scale factor method, the horizontal displacement  

detected in the image system is simply scaled by the scale factor 

to obtain the physical displacement x. Thus, the peak absolute 

displacement of 16.83 pixels (see Figure 4) multiplied by the 

scale factor returns a physical value of 9.76 mm. As represented 

in Figure 7, the maximum absolute displacement detected by 

the P3P method is 9.30 mm, while the reference (i.e., imposed) 

value is 9.48 mm. This leads to relative errors with the 

reference peak displacement of 2.95 % for the scale factor 

approach and 1.90 % for the P3P method. Peak displacements 

obtained by the two methods for the other scenarios are shown 

in Table 3, leading to relative errors as indicated in Table 4. 

These results demonstrate a generally better performance of the 

P3P-based designed method compared to the scale factor 

approach. This indicates that the scale factor, which is designed 

for frontal views of small-scale objects, performs less 

effectively than P3P in its intended context. The discrepancy 

between the two methods is expected to become even more 

pronounced in the presence of inclinations in the line of sight 

relative to the structural displacement. These findings highlight 

the critical need for pixel-to-mm 3D mapping in real-world 

case studies, underscoring the significance of the present 

research.  

4 CONCLUSIONS 

This study proposes a vision-based approach for structural 

displacement monitoring, suitable for both dynamic and static 

conditions. It is a cost-effective, non-intrusive alternative to 

traditional sensing technologies. The approach involves the use 

of consumer-grade cameras and checkboard targets to be 

installed on the structure. 

The reconstruction of the monitored target displacement is 

facilitated by computer vision algorithms, which detect the 

checkerboard corners in digital images and track their 

movement across consecutive frames. The proposed approach 

implements the Perspective-Three-Point (P3P) algorithm to 

establish a correspondence between the 2D image coordinates 

and the 3D world reference system coordinates. The flexibility 

of this approach makes it particularly suitable for a wide range 

of camera positions and orientations relative to the monitored 

structure. Additionally, unintended camera vibrations can be 

filtered out by tracking one or more targets placed externally to 

the structure, assumed to be stationary. 

The methodology has been validated through a laboratory 

test on a steel frame excited by a shaking table. Specifically, 

performed tests focused on evaluating the impact of the 

camera-structure distance, or alternatively, the target area in the 

images to account for potential zoom variations, on the 

accuracy of the displacement estimates. The analysis 

considered two parameters: the standard deviation of the 

estimated displacements in the initial seconds of the test (where 

no excitation was applied) and the standard deviation of the 

difference between the estimated displacements and the 

reference values during the remaining part of the test. The first 

parameter represents the signal noise, whose order of 

magnitude increases from one-hundredth of a millimeter to 

one-tenth of a millimeter as the camera-target distance 

increases from 1.85 m to 25.21 m. Despite this variation, the 

second parameter, which measures the mean error of the 

displacement time series relative to the reference 

displacements, remains satisfactory in all the scenarios, with a 

standard deviation-to-amplitude ratio around 4 % in the greater 

structure-to-camera distance scenario.  

In comparison, the scale factor approach, a simpler and more 

widely used method in the literature, was also considered. 

However, the P3P-based method demonstrated better accuracy 

in capturing displacement under laboratory conditions, 

suggesting that the scale factor may not be suitable for outdoor 

scenarios, which may involve non-frontal views and varying 

orientations of the targets. Additionally, the scale factor 

estimation requires user intervention, making it unsuitable for 

automated procedures. 

These preliminary results underscore the potential of this 

vision-based approach for structural monitoring applications, 

paving the way for its broader adoption in civil engineering 

structures and infrastructure. Future research will focus on 

integrating these initial findings with further tests, particularly 

examining the effects of the inclination between the line of 

sight and the target, and refining the displacement accuracy. 
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ABSTRACT: The integrity management of bridges is crucial for ensuring public safety and economic stability. In practice, 

Structural Health Monitoring data recorded during bridge operation is increasingly used to guide maintenance decisions. However, 

incorporating structural damage information more effectively can lead to optimal strategies for integrity management. In this 

study, we employ Bayesian Model Updating to develop a more reliable structural model. The updated finite element model is then 

used to train a variational autoencoder-based surrogate model for damage detection, localization, and severity estimation. The 

variational autoencoder model establishes a link between damage-related features and the modal properties derived from SHM 

data. Damage information supports maintenance decision-making through a predefined decision rule.  

KEY WORDS: Structural health monitoring, damage detection, surrogate models, structural integrity management, maintenance 

decision. 

 

1 INTRODUCTION 

Bridges and viaducts are fundamental components of 

transportation networks, ensuring connectivity and economic 

stability. However, their structural integrity is continuously 

challenged by aging, increasing traffic loads, and 

environmental stressors. Effective bridge health management 

can benefit from continuous monitoring and strategies to detect 

potential damage and mitigate the risks before they 

compromise safety.  

Structural Health Monitoring (SHM) has emerged as a 

crucial tool for assessing bridge conditions in real-time, 

providing early detection of structural anomalies. The design 

and implementation of SHM systems for bridge integrity 

management were proposed in the study by Limongelli et al. 

[1]. SHM system provides continuous information about 

structural properties such as natural frequencies, damping 

ratios, and mode shapes. However, directly labeling the 

obtained modal properties as belonging to either damaged or 

undamaged states from data collected on real-world structures 

is challenging. This difficulty arises because the changes in 

modal features can also result from various factors not related 

to damage, such as environmental conditions, operational 

variability, or sensor noise. While some studies explored 

damage detection and localization through the modal properties 

[2], a fundamental part of damage detection strategies entails 

the use of physics-based models, which provide a basis for 

understanding the overall structural behavior under varying 

conditions. By integrating SHM data into physics-based 

formulations, the models are updated to represent the actual 

bridge conditions, enhancing structural integrity management, 

improving maintenance planning, and decision-making. 

However, the computational cost of updating a finite element 

model in real-time can be very high. Surrogate models provide 

a computationally efficient alternative to complex physics-

based simulations. 

In this paper, an approach based on Bayesian Model 

Updating (BMU) using Transitional Monte Carlo Markov 

Chain is implemented to update the structural model of a bridge 

using measured data. This approach refines the bridge model 

through the incorporation of modal properties extracted from 

SHM data, by reducing the discrepancy between measured and 

calculated modal properties. Thanks to the systematic updates 

of the structural parameters, the model accurately represents the 

bridge’s current state.  The high-fidelity and calibrated FE 

model is then used for training a surrogate model. Namely, the 

FE model is used to simulate several damage scenarios and 

generate the relevant response of the bridge, thus providing the 

necessary training data for the surrogate models. Several 

surrogate modeling approaches have been explored in the 

literature, with the most used ones including Kriging models, 

artificial neural network (ANN)-based surrogate models, and 

reduced order models [2], [3], [4], [5]. In this paper, a 

Variational Autoencoder (VAE) architecture is adopted to 

effectively capture complex, high-dimensional patterns in the 

structural response data. Unlike the other autoencoders, VAE 

provides a probabilistic latent representation, allowing better 

generalization, which is particularly valuable for long-term 

SHM tasks [6]. Furthermore, the use of fully connected layers 

in classifiers and regression blocks enables the estimation of 

damage severity and location directly from the latent space. 

2 METHODOLOGY 

The framework proposed in this paper integrates SHM 

information, a Bayesian finite element (FE) model updating 

approach, and surrogate modelling techniques to efficiently 

localize and quantify damage. A BMU framework is first 

employed to calibrate a high-fidelity FE model using SHM 

data, refining the model parameters to closely reflect the real 

structural behavior. Using the calibrated FE model, various 

damage scenarios are simulated to generate labeled datasets of 
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modal responses. These datasets are then used to train a 

Variational AutoEncoder (VAE)-based surrogate model, which 

learns a latent representation of the relationship between modal 

features and damage states. Subsequently, the trained VAE 

model is utilized to obtain fast and scalable predictions of 

damage scenarios during online monitoring, bypassing the 

computational burden of running FE simulations in real time. 

This integrated approach bridges the gap between accurate 

physics-based modeling and the practical demands of efficient 

damage diagnosis in SHM systems. The overall architecture of 

this framework, including the surrogate model construction and 

its application for decision support, is illustrated in Figure 1.  

After being trained, the surrogate model is capable of 

mapping newly acquired experimental modal features to 

damage location and severity, providing damage scenario 

indicators that can be used for decision support. This hybrid 

approach combines physics-based model updating for data 

generation with data-driven surrogate modeling for inference. 

It ensures a computationally efficient yet robust damage 

detection system for bridges.  

 

 
Figure 1: General workflow for online damage detection. 

 

 FE calibration and simulation of damage scenarios 

Bayesian Model Updating (BMU) is employed to calibrate the 

FE model of the bridge using measured modal properties. The 

overall BMU workflow is indicated in Figure 2 that illustrates 

the step-by-step process of refining model parameters, from 

prior assumptions to the convergence of posterior distributions. 

The process aims to reduce discrepancies between 

experimental and simulated dynamic characteristics by 

updating uncertain model parameters, thereby enhancing the 

accuracy and predictive capabilities of the model. In this study, 

BMU is performed using Transitional Markov Chain Monte 

Carlo (TMCMC). TMCMC is a sampling-based Bayesian 

inference method that allows efficient estimation of the 

posterior distribution of model parameters, even in high-

dimensional or nonlinear problems [7], [8]. 

2.1.1 Parameter Selection and Prior Definition 

Parameters with high sensitivity to modal responses are 

selected for updating, specifically, the vertical stiffnesses of the 

girders. Each parameter 𝜃 is assigned a prior distribution 𝜋(𝜃), 

representing the initial uncertainty in its value based on 

engineering knowledge.  

2.1.2 Likelihood Function Construction 

The likelihood function 𝐿(𝐷|θ) of data 𝐷 quantifies the 

agreement between simulated and measured modal data, 

including both natural frequencies and mode shapes. Mode 

shape similarity is evaluated using the Modal Assurance 

Criterion (MAC). The likelihood is defined as indicated in Eq. 

1.  

𝐿(𝐷|θ) = exp (−
1

2
∑ 𝑤𝑖 (

𝑓𝑚,𝑖 − 𝑓𝑠,𝑖

σ𝑖

)
2

𝑖

−
1

2
∑ 𝑤𝑗

𝑗

log(1 − MAC𝑗)) (1) 

where 𝑓𝑚,𝑖 and 𝑓𝑠,𝑖  are measured and simulated frequencies, σ𝑖 

represents uncertainty, and 𝑤𝑖 , 𝑤𝑗   are weighting factors.  

2.1.3 Transitional Sampling via TMCMC 

TMCMC introduces a sequence of intermediate, tempered 

distributions shown in Eq. 2. 

πβ(θ|𝐷) ∝ π(θ)𝐿(𝐷|θ)β (2) 

where 𝛽 ∈  [0,1] gradually increases from 0 (prior only) to 1 

(full posterior). At each state, samples are reweighted and 

resampled based on their likelihood, allowing efficient 

exploration of the parameter space. The process continues until 

the convergence is achieved. 

2.1.4 Posterior Sampling and Model Updating 

During the TMCMC process, the FE model is continuously 

evaluated as parameter samples are drawn and updated through 

each intermediate distribution. At every step, the simulated 

modal properties are compared with experimental data to assess 

the quality of the current model approximation. The iterative 

approach allows progressive refinement of the model, ensuring 

that the final set of posterior samples yields a calibrated model 

that reliably captures the dominant dynamic behavior of the 

structure. Despite the minor residual discrepancies (e.g. in 

higher modes), the updated model serves as a high-fidelity 

basis for generating synthetic damage scenarios, which provide 

the labeled data needed to train the surrogate model described 

in the following sections.  

 

 

Figure 2: Bayesian Model Update diagram 

In this study, vertical stiffnesses were chosen as updating 

parameters due to their high sensitivity to vertical and torsional 

modes identified in the experimental data. A total of 8 stiffness 
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parameters (one per each girder) were assigned uniform prior 

distributions with ±50% bounds from nominal values. 

TMCMC was implemented with 50 intermediate 𝛽 steps and 

1000 samples per step. Convergence was evaluated using the 

coefficient of variation of the likelihood, with a threshold of 5% 

at each stage.  

 

 Surrogate model 

The calibrated FE model is used to generate labelled dataset for 

several damage scenarios, which constitute the training set for 

the surrogate model. In this work, a Variational Autoencoder 

(VAE) is employed to learn a latent representation of modal 

properties across the various damage scenarios. The model is 

trained on synthetic modal data representing damage states of 

increasing severity and is developed for real-time estimation of 

damage location and severity based on updated modal 

properties. While this structure supports unsupervised feature 

learning, it has incorporated supervised outputs, providing 

reconstructed modal properties and predicted damage features.  

 

Figure 3: VAE architecture 

The VAE consists of an encoder, which maps the modal 

properties (x) to a latent space (   z), and a decoder, which 

reconstructs the modal properties while ensuring regularization 

through a Kullback-Leibler (KL) divergence term. This term, 

commonly used in VAE architecture, encourages the latent 

variables to follow a normal distribution and helps the model 

learn meaningful and general features [9]. In addition to the 

conventional VAE architecture, two fully connected layers (FC 

Layers) are incorporated as a part of supervised feature 

learning: one serves as a classifier for identifying the location 

of damage y1, and the other functions as a regressor to estimate 

damage severity levels y2, as illustrated in Figure 3. 

The input to train the surrogate model comprises modal 

frequencies and normalized mode shapes, extracted from 

modal analysis. The encoder consists of three fully connected 

layers with Rectified Linear Unit (ReLU) as a nonlinear 

activation function mapping the input to a latent space of 

dimension 32. The ReLU is widely used for its simplicity and 

effectiveness in preventing vanishing gradients. Two separate 

fully connected layers use the mean and log variance of the 

latent distribution to establish a relationship between the latent 

features and the damage locations and severity levels. The 

decoder follows a symmetric structure to reconstruct the input. 

Additionally, two parallel output layers predict damage 

locations and severity. Similar to the approach proposed by 

Yessoufou and Zhu [10], who employed a convolutional neural 

network-LSTM with distinct loss functions for damage 

classification and severity estimation, the proposed architecture 

treats damage location as a classification problem supervised 

with cross-entropy loss, while damage severity estimation is 

formulated as a regression task that predicts severity levels 

between 0 and 1 and is optimized using mean squared error. 

The model is trained using a weighted loss function combining: 

1. Reconstruction Loss: Mean Absolute Error (MAE) 

between input and reconstructed modal properties. 

2. KL Divergence Loss: Enforcing latent space 

regularization. 

3. Classification Loss: Cross-entropy loss for damage 

location prediction. 

4. Regression Loss: Mean Squared Error (MSE) for 

damage severity estimation. 

A cyclical KL annealing strategy is implemented, gradually 

increasing the weight of the KL term to improve latent space 

disentanglement [11]. To enhance the training performance, 

several incremental analyses were conducted, based on which 

the Adam optimizer was selected [12]. Additionally, the initial 

learning rate was set to 0.001 and configured to adaptively 

decrease throughout different phases of training to maintain 

stable convergence and improved generalization.  

 Decision-Making approach  

A concept for a decision-making approach is proposed in 

Figure 4, drawing inspiration from existing SHM-informed 

response protocols proposed by Çelebi [13].  

At the core of this approach lies a threshold-based logic that 

interprets the results produced by the VAE model. The VAE 

model identifies the most likely damaged locations and 

estimates the damage severity. For each identified component 

as the location of damage, the damage severity is evaluated 

individually through a decision-making layer that maps 

severity levels to specific actions. These outputs are 

contextualized through a decision-making layer that maps each 

damage severity level to a specific action. Namely, the outputs 

of the VAE (relevant to damage location and severity) are 

evaluated against predefined thresholds. The exceedance of a 

threshold triggers a specific action (continued monitoring, 

issuing a warning, or initiating a repair procedure). These 

layered interpretations add practical value to the detection 

results and allow for automatic mapping of evolving damage 

states into operational decisions. Exemplary actions are 

depicted in Figure 4. The VAE model provides two key 

outputs, which are the damage location and the damage 

severity. Each damaged component is associated with an 

evaluated damage severity (kred) and a warning indicator. Green 

indicates normal condition, yellow suggests the need for 

inspection, and red prompts immediate repair or closing bridge 

suggestions, depending on severity.  The goal of this approach 

is to support a straightforward integration of SHM-informed, 

rule-based maintenance strategies into bridge integrity 

management, ensuring that timely and proportional 

interventions are triggered as the condition of the structure 

evolves. The definition of the threshold is a critical aspect of 

this approach and must be carried out based on reliability 

analysis for specific limit states defined for the bridge.   
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3 CASE STUDY 

The procedure described in the previous section has been 

applied to a continuously monitored bridge located in northern 

Italy. The bridge consists of 15 spans, 11 of which are 

instrumented with acceleration sensors. Each monitored span is 

equipped with 5 to 6 acceleration sensors on the deck, 

strategically placed to capture the bridge’s dynamic response 

under operational conditions.  

 

 

Figure 4: Decision-making framework based on damage level 

threshold 

To identify the modal parameters from recorded responses, 

an online automatic Stochastic Subspace Identification (SSI) 

method has been developed. To ensure robust tracking of 

modal properties over time, a post-processing step involving 

modal clustering is employed. The identified modal properties 

are clustered using a hierarchical clustering algorithm based on 

a predefined Modal Assurance Criterion (MAC) and frequency 

similarity threshold. This process helps distinguish consistent 

modes from spurious ones, reducing uncertainties in the 

estimated modal parameters 

The approach follows the clustering methodology detailed in 

previous works by Magalhães et al. [14] which has 

demonstrated its effectiveness on SSI-based modal tracking in 

bridge monitoring applications. 

A detailed finite element model of the bridge was built using 

the OpenSees software [15], and calibrated by applying the  

Bayesian model updating process. During the BMU, vertical 

bending stiffnesses were selected as updating parameters, 

based on their higher sensitivity. This choice was made since 

the experimental mode shapes of the selected bridge are 

predominantly in the vertical direction, including vertical and 

torsional modes. These stiffness parameters were iteratively 

updated using the Transitional Markov Chain Monte Carlo 

(TMCMC) algorithm described in section 2.1.  The resulting 

frequencies and MAC values before and after the BMU are 

indicated in Table 1. The mode shapes obtained from 

experimental data and the updated FE model are shown in 

Figure 5 and Figure 6, respectively.  

After updating, the FE model showed improved agreement 

with the experimental modal properties. The first and second 

modes reached MAC values of 99.8% and 94.2%, respectively. 

However, the third mode retained a relatively low MAC value 

of 36.1%, which indicates limited consistency. This 

discrepancy is attributed to reduced sensitivity of vertical 

stiffness to higher terms not captured by the selected 

parameters. 

Despite this, the updated FE model provides a sufficiently 

accurate representation of the bridge’s dominant dynamic 

behavior, and it is used exclusively to generate synthetic 

damage scenarios for training the surrogate model. Since both 

training and test datasets are generated from the calibrated 

model, the surrogate model’s performance reflects the behavior 

encoded in the updated FE model, while remaining independent 

of direct comparisons with experimental data. 

Table 1: Modal properties comparison 

 Experimental 

FE Model 

before 

BMU 

FE Model 

after 

BMU 

 

Mode 

Number 

Frequency 

(Hz) 

Frequency 

(Hz) 

Frequency 

(Hz) 

MAC 

value 

(%) 

1 1.56 1.70 1.75 99.8 

2 2.50 1.82 2.42 94.2 

3 3.63 3.42 3.76 36.1 

 

Figure 5: Experimental mode shapes 

 

Figure 6: Updated FE mode shapes 
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 Construction of the surrogate model and damage 

identification 

The proposed damage identification framework is applied to a 

single span to demonstrate its effectiveness in damage 

detection and integrity assessment. The Variational 

Autoencoder (VAE) model was trained and applied using 

numerically simulated data representing various damage 

scenarios with different damage locations and severity.  

To generate the training dataset for the VAE model, damage 

was simulated in the FE model through the reduction in vertical 

rotational stiffness. For each damage scenario, the FE modal 

properties were obtained by dividing the span into 20 parts and 

applying the reductions to the corresponding vertical rotational 

stiffnesses. 

Damage severity levels were defined as reductions ranging 

from 10% to 70% in the corresponding vertical rotational 

stiffness values.  For each segment and each severity level, a 

separate damage scenario was created. In total, 140 damage 

scenarios were generated (20 segments × 7 severities). Table 2 

summarizes the segments and the associated severity levels 

considered in the training data generation. To enhance the 

robustness of model learning, random noise was artificially 

added to the modal properties during the training data 

generation process. During the training phase, the surrogate 

model was trained using the labeled modal properties (natural 

frequencies and normalized mode shapes) corresponding to the 

various considered damage scenarios. The structural model was 

modified for each damage scenario, and a modal analysis was 

performed to obtain corresponding modal properties, enabling 

the VAE to learn patterns associated with different damage 

levels and locations. After the generation of the training dataset, 

it was divided into 80% and 20% portions, with 80% used to 

train the model, remaining 20% used to test the model, 

providing an unseen dataset to objectively evaluate the model’s 

learning performance  

It is acknowledged that the damage scenarios used in this 

study are synthetically generated and not validated against 

experimental damage. While the applied stiffness reduction 

levels serve to explore the sensitivity and robustness of the 

surrogate model, such values may not reflect the typical 

damage progression in real-world structures. These scenarios 

are intended to span a wide range of conditions, including rare 

or extreme cases. 

Table 2: Summary of the damage scenarios 

Damage Scenario Segment No Reduction Factors 

DS1 1 From 0.1 to 0.7 

DS2 2 From 0.1 to 0.7 

DS3 3 From 0.1 to 0.7 

… … … 

DS20 20 From 0.1 to 0.7 

 

 Damage identification 

The capability of the surrogate model to identify damage was 

tested using unseen test data, that is, samples of modal 

parameters corresponding to the considered damage scenarios, 

not used in the training phase. Results are represented by the 

confusion matrix in Figure 7. The confusion matrix compares 

the true and predicted damage locations, where diagonal 

elements represent correct predictions and off-diagonal 

elements indicate misclassification in the test datasets.    

 

 

Figure 7: Confusion matrix for damage locations 

In Figure 7, predicted and simulated (ground truth) damage 

locations are represented along the x and y axes by the element 

indices in the FE model. The diagonal elements of the matrix 

indicate the number of samples for which the damage location 

was correctly identified. 

It is important to note that both training and testing datasets 

for the surrogate model were generated from the updated FE 

model, which was calibrated using experimental model 

properties. Although the updated model still presents some 

discrepancies, particularly in higher modes, the surrogate 

model operates entirely within the dynamic response space 

defined by the updated model. To enhance the robustness of the 

algorithm, artificial noise was introduced into synthetic modal 

data during both training and testing. This ensures that the 

model is not overfitted to idealized cases and can generalize 

across realistic measurement uncertainty, while maintaining 

consistency with the physical behavior captured by the updated 

FE model. 

The model was tested on scenarios involving progressive 

damage evolution, effectively capturing and tracking the 

increasing severity over time. The data for the evolving damage 

severity was gathered from the unseen test dataset to indicate 

the model’s performance in this context. The results are 

presented in Figure 8 where the vertical axis represents stiffness 

reduction factors. The predicted damage severity follows this 

predefined discretization to ensure the consistency between 

training and testing data. Additionally, Figure 8 illustrates the 

damage detection results over an evolving damage scenario, 

highlighting how the proposed framework translates predicted 

damage severity levels into actionable maintenance decisions. 

Each step in Figure 8 corresponds to a synthetic damage state 

generated by reducing the stiffness in the model. These steps 

represent hypothetical damage progression sequences, used to 

demonstrate the ability of the VAE model to track increasing 

severity.  
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Figure 8: Damage level identification results 

 Decision Making 

For the considered case study, the thresholds that trigger 

different management actions for each bridge component have 

been defined in terms of the stiffness reduction factor, kred, and 

are reported in Table 3. To these thresholds correspond the 

damage scenarios considered for the training of the VAE 

model. 

 

Table 3: Thresholds for stiffness reduction 

kred  Maintenance management action 

0.1 normal condition  

0.2 structural inspection  

0.3 component repair  

0.4 cautionary bridge closing  

 

It is also worth mentioning that the maintenance actions 

proposed here are not intended to restore the load-bearing 

capacity but rather to compensate for localized stiffness 

reductions that may affect the bridge’s dynamic behavior and 

long-term serviceability. The decision framework relies on 

stiffness reduction as a measurable proxy for damage 

progression, which triggers maintenance interventions aimed at 

preserving structural performance and reducing the risk of 

further deterioration. This approach reflects a conservative, 

condition-based strategy focused on sustaining system stiffness 

and structural continuity, even before reaching strength-based 

limit states. 

4  CONCLUSION 

This paper presents an online damage identification approach 

based on a Variational Autoencoder surrogate model. The 

proposed methodology combines model-based data generation 

with surrogate modelling to enhance the efficiency of the real-

time data-driven damage identification without reducing 

accuracy. 

To support timely maintenance decisions, a concept for a 

structured decision-making framework is proposed. The 

framework maps the structural condition into specific 

management actions. This structured, rule-based approach 

enables scalable, real-time decision support under varying 

operational scenarios.  

Future work will explore the integration of stochastic 

deterioration models into the Finite Element model to refine 

long-term maintenance strategies, providing a more effective 

approach to bridge infrastructure management. The 

investigation of threshold values consistent with pre-defined 

limit states of the bridge will be a further research step. 
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ABSTRACT: Structural health monitoring (SHM) is essential for ensuring bridge safety and longevity. Under dynamic loads, 

such as train traffic, acceleration data from sensors offers valuable insights into the condition of the structure. Vehicle bridge 

interaction models required to predict the acceleration time histories involve numerous parameters for rail traffic. Also, model-

based methods have a trade-off between high-fidelity, computationally intensive, and less accurate models. To overcome these 

limitations, this study introduces a deep learning (DL) algorithm to identify changes in the bridge. However, large datasets 

resulting from high-frequency sampling and long observation periods pose computational challenges as the train passes over the 

bridge. To address this, down sampling is employed, reducing data complexity while preserving essential features of the signal. 

The approach is demonstrated using acceleration data recorded at a node point of a railway truss bridge during train passage. An 

Autoencoder is employed, compressing high-dimensional data into a low-dimensional latent space, and a deep neural network 

(DNN) is applied to the latent space, incorporating a measurement loss function to estimate the system parameters. This framework 

ensures computational efficiency and data integrity, enabling precise system parameter estimation and showcasing its effectiveness 

in real-life bridge SHM. 

KEY WORDS: Data compression; Autoencoder; Deep neural network; Deep learning; Railway steel truss bridge; Structural health 

monitoring. 

1 INTRODUCTION 

Structural health monitoring (SHM) has advanced significantly 

with the development of sensing technologies and data 

collection capabilities [1],[2]. It plays a crucial role in ensuring 

the safety, durability, and reliability of critical structures, 

particularly railway bridges that experience continuous 

dynamic loading [3],[4]. Accurately estimating structural 

parameters such as cross-sectional area, damping coefficients, 

and stiffness properties is fundamental for detecting structural 

degradation, damage progression, and potential failures [5],[6]. 

Traditional methods, including finite element model (FEM)-

based approaches, rely on high-fidelity models and 

experimental calibration, which are computationally expensive 

and susceptible to modeling inaccuracies [7],[8],[9]. These 

challenges necessitate data-driven approaches that leverage 

machine learning (ML) techniques for efficient and accurate 

structural assessment [10],[11]. 

Neural networks, a part of ML techniques, have emerged as 

powerful tools in SHM, enabling automated inspection 

processes and addressing the growing complexity of intelligent 

monitoring systems. Their primary advantages include 

automatic feature extraction, effectiveness in handling noisy 

datasets, and accurate modeling of nonlinear relationships [12]. 

Nevertheless, conventional artificial neural networks (ANNs) 

frequently encounter issues such as convergence to local 

minima, susceptibility to overfitting, and limited ability for 

deeper feature extraction due to shallow network architectures 

[13]. Recent advancements in deep learning (DL) have 

introduced data-driven SHM approaches, wherein structural 

parameters are inferred directly from measured vibration 

signals [14],[15] to overcome the above mentioned challenges. 

Such DL frameworks effectively capture complex nonlinear 

relationships inherent in multi-sensor datasets, making them 

particularly suitable for classification and regression tasks [16]. 

Nevertheless, standalone DL models share several limitations 

commonly observed with traditional ANNs, including high 

computational efficiency, overfitting, and convergence issues, 

highlighting the need for hybrid DL methodologies [17]. Over 

the past decade, several hybrid DL approaches have been 

developed for bridge damage detection and condition 

assessment. One promising approach is the Autoencoder, 

which is known for its ability to perform dimensionality 

reduction and data compression effectively.  

To highlight a few instances, an unsupervised Autoencoder 

approach proposed in [18] achieved real-time bridge damage 

detection directly from raw acceleration data, although it was 

limited to single-sensor applications without the capability for 

damage localization or quantification. In another study [19], a 

hybrid methodology combining statistical modeling, neural 

networks, and deep support vector domain description 

demonstrated effective real-time damage detection with 

minimal false alarms; however, this method lacked localization 

capability, exhibited reduced performance with multi-sensor 

datasets, and has not been tested on full-scale structures. [20] 

introduced an Autoencoder-based method emphasizing the 

relationships among natural frequencies and mode shapes. 

Further extending this concept, [21] proposed a deep sparse 

Autoencoder specifically used for structural damage detection 

using these vibration characteristics. [22] developed a two-

level hybrid learning framework, employing unsupervised 

learning for preliminary damage detection followed by 

supervised validation, demonstrating its efficacy through 

On a data compression technique for acceleration signals from a railway bridge 
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numerical simulations of concrete beams and experimental 

validation using laboratory frames. Additionally, [23] 

introduced an unsupervised deep neural network (DNN) 

method combining a deep Autoencoder with a one-class 

support vector machine (SVM), eliminating the reliance on 

extensive labeled datasets by utilizing only intact structural 

data.  

While prior research has explored hybrid DL models 

involving Autoencoders for data compression, most studies 

have primarily addressed laboratory-scale experiments or 

relied on supervised learning methods. In contrast, this study 

introduces an integrated framework combining unsupervised 

Autoencoder-based compression and a supervised DNN model 

to effectively handle on-field acceleration signals coming in the 

form of latent space representation from the Autoencoder. The 

proposed Autoencoder-DNN framework is computationally 

efficient and provides an effective compression strategy that 

preserves the important structural characteristics of real-world 

acceleration data by extracting relevant features, facilitating 

accurate and reliable estimation of structural parameters in 

railway steel truss bridge members.  

The methodology presented herein constitutes the 

preliminary phase of a comprehensive, multi-stage 

investigation to extend parameter estimation from an individual 

joint (node point considered in this study) to the entire railway 

steel truss bridge structure. By demonstrating the effectiveness 

and robustness of the developed approach through this single-

node case study, the present work lays a solid foundation for 

data-driven SHM of complex infrastructure with relevance to 

railway bridge systems.  

The structure of this paper is as follows: Section 2 details the 

bridge type and instrumentation scheme. Section 3 explains 

data collection and segmentation. Section 4 presents the 

proposed methodology, including the Autoencoder and the 

DNN model. Section 5 discusses the results, focusing on model 

accuracy, anomaly detection, and computational efficiency. 

Finally, Section 6 concludes the key findings and explores 

potential directions for future research. 

2 BRIDGE DETAILS AND INSTRUMENTATION 

SCHEME 

The Pamban Bridge is a railway steel truss bridge linking 

Rameswaram on Pamban Island to mainland India, as shown in 

Figure 1. Commissioned in 1914, it was India’s first sea bridge. 

Although most spans are conventional I-plate girders on 

concrete piers, the bridge features a notable double-leaf bascule 

section that pivots to let ships and barges pass. This movable 

portion, designed by Scherzer, is counterbalanced and pivots 

around a horizontal axis, with the superstructure rolling atop 

the track girder. Each leaf consists of a rigid jaw-and-tongue 

system to transfer shear without moments and is further 

subdivided into north and south trusses [24]. 

Since the bridge endures harsh marine conditions, corrosion 

is a significant concern, making it essential to evaluate any loss 

of cross-sectional area for structural assessments. A total of 40 

uniaxial accelerometers have been installed at various bottom 

nodes in biaxial mode on the bridge’s Mandapam and Pamban 

truss segments in both the north and south directions, as shown 

in Figure 2. 

 

Figure 1. Orientation of the Pamban bridge. 

 

Figure 2. Location of accelerometers on the bridge. 

3 DATA COLLECTION AND SEGMENTATION 

The acceleration data used in this study was collected from a 

bottom node marked with a red box in Figure 2, where two 

uniaxial accelerometers were installed in biaxial mode. 

Measurements were taken in both the x and y directions, with 

the x direction corresponding to the direction of train 

movement and the y direction representing the direction of 

gravity. When detecting a train pass event, the DAQ system 

continuously recorded acceleration data for 480 seconds, which 

was sufficient to cover the train passage with an ample margin 

before and after the event. 

The sampling frequency of the acceleration was set at 600 

Hz, resulting in 288,000 data points for each recording session. 

After analyzing acceleration signals from 150 train passages for 

each direction, it was observed that the train-induced vibrations 

predominantly occupied the initial segment of the recorded 

signal. At the same time, the remaining portion primarily 

consisted of ambient noise. Based on this observation, a 

consistent segmentation approach was adopted, wherein the 

first 1,60,000 data points were extracted from each recording 

for further analysis. This segmentation ensured the retention of 

train-induced dynamic responses while excluding prolonged 

noise periods, thereby reducing the number of data points in the 

subsequent processing stages.  

4 METHODOLOGY 

This study adopts a multi-step methodology comprising data 

pre-processing and data compression to improve the 

performance, scalability and computational efficiency of the 

Autoencoder-DNN framework for parameter estimation. The 

overall flowchart is presented in Figure 3, which outlines the 
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key steps involved. Each step is further detailed in the 

following sections, explaining the implemented approach. 

 

 

Figure 3. Flowchart depicting the methodology. 

 Data Preprocessing 

After obtaining the train pass signals, the time-domain data was 

converted into the frequency domain using the fast Fourier 

transform (FFT). This transformation was essential to facilitate 

efficient data processing, as the large dataset in the time domain 

posed computational challenges for subsequent analyses, 

notably when applying the DNN model. The FFT utilizes the 

symmetric property of real-valued signals, reducing the 

adequate number of data points by half while retaining the 

qualities of the original signal, which optimizes storage and 

computational requirements. The amplitude spectrum of the 

transformed signal was carefully examined, revealing that 

frequency components beyond 100 Hz have acceleration 

amplitudes 1/4th less than the maximum amplitude. Therefore, 

a frequency threshold of 100 Hz was adopted to truncate the 

signal, effectively eliminating higher-frequency content while 

retaining the dominant spectral content. This transformation 

approach introducing symmetry and frequency truncation has 

resulted in a reduced dataset of approximately 26,666 data 

points. Figure 4 illustrates the process, where the time-domain 

acceleration signal is converted to the frequency domain and 

truncated up to 100 Hz. This significant reduction enhanced 

computational efficiency and preserved the essential dynamic 

characteristics of the train-induced vibrations. However, 

despite the reduction, the large dimensionality of the dataset 

still posed computational challenges, particularly concerning 

memory requirements and the convergence efficiency of the 

DNN model.  

 Data Compression Using Autoencoder 

To mitigate computational challenges, a data compression 

technique based on an Autoencoder is implemented. The 

Autoencoder used in this study consists of two key 

components: an encoder, which compresses the input data into 

a lower-dimensional latent space, and a decoder, which 

reconstructs the data from this compressed representation. 

Figure 5 illustrates the step-by-step application of the 

Autoencoder, detailing the transformation process at each 

stage. 

Since acceleration signals exhibit distinct dynamic 

characteristics in the x and y directions, separate Autoencoders 

are implemented for each direction. The Autoencoders applied 

in both directions maintain an identical architecture, layer 

structure, and activation functions, as shown in Figure 5, but 

they are trained independently to capture the unique frequency 

and amplitude variations inherent to each direction. This 

ensures that the learned representations accurately reflect the 

direction-specific vibration behavior while preserving 

consistency in the latent space size.  

 

 

Figure 4. Data preprocessing workflow.
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Figure 5. The architecture of the Autoencoder.

4.2.1 Encoder network 

It consists of three layers labeled C1 to C3. The ReLU 

activation function is applied in layers C1 and C2, while the 

linear activation function is used in layer C3. As described in 

the previous section, the network takes preprocessed input data 

of size 1 × 26666 for one train pass. However, since the 

autoencoder is trained on data from 112 (75% of 150 train 

passes) train passes, the input data size becomes 1 × 26666 × 

112 for each direction. The data is progressively compressed 

through each layer, reducing its dimensionality from 1 × 26666 

× 112 in the input layer to 1 × 1000 × 112 in C1, 1 × 750 × 112 

in C2, and finally to 1 × 500 × 112 in C3, which represents the 

latent space.  

4.2.2 Decoder network 

The decoder network consists of three layers, labeled R1 to R3, 

designed to restore the compressed latent space to its original 

dimension. The ReLU activation function is applied in layers 

R1 and R2, while the linear activation function is used in the 

final layer R3. The input to the reconstruction network is the 

latent space representation of size 1 × 500 × 112. The data is 

gradually reconstructed through each layer, expanding from 1 

× 750 × 112 in R1, then to 1 × 1000 × 112 in R2, and ultimately 

restored to its original size of 1 × 26666 × 112 in R3 at the 

output layer. 

4.2.3 Dropout Regularization 

To prevent overfitting and enhance the generalization 

capability of the Autoencoder model, dropout regularization is 

applied to each layer except the latent space layer. A 10% 

dropout rate is used, randomly deactivating 10% of the neurons 

to zero during each training iteration.  

4.2.4 Loss function 

The Autoencoder is trained using the mean squared error 

(MSE) loss function, which measures the reconstruction error 

between the original input data and the reconstructed output. 

The MSE loss is defined as: 

𝐿𝑀𝑆𝐸  =  
1

𝑁
∑(𝑥𝑖  −  𝑥̂𝑖)2

𝑁

𝑖=1

 (1) 

where 𝑥𝑖 represents the original input data,  𝑥̂𝑖  represents the 

reconstructed output, and N is the total number of train passes. 

The loss function is minimized during training, ensuring that 

the reconstructed signal closely approximates the 

characteristics of the input signal. This optimization enables the 

Autoencoder to retain essential features of the input data, 

making the compressed representation more computationally 

efficient. 

4.2.5 Optimization 

The Adam optimizer employed to train the Autoencoder is 

widely recognized for its effectiveness in various applications. 

It is well-suited for non-stationary objectives and problems 

with noisy or sparse gradients [25]. The optimization is 

performed over 30 epochs, minimizing the MSE loss to 

improve reconstruction accuracy while retaining the essential 

features of the input data. 

 Integration with DNN Model 

Integrating the compressed latent space representations of the 

frequency-domain acceleration data with the DNN model helps 

in parameter estimation. Figure 6 illustrates the step-by-step 

application of the DNN model.  
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Figure 6. The architecture of the DNN model.

4.3.1 Input to DNN model 

The compressed latent space representations of the frequency-

domain acceleration data in both the x and y directions are 

integrated within the DNN model to estimate the cross-

sectional area of the truss members. Since acceleration 

responses exhibit distinct dynamic characteristics in different 

directions, the compressed x and y components are 

concatenated to form a combined 500 × 2 input vector for each 

train pass. 

This combined representation allows the DNN model to 

capture the full structural behavior influenced by both 

directional responses. The combined 500 × 2 × 112 input vector 

for all train passes is passed into the DNN model for training, 

enabling the model to learn the system’s dynamics across 

multiple loading conditions. 

4.3.2 DNN architecture 

As mentioned earlier, the DNN model receives compressed 

latent space representations of the acceleration data from the 

Autoencoder, presented in a concatenated format that includes 

data from both directions. After conducting hyperparameter 

tuning using the grid search method, Table 1 displays the final 

values of the parameters used in the DNN model. 

Table 1. DNN model parameters and their values. 

Parameter Value 

Hidden Layers 3 

Hidden Neurons 64 

Output Neurons 5 

Hidden Activation Leaky ReLU 

Dropout Layer 0 

Learning Rate 0.001 

Optimizer ADAM 

Epochs 20000 

 

The final output layer estimates the cross-sectional area of the 

truss members connected, which is highlighted by a red color 

line in Figure 6. The network effectively learns the mapping 

from the compressed input to the target output while integrating 

the measurement loss function to improve accuracy.  

4.3.3 Measurement loss function 

The DNN model incorporates a measurement loss to improve 

the accuracy of the estimated area. This loss minimizes the 

difference between the true cross-sectional area (provided in 

Table 2) and the predicted area obtained from the DNN model 

using the MSE loss function defined as: 

 

𝐿𝑀𝑆𝐸  =  
1

𝑁
∑ ∑ ((𝑥𝑡𝑟𝑢𝑒

𝑗
)

𝑖
 −  (𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑗
)

𝑖
)

2
5

𝑗=1

𝑁

𝑖=1

 (2) 

 

where 𝑥𝑡𝑟𝑢𝑒
𝑗

 is the true value of the jth parameter of the system 

to be estimated – the cross-sectional area and 𝑥𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑
𝑗

 is the 

corresponding predicted value from the DNN model. 

Table 2. The table shows the true values of the cross-sectional 

area. 

Parameter Value (mm2) 

Element 1 (E1) 24400 

Element 2 (E2) 12178 

Element 3 (E3) 15800 

Element 4 (E4) 20100 

Element 5 (E5) 8700 
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 Hypothesis for Estimating Cross-Sectional Area from a 

Single Node Response 

The study focuses on a single node among those where bi-axial 

accelerations are recorded. This node is structurally connected 

to five truss elements, each assumed to have known lengths 

(L1, L2, L3, L4, and L5) and elastic modulus, while the cross-

sectional areas (A1, A2, A3, A4, and A5) are unknown and to 

be estimated. The arrangement of the members is as shown in 

Figure 7. The assumption that all five truss elements are fixed 

at the other end is not true in the actual truss structure. 

However, this assumption allows checking of the algorithm in 

a smaller setting. 

 

 

Figure 7. Schematic of the monitored truss node with five 

connected members. The bi-axial accelerometer is positioned 

at the node to record dynamic responses during train passages. 

The mass matrix is formulated based on the shape functions 

that approximate the displacement. The consistent element 

mass matrix formulated in global coordinates for member AB 

is given by: 

 

[𝑀𝐴𝐵]  =  
𝜌𝐴𝐿

6
[

2𝑐2 2𝑐𝑠 𝑐2 𝑐𝑠
2𝑐𝑠 2𝑠2 𝑐𝑠 𝑠2

𝑐2 𝑐𝑠 2𝑐2 2𝑐𝑠
𝑐𝑠 𝑠2 2𝑐𝑠 2𝑠2

] (1) 

 

where c and s denote cos(θ) and sin(θ), respectively, θ is the 

counter- clockwise angle measured with respect to the positive 

x-axis, ρ is the density of the material, A is the cross-sectional 

area, and L is the length of the element. 

Meanwhile, the stiffness matrix is derived under the 

assumption of linear elastic behaviour. The stiffness matrix 

used in global coordinates for member AB is given by: 

 

[𝐾𝐴𝐵]  =  
𝐸𝐴

𝐿
[

𝑐2 𝑐𝑠 −𝑐2 −𝑐𝑠
𝑐𝑠 𝑠2 −𝑐𝑠 −𝑠2

−𝑐2 −𝑐𝑠 𝑐2 𝑐𝑠
−𝑐𝑠 −𝑠2 𝑐𝑠 𝑠2

] (2) 

 

where E is Young's modulus, A is the cross-sectional area, and 

L is the element length.  

Similarly, the global mass and stiffness matrices for all five 

connected truss elements are formulated and subsequently 

condensed by applying suitable boundary conditions according 

to the idealization results in a 2×2 system of equations relating 

the translational degrees of freedom at the monitored node to 

the forces acting on the node due to the train. During a train 

passage, this node undergoes dynamic displacement, and the 

bi-axial accelerometer captures its response along the train 

movement (x-direction) and gravity direction (y-direction).  

Given that the displacement (ux and uy) and acceleration (ax and 

ay) responses are known, and the excitation is indirectly 

inferred from the train passage characteristics (fx and fy), the 

cross-sectional areas, which influence the mass and stiffness of 

each member, leave a unique imprint on the node’s dynamic 

response as reflected in: 

 

[
𝐾11 𝐾12

𝐾21 𝐾22
] {

𝑢𝑥

𝑢𝑦
} +  [

𝑀11 𝑀12

𝑀21 𝑀22
] {

𝑎𝑥

𝑎𝑦
} =  {

𝑓𝑥

𝑓𝑦
} (3) 

 

where 𝐾11 =
𝐸𝐴1

𝐿1
+

𝐸𝐴2

𝐿2
+

𝐸𝐴3𝑐2
2

𝐿3
+

𝐸𝐴5𝑐1
2

𝐿5
 ; 𝐾12 = 𝐾21 =

𝐸𝐴3𝑐2𝑠2

𝐿3
−

𝐸𝐴5𝑐1𝑠1

𝐿5
 ; 𝐾22 =

𝐸𝐴3𝑠2
2

𝐿3
+

𝐸𝐴4

𝐿4
+

𝐸𝐴5𝑠1
2

𝐿5
 and 𝑀11 =

 
𝜌𝐴1𝐿1

3
+

𝜌𝐴2𝐿2

3
+

𝜌𝐴3𝐿3𝑐2
2

3
+

𝜌𝐴5𝐿5𝑐1
2

3
 ;  𝑀12 = 𝑀21 =

𝜌𝐴3𝐿3𝑐2𝑠2

3
−

𝜌𝐴5𝐿5𝑐2𝑠2

3
;  𝑀22 =

𝜌𝐴3𝐿3𝑠2
2

3
+

𝜌𝐴4𝐿4

3
+

𝜌𝐴5𝐿5𝑠1
2

3
, are respective 

components of the effective stiffness and mass matrices. Here, 

c1 and s1 denote cos(θ1) and sin(θ1), c2 and s2 denote cos(θ2) and 

sin(θ2), respectively, and θ is the counter-clockwise angle 

measured with respect to the positive x-axis. 

Equation (3) represents a possible relation between the 

acceleration and the cross-sectional area of connected 

elements. The proposed framework finds this relationship 

between the measured acceleration and cross-sectional areas in 

a data-driven manner. 

5 RESULTS AND DISCUSSIONS 

This section presents the performance evaluation of the 

Autoencoder-DNN framework, focusing on data compression, 

reconstruction errors, system parameter estimation, 

computational efficiency, and anomaly detection. The model is 

trained and tested using 150 train pass datasets for each 

direction, with a 75%–25% train-test split, ensuring the model 

generalizes well to unseen data.  

 Autoencoder Performance and Reconstruction Loss 

Behavior 

The Autoencoder uses a validation set of a split ratio of 75%-

25% instead of the test set during training to monitor the 

reconstruction loss and ensure that the model generalizes 

effectively to unseen data. This is important, as the loss terms 

for the autoencoder should remain consistent across the training 

and validation sets to facilitate accurate compression and 

reconstruction. 

Figure 8 illustrates the training and validation loss curves, 

showing a smooth and stable convergence of order 10-3, which 

indicates that the latent space representation effectively 

captures the dominant structural features of the train-induced 

vibrations. The final loss values confirm that the compression 

process does not introduce significant deviations, making the 

latent representation reliable for subsequent DNN-based 

analysis. 
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Figure 8. Comparison of loss in the training set and in the 

validation set. 

Additionally, the method takes approximately 240 seconds to 

compress the acceleration data into the latent space for both 

directions, highlighting its effectiveness in data compression 

and computational speed. 

 DNN Model Parameter Estimation 

Once the Autoencoder compresses the frequency domain 

acceleration data into the latent space, the DNN model is 

trained using 75% of the dataset and subsequently tested on the 

remaining 25% of unseen data. The primary objective of the 

DNN model is to estimate the cross-sectional area of the truss 

members by minimizing the measurement loss function. Figure 

9 illustrates that during the training process, the MSE loss 

consistently decreases as the number of epochs increases, 

leading to stable convergence of the estimated parameters. 

Once stable convergence is achieved, while observing the 

parameter values in the training dataset, it is noticed that the 

cross-sectional area of the truss members converges to their 

true values. To interpret this result physically, for an idealized 

truss structure without structural damage, the cross-sectional 

area values should remain constant across all train passes. 

Figure 10 shows the area estimation of element (E2) for five 

train passes. It can be observed that the cross-sectional area is 

converging to its true value (reported in Table 2). Similarly, for 

all the train passes and for all the truss members considered, the 

results across the entire training dataset confirm that the 

estimated area values closely align with the expected true 

values. 

 

Figure 9. Convergence of measurement loss at each epoch. 

 

Figure 10. The cross-sectional area of element (E2) using the 

training data. 

5.2.1 Performance Evaluation of the DNN Model on the 

Test Data 

Once the DNN model is trained, its performance is evaluated 

using the test data. Figure 11 illustrates the values of the cross-

sectional area obtained from the DNN model for all the test 

datasets. The coefficient of variation (CoV) is computed for the 

estimated cross-sectional area for all the truss members and 

tabulated in Table 3. It is observed that the CoV values for all 

the truss members are less and identical. This uniformity in 

CoV shows that the DNN model exhibits consistent relative 

variability in its predictions across different members. Such 

behavior indicates stable model performance under test 

conditions, with no bias or irregularity in estimating cross-

sectional area. However, this observation also highlights the 

need for further analysis to ensure that the model is sufficiently 

sensitive to localized structural variations, and hence, the 

model is tested through false data simulating sensor fault, noise, 

and anomalies, as explained in the next section. 

Table 3. The table shows the coefficient of variation of the 

predicted cross-sectional area under test data. 

Parameter Coefficient of Variation (%) 

Element 1 0.18 

Element 2 0.18 

Element 3 0.18 

Element 4 0.18 

Element 5 0.18 

 

 

Figure 11. The cross-sectional area of the truss members for 

the test data. 
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Figure 12. Illustration of the false data for the DNN model, showing (a) the time-domain acceleration signal, (b) its frequency-

domain representation, (c) the latent space obtained from the Autoencoder, and (d) a comparison between the normalized 

reconstructed false data and original data, highlighting their differences.

 Computational Efficiency 

The DNN model employed in this study took approximately 

100 seconds to estimate parameters involving 150 train 

passages in both directions, emphasizing the model’s 

effectiveness in balancing accuracy and computational speed in 

parameter estimation. 

 Anomaly Detection Through False Data Injection 

To evaluate the robustness of the Autoencoder-DNN 

framework and its ability to detect inconsistencies in the input 

data, three false datasets are used in this study. These false data 

are provided to check whether the proposed framework can 

detect potential structural anomalies, sensor noise, or 

environmental influences, which introduce variations in the 

acceleration response in the on-field conditions. To be specific, 

the first false data replaces the train pass signal with data 

collected from a different node point, the second exhibits a 

faulty sensor that fails to capture the correct train pass signal, 

and the third represents an anomaly where the sensor is unable 

to record any valid data—potentially caused by false triggers. 

Figure 12 illustrates the procedure followed for preparing these 

false datasets prior to their input into the DNN model. It 

sequentially presents (a) the acceleration signal in the time 

domain, (b) its corresponding frequency-domain 

representation, (c) the latent-space representation obtained 

from the Autoencoder, and (d) a comparison between the 

reconstructed false data and original data from the trained 

Autoencoder, clearly highlighting differences between the two 

signals. When the latent space of the false data was passed onto 

the DNN model, the predicted cross-sectional area for all the 

truss members exhibited notable deviations, as shown in Table 

4. It is observed that the percentage deviation of the cross-

sectional area for all the truss members exhibits the same 

percentage change for the different false datasets, regardless of 

the specific member location. For false data 1, 2, and 3, the 

percentage deviation is approximately 4.30%, 1.10%, and 

3.30%, respectively. The statistically significant percentage 

change across members highlights the framework’s ability to 

detect gross inconsistencies in the input signals, though it also 

indicates a need for future enhancement to improve sensitivity 

to localize anomalies. It may be that localization would occur 

when multiple nodes are used. Thus, the proposed framework 

provides the identification of faulty sensor readings, 

environmental influences, or potential structural changes. 

However, the classification of the signal remains a challenge. 
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Table 4. The table shows the percentage deviation of the 

predicted cross-sectional area values with respect to the true 

cross-sectional area values for the false data. 

Parameter 

Percentage deviation from the true cross-

sectional area value (%) 

False data 1 False data 2 False data 3 

Element 1 4.30 1.10 3.30 

Element 2 4.30 1.10 3.30 

Element 3 4.30 1.10 3.30 

Element 4 4.30 1.10 3.30 

Element 5 4.30 1.10 3.30 

6 CONCLUSION 

This study introduced an Autoencoder-DNN framework for 

data-driven structural parameter estimation using train-induced 

vibration responses. The Autoencoder effectively compressed 

high-dimensional acceleration data in the frequency domain 

into a lower-dimensional latent space, preserving critical 

structural features while significantly enhancing computational 

efficiency. The DNN model, trained on the compressed latent 

representation, allows for accurate estimation of the cross-

sectional area of the truss members connected to the node point 

considered in this study. The model exhibited stable 

performance on test datasets, with low prediction errors and 

consistent coefficients of variation, indicating reliable and 

uniform estimation capabilities. Furthermore, the framework 

effectively detected inconsistencies when introduced with false 

datasets simulating sensor faults, noise, and anomalies. In all 

cases, uniform deviations in the estimated cross-sectional area 

confirmed the model’s robustness in identifying global 

anomalies in the input data. 

Overall, the proposed framework offers an Autoencoder-

based compression, supervised DNN model, and automated 

anomaly detection, making it a scalable and computationally 

efficient tool for large-scale truss structures in real-world 

applications. Future work will focus on improving the 

framework’s sensitivity to localize damage and integrating the 

full-scale truss bridge model and extended datasets to further 

examine the framework’s generalization capability. 
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ABSTRACT: This study uses novel image processing techniques to explore the effects of Cement Replacement Materials (CRM) 

like silica fume and fly ash on concrete’s microstructure and durability. Cylindrical concrete specimens were prepared with mixed 

ratios of 1:2:4 and 1:3:6, incorporating water-cement (W/C) ratios of 0.4, 0.5, and 0.6 and CRM levels of 0%, 15%, and 25%. 

Images captured at various cylinder heights were analyzed using rectangle and nearest neighboring methods to quantify aggregate 

distribution and air void characteristics, including area, size, and spacing. Validation against manual measurements showed an 

error rate of less than 1.9%, underscoring the accuracy of these techniques. Results indicated that increasing CRM content reduced 

air void proportion and size, indicating improved durability. Additionally, CRM increased concrete homogeneity, with 25% of 

CRM samples exhibiting the lowest coefficient of variation (Cv) values (0.29–0.37), compared to higher Cv values (0.41–0.57) 

in non-CRM mixes. These findings highlight CRM’s potential to enhance concrete mix design for better structural performance 

and sustainability in construction applications. 

KEY WORDS: CRM, Concrete, Image Processing 

1 INTRODUCTION 

Concrete holds significant importance in civil infrastructure 

construction due to its favorable properties such as durability, 

strength, adaptability, and ease of availability. Concrete 

consists mainly of cement, aggregates, and water, making it a 

composite material. The cement paste, formed by mixing water 

with hydraulic cement, acts as a binding agent in concrete 

formulations. Cement is the most expensive component within 

the concrete matrix. Moreover, the escalating global demand 

for cement production contributes to the upward trend in 

environmental CO2 levels [1]. To reduce both the economic 

and ecological impacts associated with cement production, the 

incorporation of cement replacement materials (CRMs) has 

gained prominence, leveraging waste materials like silica 

fumes (SF) and fly ash (FA) as viable alternatives to 

conventional cement [2, 3]. CRM can significantly affect the 

rheology of the mortar, which refers to its flow properties [4, 

5]. FA particles are fine and spherical and act as ball bearings, 

reducing internal friction between cement particles and making 

the mix more workable in the concrete mixture [6]. SF particles 

are extremely fine with a high surface area, which enables them 

to fill the spaces between cement particles and create a dense 

matrix. This results in increased viscosity and reduced 

flowability in the concrete [7]. Therefore, aggregate 

distributions and air void content in concrete are affected by 

CRM due to the changes it induces in the rheological and 

microstructural properties of the concrete [8]. 

The distribution of aggregates and air voids in concrete offers 

valuable insights into the concrete sedimentation behavior, 

directly impacting its stability, structural serviceability, 

durability performance, and resistance to cracks [9, 10, 11]. 

Concrete petrographic analysis (ASTM C856) [12] is a 

commonly utilized method for assessing many concrete 

aspects, e.g., size and distribution of aggregates, porosity 

levels, and bughole formations etc. [13]. Typically, concrete 

petrography entails the micro-structural examination of 

concrete components on a polished concrete section using 

imaging methods such as optical microscopy [14] or scanning 

electron microscopy [15]. In the past, human experts have 

conducted petrographic analysis by visually inspecting 

bugholes and aggregate distribution in cut sections of hardened 

concrete to evaluate its stability [16]. Determination of the size 

of aggregate particles has traditionally been done through 

mechanical sieving or manual clippers, but these methods are 

susceptible to human bias, errors, monotony, and inefficiency. 

Hence, there is a growing need for automated techniques and 

alternative methods to assess concrete stability. 

In recent years, digital image processing has emerged as a 

widely employed tool in structural health monitoring (SHM) of 

concrete structures. [17]. Numerous studies have leveraged 

image processing techniques for the distribution analysis of 

aggregates within concrete. Aggregate size, area, and 

distribution within the concrete mixture are assessed to 

investigate the stability of self-compacting concrete [18]. 

Characteristics and distribution of coarse aggregate were 

computed in [19] by segmenting the concrete image into the 

background (cement paste) and foreground (aggregates). 

Characteristics and distribution of coarse aggregate are 

evaluated in [20] by an image analysis method using cross-

sectional images. The consistency between 3D and 2D 

parameters is assessed, and a comparison of the ratio of mortar-

to-coarse aggregate area with the mortar-to-coarse aggregate 

volume is presented. The aggregate distribution analysis in 

asphalt concrete was carried out by examining the aggregates' 

segmented images obtained through X-ray computed 

tomography in [21]. An aggregate classification approach that 

considers mesoscale angularity is proposed in [22]. 
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This paper presents image processing-inspired techniques for 

assessing the impact of CRM on the concrete characteristics 

i.e., aggregate distribution, air void formation, and mixture 

homogeneity and segregation. To ameliorate this, concrete 

cylinders of different mix design ratios and percentages of SF 

and FA cut at the top and bottom sections were imaged to 

capture the internal concrete characteristics. Then, the images 

were annotated with pixel-level labels to facilitate quantitative 

analysis. Image processing-based methods are presented for 

aggregate and air void analysis to understand the impact of 

different CRM ratios in a concrete mixture. Subsequently, 

indicators for assessing concrete homogeneity are introduced 

by integrating aggregate size, roundness, and inter-aggregate 

distances. The study provides valuable insights into the 

segregation of aggregates and air void proportions within the 

concrete mixes and provides a comprehensive understanding of 

the sedimentation behavior induced by CRM. 

2 DATABASE 

  Preparing Concrete Mixtures:  

Two distinct designs of concrete were chosen, each with 

different proportions of cement, fine aggregates, and coarse 

aggregates for casting. These proportions were specified as 

1:3:6 and 1:2:4. Mixes were formulated using different W/C 

ratios (0.4, 0.5, and 0.6) under the standards set by ASTM C 94 

[23] and ACI 318 [24], since the variability in the water/cement 

(W/C) ratio plays a significant role in influencing the 

workability and distribution of aggregates within concrete. A 

total of six mix designs were included in the cast samples. Fly 

ash (FA) and silica fume (SF) were employed as Cement 

Replacement Materials (CRM) at varying replacement 

percentages of 0%, 15%, and 25% to assess their impact on the 

distribution of aggregate and air voids within the concrete 

mixtures. Two batches of 18 concrete cylinders were produced 

using the mix design ratios outlined in Table 1, and were 

allowed to cure for 14 and 28 days, respectively. These 

cylindrical samples were 300 mm in height (H) and 150 mm in 

diameter (D). They were then cut into three slices at 1/3rd and 

2/3rd sections (approximately 100 mm from the bottom and 

top) using a stone cutting saw. The cutting procedure for 

acquiring concrete slices is depicted in Figure 4. Due to the fine 

materials accumulation on the bottom face of the third slice, 

and the top face of the first slice had minimal or no aggregate 

information and were thus excluded from imaging. This left 

four faces for imaging to generate the dataset.  

 

Table 1. Detail of the samples with Mix Ratios 

Sr. No. Mix Ratio W/C Ratio FA % SF % Proportions in kg/m3 

          Cement  FA  SF  Find Aggr. Coarse Aggr.  Water 

1 01:03:06 0.4 0 0 229.48 0 0 728.94 1505.78 91.8 

2 01:03:06 0.5 0 0 229.48 0 0 728.94 1505.78 114.75 

3 01:03:06 0.6 0 0 229.48 0 0 728.94 1505.78 137.69 

4 01:02:04 0.4 0 0 327.79 0 0 694.27 1434.06 131.12 

5 01:02:04 0.5 0 0 327.79 0 0 694.27 1434.06 163.9 

6 01:02:04 0.6 0 0 327.79 0 0 694.27 1434.06 196.68 

7 01:03:06 0.4 15 15 160.64 34.43 34.43 728.94 1505.78 91.8 

8 01:03:06 0.5 15 15 160.64 34.43 34.43 728.94 1505.78 114.75 

9 01:03:06 0.6 15 15 160.64 34.43 34.43 728.94 1505.78 137.69 

10 01:02:04 0.4 15 15 229.45 49.18 49.18 694.27 1434.06 131.12 

11 01:02:04 0.5 15 15 229.45 49.18 49.18 694.27 1434.06 163.9 

12 01:02:04 0.6 15 15 229.45 49.18 49.18 694.27 1434.06 196.68 

13 01:03:06 0.4 25 25 114.75 57.38 57.38 728.94 1505.78 91.8 

14 01:03:06 0.5 25 25 114.75 57.38 57.38 728.94 1505.78 114.75 

15 01:03:06 0.6 25 25 114.75 57.38 57.38 728.94 1505.78 137.69 

16 01:02:04 0.4 25 25 163.9 81.95 81.95 694.27 1434.06 131.12 

17 01:02:04 0.5 25 25 163.9 81.95 81.95 694.27 1434.06 163.9 

18 01:02:04 0.6 25 25 163.9 81.95 81.95 694.27 1434.06 196.68 

The image acquisition setup was organized in a closed room, 

depicting an experimental arrangement for capturing digital 

images of concrete specimens, as shown in Figure 1.To ensure 

high-quality images for effective processing, measures were 

taken to maintain a consistent environment and minimize 

external influences such as light variations, noise, and shadows. 

Black sheets were used to cover all entry points for light, and 

two 30-W LED bulbs provided controlled illumination from a 

specific angle, resulting in a light intensity of 2000 lux. A 

digital camera (Nikon DSLR 3300) with a resolution of 24 

megapixels and ISO value set at 1000 was employed to capture 

192 high-resolution slice images, each measuring 6000→4000 

pixels. A constant distance was maintained by mounting the 

camera on a stand at a distance of 600 mm from the surface of 

the sample. The image acquisition setup, for example slice 

image, is illustrated in Figure 1.  
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Figure 1. Preparation of Concrete Mixtures (Top Left), Casting and Cutting of Samples (Top Right), Image Acquisition (Bottom 

Left), Image Labeling (Bottom Right). 

 

 

 

  Casting and Cutting of Samples 

Two batches of 18 concrete cylinders were produced using the 

mixed design ratios outlined in Table 1, and were allowed to 

cure for 14 and 28 days, respectively. These cylindrical samples 

were 300 mm in height (H) and 150 mm in diameter (D). They 

were then cut into three slices at 1/3rd and 2/3rd sections 

(approximately 100 mm from the bottom and top) using a stone 

cutting saw. The cutting procedure for acquiring concrete slices 

is depicted in Figure 2. Due to the fine materials accumulation 

on the bottom face of the third slice, the top face of the first 

slice had minimal or no aggregate information and was thus 

excluded from imaging. This left four faces for imaging to 

generate the dataset. 

 

Figure 2. Cutting the concrete cylinders into three slices at top 

and bottom sections 

 Image Labeling 

Each image was meticulously labeled at the pixel level to 

distinguish between non-aggregate suspension (e.g., air voids, 

sand-cement matrix) and aggregate pixels. Similarly, for air 

void analysis, image pixels were labeled as either air void 

pixels or non-air void suspension pixels (e.g., aggregates, sand-

cement matrix). Binary images were generated for aggregates 

and air voids, respectively.  

 

Figure 3. High-resolution images of concrete slices: The top 

left is the original image, the top right is the background 

removed image, the bottom left is the Aggregate ground truth 

and the bottom right is the Air void ground truth image 

Figure 3 shows a concrete cylinder slice with background, 

the processed image with the background removed, and the 

corresponding ground truth images for aggregates and air 

voids. White pixels in these images indicate the presence of 

aggregates and air voids as per the ground truth labels. Among 

all the labeled pixels across 144 slice images, 41.3% were 

labeled as aggregate pixels and 58.7% as non-aggregate pixels. 

Similarly, 0.25% of labeled pixels were labeled as air void 

pixels, with 99.75% classified as suspension pixels. Among all 

the labeled images, 1.8% of the particles were found to be 

connected. On average, each connected component consisted 

of approximately 13 pixels. These connected components were 

separated with a Marker-controlled watershed transformation 

algorithm [25] enabling detailed analysis and quantification of 

characteristics of each aggregate and air void in concrete 

samples.  
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The aggregates and air voids proportions can significantly 

influence the rheology, stability, mechanical characteristics, 

durability, and cost-effectiveness of concrete. These 

proportions can be determined from annotated images. The 

overall area occupied by aggregates and air voids in a concrete 

cylinder was determined by counting the white pixels, 

representing aggregates and air voids, and then multiplying it 

by the unit pixel size. Then this pixel size is converted to 0.044 

mm. To validate this method, the aggregate and air void 

characteristics were compared with measurements obtained 

manually and using AutoCAD [26]. For manual area 

measurement of aggregates and air voids, a transparent graph 

paper with a 1 mm square grid was placed on the cylinder 

surface to count squares covering aggregates and air voids, as 

illustrated in Figure 4. The numbers of squares fully and 

partially covering aggregates and air voids were counted and 

then finally summed to determine the area of aggregate and air 

void, respectively. The aggregate mean size and roundness 

values were manually verified against a vernier caliper, as 

illustrated in Figure 4. In AutoCAD [26], the raster images 

were first scaled according to the standard diameter of the 

cylinder. Subsequently, the boundaries of the aggregates and 

air voids were then traced, and certain boundary points were 

marked to form polygons, as depicted in Figure 4. With the help 

of a built-in command, the area of these polygons was 

calculated based on the coordinates of the boundary points. 

This approach differs from the pixel-based method, enabling a 

meaningful comparison between the two techniques. The areas 

of these polygons were then summed to determine the total 

aggregate and air void area, respectively. A comparison of 

aggregate and air void characteristics measured using the 

proposed image processing method, manual measurements, 

and AutoCAD is presented in Table 2. The results demonstrate 

significant consistency, confirming the effectiveness of the 

proposed image processing method in precisely identifying 

characteristics of aggregates and air voids.  

 

Table 2. Comparison of the computed areas 

Parameters  Mix Ratio Proposed Method  AutoCAD  Visual Inspection  Percentage Error 

Aggregate Area (mm2)  
01:02:04 9335.35 9297.12 9411.25 0.81 

01:03:06 10058.42 10083.88 10171.5 1.11 

Aggregate Mean Size (mm)  
01:02:04 14.84 14.53 14.75 0.61 

01:03:06 15.36 15.64 15.5 0.9 

Aggregate Mean Roundness  
01:02:04 1.73 1.81 1.75 1.14 

01:03:06 1.52 1.43 1.5 1.33 

Air-voids Area (mm2)  
01:02:04 5.19 5.31 5.25 1.14 

01:03:06 9.68 10.12 9.5 1.89 

Air-voids Mean Size (mm)  
01:02:04 2.53 2.42 2.5 1.2 

01:03:06 2.77 2.87 2.75 0.73 

 

  Aggregate and Air Void Characteristics: 

An object’s characteristics, like size, shape, and orientation, 

can tell much about its concrete composition. Quantifying these 

characteristics can lead to size and distribution uniformity 

analysis, which in turn facilitates the examination of concrete 

mixture’s consolidation, workability, compatibility, 

interlocking, and bonding. The Feret rectangle technique [27] 

was utilized in this study to measure the characteristics of the 

coarse aggregate and voids from the image. This technique 

entails drawing rectangles that enclose each object with the 

minimum area possible, according to their Feret diameter as 

depicted in Figure 5. The Feret diameter represents the greatest 

distance between points along the object’s perimeter. To 

compute this, we iterated through pairs of points on the 

boundary line, calculating their Euclidean distances and 

identifying the greatest distance as the Feret diameter. 

Subsequently, around each object, a rectangle was drawn, with 

its length corresponding to the Feret diameter and its width 

perpendicular to this direction. The orientation of these 

rectangles was optimized to minimize their area while 

encompassing the object. The dimensions, i.e., length and 

width of each Feret rectangle, were then determined and 

recorded as the corresponding object’s length and width. The 

length of the object was considered as its size, and the mean 

aggregate size was calculated as the average of all aggregate 

sizes measured in the image. The roundness values of coarse 

aggregates were assessed by computing the ratio of the 

rectangle’s longer side to its shorter side. A roundness value of 

one signifies a square-shaped rectangle. As the roundness 

increases, the shape of the object becomes more elongated.  
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Figure 4. Concrete sample (1st image), traced boundaries using AutoCAD (2nd image), manual area measurements with graph 

paper (3rd image), and manual size measurement with vernier caliper(4th image) 

 

Figure 5. Concrete sample image showcasing minimum area rectangles derived from Feret diameter; Aggregate (Left), Air void 

(Right). 

 

 

3 RESULTS AND DISCUSSION 

 Aggregate Proportion 

The proportion of aggregate in the concrete mixture is an 

essential factor in analyzing the structural health of a member 

and can be calculated using the image processing 

methodologies discussed previously. As presented in Table 1, 

in this study, two mix ratios, 1:2:4 and 1:3:6, were employed. 

These mix ratios denote the proportions of cement, fine 

aggregates (sand), and coarse aggregates in 1 m3 volume of 

concrete. Initially, the proportion of coarse aggregates in the 

cylinder was quantified using the aggregate volume ratio 

(AVR) parameter. AVR represents the ratio of coarse aggregate 

volume to the total volume of a cylinder, as given by Eq. 1,  

𝐴𝑉𝑅 =
𝐶𝑜𝑎𝑟𝑠𝑒 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑉𝑜𝑙𝑢𝑚𝑒

𝐶𝑒𝑚𝑒𝑛𝑡+𝑆𝑎𝑛𝑑+𝐶𝑜𝑎𝑟𝑠𝑒
   (1) 

According to Eq. 1, the mix ratios of 1:2:4 and 1:3:6 

correspond to AVR values of 0.57 and 0.60, respectively. The 

AVR values were then compared with the proportions of 

aggregates obtained from 2D cross-sectional images of the 

cylinder. By analyzing concrete cross-sectional images and 

computing areas of aggregate, the proportion of aggregates in 

2D images was quantified using the aggregate area ratio 

(AAR), given as Eq. 2,  

𝐴𝐴𝑅 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑖𝑛 𝐼𝑚𝑎𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑐𝑒𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
  (2)  

Here, the total cross-sectional area of the cylinder refers to 

the area encompassed by all pixels within the cylinder 

boundary. Figure 6 illustrates the AAR values obtained from 

the cross-sectional images for the two mix ratios across 

different CRM ratios. An observable trend emerges where an 

increase in the CRM ratio corresponds to a reduction in the 

variation of deducted AAR values. This may be because the 

incorporation of CRM results in a more uniform distribution of 

aggregates in concrete compared to normal concrete. It is 

noticeable that the calculated AAR values exhibit deviation 

from the AVR values. The disparity in AAR values may arise 

from several factors. Segregation can occur during mixing, 

transporting, and casting of concrete, leading to a nonuniform 

distribution of aggregates within concrete. These factors 

directly influence the calculated AAR values. 
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Figure 6. Box-Plots showing variation of calculated AAR values for the two mix designs with varying CRM ratios.  

 

 Aggregate Size 

In segregation, the coarser aggregate particles tend to settle 

down, and the finer aggregate particles remain at the top. The 

sizes of aggregates at the bottom and top regions of concrete 

cylinders were analyzed (as detailed in Section 2.2) to assess 

the impact of different proportions of W/C ratio and CRM on 

segregation. Analysis of aggregate size involves examining 

cross-sectional images of the concrete cylinder at the top region 

(comprising the bottom face of the first slice and top face of the 

second slice) and the bottom region (comprising the bottom 

face of the second slice and top face of the third slice). The 

difference in aggregate mean size between these regions 

indicates the extent of segregation and is shown in Figure 7 for 

different CRM Ratios. Within each mix ratio (1:2:4 and 1:3:6), 

generally, there is a slight increase in the difference in mean 

aggregate size with an increase in W/C ratio, which indicates 

the occurrence of segregation. This occurs because higher 

water content increases the mobility and fluidity of the concrete 

mix, making it more susceptible to segregation during 

handling, transportation, or placement. Excessive water can 

cause coarser particles to settle, increasing the size disparity 

between the aggregates. 

 

 

 

Figure 7. Mean size of coarse aggregates at bottom and top regions of the concrete cylinders bottom and top regions.  

 

 

 

 Aggregates Roundness 

The roundness of aggregates significantly influences 

segregation in concrete. Less rounded aggregates have irregular 

shapes with sharp edges and corners. When these less-rounded 

particles come in contact, they interlock, creating a bridging 

effect in the concrete mix. This bridging effect minimizes the 

risk of segregation for the less-rounded particles. On the other 

hand, more rounded aggregates have a uniform shape, making 

them less prone to interlocking and bridging. This can result in 

a higher likelihood of particle movement and segregation 

within the mix. The more rounded shape reduces the frictional 

forces between particles, allowing them to move more freely 

and potentially separate from one another. The mean roundness 

values of aggregates in the top and bottom regions of the 

concrete cylinders are calculated using a specified method. 

Figure 8 represents the analysis results of aggregate mean 

roundness values at the bottom and top regions of a concrete 

cylinder with 0%, 15%, and 25% CRM, respectively.  
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Figure 8. Mean roundness values of coarse aggregate at bottom and top regions of the concrete cylinders. 

 

 Distance Between Aggregates 

The examination of the distribution of aggregates in the 

bottom and top regions of concrete specimens can provide 

valuable information about the concrete sedimentation 

behavior. To examine the effect of CRM and W/C ratios on the 

distribution of aggregates, the distance between centroids of 

coarse aggregate particles was determined by the nearest 

neighbor image analysis method. The frequencies of these 

distances for different range groups are then determined for 

each section. Figure 9 shows the frequencies of distances 

between the aggregate for the specified range groups at 

different CRM and W/C ratios. The frequencies of distances 

between coarse aggregates are shown separately for the bottom 

and top regions of the concrete cylinder specimens. Most 

aggregate distributions fall within the 10 mm- 20 mm distance 

range in all specimens. Notably, the 0% and 25% CRM 

cylinders exhibit a high frequency within the range of 10 mm- 

20 mm spacing distances, indicating closer aggregate spacing 

compared to the 15% CRM specimens. Figure 13 also reveals 

that the frequency of distances between 10mm and 20mm is 

higher in the bottom region, suggesting a more compact 

arrangement of aggregates at the bottom. Additionally, the 

frequency of distances within the range of 30 mm- 40 mm and 

40 mm- 50 mm is lower in the bottom region compared to the 

top region. This difference can be attributed to the settlement 

of heavier aggregate particles, which results in closer spacing 

of aggregates within the 10 mm- 20 mm range, consequently 

reducing the maximum spacing between aggregates, typically 

in the 30 mm- 50 mm range.  
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Figure 9. Frequency of distances between centriods of coarse aggregate particles; Top Cylinder Region (First row), Bottom 

Cylinder Region (Second row) 

 

 

 Air Void Proportion 

Assessing the air void proportion within a concrete mixture 

is a crucial step for achieving the desired balance between 

durability and mechanical properties, and it can be determined 

using the image analysis techniques described above. The air 

void proportion in the 2D cylinder images was quantified 

through the area air void ratio (AAVR) parameter, which is 

calculated as Eq 3. 

𝐴𝐴𝑉𝑅 =
𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑖𝑟 𝑣𝑜𝑖𝑑 𝑖𝑛 𝑖𝑚𝑎𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 𝑠𝑐𝑒𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
  (3) 

 

Here, the total cross-sectional area of the cylinder slice refers 

to the area encompassed by all the pixels contained within the 

boundary of the Concrete cylinder. Figure 10 displays the 

AAVR values computed from the images of concrete cylinder 

specimens for the two mix ratios with varying CRM ratios. 

Across varying W/C ratios and concrete mix ratios, a consistent 

trend emerges. Generally, as the percentage of CRM increases 

from 0% to 15% and 25%, the proportion of air voids tends to 

decrease. This suggests that incorporating CRM, such as FA or 

SF, can reduce the formation of air voids in concrete. This 

reduction in AAVR values can be attributed to the pozzolanic 

properties of FA and SF, which enhance the workability and 

cohesion of the concrete mix, reducing the likelihood of 

entrapped air and thus decreasing the number of air voids. 

These findings offer valuable insights into optimizing concrete 

mix designs with CRM to minimize air voids. It’s also worth 

noting that the W/C ratio effects the influence of CRM on air 

void proportion, as the two factors interact to shape the 

entrapped air content, highlighting the importance of 

considering both factors when optimizing concrete mix designs 

for specific applications.  

 

 

Figure 10. Influence of CRM on the area air void ratios 

 

 Air Void Size 

The size of air voids significantly impacts concrete 

properties. Smaller air voids enhance the concrete’s resistance 

to freeze-thaw cycles, enhancing durability. Larger air voids, 

on the other hand, can weaken the concrete’s mechanical 

properties, making it more vulnerable to cracking and 

deterioration in challenging environmental conditions. 

Achieving the right balance in air void size is crucial in 

optimizing concrete for specific applications, ensuring a 

combination of strength, durability, and long-term 

performance. To understand the effect of different CRM and 

W/C ratios on the size of air voids, the mean size of air voids 

in the concrete cylinder sections was calculated by the method 

discussed. The influence of CRM on the size of air voids can 

be observed by comparing the air voids’ mean sizes at different 

CRM percentages, as shown in Figure 11. It can be seen that as 

the percentage of CRM in the mix increases, the mean size of 

air voids tends to decrease. For instance, in the 1:3:6 mix with 

a W/C ratio of 0.4, the air voids mean size is 1.97 mm when 

there is no CRM (0% CRM), whereas with 15% CRM, it 

reduces to 1.71 mm. The air void mean size further decreases 

to 1.55 mm with 25% CRM.  
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Figure 11. Influence of CRM on the mean size of air voids  

 

4 CONCLUSION 

This study explored advanced image processing techniques 

to investigate the impact of CRM (Silica Fume and Fly Ash) on 

air void characteristics and aggregate distribution in concrete. 

Techniques such as the Feret rectangle method and nearest 

neighbor analysis provided detailed insights into the size, 

shape, and spatial distribution of aggregates. The following 

main conclusions can be drawn from the results of the study: 

 • The analysis of aggregate proportion, quantified through 

Aggregate Area Ratio (AAR), revealed a close correlation with 

Aggregate Volume Ratio (AVR) values. This correlation 

underscores the accuracy and effectiveness of the employed 

image processing methods in predicting the aggregate 

proportion.  

• The incorporation of CRM led to a notable reduction in both 

the proportion and size of air voids. This decrease enhances 

concrete durability by improving resistance to freeze-thaw 

cycles and reducing cracking risks.  

• Increasing CRM content significantly reduces segregation 

tendencies, leading to a more uniform aggregate distribution 

across the concrete mix. This improvement is evidenced by 

lower Cv values, indicating improved homogeneity. 

 • CRM improved the homogeneity of aggregates by 

providing more consistent results in terms of aggregate areas, 

sizes, and roundness, particularly in specimens with higher 

CRM content. Kurtosis analysis further showed fewer outliers, 

indicating a more even distribution of aggregates. 

 • The image processing techniques, including the Feret 

rectangle method and nearest neighbor analysis, showed an 

error rate of less than 1.90%, confirming their reliability and 

accuracy in predicting aggregate and air void properties.  

This study primarily addressed rounded and angular 

aggregates. However, closely positioned elongated or flaky 

aggregates or irregular shapes aggregates may overlap, 

potentially leading algorithms to inaccurately identify them as 

a single aggregate. This could affect the analysis of parameters 

such as area, length, and roundness. While manual labeling 

ensures accuracy, it is labor-intensive and subjective, limiting 

scalability for large-scale or rapid analysis needs. In future 

work, we plan to use deep learning-based image processing 

methods, i.e., DeepLabv3+, UNET, and vision transformers, to 

segment and quantify aggregate and air void characteristics. 

Additionally, we aim to validate the effect of different CRM 

ratios on homogeneity by analyzing the distribution of 

aggregates and air voids at various sections of other structural 

members in real-world applications.  
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ABSTRACT: Traditional fatigue assessment in metals is based on load sequences either measured or assumed, S-N (Wöhler) 

curves and the application of linearized damage accumulation rules. This requires a large amount of experimental effort to obtain 

materials data to be used for prognostics of which the result is often unsatisfactory. Furthermore, such assessment is mainly based 

on stress and strain as the loading parameters applied. However, materials fatigue degradation is a more complex process, far from 

being linear and not limited to stress and strain only. Material’s degradation is an issue. Without knowing a material’s prior loading 

history its degree of degradation can neither be assessed nor monitored on this basis. However, monitoring a material’s degree of 

degradation is a prerequisite to preserve a structure’s health over its Residual Useful Life (RUL). Available Non-Destructive 

Testing (NDT) techniques can be of a significant help. This paper shows how a metallic material’s non-linear fatigue behaviour 

can be visualized in a 3D plot characterizing the loading applied as an input parameter, the NDT parameter recorded as a material 

response and the relative fatigue life, hence the degree of degradation, as a resulting parameter respectively. It is shown how this 

resulting 3D viewing plane can be used to determine a material’s degree of fatigue degradation at virtually any stage of its 

operational life and it is demonstrated how this information can be used for a monitoring system in the sense of Structural Health 

Monitoring (SHM) to further track a structure’s RUL in a much more precise way than traditionally done so far. 

KEY WORDS: Monitoring, non-linear fatigue degradation, Residual Useful Life, metallic materials 

1 INTRODUCTION 

Degradation of materials due to fatigue is a concern 

scientifically elaborated on since around 150 years. Its 

traditional assessment is based on load sequences either 

measured or assumed, S-N (Wöhler) curves and the application 

of linearized damage accumulation rules. The approaches being 

applied to experimentally determine a material’s fatigue 

degradation and to get this analytically and/or numerically 

evaluated has been described in a variety of textbooks (i.e. [1-

3]). Although the principles described in those textbooks might 

be applicable to a variety of materials, these principles have 

been mainly developed and used so far best with metallic 

materials. The effort to get the respective materials 

characterized and data generated is relatively high. To 

sufficiently cover such materials’ fatigue data a set of around 

25 fatigue experiments needs to be performed at different 

loading levels, a significant effort in terms of time and cost. An 

attempt to optimize this effort has been achieved by collecting 

and evaluating materials’ data for cyclic loading nearly 40 

years ago [4,5]. This data has been based on stress and strain as 

the loading parameters, being the most relevantly used in 

engineering design today. A major application of this data is 

within the context of local strain approaches, where the fatigue 

life of a service loaded notched component is determined with 

the help of a notch-strain-relationship as proposed by Neuber 

and others [1-3]. Materials’ fatigue data determined on 

unnotched specimens are therefore the basis to perform a 

fatigue life evaluation of notched components under service 

loading. This article will therefore focus on the material’s 

fatigue response and how this could be monitored with 

advanced sensing beyond the traditional parameters of stress 

and strain. 

To further enhance the process of materials fatigue data 

generation in terms of time and cost Short Time Evaluation 

Procedures (STEP) have been developed, along which the 

material’s stress-strain and S-N behaviour can be determined 

down to a single fatigue experiment only [6-8]. The logic of 

those STEP approaches in its earlier form and being applied 

here is shown in Figure 1. This is based on three fatigue 

experiments, where two are traditional Constant Amplitude 

tests (CAT) and one is a Load or a Strain Increase Test (LIT or 

SIT) respectively, all tests performed on unnotched specimens. 

A LIT or SIT is a fatigue test, where the specimen is loaded at 

a constant stress (LIT) or strain (SIT) amplitude for a defined 

number of time or loading cycles, starting at a small 

stress/strain amplitude within the material’s full elastic range 

behaviour and then increasing the stress or strain stepwise 

while keeping the duration of each step in terms of either time 

or number of cycles constant.  

What is determined from the LIT or SIT is a relationship 

between the load applied (i.e. stress or total strain) versus a 

respective material response. In traditional terms, this material 

response is often plastic strain, being one of the mechanisms 

associated with fatigue in metals. Morrow [9] was possibly one 

of the first who determined such a relationship in terms of the 

strain hardening exponent 𝑛′ of a metallic material’s stress 

versus plastic strain relationship proposed as 

 

𝜀𝑎,𝑝 = 𝜀𝑓′ ∙ (
𝜎𝑎

𝜎𝑓′
)

1
𝑛′⁄

 (1) 
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Figure 1 Logic of a STEP approach for the quick 

determination of an S-N curve 

 

where 𝜀𝑎,𝑝 represents the plastic strain amplitude, 𝜎𝑎 the 

applied stress amplitude, and 𝜀𝑓′ and 𝜎𝑓′ are constants referred 

to as the cyclic ductility and strength respectively similar to the 

true fracture ductility and strength under tensile monotonic 

loading. Morrow also used the two latter constants to describe 

a material’s strain-life curve in the form of 

 

𝜀𝑎,𝑡 =
𝜎𝑓′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓′(2𝑁𝑓)

𝑐
 (2) 

 

where 𝜀𝑎,𝑡 is the total strain amplitude as an addition of elastic 

and plastic strain, 𝐸 Young’s modulus, 𝑁𝑓 the number of cycles 

to failure and 𝑏 and 𝑐 the slopes of the life curves for elastic 

and plastic strain when being plotted in a double logarithmic 

scale respectively. What Morrow further did was to establish a 

relationship between the slopes 𝑏 and 𝑐 on the one side and the 

strain hardening exponent  𝑛′ on the other resulting in  

 

𝑐 =
−1

1+5𝑛′
  and 𝑏 =

−𝑛′

1+5𝑛′
  (3) 

 

 allowing a fatigue life (S-N) curve to be determined from a 

material’s strain hardening response in the end. This 

relationship has also been used in the STEP procedures 

mentioned above in a slightly modified way, differentiating 

between the elastic and the plastic material behaviour.  

Sensing and hence monitoring of a material’s behaviour 

today can go far beyond monitoring stress and strain only. Non-

Destructive Testing (NDT) has opened a large gamut of options 

considered in the past with respect to fatigue life evaluation and 

hence, residual life assessment of engineering structures, of 

which the potential has only been explored to a limited extent 

in the past. However, where this has been considered is in the 

context of STEP and here with respect to what has been 

considered as the ‘material response’ shown in the diagram in 

Figure 1. Examples presented in [6-8] and in various other 

publications do include techniques such as infrared 

thermography, electrical resistance and eddy current 

measurement. In this paper the case of thermography is 

presented and how this can be used for characterizing a metallic 

material’s fatigue degradation behaviour. The information 

obtained is intended to be used for monitoring existing 

engineering structures, for which the degree of fatigue 

degradation due to a missing crack observation is unknown but 

where through monitoring an improved Residual Useful Life 

(RUL) assessment of the metallic engineering structures is in 

need. 

2 THERMOGRAPHY INSPECTION OPTIONS 

Thermography is an electromagnetic NDT technique, along 

which a specimen is viewed with an infrared (IR) camera. The 

camera used here has been a thermoIMAGER TIM 450 from 

Micro-Epsilon, which is based on a bolometer-based pixelized 

image of 382 x 288 pixels with a sensitivity of  40 mK each. 

A view of such a set-up as well as a resulting image is seen 

Figure 2. Temperatures are continuously recorded on the 

unnotched specimens in a fatigue test in the three zones 

indicated as 𝑇1 to 𝑇3. From the data recorded a temperature 

difference Δ𝑇 is then determined in accordance with the 

following equation:  

 

Δ𝑇 = 𝑇3 −
𝑇1+𝑇2

2
   (4) 

 

 
Figure 2 Thermographic monitoring on unnotched specimen 

under fatigue loading: View of the specimen through 

thermographic camera including measurement points (left), 

experimental set-up (right) 

 

3 THERMOGRAPHY BASED FATIGUE DATA  

Metallic materials’ data for cyclic loading are traditionally 

determined under either stress or strain control and are 

represented in terms of stress-strain relationships and the 

number of loading cycles up to failure (S-N curves). This data 

may be used for fatigue life evaluation of engineering structures 

under cyclic service loading, where mainly linearized damage 

accumulation rules such as proposed by Palmgren [10] and 

Miner [11] are applied. Results obtained often show a certain 

randomness (scatter) and the reasons for this can be sought in 

non-linearities a material provides. A question therefore arises 

what additional material response information could be 

retrieved in case of data being recorded with an NDT technique. 

In the case shown here, unnotched specimens made of the 

unalloyed steel C45E (1.1191 or SAE 1045) have been fatigue 

loaded as CATs at different stress and strain amplitudes and a 

LIT and SIT respectively and this under stress as well as strain 

control and at partially different loading frequencies. The full 

test set-up is shown in Figure 3.  

Three CATs were performed under stress control at 

amplitudes of 320, 340 and 360 MPa and resulting fatigue lives 

of 109 408, 14 957 and 16 294 cycles respectively were 

obtained. The reason why the fatigue life of the test run at 𝜎𝑎 =
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360 𝑀𝑃𝑎 is higher than the fatigue life for the test run at 𝜎𝑎 =
340 𝑀𝑃𝑎 is due to scatter in the fatigue life and the proximity 

of the stress amplitudes. The 𝜀𝑎,𝑡 − 𝑁 curve shown in Figure 4 

that the experimental results show a typical fatigue behaviour.  

In addition, a LIT was performed starting at a stress amplitude 

of 100 MPa and being increased by 20 MPa always after 9 000 

cycles until it reached a stress amplitude of 380 MPa. All of 

those tests were operated at a loading frequency of 5 Hz. These 

experiments were part of a master thesis performed [12]. 

 

 
Figure 3 Test setup for recording thermographic data along 

fatigue experiments on unnotched specimens: 1) test frame, 2) 

clamped specimen, 3) IR camera 

 

In addition, two CATs and a SIT were performed on the same 

material but now under a sinusoidal function in strain control 

mode and considering a constant average strain rate of 1.0 

%/sec or a maximum strain rate of 1.57 %/sec respectively. The 

strain amplitudes for the CATs were 𝜀𝑎,𝑡 = 1.0 % and 𝜀𝑎,𝑡 =

0.3 % respectively while the SIT started at a strain amplitude 

of 𝜀𝑎,𝑡 = 0.1 % and was increased by 0.02 % after every step 

of 2 000 cycles until it fully failed at a strain amplitude of 𝜀𝑎,𝑡 =

0.42 % . The fatigue lives of the two CATs up to full fracture 

was 600 and 14 600 loading cycles respectively. 

Based on this data STEP as described before was applied to 

determine the S-N data. Figure 4 shows the results in terms of 

the stress vs. plastic strain relationship as well as the strain-life 

curve. The exponent 𝑛′ from Eq. 1 turned out to be -0.122 

which allowed the exponents for the 𝜀𝑎,𝑡 − 𝑁 curve to be 

determined according to Eq.s 3. Coefficients 𝜎𝑓′ and 𝜀𝑓′ were 

determined from the results of the two strain-controlled CATs 

through averaging. The resulting 𝜀𝑎,𝑡 − 𝑁 curve very well 

matches the remaining experimental results used for validation. 

A summary of the thermographic recordings is provided in 

Figure 5. It shows the relationship of the temperature difference 

Δ𝑇 due to fatigue loading versus a normalized fatigue life. This 

normalization has been determined on the fatigue life of each 

of the experiments shown here. This can also be considered as 

the degree of degradation, specifically for the CATs, where the 

Palmgren-Miner rule applies per se. Why this has also been 

done for the LIT and the SIT is for reasons of comparison with 

some further explanation later. What can be seen at this stage 

is that the stress levels match fairly well between the stress-

controlled CATs and the LIT. When looking at the strain-

controlled tests the SIT generates higher temperature 

differences when compared with a CAT at the same strain level.  

What is also to be observed from Figure 5 is, that the 

temperature difference Δ𝑇 seems higher for the stress-

controlled experiments than it is for the strain-controlled tests. 

However, it has to be kept in mind, that the loading frequency 

for the stress-controlled tests was always 5 Hz while the strain-

controlled tests were done at a constant maximum strain rate of 

1.57 %/sec and the loading frequency hence varied between 

0.25 and 2.5 Hz only. Following these results, it might be worth 

to explore, which loading parameters do have an influence on 

the temperature difference Δ𝑇. The reason why the temperature 

drops after each loading step in the SIT is due to the fact that 

loading is briefly interrupted and the new loading step is started 

with a gradual increase of the load applied. This effect has not 

been further considered in the evaluation.  

 

 
Figure 4 Results of fatigue tests performed presented as a 

stress vs. plastic strain relationship (top) and 𝜀𝑎,𝑡 − 𝑁 curve 

(bottom) both in a double logarithmic scale 

 

 
Figure 5 Development of temperature difference in three 

CATs and one LIT over normalized life of the CATs obtained 

under stress-controlled fatigue loading 
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All the experiments presented here were analysed with 

respect to stress amplitude and maximum strain rate vs. Δ𝑇 and 

the result obtained is shown in Figure 6. It can be seen that as 

long as no plastic deformation occurs Δ𝑇 remains marginal. 

Hence, any significant influence on Δ𝑇 is governed by loading 

parameters in the plastic deformation region. The relationship 

between plastic strain and Δ𝑇 can be linearized but this depends 

on the loading conditions (i.e. stress- or strain-controlled) and 

only when those are similar, a single function can be drawn, as 

to be seen from the fatigue test data shown in Figure 7. 

 

 
Figure 6 Stress vs. Δ𝑇 (top) and strain rate vs. Δ𝑇 (bottom) 

for all CATs, LIT and SIT performed 

 

 
Figure 7  Plastic strain vs. Δ𝑇 for all CATs, LIT and SIT 

performed 

 

Energy is another parameter worth to be considered in that 

regard where the Smith-Watson-Topper (SWT) parameter [13] 

also known as the Neuber-parameter is widely used in the field 

of fatigue life evaluation of notched components and which is 

defined as: 

 

𝑃𝑆𝑊𝑇 = √𝜎 ∙ 𝜀𝑡 ∙ 𝐸    (5) 

 

where 𝜎 represents the stress, 𝜀𝑡 the total strain and 𝐸 Young’s 

modulus respectively. If the fatigue results of this parameter are 

plotted versus Δ𝑇 a result as shown in Figure 8 is obtained. The 

figure shows a lot of similarities to Figure 6 (top) and Figure 7 

which is not much of a surprise. However, also in the case of 

energy no consistency in the thermographic material response 

can be observed. What can already be concluded here is that 

stress-controlled loading conditions can be better monitored 

with thermography than strain-controlled conditions can. 

A question that might arise is, what would happen if a fatigue 

test could be performed where the energy applied could be 

permanently kept constant (controlled). First of all, this is a 

fairly complex fatigue test, which can be performed and has 

been specified as Neuber-controlled but which requires stress 

and strain to be controlled at the same time [14]. This could 

lead to some consistency between loading and the material’s 

thermographic response and hence way of further validation. 

However, when looking plastic deformation in the roots of 

notched components, those plastic zones are mainly strain-

controlled due to the elastic field around this plastic zone. 

Furthermore, energy conditions change along the life cycle of 

a material due to hardening and softening conditions resulting 

from the loading history. 

 

 
 Figure 8  Energy expressed in terms of the Smith-Watson-

Topper parameter vs. Δ𝑇 for all CATs, LIT and SIT 

performed 

 

As a consequence of all having been presented so far, the 

plastic strain rate as well as the stress range above the yield 

strength looks to be mainly influential on Δ𝑇. As such a 

thermography-related loading parameter 𝑃𝑇  is defined as to the 

following: 

 

𝑃𝑇 = 𝜀𝑎,𝑝 ∙ 𝜔 ∙ (𝜎𝑎 − 𝜎𝑦)   (6) 
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where 𝜀𝑎,𝑝 is the plastic strain amplitude, 𝜔 the circular 

frequency of the loading, 𝜎𝑎 the stress amplitude and 𝜎𝑦 the 

yield stress respectively, the latter determined as 255 MPa from 

the upper diagram in Figure 6. Plotting all the experimental 

results as 𝑃 vs. Δ𝑇 leads to the diagram shown as Figure 9, 

which allows a concise relationship to be determined in linear 

or close to linear format. 

 

 
Figure 9 Loading parameter 𝑃𝑇  vs. temperature difference 

Δ𝑇 for all CATs, LIT and SIT performed 

 

Since the temperature difference Δ𝑇 recorded is a material 

response, its possible non-linear behaviour raises certainly the 

question what of a material’s non-linear behaviour it represents 

and if the consideration of such non-linearity might better cover 

a metallic material’s non-linear fatigue degradation than this 

has been possible to be covered in the past. To get this shown a 

3D plot has been generated representing temperature difference 

Δ𝑇 recorded (z-axis) versus the enforcement applied 

represented by the parameter 𝑃𝑇  (y-axis) and the fatigue life for 

the CATs in a normalized form (x-axis). What the latter axis 

therefore represents is nothing else than the degree of 

degradation. 

Such a result is shown in Figure 10 for the five CATs (stress 

and strain controlled) as well as the LIT and the SIT. In the case 

of the CATs the temperature increases immediately at the 

beginning since in all cases yield is passed and plastic 

deformation has occurred. Once plastified, the temperature 

increase looks fairly constant over the lifetime of the specimens 

until final facture occurs. The strain-controlled tests show less 

of a temperature increase when compared to the stress-

controlled tests. Principally they align well with the parameter 

𝑃𝑇  defined in Eq. 6. Furthermore, these test results can serve as 

a basis to generate a plane as shown in Figure 11 characterizing 

the material’s fatigue as well as monitoring behaviour, which 

is discussed later. 

When looking at the results from the LIT and the SIT a fairly 

different behaviour is observed. While the SIT due to its 

constant strain rate shows a relatively continuous behaviour 

with slight temperature increases observed due to the slight 

increases in strain amplitudes and loading in terms of the 

parameter 𝑃𝑇 , the LIT and the way it has been performed shows 

a fundamentally different behaviour with significant changes in 

temperature due to the significant changes from loading step to 

loading step. However, the results of both tests fairly well align 

in the plane described by the CAT results keeping potential 

scatter in materials’ data in mind. It might therefore be worth 

considering such planes as a material’s characteristic along 

which the results of any loading sequence might move. Further 

proof of those assumptions with more complex loading 

sequences might be advisable for the future. 

 

 
 

Figure 10 Development of temperature difference Δ𝑇 in 

dependence of power rate applied and normalized fatigue life 

of CATs and comparison with the same relationship obtained 

from LIT and SIT 

 

 
 

Figure 11 Topography of temperature difference Δ𝑇 vs. 

power rate 𝑃 and normalized life relationship for CATs and 

compared with similar results obtained from LIT and SIT 

 

Since the stress, strain and loading frequency are the 

controlled and hence known input values related to the 

material’s loading and Δ𝑇 the material response monitored, the 

remaining unknown value is just the normalized life or in other 

words, the degree of degradation when talking in terms of the 

Palmgren-Miner rule, at least related to CATs. To get this 

degree of degradation obtained it has been assumed that the 

Palmgren-Miner rule applies for CATs and that as such the 

amount of degradation can therefore be calculated for each of 

the loading blocks or even loading cycles of the LIT and the 
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SIT. This leads to a description of the degradation development 

being very much different, as can be seen from Figure 12. The 

degradation process for the SIT and specifically for the LIT 

looks very much slower and the estimated fatigue life looks to 

be expired before plastic deformation even starts off in the case 

of the LIT. This contradicting result might be another proof of 

the lack of precision when applying Palmgren-Miner’s rule. A 

conclusion is therefore, that monitoring the temperature 

emitted from a loaded structure might be the better information 

to determine a structure’s degree of degradation than 

performing a Palmgren-Miner evaluation in traditional terms. 

 

 
 

Figure 12 Development of temperature difference Δ𝑇 over 

the CATs’ normalized fatigue life and determining the 

respective fatigue life of the LIT and SIT through application 

of the Palmgren-Miner rule 

 

4 TEMPERATURE DIFFERENCE FOR MONITORING   

SHM is based on using a material’s response information to 

assess a structure’s degree of degradation. Hence, the 

material’s information provided through a diagram as shown in 

Figure 11 might therefore be a valuable tool to assess the 

structure as well as the monitoring principle being considered. 

A temperature difference resulting from a load applied on a 

structure and monitored through SHM could be principally 

used to be referenced to a diagram as shown in Figure 11. 

Assuming the respective value monitored on the structure could 

be determined as a single value on such a reference diagram, 

the degree of the structure’s degradation could be easily 

determined. However, if such a value turns up more than once 

on the plane of the reference diagram, a conflict arises, which 

needs to be solved through more information to be retrieved. A 

help might be to mark the respective value positions on the 

diagram, which might even be described as isobars. Based on 

those isobars the appropriate solution needs to be found, which 

might be possible either through a variation (differentiation) in 

the direction of the power rate 𝑃𝑇  and/or the normalized fatigue 

life.    

As for the specific case of using thermography as the 

monitoring principle and the material as shown here, the 

situation in getting useful information from such a 

differentiation becomes tricky. The plane described in Figure 

11 is mainly flat in the direction of the normalized life of the 

CATs. It looks like the material characterized becomes 

immediately plastified and this condition stays until fracture 

occurs towards the end of the tests. Thermography as a 

monitoring technique therefore clearly demonstrates, that it can 

identify plastic deformation but obviously not its contribution 

to fatigue degradation in the end. Also, the plane’s inclination 

in the direction of the power rate 𝑃𝑇  is fairly constant. Hence, 

the variation of loading parameters along the monitoring 

process might not provide the information to sufficiently 

identify the degree of material degradation. 

However, the principle of a 3D plot as shown here in Figures 

10 and 11 might be a useful instrument to collect and visualize 

data monitored as a combination of load, loading frequency and 

temperature on either a real structure or an unnotched specimen 

- of course of the same type of material. A summarized dataset 

shows in such a 3D plot if the data do represent a plane and 

which uncertainties might exist, to get this plane described or 

in other words how scattered the data recorded might be.  Based 

on such scattered data allowance criteria might then be defined. 

Maybe that a longer-term monitoring on a structure to be 

assessed generating a larger database and combined with some 

advanced statistical evaluation might help to identify an 

appropriate location on the plane of the 3D plot and hence 

determine the degree of the structure’s degradation. However, 

this requires further evaluation, which has not been performed 

so far.  

In the context of the thermographic data presented here 

another aspect might be worth to be discussed. Thermography 

looks to be a method to allow plastic deformation in metals to 

be monitored well. This could make it interesting to identify 

plastic deformation in stress concentrated areas such as in 

notches. However, one needs to keep in mind, that fatigue 

loaded plastic zones in stress concentrated areas of notches are 

loaded in a strain-controlled mode. The reason for this is due to 

the elastic deformation occurring around the plastic zone. 

Hence, if those plastic zones might be monitored with 

thermography one should not be astonished if the signal might 

be weak, as concluded from results shown in Figures 5 and 6. 

5 CONCLUSIONS 

The results presented here are far from claiming to be 

holistic. They are rather an additional extraction of data having 

been recorded along tests to establish S-N curves in accordance 

with the STEP approach. However, what proves to be 

interesting is to find out if an NDT method considered might 

be useful in terms of SHM and this in view of monitoring a 

material’s and even a structure’s degree of degradation with 

respect to fatigue. Compared to state-of-the-art approaches 

where monitoring is just possible in terms of detecting loads, 

strains and cracks, monitoring based on thermography at least 

allows plastic deformation to be identified additionally, a 

precursor to fatigue cracking.  

While it has been shown here that loading, plastic 

deformation and of course also cracking can be measured 

through a temperature difference Δ𝑇, further parameters 

inherent in thermography signals might be worth to be 

explored. This may be achieved through higher sampling rates 

of the thermographic data and might allow the signal recorded 

to be better evaluated in terms of time domain information 
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including phase. Further extensions could be made in view of 

active thermography.  

Generalizing the approach made here to virtually any 

monitoring and hence NDT technology to be considered for 

SHM could be a means to assess the NDT technology’s 

potential with respect to SHM. A further step could be to 

differentiate the 3D plane obtained and shown in Figure 11 

either in terms of the power parameter 𝑃𝑇  or the normalized 

fatigue life. This would lead to a new 3D plot that would either 

characterize the material’s sensitivity with respect to the 

loading or the fatigue life. In case of the fatigue life such 

differentiation might be a more sensitive parameter in 

identifying the degree of degradation and this also with respect 

to monitoring. However, this requires the 3D plane not to be as 

flat as in the case shown here, since a differentiation of this 

plane leading to a 3D gradient plot otherwise just scatters 

around zero. Such flatness of the 3D plane and scattering 

around zero in the 3D gradient plot might therefore also be an 

indication that the monitoring technique is possibly not suitable 

for monitoring a material’s fatigue degradation in the pre-

cracked stage. 

The topography of the 3D plot shown in Figure 11 is also an 

indication of the non-linearity the monitoring parameter 

exhibits and this with respect to a potential non-linearity in the 

material. Hence, if the 3D plot is relatively ‘flat’ and constant 

in its height, this could mean that linearization of fatigue 

degradation for the respective material and hence the traditional 

Palmgren-Miner rule would be better applicable when 

compared to materials where such a topography of the 3D plane 

might be more uneven. However, in the case here it at least 

shows for the LIT and the SIT that irrespective of the smooth 

surface the predictions are not very consistent and the material 

response recorded might not work very well in combination 

with the Palmgren-Miner rule (c.f. Figure 12). Further 

corrections might therefore have to be done to get this 

improved. Or formulated inversely as a question: Would a 

‘wavy’ or possibly more ‘spiky’ 3D plane characterize a 

monitoring technology as a more relevant technology for 

monitoring fatigue degradation? Furthermore, could a ‘spiky’ 

3D plane possibly be used to enhance a component’s fatigue 

life under service loading evaluation since it better covers the 

material’s non-linearities in fatigue degradation than the 

Palmgren-Miner rule is able to do? Answers to these questions 

might be obtained through a further random load fatigue 

assessment. 

Should any if not all of those questions be answered 

positively, then the diagrams as shown in Figures 10 and 11 

might become future displays of materials’ data for cyclic 

loading, representing a clear extension when compared to the 

traditional stress-strain and S-N curves provided in handbooks 

such as [4,5] in the past. Interesting additional questions in that 

regard are also if the ‘life path’ of a randomly loaded material 

follows the topography spanned by the CAT results. In case of 

a match every data recorded could be virtually added to the 

database, allowing the material’s information to continuously 

grow.   

What has been shown here with the SIT results is, that the 

temperature difference Δ𝑇 mainly stays or marginally increases 

on an isobar during each loading step when the strain is 

increased from one strain level to another. However, what 

happens with this path when the strain levels are decreased is 

still an open question to be answered.  

The large amount of data being recorded might also become 

an interesting source for statistical evaluations. Monitoring an 

engineering structure under service loading with a 

thermographic camera combined with other loading parameters 

might provide an interesting data sample for a further statistical 

evaluation of which the statistical patterns might be correlated 

with patterns to be found in the material’s general reference 

database. 

The approach presented here intends to show how far 

thermography might be applicable in the context of SHM. At 

present the monitoring principle has been proven for a 

laboratory environment only. The major sensing device is the 

IR camera which has to stay as an external device. An 

interesting next step to explore would be to perform the same 

type of fatigue experiment but with larger, more complex, 

notched components and to see how well the fatigue behaviour 

in the notches could be monitored. A constraint might be the 

strain-controlled mode and the resolution of the IR camera 

system as well as the component’s shape for which corrections 

might have to be made regarding the signals to be processed. 

Another aspect to be explored is the influence of the 

component’s surface preparation. It is very likely that a 

quantitative validation of a component as is might not lead to 

satisfying results and that coatings might have to be removed 

and/or treated such that comparable conditions are achieved. 

This is an important step that has to be proven before 

considering any in filed monitoring in terms of general 

applications. Potential first applications could be seen for 

fatigue loaded components being visually easily accessible and 

highly loaded, preferably considering a load spectrum to be 

‘sharp’, hence, with a large number of high loads. Again, a 

potential application could be in the field of testing of fatigue 

loaded components and assessment of their degradation 

processes in a laboratory environment. Another field would be 

rotating machinery where the rotating rod is just fixed with 

bearings, but all other parts are visually easily accessible. 

However, a new challenge might arise between the rotating 

frequency of the machinery versus the frame rate of the IR 

camera.  

A solution to all those challenges could be temperature 

sensors, that could be directly adapted onto the structure to be 

monitored but this is far from being realized at present. 

However, the approach presented here is not limited 

thermographic monitoring only. Eddy current or other 

electromagnetic sensors being commercially available are 

sensors that can already be attached in situ and where the 3D 

plot can be generated as the source of reference. In that case, 

civil infrastructure could be an interesting application field. 

All what has been described here is related to passive 

thermography only. What active thermography would provide 

is an additional chapter being beyond the scope of this article. 

A further challenge comes if those monitoring approaches 

might be applied in the field where a thermographic camera 

records a structure in service under general environmental 

conditions. In that case all environmental influences will have 

to be compensated such that only the true difference due to 

degradation becomes apparent in the thermographic analysis.  
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As such passive thermography in SHM of mechanically 

loaded structures is still limited to fundamental explorations 

that may provide the appropriate parameters to be considered 

for a more generalized application in structural life cycle 

management. 
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ABSTRACT: Structural health monitoring (SHM) is a well-established practice to ensure safety and reliability of civil structures. 

With the increasing demand for environmentally responsible construction practices and the need to reduce the carbon footprint of 

construction projects, sustainable materials, such as clay, are gaining attention. Clay-printed structures introduce a novel domain 

to SHM that requires adaptations of established SHM strategies. Research on SHM strategies devised for clay-printed structures 

remains scarce, leaving a critical gap in understanding the long-term performance of clay-printed structures. Serving as a 

foundation for developing SHM strategies for clay-printed structures, this paper proposes a methodology to experimentally 

determine the structural behavior of clay-printed structures, including buckling, shrinkage, and load-bearing capacity, while 

identifying key factors critical for developing SHM strategies. The methodology proposed in this study incorporates condition 

assessment, constraint definition, design optimization, prototyping, and SHM strategy definition. The methodology is 

implemented for a wall component to experimentally determine shrinkage. Based on the structural behavior of the wall component, 

an SHM strategy is proposed that essentially consists of selecting appropriate SHM techniques, defining sensor placement, and 

establishing decision-making criteria. The results demonstrate the feasibility of constructing structurally stable clay-printed 

structures and provide key insights into SHM strategies for clay-printed structures, advancing sustainable construction practices.  

KEY WORDS: Additive manufacturing; clay printing, structural health monitoring, sustainable construction. 

1 INTRODUCTION 

Digital fabrication techniques, particularly 3D printing (3DP), 

have witnessed increasing adoption across various industries in 

recent years [1]. The construction sector has been adopting 3DP 

technologies over the past two decades, scaling up 3DP 

processes to meet the demands of large-scale building projects 

and enabling environmentally responsible construction 

practices. The trend towards using 3DP in construction has 

encouraged research on automating construction processes, 

owing to well-developed digital-based construction methods as 

well as research on 3DP materials, such as concrete and clay 

[2].  

Data on the long-term performance of 3D-printed structures 

and on the internal state of 3D-printed materials is essential for 

understanding relationships between 3DP processes, materials 

and geometries [3]. By monitoring structural aspects, such as 

buckling, shrinkage, and load-bearing capacity, the long-term 

performance of 3D-printed structures may be determined and 

assessed. Consequently, structural health monitoring (SHM) 

may facilitate data recording and analysis to monitor the long-

term performance of 3DP structures. However, SHM 

methodologies tailored to 3D-printed structures, particularly 

clay-printed structures, barely exist [4].  

Generally, embedded sensors may enhance monitoring of 

structural and material behavior of clay-printed structures. In 

3DP applications, embedded sensors have been largely 

deployed for concrete printing and in a lesser extent for clay 

printing [5]. Since sensing in concrete printing is more mature 

compared to sensing in clay printing [6], synergies between 

concrete and clay printing may be exploited to monitor 

structural parameters (e.g., strain and deformation) and 

material parameters (e.g., temperature and moisture content) of 

clay-printed structures. For example, lead zirconate titanate 

piezoelectric sensors, utilizing electro-mechanical impedance 

techniques, provide real-time insights into the stability of 

stacked layers and help assess potential structural weaknesses 

during printing [7]. Strain gauges and linear variable 

displacement transducers are used to evaluate buckling 

characteristics in complex 3D-printed walls under compressive 

loading [8]. Similarly, fiber Bragg grating sensors embedded in 

clay capture internal strain changes and allow measuring 

critical parameters, such as temperature and pressure variations 

[9]. However, current sensing techniques lack a systematic 

approach, hindering the development of SHM methodologies 

for clay-printed structures.  

Latest studies in clay printing have primarily relied on visual 

inspection of in-situ tests, with limited emphasis on systematic 

evaluation techniques [10]. Moreover, sensor placement in 

clay-printed structures has been determined by trial-and-error 

testing rather than structured investigation. Hence, research on 

SHM methodologies specifically tailored to clay-printed 

structures remains limited. Thus, by deploying a generalized 

experimental testing methodology, SHM strategies may be 

defined to assess the behavior and improve the understanding 

of long-term performance of clay-printed structures. For 

example, shrinkage, which may cause structural instabilities 

[11], could be assessed by monitoring temperature and 

moisture content during the drying process to minimize 

desiccation cracks.  

In this paper, a methodology for defining an SHM strategy 

for clay-printed structures is proposed. The methodology 

considers structural and material behavior, comprising 
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condition assessment, constraint definition, design 

optimization, prototyping, and, finally, SHM strategy 

definition. 

The reminder of this paper is structured as follows. First, an 

overview of the proposed methodology is presented. The 

methodology is implemented by experimental testing to derive 

an SHM strategy. Next, the effectiveness of the SHM strategy 

is validated by embedding sensors to monitor moisture content. 

Finally, the paper concludes with a summary and a concluding 

synthesis of the key findings. 

2 METHODOLOGY 

The methodology is devised to propose a scientifically sound 

SHM strategy and it consists of five phases, condition 

assessment, constraint definition, design optimization, 

prototyping, and SHM strategy definition (Figure 1). In the first 

phase (condition assessment), initial conditions are determined 

to identify climate conditions, material characteristics, 

available equipment, and software applications. Climate 

conditions, such as temperature and humidity of the 

environment, provide insights for designing clay mixtures and 

for assessing drying processes. Clay mixtures are designed by 

mixing clay, aggregates, binders, and water, to achieve a 

material that is extrudable by the equipment (i.e., clay printer). 

The material characteristics of the clay mixtures are determined 

by material testing to assess extrudability, buildability, small-

scale shrinkage, and cracking behavior based on established 

testing methods. For each material test, four specimens are 

tested. Specifically, in this study, shrinkage and cracking are 

assessed by non-standardized testing, where customized 

cylindrical specimens are printed and evaluated. 

In the second phase (constraint definition), constraints are 

defined by identifying and categorizing limitations based on the 

initial conditions, including structural, fabrication, and sensing 

constraints. The structural constraints are based on the 

flowability, strength, buildability, and shrinkage performance 

of the material. The fabrication constraints (e.g., layer height, 

built height, overhang angle, and bridging length) are 

determined through process parameter tests [12-15]. For each 

process parameter test, two specimens are tested. The sensing 

constraints include sensor size and sensor type restrictions, 

which affect design decisions in the next phase.  

In the third phase (design optimization), design variables are 

identified and optimized based on the structural constraints, the 

fabrication constraints, and the sensing constraints. Through 

parametric design, infill patterns and connections are optimized 

for material reduction and structural integrity based on the 

structural constraints. The print path is then refined based on 

print speed and fabrication constraints, taking into account the 

process parameters previously defined to ensure the 

manufacturability of the optimized structure while considering 

the sensing constraints. The design process utilizes software 

applications for parametric design options, enabling efficient 

parameter adjustments without redesigning the workflow. In 

this study, the software application Rhino 8 [16] is used for the 

parametric design, primarily motivated by the integrated visual 

programming tool Grasshopper 3D. 

In the fourth phase (prototyping), physical prototypes are 

developed and evaluated to refine the design and to ensure 

structural integrity and manufacturability. The prototypes are 

fabricated to define the SHM strategy with emphasis on sensor 

positioning. with one prototype produced per clay mixture. The 

prototypes facilitate assessing changes in observable 

parameters (e.g., moisture content and drying direction), the 

respective structural behavior (e.g., shrinkage and desiccation 

cracking), and the related material testing (e.g., small-scale 

shrinkage tests).  

In the fifth phase (SHM strategy definition), the SHM 

strategy is defined, based on the experimentally assessed 

structural behavior (e.g., shrinkage and desiccation cracking). 

The SHM strategy considers interactions observed between 

structural behavior and parametric design, when defining 

sensor type and sensor positions. For example, monitoring 

shrinkage includes selecting sensor types to observe 

temperature and moisture content and providing criteria for 

systematically determining sensor positions. The criteria 

determine sensor positions based on potential failure scenarios, 

ensuring comprehensive coverage of critical structural 

vulnerabilities, particularly those caused by desiccation cracks. 

Finally, a feedback loop facilitates adjusting the parametric 

design to fit the defined SHM strategy, where sensors are 

embedded into clay-printed prototypes to validate the SHM 

strategy. In the following section, the implementation of the 

methodology is presented. 

3 EXPERIMENTAL TESTING 

The methodology is implemented by experimental testing to 

derive the SHM strategy. The following subsections are 

structured in compliance with the aforementioned phases of the 

methodology, shown in Figure 1. 

Figure 1. General workflow for determination of SHM strategies in clay printing. 
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 Condition assessment and constraints definition 

The tests are conducted in a laboratory container of the Institute 

of Digital and Autonomous Construction. The container is 

maintained at a constant temperature of 23 °C. The robotic 

system is a 3D Potterbot Scara v4, equipped with a linear ram 

extruder and 3.5 l extrusion tubes that can print plastic clays. 

As shown in Figure 2, material tests are performed on a 

designated testing area, while process parameter tests are 

conducted on a separate levelling board. The levelling board 

ensures a flat printing surface and enhances adhesion due to its 

rough texture. 

 

 

Figure 2. Experimental setup of the clay printer and print area 

in the laboratory container. 

Clay mixtures are designed using two clay types, “clay A” 

representing a raw clay and “clay B” representing a milled clay. 

Quartz sand is added to the mixtures to increase stability and 

reduce shrinkage, and a starch binder is added to improve 

mechanical behavior. The residual moisture in the sand is 

below 0.3 %, with a grain size ranging from 0.062 mm to 

0.3 mm. The binder, Optapix S 51, consists of modified starch 

with a bulk density of 0.5 kg/m3. The physical properties and 

the chemical composition of clay and sand are listed in Table 

1. 

Table 1. Physical properties and chemical composition for 

clay types and sand (percentages in M-%). 

 Clay A  Clay B  Quartz sand 

Density [g/cm3] 2.65 2.65 1.3 ± 0.3 

Drying shrinkage [%] 4.0 6.0 - 

SiO2 [%] 75.0 71.0 92.1 

Al2O3 [%] 19.8 24.0 2.7 

TiO2 [%] 1.4 2.0 0.0 

Fe2O3 [%] 0.9 1.0 0.1 

CaO [%] 0.2 0.0 0.9 

MgO [%] 0.3 0.0 0.2 

K2O [%] 2.2 3.0 1.5 

Na2O [%] 0.1 0.0 0.2 

  

A detailed testing workflow is created (Figure 3), comprising 

material composition, material parameters, and process 

parameters. First, material composition tests are conducted for 

each mixture, to determine and evaluate viable ratios of clay, 

sand, binder, and water. The material composition tests consist 

of a simple extrusion test, where the consistency and 

extrudability of the clay mixtures are evaluated. Results 

achieved from the material composition tests, 19 viable clay 

mixtures are obtained. 

Second, the material parameters of the viable clay mixtures 

are evaluated, including flowability, wet strength, buildability, 

and shrinkage. The tests to determine the flowability, strength, 

and buildability consist of a cylinder drop test according to [12] 

and a shape retention test according to [13]. For the (non-

standardized) shrinkage test, customized cylindrical specimens 

are printed and observed for horizontal shrinkage, vertical 

shrinkage, and cracking behavior. The cylindrical specimens 

have a diameter of 150 mm and a height of 200 mm. As a result 

of the material parameter evaluation, 6 viable mixtures are 

selected from the previous 19 mixtures previously achieved.  

Third, the process parameters are determined for each 

mixture via extrusion line tests, failure tests, double cone tests, 

and bridging tests, in compliance with [14] and [15]. The 

process parameters are utilized to determine the fabrication 

constraints for designing wall components. A clay content of 

Figure 3. Material testing workflow. 
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25 % of the dry volume is observed to offer an optimal balance 

between shrinkage and stability, resulting in a suitable choice 

for prototyping applications. Therefore, two clay mixtures 

A_25.0C_36.0W_1.0B and B_25.0C_38.0W_1.0B are selected 

for prototyping; material composition is detailed in Table 2. 

The corresponding process parameters are listed in Table 3. 

 Design optimization 

The design optimization includes design variable adjustments 

of infill patterns, segmentation, and connection design. The 

infill is optimized by reducing the total material volume and 

print speed. Through a curved geometry, the material is reduced 

while retaining stability. Intersection width of adjacent curves 

are increased to accommodate the sensor width. The process 

parameters defined in the fabrication constraints regarding 

overhang angle and build height influence segmentation and 

connection design. Additional factors, including layer height, 

determine the toolpath configuration. Furthermore, by defining 

toolpaths as continuous paths, print times are reduced as 

retraction points and non-printing moves are minimized. 

 Prototyping 

Two prototype specimens of a wall component, prototype A 

(fabricated with the mixture using clay A) and prototype B 

(fabricated with the mixture using clay B), are devised 

respectively. Buckling, overhang angles, and surface quality 

are visually assessed immediately after fabrication. Following 

the fabrication, the prototypes are evaluated during and after 

the drying process on shrinkage and cracking. 

The prototypes are observed to be printable with no failures 

or significant buckling of either the contour or the infill. 

Observations during the drying process reveal non-uniform 

drying patterns in the two prototype specimens. The drying 

process showcases a directional gradient, characterized by 

drying progressing from the top to bottom and from the exterior 

surfaces toward the interior infill. 

Moisture content assessment, conducted after a six-day 

drying period, reveals variations between the prototype 

specimens. Figure 4 shows the moisture retention behaviors of 

the two prototype specimens. Prototype A demonstrates faster 

drying rate, with faster moisture dissipation across the 

specimen. Conversely, prototype B exhibits a slower drying 

rate, as evidenced by a darker discoloration of the infill and 

contours, indicating retained moisture. 

 

 

Figure 4. Prototype moisture content observed after a six-day 

drying period. 

Desiccation cracks are documented during the drying process. 

On the one hand, prototype A develops multiple desiccation 

cracks ( 

Figure 5). The first cracks appear after day four, primarily 

centered in the midline region advancing from bottom to top, 

with a final length of 226 mm and width of 2 mm. Further 

cracks appear in the midline and front region in days six and 

eight and increase in length during the following days, with a 

final length of 223 mm and 95 mm and a final width of 1 mm, 

respectively. The crack at the midline region may represent a 

protentional weak point due to the location, length, and width 

of the crack. On the other hand, prototype B exhibits 

significantly reduced desiccation cracks with only a single 

crack forming after eight days at the midline region observed 

to advance from bottom to top. The location of the crack is 

similar to the position observed in the first crack of prototype 

Table 2. Material testing clay mixture proportions. 

Name Clay [M-%] Sand [M-%] Water [M-%] Binder [M-%] 

A_25.0C_36.0W_1.0B 32.9 29.0 15.1 0.8 

B_25.0C_38.0W_1.0B 32.6 28.6 15.6 0.8 

Table 3. Process parameters defined for design considerations. 

Parameter A_25.0C_36.0W_1.0B B_25.0C_38.0W_1.0B 

Layer height for 11 mm layer width 4.5 mm 4.0 mm 

Maximum build height 243 mm 356 mm 

Maximum inward angle 30.0° 27.5° 

Maximum outward angle 27.5° 27.5° 

Bridging length, adjacent layer spacing > 0 mm 40 mm 20 mm 

Bridging length, adjacent layer spacing < 0 mm 80 mm 80 mm 
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A. However, the crack length and width are less severe, with a 

140 mm in length and less than 1 mm in width. 

Upon drying, shrinkage is evaluated by measuring the 

dimensions of the dry specimens and comparison with the 

initial dimensions. The measurements include the length on 

long side, length on short side, width, and height of each 

prototype specimen. Uneven shrinkage of the prototype is 

observed across the two specimens after two weeks of drying. 

For prototype A, a horizontal shrinkage of 5.34 % and a vertical 

shrinkage of 0.64 % is observed on average. Comparatively, for 

prototype B, a horizontal shrinkage is 6.76 % and a vertical 

shrinkage is 2.2 % is observed on average. The prototype A 

shows strong adhesion to the leveling board, resulting in 

reduced shrinkage at the base. In contrast, a free shrinkage at 

base of prototype B is noticeable due to low adhesion to the 

smooth bed plate. However, the prototype specimens are 

inaccurate for shrinkage material characterization due to the 

complexity of the geometry. 

The difference in the shrinkage behavior of both prototypes 

may be attributed to the drying rate and to local errors, such as 

air bubbles in the extruded material, during printing. An 

increase in water content leads to increased shrinkage, as 

observed in the shrinkage evaluation, where prototype A 

showed less shrinkage than prototype B. Typically, increased 

shrinkage and faster drying processes are associated with 

increased desiccation cracking. However, errors during 

printing may cause additional cracking due to induced internal 

stresses, as observed by the strong adhesion to the leveling 

board showcased by prototype A. Special attention should be 

paid to the printing setup and drying rate to minimize 

desiccation cracking. 

To define the SHM strategy, a second prototype iteration is 

conducted, where moisture sensors are embedded. Considering 

the shrinkage behavior exhibited by prototype B, the mixture 

using clay B is selected for the second prototype iteration 

(prototype B2). The prototype B2 serves to assess the 

effectiveness of the monitoring system and to refine the sensor 

positioning that will be relevant to the SHM strategy to be 

proposed. 

 Sensor integration for SHM strategy definition 

As a basis to define the SHM strategy, which will be proposed 

in the following section, sensor integration of varying sensor 

types and positions is investigated. A validation test is 

conducted to assess the performance of resistive and capacitive 

moisture sensors, as well as the effect of sensor positions. 

Resistive and capacitive moisture sensors are typically used to 

measure soil moisture content using different sensing 

principles. Therefore, by deploying both sensor types to 

monitor drying processes in clay printing, the sensitivity of the 

sensors for detecting changes in moisture content may be 

compared to asses performance. As shown in Figure 6, two 

sensor systems are used to monitor prototype B2,  

(i) sensor system I, a commercial sensor system consisting 

of a resistive moisture sensor typically used for discrete 

soil monitoring, and  

(ii) sensor system II, a custom-made SHM system consisting 

of a moisture sensor node (containing three capacitive 

moisture sensors) and an environmental sensor node for 

continuous monitoring of clay moisture content and the 

surrounding environment. 

The resistive and capacitive moisture sensors are positioned at 

different embedment depths and distributed on the exterior and 

interior surfaces of prototype B2 to monitor the drying process 

following the observed drying gradient during the prototyping 

phase.  

On the one hand, sensor system I is designed to measure soil 

moisture by outputting a value of resistance between the two 

probes. On the other hand, sensor system II is designed for 

recording real-time data of the prototype moisture content and 

the environmental conditions in the laboratory. The moisture 

sensor node of sensor system II comprises the three embedded 

capacitive moisture sensors v2.0 that are connected via cables 

to an Arduino ESP32 microcontroller to record moisture 

content by detecting changes in capacitance. The capacitive 

 

Figure 5. Desiccation cracks in prototype A. 
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sensors are embedded at a depth of two-thirds of the sensor 

length. The environmental sensor node consists of an Si7021 

temperature and humidity sensor connected to a 

microcontroller for recording environmental conditions. The 

data recorded by both sensor nodes is transmitted via a cable 

connection to a base station (i.e. Raspberry Pi microcomputer) 

that serves as a datalogger for data management and storage. It 

should be noted that the capacitive moisture sensors are 

calibrated in both dry and fresh clay conditions using the pre-

calibrated sensor system I as benchmark.  

The positioning of the embedded moisture sensors of both 

sensor systems is determined by the respective geometric 

constraints. The resistive sensor of sensor system I consists of 

two probes, each 180 mm in length and spaced 30 mm apart. 

The capacitive soil moisture sensors of sensor system II 

measure 98 mm in length, 23 mm in width, and 4 mm in 

thickness. Considering a layer width of 11 mm, the sensors are 

embedded vertically at overlying points within the structure to 

minimize any impact on structural stability. Furthermore, to 

evaluate the effect of the sensor positions, three embedment 

depths are defined (Figure 7). The capacitive sensors of the 

moisture sensor node of sensor system II are positioned 

following the printing process, where Sensor 1 (printing time 

t = 60 min) and Sensor 2 (t = 112 min) are fully embedded 

during printing, while Sensor 3 (t = 147 min) is partially 

embedded. The probes of the resistive sensor (Sensor 4) of 

sensor system I are also partially embedded at t = 147 min. Due 

to the length of the probes of Sensor 4, Sensor 2, and Sensor 4 

record moisture content at approximately the same height. A 

special consideration is given to the capacitive sensors, where 

a permeable membrane is wrapped around the sensing elements 

of the sensors that are in contact with clay to facilitate local 

moisture evaporation. Sensor cables are routed through the 

infill gaps, which serve as cable channels, and are connected to 

the microcontroller after the printing process. 

 

 

Figure 6. Components of sensor system I (blue) and sensor 

system II (green). 

Prototype B2 is monitored over 10 days, and the moisture 

content is recorded continuously by sensor system II, while 

sensor system I is read manually three times daily. No structural 

instabilities or sensor-induced cracking are observed during 

this period. 

The environmental data (Figure 8) shows humidity levels 

ranging from 15 % to 40 % and temperatures between 18.1 °C 

and 23.8 °C. The declining moisture content in the structure 

(Figure 9) corresponds with these environmental changes. 

Capacitive sensors (Sensors 1-3) exhibit a stabilization phase 

of approximately 25 h, due to the membrane barrier. The fully 

embedded sensors (Sensor 1 and 2) reveal nearly identical 

trends, while partially embedded sensor 3 shows higher initial 

moisture levels during the first 160 h. 

 

 

Figure 7. Embedded sensor integration during the printing 

process. 

 

 

Figure 8. Environmental sensor readings. 

Furthermore, as observed from Figure 9, the resistive sensor 

(Sensor 4) showcases higher values of moisture content 

compared to the capacitive sensors in the first 195 h of 

measurement, followed by a sharp drop of moisture content. 

Although a similar moisture content trend was expected 

between Sensor 2 and Sensor 4, the values observed for 

Sensor 4 indicate that the resistance-based sensing principle is 

not as sensitive to the change of moisture content compared to 

capacitive-based sensing principle. By observing the 

cumulative soil moisture loss over time (Figure 10), a total 

moisture loss ranging from 43 % to 48 % is observed. The 

measured cumulative moisture loss from Sensor 1 and Sensor 

3 are comparable, while Sensor 2 deviates slightly in an 

acceptable range. In contrast, Sensor 4 deviates significantly, 

further indicating limited accuracy and responsiveness. 
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Figure 9. Moisture sensor readings (sensors are calibrated for 

dry mixture = 0%, wet mixture = 100%). 

 

 

Figure 10. Cumulative moisture loss over time (starting at 

t = 25 h). 

4 DISCUSSION AND SHM STRATEGY DEFINITION  

In this section, the results of the sensor integration are discussed 

as a basis for the SHM strategy definition, subsequently 

proposed in this section. 

 General discussion of the results 

The moisture sensors have demonstrated varying accuracy. 

Fully embedded sensors have shown nearly identical values, 

while the partially embedded sensors have tended to record 

higher moisture levels. Following initial surface water loss, the 

sensor readings have aligned with the visual observations, 

reflecting the drying conditions of prototype B2. The absolute 

moisture readings have been inconsistent between sensor types 

and absolute measurement results have not been quantified by 

means of measuring the component weight over time. 

However, the recorded trends of capacitive soil moisture 

sensors have correlated with the expected structural 

performance and visual assessments, suggesting the suitability 

of capacitive measuring for relative monitoring. The permeable 

membranes have delayed the moisture penetration causing 

additional time for sensor stabilization. Capacitive changes 

have been detected by the embedded sensors with varying 

accuracy, depending on sensor type and position; however, 

measurements of capacitive moisture sensors have successfully 

captured the drying gradient within prototype B2. The 

environmental conditions have significantly influenced the 

drying process, with accelerated moisture loss observed under 

lower humidity and elevated temperature. 

Overall, the findings underline the applicability of moisture 

sensors for monitoring moisture loss in additively 

manufactured clay structures and form the basis for developing 

a tailored SHM strategy. 

 SHM strategy 

Defining the SHM strategy for clay-printed structures requires 

careful selection and placement of sensors tailored to specific 

monitoring objectives. Clay moisture and environmental 

conditions must be assessed to evaluate structural integrity, 

while visual inspections aid in optimizing sensor placement. 

Different sensor types serve distinct monitoring purposes: 

Moisture sensors enable tracking of drying behavior, whereas 

stability sensors, such as strain gauges, allow detecting 

buckling and shrinkage, and provide long-term data on internal 

stress states. In this study, both capacitive and resistive 

moisture sensors have proven capable of capturing drying 

behavior in the conducted experiments. However, resistive 

sensors are more susceptible to corrosion and exhibit a high 

sensitivity to increased ion concentrations, such as salt, which 

are prominent in clay. Salts decrease the resistance between 

sensor nodes and, therefore, the sensors read comparatively 

increased moisture values. Capacitive sensors, by contrast, 

have shown greater reliability and resolution, rendering 

capacitive sensors a more promising choice for continued 

application in SHM strategies. Sensor placement should follow 

the observed (or expected) drying gradients, to enable accurate 

assessment of moisture migration and identification of zones 

prone to cracking. Due to the evolving geometry and temporal 

variability inherent to additive manufacturing, a fundamental 

decision must be made regarding the embedding time, i.e. 

whether the sensors are integrated during or after the printing 

process. Embedded wired sensors introduce challenges, 

including the risk of crack formation at cable transition points 

caused by clay shrinkage. The cracks may compromise 

structural stability or facilitate moisture ingress. Although infill 

gaps can serve as routing channels for sensor cabling, the 

geometrical complexity of 3D-printed components poses 

significant limitations for scaling wired sensor networks. 

Therefore, wireless monitoring solutions are a prerequisite 

for scalable SHM in clay-printed structures. However, the 

physical properties of clay pose substantial challenges for 

embedded wireless communication. The high dielectric 

constant and moisture retention of clay lead to significant 

attenuation of high-frequency radio waves, thereby impairing 

signal transmission. Elevated moisture content intensifies the 

effect by increasing material conductivity and absorbing radio 

frequency (RF) energy, causing reduced transmission 

efficiency. Additionally, multipath interference, owing to RF 

signal reflection and scattering within the heterogeneous 

internal structure of clay, may lead to signal distortion and data 

loss. To ensure reliable wireless sensing, careful selection of 

operating frequencies and the implementation of adaptive 

communication protocols are required, to account for the 

variable electromagnetic properties of clay throughout the 

drying process. Furthermore, current technological limitations 

constrain the deployment of SHM systems: Low-cost 

capacitive sensors often lack the required accuracy, standard 

resistive sensors remain prone to corrosion, and both exhibit 
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limited sensitivity to gradual moisture changes. When 

implementing SHM strategies for clay-printed structures, 

attention must be paid to the aforementioned constraints by 

enhancing sensor robustness, measurement precision, and 

wireless operability. Particular attention should as well be 

given to the development of embedded, miniaturized wireless 

sensors capable of long-term, real-time data acquisition in the 

challenging environment of clay-printed structures. 

5 SUMMARY AND CONCLUSIONS 

With the increased attention on clay printing in research and 

practice, SHM strategies need to be tailored to fit clay-printing 

technologies. In this study, an SHM strategy has been 

proposed, and the structural properties of clay-printed 

structures, including buckling, shrinkage, and load-bearing 

capacity, have been experimentally determined. Prototyping 

and sensor placement validation have demonstrated the 

feasibility of constructing structurally stable clay-printed 

structures and provided key insights into material behavior (i.e., 

shrinkage) for deriving sensor positioning strategies.  

The methodology proposed in this study has provided a 

structured approach to understanding clay as a 3DP material, 

incorporating both material characterization and an SHM 

strategy. The experimental results have demonstrated that 

effective sensor placement can be obtained through systematic 

analysis of material behavior, particularly focusing on drying 

patterns and potential fault locations. Moreover, the study has 

addressed relationships between small-scale laboratory tests 

and larger prototypes, establishing crucial scalability 

considerations for SHM sensor networks of large-scale 

structures. In summary, the findings contribute to advancing 

the field of sustainable construction by demonstrating the 

viability of clay printing based on a sound SHM strategy. 

Future research may include quantifying sensor results in 

respect to shrinkage and extending the SHM strategy from 

cable-based to wireless systems. 

ACKNOWLEDGMENTS 

Financial support provided by the German Research 

Foundation (DFG) through grants SM 281/22-1 and 

SM 281/31-1 as well as by Hamburg University of Technology 

via the I³ program under the junior project Digitalization of 

Earth Printing to Advance Climate-Informed Engineering is 

gratefully acknowledged. The authors express their gratitude to 

Goerg & Schneider GmbH & Co. KG for supplying the clay 

material. The opinions, findings, conclusions, and 

recommendations presented in this paper are solely those of the 

authors and do not necessarily reflect the views of the 

sponsoring organizations. 

REFERENCES 

[1] Ponis, S., Aretoulaki, E., Maroutas, T. N., Plakas, G., and Dimogiorgi, 

K., 2021. A systematic literature review on additive manufacturing in the 

context of circular economy. Sustainability, 13(11), 6007. 
[2] Peralta, P. & Smarsly, K., 2022. Requirements analysis of additive 

manufacturing for concrete printing – A systematic review. In: 

Proceedings of the 39th International Symposium on Automation and 
Robotics in Construction (ISARC). Bogota, Colombia, 07/12/2022. 

[3] Smarsly, K., Peralta, P., Luckey, D., Heine, S. & Ludwig, H.-M., 2020. 

BIM-based concrete printing. In: Proceedings of the International 
ICCCBE and CIB W78 Joint Conference on Computing in Civil and 

Building Engineering. Sao Paolo, Brazil, 08/18/2020. 

[4] Peralta, P., Ahmad, M. E. & Smarsly, K., 2023. Printing information 
modeling (PIM) for additive manufacturing of concrete structures. 

Applied Sciences, 13(23), 12664. 

[5] Hong, C., Zhang, Y. & Borana, L., 2022. Performance investigation of 
3D printed clay soil using fiber Bragg grating technology. Acta 

Geotechnica, 17(2), pp. 453-462. 

[6] Peralta, P., Heine, S., Ludwig, H.-M. & Smarsly, K., 2020. A BIM-based 
approach towards additive manufacturing of concrete structures. In: 

Proceedings of the 27th International Workshop on Intelligent Computing 

in Engineering. Berlin, Germany, 07/01/2020. 
[7] Ma, G., Li, Y., Wang, L., Zhang, J. & Li, L., 2020. Real-time 

quantification of fresh and hardened mechanical property for 3D printing 
material by intellectualization with piezoelectric transducers. 

Construction and Building Materials, 241(2020), 117982. 

[8] Tanapornraweekit, G., Jiramarootapong, P., Paudel, S., Tangtermsirikul, 
S. & Snguanyat, C., 2022. Experimental and numerical investigation of 

3D-printed mortar walls under uniform axial compression. Construction 

and Building Materials, 360(2022), 129552. 
[9] Hassani, S. & Deckermann, U., 2023. A systematic review of advanced 

sensor technologies for non-destructive testing and structural health 

monitoring. Sensors, 23(4), 2204. 
[10] Panda, B. & Tan, M.J., 2019. Rheological behavior of high-volume fly 

ash mixtures containing micro silica for digital construction application. 

Materials Letters, 237(2019), pp. 348-351. 
[11] Tang, C.-S., Shi, B., Liu, C., Suo, W.-B. & Gao, L., 2011. Experimental 

characterization of shrinkage and desiccation cracking in thin clay layer. 

Applied Clay Science, 52(1–2), pp. 69-77. 
[12] Perrot, A., Rangeard, D. & Lecompte, T., 2018. Field-oriented tests to 

evaluate the workability of cob and adobe. Materials and Structures, 

51(2018), 54. 
[13] Kazemian, A., Yuan, X., Cochran, E. & Khoshnevis, B., 2017. 

Cementitious materials for construction-scale 3D printing: Laboratory 

testing of fresh printing mixture. Construction and Building Materials, 
145(2017), pp. 639-647. 

[14] Gomaa, M., Jabi, W., Veliz Reyes, A. & Soebarto, V., 2021. 3D printing 

system for earth-based construction: Case study of cob. Automation in 
Construction, 124(2021), 103577. 

[15] Curth, A., Pearl, N., Castro-Salazar, A., Mueller, C. & Sass, L., 2024. 3D 

printing earth: Local, circular material processing, fabrication methods, 
and life cycle assessment. Construction and Building Materials, 

421(2024), 135714. 

[16] Robert McNeel & Associates, “Rhinoceros 3D,” www.rhino3d.com.

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-150 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 987 

ABSTRACT: Structural Health Monitoring (SHM) is employed to provide insights and conservation guidelines for Icelandic turf 

houses through periodic and continuous monitoring of hygrothermal and geometrical parameters. The turf houses are unique 

vernacular structures that were the primary dwelling form in Iceland from settlement (~ 874 A.D.) through the 20th century. These 

structures, now maintained predominantly by the National Museum of Iceland, represent a cultural legacy but suffer from limited 

research on their materials, structural behavior, and long-term maintenance requirements.  

Key conservation challenges include water leakage, differential settlement, and geometrical distortion, highlighting the need to 

understand the hygrothermal performance of the turf roofs and the structural behavior of the timber frames carrying the roofs. To 

address these issues, a remote and unobtrusive SHM system was designed, tailored to the constraints of heritage buildings.  

This paper provides a one-year overview of monitoring at two sites: Keldur farm in southern Iceland and Laufás in the north. The 

study details the monitoring strategy, system design, installation, and operation, presenting results such as 3D point scans, 

hygrothermal data, and comparative analyses between the two sites. Findings from the study contribute to understanding the 

behavior of Icelandic turf houses, offering insights for their long-term conservation and ongoing management. 

KEY WORDS: Hygrothermal and geometrical monitoring, museum artifact, monitoring in remote locations, vernacular structures

1 INTRODUCTION AND MOTIVATION 

Turf houses represent the vernacular architecture of Iceland. 

The tradition spans from the 9th-20th centuries, surviving far 

longer than turf architecture traditions in most other countries. 

Turf was historically an ideal building material in Iceland due 

to its ready availability, its excellent insulation properties, its 

ability to protect against wind and precipitation, and the lack of 

available timber in Iceland (Zöega et al 2023). It was used to 

build different types of houses, churches, stables, sheds, raised 

roads, and boundary walls by members of all social classes 

(Hafsteinsson and Jóhannesdóttir, 2024; Zoega et al 2023, 

Ágústsson, 2000). 

The turf house developed alongside the inhabitants, serving 

as the main form of residence for most of the country’s history.  

This declined rapidly into the 20th century as they were largely 

replaced by timber and concrete houses. By the 1950s, only 716 

turf houses were registered, representing 3.6% of all residences 

in the country (Hagstofa Íslands, 1997). Most turf houses were 

either abandoned to decay or deliberately destroyed 

(Hafsteinsson and Jóhannesdóttir, 2024). The few remaining 

turf houses generally represent wealthy or influential farms that 

have been taken under the protection of the National Museum 

of Iceland through their Historic Buildings Collection, 

including Laufás and Keldur, monitored and presented in this 

paper (see Figure 1). There are also a handful of smaller houses 

under private ownership or owned by other institutions.  

These surviving turf houses no longer function as homes, 

instead operating as museums intended to conserve this unique 

aspect of Iceland’s cultural heritage. As no one lives in them, 

the buildings must be monitored and repaired to ensure their 

continued survival and operation. This can pose difficulties as 

the museums are not open year-round and funding is limited. 

Damage is therefore not always immediately noticed and 

necessary repairs must be identified and prioritized. There are 

also few experts remaining who are experienced enough to 

undertake these repairs. While research has been done on 

traditional building methods and the cultural and historical 

importance of the turf tradition, little to no research has been 

done on the structural behavior of the buildings themselves, the 

properties of turf as a building material, or on the additional 

materials often used in turf roofs, leaving a large gap in the field 

of study. 

This project seeks to fill this gap in research by studying the 

structural behavior and monitoring the structural health of 

several turf houses in the Historic Buildings Collection of the 

National Museum, including Laufás and Keldur. This research 

seeks to create a remote monitoring system that the museum 

can use to more effectively identify and prioritize repairs and 

keep track of the condition of the turf houses in their collection, 

many of which are very remote and far from the museum’s 

headquarters in the capital region. This will be done through an 

interdisciplinary approach combining structural engineering, 

museology, and conservation studies. This comprises creating 

a monitoring strategy, 3D scan analysis, monitoring 

fluctuations in temperature and moisture in the turf roofs, 

modelling the hygrothermal behavior of turf, literary research, 

and interviews with experts actively working in the field. This 

paper provides a one-year overview of the monitoring process. 

2 TURF HOUSES: LAUFÁS AND KELDUR 

 Development of turf houses 

The Icelandic turf tradition began with the settlement in the 9th 

century and can be divided into three main developmental 
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stages (National Museum of Iceland, 2011). The so-called 

Viking-Age longhouse represents the first stage of the turf 

tradition, featuring a long building made of turf, timber, and 

stone (Stefánsson, 2013 Abrecht, 2018). This first stage existed 

with relatively few changes until the 13th and 14th centuries, 

with the gradual emergence of the passageway farmhouse. 

The passageway farmhouse represents the second stage of 

development. This did not replace the longhouse, and both 

forms as well as combinations of the two existed. The 

passageway farmhouse layout featured a long hall or 

passageway with individual rooms added to the sides and rear 

of the building (National Museum of Iceland, 2011).  

The third and final stage of the turf tradition, the gabled 

farmhouse, emerged in the late 18th and early 19th centuries. 

The gabled farmhouse features individual but interconnected 

rooms, typically facing the front yard, with wooden gables and 

individual turf roofs (Abrecht, 2018). This is the version of the 

turf house that people are most familiar with today and serves 

as a physical representation of this aspect of Icelandic cultural 

heritage (Stefánsson, 2013).  

Spanning over 10 centuries, the turf tradition represents the 

primary dwelling for Icelanders throughout its history. By the 

mid-20th century, the tradition had largely been abandoned, and 

a shift from residential buildings to museum buildings began to 

take place, largely under the supervision of the National 

Museum. Once representing a long-standing housing tradition, 

turf houses today serve a different function as museums to 

educate and conserve both the architectural tradition, but also 

cultural and social aspects of the nation’s history. 

 

 

Figure 1: Location of the monitored houses presented in this 

paper. 

 Turf roofs 

The roofs of turf houses are mainly composed of turf blocks 

that rest on the top of an interior timber frame, as the turf walls 

themselves are typically not load-bearing (National Museum of 

Iceland, 2011, Zoega et al., 2023). There are two main roof 

types depending on the interior lining, either slate or thatch 

(Icelandic: helluþök eða tróðþök) (Ágústsson, 2000). Different 

types of turf can be used, and there are multiple ways of laying 

a turf roof (Sigurðardóttir, 2008). Additional materials and 

methods have also been introduced, particularly from the late 

19th century onwards. The materials and methods were used 

based on material availability, the layout of the house itself, and 

decisions made by the craftsmen. This leaves much room for 

variation, and different layering can be found between locations 

and within the same house, depending on the intended use of 

the specific room or building. 

 

 

Figure 2: Example of dried birch twigs carried by purlins and 

rafters (thatched roof). 

Turf roofs typically need to be steep to support moisture 

runoff and thick for insulation purposes and to allow 

absorption. If the top layer of turf in a roof is compromised, 

leaks are likely to occur (Zoega et al 2023, Sigurðardóttir, 

2021). The problem of leaking with turf houses is not new, and 

people in the past dealt with this issue in a number of 

resourceful and creative ways. Layers of stone, brush, and 

straw were added in some places to support the turf, which can 

be seen in Figure 5. When corrugated iron and tar paper arrived 

in Iceland in the latter half of the 19th century, people almost 

instantly began adding these materials to their houses as a 

waterproofing layer in the roofs, examples of which can be seen 

in Figure 3 (Stefánsson, 2020, Hafsteinsson, 2024). 

 

   

Figure 3: Examples of corrugated steel in turf roofs. A fishing 

net has also been added likely because the turf slides on the 

corrugated steel. 

As turf houses began to transform from dwellings to 

buildings in a museum collection, their maintenance and 

upkeep changed as well. As the buildings were no longer lived 

in, the constant cycle of coexistence and repairs shifted. One of 

the biggest changes has been the roof itself; historically, the 

roof could be up to 1 meter thick, which promoted absorption 

and the correct conditions for the grass on the outermost layer 

to survive and hold itself up (Sigurðsson, 2025).  

In the latter part of the 20th century, the roofs of many turf 

houses were significantly thinned, and a waterproofing layer of 

PVC or plastic was added as an attempt to prevent leaks and 

improve the aesthetics of the buildings, see examples in Figure 

4 (Stefánsson, 2013). All turf houses in the Historic Buildings 

Collection of the National Museum have thinned roofs with 

PVC or plastic membrane, and many also have corrugated iron. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-150 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 989 

When constructing a turf roof today, the ideal thickness ranges 

from 40-70 cm (Sigurðsson, 2025). We have not yet seen a roof 

with this thickness in any of the buildings we are monitoring. 

Additionally, many of the roofs have holes or chunks of turf 

missing. 

 

  

Figure 4: Examples of plastic membranes in turf roofs. Left: 

membrane visible from the inside. Right: membrane visible 

from the outside. 

When the turf becomes too thin, it is unable to support itself 

and becomes more prone to damage from the elements. All 

additional roofing materials used in the past and in the present 

have been a response to problems, but these new materials have 

often had unexpected or unintended consequences, which is 

part of the focus of this study (Stefánsson, 2013). 

 

 

Figure 5: Typical cross-section of a turf roof. 

Figure 5 shows a typical cross-section of a turf roof. As 

mentioned, the thickness of the different material layers can 

vary greatly from house to house and even within one house. 

 A: The turf layer itself can be divided into three sections: 1) 

the outermost layer is living grass serving as the first water 

barrier and provides possibilities for runoff from the roof, 2) 

root mesh serving as stabilizing layer that prevents the turf from 

sliding (this layer also has moisture absorption and insulation 

capabilities), and 3) the innermost layer is soil without roots, 

used to even out the surface for turf laying. B: The next layer, 

as discussed previously, was added when new materials 

arrived, such as corrugated steel and plastic membranes. These 

materials make it more challenging to keep the turf in place 

since they are slippery. C: Various materials have been used 

under the membrane and turf depending on the time of 

construction and the local availability of materials. Natural 

stone slates, dried birch twigs and dried turf (Icelandic: 

nærtorf), are common materials. Some of them, like birch and 

turf, have some insulation properties, whereas stone is a poor 

insulator. D: These materials rest on purlins. E: The purlins are 

carried by a wooden rafter which is part of the structural frame 

carrying the whole roof. 

 

 Timber frame 

The structural system of the turf houses is a timber frame which 

carries the roof, see for example Figure 6. The foundations for 

the frame are stone blocks resting on the ground. Each column 

in the frame is resting on individual blocks which are not 

connected to each other. Two columns are connected to each 

other by joists perpendicular to the walls. Parallel to the wall, 

columns are connected by beams. Sometimes the rafters only 

rest on the columns and sometimes the rafters are connected to 

beams between the columns. The walls, built by turf or stone, 

only carry their self-weight and do not support the roof.  

All elements of the structural system are made from natural 

materials, that is timber and stone, making them susceptible to 

temperature and moisture fluctuations. Furthermore, the 

foundations, stones placed on the earthen floors, can suffer 

from differential settlements. However, the characteristics of 

the movements of the timber frames have not been studied in a 

structural context and are therefore not fully understood. 

 

 

Figure 6: Structural system in the kitchen in Keldur. 

 Laufás 

Laufás was a prosperous manor farm that also served as a 

priest’s residence, see Figure 7. It is in Eyjafjörður in the North 

of Iceland. Its history dates back to at least the early 11th 

century, though the present buildings reflect 19th century 

building traditions (National Museum of Iceland, Húsasafn, 

Stefánsson, 2013). The farm entered the National Museum’s 

collection in 1948 and has since undergone extensive 

renovations and repairs. 

The farm consists of 12 interconnected houses and is 

approximately 29 meters long and 28 meters wide 

(Hafsteinsson, 2008). It is representative of the gabled 

farmhouse with older elements of a passageway farmhouse, and 

the roof falls under the thatched category as the inner lining is 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-150 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 990 

turf. The room being monitored is called dúnhús, or down 

house, referencing the valuable down from eider ducks that was 

once an important source of income for the farm. The down 

house is on the western side of the farm facing the yard, with a 

door and three windows facing the yard. 

 

 

Figure 7: Laufás in Eyjafjörður. 

 Keldur 

Keldur was a prominent farm in the South of Iceland with a 

rich history dating back to the 12th century, see Figure 8. It is 

the largest turf farm in the south and is mentioned in several of 

the famous Icelandic sagas. The present buildings were 

primarily rebuilt in the 19th century, and the farm entered the 

National Museum’s collection in 1946. 

Keldur also represents a gabled-farmhouse with earlier 

elements of the passageway-farmhouse, but the roof is 

representative of the slate category. The inner layer of the roof 

is entirely slate, with an interior plastic membrane and turf as 

the outermost layer. Both the skáli, or longhouse, and the 

eldhús, or kitchen are monitored in Keldur.  

 

 

Figure 8: Keldur in Rangárvellir. 

 Comparing Keldur and Laufás 

The two farms are representative of turf building traditions in 

their respective regions. Laufás provides a classic example of 

the turf houses built in the north, with more turf used in the 

building and roof, and visible turf blocks in the walls. Keldur 

represents the turf building traditions in the south of Iceland, 

with more stone used in the building and roof and a grass 

covering on the top of the houses. These differences can be seen 

in Figure 7 and Figure 8, and relate to differences in climate in 

the north and south of the country. 

The climate in the north of Iceland is more stable, with 

longer cold and dry periods providing better conditions for turf 

houses. This results in the northern turf houses having more turf 

and needing to be repaired and rebuilt less frequently. Historic 

records suggest that turf houses in the north lasted significantly 

longer before needing major rebuilding or repairs than those in 

the south, with one source reporting turf houses in the north 

lasted for 50-60 years, while those in the south lasted 10-20 

years (Bald, 1897). 

The climate in the south of Iceland fluctuates more in regard 

to both temperature and precipitation. Additionally, parts of the 

south do not have the same access to large amounts of good 

quality turf as in the north, and it is much more common to have 

higher amounts of stone in the buildings and the roofs.  

The walls in Laufás are made from turf and rest upon a stone 

base. Different patterns of turf blocks can be seen from the 

interior and exterior of the building. The inner-most layer of the 

roof in the down house of Laufás is dried turf. In Keldur, the 

walls are layered with both turf and stone. The inner-most layer 

of the roof in the kitchen of Keldur is made of stone slates. It is 

not possible to see distinct patterns of turf blocks in the walls, 

and the exterior of the houses is grass. 

3 MONITORING STRATEGIES, SYSTEM DESIGN, 

AND INSTALLATION 

This project began in part as a response to reports from those 

working in close contact with the museum buildings. Issues 

with leaking roofs, moving timber frames and turf walls, losing 

turf from the roofs, and complications with the plastic 

membranes were reported. In order to research these issues, an 

unobtrusive monitoring system that could be utilized in a 

museum environment was employed. As these buildings are all 

active museums, any visible signs of research or monitoring 

must be limited, and museum activities and visitor access 

cannot be hindered. 

Two monitoring strategies have been employed in the course 

of the research, targeting the pre-selected rooms at each 

location. One is continuous monitoring of the hygrothermal 

parameters in the turf roofs through sensors that were installed 

in both the exterior and interior layers of the roofs. The second 

is a periodic monitoring strategy where 3D scans are taken 

using LiDAR with an Artec Ray scanner. These scans are 

planned 3-4 times per year. Comparisons between the point 

clouds are planned in the open software CloudCompare. 

 Differential settlement and geometrical distortion  

LiDAR scanning has been used to help monitor the structural 

health and behavior of buildings, bridges, roads, tunnels, and 

other forms of civil infrastructure (Kaartinen et al., 2022). 

LiDAR has also been implemented in the cultural heritage 

sector for a variety of purposes, including to detect and identify 

damage and degradation in wooden components of historic 

buildings (Liu et al., 2024) and documenting and assessing 

deformation (Yaagoubi and Miky, 2018). 

LiDAR scanning was selected as a method in this study as a 

way to better understand the behavior of the interior timber 

frames of the turf houses. The reported displacements in the 

timber frames can impact the roof and the walls, which can lead 
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to accelerated decay and degradation, putting the overall health 

of the building at greater risk. 

Some of these displacements can be seen with the naked eye, 

including tilt in passageways, halls, and door frames, warped 

wood, and compacted or deteriorating turf. Although this can 

cause strain on parts of the building, strain monitoring is not a 

feasible method, as the structural frames may be undergoing 

rigid body movement and displacement without deformation. 

While we know that movement is occurring, it is still unknown 

exactly why and how this movement happens. LiDAR scans 

and the subsequent point clouds that are created will be 

compared in CloudCompare. This will enable a greater 

understanding of the movement of the timber frames, 

particularly if the movement is related to the decay of the 

timber, seasonal fluctuations, or changes in weather. 

 

 

Figure 9: Artec Ray scanner in operation in the kitchen of 

Keldur. 

 Turf monitoring  

The hygrothermal behavior of turf is relatively unknown 

despite its usage in buildings for centuries and across the world. 

Turf is known for its insulation properties and its ability to 

absorb moisture, but the specifics are lacking. The usage of 

sensors in the indoor and outdoor climate of the turf roofs is a 

way to better understand the moisture and thermal 

characteristics of the turf.  

Research into the hygrothermal properties and behavior of 

different earthen building materials has covered many types of 

materials, including earthen bricks (Cagnon et al., 2014), light-

earth construction materials (Colinart et al., 2020), and various 

soil types (Kehrer and Pallin, 2017). A 2019 literary review 

provides a detailed overview on the research into hygrothermal 

properties of earthen construction materials, noting renewed 

interest in their sustainable building qualities and ability to 

support comfortable living environments, but turf and the turf 

tradition is not included (Giada et al., 2019). Therefore, 

research is needed to address this gap. 

As mentioned earlier, the monitoring system needed to be 

unobtrusive and operable in remote locations. To that end, 

wireless sensors with Bluetooth connection to gateways that 

can connect and send the data to the cloud were chosen.  

The first monitoring system was installed in Keldur. A 

monitoring system from SensorPush was chosen. The 

SensorPush sensors are small, battery-operated devices with no 

wires, see left picture in Figure 10, making them ideal for this 

project. They measure air temperature and relative humidity. 

Eight sensors were installed in pairs, the inner laying on the 

plastic membrane and the outer very close to the surface of the 

turf. Two additional sensors were installed to measure the 

indoor and outdoor climate. In Keldur the thickness of the turf 

is approximately 10-12 cm.  Figure 11 shows the monitored 

locations on the south side of the roof, one very close to the 

ridge, one close to the inside of the outer wall, and one in the 

valley where the gable house meets the longhouse. 

In Keldur a service house is located close to the turf house 

making it possible to run an ethernet cable into the turf house 

for direct connection with the gateway. However, since the 

gateway was located inside the house and the sensors were 

installed inside the turf from the outside, it was challenging to 

connect to them through the turf. However, the installation was 

successful. Shortly after installation all the humidity sensors 

read a constant 100%RH and that did not change. Even though 

the moisture sensors did not survive the wet and cold Icelandic 

summer the temperature sensors kept operating until October 

2024 when all sensors were unresponsive. 

 

            

Figure 10: Left: Air temperature and humidity sensor from 

SensorPush. Middle: Soil moisture and temperature sensor 

from HOBO. Right: Air temperature sensor from HOBO. 

 

 

Figure 11: Sensor locations on south side of roof in Keldur. 

The next monitoring system was installed in Laufás. This time 

sensors for soil monitoring were chosen, see the middle picture 

in Figure 10. The sensors are from the MX series from HOBO. 

They have a robust casing, and the logger is connected to the 

sensors with wires, so the logger does not have to be buried into 

the turf. This makes the sensor more likely to survive harsh 

weather conditions, but it also makes it more visible. 

Two pairs of sensors were installed in Laufás. Like in Keldur, 

the inner sensors were close to the plastic membrane and the 

outer sensors were near the surface. In Laufás the thickness of 

the turf was approximately 25-30 cm. The sensors were 

installed on the north side of the down house, close to the rear 

ridge 

valley 
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gable wall, one upper location and one lower, which can be 

seen in Figure 12. 

 

 

Figure 12: Sensor locations in down house roof in Laufás. 

In Laufás an internet connection is established by SimCard 

WiFi Router which is then connected to the gateway. The 

gateway communicates with the dataloggers via Bluetooth. In 

Laufás the dataloggers were installed inside the house and the 

wires run through a small hole in the gable avoiding the 

problem with poor Bluetooth connectability through the turf. 

This was possible since the loggers were connected with wires 

to the senors which were installed in the turf.  

4 OPERATION AND SITE VISITS 

 Laufás 

In October 2024, a research team undertook the first visit to 

Laufás to examine the building, photograph conditions, install 

sensors, and take the first round of 3D scans in the down house. 

Several issues were noticed with the roof, including holes, 

missing pieces of turf on the top layer, and degradation of the 

inner and outer layers of the turf roof, resulting in the plastic 

membrane showing. The back wall of the down house also had 

considerably higher moisture. The sensors were installed in the 

roof of the down house and the 3D scanning was performed. 

The second trip to Laufás was taken in February 2025. Some 

small-scale repairs had been done to parts of the turf walls, but 

there were still holes in the roof of the down house. The back 

wall also had visibly more moisture than the other three walls. 

The sensors were still in place and actively logging data, and 

the second set of 3D scans were taken. 

 Keldur 

Sensors were installed in the roof of Keldur in May 2024. The 

sensors were installed on the north and south side of the long-

house. Several of the sensors went offline, so a second trip was 

taken in October 2024 to attempt to reconnect to the sensors. 

This was unsuccessful, and six out of ten sensors remained 

offline, unable to log data. This was thought to be related to the 

extreme weather conditions, as the sensors were unable to cope 

with the high amount of rain. Scans were not taken on either 

trip, as the 3D scanner is shared between departments at the 

National Museum and had been rented out. 

Due to the remote location of Keldur, poor weather and road 

conditions prevented a return trip in the winter of 2024. The 

third trip took place in February 2025, where the kitchen was 

scanned. An additional trip is planned for the spring of 2025 to 

take the next round of scans and install new sensors that can 

withstand the outdoor climate. 

5 RESULTS FROM STUDY HOUSES 

In this section current results from the monitoring strategies are 

presented.  

 Laufás 

The down house in Laufás has been 3D scanned twice, once in 

October 2024 and again in February 2025. Comparative 

analysis of the scans is ongoing. Renderings of the scans are 

shown in Figure 13. 

 

 

 

Figure 13: Renderings of 3D scans of the down house in 

Laufás. 

Figure 14 shows the time series for temperature at Laufás. The 

blue shows the temperature measurements from the nearest 

weather station, Végeirsstaðir, approximately 12 km from 

Laufás. The orange shows the air temperature as measured 

outside by the monitoring system and the green shows the air 

temperature measurements from inside the house. The turf 

temperature close to the surface is shown in red and the turf 

temperature 20-24 cm deeper is shown in purple. The two 

monitored sections are shown, one upper and one lower, see 

Figure 12.  

The temperature in the turf shows less fluctuations than the 

air temperature outside and inside the house. The difference 

between the outer and inner sensor is remarkably low, only 1-

3°C, as shown in the lowest plot in Figure 14. 

Figure 15 shows the turf moisture measurements in Laufás. 

In this first analysis the manifacturer calibration of the moisture 

sensor was used. That can have an effect on the absolute values 

but does not affect the trends. The moisture is plotted together 

with rainfall measurements from the weather station in 

Akureyri, 20 km from Laufás. Heavier rain can be correlated 

with higher moisture content.  

upper 

lower 
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Generally higher moisture content is measured in the lower 

location than in the upp location. This observation is consistent 

with that rainfall and moisture within the turf seeps downwards.   

 

Figure 14: Temperature measurements in Laufás. Note: 

Weather refers to temperature from nearest weather station, 

Végeirsstaðir. 

 

Figure 15: Turf moisture measurements in Laufás. Note: 

Rainfall measurements from weather station in Akureyri. 

Moreover, the inner sensor at the upper location is drier than 

the outer sensor, also consistent with expected behavior. 

However, at the lower location the outer sensor is drier than the 

inner. More investigation is necessary to fully explain this 

observation.  

 Keldur 

Figure 16 shows the time series for temperature at Keldur. The 

blue shows the temperature measurements from the nearest 

weather station, Sámstaðir, approximately 5 km from Keldur. 

The orange shows the air temperature as measured outside by 

the monitoring system and the green shows the air temperature 

measurements from inside the house. The turf temperature 

close to the surface is shown in red and the turf temperature 10-

12 cm deeper is shown in purple. Two cross sections are 

represented, one close to the ridge and the other in the valley.   

In general, the temperature close to the surface (red) 

fluctuates more than the temperature deeper in the turf close to 

the plastic (purple). The temperature inside is more stable than 

outside. Close to the ridge the temperature increases 

significantly, even higher than the air temperature. This is most 

likely because this part of the roof is facing south and highly 

affected by the sun radiation.  

In the valley, which has more shadow, the outer sensor 

measures higher temperatures than the inner. The lowest plot in 

the figure shows the temperature difference between the outer 

and inner sensor at both locations. The temperature difference 

is higher at the ridge than at the valley, showing that the surface 

of the turf is very prone to temperature fluctuations. It even 

indicates that the turf, albeit thin, exhibits good insulation 

properties and/or high thermal inertia.  

Note that for less extreme temperatures, between 5°C and 

10°C, the difference between the outer and inner measurements 

is not as pronounced.  

 

Figure 16: Temperature measurements in Keldur. Note: 

Weather refers to temperature from nearest weather station, 

Sámstaðir. 
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6 CONCLUSION 

The implementation of this structural health monitoring system 

combines different methods and approaches to better 

understand the Icelandic turf buildings whose structural 

behavior has not been studied. One year into the monitoring 

reveals several details about working with these technologies 

in museum buildings and in the Icelandic weather conditions. 

Early results provide information on the buildings, but 

additional scans and continued monitoring with the sensors is 

necessary to provide a more complete picture. 

The Artec Ray scanner had some difficulties operating in 

cold temperatures. While the interior temperature of the turf 

houses was just above the minimum operating temperature, 

some scans were incomplete and needed to be repeated. 

Additional sets of 3D scans are necessary to perform a 

comparative analysis of potential displacement in the timber 

frames.  

The first installation of sensors at Keldur revealed that the 

SensorPush sensors struggled to operate in wet conditions, 

resulting in a 100% RH reading before all sensors stopped 

logging data. Additionally, there were difficulties in getting the 

Bluetooth connection to work through the turf roofs.  

These obstacles in the first round of sensors led to the 

selection of the HOBO sensors that were installed in Laufás. 

These sensors are better able to withstand harsh weather 

conditions and can connect to the gateway. Laufás has cellular 

reception, making it possible to send the data to the cloud. 

Multiple sensors can operate on the cellular internet with good 

reliability. 

New sensors will be installed at Keldur this spring. Since 

Keldur has ethernet connection, good uploading capabilities are 

available. However, it is important that sensors in remote 

locations have internal memory in case the system goes offline.  

The data from the sensors at Keldur shows that the turf roofs 

can get quite warm in the summer, well above the outdoor 

temperature. Smoother temperature readings by the inner 

sensors at Keldur also show the insulation capabilities of the 

turf. This difference is not as visible in Laufás, possibly 

because the sensors in Laufás are located on the north side and 

have only been monitoring during the wintertime. 

Moisture content of the turf roof is correlated with the 

rainfall. The cross-section closer to the ridge is drier than the 

cross-section further down. At the upper location the outer 

sensor measures higher moisture content than the inner sensor. 

This is not the case at the lower location. 

Monitoring of these two houses and more are planned for the 

next few years providing insights into long-term continuous 

monitoring strategies at remote locations. 
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ABSTRACT: Durability is a critical factor in the long-term performance of concrete structures. Ensuring adequate surface quality 

– and thus extending the service life of concrete elements – relies significantly on proper curing during the hydration phase. To 

assess and monitor the effectiveness of the curing process, suitable testing methods are essential. Among these, gas permeability 

testing provides valuable insights into the porosity of the concrete, which directly affects its durability. This study investigates the 

influence of various curing methods on gas permeability using both laboratory and field testing. The results demonstrate that 

insufficient curing leads to higher gas permeability in the near-surface zone of concrete. Concrete specimens and structural 

components made from identical mix designs but subjected to different curing conditions are analyzed and compared. The findings 

also take into account the influence of concrete composition and environmental conditions on surface quality. Based on these 

insights, the study offers recommendations for a reliable evaluation of curing effectiveness through gas permeability as an indicator 

of surface integrity. 

KEY WORDS: concrete curing; non-destructive testing; gas permeability testing; durability; quality control. 

1 INTRODUCTION 

The results of this study provide a differentiated understanding 

of how curing quality and external climatic influences interact 

to affect the permeability and thus the long-term performance 

of concrete structures. By isolating the effects of curing and 

environmental conditions, it becomes possible to derive 

targeted recommendations for construction practice and quality 

assurance, especially under conditions where optimal curing 

cannot be ensured. In particular, gas permeability is examined 

as a practical and sensitive indicator for the assessment of 

curing effectiveness and surface concrete quality, as 

highlighted in various previous studies [1–5, 7, 8, 10]. 

Several works have investigated the applicability of gas 

permeability as a diagnostic tool in both laboratory and field 

conditions [3, 4, 10, 11]. Moreover, the significance of 

environmental parameters during curing and their long-term 

implications for concrete performance has been documented [5, 

6, 7, 9]. This study contributes to this ongoing research by 

systematically quantifying these influences under controlled 

yet variable conditions and by using a standardized testing 

approach (Permeator AC+), thereby ensuring comparability 

and reproducibility of the findings. 

The remainder of this paper is structured as follows: 

Section 2 outlines the concrete material and details the 

specimen preparation, climatic conditioning, and measurement 

procedures. Section 3 presents the results of gas permeability 

testing under the different environmental scenarios. In 

Section 4, the results are discussed with regard to the 

interaction between curing quality and environmental 

exposure. Finally, Section 5 summarizes the key findings, 

draws practical implications, and suggests directions for future 

research. 

Objective: This study involved a series of tests aimed at 

systematically quantifying the influence of time, temperature, 

and relative humidity on the permeability of concrete. Three 

different concrete structures were examined under controlled 

climatic conditions. The resulting data make it possible to 

analyze the interactions between thermal effects, moisture 

ingress, and temporal changes in the diffusion behavior of 

concrete, thereby contributing to a deeper understanding of the 

long-term durability of concrete under varying environmental 

conditions. 

Relevance: The study evaluated whether curing quality of 

concrete can still be clearly detected through gas permeability 

measurements, even under fluctuating environmental 

conditions. For this purpose, concrete specimens were exposed 

to different combinations of temperature and humidity, then 

analyzed for their gas permeability. The aim was to determine 

how variable environmental parameters influence the 

effectiveness of the curing process, allowing conclusions to be 

drawn about the durability of the concrete. 

Methodology and Approach: Within the scope of this study, 

concrete specimens were systematically exposed to different 

temperature and relative humidity conditions in a climate 

chamber. The curing performance was assessed by measuring 

gas permeability, a reliable indicator of concrete tightness and 

therefore durability. For quantitative determination of gas 

permeability, the Permeator AC+ device was used, enabling 

standardized and reproducible measurements. The collected 

data provide a foundation for analyzing the relationships 

between specific climatic conditions and the diffusion 

properties of concrete. 

This methodological approach ultimately allows for an 

assessment of how successful concrete curing is under varying 

environmental conditions, and which parameters significantly 

affect gas permeability a key criterion for assessing the 

durability of concrete. 

Gas permeability under varying laboratory conditions 
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As part of a study, nine identical concrete test specimens 

were initially produced to serve as the base material for 

examining curing quality. The specimens were divided into 

three equally sized groups of three units each to apply different 

curing methods. The curing was carried out as (a) optimal 

curing (b) neutral/no special conditions and (c) bad curing. 

This approach enables a comparison of three different levels 

of curing quality derived from the same raw material. 

Subsequently, all nine specimens were exposed to various 

environmental conditions in a climate chamber. Variable 

temperatures and relative humidity levels were simulated to 

evaluate the impact of these parameters on gas permeability. 

Gas permeability was measured using a Permeator AC+, 

ensuring precise and standardized determination of the 

concrete’s diffusion properties. 

This systematic investigation makes it possible to analyze in 

detail the influence of curing quality in conjunction with 

varying environmental conditions on the durability and 

impermeability of concrete. 

2 CONCRETE MATERIAL 

For the present investigation, nine concrete test specimens with 

dimensions of 15 cm × 15 cm × 15 cm each were produced. All 

specimens were made from the same batch of concrete to 

ensure a consistent starting point and to allow for isolated 

examination of the curing process. After demolding, the 

specimens were divided into three groups of three and 

subjected to different curing conditions. These differentiated 

curing procedures enabled a systematic investigation of how 

varying curing quality affects gas permeability and, 

consequently, the durability of the concrete. 

 Concrete Composition 

All specimens were fabricated from a single concrete batch 

prepared in accordance with concrete type B3 as specified in 

ÖNORM B 4710-1. The binder used was a Portland composite 

cement of type CEM II/A-M (S-L) 42.5 N according to DIN 

EN 197-1. This cement contains, in addition to Portland 

clinker, ground granulated blast-furnace slag (S) and limestone 

(L) as main components, with a combined proportion of 6 to 20 

m-%. The strength class 42.5 indicates a standardized strength 

between at least 42.5 MPa and at most 62.5 MPa after 28 days, 

while the “N” denotes normal early strength development. 

Table 1 summarizes the concrete mixture. 

Table 1. Main Parameters of the Investigated Concrete 

Mixture (According to [8]). 

Concrete parameter value unit 

w/b 0.55 - 

Slump-value F52 - 

Grain-size 22 mm 

Air-content 3-5.5 % 

Cement CEM-II/A-M(S-L) - 

 

After demolding, the specimens were divided into three groups 

of three and subsequently subjected to different curing 

treatments. This systematic variation of curing conditions 

enabled precise analysis of how different curing qualities affect 

gas permeability and thus the durability of the concrete. The 

choice of concrete type in accordance with ÖNORM B 4710-1 

and the use of composite cement aimed at a practice-oriented 

assessment of the interaction between curing, environmental 

conditions, and permeability characteristics. 

 Curing of the Specimens 

The specimens were demolded 24 hours after production and 

then divided into three groups of three. Each group was 

subjected to the following differentiated curing procedures: 

 

• Good curing: Immediately after demolding, the specimens 

were completely wrapped in foil to prevent moisture loss. 

For the first seven days, the specimens were stored at a 

temperature of 20 ± 2 °C, a relative humidity of ≥80%, and 

no air flow due to the sealed foil environment. Afterward, 

they remained wrapped for an additional six days under the 

same conditions to ensure continued moist curing and 

optimal hydration. 

• No curing: The second group received no further treatment 

after demolding and was stored under ambient laboratory 

conditions to simulate natural drying. The specimens were 

exposed to a temperature of 20 ± 2 °C, a relative humidity 

of approximately 50 ± 5%, and free air circulation. These 

conditions served as a reference for unprotected, natural 

drying in indoor environments. 

• Poor curing: The third group was deliberately subjected to 

suboptimal curing conditions by being placed on a 

windowsill exposed to natural indoor light and airflow. 

This setup simulated increased drying conditions, resulting 

in accelerated surface moisture loss. The environmental 

conditions during this period were approximately 

25 ± 3 °C, relative humidity of 40 ± 10%, and moderate to 

high air movement due to occasional ventilation and solar 

exposure. These conditions represent inadequate curing 

typical of poorly protected elements during early-age 

concrete exposure. 

 

This methodological differentiation allowed for a systematic 

investigation of how different curing qualities influence gas 

permeability and, consequently, the durability of the concrete. 

 

3 TIME-DEPENDENT TESTING 

The concrete specimens were examined for gas permeability at 

7, 14, 28, and 56 days after demolding. The kT value was 

determined on four defined surfaces of each specimen: the 

troweled top surface, the bottom formwork surface, and two 

lateral formwork surfaces.  

Climate Chamber Testing: The previously defined 

environmental conditions (temperature, relative humidity, and 

air flow) were maintained consistently in the climate chamber 

throughout the entire storage period, in accordance with the 

respective curing method. The specimens were removed from 

the chamber at the predefined testing ages, tested, and then 

returned to their respective environments. The remaining 

specimens continued to be stored under the assigned climatic 

conditions until their next scheduled testing. 
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Figure 1. Change in kT value over time.. 

 

Figure 1 illustrates a clear differentiation between the kT values 

of the three different curing methods. The optimally cured 

specimens consistently show the lowest permeability values, 

while those with poor curing exhibit the highest. Furthermore, 

a marked increase in the kT values is observed across all curing 

types over the observation period from 7 to 56 days. The 

distinctions between the individual curing classes remain, 

which can be attributed to continued surface drying of the 

concrete. 

4 CLIMATE CHAMBER TESTING 

To further explore the effects of environmental conditions, 

additional tests were conducted in a climate chamber to assess 

their influence on the gas permeability of the concrete 

specimens. Each group was stored for 12 hours under varying 

combinations of temperature and relative humidity, as shown 

in Table 1. Subsequently, the kT values were re-measured on 

the same surfaces as described in Chapter 3 (troweled top 

surface, bottom surface, and two sides). 

 

 

Table 2. Climate chamber testing under different humidity and 

temperature conditions. 

  Temperature in °C 

  25 30 35 40 

Relative air 

moisture in % 

60 x x x x 

70 x x x x 

80 x x x x 

90 x x x x 

 

In addition to gas permeability, concrete moisture content was 

also measured at the same locations using a concrete moisture 

meter (Type: Tramex). This parallel measurement enables a 

more detailed analysis of the relationship between moisture 

content and the diffusion characteristics of concrete, and helps 

identify possible interactions between environmental 

conditions and concrete durability. 

 Influence of Temperature on Gas Permeability 

The results show that the overall impact of temperature on 

measured gas permeability is relatively minor. However, the 

effect is most apparent in the optimally cured specimens. In 

general, a slight but noticeable increase in gas permeability 

with rising temperature can be observed (see Figure 2).  

 

Figure 2. Gas permeability at different temperatures, grouped 

by curing method, for the corresponding relative humidity see 

Table 2. 

This suggests that higher temperatures may accelerate 

surface drying, thereby enhancing the diffusion capacity for 

gases. Although this effect is present across all curing qualities, 

its magnitude varies significantly depending on the initial 

curing quality. 

 Influence of Relative Humidity on Gas Permeability 

As shown in Figure 3, relative humidity has only a minimal 

influence on the gas permeability of the concrete specimens 

examined. Across the studied range of relative humidity, the 

measured permeability values show little to no significant 

change. 

 

Figure 3. Gas permeability at varying relative humidity, 

grouped by curing method, for the corresponding temperature 

see Table 2. 

 Influence of Relative Humidity on Concrete Moisture 

Changes in relative humidity have a direct impact on measured 

concrete moisture. The data show a clear correlation: as relative 

humidity increases, so does the moisture content in the 

concrete. However, despite this relationship between 

environmental humidity and concrete moisture, the measured 

gas permeability remains almost unaffected. 
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 Comparison of Gas Permeability and Concrete 

Moisture 

As illustrated in Figure 4, there is a clear inverse correlation 

between concrete moisture and gas permeability. Higher 

surface moisture levels correspond to lower kT values, 

indicating reduced gas permeability—typically a sign of better 

curing quality. Conversely, lower surface moisture is 

associated with higher kT values, suggesting insufficient curing 

and increased gas permeability. 

 

Figure 4. Moisture content of the material (in mass-%) as a 

function of curing conditions and different ambient humidity 

levels. 

 Corrected kT Value 

Referencing Torrent & Bueno et al. [12]: “Effect of surface 

moisture on air-permeability kT and its correction”, it is well-

established that moisture within concrete pores impedes gas 

flow and significantly affects gas permeability readings. While 

laboratory samples are often pre-conditioned through 

controlled drying, on-site measurements are typically 

performed under prevailing natural moisture conditions. 

According to Swiss Standard SIA 262/1-E:2019, air 

permeability testing (Torrent method) on construction sites is 

only permitted if the concrete surface moisture (m), as 

measured by electrical impedance, does not exceed 5.5%. 

In this study, 50 data sets from five independent 

investigations were analyzed, showing a strong relationship 

between gas permeability (kT) and concrete moisture (m). In 

84% of the cases (R = 0.95), this relationship could be 

described using an exponential function of the form: 

 𝑘𝑇 = 𝑘𝑇0 ∙ 𝑒
𝑑∙𝑚 (1) 

with d typically ranging between 1.0 and 2.0 (median: 1.45). 

Based on these results, a practical correction method is 

proposed to mathematically adjust gas permeability 

measurements for moisture effects. For moisture levels 

between 4.5% and 5.5%, the correction is of minor practical 

relevance. However, incorporating such a correction into future 

versions of relevant standards is conceivable. 

 

5 CONCLUSIONS 

 

The presented research investigated the impact of various 

curing methods under otherwise nearly identical conditions. 

The findings demonstrate that both the type and duration of 

curing significantly influence the gas permeability of concrete 

– and, by extension, the long-term durability of the structure. 

Therefore, gas permeability measurements can serve as an 

indirect indicator of curing quality. 

This approach is notable for its straightforward and non-

destructive application, suitable for both laboratory settings and 

on-site evaluations. The analysis of the collected data is 

efficient and uncomplicated. Existing recommendations, such 

as the representation of permeability values per test area 

according to Swiss Standard SIA 262/1:2019 [13], offer a 

useful framework for assessing surface quality. 

However, since gas permeability is affected not only by 

curing conditions but also by concrete composition and other 

factors, it does not allow for a direct measurement of curing 

quality. One potential solution is to define a permeability 

threshold during the planning phase as a minimum standard for 

concrete performance. This threshold could be derived from 

reference measurements on similar concrete elements with the 

same composition. Implementing such a method would require 

extensive research to establish a statistically reliable dataset for 

defining acceptable limits. 

A follow-up research project is currently underway, focusing 

on gas permeability testing of concrete structures with varying 

properties and exposed to different climatic conditions. 

Simultaneously, reference values are being gathered from test 

specimens with identical formulations and optimal curing to 

support the evaluation of site-specific results. While this 

approach shows promise, further research is essential to fully 

validate its effectiveness and reliability. 

 

Summary of key findings: 

• Laboratory investigations have confirmed that gas 

permeability measurement is a reliable and effective 

method for assessing the curing quality of concrete. 

• A clear distinction in the permeability coefficient was 

observed between specimens with “good” curing and those 

with either “poor” or no curing. However, since gas 

permeability is also influenced by the specific concrete 

composition, it is not possible to define universal threshold 

values for curing quality evaluation. 

 

• Inadequate curing leads to increased gas permeability and 

is also associated with a reduction in compressive strength 

compared to optimally cured concrete. 

 

• Tests conducted on actual construction sites demonstrated 

that direct gas permeability measurements on structural 

elements yield valid insights into the quality of curing. 

 

• Environmental conditions, such as wind, temperature, and 

humidity, significantly affect on-site measurements. These 

influences can either improve or impair concrete quality 

and must therefore be taken into account when choosing 

measurement locations, scheduling testing, and 

interpreting curing effectiveness. 

 

• For field assessments, it is recommended – according to 

Swiss standard SIA 262/1:2019 – that at least six 
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individual kT measurements be performed per testing area 

to ensure reliable results. 
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ABSTRACT: The research team, comprising international and local experts, has been studying heritage adobe buildings in 

Uzbekistan for several years. A few field studies were conducted at the heritage sites of Uzbekistan and Karakalpakstan: Toprak-

Kala, Chadra Hauli, Ulli Hovli, and many others. As the first step of the comprehensive research strategy, laser scanning was used 

to generate accurate digital twins of the heritage structures. A non-destructive ambient vibration study of selected structures was 

conducted in the second step. This in-situ testing measures resonant frequencies and mechanical properties at very small 

excitations, which is insufficient for accurate numerical modeling. This study was conducted to address this shortcoming. A few 

adobe structures constructed of pakhsa were selected. Since the pakhsa is made of clay, which is available in the vicinity of the 

construction site, the exact georeferencing of each structure was considered. A few cylindrical samples were bored out from the 

walls of the structures and tested at the University of California, Berkeley. The samples were instrumented with strain gages, and 

they were investigated in compression and split tests. As a result of this study, Young’s modulus, Poisson’s ratio, and the strength 

of each test specimen were measured. These parameters will be used to generate more accurate numerical models of the structures 

and assess the advantages of reinforcement strategies for heritage structures. 

KEY WORDS: Adobe heritage structures; structural health monitoring; pakhsa; numerical modeling; laser scanning. 

1 GENERAL GUIDELINES 

Buildings made of adobe materials are very common 

throughout the world. They represent a very affordable way of 

construction, utilizing local materials. In addition, the adobe 

buildings are environmentally friendly because their 

construction uses natural, renewable materials and energy-

efficient construction methods. As a result, this construction 

has a smaller carbon footprint compared to conventional 

construction. In addition, the adobe buildings naturally retain 

heat inside longer during winter and preserve a cooler room 

environment on hot summer days. 

The adobe construction is very common in Central Asian 

countries and is considered one of the traditional construction 

techniques in these regions. Adobe buildings can last a very 

long time. For example, the adobe structures of Toprak-Kala 

(Uzbekistan) are dated to the 2nd and 3rd centuries CE (Common 

Era). They still have an adequate structural health condition, as 

evaluated in a laser scanning study [1]. A recent discovery of 

previously unknown ancient cities, Tashbulak and Tugunbulak 

(Uzbekistan), revealed that these cities have adobe buildings 

dated to the 6th –11th century CE [2]. Another recent example is 

the four-story-tall Chadra Hauli in Uzbekistan, constructed in 

1871 and still in excellent structural shape, as studied by using 

a laser scanner [3]. More than 200 Adobe buildings of more 

recent construction have been studied in rural areas of 

Tajikistan [4]. All of these structures are good representatives 

of pakhsa construction. 

2 COMPREHENSIVE SHM APPROACH AND 

OBJECTIVES OF THIS PAPER 

 SHM of adobe buildings with performance prediction 

A comprehensive approach is undertaken for the structural 

evaluation of the heritage structures and the prediction of their 

performance under various loading conditions. The structural 

evaluation and assessment are conducted using laser scanning 

technology to capture the current condition of heritage 

monuments in 3D accurately, as shown in Figure 1. 

 

 

Figure 1. 3D point cloud of a heritage building collected by a 

laser scanner [3]. 
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Based on the analysis of the point clouds collected by the laser 

scanner, all anomalies of the monuments are identified and 

studied in detail. Based on the 3D geometry captured by the 

laser scanner, an accurate finite element is created to 

investigate its structural performance under various loading 

conditions, as presented in Figure 2. 

 

Figure 2. A finite element model of a heritage building was 

generated from the point cloud. 

The finite element model requires input of the material 

properties of adobe to generate a realistic model. This 

information is difficult to obtain, as it relates to destructive 

testing, which is not permitted for heritage structures. Even if 

the collection of the sample is permitted, the benefits of the 

sample testing need to be investigated to optimize the sample 

set and the sample collection methods. This paper focuses on 

the development of a sample collecting procedure, a procedure 

for the preparation of collected samples for testing, and a 

procedure for testing to measure major material properties of 

the samples. These procedures are developed by investigating 

two buildings constructed of the same material as the heritage 

building, pakhsa. It is worth noting that there are a few 

standards focused on testing adobe samples, see [9], as a 

representative example. Still, their scope is very limited and 

does not provide any adequate guidance on reliable procedures 

for measuring the Young’s modulus and Poisson’s ratio.  

 Material properties of adobe: A brief review of the 

previous work 

Adobe represents a man-made construction material that 

utilizes the raw earth material usually available close to the 

construction site. Hence, its mechanical characteristics depend 

on many parameters. These parameters can be as follows: the 

quality of earth material available for construction, the curing 

time of the clay before forming it into a wall or a brick, the way 

the clay was placed into the walls, bonding aggregates added to 

the earth material (if any), the quality of the craftsmanship 

work, the curing process after forming the wall, and many 

others. After the completion of construction, the mechanical 

properties can be affected by moisture. Therefore, there is 

substantial variability in the mechanical properties of adobe 

materials used in or taken from structures worldwide [5]. The 

mechanical properties are estimated by testing samples taken 

from adobe walls or created during construction (which is very 

rare). The samples can be collected in the form of cubes, 

prisms, and cylinders, and the test results also depend on the 

shape of the test specimen [6].  For example, based on a 

comparative analysis of test results for cylinders [7] and [8], the 

Young's modulus of the adobe material varies by a factor of ten.  

3 TESTING ADOBE CYLINDERS 

 General description of samples 

The samples were collected from existing buildings at specific 

locations away from structurally critical areas. Two buildings 

were included in this study. One building was located in the 

Sabzovot region of Tashkent, Uzbekistan, and was estimated to 

be at least 60 years old.  The second set of samples was 

collected from Sukok of the Tashkent Region. In both cases, 

the samples were bored out from the walls as presented in 

Figure 3. 

 

 

Figure 3. Sample collection. 

The hole in the wall after taking the bored cylinder out is 

presented in Figure 4. 

 

 

Figure 4. Adobe wall after specimen collection 

Since the specimens could break inside the bore during the 

boring process, their length varied from specimen to specimen, 

as shown in Figure 5. For consistency, only long specimens 

were used in the study, and the short ones were discarded. The 

long specimens were cut to a shorter length to maintain a 

similar length-to-diameter ratio.  
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Figure 5. Collected specimens before cutting them to the same 

length and selecting the best ones 

The length and the diameter of each specimen are 

summarized in Table 1.  

Table 1. Overall dimensions of adobe cylinders. 

No Length, mm Diameter, mm Geo-location 

1 102 33 Sabzabot 

2 110 52 Sabzabot 

3 96 52 Sabzabot 

4 105 52 Sabzabot 

5 103 42 Sukok 

6 104 44 Sukok 

7 103 44 Sukok 

8 103 43 Sukok 

 

It is worth noting that the quality of the adobe material from 

these two geo-locations was noticeably different. The samples 

from Sabzovot were of a lighter color and were dense and 

uniform, whereas the samples from Sukok were of a darker 

color and had a few large voids, as shown in Figure 6. This 

difference played a significant role in the overall strength of the 

collected test specimens. 

 

 

Figure 6. Adobe wall after specimen collection 

 

 Density results 

The weight of each specimen was measured, and based on the 

calculated volume, the density was estimated as summarized in 

Table 2.  

Table 2. Summary of density estimates. 

No Weight, g Density, 

kg/m^3 

Average 

1 148.4 1701.0 

1541.0 
2 343.4 1470.0 

3 303.6 1489.1 

4 335.3 1503.7 

5 218.9 1534.0 

1468.5 
6 219.3 1386.8 

7 217.8 1390.7 

8 233.7 1562.4 

 

As presented in the table above, the average density of 

specimens from Sabzovot was slightly greater than that of the 

specimens from Sukok. 

 Compression test: specimen preparation 

As mentioned earlier, the specimens varied in length. All of 

them were cut to maintain the same length-to-diameter ratio. 

Since the specimens were quite brittle, they were cut in a 

special device, as shown in Figure 7. 

 

 

Figure 7. Adobe specimen in a cutting device 

To distribute the forces at the ends of the samples, the adobe 

specimens were sulfur-capped for the compression test as 

presented in Figure 8. 

 

 

Figure 8. Adobe specimens with sulfur caps 

Finally, the adobe specimens were instrumented by bi-axial 

strain gages as presented in Figure 9. The legs of the gage were 
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aligned with the longitudinal direction and the circumferential 

direction, respectively. A 40-mm long strain gage was used in 

this study. 

 

 

Figure 9. Adobe specimen with bi-axial strain gage. 

 Compression test: strength 

To measure the Young's modulus, Poisson's ratio, and strength 

of the specimens, they were tested using a compression test 

machine, as shown in Figure 10. 

 

 

Figure 10. Adobe specimen in the compression test machine. 

The compression load was applied at a constant rate of 25 

N/s.  A plot for Specimen No. 3 from the Sabzobot’s geo-

location showing the change of stress over time is presented in 

Figure 11. 

 

 

Figure 11. Force vs. time plot for Specimen No. 3. 

As shown in the plot above, the stress steadily increases to 

the peak value, and there is a sharp decline in the compression 

stress capacity right after the peak value. A similar result was 

obtained for Specimen No. 4, as depicted in Figure 12. The 

peak load values were very close to each other, as summarized 

in Table 3. The table also shows the air humidity for each 

specimen on the day of testing. 

 

Figure 12. Stress vs. time plot for Specimen No. 4. 

Table 3. Summary of compression strength (Sabzovot). 

No Peak load, N Peak stress, MPa Humidity, % 

3 5911 2.78 30.0 

4 6605 3.11 32.0 

 

The results for the Sukok geo-location revealed different 

results. The strength capacity of the two tested specimens 

varied significantly, as presented in Figure 13 and Figure 14. 

The results are summarized in Table 4.  

 

Figure 13. Stress vs. time plot for Specimen No. 6. 

 

Figure 14. Stress vs. time plot for Specimen No. 7. 
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Table 4. Summary of compression strength (Sukok). 

No Peak load, N Peak stress, MPa Humidity, % 

6 2456 1.16 32.0 

7 1312 0.62 32.0 

 

The larger variability in the test results was expected because 

the Sabzobot samples were more homogeneous than the Sukok 

samples, which had a few relatively large voids.  

  Compression test: Young modulus 

Several approaches to measuring Young’s modulus in 

compression for cylinder-shaped specimens have been 

previously proposed and utilized [6-8]. One of the primary 

objectives of this paper was to utilize existing methods and 

select the most suitable one for achieving consistency in data 

reduction; therefore, the following all three approaches were 

employed and evaluated. First, a slope of a secant line between 

the start and end of the linear portion of the stress-strain curve 

was used to estimate Young’s modulus [6]. In this paper, the 

modulus based on this approach is denoted by ELR. Second, the 

Young’s modulus calculation was based on the slope of a 

secant line between 5 and 50% of the peak stress [8]. E05-50 

denotes the modulus based on this approach. Third, a slope of 

the secant between 33.3 and 66.6% of the peak stress was used 

for estimating Young’s modulus [7]. E33-66 denotes the modulus 

based on this approach. All three procedures were employed in 

this paper, and their results were compared to one another.  

As mentioned earlier, a bis-axial strain gage was installed on 

each test sample. The longitudinal leg of the strain gauge was 

used to estimate Young’s modulus. A plot showing stress (σ) 

versus longitudinal stress (ԑ) for Specimen No. 3 is presented 

in Figure 15. The plot also displays the result of the linear 

regression, which was generated during the testing period, 

starting from loading and ending when the strain gage came out 

of the test specimen due to the gage’s failure. It is worth noting 

that the latter point was very close to that when the peak stress 

occurs. The Young’s modulus obtained from the linear 

regression (ELR) is also presented in the same plot. It is worth 

noting that the R-squared value of the linear regression is close 

to unity, indicating a good fit. It can also be observed visually 

that the stress-strain curve can be closely approximated with a 

straight line. To reduce the noise of the recorded data, which 

can be visually observed in Figure 14 and Figure 14, a running 

average over seven points was used to filter out the noise for 

the Young’s modulus calculations. 

 

Figure 15. Stress vs. longitudinal strain plot for Specimen No. 

3: Young’s modulus from linear regression. 

The results of the two other above-mentioned approaches for 

estimating Young’s modulus are presented in Figure 16. 

 

Figure 16. Stress vs. longitudinal strain plot for Specimen No. 

3: two estimates of Young’s modulus. 

Similar results for Specimen No. 4 are presented in Figure 17 

and Figure 18. As can be observed from the plots, the moment 

when the strain gage stopped working is very close to the 

moment when the maximum stress occurred. 

 

Figure 17. Stress vs. longitudinal strain plot for Specimen No. 

4: Young’s modulus from linear regression. 

 

Figure 18. Stress vs. longitudinal strain plot for Specimen No. 

4: two estimates of Young’s modulus. 

The results for the set collected from the Sabzobot geo-

location show relatively large variation in the estimation of the 

Young’s modulus, as summarized in Table 5. The variability of 

E05-50 is significantly greater than that of the other two modules. 

It depends on the overall trend of the stress-strain curve: E05-50 

is less than E33-66 when the curve opens upwards (concave up), 

and E05-50 is greater than E33-66 when it opens downwards 
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(concave down). It is worth noting that the results for E33-66 in 

both cases are closer to those for ELR, although slightly lower. 

Table 5. Summary of estimations of Young’s modulus 

(Sabzovot). 

No ELR, MPa (R2) E05-50, MPa E33-66, MPa 

3 1320.8 (0.97) 1040.8 1246.2 

4 1460.9 (0.98) 1753.3 1354.8 

 

The same calculation approaches were used for the sample 

set from the Sukok geo-location, and the results are 

summarized in Table 6. The stress-strain curves for Specimen 

6, along with the respective values of Young’s modulus, are 

presented in Figure 19 and Figure 20. It is worth noting that 

Specimen 7 data was very inconsistent with all other test 

results, and as such, it was considered an outlier. 

Table 6. Summary of estimations of Young’s modulus 

(Sukok). 

No ELR, MPa (R2) E05-50, MPa E33-66, MPa 

6 1258.5 (0.99) 1198.9 1361.6 

7 671.9 (0.95) 547.3 1003.8 

 

 

Figure 19. Stress vs. longitudinal strain plot for Specimen No. 

6: Young’s modulus from linear regression. 

 

Figure 20. Stress vs. longitudinal strain plot for Specimen No. 

6: two estimates of Young’s modulus. 

 Compression test: Poisson's ratio 

While the results for Young’s modulus were reported for many 

locations worldwide [5], very limited information is available 

for the estimates of Poisson’s ratio. This is especially true for 

the region of Central Asia. Therefore, one of the primary 

objectives of this paper was to address this issue and to have a 

complete set of mechanical properties of some adobe buildings. 

For this purpose, a strain gage was installed to read the 

circumferential strain (ԏ) of the adobe cylinders. 

Poisson’s ratio (ν) was obtained by using the following 

expression:  

 𝜈 = −ԏ/ԑ (1) 

 The results for Specimen No. 3 are presented in Figure 21. In 

this plot, only a portion of the data was used to ensure that both 

longitudinal and circumferential strain gages yield reasonable 

data. The portion of the plot in red corresponds to the data when 

the stress was between 33.3% and 66.6% of the maximum 

stress. The plot shows that the general trend of the change of 

Poisson's ratio with stress is very close to linear. In the red 

portion of the data, the values vary from 0.12 to 0.16 with an 

average of 0.14. 

 

Figure 21. Stress vs. Poisson's ratio (ν) plot for Specimen No. 

3: Sabzovot. 

 The respective results for Specimen No. 4 are shown in Figure 

22. The plot shows that the general trend of the change of 

Poisson's ratio with stress is nonlinear. In the red portion of the 

data, the values vary from 0.12 to 0.18 with an average of 0.16. 

 

Figure 22. Stress vs. Poisson's ratio (ν) plot for Specimen No. 

4: Sabzovot. 

The test results for the specimens collected from Sukok geo-

location are presented in Figure 23 and Figure 24. Specimen 

No. 6 (see Figure 23) yields stable results in the red portion of 

the data, where the value changes from 0.22 to 0.24 with an 

average of 0.23. 

Specimen No. 7 was considered an outlier, and the results 

shown in Figure 24 serve as further evidence of this conclusion.  
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Figure 23. Stress vs. Poisson's ratio (ν) plot for Specimen No. 

6: Sukok. 

 

Figure 24. Stress vs. Poisson's ratio (ν) plot for Specimen No. 

7: Sukok. 

4 DISCUSSION AND CONCLUSIONS 

The results discussed in the paper show that the testing of adobe 

specimens can be challenging. It greatly depends on the 

procedures followed during specimen collection, handling 

from the collection site to the test site, and preparation for the 

test.  In addition, it depends on the overall quality of the adobe 

wall from which the specimens are collected. The quality of the 

adobe wall is controlled by following parameters: the quality of 

earth material available at the construction site, the curing time 

of the clay before forming it into a wall or a brick, the way the 

clay was placed into the walls, bonding aggregates added to the 

earth material (if any), the quality of the craftsmanship work, 

the curing process after forming the wall, and many others. 

Several cylinder-shaped samples were collected from two 

geo-locations in Uzbekistan. The density of all specimens was 

determined before the tests. Since some of the collected 

samples did not have a uniform and homogeneous structure, a 

total of eight samples (out of eleven total) were used in the 

density estimation. The compression tests were performed on 

four of them to estimate the following mechanical parameters: 

compression strength, Young’s modulus, and Poisson's ratio. 

Based on previous studies, three approaches for calculating 

Young’s modulus were employed. The correlation between the 

previously published results (only corresponding to cylinder-

shaped specimens from the literature) and the results obtained 

in this study was as follows.  

The comparison of the results of this paper to the previously 

published results on compressive strength of cylindrical 

specimens is presented in Figure 25. As shown in the plot, the 

samples from Sabzobot geo-location were the greatest of all. 

 

Figure 25. Compression strength results for Sabzovot and 

Sukok geo-locations compared to previously published [6], 

[7], and [8]. 

 When comparing the Sabzovot and Sukok sets to [6], the 

compression strength of the adobe samples was slightly greater: 

the lowest value (excluding the outlier) is 1.16 MPa, versus 

1.02 MPa [6]. Young’s modulus was significantly lower: 1,461 

MPa is the largest value obtained in this work, excluding the 

outlier, compared to 7,609 MPa reported earlier [6]. When 

compared to [7], the compression strength of adobe samples 

was slightly lower: the lowest value (excluding the outlier) is 

1.16 MPa versus 1.33 MPa [7]. Young’s modulus obtained in 

this study was significantly greater: 1,461 MPa is the largest 

value (excluding the outlier) versus 802 MPa reported earlier 

[7]. When compared to [8], the compression strength of adobe 

samples was slightly lower: the lowest value (excluding the 

outlier) is 1.16 MPa versus 1.71 MPa [7]. Young’s modulus 

obtained in this study was significantly greater: 1,461 MPa was 

the largest value (excluding the outlier) versus 92 MPa 

published earlier [8].  

The study showed that E05-50 depends on the direction of the 

overall curvature of the stress-strain curve and, as such, can 

have much larger variation. At the same time, ELR and E33-66 

yielded more similar results.   

No literature references were found with respect to the 

experimental estimation of Poisson's ratio for adobe cylinders. 

The results of this study showed that Poisson's ratio is most 

likely stress-dependent, and for stress between 33.3% and 

66.6% of the maximum stress, it can vary from about 0.12 to 

0.24.  

The results of this study will be used in finite element 

modelling of Chadra Hauly (Khorezm Region, Uzbekistan). 

The finite element mesh of the monument was generated by a 

laser scanner [3]; only the mechanical parameters of adobe 

were missing to generate a realistic model. This study fulfilled 

this need. The team is working on collecting more samples 

from other geo-locations to develop an extensive database of 

pakhsa properties in Central Asia. 

It is worth noting that only a few test results are discussed 

here as representative examples. The research group is working 

on collecting more samples from other adobe buildings, 

including heritage buildings.     
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ABSTRACT: The bridge system composed of Los Grillos, Puente Nuevo, and Chorro Blanco, located along the roadway 

connecting Sogamoso and Aguazul, near the municipality of Pajarito (Colombia), is founded on an active large-scale landslide in 

shale bedrock. This mass movement exhibits variable displacement rates depending on rainfall frequency over time. On August 

20, 2023, the Los Grillos Bridge collapsed as a result of cumulative ground displacements that compromised its foundations and 

piers. Between July and December 2024, an integrated monitoring system was implemented, combining observations from an 

Automated Total Station (ATS), distance measurements using LiDAR, and tilt data obtained from inclinometers. The primary 

objective of this system is to establish correlations and track both ground and structural displacements, thereby supporting local 

stakeholders and decision-makers in the operational management of the remaining bridges still in service for civilian traffic. This 

paper presents the principal findings and illustrates how the integration of data from multiple sensor technologies enhanced the 

understanding of differential behavior between the ground and the structures. The analysis includes the collapsed bridge as well 

as the two remaining bridges in the affected area, providing timely and valuable information to support safe roadway operations. 

KEY WORDS: Structural monitoring, Los Grillos Bridge, wireless sensors, landslide monitoring, Lidar ATS infrastructure 

monitoring, risk management. 

1 INTRODUCTION AND GENERAL OVERVIEW 

In Colombia, geological conditions present a wide range of 

engineering challenges, primarily due to the geodynamic 

behavior of the territory, which is heavily influenced by the 

presence of the Andes Mountain range across much of the 

country. These complex environments increase the risks that 

directly or indirectly affect social activities in these regions. 

Such risks may stem from seismic hazards, mass movements, 

among other factors, and have a direct impact on the design and 

construction of resilient and sustainable infrastructure. 

In general terms and considering the current state of 

development in the country, one of the economic sectors most 

affected by geological conditions is freight transportation. 

Road corridors such as the one stretching from Sogamoso, 

Boyacá to Aguazul, Casanare—the focus of this study—are 

characterized by steep topography and high-mountain road 

networks, facing ongoing challenges in terms of mobility and 

connectivity. 

Roadways with steep slopes, sharp curves, and unstable soils 

increase vulnerability to landslides, subsidence, and other 

impacts triggered by climatic phenomena such as heavy rainfall 

and thermal variability, including segments that traverse 

páramo ecosystems. These environmental factors significantly 

affect road safety, increase logistical costs, and prolong the 

time required for the transport of goods and personnel. 

In the area located at station PR81 of the Sogamoso–Aguazul 

corridor, also known as the Cusiana Transversal, mass 

movement processes and geomorphological activity have been 

observed for more than two years and continue to occur to this 

day. These processes affect both the upper and lower zones of 

the surrounding slopes. 

 
 

 

Figure 1. General location and panoramic view of the study 

area.  
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Given these geological conditions, a 666-meter-long viaduct 

was constructed, consisting of three consecutive bridges named 

Los Grillos (with a span of 261 meters), Nuevo (105 meters), 

and Chorro Blanco (300 meters from abutment to abutment). 

Due to persistent landslides in the area, these structures are 

currently partially or completely out of service because of 

multiple evident structural pathologies. In the case of the 

Nuevo and Chorro Blanco bridges, significant deterioration has 

been observed, while the Los Grillos Bridge experienced a 

collapse of the structure. 

Based on these geotechnical and structural conditions, and 

with the primary goal of providing continuous monitoring 

through an early warning system, two complementary 

monitoring systems were implemented. 

The first system involved tracking three-dimensional 

displacements using automated readings of topographic prisms 

and virtual points with a GMS robotic LiDAR station (Geotech 

Monitoring Station). 

The second system focused on structural monitoring of 

relative displacements and rotations through the use of triaxial 

inclinometers and wireless laser distance meters. 

 

Figure 2. General overview of monitoring systems in sector 

PR81 

 

In the face of these challenges, engineering plays a critical 

role in mitigating risks associated with road infrastructure and 

enhancing regional connectivity. 

The application of advanced techniques for slope 

stabilization, pavement reinforcement, and geotechnical 

monitoring through automated methods contributes 

significantly to improving the safety and operational reliability 

of road corridors. 

2 GEOLOGY AND GEOTECHNICAL INSTABILITY OF 

THE AREA 

The study area is located between the municipalities of 

Sogamoso and Pajarito, in the department of Boyacá, 

Colombia. Hydrologically, the region where the monitoring 

points are situated is primarily influenced by the Cusiana River 

and the Chorro Blanco stream. 

According to Sheet No. 192 of the regional geological map 

corresponding to the surroundings of Lake Tota, Department of 

Boyacá, Colombia, at a 1:100.000 scale [1], the sector known 

as PR81 lies within a geological unit referred to as the Macanal 

Shale Formation (Kilm), as shown in Figure 3.

This unit is predominantly composed of black shales 

interbedded with thin sandstone layers, which is indicative of a 

deep marine sedimentary environment typical of the Lower 

Cretaceous. 

This paleoenvironmental interpretation is supported by field 

evidence, particularly the abundant presence of ammonite 

fossils, which serve as index fossils for this geological era. 

The shales of this formation are fine-grained, rich in organic 

matter, and exhibit well-developed foliation, making them 

particularly susceptible to weathering processes and 

deformation under load or saturation conditions. These 

geomechanical characteristics significantly affect slope 

stability, subsoil behavior beneath structures, and the design of 

foundations or roadways that traverse such materials—factors 

that may account for the various active geotechnical processes 

currently observed in the area. 

 

Figure 3. Regional geological map of the study area PR81 [1] 

 

For years, the area has exhibited significant and progressive 

mass movement processes, particularly near the Chorro Blanco 

stream and along the slopes leading to the Cusiana River 

channel. This suggests that torrential flows from these 

tributaries may act as a triggering factor for the landslides and 

fissures observed on the slopes. 

 

Figure 4. Evidence of geomorphological processes in sector 

PR81  
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3 STRUCTURAL COLLAPSE EVENT OF 2023 AT LOS 

GRILLOS BRIDGE 

Due to the previously mentioned geodynamic conditions, 

among the three structures that comprise the viaduct, the Los 

Grillos Bridge exhibited the most significant deterioration. This 

was primarily attributed to its structural typology in 

conjunction with the landslides occurring in the area. 

Since late 2022, multiple structural pathologies had been 

identified, raising concerns about the bridge's stability [2], with 

clear evidence of progressive structural degradation. 

In 2023, following a series of seismic events with magnitudes 

ranging from 0.70 to 6.10, a collapse occurred on August 20 in 

a central section of the Los Grillos Bridge deck, located at the 

midpoint of the main span. This failure may have been 

influenced by a combination of factors, including material 

fatigue and cumulative effects of regional seismic activity. 

The occurrence of these events underscores the critical 

importance of implementing continuous monitoring systems at 

the earliest signs of deterioration, integrating both geotechnical 

and structural data to enable comprehensive assessments and 

timely interventions. 

 

Figure 5. Evidence of mass wasting processes near the 

foundations of the PR81 corridor bridges 

 

 

Figure 6. Los Grillos bridge structural collapse. 

4 IMPLEMENTED MONITORING SOLUTIONS 

Considering the geotechnical challenges of the area, specific 

contingency measures were established to mitigate the risks 

faced by both the local population and construction personnel. 

Among these measures, a dual early warning system was 

implemented to monitor the displacement behavior of both the 

bridge superstructures and the surrounding slopes. 

This dual system consisted of an automated total station 

based on LiDAR GMS technology, which conducted three-

dimensional tracking of thirty (30) topographic prisms 

strategically installed in various sectors within the area of 

analysis. 

 

Figure 7. General location of measurement targets with GMS 

 

Additionally, thirty-six (36) wireless sensors were installed. 

Of these, twenty-four (24) are triaxial clinometers used to 

monitor tilting at strategic locations on the viaduct bridges. The 

remaining twelve (12) sensors are laser distance meters 

equipped with triaxial clinometric sensors, designed to monitor 

relative displacements and inclinations. 

These devices were mounted on poles located near exposed 

surfaces of the bridges, where topographic prisms were also 

installed to provide redundant data, monitored by the robotic 

GMS station. 

 

Figure 8. General location of wireless sensors 
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 Description of robotic lidar gms technology 

This type of system consists of a state-of-the-art robotic total 

station capable of performing high-precision measurements of 

three-dimensional displacements on selected targets. 

These targets may include both physical reference points, 

such as topographic prisms installed throughout the monitored 

area, and virtual points defined by pixel positions on images of 

exposed slopes or structural surfaces, using advanced image 

processing techniques. 

This methodology enables continuous acquisition, 

processing, and analysis of displacement data within the area 

of interest. The resulting information facilitates the 

identification of incipient or progressive movements, as well as 

the establishment of behavioral trends in the short, medium, 

and long term. 

 
 

 

Figure 9. GMS Technology Implemented in Sector PR81 

 

 Description of clinometric sensors and laser distance 

meters 

This type of system enables the monitoring of displacements 

(via laser distance meters) and inclinations (via clinometers) at 

specific points on the structures.  

Regarding the measurement of relative displacements, the 

laser distance meters project a light beam that allows for the 

measurement of the distance between the sensor location and a 

target surface, with high precision and under adverse 

environmental conditions. 

On the other hand, the triaxial clinometers allow for the 

tracking of inclination angles, primarily along the two 

orthogonal axes, X and Y.  

From this clinometric data, the displacement associated with 

the observed inclination can be calculated using trigonometric 

relationships. 

 
 

 

Figure 10. Sensor Technology Implemented in Sector PR81 

 

5 RESULTS OBTAINED DURING THE GMS AND 

CLINOMETER MONITORING PERIOD 

After nearly seven months of monitoring, primarily transient 

trends were observed in the study area PR81, both in the 

displacements recorded by the GMS equipment and in the 

inclinations measured by the triaxial clinometers.  
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It is important to note that, since the monitoring points 

reported movement data in their local axes (X'–Y'), the 

recorded values were transformed into local North–East 

coordinates. This transformation was performed through an 

orthogonal axis rotation (see Figure 11), as expressed in 

Equation 1. 

 

Figure 11. Diagram of orthogonal axis rotation 

 

 [
𝑋 (𝐸𝑆𝑇𝐸)

𝑌 (𝑁𝑂𝑅𝑇𝐸)
] = [

𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

] [
𝑥′
𝑦′

] (1) 

 

For each clinometer and laser distance meter, it was 

necessary to establish reference lines parallel to the bridge 

structures, as the instruments were installed following this 

alignment. Once these lines were defined, the angle between 

the local measurement axes and the global reference axes (X–

Y), aligned with true north, was determined (Figure 12). By 

applying Equation 1, it was possible to transform the 

displacements recorded in local coordinates into the global 

coordinate system. 

It is noted that, in the case of data obtained from the GMS 

(Geodetic Monitoring System), this transformation is 

performed automatically by the equipment, based on the 

predefined global axes and the relative orientation of each 

prism with respect to the measuring station, as determined by 

the laser projection 

 

Figure 12. Axis diagram for the sensor DL02 

 

Once the measurement results were transformed into global 

axes, it was possible to perform a comparative evaluation of the 

trends identified through both monitoring approaches (sensors 

and GMS).  

As a summary, the data obtained for the following 

monitoring points are presented: 

• Zone 1: Pile of Chorro Blanco Bridge (Prism PR11 – 

Sensor DL08). 

• Zone 2: Pile of Nuevo Bridge (Prism PR03 – Sensor 

DL07). 

• Zone 3: Sogamoso Abutment of Los Grillos Bridge (Prism 

PR12 – Sensor DL09). 

• Zone 4: Sogamoso Abutment of Los Grillos Bridge (Prism 

PR14 – Sensor DL10). 

For Zones 1 and 2, based on the data obtained from the dual 

monitoring system (GMS and sensor network), an initially 

positive incremental trend is observed along the X-axis (East), 

which subsequently tends to stabilize. 

Similarly, although with an opposite pattern, the Y-axis 

(North) shows an initially negative incremental trend, also 

followed by a stabilization phase. 

The global displacements recorded along both axes remain 

below 20 cm in magnitude, which aligns with field 

observations and with the presence of geomorphological 

indicators of slow-moving processes. 

These behavioral patterns suggest a process of progressive 

deformation, followed by a decrease in displacement rates (as 

evidenced toward the end of the monitoring period), possibly 

associated with the seasonal transition from wet (winter) to dry 

(summer) periods. 

 
 

 

Figure 13. Location and historical record of horizontal 

displacements for Sector 1  



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-153 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1013 

 

 

 

Figure 14. Location and historical record of horizontal 

displacements for Sector 2 

 

On the other hand, for Zones 3 and 4, based on the 

information obtained during the monitoring period, mainly 

incremental displacement trends were identified, with more 

pronounced movement along the X-axis (East). 

In contrast, the behavior along the Y-axis (North) tends to be 

more stable, exhibiting only minor variations. 

 
 

 

Figure 15. Location and historical record of horizontal 

displacements for Sector 3 

 

The recorded displacements remained below 20 cm along the 

X-axis and below 25 cm along the Y-axis, values that are 

consistent with field observations and the documented surface 

morphological evolution in the area. 

This behavior suggests a more active movement dynamic in 

the X-direction (East), possibly associated with the slope 

geometry, the orientation of the fracturing system, or the 

direction of the principal stress in the ground. 
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Figure 16. Location and historical record of horizontal 

displacements for Sector 4 

 

 Principal displacement directions identified 

Regarding the displacement directions derived from the 

wireless sensors, it was observed that, as expected, movements 

recorded by devices installed directly on the ground exhibit 

greater magnitudes compared to those mounted on concrete 

structures.  

This difference is primarily attributed to the foundation 

conditions of the structures, which tend to dissipate part of the 

deformation, as well as to the geological characteristics of the 

adjacent slopes, which favor greater displacement in the 

superficial soil layers.  

Similarly, displacement behavior is also evident in the 

topographic prisms installed both on structural elements and on 

natural slopes. It is worth noting that, due to the specific 

conditions of the project, a higher density of prisms was 

installed in comparison to the wireless sensors deployed on the 

slopes.  

This wider spatial distribution of topographic targets 

provides broader coverage of the monitored area, enabling a 

more detailed characterization of displacement patterns, 

particularly in critical zones of the terrain.  

 

Figure 17. Principal Displacement Directions Identified Based 

on Measurements from Wireless Sensors 

 

When comparing the results obtained from both monitoring 

systems, notable similarities are observed in the behavior of the 

monitored elements previously presented in this document.  

These similarities suggest a degree of informational 

redundancy between the two systems.  

The predominant displacement trends appear to be strongly 

influenced by the geomorphological characteristics of the area, 

which are generally aligned with the direction of the ongoing 

mass movement process occurring near the bridge foundation 

structures.  

 

Figure 18. Principal Displacement Directions Identified Based 

on Measurements from topographic prism  
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The largest displacement magnitudes are concentrated 

around the abutment areas of the Los Grillos Bridge. It is 

important to highlight that, despite these observed similarities, 

the two monitoring systems are based on fundamentally 

different methodologies, each with its own limitations and 

advantages.  

The convergence of results enhances the reliability of the data 

and supports the use of a hybrid monitoring strategy to improve 

interpretation, redundancy, and validation of both structural 

and geotechnical behavior over time. 

6 DISCUSSION OF MAIN RESULTS 

Based on the results obtained, an approximate 

correspondence can be identified between the displacement 

trends recorded by the wireless sensors (inclinometers) and 

those measured by the topographic prisms. 

Likewise, a satisfactory agreement is observed in terms of the 

displacement magnitudes captured by both technologies. 

It is important to highlight that the differences in magnitude 

can be attributed to the specific accuracy characteristics of each 

system. In this regard, the inclinometer-based methodology, 

being directly installed on the ground or the structural body, 

offers greater sensitivity and precision for detecting angular 

variations and relative displacements. It has been shown that, 

based on properly supervised studies conducted on buildings 

over 50 meters high, high-precision inclinometers provide 

optimal performance in the continuous monitoring of sub-

millimetric displacements [3]. 

In contrast, monitoring through topographic prisms is subject 

to factors such as the distance between the GMS station and the 

target prisms, as well as atmospheric and visibility conditions, 

which may reduce its accuracy in detecting small-magnitude 

displacements. The precision of data obtained through geodetic 

equipment is mainly influenced by the atmospheric conditions 

along the measurement path. For example, in the case of a slope 

monitored in Austria, a variation of 1°C or 3.6 mbar resulted in 

measurement deviations of up to 10 mm over a 1 km 

measurement range [4]. Therefore, it becomes essential that the 

data acquisition system incorporates algorithms capable of 

applying atmospheric corrections in its operation, as is the case 

with the equipment used for monitoring sector PR81. 

7 CONCLUSIONS 

The results obtained through the implementation of a dual 

monitoring system—comprising wireless sensors (triaxial 

inclinometers and laser distance meters) and topographic 

prisms connected to the GMS (Geodetic Monitoring System)—

provide a reliable and complementary framework for 

evaluating structural and geotechnical behavior in critical 

sections of the road corridor. 

The identified displacement directions and magnitudes show 

an acceptable level of agreement between both monitoring 

methodologies, particularly in the analyzed sectors, which 

highlight the robustness and validity of the combined approach. 

It was observed that the sensors installed directly on the 

ground recorded greater displacement magnitudes, which are 

consistent with local geotechnical conditions, slope 

geomorphology, and the foundation characteristics of the 

structures. 

Additionally, although topographic prisms are more 

susceptible to external factors such as visibility and 

atmospheric conditions, they offer broader spatial coverage due 

to their higher installation density. 

The convergence in displacement trends detected by both 

systems reinforces the reliability of monitoring data and 

enables a more comprehensive interpretation of the structural 

behavior in response to ongoing mass movement processes, 

especially in the vicinity of the Los Grillos Bridge. 

This confirms the importance of integrating advanced sensor 

technologies with traditional geodetic monitoring methods to 

strengthen decision-making processes related to the design, 

maintenance, and risk management of critical infrastructure. 
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ABSTRACT: There are several ways to incorporate SHM data into the structural assessment of existing bridges. Beyond 

conventional model calibration, SHM can improve environmental effects and load estimates, thereby reducing the model 

uncertainty. However, the measurement data itself is also affected by epistemic uncertainty. This paper investigates the influence 

of selected data quality characteristics on the recalculation of prestressed concrete bridges, focusing on the example of coupling 

joints. A research bridge serves as a case study, equipped with temperature sensors recording data since February 2024 until today. 

A numerical FE model of the bridge provides a solid basis for simulations. A sensitivity analysis was carried out to identify the 

key parameters influencing the results. This includes the effect of the temperature gradient on the fatigue stress of the coupling 

joint. The study demonstrates the impact of representativeness and coverage of measurements in a spatial and temporal context 

on the estimated remaining service life of the structure. It highlights the importance of the correct selection of the sensor number 

and placement, and of the data collection period length. The results confirm the suitability of the proposed methodology for the 

systematic evaluation of monitoring concepts. However, further research is needed to derive specific recommendations for the 

design of monitoring systems for coupling joints. This work contributes to optimized SHM-based bridge recalculation by 

providing a basis for assessing the quality of monitoring concepts and its influence on structural analysis. 

KEY WORDS: Sensitivity analysis; Measurement uncertainty; Fatigue; Coupling joints; Temperature monitoring. 

1 INTRODUCTION 

A large number of bridges on Germany's federal highways were 

built in the 1960s and 1970s (see Figure 1) and have been 

exposed for more than 55 years to heavy traffic and other loads, 

for which they were not initially designed. About 47 % of these 

bridges are prestressed concrete bridges [1]. In addition to 

durability and overloading issues, fatigue is an important 

concern for many of these structures [2]. 

 

Figure 1. Bridge age along German federal highways, [1]. 

Long-span prestressed concrete bridges are typically 

constructed by concreting in sections (see Figure 2). Each 

section is prestressed as a partial structure to avoid the 

accumulation of frictional losses over the length of the 

superstructure. Each new section is prestressed against the 

previous one. The tendons are connected at the coupling joints 

by coupler anchors. One half of the fixed coupler anchor is 

embedded in the concrete of the previous section and serves as 

the end anchorage during the construction of this section. The 

other half of the anchor is located in the new section (see 

Figure 2). The tendons are then connected by tying the tendons 

of the next section to the coupler anchor already embedded in 

the concrete [3]. 

 

Figure 2. Section-by-section construction of a prestressed 

concrete bridge and a historical construction detail of a 

coupling joint, [4]. 

The first case of fatigue failure to coupler joints – and the only 

known fatigue failure to date – occurred in 1976 in the bridge 

“Hochstraße Prinzenallee” in Düsseldorf, Germany. This 

incident led to extensive theoretical and experimental research 
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[5; 6] as well as to the complementation of the technical rules 

for coupling joints in Germany. These regulations include the 

calculation of fatigue resistance, the more precise assessment 

of internal forces, and new design regulations. As a result of 

these regulations, it can generally be assumed that the coupling 

joints constructed from 1979 have no fatigue deficits [7]. The 

following causes of damage in coupling joints (vertical cracks 

and fatigue of tendons) were identified [3; 8; 9]: 

• Concrete tensile strength in the joint is negligible;  

• Neglect of temperature gradient over the height in the 

design stage; 

• Position close to the points of contraflexure, where the 

temperature effects, and the scattering of the dead loads 

are important factors to consider; 

• Non-linear strain distribution due to sectional 

prestressing; 

• Internal stress states due to hydration heat; 

• Increased prestressing losses in the coupling joint because 

of creep, shrinkage, and prestressing steel relaxation 

(CSR) due to the larger geometry of the couplers;  

• Reduced fatigue strength of the tendons in the coupling 

joint due to fretting corrosion; 

• Uneven distribution of tendons across the cross-section. 

Consequently, infrastructure operators have routinely carried 

out recalculations of existing bridges based on advanced 

standards and guidelines. The recalculation guideline for 

existing road bridges [10] plays a key role in this context. After 

the introduction of this guideline in 2011, the results of the first 

recalculations were systematically evaluated in a research 

project on behalf of the Federal Highway and Transport 

Research Institute [11]. In this study, 43 % of the 126 

investigated prestressed structures showed a calculational 

fatigue deficit at the coupling joints. This makes the fatigue 

verification of coupling joints the second most frequent failure 

mechanism that leads to calculational deficits. The recent 

evaluation of recalculations [7] took into account the first 

supplement to the recalculation guideline from 2015 [12]. The 

coupling joint fatigue was recalculated for 63 bridges, of which 

33 showed deficits. In 37 % of the recalculations with coupling 

joint deficits, the fatigue resistance was exceeded by more than 

50 % [7], see Figure 3. 

 

Figure 3. Fatigue deficits for coupling joints according to the 

German recalculation guideline after 2015, [7]. 

These calculational deficits do not necessarily indicate actual 

structural damage. However, they often lead to expensive 

external post-tensioning or even to a premature demolition of a 

bridge before the end of its intended service life. To improve 

the assumptions about the actual impacts and resistances, the 

use of monitoring data is a powerful tool. The objective of 

monitoring is to reduce epistemic uncertainty, which arises 

from incomplete knowledge and can be reduced by increasing 

the amount of information or improving the model quality. In 

contrast, aleatory uncertainty – reflecting inherent randomness 

such as signal noise – is considered irreducible and is typically 

modeled stochastically [13–15]. In structural safety 

assessment, conservative assumptions are generally applied. 

Therefore, reducing epistemic uncertainty through monitoring 

data is expected to have a beneficial effect on the estimated 

load-bearing capacity and the predicted service life of the 

structure.  This is especially true for bridges with high traffic 

volumes that exhibit considerable temporal variations in load, 

where incorporating measured daily temperature and traffic 

loads can yield more accurate results [16]. 

However, monitoring methods applied in practice are highly 

heterogeneous, with no standardized guidelines for the design 

of measurement systems, data evaluation, or data integration in 

the measurement-based recalculation. Standards for data 

quality requirements and quantifiable quality indicators are also 

missing. Consequently, monitoring concepts are often based on 

empirical knowledge, and the assessment of data quality 

remains subjective. The quality of the monitoring concept 

directly influences the quality of the resulting monitoring data, 

which in turn affects the reliability of structural condition 

assessments. Therefore, it is essential to consider both the data 

quality and the quality of the monitoring concept itself. 

This paper presents a systematic methodology for the 

evaluation of an existing temperature monitoring concept, with 

regard to selected quality characteristics and their impact on the 

recalculation results using coupling joints as an example. 

2 TEMPERATURE MONITORING FOR BRIDGE 

ASSSESSMENT 

The relationship between the bending moment M and the 

prestressing steel stress σP is described by the moment-stress 

diagram. The normal force, prestressing force, geometry of the 

cross section, material stiffness and tendon distribution 

influence the position and shape of the moment-stress curve, 

which is shown in Figure 4. It consists of three sections [17]: 

• Linear-elastic behavior in uncracked state (Mode I)  

• Transition area with concrete tensile strength fct = 0 N/mm²  

• Distinct cracked state (Mode II). 

 

Figure 4. Moment-stress diagram for prestressing steel, [3]. 
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In addition to the alternating moment ΔMQ due to traffic 

impact, the so-called base moment M0 has a substantial 

influence on the stress range ΔσP. The base moment M0 is 

caused by the following components: dead weight of the 

structure, statically indeterminate part of the prestressing, 

losses due to CSR, redistributions from the construction to the 

final state, settlements as well as temperature loads. As long as 

the structure remains in Mode I, the stress range ΔσMode I is 

relatively low. However, once the decompression point is 

exceeded (M > MD) and the upper stress enters Mode II, 

fatigue-relevant stress ranges ΔσMode II are expected. The stress 

range ΔσP in Mode II is considerably higher than in Mode I, 

despite the same impact through ΔMQ. The increase in the base 

moment M0 required for the Mode II can be caused, for 

example, by large vertical temperature gradients MΔT,pos or 

prestressing losses [8]. For coupling joints, the moment 

component induced by temperature gradients is decisive in 

comparison to permanent loads, as they are typically located 

close to the points of contraflexure (points of zero bending 

moment). For older existing structures, variations of the base 

moment depend primarily on the temperature gradient, as 

redistributions, settlements and CSR are already completed [9]. 

For the reasons stated above, fatigue calculation of 

prestressed concrete bridges requires, in addition to the stress 

range Δσ in the prestressing steel from the traffic load ΔMQ, the 

knowledge of the magnitude of the base moment M0. Therefore, 

the stress range monitoring in coupling joints is usually 

combined with temperature measurements. The temperature 

load MΔT is a non-stationary variable influenced by 

environmental factors. While solar radiation and air 

temperature determine the general thermal input, wind speed 

and humidity affect the rate of heat exchange between the 

structure and the surrounding air. Additionally, the 

geographical orientation of the structure, height above ground, 

pavement thickness and other factors affect the temperature 

load [16]. 

 

Figure 5. Temperature field components, [16]. 

The temperature field of a bridge cross-section can be divided 

into three components (Figure 5): (1) The constant component 

T induces no internal forces or stresses if the deformation of the 

structure is not impeded. (2) The linear component ΔTy causes 

a curvature that creates a constraining moment if the deflection 

is impeded. This component results in internal forces and 

therefore stresses in the cross-section. Only this component is 

considered in fatigue recalculations of coupling joints. (3) The 

non-linear component TE is usually neglected in calculations of 

stresses [18]. 

In order to capture the linear temperature gradient over the 

entire cross-section, it is necessary to suitably distribute 

temperature sensors over the cross-section und to choose an 

appropriate monitoring period [16]. According to [2; 19], a 

measurement period of a whole year is sufficient to determine 

the structure-specific temperature load in the coupling joint. 

However, for Germany, the measurement period can be 

reduced to 3 to 6 months during the summer months (May to 

August), as both the highest positive and negative temperature 

gradients occur during this period [18]. Winter months are 

unsuitable for monitoring due to the low intensity of solar 

radiation. High gradients are especially observed when a cool, 

cloudy period is followed by a sunny day [9]. In [20] on the 

basis of measurements on a bridge and in [18] on the basis of 

simulation calculations, it was determined that the greatest 

temperature changes over the cross-sectional height occur in 

Figure 6. Illustration of the openLAB bridge including the standard cross-sections (Graphic: Fabian Collin, Max Herbers). 
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the slab, which requires a denser arrangement of temperature 

sensors in this area than in the webs. 

The following section presents the existing measurement 

concept for recording temperature effects on a demonstrator 

structure – the openLAB research bridge located in Germany. 

3 CASE STUDY: RESEARCH BRIDGE OPENLAB 

 The structure and its coupling joint 

The reference structure openLAB is a 45-meter-long and 4.5-

meter-wide prestressed concrete bridge located in Bautzen, 

Germany. Constructed as part of the research project IDA-KI, 

it serves as a large-scale demonstrator for advancing structural 

health monitoring (SHM) and digital twin technologies. The 

bridge comprises three 15-meter spans, each meticulously 

designed to address specific research objectives [21]. 

Spans 1 and 2 consist of three precast elements (PE) with T-

shaped cross-sections, which are transversely connected by a 

cast-in-place concrete layer, see Figure 5. Span 1 has been 

designed to replicate typical structural deficiencies of early 

tensioning methods, such as coupling joint problems, stress 

corrosion cracking, and areas with reduced shear capacity. 

Span 2 represents state-of-the-art construction methods and 

integrates innovative “smart tendons” which are equipped with 

integrated distributed fiber optic sensors [22]. Span 3 

showcases a prefabricated construction system that eliminates 

the need for cast-in-place concrete. This system employs 

hollow precast elements that are transversely coupled by 

grouting joints, enabling the PE to be fully loadable 

immediately after installation. 

All PEs are prestressed with strands that have an immediate 

bond. In addition, PE 1.1 and 2.1 are post-tensioned (see 

Figure 6 and Figure 7). The structural system features 

monolithic connections between the superstructure and 

substructure at axes 10 and 20. At axis 30, a connection 

between spans 2 and 3 with ultra-high-performance fiber-

reinforced cementitious composite material (UHPFRC) is 

planned. However, the connection will be implemented at a 

later stage, after the first load tests planned for May 2025. 

Currently, span 3 remains statically decoupled from the other 

two spans. 

The coupling joint under investigation is situated in PE 1.1, 

at the estimated point of contraflexure. The PE was constructed 

in multiple stages. Initially, a 4-meter segment of the element 

was fabricated and partially post-tensioned. Subsequently, the 

remaining 11-meter segment was cast, which also included the 

partial prestressing of the second tendon. The connection 

between the first and second tendons was achieved using a 

fixed coupler, certified under European Technical Assessment 

No. 13/0839. The first tendon was anchored in a manner 

consistent with the use of an anchor head for stressing anchors. 

In addition to a stress anchor, the coupler head provides a 

projecting ring collar with slots. The prestressing steel strands 

of the second tendon were placed in the slots and secured with 

a tensioning belt. Following this, the strands in immediate bond 

were prestressed, and the tendons in subsequent bond were 

tensioned to their final prestressing force. Finally, the tendon 

ducts were grouted to ensure proper bonding and corrosion 

protection of the prestressing steel.  

 Temperature monitoring of openLAB 

A comprehensive monitoring system has been installed at the 

openLAB since “hour zero” – the beginning of the construction 

phase. This monitoring system integrates global and local 

measurement techniques, providing detailed insights into the 

bridge’s structural behavior and environmental influences. 

Acceleration, inclination, and displacement sensors are 

employed to assess global structural behavior. Concurrently, 

environmental parameters such as air temperature, relative 

humidity, solar radiation, and precipitation are continuously 

recorded to account for external influences. Local 

measurements, in contrast, target areas susceptible to structural 

damage. These include strain gauges on reinforcement bars, 

distributed fiber optic sensors (DFOS) embedded in the 

concrete, and linear displacement transducers to monitor crack 

widths, e.g., in the coupling joint. 

The component temperature is measured using temperature 

sensors, which were embedded into the PE 1.1 near the 

coupling joint during the construction phase. There are three 

temperature sensors (PT100) distributed over the height (see 

Figure 7). These sensors have been continuously recording data 

at 10-minute intervals since February 2024 until today. 

To assess the influence of temperature measurement 

uncertainty on the recalculation results for the coupling joint, 

temperature data recorded by the component temperature 

sensors between January 31, 2024, and February 28, 2025, at 

10-minute intervals, was used to calculate the linear 

temperature gradient. A reference dataset – Test No. 0.1 – was 

defined by using the full observation period (January 2024 to 

February 2025), a sampling interval of 10 minutes, and the 

complete sensor configuration including all three temperature 

sensors: 𝑇𝑡𝑜𝑝, 𝑇𝑚𝑖𝑑𝑑𝑙𝑒 , and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚. 

 

 

Figure 7. Installed temperature sensors embedded in the 

PE 1.1 of openLAB; all measures are given in cm. 

The linear temperature gradient Δ𝑇𝑀,𝑦, which induces a 

bending moment 𝑀𝑦 in the coupling joint under consideration, 

is calculated using the following equation [23]: 

Δ𝑇𝑀,𝑦 =
ℎ

𝐼𝑦

⋅ ∑ 𝑇𝑖 ⋅ 𝑆𝑦,𝑖

𝑛

𝑖=1

 (1) 
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In this formulation, ℎ denotes the total cross-sectional height, 

𝐼𝑦  is the second moment of area about the y-axis, 𝑇𝑖  represents 

the temperature at a specific sub-area of the cross-section, and 

𝑆𝑦,𝑖 is the first moment of area of the respective sub-area. The 

cross-section is conceptually discretized into n small sub-areas. 

The temperature values between the fixed-position sensors 

(𝑇𝑡𝑜𝑝, 𝑇𝑚𝑖𝑑𝑑𝑙𝑒 , and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚) are linearly interpolated or 

extrapolated to estimate the temperature distribution 

throughout the height of the cross-section. This approach is not 

limited to the number of available sensors but rather assumes a 

continuous distribution of temperature across the section. 

 Fatigue simulation 

The residual fatigue life is predicted based on the accumulated 

fatigue damage 𝐷. Failure occurs at 𝐷 = 1. The fatigue damage 

is calculated according to Miner's rule [24]: 

𝐷 = ∑ 𝐷𝑖 = ∑
𝑛(Δ𝜎𝑖)

𝑁(Δ𝜎𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

≤ 1 (2) 

The damage at a load level 𝑖 is derived from the ratio of 

applied load cycles 𝑛 to bearable load cycles 𝑁. The load cycles 

until failure are obtained from the S-N curve (Wöhler curve) 

according to the stress range Δ𝜎𝑖 . The progression of fatigue 

damage is simplified through extrapolation of the frequency of 

calculated stress ranges Δ𝜎𝑖  from varying traffic and 

temperature loads. 

For traffic loads, the fatigue load model FLM 4, as defined 

by EN 1991-2, was applied. It consists of five standardized 

truck types which represent the characteristics of heavyweight 

traffic in Europe. To achieve relevant stress states up to the 

ultimate limit state with reasonable testing effort, only 25 % of 

Load Model 1 according to EN 1991-2 was considered for the 

design of the openLAB. Consequently, FLM 4 was 

appropriately scaled to ensure realistic stress amplitudes. 

Relevant load positions for the truck types were determined 

using influence lines. 

For temperature loads, both the temperature gradients from 

the recalculation guideline and the temperature gradients from 

structural monitoring are considered (see Section 4.1). 

The annual damage contribution 𝐷𝑦𝑒𝑎𝑟  is calculated as the 

sum of partial damages 𝐷Δ𝑇,𝑖, incurred during the passage of a 

standard vehicle of type 𝑖 under the simultaneous action of the 

temperature gradient Δ𝑇. The index i = 1…5 covers the five 

vehicle types according to the FLM 4. Only high temperature 

gradients combined with heavy traffic lead to fatigue damage. 

The partial damage is weighted according to the relative 

frequency of individual vehicle types 𝑝𝑖  in the annual traffic 

volume 𝑁𝑜𝑏𝑠 and the annual probability of occurrence of the 

temperature gradient 𝜆𝑇,Δ𝑇: 

𝐷𝑦𝑒𝑎𝑟 = 𝑁𝑜𝑏𝑠 ∙ ∑ [∑ 𝑝𝑖 ∙ 𝜆𝑇,Δ𝑇 ∙ 𝐷Δ𝑇,𝑖

5

𝑖=1

]

max Δ𝑇

Δ𝑇=min ∆𝑇

 (3) 

The calculation of internal forces in the cross-section of the 

coupling joint was performed using a linear-elastic finite 

element (FE) model developed in SOFiSTiK (version 2024). 

Given the complete decoupling of spans 1 and 2 from span 3, 

the structural model was simplified to a two-span system. The 

T-beams were modeled using beam elements with six degrees 

of freedom per node (three translations and three rotations). In 

the transverse direction, the three parallel beam axes were 

coupled using plate elements (see Figure 8). 

 

Figure 8: FE-Model of openLAB. 

To accurately represent the load-bearing behavior of the 

integral structure, the abutment wall at axis 10 and the columns 

at axis 20 were modeled and rigidly coupled with the 

superstructure. Shell elements (abutment wall) and beam 

elements (columns) were used to idealize the substructures. At 

axis 30, the superstructure is supported on the substructure via 

a hinged connection. Thus, the pier wall at the support point 

was simplified using equivalent, linear-elastic springs. The 

tendons were integrated into the FE model according to their 

position in the construction plans. Prestressing forces were 

calculated internally by SOFiSTiK and automatically applied 

to the intersected beam elements. 

The structure was erected in various consecutive construction 

stages, which include the following: (1) manufacturing of the 

PEs in the factory; (2) construction of the substructures using 

cast-in-place concrete construction; (3) installation of PEs on 

temporary supports; and (4) production of the cast-in-place 

concrete layer for force-fit connection of PEs. The 

redistribution effects associated with this construction method, 

resulting from creep and shrinkage after the completion of the 

cast-in-place concrete addition, were accounted for in the FE 

model through different construction phases. 

The calculation of the stress amplitudes Δ𝜎𝑖  were performed 

for the relevant cross-section also in SOFiSTiK, considering 

the non-linear stress-strain relationships of concrete and steel. 

4 IMPACT OF DATA QUALITY ON FATIGUE 

ASSESSMENT 

 Methodology 

The collected measurement data only represents a sample 

from a total population. In this paper, three quality indicators 

were identified for the description of this property of 

measurement data at different levels: representativeness, 

coverage, and completeness. These quality indicators (for 

definition see Table 1) were originally presented by [25] for 

atmospheric measurements and adopted in the draft of VDI 

Guideline 3786 Sheet 1 [26]. These characteristics are adapted 

for the bridge monitoring and applied to the monitoring data of 

openLAB.  

Completeness can be easily calculated as a percentage of the 

actual measurement data points relative to the expected 

measurement data points. This quality characteristic can be 

used to identify potential failures in the measurement system. 

In contrast, the other two quality characteristics – coverage and 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-154 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1022 

representativeness – cannot be described with a simple formula 

and should already be considered when designing the 

measurement system. Therefore, the two characteristics – 

coverage and representativeness – are the subject of the 

following considerations. 

Table 1. Quality characteristic for data of atmospheric 

measurements, [25; 26]. 

Quality 

characteristics 
Definition according to [25; 26] 

Representativeness The ability of a series of observations to 

provide an unbiased estimate of a 

parameter of a specified statistical 

population. 

Coverage Spatial and/or temporal distribution of 

measurement locations in the area under 

investigation. 

Completeness  The extent to which the information 

provided enables the data user to draw 

conclusions in accordance with the goal 

and scope definition. 

Table 2 provides an overview of the definitions of these 

quality characteristics for bridge monitoring. Spatial 

representativeness refers to the areas of the bridge structure 

where sensors are installed. The temporal representativeness 

describes the period during which the data is collected. Spatial 

coverage describes the number of sensors distributed within the 

representative area of the structure and whether sufficient 

metrological redundancy is achieved. Temporal coverage refers 

to the sampling frequency of the measurements.  

Table 2. Quality characteristics for bridge monitoring 

concepts. 

Quality 

characteristics 
Definition for bridge monitoring 

Representativeness 
Spatial: Local distribution of sensors 

Temporal: Period of data collection 

Coverage 
Spatial: Sensor density 

Temporal: Sampling frequency 

Insufficient monitoring data completeness affects the 

coverage, which in turn affects the representativeness of the 

data. Furthermore, incorrect selection of monitoring areas and 

periods can render the monitoring results unusable for the 

intended use case, even if coverage and completeness are high. 

To address this problem, this paper presents a methodology 

using the openLAB research bridge as a case study. This 

methodology can be applied to identify sufficient 

representativeness and coverage of monitoring data. 

The spatial representativeness is investigated by varying the 

local distribution of the sensors in the upper and lower area of 

the cross-section. To assess the temporal representativeness, 

the observation period for the temperature measurements at 

openLAB was systematically varied between two days and a 

whole year. Spatial coverage was analyzed by altering the 

number of sensors, while temporal coverage was assessed by 

applying different sampling frequencies. A total of four test 

series were conducted in which only one of these three 

boundary conditions – observation period, sampling interval, 

sensor density, or local sensor distribution, – was varied at a 

time, while the others were held constant. This methodology 

corresponds to the one-at-a-time sensitivity analysis. The 

definition of the investigated test series is shown in Table 3.  

Table 3. Definition of investigated test series. 

No. Description Specification 

0.0 Recalculation guideline - 

0.1 Reference measurement 12 months;  3 sensors 

1.2 April – September  6 months; 3 sensors 

1.3 May – August  4 months; 3 sensors 

1.4 May – July 3 months;  3 sensors 

1.5 June – July  2 months; 3 sensors 

1.6 June 1 month; 3 sensors 

1.7 08.07. – 09.07.2024 2 days;   3 sensors 

2.2 0.00028 Hz (every hour) 12 months;  3 sensors 

2.3 0.00002 Hz (every 12 hours) 12 months;  3 sensors 

2.4 0.00001 Hz (every 24 hours) 12 months;  3 sensors 

3.2 Upper and lower sensor 12 months; 2 sensors 

4.2 Upper and middle sensor 12 months;  2 sensors 

4.3 Middle and lower sensor 12 months;  2 sensors 

Test Series 1 examines the impact of the temporal 

representativeness by shortening the observation period to six 

months (April - September 2024), four months (May - August 

2024), three months (May - July 2024), two months (June - July 

2024), one month (June 2024), and finally two days (July 8 - 9, 

2024). The two-day period was selected according to the 

criteria that a cloudy day was followed by a sunny day [9]. This 

ensured a strong increase in air temperature and solar radiation 

within the observation period (Figure 9), which is expected to 

lead to high temperature gradients in the structure. 

 

Figure 9. Meteorological data for the location Bautzen, 

Germany for the period from July 1st to  July 15th 2024, [27]. 

Test Series 2 investigates the influence of the temporal 

coverage, i.e., sampling interval, by increasing it from the 

reference value of 10 minutes to 60 minutes, 720 minutes, and 

1440 minutes. 

Test Series 3 examines the effect of spatial coverage. In 

addition to the reference case using all three sensors (𝑇𝑡𝑜𝑝, 

𝑇𝑚𝑖𝑑𝑑𝑙𝑒 , 𝑇𝑏𝑜𝑡𝑡𝑜𝑚), this scenario considers only two sensors: 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-154 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1023 

𝑇𝑡𝑜𝑝 and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚. Due to the limited number of installed 

sensors, only one variation of spatial coverage was possible. 

Test Series 4 addresses the spatial representativeness in two 

scenarios with two sensors each: 𝑇𝑡𝑜𝑝 and 𝑇𝑚𝑖𝑑𝑑𝑙𝑒 , and 𝑇𝑚𝑖𝑑𝑑𝑙𝑒  

and 𝑇𝑏𝑜𝑡𝑡𝑜𝑚, with the objective of concentrating the sensors 

primarily at the bottom or top of the cross-section. 

The probability distributions for the temperature gradients 

were determined according to the methodology presented in 

Section 3.2. The results of the parameter study for the 

calculation of the linear temperature gradient Δ𝑇𝑀,𝑦 are 

illustrated in Figure 10. The linear temperature gradient 

determined for the openLAB is presented as a histogram of 

relative frequency 𝑓 over Δ𝑇𝑀,𝑦 for each test case. The 

reference case exhibits an approximately normal distribution, 

whereas, for example, Test 1.7 (observation period from July 8 

to July 9, 2024) shows a notable deviation from normality due 

to the limited number of temperature readings. Other 

histograms reveal distributions with varying degrees of positive 

or negative skewness when compared to the reference 

distribution. 

In the next step of the analysis, these histograms derived from 

real-world temperature measurements will be used to estimate 

the remaining service life of the openLAB structure according 

to the Section 3.3. 

 

Figure 10. Parameter study on the influence of temperature 

measurement uncertainty on the linear temperature gradient. 

(a) Reference distribution; (b) Test series 1: Variation of total 

measurement period; (c) Test series 2: Variation of sampling 

rate; (d) Test series 3: Variation of temperature sensor 

density; (e) Test series 4: Variation of temperature sensor 

location. 

In the German recalculation guideline [10], the temperature 

gradients are calculated in accordance with the reference 

standards DIN FB 101 and Eurocode DIN 1991-1-5. In 

addition, probabilities of occurrence for temperature gradients 

are specified for the calculation with the fatigue load model 

FLM 4. The guideline states temperature gradients to be 

applied according to the probability of occurrence and the 

cross-sectional shape of the bridge (box girder, T-beam, or 

slab) for a pavement thickness of 50 mm. The probabilities of 

occurrence for the temperature gradients were determined 

based on extensive investigations in [16]. For this purpose, 

hourly weather data were collected over eight years for three 

typical bridge cross-sections and evaluated statistically. The 

distribution and the daily course of the temperature load given 

in the German recalculation guideline were derived from this 

data. This standardized probability distribution is compared to 

the bridge-specific measurements of openLAB in Section 4.2. 

This comparison enables a quantification of the uncertainty in 

Δ𝑇𝑀,𝑦 and its impact on the total service life assessment of the 

openLAB bridge. 

 Results 

The results of the temperature gradient evaluation and the 

recalculation of the total service life for the coupling joint 

fatigue are summarized in Table 4. The first column 

corresponds to the test number. Test No. 0.0 represents the 

normative distribution given in the recalculation guideline, 

while No. 0.1 corresponds to the reference distribution, for 

which the entire temperature data set was utilized. The second 

and third columns contain the mean values μ and the values of 

the standard deviation σ of the temperature gradients ΔT in 

Kelvin. The third column provides the total service life in years 

for the respective data set about fatigue in the coupling joint. 

The last column shows the relative deviation of the service life 

compared to the reference distribution No. 0.1 in percent. 

Table 4. Results of fatigue calculation. 

No. μ of ΔT in 

Kelvin 

σ of ΔT in 

Kelvin 

Absolute 

service life in 

years 

Relative 

deviation 

of service 

life in % 

0.0 1.800 ± 2.619 1077.583 

(recalculation 

guideline) 

+ 7.69 

0.1 0.198 ± 1.887 1000.634 

(reference) 

- 

1.2 0.983 ± 2.289 1051.303 + 5.06 

1.3 1.357 ± 2.463 1075.903 + 7.52 

1.4 1.625 ± 2.698 1092.141 + 9.14 

1.5 1.720 ± 2.731 1098.567 + 9.79 

1.6 2.013 ± 2.873 1117.958 + 11.72 

1.7 2.546 ± 3.334 1147.002 + 14.63 

2.2 0.198 ± 1.887 1000.509 ‒ 0.01 

2.3 0.176 ± 1.954 998.609 ‒ 0.20 

2.4 0.082 ± 1.926 992.569 ‒ 0.08 

3.2 0.184 ± 1.633 1001.866 + 0.12 

4.2 0.220 ± 2.820 989.575 ‒ 1.11 

4.3 0.146 ± 2.839 985.031 ‒ 1.56 

Overall, the variations in the measured data result in only 

minor deviations in the service life, which was determined to 

be approximately 1045 years on average for all test series. The 

service life that was calculated on the basis of the reference 

configuration gave a result of approximately 1001 years. 

Relative values range from – 1.56 % to + 14.63 %. This 

observation indicates that the impact of the temperature 
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measurement uncertainty may not be a relevant factor for this 

structure with a relatively moderate influence on the fatigue of 

the coupling joint. The identification of relevant influence 

factors on the fatigue of the openLAB bridge will be 

systematically investigated in the further course of this study 

using a sensitivity analysis. It will enable a comparison of 

temperature influences with other relevant factors such as 

variation of traffic loads, prestressing losses or material 

properties. 

It can be seen that the probability distribution of the 

temperature gradients from the recalculation guideline No. 0.0 

leads to a slight overestimation of service life (+ 7.69 %) 

compared to the reference distribution No. 1.1 based on the 

complete measurement temperature data. In test series 1.2 to 

1.7, in which the recording period becomes progressively 

shorter, there is a shift in the mean value towards high gradients 

and an increase in the standard deviation. Contrary to the 

expectation that this temperature gradient distribution would 

result in a reduced service life of the bridge, it continues to 

increase. This finding contradicts the information available in 

the literature (e.g. [9; 18; 20]), where the more frequent 

occurrence of positive temperature gradients (i.e., shorter 

measurement period in the summer months) normally leads to 

shorter service life. This unusual observation can be attributed 

to the initial stress state of the structure. Prestressing generates 

high negative bending moments in the coupling joint of the 

openLAB bridge (see Figure 11).  

 

Figure 11. Moment-stress diagram for coupling joint of 

openLAB with moment impacts caused by applied 

temperature gradients. 

The most extreme temperature gradients ΔT determined from 

all test series in Figure 10 are – 12.5 K and + 15.5 K. The range 

of base moments M0 resulting from all measured temperature 

gradients between these values is represented as a purple 

section on the curve in Figure 11. The moments that lead to 

cracks in the cross-section MD (exceeding the decompression 

point) are marked with blue arrows. MD,top represents the base 

moment that causes the cross-section to crack at the top of the 

bridge cross-section. MD,bottom represents the base moment that 

leads to cracking at the bottom edge. It can be seen that the 

calculated positive temperature gradients are not high enough 

to cause cracking at the bottom edge. Consequently, negative 

temperature gradients result in higher stress ranges in the 

prestressing steel and, therefore, greater partial fatigue damage 

𝐷Δ𝑇,𝑖 compared to positive temperature gradients of the same 

absolute magnitude. This explains why the positive gradients 

have a positive effect on the load-bearing capacity of the 

structure. In this case, the coupling joint tends to crack at the 

upper edge of the cross-section instead of cracking at the 

bottom edge, as is the case with conventional prestressed 

bridges [5]. 

The variation of sampling frequency (Test No. 2.2 – 2.4), 

sensor density (Test No. 3.2), and local distribution of sensors 

(Test No. 4.2 and 4.3) have a considerably lower influence on 

the service life span than the period of data collection (Test 

No. 1.1 – 1.7). Consequently, a reduced frequency of 

measurements, may suffice to reliably estimate the actual 

temperature distribution. A lower sampling frequency reduces 

the amount of data collected. The impact of variations in local 

distribution cannot be reliably assessed in this particular case 

due to the limited number of sensors available. To obtain 

reliable results, additional temperature sensors are required, 

particularly within the slab of the openLAB bridge and in the 

edge areas of the component, where the largest gradients occur. 

The installation and operation of additional sensors in the 

openLAB is carried out in April 2025. The same evaluation 

methodology will be applied again with the new data generated 

by additional sensors to prove the representativeness and 

coverage of the enhanced monitoring concept. 

5 CONCLUSIONS AND OUTLOOK 

This study provides a methodological approach for the 

systematic evaluation of the monitoring concept quality applied 

to a bridge structure. The fatigue recalculation of the coupling 

joint was utilized as an example for the implementation of the 

sensitivity analysis concerning the temperature data. It is based 

on a single case study of a research bridge, which limits the 

statistical significance of the results. It should be mentioned 

that the research bridge used in this study has considerably 

smaller dimensions and a different structural design compared 

to typical prestressed concrete bridges. Consequently, the 

findings cannot be directly generalized to conventional 

prestressed bridges. The primary focus of this work is the 

methodology itself, which requires further testing and 

validation on real-world, full-scale bridges. The introduced 

methodology can be applied to other sensor types and failure 

mechanisms. 

The presented evaluation of temperature data indicates that, 

in this particular case study, the temporal representativeness 

expressed by the varied period of data collection has the most 

impact on the fatigue calculation of the coupling joint. The 

lower temporal coverage expressed by the lower sampling 

frequency does not notably affect the results of the 

recalculation. Spatial coverage and spatial representativeness 

could not be properly evaluated in this case study due to the 

limited number of sensors. It is not yet possible to derive 

universally applicable recommendations for the design of 

measurement systems for coupling joints based solely on this 

case study. Further investigations with a greater number of 

sensors are required to achieve this objective. 

In addition to temperature monitoring, concrete strain or 

prestressing steel strain ranges are usually recorded at coupling 

joints. To determine an appropriate holistic monitoring concept 

for this specific structure, investigations are also required for 
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these measurements. The load tests that will be performed on 

the openLAB bridge in 2025 can be used to validate and update 

the existing FE model. The appropriate estimation of the base 

moment M0 and the determination of the moment-stress curve, 

which describes the transition of the coupling joint from 

Mode I to Mode II, play a key role in this context. 

In summary, further research on the quality of monitoring 

concepts has the potential to refine existing monitoring 

approaches and to provide a more accurate assessment of 

impacts at coupling joints of prestressed concrete bridges. The 

quality control of monitoring concepts and data should be 

incorporated as a key component in relevant standards and 

regulations. This not only facilitates a more reliable condition 

assessment but also supports a potential extension of the service 

life of bridge structures. 
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ABSTRACT: Spanning across Freeway 101, several rail roads and the LA river, the 6th Street Viaduct replacement project is one 

of the largest bridge projects in the City of Los Angeles. The original bridge was built in 1932 and became a backdrop to the film 

industry. The iconic bridge was demolished following the decision to replace it with the existing 6th Street Viaduct due to the 

structure becoming seismically vulnerable. At 3,060-ft-long and 100-ft-wide, the redevelopment of the new bridge – designed by 

Michael Maltzan, – includes 10 network arch spans, with a total of 388 hangers supporting the bridge deck. The bridge spans 101 

Highway, the Los Angeles River. The hanger installation and stressing for the bridge was a complex procedure that would need 

careful attention to detail for loading the hangars before removal of formwork and for fine tuning the final load criteria. There 

were 18 load sequences per arch.  The instrumentation and monitoring of the hangars while loading required a novel approach 

that started two years in advance of the works with development of a bespoke system, calibration and acceptance. During 

installation and works many lessons were learnt by all parties involved. The close working relationship with a desire to succeed 

between the site team and designers was as fascinating as the technical brilliance applied by all to deliver this section of the project 

in a safe manner, within the schedule and to the specification. 

 

KEY WORDS: Bridge; structural monitoring; strain gauges, load verification, dataloggers,hangers 

 

1. Introduction 

The 6th Street Viaduct replaced the original, beloved bridge in 

1932, which had been deteriorating for decades due to alkali 

silica reaction. This condition is caused by an aggregate in the 

concrete that drew in moisture and caused cracks. After 

repeated attempts to retrofit the old bridge the decision was 

made that it needed to be replaced. In 2012, after much 

outreach and consultation with the community, the Los Angeles 

Bureau of Engineering held an international design competition 

to select a design for the new viaduct. Michael Maltzan 

Architects, a local Los Angeles firm, and HNTB, were the 

winners with the design, called "The Ribbon of Light".  

 

In 2016 the bridge was demolished completely, and 

construction on the new Sixth Street Viaduct began. Funded by 

the Federal Highway Transportation Administration, the 

California Department of Transportation, and the City of Los 

Angeles, the $588 million Sixth Street Viaduct Replacement 

Project was led by the Los Angeles Bureau of Engineering 

under City Engineer Gary Lee Moore in partnership with the 

LA Bureau of Contract Administration. 

 

The new Sixth Street Viaduct consists of 10 pairs of arches that 

range in heights from 30 feet to 60 feet tall. Each arch has a 9-

degree outward cant, 10-foot width, and requires 260 cubic 

yards of concrete. Arches had to be poured at a rate of 4 vertical 

feet per hour for a total of 12-14 hours per arch due to the 

formwork and intricate support system. 

The arches join into a Y-shaped column, and in total, the 23 

columns and 2 abutments of the bridge use triple friction 

pendulum bearings for seismic base isolation. These bearings 

allow movement up to 30 inches in any lateral direction, not 

only ensuring earthquake survival, but making the Sixth Street 

Viaduct one of the largest base-isolated structures in the 

world. Generally, construction developed from east to west 

and was led by contractor Skanska-Stacy and Witbeck Inc. 

Arches were poured without cables in place, then cables 2 

¾in. in diameter were added and tightened to create a 

network-tied arch structure. 

 

Figure 1. Typical strand construction 

Hangar Stressing on the 6th Street Viaduct Replacement, Los Angeles, CA 
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Figure 2. General view of the Sixth Street Viaduct 

Replacement 

 

2. Development of a Custom Load Verification System. 

Following an extensive series of interviews with manufacturers 

specializing in conventional load verification technologies, the 

contractor—Stacy Witbeck Skanska Joint Venture (JV)—

engaged Geo Instruments to develop a bespoke load 

verification system tailored to the unique constraints of the 

Sixth Street Viaduct project. A key requirement was that 

instrumentation could not be integrated during strand 

manufacturing due to the complexity of the process. The 

system needed to be repeatable, allow for self-performed 

installation by the JV team following training, and support real-

time data acquisition both on the bridge deck and remotely for 

review and approval by the design team based in Canada. Load 

measurements were required to achieve accuracy within 2 % of 

the target load for each loading cycle. 

Traditional strand loading methods typically employ in-strand 

tensiometers or vibration-based devices. However, the project's 

emphasis on repeatability and operational simplicity led to the 

selection of vibrating wire strain gauges—recognized for their 

reliability and proven performance in structural load 

measurement. 

Vibrating wire strain gauges operate by tensioning a steel wire 

between two fixed anchors within a stainless-steel housing. 

Electromagnetic coils induce oscillation in the wire via a brief 

voltage or swept frequency excitation. The wire vibrates at its 

resonant frequency, generating a sinusoidal alternating current. 

This frequency is captured by a readout unit or data logger 

equipped with a vibrating wire interface and converted into 

engineering units of strain. Changes in structural force alter the 

wire’s tension, thereby shifting its resonant frequency. The 

square of the frequency change is directly proportional to the 

change in strain. 

These gauges are cost-effective, durable, and compact, with 

the capability to record data at intervals as short as one 

second. For this application, low-profile vibrating wire strain 

gauges manufactured by Geosense (UK) were selected. The 

chosen model had a maximum strain capacity of 3000 µЄ 

which was deemed suitable for the expected load range. 

To ensure consistent and accurate strain measurements, each 

vibrating wire strain gauge was mounted on a custom-

engineered aluminum clamp designed to securely interface 

with the prestressing strands. The clamp assembly was 

developed to prevent slippage or misalignment during strand 

elongation, thereby preserving measurement integrity. A 

secondary carrier clamp, positioned above the primary clamp, 

housed the strain gauge and enabled reuse across multiple 

strands without compromising performance or structural 

integrity. The prototype assembly was presented to the client 

for review and approval. 

 

Figure 3. Prototype strain gauge assembly. 

3. Load Verification Tests.  

An opportunity to conduct a destructive test on a single strand 

was utilized to validate the design. The initial test setup 

included two strain gauges mounted on opposite sides (top and 

bottom) of the test strand. The gauges were configured to 

record data at five-second intervals. The testing facility 

prepared and rigged the test frame to simulate loading 

conditions representative of field operations. in such a way that 
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there were not any incremental load stops to verify the load and 

strain alignment. The test was too fast, and load profiles 

generated on the test machine did not mimic the anticipated 

loading sequence anticipated on site. The initial destructive test 

provided limited insight into the load recording capabilities of 

the test frame. Unfortunately, the load data output was 

incompatible with standard data analysis platforms such as 

Microsoft Excel, which hindered post-processing and review. 

Following this session, and in consultation with the client, it 

was agreed to proceed with a single strain gauge per strand for 

subsequent tests. This decision was based on the observation 

that strand bending was negligible due to the strand’s diameter 

and length, and that dual-gauge setups would unnecessarily 

slow down field operations. 

The second test session comprised a series of ten proving tests, 

each requiring the strand to withstand a load of one million 

pounds prior to failure. Strain gauges were mounted at the mid-

span of each strand, and data was recorded at two-second 

intervals. The resulting strain measurements demonstrated 

strong consistency and alignment with expected values, thereby 

validating the reliability of the system and increasing 

confidence in its field performance. 

Despite the successful strain data acquisition, the load 

recording methodology employed by the testing facility 

remained a limitation. The format of the load data continued to 

be incompatible with standard analytical tools, presenting 

challenges for integration and review by the project team 

 

Figure 3.Testing  hanger strands to destruction. 

The third round of testing was conducted at the strand 

manufacturer’s facility, enabling a more controlled 

environment and allowing tests to be performed at loading rates 

that closely matched field conditions. This controlled setup 

facilitated more accurate correlation between applied load and 

strain gauge measurements. 

Following these tests, the client reviewed the results and 

verified the accuracy of the instrumentation system. Based on 

the successful performance and alignment with project 

requirements, the client approved the methodology and 

proceeded with the procurement and fabrication of the full 

instrumentation system. 

4. Field Work.  

During the planning phase, the decision was made to utilize 

Campbell Scientific CR6 data loggers, equipped with the 

necessary number of multiplexers to accommodate strain gauge 

readings. The CR6 model was selected primarily for its 

integrated Wi-Fi capability, which enables real-time data 

visualization, an essential feature for the loading team during 

operations. Each arch structure required instrumentation of 

approximately 18 to 22 strands, with the optimal placement for 

the data loggers initially identified as the base of the arches, 

housed within secure enclosures. 

 

Figure 4. Strain Gauge assembly and logger setup. 

Strain gauge cables were procured based on the measured 

distances to the midpoints of each strand, with additional length 

included to ensure connectivity to the central logger. However, 

due to significant incidents of theft and equipment damage 

during the early stages of construction, the client mandated the 

relocation of the logger enclosures to the top of the arches. To 

accommodate this change in routing and cable length, pigtails 

with M12 connectors were added to both the loggers and 

multiplexers. Each pigtail was uniquely numbered to 

correspond with its respective strand, streamlining the 

installation process. 

Although relocating the data loggers to elevated positions 

introduced logistical challenges—particularly related to 

working at height—the use of modular connectors proved to be 

a significant advantage. These connectors simplified 

installation and maintenance, especially under constrained site 

conditions. 
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To ensure all stakeholders were aligned with the revised 

installation procedures and loading protocols, the client 

organized a pre-installation workshop. This session brought 

together the site personnel, design team, and representatives 

from Geo Instruments to review the updated methods, 

including bracket installation, strain gauge handling, and the 

specific loading cycles planned for each arch. This 

collaborative approach helped streamline field operations and 

ensured consistency across the instrumentation process. 

 

Figure 5. Typical Load sequence of strands per arch. 

 

The pre-installation workshops proved instrumental in 

resolving potential installation issues and allowed the team to 

simulate and troubleshoot scenarios that could arise during 

field operations. As is common with large-scale infrastructure 

projects, the introduction of a novel instrumentation method 

attracted attention from a wide range of stakeholders. In 

anticipation of this, the first week of loading operations was 

dedicated to comprehensive onsite training. This included 

verification of installation procedures, validation of data flow, 

and execution of trial runs to ensure system readiness.  

 

Figure 6. View of typical strand hanging operation 

During installation, each strand was secured to the top of the 

arch using custom holders, aligned with corresponding lower 

brackets, pinned, and subsequently tensioned. The strain gauge 

was connected to the strand and set to 1000 Hz manually using 

a GK404 VW readout to accommodate the expected loading 

tension. The strain gauges were factory calibrated in bulk to 

avoid any errors in this process. Given the length of the strands 

(up to 40 feet) significant initial curvature was observed prior 

to loading which forced a revision of the strain gauge loading 

sequence to avoid strain gauge bending. A bedding-in phase 

was necessary to allow the strand to settle and align properly 

before the verification load was applied. A proving load of 10 

tons was established as a baseline across the project to confirm 

system integrity. Operational loads for individual strands 

varied between 48 and 100 tons, depending on their location 

and structural role within the arch system. The contractor’s 

jacking system consisted of a custom hydraulic setup featuring 

a yoke-style configuration designed to sit directly over each 

strand. This system included integrated load readouts and was 

operated via a tablet interface that displayed calculated load 

values derived from strain measurements at 30-second 

intervals. 

 

Figure 7. Contractors strand loading system 

Typical strain gauge readings, acquired through up to eight 

Campbell Scientific CR6 Wi-Fi data loggers with two number 

32 channel multiplexers each, installed on the arches were 

recorded at one-second intervals per gauge and converted to 

load. During each loading sequence, the supervising engineer 

plotted the strain gauge load data against the hydraulic jacking 

system’s load readings. These plots were reviewed and verified 

in real time by the City Engineer. Each strand’s loading cycle 

was individually signed checked and signed off to ensure 

compliance with the performance criteria. 

 

 
 

Figure 8. Hangar required load with applied load site plots  
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The data from the strain gauges was sent via modem and Wi-Fi 

to the Geo Instruments servers and in-house visualization 

software – Quickview. 

 

Figure 9.QuickView visualization platform 

This software portal allowed the designers and contractors 

not on the bridge to view the loading sequence, one minute 

behind the actual site work. The data points on the site 

view showed digits, load and temperature for each strain 

gauge as well as the accumulative total load of the arch. 

Data was viewed and downloaded by consultant Ramboll 

for design verification and quality control reporting.  

 

Figure 10. Sequence of strand installation. 

Temperature Effects and Adaptive Stressing Strategy 

Temperature played a significant role in data interpretation 

and reduction throughout the project. Fortunately, the early 

phases of construction coincided with an unusually 

overcast period in Los Angeles, resulting in minimal 

temperature variation during the typical eight-hour 

workday. To further mitigate thermal effects, each strain 

gauge was wrapped in a heat-shielding material. While 

clamp-on heat shields were initially considered, they 

proved impractical for field use due to their bulk and 

handling complexity. Although the City of Los Angeles 

initially considered retaining the strain gauges for long-

term monitoring post-commissioning, this plan was 

ultimately removed from the project scope during 

execution. 

In the final three months of arch construction, weather 

conditions shifted unexpectedly, with unseasonably high 

temperatures becoming a concern. The combination of 

intense solar radiation, the elevated position of the arches, 

the increased number of arches complete and the thermal 

mass of the concrete structure caused the bridge to act as a 

heat sink. This thermal buildup peaked during the same 

hours scheduled for hanger stressing, raising concerns 

about data reliability and structural behavior under 

elevated temperatures. 

Rather than attributing delays or complications to any 

single party, the site team collaborated closely with the 

designers to analyze the data and identify the root cause of 

the discrepancies. With eight arches remaining to be 

instrumented, the team reviewed the sun trajectory and its 

impact on different arch segments. It became evident that 

larger arches and their associated strands were heating 

more rapidly and retaining heat longer than smaller ones, 

skewing strain readings throughout the day.  

 

 

Figure 11. Temperature of strands on arch 

To address this, the stressing schedule was revised. Work 

shifts were rescheduled to occur between midnight and 

5:00 a.m., when ambient temperatures were more stable 

and thermal effects on the instrumentation were 

minimized. This proactive adjustment allowed the team to 

complete the stressing operations on schedule and within 

specification. 

.      5. Conclusion. 

 All projects provide great feedback what went well and 

what could be improved on, it’s how instrumentation and 

structural health monitoring evolves. In hindsight, the 

initial testing of the strain gauges should have been run 

under temperature variations, but as discussed, the testing 

locations were not suitably equipped up for long testing 

load cycles. The very fast load cycles in the testing 

locations and the ability to capture data in format that was 

compatible with instrumentation loggers turned out to be 

an issue. Such is the rarity of these large-scale tests; it 

would require some investment from all parties to get 

suitable outputs.  
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Figure 12. View of one completed arch. 

The success of the Sixth Street Viaduct instrumentation 

program was driven by collaborative efforts, continuous 

feedback, and iterative improvement cycles among all 

stakeholders on site. The designer’s clear articulation of data 

requirements, particularly the need for rapid and reliable 

access, guided the development of a robust instrumentation 

system, including the selection of strain gauges, bracket 

assemblies, and data loggers. 

 

The site team played a critical role in refining installation 

procedures. Their feedback on bracket mounting techniques, 

bolt torque specifications, pre-connection verification methods, 

and data visualization strategies on the bridge deck 

significantly enhanced the practicality and reliability of the 

system. 

 

Credit is due to the Los Angeles Bureau of Engineering for its 

foresight in supporting this novel testing approach. During 

early project meetings, concerns were raised regarding the lack 

of precedent for using this technique on large-scale strand 

bridges. Nevertheless, the Bureau’s commitment to innovation 

enabled the development of a comprehensive and technically 

sound solution that instilled confidence across the project team. 

 

The Sixth Street Viaduct replacement officially opened in June 

2023, on schedule. It has since become an iconic structure 

within Los Angeles, earning multiple international awards for 

its design and construction excellence. 
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ABSTRACT: The Nova Scotia Department of Public Works (NSDPW), based on their observations and research, believe that the 

simplified method of analysis of timber bridges included in the Canadian Highway Bridge Design Code (CHBDC) yields 

excessively conservative load ratings for typical timber girder bridges in the province. With over 2000 such bridges in their 

inventory, this study looks to improve conservative load ratings by developing more realistic live load distribution factors for 

timber bridges based on load testing and analytical work. 

NSDPW engaged SHM Canada to conduct load testing of selected timber bridges and to develop a new regime of realistic live 

load distribution factors derived from the test data. Six timber bridges of various characteristics were selected for this study to 

cover as wide a range of bridge configurations as possible in the provincial inventory. The collected displacement and strain 

measurement data were analyzed and used to calibrate a large number of analytical models and followed by statistical and 

mathematical formulation of the proposed simplified method. The new method incorporates distribution factors specifically 

developed for timber bridges, by taking into consideration various parameters such as span length, girder spacing, and mechanical 

properties of the girders, to offer a fast, reliable, and cost-effective approach for evaluation and management of the province’s 

timber bridge inventory. 

KEY WORDS: Timber Bridge, Live load distribution factor, Load testing, Displacement transducer, SMA. 

1 INTRODUCTION 

The Nova Scotia Department of Public Works (NSDPW) 

inventory of bridges includes over 2000 timber bridges. These 

bridges are key components of the province's transportation 

infrastructure and are critical links on the local and collector 

roads. The majority of these bridges are short-span structures 

that have been in service for over 50 years [1]. 

Because of the size and importance of this inventory, 

substantial resources are dedicated for the inspection and load 

rating of these timber bridges. Currently, NSDPW uses the 

simplified method of analysis given in the latest editions of 

CAN/CSA-S6, the Canadian Highway Bridge Design Code 

(CHBDC/ the Code), for the load rating of in-service bridges 

and for the design of new timber bridges.  

Based on their experience and research, NSDPW 

hypothesizes that load ratings determined through the CHBDC 

simplified methods are overly conservative for the types of 

timber bridges commonly found in the province. Comparison 

of results yielded by the CAN/CSA-S6-14 and -19 simplified 

methods to the results yielded by the preceding version (S6-06) 

show that the newer versions are relatively more conservative. 

This study has shown that even the simplified method in the 

2006 edition of the Code yields more conservative load ratings 

for timber bridges than do the rigorous methods of analysis, [1-

4]. Historically, NSDPW has used rigorous methods for 

analysis of its timber bridges. The application of these methods, 

however, is time-consuming and resource-intensive and would 

be too onerous to apply for the evaluation of NSDPW’s timber 

bridge inventory. The overly conservative simplified methods, 

which have primarily been developed for steel and concrete 

bridges, also have a significant financial impact on the 

province. The primary objective of this study, therefore, is to 

develop an easy to use, and efficient method of evaluation 

specifically for timber bridges. 

SHM Canada Consulting Limited (SHM Canada) was 

engaged by NSDPW to carry out load testing of six preselected 

timber bridges, representing a significant portion of the 

inventory, and to develop new live load distribution factors for 

timber bridges in the Province of Nova Scotia that would offer 

a time- and cost-effective alternative to the more sophisticated 

analysis methods. The accuracy and efficacy of these factors 

will be critical to the continued safe operation of Nova Scotia's 

transportation infrastructure and for effective management of 

resources. 

2 LITERATURE REVIEW 

The current standard for the design and evaluation of bridges in 

Canada is CAN/CSA S6:19. Methods of calculation of live load 

distribution in CHBDC and its predecessor, the Ontario 

Highway Bridge Design Code (OHBDC), have been revised 

multiple times since 1983. These methods are categorized as 

either Simplified Methods of Analysis (SMAs) or Refined 

Methods of Analysis (RMAs). 

RMAs emerged as the increasing availability and enhanced 

capabilities of computers in the 1980s and 1990s encouraged 

engineers to attempt more complex forms of analysis and to 

model bridges with a large number of structural elements. 

These methods are generally highly accurate but require 

significant modelling time [1], [5]. More time-efficient 

simplified methods are therefore required for analysis of large 

inventories of simpler structures (e.g. the NSDPW inventory of 

over 2000 timber bridges in Nova Scotia). 
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Finite Element Method (FEM), Semi-Continuum Analysis 

(SCA), Orthotropic Plate Theory, Grillage analogy, Folded 

plate theory… are some of the recognized RMAs in CHBDC, 

[1-4], however, only FEM and SCA were used in this study. 

The Finite Element Method (FEM) is a powerful tool for 

analyzing simple to complex structures. The main challenge of 

this method remains a long modelling time [1] [5]. 

The semi-continuum analysis (SCA) method is useful for 

modelling timber bridges as it closely represents their structural 

configuration with slab on girder elements. The timber deck is 

modelled as a plate element supported on stringers, which are, 

in turn, modelled as line elements. The models generated by 

these methods are close to the reality of the nature of the bridge 

components and thus lead to more accurate results [1] [3] [4]. 

SMAs rely on the beam analogy, an equivalent-beam method 

in use since the 1930s, for longitudinal distribution of loads 

along the bridge, by calculating the maximum contribution of a 

single girder (or a unit width of a slab-type bridge) in resisting 

imposed loads. In all SMAs, transverse distribution of the 

longitudinal load effects is a result of multiplying a fraction 

coefficient provided by the formulas in the codes. Span length 

is a key parameter in deriving simplified method equations, as 

longer span length results in better transverse load distribution. 

Tighter spacing between girders leads to effective loads sharing 

among more number of girders across the width of the bridge, 

resulting in lower distribution factor values, [1-4], [8], [9]. 

As the Commentary for the current edition specifies, the 

CHBDC SMA equation should always produce load effects 

that are greater than those calculated using RMAs, as the RMAs 

used to develop the SMA equation are based on the most 

critical condition permitted by the Code [9]. In general, using 

RMA result in higher load rating values than those calculated 

from the three editions of the Code (06, 14, and 19). Using 

SMA will therefore lead to conservative designs and yield 

lower load ratings for the existing bridges. 

The majority of the constants in the formulation of the 

CHBDC simplified method were derived from work by Smith, 

while the recent formulation of SMA in CAN/CSA-S6:19 

benefits significantly from the work done by Théoret and 

Massicotte, [1]. These studies, however, relied primarily on 

analysis of concrete and steel bridges. Timber bridges differ 

considerably from the most concrete and steel bridges in their 

structural configuration, and the mechanical properties of 

timber are markedly different from those of concrete or steel. 

The non-linear behavior of the girders beyond the 

proportionality limit, and before the point of failure, can result 

in redistribution of the load effects. The technical committee of 

the OHBDC, therefore, offered an 8% reduction in the live load 

moment effect due to the redistribution of the moment effect 

based on a number of analytical studies of bridges with a 

concrete slab-on-steel-girder design. This reduction was 

offered only for the evaluation of existing bridges, and not for 

the design of new bridges. Although it is recognized as 

applicable to other bridge types, it has not been investigated 

extensively for those bridge types [8]. 

Fanous et al. carried out extensive research on development 

of live load distribution factors for glued-laminated timber 

girder bridges with glued-laminated timber deck panels. With 

a verified numerical model created in ANSYS 11 based on four 

in-service bridges, more than 100 hypothetical bridge models 

were produced and live load distribution factor’s relation was 

obtained for various bridge parameters, such as span length, 

girder spacing, and bridge width, It was shown that the 

AASHTO LRFD Bridge Design Specifications are 

conservative compared to the results obtained from field tests 

and numerical models [10]. 

An analytical and experimental study of six sawn timber 

bridges showed that asphalt, which tends to be neglected in 

both SMAs and RMAs, contributes to better live load sharing 

between timber stringers. This conclusion was based on the 

finding that stringers in field tests contributed a 17% smaller 

value of load sharing than predicted through rigorous analysis 

using SECAN/SCA. This study also found that analytical 

results for deflection were 20% larger than values obtained in 

the field, suggesting a larger modulus of elasticity than 

assumed in the Code recommendation for that timber species 

[11]. 

A more recent study sponsored by NSDPW carried out 

analysis of timber bridges with multiple editions of CHBDC 

(CAN/CSA-S6-88 through CAN/CSA-S6-14). This project 

was aimed at understanding the evolution of the simplified 

method in CAN/CSA-S6 over time and to compare results of 

the simplified method with more rigorous analysis using SCA. 

The study employed SECAN4 software and a scaled-down 

laboratory mode of the timber bridge. The results showed that 

the load effects calculated using revised versions of the code 

had increased over time by up to 30% [1]. NSDPW currently 

recognizes a rate of increase of 22%. CAN/CSA-S6-06 was 

found to produce the most accurate results of the versions 

studied but still yielded more conservative load ratings than 

those determined from the rigorous analyses. The study 

recommended the use of the simplified method in CAN/CSA-

S6-06 as a first step in evaluation. Where this analysis yields a 

live load capacity factor (LLCF) falling within the range of 0.7–

1.0, as is the case for approximately 60% of bridges in the 

NSDPW inventory, a more rigorous method may yield a higher 

load rating [1]. 

3 INSPECTION AND LOAD TESTING 

 Bridge Inspection Program 

Prior to field load testing, detailed hands-on inspection of the 

six test bridges was carried out in accordance with CAN/CSA 

S6:19 [4]. The primary objective of these inspections was to 

identify any defects or deficiencies with the potential to affect 

load testing results. 

The inspection program comprised three main components: 

• Detailed visual inspection of the bridge superstructure and 

timber substructure where applicable; 

• Non-destructive testing (NDT), including sounding and 

Stress Wave Timer (SWT) testing; and 

• Timber grading. 

Detailed measurements were taken with adequate detail to 

produce elevation and section sketches in AutoCAD format. 

The overall condition rating of the six bridges as determined 

during the inspection program is given in Table 1.  
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Table 1. Condition Rating of Six Test Bridges 

Bridge ID Overall Current Bridge 

Condition Rating 

HFX 061 Good 

COL 098 Fair, near to Good 

HFX 334 Fair, near to Good 

HFX 322 Good 

HFX 325 Fair 

HFX 099 Fair 

 Load Testing Program 

Girder deflection under load from a static truck with a known 

weight was measured by displacement sensors under each 

girder of the bridge and by strain gauges installed at select 

locations. The quality of this data was improved by 

incorporating an array of strategically placed high-precision 

sensors in the load testing program. 

3.2.1 Data Acquisition System 

All displacement sensors and strain transducers were connected 

to a data logger which acquired data at a speed of 3 Hz. Two 

16-channel analog input modules were used to connect 

displacement transducers and strain transducers. The data 

acquisition system was housed in the monitoring vehicle 

located on site and powered by a high-capacity inverter. In 

order to avoid disruptions in power supply, the system was 

equipped with a rechargeable 12 V back-up battery. 

3.2.2 Displacement Transducers 

In selecting the most appropriate type of displacement 

transducer, three main factors, under-bridge clearance; 

minimum environmental disturbance; and ease of installation, 

calibration, and removal of sensors; were considered in the 

selection of the draw wire displacement transducers. Under-

bridge clearance varied between 1.2 m and 3 m, and special 

adjustable steel cable system was designed to facilitate easy 

installation.   

3.2.3 Strain Transducers 

Strain measurements were recorded using strain transducers 

with a gauge length of 75 mm. The selected strain transducers 

provide improved accuracy in comparison to bonded foil-type 

strain gauges. Special mounting brackets were developed to 

eliminate the effect caused by local variations/imperfections in 

timber during installation of the transducers.  

3.2.4 Installation 

For each bridge, draw-wire sensors were installed at mid-span 

on the soffit of all timber girders. Additional displacement 

sensors were installed near the supports on bridges where 

appropriate. Small steel plates were attached to the soffit of 

each timber girder with wood screws. Matching steel plates 

with high-power magnets attached to the displacement sensors 

allowed a quick, secure, and efficient installation and retrieval.  

A custom-built sensor installations system, which 

incorporates a thin aircraft cable, was developed and fabricated 

to accommodate the varying distance between girder soffits and 

the stream bed. The draw-wire of the sensor was pulled down 

approximately 50% of the sensor range and attached to the thin 

aircraft cable, which was adjusted in the field to make up the 

remainder of the distance to the stream bed. The aircraft cable 

was attached to steel hooks that were screwed on to a square 

timber beam supported on steel stools and ladders resting on 

the stream bed thus minimizing disturbance to the riverbed. The 

test setup for the bridge, HFX 099, is shown in Figure 1 below. 

Figure 1. Test setup for HFX 099 

Strain transducers were installed on selected timber girders, 

in close proximity to the draw-wire sensors as possible, in order 

to correlate strain measurements to the displacement 

measurements. On select bridges, strain transducers were 

installed on the deck soffit to determine load sharing 

characteristics of the timber deck. 

3.2.5 Test Vehicle 

Bridges were tested using a single-unit tandem axle truck 

loaded near the legal maximum capacity (25880 kg). The truck 

was pre-weighed prior to commencing the load testing. A 

summary of the test vehicle axle loads and axle spacing is 

presented in Table 2 below for the bridge, HFX 322. 

Table 2. Test Vehicle Axle Weight and Spacing 

Front Axle 

Weight (kg) 

Twin Rear 

Axle Weight 

(kg) 

Axle Spacing (mm) 

First to 

Second 

Second 

to Third 

7930 17950 4150 1360 

 

3.2.6 Load Testing Procedure 

After all sensors were installed and tested for functionality, 

traffic control was implemented to close the bridge to all 

vehicular traffic. The load testing procedure consisted of the 

following steps: 

• Demarcate travel lanes for each test run. 

• Demarcate equally spaced lines at predetermined intervals 

depending on span length of the bridge. 

• Record baseline readings of bridge prior to commencing 

load testing. 

• Move the test truck to align with first travel lane and 

position centre point of second axles over the first stop as 

shown in Figure 2. 
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• Wait for one minute or longer for bridge to stabilize and 

then record data for 3 minutes.  

• Review collected data to confirm consistency. If data were 

found to be inconsistent, repeat test before moving to the 

next load position. 

• Move truck to next stop and repeat procedure at each 

transverse line. 

• Collect data at end of each test and determine if any 

residual deflections remain in girders after removal of test 

truck from bridge. 

• Move test truck to align with next travel Lane and repeat 

steps above until all travel lanes are completed. 

• Once testing was complete in all lanes, confirm 

consistency of testing data by computing summation of 

girder deflections for similar stop points of different test 

lanes. 

• Collect data for moving test truck over bridge in order to 

detect dynamic load effects. 

 

 

Figure 2. Test Vehicle at COL 098 

3.2.7 Load Testing Data Results 

Collected data for each bridge was reviewed and processed 

prior to commencing data analysis. Maximum deflection values 

for each bridge are presented in Table 3. All bridges were well 

below the maximum deflection criteria of L/360. 

Table 3.Summary of Load Testing Results 

Bridge ID Clear 

Span (m) 

Maximum 

Recorded 

Deflection 

(mm) 

Deflection-

to-span 

Ratio 

HFX 061 7.9 15.2 1/520 

COL 098 6.7 11.3 1/591 

HFX 334 5.1 9.4 1/543 

HFX 322 6.2 8.5 1/729 

HFX 325 3.9 8.8 1/443 

HFX 099 8.4 14.1 1/596 

4 DATA ANALYSIS AND DEVELOPMENT OF LOAD 

DISTRIBUTION FACTORS 

Following the load testing phase, field-recorded data were 

processed to be used for validation of the computer models. 

 Data Processing and Preliminary Analysis 

Data collected during the load testing were processed in this 

phase. For each bridge, data collected at each position of the 

test truck were averaged. Initial recorded values from the 

gauges were then deducted from these averages. In bridges 

where displacement sensors were installed at the end of the 

girders, settlement of the abutments was noted. An average 

settlement of 3 mm was recorded for the tested bridges and was 

considered in the model calibration process. Data recorded after 

the truck was moved off the bridges showed that abutments 

rebounded to their original condition. 

 Material Properties of Timber 

Material properties of timber are different in three orthogonal 

directions. Figure 3 shows a typical view of principal axes of 

wood relative to the direction of the wood grains. 

 

Figure 3. Principal axes of wood material, [12] 

Material properties of timber also vary by species. According 

to the standard drawings for bridges in the province from 1959 

and 2001, Douglas fir and hemlock have been extensively used 

as the material for stringers, and deck elements, respectively. 

Both are classified as soft [13], [14]. Multiple resources were 

consulted to determine a range of values for the material 

properties of these species [1], [11], [12], [15]. The wood 

material properties used in the initial analysis discussed in this 

section are presented in Table 4. 

Table 4. Material properties of wood species used in Nova 

Scotia timber bridges. 

Property (MPa) Douglas Fir Hemlock 

Longitudinal (EL) 1.06+E4 1.09+E4 

Radial (ER) 6.26+E2 4.85+E2 

Tangential (ET) 6.26+E2 4.85+E2 

Longitudinal-Radial (GLR) 7.53+E2 3.82+E2 

Longitudinal-Tangential (GLT) 7.53+E2 3.82+E2 

Radial-Tangential (GRT) 7.42+E1 3.27+E1 
Modulus of Elasticity (E) 

Modulus of Rigidity (G) 

 

In an initial attempt to validate the girders’ mechanical 

properties in the longitudinal direction, the recorded Strain-

Displacement (converted to Moment-Displacement) values 

were compared with the equivalent results generated by an 

analytical MATLAB code, developed by Hoseinpour et al. and 

modified for the current study, [16]. This code uses the typical 

equations of the Strength of Material to calculate displacement 

diagrams for the timber beams to be compared and calibrated 

with the field-recorded displacement data. Strain-Displacement 

data from slow-speed dynamic load test were the key factors in 

carrying out the validation process. Figure 4 presents an 
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example of the analytical investigation of wood material 

properties where equivalent moments were determined using 

the recorded strain values for HFX 099, which has a clear span 

length of 8.40 m. 

The resulting Moment-Displacement diagram was compared 

with the diagram generated by MATLAB for different span 

lengths and moduli of elasticity. Analysis showed that the 

closest relationship between the field data model and the 

analytical model is achieved by increasing the clear span length 

of the bridge by 3.5% (to account for the bearing span length) 

and by using a longitudinal modulus of elasticity of 1.0E4 MPa 

for the girders. 

 

Figure 4. ST 3 on HFX 099 

The final step in the process of validating material properties 

was examination of the values obtained with the 3D numerical 

model in midas Civil, and the generation of the deflection 

diagrams for comparison with the field recorded data. Due to 

the uncertainty associated with wood as an orthotropic material, 

multiple trials were performed to complete the validation of the 

wood material properties. 

 Analysis Methods 

Multiple methods were employed in analysis of the bridges 

under study, including the simplified methods of the codes 

CAN/CSA S6-06 and S6:19/14. Two different clauses of the 

SMAs in the newer versions of the Code were used where the 

method described in C5.6.6, generally applies to slab-on-girder 

bridges, and the simplified method outlined in C5.6.7, applies 

specifically to non-skewed timber bridges. Semi-Continuum 

Method of Analysis (SECAN4 in conjunction with CBridge) 

and Finite Element Analysis Method (midas Civil Software) 

were used for rigorous analysis and for evaluation of SMA 

results, which were then calibrated based on the field test data. 

The components of the modelled bridges via FEM were 

assigned appropriate element types, i.e., beam and plate 

elements for modelling girders and timber decks respectively, 

and appropriate links were created between them to represent 

nailed connections. In all analysis methods the timber bridges 

were assumed to act as a simple span beam. 

The CHBDC standard loading truck was used in the 

analytical process, and the test truck “Test Vehicle” was used 

in the calibration of the computer models. A 3-D of the finite 

element model is shown in Figure 5. 

 

Figure 5. A FEM model of a skew bridge with truck load 

The outcome of the final step of the calibration of the FEM 

models for two of the six bridges under investigation is 

presented in Figure 6 and Figure 7 below. The figures show the 

deflection profile across the bridge deck at the test vehicle stop 

that induced the maximum displacement under reference axle. 

The small difference between experimental diagrams and 

numerical model can be attributed to the effect of other factors 

(e.g. abutment settlement, condition of the bridges, and 

presence of asphalt) which were taken into account while 

developing the distribution equations. 

 

Figure 6. COL 098 – Lane 1: Transverse deflection profile

 

Figure 7. HFX 334 – Lane 5: Transverse deflection profile 

4.3.1 Comparison of Results 

The results obtained by the mentioned methods are summarized 

in the Table 5 and Table 6, representing moment and shear 

effects respectively. Multi-lane reduction factor is multiplied in 

the results obtained by rigorous analysis as this factor is 

inherent in the code formulation. In both tables, all load factors 

have been excluded from the results; only net values of the 

maximum distributed effects are displayed. 

 Loading Characteristics of the Hypothetical Models 

The single unit truck of S6:19 (CL3_625) was selected as the 

effective live loading on the hypothetical bridges shown in 

Figure 8, [4]. The selected truck was used to achieve uniform 
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loading and to eliminate any effect of additional axle loads. For 

the majority of timber bridges in Nova Scotia, given their 

defined range of span lengths, CL3_625 is the governing truck 

for determining load effects. 

CHBDC specifies that the minimum distance between the truck 

wheels and curb, railing, or barrier wall shall be 0.60 m. 

Standard drawings for Nova Scotia bridges include a typical 

barrier width of 0.30 m [13], [14], and are therefore in 

compliance with the Code. Some of the bridges studied, 

however, have a barrier measuring only 0.1 m. Therefore, a 

minimum 0.6 m distance from the edge of the bridge was used 

to establish the transverse location of the loading truck. To 

achieve maximum load effect, the truck wheels were also 

aligned directly over the nearest girder while maintaining a 

clearance of 0.6 m from the bridge edge. 

Table 5. Moment effects comparison (all values are in kN-m). 

Bridge S6-06 S6:19/14, 

C5.6.7 

S6:19/14, 

C5.6.6 

SCA 

(SECAN) 

FEM 

(MIDAS) 

HFX322 41.76 53.89 44.58 46.92 47.95 

HFX325 31.56 40.49 36.68 29.80 30.92 

HFX334 30.32 38.91 33.51 31.53 30.50 
HFX099 70.26 90.31 71.00 60.27 53.53 

COL098 51.11 65.44 53.80 47.18 44.46 

HFX061 57.86 82.77 58.49 62.56 60.40 

Table 6. Shear effects comparison (all values are in kN). 

Bridge S6-06 S6:19/14, 

C5.6.7 

S6:19/14, 

C5.6.6 

SCA 

(SECAN) 

FEM (MIDAS) 

HFX322 47.27 59.19 46.61 57.43 55.58* (76.94) 

HFX325 52.42 65.65 51.70 64.36 52.75* (78.48) 

HFX334 43.72 52.17 41.09 61.41 48.20* (67.14) 

HFX099 54.45 69.19 54.49 55.10 61.13* (82.69) 

COL098 52.12 65.08 51.25 67.61 56.52* (72.85) 
HFX061 50.77 66.59 49.35 80.31 68.34* (91.93) 

* These values represent shear effects when wheel load footprints 

are modelled as patch loads. The values shown in parentheses 

represent shear effects, when wheel loads are represented as point 

loads, representing an average increase of 1.35 over the patch load 

effects. 

 

Figure 8. CL3 625 Single unit truck used in the hypothetical 

models, Source: CHBDC [4] 

 Characteristics of the Hypothetical Models 

Having the FEM models calibrated based on span length and 

material properties, 101 hypothetical bridges were created and 

used to generate the mass data required for statistical analysis. 

Typical values of the parameters of Nova Scotia timber bridge 

inventory, such as girder spacing and span length were 

considered when generation the models. 

 Development of Moment Distribution Factor 

Distribution of the moment effect between girders is known to 

be related to the girders’ displacement. Based on the Theory of 

Timoshenko, however, it is critical to differentiate between 

displacement imposed on the girder by work moment and 

displacement imposed by shear effects. Lower maximum 

distribution factors indicate better distribution of load effects 

between girders. 

4.6.1 Parametric Analysis of Moment Distribution Factor 

After the maximum distribution factor of each hypothetical 

bridge was obtained, those values were plotted against variable 

parameters, and relationships between distributions factors and 

each parameter was determined. Span length, for instance, 

which is a key factor in bridge analysis, appeared to have a 

negative linear relationship with the moment distribution 

factor, as shown in Figure 9 below. 

 

Figure 9. Span length in relation to the distribution factor 

Girder spacing was also found to have a positive linear 

relationship with the distribution factors (Figure 10 below). 

 

 

Figure 10. Girder spacing in relation to distribution factors 

R-squared values showed that the spacing of girders 

correlates more strongly with the bridge distribution factor than 

do other parameters. The number and geometry of girders and 
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other parameters, however, did not play an important role in 

determining distribution factors and were tried to be imported 

to the equations as modification factors.  

4.6.2 Development of the Moment Distribution Factor 

Equation 

The Moment distribution factor was formulated using 

MATLAB; in which the bridge’s parameters were combined in 

different forms, i.e. separate linear combination and 

multiplication or division of parameters to different powers, to 

achieve highest correlation. The highest R-squared value (0.96) 

was found to belong to the simple linear summation of span 

length and girder spacing shown in Equation 1 below. 

 

𝐹𝑇 = 𝑆 4.562⁄ − 𝐿 394⁄ + 0.051                      (1) 

𝐹𝑇−𝑚𝑖𝑛 = 𝑆 4.182⁄ + 0.016      

S: average girder spacing, center to center (metres) 

L: bearing span length (metres) 

When 𝐹𝑇 > 𝐹𝑇−𝑚𝑖𝑛:       𝐹𝑇−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐹𝑇
2 𝐹𝑇−𝑚𝑖𝑛⁄  

When 𝐹𝑇 ≤ 𝐹𝑇−𝑚𝑖𝑛:       𝐹𝑇−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 𝐹𝑇−𝑚𝑖𝑛  

In cases where 𝐹𝑇 is larger than 𝐹𝑇−𝑚𝑖𝑛 , a correction is 

required to account for the effect of different girder sizes. 

Therefore, the value obtained by the above equation shall be 

multiplied by the ratio of 𝐹𝑇 𝐹𝑇−𝑚𝑖𝑛⁄  as shown in the step 3 of 

Equation 1. Based on calibration process described in Section 

4.2, the recommended bearing span length for timber bridges is 

1.035 times of the measured clear span length.  

4.6.3 Effect of Skew Angle (ψ) on Distribution Factors 

Skew angle and span length are two important parameters used 

to determine skew effect in CHBDC. Bridge width, which was 

the dominant factor in the past editions of the code, plays an 

insignificant role in the current edition (S6:19). 

Maximum moment effect is reduced in skewed bridges due 

to the decrease in the effective span length. Shear effect is 

subject to increase in the obtuse corner of skewed bridges, as a 

result of decreasing stiffness of the girders at the points on the 

axle line toward the acute edge and a corresponding reduction 

in load carrying of the far girders, [9]. 

The Mohr circle concept was employed to generate deck 

material properties for bridges with different skew angles. 

Analysis of the hypothetical skewed models also demonstrated 

that shear effects are increased, and moment effects are 

decreased in skewed bridges. The results for skewed bridges 

were close to those obtained by multiplying the CHBDC skew 

equation with the results of non-skewed bridges. The CHBDC 

skew effect equation should therefore be used to magnify shear 

effects and reduce moment effects. The shear modification 

coefficient determined from the CHBDC skew effect equation 

is denoted as 𝐹𝑆 in relevant formulations. 

 

𝐹𝑆 = 1.2 − (2.0/(ԑ + 10)                          (2) 

ԑ = (L/S) tan ψ for ψ = ≤ 45  

L = Bearing span length 

S = Girder spacing 

4.6.4 Effect of Girder Dimension on Distribution Factors 

Mechanical properties of different girder sizes for each bridge 

configuration showed low correlation with the obtained 

moment distribution factors and made it difficult to find a 

simple formulation to determine the effect of girder dimension. 

Given its partial correlation with the distribution factors, the 

effect of the mechanical properties of the girders is reflected in 

the original expression with 𝐹𝑇−𝑚𝑖𝑛 and the proposed increase 

in the moment distribution factors. 

4.6.5 Effect of Multiple Traveling Lanes on the Distribution 

Factors 

Nova Scotia timber bridges are typically limited to two 

travelling lanes. Deflection diagrams showed that the effect of 

a single truck on one side of a wide bridge has an uplift effect 

on the far girders at the opposite side. Having three trucks on 

the specified lanes of the timber bridges would therefore lower 

distribution factor values; therefore, only two-lane bridges 

were considered in the modelling process. To account for 

multilane effect, the Number of Lanes factor, 𝐹𝐿, was included 

in Equation 4, with the values displayed in Table 7 below. 

Table 8. Number of Lanes factor (𝐹𝐿) 

Single Lane Bridge Two-Lane Bridge 

1.00 1.21 

 

The Code’s statistical factor to account for multi-lane effects 

is still applicable and is presented in the current research as 

well. Per sections 3 and 14 of the Code, respectively, the 

modification factor is 0.90 for design of a two-lane bridge, and 

0.85 for evaluation. This factor is denoted by 𝑅𝐿 in Equation 3. 

4.6.6 Effect of Bridge Condition on the Distribution Factors 

Live load testing results in conjunction with inspection findings 

and analytical modelling suggest that the bridge condition may 

affect the load distribution factor. In some cases, field-validated 

loading responses of the bridge structures differed from those 

expected based on the calibrated FE model. In order to align the 

FE model with recorded field data, the condition rating of the 

bridges under investigation was considered (See Section 3.1). 

The values provided in Table 9 below were assigned as the 

factor 𝐹𝐶  to reflect the overall condition of the bridges in the 

load distribution formulation, Equation 4. 

Table 9. Bridge Condition factor (𝐹𝐶 ) 

Good Fair to Good Fair 

1.00 1.12 1.20 

 

None of the bridges included in the current study were rated 

in lower than Fair condition. Local decays in bridges in Poor 

condition has the potential to significantly affect the load 

distribution factor. No 𝐹𝐶 factor, therefore, is provided for 

evaluation of bridges rated at Poor condition and it has to be 

concluded based on professional judgment. 

4.6.7 Effect of Asphalt Surface on the Distribution Factors 

Asphalt pavement of varying thickness was found on four of 

the six bridges in the current study. Thicker asphalt would 

result in better load distribution and therefore lower load 

distribution factors. The effect of asphalt surface is designated 

as 𝐹𝐴 in Equation 3 and Table 10. Linear interpolation shall be 

used to find an equivalent factor for different asphalt thickness. 
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Table 10. Asphalt surface factor (𝐹𝐴) 

90 mm 150 mm 250 mm 

1.08 1.15 1.25 

 

A gravel surface, in contrast to an asphalt surface, is 

inconsistent in thickness/distribution over the bridge deck and 

has low elastic properties. Furthermore, only one of the bridges 

under investigation had a gravel surface, and it appeared to be 

loose and uneven near the edge of the bridge. Therefore, the 

contribution of a gravel surface to the load distribution, could 

not be evaluated in this study, and 𝐹𝐴, shall be assumed as 1.0. 

4.6.8 Generalized Moment Distribution Factor Equation 

Equation 3 below presents the overall distribution factors for 

moment effects. This equation includes coefficients that 

account for the effects of other parameters, as discussed earlier 

in this chapter. 

 

𝐹𝑀 = 𝐹𝑇−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐹𝐿𝐹𝐶 𝑅𝐿/𝐹𝐴𝐹𝑆                     (3) 

𝐹𝑇−𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑  = Moment distribution factor  

𝐹𝑆 = Skew angle coefficient 

𝐹𝐿 = Multiple lane effect factor  

𝑅𝐿 = Statistical multilane coefficient 

𝐹𝐶  = Bridge condition factor  

𝐹𝐴 = Asphalt effect factor 

 Shear Distribution Factor 

Shear distribution factor was obtained by dividing the 

maximum contribution of the girders by the maximum shear 

effect of the same loading on a single beam with the same span 

length, where the single beam was analyzed using CBridge. In 

order to produce maximum shear in a simple beam, the heavy 

truck axles must be located as near as possible to the supports 

where, due to the minimum deflection of the girder, the girder 

closest to the wheel load absorbs much of the shear effect. 

Shear distribution does not, therefore, follow the same pattern 

as the moment distribution, and a separate distribution factor is 

required. 

4.7.1 Parametric Analysis of Shear Distribution Factor 

Like the moment distribution factor, shear distribution factors 

showed a stronger correlation with girder spacing than with 

span length. In general, weaker correlations (i.e. R-squared 

values) were established between the shear distribution factor 

and variable parameters of the timber bridges than between the 

moment distribution factor and those parameters. 

4.7.2 Development of the Shear Distribution Factor 

Equation 

The shear distribution factor in the 2019 version of the Code is 

only a function of girder spacing, magnified by a modification 

factor. Using this factor in the current study yielded an R-

squared value well below the expected value. 

MATLAB was used to combine the effects of different 

parameters and to develop a formulation for the shear 

distribution. Multiple trials, however, failed to yield 

correlations (i.e. acceptable R-squared values) that would 

suggest sufficient accuracy for these formulas. 

A method similar to that used for determination of the 

moment distribution factor, was therefore applied to generate a 

modification coefficient to account for the shear distribution 

factor. As shown in Equation 4, the shear distribution factor 

was obtained by modifying the moment distribution factor, the 

use of which can produce shear effects having an acceptable 

correlation with an R-Squared value of 0.71. 

 

𝐹𝑣 = 𝐹𝑆
2𝐹𝑀 (1.35 𝛾𝑣⁄ 𝛾𝑙𝑣)                        (4) 

Where, 𝐹𝑆 is the skew angle factor, and the shear 

modification factor 𝛾𝑣 is obtained from the following equation: 

 

 𝛾𝑣 = 𝑆 2.532⁄ − 𝐿 134⁄ + 0.247                   (5) 

The correction factor, 𝛾𝑙𝑣 , of the shear effect for two-lane 

bridges is equal to 1.14. See Equation 1 and 3 for the notations. 

In an attempt to create maximum load effects, the 

longitudinal wheel line of the loading truck was aligned over 

the girder closest to the bridge edge, while respecting the 

minimum 600 mm clearance. This was the governing case 

specifically for determining the shear effects. 

Considering the low potential for transverse load distribution 

at the end of the bridges’ span it would be safe to assume that 

the loaded girder absorbs the entire wheel load on the support. 

On the other hand, analyzing the standard truck of CL-625 

on a short span bridge has the potential of eliminating the effect 

of the heavier axle load in the shear analysis as it remains off 

the bridge span in the critical shear loading case. As a result, 

there is always a possibility to disregard the heavier axle loads 

with wide spacing in the shear analysis, where they have no 

potential to be transversally distributed when acting on the 

support. Therefore, the minimum unfactored shear effect shall 

be taken as the largest of the wheel load of the loading truck 

divided by the patch load correction of 1.35. 

 Comparison of the results of the developed SMA to the 

loading tests and CHBDC results 

Table 11 presents distribution factors obtained from live load 

tests, different versions of the Code, and the developed SMA in 

this study to validate the results of newly developed 

formulations. 

Table 11. Comparison of the moment distribution factor 

derived using new formulation with other methods 

Source HFX322 HFX325 HFX334 HFX099 COL098 HFX061 

(1) 0.1722 0.2563 0.1758 0.2167 0.2142 0.1938 

(2) 0.1367 0.1986 0.1296 0.1460 0.1503 0.1347 

(3) 0.1281 0.1708 0.1172 0.1444 0.1428 0.1292 

(4) 0.1282 0.2117 0.1309 0.1668 0.1440 0.1270 

(4-1) % -25.6 -17.4 -25.5 -22.8 -32.8 -34.5 

(4-2) % -4.5 17 6.1 10.9 -3.6 -5.7 

(4-3) % 0.1 23.9 11.7 15.5 0.8 -1.7 

(5) 0.1273 0.2099 0.1309 0.1631 0.1624 0.1374 

(5-1) % -26.1 -18.1 -25.5 -24.5 -24.1 -29.1 

(5-2) % -5.1 16 6.1 8.4 8.7 2 

(5-3) % -0.6 22.9 11.7 13 13.7 6.3 

(1) S6-14/ S6:19 C5.6.7 

(2) S6-14/ S6:19 C5.6.6 

(3) S6-06  

(4) Live Load Test 

(5) Developed SMA 
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This comparison established a close relationship between the 

live load test results and the results of the developed SMA here. 

Compared to the results obtained with CHBDC S6-14 and 

S6:19, C5.6.7, both live load tests and the new SMA show a 

decrease of between 17.4% and 34.5% in moment distribution 

factors across all timber bridges studied, which is consistent 

with NSDPW’s hypothesis that the Code-specified analysis 

method for timber bridges leads to more conservative design 

and evaluation criteria. 

5 CONCLUSION 

Results of this study show that the current SMAs in the 

Canadian bridge codes are overly conservative, and the 

congruence of analytical and load test results supports the 

hypothesis that the newly developed equations are sufficiently 

accurate for the simplified analysis of typical timber bridges in 

Nova Scotia. The equations presented in this report can be used 

for both design and evaluation purposes, using appropriate 

factors and subject to the following parametric limitations: 

• Span range: 3 m to 15 m. 

• Girder spacing: 350 mm to 800 mm. 

• Girder width: 150 mm to 300 mm. 

• Girder depth: 250 mm to 800 mm. 

• Girder spacing: Uniform or with less than 10% 

variation. 

• Skew angle: Less than 45⁰ 
Bridges with characteristics outside the above ranges will 

require additional study. 

ACKNOWLEDGMENTS 

The authors would like to acknowledge Nova Scotia 

Department of Public Works for initiating this study and their 

active support during all stages of its completion. The authors 

also acknowledge Dr. Baidar Bakht, P. Eng., for his help in 

determining load sharing factors for the six timber bridges 

evaluated during this study. 

 

REFERENCES 

[1]  G. A. Smith, The Impact of the Evolution of Simplified Methods of 
Analysis in Canadian, Halifax, NS: Dalhousie University, 2018.  

[2]  J. N. Reddy, An Introduction to the Finite Element Method, New York: 
Third Edition. McGraw-Hill, 2006.  

[3]  A. Mufti, B. Bakht, L. G. Jaeger and J. Jalali, SECAN4 User Manual: 

Incorporating the Semi-Continuum Method of Analysis for Bridges, 
Halifax, NS, 1998.  

[4]  L. G. Jaeger and B. Bakht, "Bridge analysis by the semicontinuum 

method," Can. J. Civ. Eng., vol. 12, pp. 573-582, 1985.  

[5]  B. Bakht and L. G. Jaeger, "Simplified methods of bridge analysis for 

the third edition of OHBDC," Can. J. Civ. Eng, vol. 19, no. 4, p. 551–

559, Feb 1992.  

[6]  Commentary on CAN/CSA-S6-14, Canadian Highway Bridge Design 

Code, Toronto: Canadian Standards Association, 2014.  

[7]  F. Fanous, J. May and T. Wipf, "Development of live-load distribution 
factors for glued-laminated timber girder bridges," J. Bridg. Eng., vol. 

16, no. 2, p. 179–187, Mar 2011.  

[8]  A. Mufti and B. Bakht, "Diagnostic testing of six sawn timber stringer 
bridges in Nova," Unpublished Report to the Nova Scotia Department 

of Transportation and Public Works, Halifax, 1999. 

[9]  CAN/CSA S6:19 Canadian Highway Bridge Design Code, Toronto: 

Canadian Standards Association, 2019.  

[10]  Forest Products Laboratory, Wood handbook—Wood as an 

engineering material, Madison, WI: U.S: Department of Agriculture, 
Forest Service, Forest Products Laboratory, 1999.  

[11]  NSTIR, Standard Design Drawings of Timber Bridges of Nova Scotia, 

Halifax: Department of Highways, 1959.  

[12]  NSTIR, Standard Design Drawings of Timber Bridges of Nova Scotia, 

Halifax: Nova Scotia Transportation and Public Works, 2001.  

[13]  Ontario Wood WORKS!, Ontario Wood Bridge Reference Guide, 
North Bay, Ontario: Ministry of Natural Resources and Forestry, 2017.  

[14]  H. C. Hoseinpour, M. R. Valluzi, E. Garbin and M. Panizza, "Analytical 

investigation of timber beams strengthened with composite materials," 
Constr. Build. Mater, vol. 192, pp. 1242-1251, 2018.  

[15]  CAN/CSA-S6-06 Canadian Highway Bridge Design Code, Toronto: 

Canadian Standards Association, 2006.  

[16]  CAN/CSA-S6-14 Canadian Highway Bridge Design Code, Toronto: 

Canadian Standards Association, 2014.  

 

[Note: Nova Scotia Department of Public Works (NSDPW) was formerly 

known as Nova Scotia Transportation and Infrastructure Renewal (NSTIR)] 
 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-157 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1041 

ABSTRACT: Structural engineers, particularly bridge engineers, rarely have the opportunity to test full-scale bridges to failure 

due to the high costs involved. Such experiments are typically conducted on scaled-down specimens in controlled settings, which 

can introduce challenges in accurately correlating results to real-world full-scale behavior. In 2019, a unique opportunity arose 

when the Steinavötn bridge in southern Iceland was irreparably damaged by flooding. Built in 1964, the 102-meter-long reinforced 

concrete continuous beam bridge had two abutments and five piers and was part of Iceland’s national road system, connecting the 

ring road around the island. One of its piers suffered scour damage beyond repair, leading to the decision to demolish the structure. 

Before its demolition, a measurement campaign was conducted using long-gauge fiber-optic sensors to capture the bridge’s 

response to ultimate loading. This study presents the findings from the measurement campaign and bridge modelling, providing 

valuable insights into the ultimate load behavior of a full-scale bridge and advancing the understanding of structural performance 

under extreme conditions. 

KEY WORDS: Full-scale testing, Bridge modelling, Continuous beam bridge, Long-gauge fiber-optic sensors, Reinforced 

concrete. 

1 INTRODUCTION 

In 2017, a unique opportunity arose when the Steinavötn bridge 

in southern Iceland was irreparably damaged by flooding. Built 

in 1964, the 102-meter-long reinforced concrete continuous 

beam bridge had two abutments and five piers (Figure 1) and 

was part of Iceland’s national road system, connecting the ring 

road around the island. One of its piers suffered scour damage 

beyond repair, leading to the decision to demolish the structure. 

Before its demolition, extensive load testing and vibration 

measurements were conducted on it during the summer of 

2019. These tests were carried out as a collaborative effort 

involving the Icelandic Road and Coastal Administration 

(IRCA), Reykjavik University, ETH Zurich, and Osmos 

Monitoring Group. Various sensors were used during the 

measurements, including force gauges, displacement sensors, 

accelerometers, and different types of strain sensors. The 

bridge response was recorded under various load scenarios, 

such as excitation from natural environmental vibrations, 

controlled traffic loads on the bridge, impact loads, and 

gradually increasing vertical loads on one bridge span far into 

the non-linear regime.  

The events leading up to and the causes of the bridge's 

destruction have been examined in a master’s thesis written at 

the University of Iceland [1]. A bachelor’s thesis at Reykjavik 

University documented the setup of the load tests on the bridge 

and the data collection process. It presented results from 

material tests on concrete and reinforcement steel. 

Furthermore, preliminary numerical computational models of 

the bridge were developed, deflections were calculated, and the 

load-bearing capacity was compared with measurement data as 

well as with design calculations [2]. The dynamic behavior of 

the bridge has also been analyzed based on vibration data by a 

research group at Reykjavik University and the Technical 

University of Denmark [3], [4]. A comparison between non-

linear beam-truss models with different boundary conditions 

was conducted at the University of Iceland [5].  

Structural engineers, particularly bridge engineers, rarely 

have the opportunity to test full-scale bridges to failure due to 

the high costs involved. Such experiments are typically 

conducted on scaled-down specimens in controlled settings, 

which can introduce challenges in accurately correlating results 

to real-world full-scale behavior. It is therefore important to 

seize the opportunity and conduct full-scale experiments to 

improve knowledge and understanding of structural behavior 

as well as validating numerical models. Data analysis methods 

and numerical models developed in these rare settings provide 

valuable insights into structural behavior, numerical modelling, 

and structural health monitoring methods. 

In this paper insights from data measured by the long-gauge 

fiber-optic strain sensors and LVDT displacement sensors 

during the ultimate load test at Steinavötn bridge are presented.  

 

 

Figure 1. The Steinavötn bridge. Photo from ICRA, 2019. 
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2 THE STEINAVÖTN BRIDGE 

 Description of the bridge 

The Steinavötn Bridge on National Road 1 was built by the 

IRCA in 1964 and was located in the Suðursveit region of 

Southeast Iceland, south of Vatnajökull, about 61 km west of 

Höfn in Hornafjörður. The bridge was a 102-m-long concrete 

beam bridge, single-lane and with six spans. The bridge was an 

important link in completing the ring road, and 10 years after 

its construction, the road was fully connected [6]. Figure 1 

shows the bridge over Steinavötn. 

The span from the abutment to the first intermediate pier was 

14 m on both sides and the inner spans were 18.5 m (see Figure 

2). The intermediate piers rested on timber piles that went 

approximately five meters into the ground.  

 

 

Figure 2. A view of the Steinavötn bridge from the ICRA's 

drawing set. 

 Bridge cross-section 

The bridge superstructure had two different cross-sections. 

Four meters on either side of every pier, the cross-section was 

a hollow box girder shown in Figure 3. The remaining 10.5 m 

and 6 m in the inner and outer spans, respectively, were double 

T-beams illustrated in Figure 4. The bridge deck was 

monolithically cast and reinforced with the piers. 

 

 

Figure 3. Bridge cross-section at pier. Hollow box girder. 

Measurements in cm. From the ICRA’s drawing set. 

 

 

Figure 4. Bridge cross-section at midspan. Double T-beam. 

Measurements in mm. From the ICRA’s drawing set. 

 Materials 

Three concrete samples were extracted from the bridge using 

core drilling, taken from its longitudinal beams. The cylindrical 

samples had a diameter of 100 mm and an initial length of 270 

mm, which was reduced to 200 mm by BM Vallá ehf. concrete 

plant, who also leveled the ends with additional concrete. The 

compressive strength was tested in collaboration with Mannvit 

hf. consulting firm following the ÍST EN 12390-3:2009 

standard, applying an axial load increasing at 0.6 MPa/sec until 

failure. The average compressive strength was 37.7 MPa [2]. 

Ultra-sonic measurements were performed on the side beams 

of the superstructure to determine the dynamic modulus of 

elasticity of the concrete. The average dynamic modulus of 

elasticity was 39 GPa [7]. Note that the dynamic modulus can 

be approximately 20-30% higher than the static one [8]. 

According to Eurocode EC2, the static modulus of elasticity for 

concrete strength 37.7 MPa is 33 GPa [9]. This is 15% of the 

measured dynamic modules.  

Three samples were taken from the longitudinal 

reinforcement and three from the shear reinforcement of the 

bridge. The steel strength was determined through tensile 

testing in collaboration with Mannvit, following the ÍST EN 

ISO 15630-1:2019 standard, with a 200 mm anchorage length 

at each end for proper grip. Due to challenges regarding the 

equipment, only the yield and ultimate strength were recorded 

[2]. 

Table 1 shows the material properties that were recorded and 

the values used in the subsequent analysis. 

Table 1. Material properties. 

Measurements 

 Compr. 

strength 

[MPa] 

Dyn. E  

[GPa] 

Yield 

stress 

[MPa] 

Ultim. 

stress 

[MPa] 

Concrete  37.7 39 - - 

Steel stirrup - - 290 439 

Steel longit. - - 405 758 

Used in analysis 

 fck 

[MPa] 

fyk/fuk 

[MPa] 

Ec 

[GPa] 

Es 

[GPa] 

Concrete 38 - 33 - 

Steel - 400/760 - 210 

 

 Bridge after scour damage 

In September 2017, there was a large increase in water in the 

river, resulting in scouring at intermediate pier 2, measured 

from the western end of the bridge. The settlement of the pier 

was measured at about 200 mm, but it also deviated and tilted 

by 70 mm/1000 mm, or 7%, from the vertical [1]. Figure 5 

shows how the bridge pier has subsided. Cracks could be seen 

on the bridge superstructure above the seats of intermediate 

piers 1 and 3, which extended 5 m into the water. Since the 

bridge piers were cast and reinforced with the bridge deck, 

rotation of a pier therefore caused rotation of the bridge deck. 

Crack formations above the intermediate piers strongly 

indicated that floating elements had formed at these locations. 

After a site visit by the Icelandic Road Administration and 

stress tests in early October 2017, the bridge was deemed 

unusable [10]. Subsequently, a temporary bridge was built to 

allow traffic to reopen, and in September 2021, a new double-

lane bridge over Steinavötn was inaugurated.  
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Figure 5. The intermediate pillar of the bridge has sunk [10]. 

3 BRIDGE TESTS 

This section offers a comprehensive overview of the 

monitoring experiments conducted on the old Steinavötn bridge 

during the summer and fall of 2019, prior to its demolition. The 

IRCA chose to utilize the bridge as an educational and research 

resource prior to its demolition and commenced comprehensive 

experiments on it in collaboration with various Icelandic and 

international partners. Multiple experiments were carried out 

on the bridge, measuring acceleration, deflection, strain, and 

static loading. 

 Short overview of tests 

Figure 6 illustrates a side view of the Steinavötn bridge, 

highlighting the test span subjected to various structural 

analyses. The bridge, spanning the Steinavötn river, is depicted 

with five piers (labeled Pier 1 through Pier 5) and six spans 

(Span 1 through Span 6). 

Notably, Figure 6 identifies "plastic hinge" locations in Span 

1 and Span 3, indicating potential areas of structural weakness. 

The bridge is further divided into "Damaged Structure" and 

"Undamaged Structure". A note points to a pier damaged 

during a flood in September 2017, contributing to the 

"Damaged Structure" classification. 

Researchers from ETH Zürich used single-axis 

accelerometers to measure the vertical acceleration response of 

the Steinavötn bridge within the test span. They installed 

sensors during the summer to monitor long-term ambient 

background vibrations and conducted damage detection 

experiments in September. 

The OSMOS Group employed Fiber Bragg Grating sensors, 

including OSMOS Optical Strands, a Thermal Probe, and the 

OSMOS Expert Data Acquisition System, to measure strain in 

real-time within the test span. The sensors were installed on the 

bridge beams in July 2019. The sensors recorded mostly strain, 

but also some temperature data, evaluated through remote 

activation, until the ultimate load test in September 2019. The 

sensors were uninstalled prior to the bridge demolition. 

Reykjavik University conducted two measurement 

campaigns on the bridge, utilizing five 3-axial accelerometers 

and two LVDT displacement sensors within the test span. The 

data from those measurements have been used to analyze the 

response of the bridge, and more details and results can be 

found in [3]. 

In September 2019, IRCA and Reykjavik University jointly 

performed a shear capacity test on the test span of the bridge, 

monitoring both strain and displacement. 

 

Figure 6. Side view of the Steinavötn bridge illustrating the 

test span (between Piers 4 and 5) used for structural analysis, 

including shear capacity testing. 

 Detailed description of incremental point load test 

The purpose of this test is to assess the structural integrity and 

load capacity of the bridge component, specifically related to 

the Steinavötn bridge's shear capacity. The steel structures 

supporting the hydraulic jacks were designed to withstand a 

minimum bearing capacity of 3000 kN, considering steel 

availability and on-site assembly. According to a 2018 master's 

thesis [1], the Steinavötn bridge's local shear capacity is 

approximately 2200 kN. The experiment aims to validate these 

calculations and ensure the safety and reliability of the bridge 

structure under realistic loads. 

Figure 7 depicts the test setup designed to evaluate the load-

bearing capacity of the bridge structure. The setup utilizes two 

hydraulic jacks, each capable of applying a maximum force of 

200 tons, which is distributed through 300x300 mm plates onto 

the bridge deck. These jacks are supported by a 5-meter-long 

HEA1000 beam, which transfers the load to HEB100 columns. 

The columns, in turn, are bolted to lower HEA1000 beams, 

which are restrained by two HEB300 beams and connected to 

piles via ø25 mm rebars. Each rebar pair is clamped to a single 

pile using UNP100 profiles and M20 bolts. Each pile group 

consists of four piles, approximately 11 meters deep. 

 

 

Figure 7. Test Setup 

The test analyzed in this paper was performed on the 17th of 

September 2019. Loads were applied using the hydraulic jacks 

in steps, starting at approximately 500 kN and reaching 

approximately 2300 kN. The load as measured by the load cells 

is shown in Figure 8. 
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Figure 8. Displacement and force measurements during 

incremental point load test. 

4 FIBER-OPTIC AND DISPLACEMENT SENSORS 

Before the load tests were conducted, long-gauge fiber-optic 

strain sensors from the technology company OSMOS were 

installed on the bridge in axial, parallel, and crossed topologies; 

see Figure 9. During the incremental point load test, an LVDT 

sensor was placed under each T-beam in the center of the tested 

span.  

 Long-gauge fiber-optic strain sensors 

Fiber-optic sensors emerged several decades after the invention 

of electrical strain gauges. Fiber-optic sensors are primarily 

made of silica, an inert material resistant to chemical exposure, 

and electromagnetic interference [11]. This makes silica highly 

suitable for measurements in harsh environments like concrete. 

The fiber optic serves both as the sensor and the transmission 

medium for the measurement. Depending on its configuration, 

a fiber-optic sensor can measure strain, tilt, acceleration, 

movement, temperature, humidity, corrosion, and more [12]. 

Additionally, multiple types of sensors can be linked together 

and transmit measurements through the same medium. 

Moreover, signals can be transmitted over long distances 

(several kilometers) without requiring electrical power [11], 

[13]. 

 

 

Figure 9. Long-gauge fiber-optic strain sensor locations on the 

south side of the monitored span. Note: sensor locations are 

the same on the north side of the span except lower sensors in 

parallel topologies over piers are not present.  

Discrete strain gauges are either short (approximately 10–

100 mm) or long (250–10,000 mm) [13]. Short- and long-gauge 

sensors provide similar results in homogeneous materials. 

Common construction materials, particularly concrete, are far 

from homogeneous, as they are characterized by aggregates, 

cracks, and pores [14]. The properties of concrete are thus 

discontinuous, and while short strain gauges can provide 

accurate information about localized strains, it is nearly 

impossible to accurately represent the overall strain state of a 

concrete structure with short gauge sensors. However, long 

gauge strain sensors measure the average strain over their 

gauge length, offering a better overview of the behavior in 

heterogeneous materials. In other words, it is often less relevant 

to know the strain in the individual components of concrete 

(cement paste, aggregates, phase boundaries) but far more 

relevant to measure the overall behavior and response of the 

material referred to as concrete. Further discussion on the 

accuracy and applicability of long-gauge fiber-optic strain 

sensors can be found in the literature, f.ex. [15], [16], [17]. 

Parallel strain sensors provide information about the average 

curvature of the cross-section [13], specifically, 

 𝜅 =
𝜀1−𝜀2

ℎ
 (1) 

where: 

𝜅 is the average curvature of the cross-section in 𝜇𝜀 mm⁄  

𝜀1 is the axial strain measured by the lower sensor in a parallel 

topology in 𝜇𝜀 

𝜀2 is the axial strain measured by the upper sensor in a parallel 

topology in 𝜇𝜀 

h is the distance between the two sensors in mm 

 

Crossed strain sensors are intended to measure the average 

shear strain over the height of the cross [13], specifically, 

 𝛾 =
𝜀1−𝜀2

2 cos(𝛼)sin⁡(α)
 (2) 

where: 

𝛾 is the average shear strain in 𝜇rad  

𝜀1  is the axial strain measured by sensor 1 in the crossed 

topology in 𝜇𝜀 

𝜀2  is the axial strain measured by sensor 2 in the crossed 

topology in 𝜇𝜀 

𝛼 is the angle between the sensors in the cross 

 

The curvature over the east pier and shear under the load, as 

measured by the parallel and crossed sensors respectively, are 

shown in Figure 10 and Figure 11. 

 

 

Figure 10. Average curvature over east pier during the 

incremental point load test. 
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Figure 11. Average shear strain under the load during the 

incremental point load test. 

 LVDT displacement sensors 

Linear Variable Differential Transformers (LVDT) are known 

for their precision, dependability, and adaptability in measuring 

linear displacement [18]. The measurements from the middle 

of the span during the incremental point load test are shown in 

Figure 8 along with the load measurements. 

5 LINEAR APPROXIMATIONS 

Linear approximations for deformation at midspan, curvature 

and shear strain are provided in the following sections. These 

linear approximations become increasingly inaccurate as the 

load increases, more cracks form, and the structural behavior 

becomes more nonlinear.  

 Deformation 

The deformation is estimated using handbook equations for 

deformation of beams with different boundary conditions [19]. 

The true behavior of the span is somewhere between these two 

as the boundary conditions are stiffer than for the simply 

supported beam and softer than the fixed-fixed beam. Thus, the 

true deformation is a weighted average of the two equations. 

 

Simply supported beam: 

 Δ𝑥 =
𝑃𝑏𝑥

6𝐸𝐼𝑙
(𝑙2 − 𝑏2 − 𝑥2) (3) 

Beam with fixed-fixed supports: 

 Δ𝑥 =
𝑃𝑏2𝑥2

6𝐸𝐼𝑙3
(3𝑎𝑙 − 3𝑎𝑥 − 𝑏𝑥) (4) 

where: 

∆𝑥 is the deformation at location x in mm.  

P is the load in N 

a is the location of the load from the left support in mm 

b is the location of the load from the right support in mm 

l is the total length of the span, 𝑙 = 𝑎 + 𝑏, in mm 

E is the elastic modulus in MPa 

I is the moment of inertia of the cross-section in mm4 

 Curvature 

When assuming linear behavior the curvature in the cross-

section is 

 𝜅 =
𝑀

𝐸𝐼
∙ 106 (5) 

where: 

𝜅 is the average curvature in 𝜇𝜀/mm 

M is moment in the section in Nmm 

E is the elastic modulus in MPa 

I is the moment of inertia of the cross-section in mm4 

 Shear 

When assuming that the material behaves within the linear 

elastic range, the shear stress in a hollow box cross-section can 

be expressed as: 

 𝛾 =
𝑉𝐴𝑦̅

2𝐺𝐼𝑡
∙ 106 (6) 

where: 

𝛾 is the average shear strain in 𝜇rad 

V is the shear force acting on the section in N, 

A is the area above the point where the stress is calculated in 

mm2, 

𝑦̅ is the distance from the centroid of A to the centroid of 
the cross-section in mm 

G is the shear modulus in MPa 

I is the moment of inertia of the cross-section in mm4 

t is the thickness of the web (total thickness 2t) in mm 

6 NONLINEAR NUMERICAL MODELS 

 OpenSees 

OpenSees (Open System for Earthquake Engineering 

Simulation) is a software framework for developing 

applications in earthquake engineering using finite element 

methods [20]. It is designed to simulate the behavior of 

structural and geotechnical systems subjected to earthquakes. 

The flexibility of OpenSees allows researchers and engineers 

to create customized models that can accurately reflect the 

unique characteristics of various materials and structural 

configurations. This capability makes it an invaluable tool in 

assessing the performance of structures during seismic events 

and informing design improvements. 

The Beam Truss Model (BTM) proposed by Lu and 

Panagiotou [21] and Lu et al. [22] is a design-oriented analysis 

method used to model reinforced concrete (RC) structures, 

efficiently computing the force and deformation capacity of RC 

components. It represents a wall component as an assemblage 

of horizontal, vertical, and inclined line elements with a beam 

formulation and a fiber section, capturing nonlinear out-of-

plane flexural resistance and its coupling with axial and in-

plane flexural/shear resistance. This method makes it possible 

to get a more accurate picture of how the structure will behave 

under different loads, which makes design predictions more 

reliable. The BTM also makes it easier to include advanced 

material models, which helps engineers better understand how 

the different parts of reinforced concrete structures interact 

with each other. 

There is a biaxial truss element in OpenSees called Truss2. It 

is meant to consider biaxial effects in a uniaxial element when 

it is used with the ConcretewBeta material. The ConcretewBeta 

material is a uniaxial concrete material model in OpenSees that 

considers the effect of normal tensile strain on the compressive 

behavior of concrete, using a tri-linear compressive stress-

strain envelope to model strength degradation in tension. This 

interaction allows for a more accurate representation of how 
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concrete structures respond under various loading conditions, 

particularly when subjected to simultaneous axial and lateral 

forces. By utilizing the Truss2 element with the ConcretewBeta 

material, engineers can better predict potential failure 

mechanisms and optimize the design of reinforced concrete 

elements for enhanced safety and performance. 

 OpenSees model of Steinavötn bridge 

In this study, the test span of the Steinavötn bridge was 

modeled utilizing OpenSees with the BTM approach. The span 

was discretized into 60 units along its length. As illustrated in 

Figure 12, the blue lines, parallel to the bridge's longitudinal 

axis, were modeled as longitudinal elements. These 

dispBeamColumn elements are particularly suited for capturing 

nonlinear material and geometric behavior. Thirteen 

dispBeamColumn elements with fiber sections were used, 

totaling 780 elements. The fiber sections incorporated Steel02 

material for rebar and Concrete04 material for concrete. 

Hollow boxed girder and double T-beam sections have been 

considered with different fiber sections at the bottom of the 

cross-section (this distinction is not visible in Figure 12). This 

fine discretization allowed for a detailed representation of the 

nonlinear material behavior under the incremental point load 

test. The red lines, representing the transverse elements of the 

deck, were modeled. In contrast, elasticBeamColumn elements 

model beams and columns with linear elastic material 

properties. Twelve elasticBeamColumn elements were used 

per cross-section, totaling 732 elements. The piers, located on 

both sides, were modeled with two elasticBeamColumn 

elements each, bringing the total number of 

elasticBeamColumn elements to 736. These 

elasticBeamColumn elements considered only the concrete's 

Young's modulus, assuming linear elastic behavior. The green 

lines, representing the diagonal elements of the triple-layer grid 

structure (Truss2 elements), a key component of the Beam-

Truss model, totaled 1440 elements, incorporating the 

ConcretewBeta material to model the concrete's tensile and 

compressive response. The total number of elements used in the 

OpenSees model was 2952. Fixed boundary conditions, 

denoted by magenta squares in Figure 12, were applied at the 

base of the piers to simulate the support constraints. 

 

 
Figure 12. OpenSees model of the Steinavötn bridge with 

applied loads, highlighting the structural discretization.  

 

Information on deformation is extracted directly from the 

midspan of the model. For evaluation of the curvature and 

shear, strains are extracted at the sensor locations, and the 

curvature and shear strain are calculated using Equations (1) 

and (2). 

7 RESULTS 

The results from measurements, linear approximations, and 

nonlinear numerical modelling are presented in Figure 13 to 

Figure 15. The results are presented as force-response diagrams 

highlighting the nonlinearity of the bridge behavior at high 

loads. The measurement results are shown in yellow and red, 

with measurements on the north side of the bridge in yellow 

and on the south side in red, the linear approximations in dot-

dashed gray, and the nonlinear OpenSees results in dashed 

black. 

The load-displacement at midspan is reported in Figure 13. 

The measurements fall between the linear approximations of 

the fixed beam and the simply supported beam, as was expected. 

The weighted average is calculated by combining 30% of the 

response from the fixed beam and 70% from the simply 

supported beam. However, the measured displacement is never 

truly linear. The nonlinear model has the same slope as the 

simply supported beam and starts to deviate from that line when 

the load reaches approximately 1500 kN. The model appears to 

have more capacity than the real structure. 

 

 

Figure 13. Load-displacement diagram. Results from 

measurements, linear approximations, and nonlinear 

numerical modelling at midspan. 

The load-curvature at the east pier is shown in Figure 14. The 

curvature is calculated from strain measurements and nonlinear 

numerical modelling strains using Equation (1). The linear 

approximation is calculated using Equation (5). The measured 

curvature exhibits linear behavior very close to the linear 

approximation until the load reaches approximately 1500 kN. 

The nonlinear numerical model changes stiffness (slope) when 

the load reaches 500 kN and then again when the load reaches 

1500 kN. The nonlinear numerical model shows less stiffness 

than the measurements. This is reasonable since the numerical 

model is a single span supported by piers, not including the 

adjacent spans that will increase stiffness. However, despite 

this minor difference in stiffness, the model successfully 

models the measured behavior.  



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-157 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1047 

The load-shear strain relationship close to the east pier is 

shown in Figure 15. The average shear strain from fiber-optic 

strain measurements in crossed topologies on the north and 

south side of the bridge is calculated using Equation (2). The 

same equation is used to calculate the simulated shear strain 

using strains from the Truss2 element in the OpenSees model. 

Note that 𝛼 = 45° in the model whereas 𝛼 = 39° for the fiber-

optic strain sensors.  

 

 

Figure 14. Load-Curvature diagram. Results from 

measurements, linear approximations, and nonlinear 

numerical modelling at the east pier. 

 

 

Figure 15. Load-Shear Strain diagram. Results from 

measurements, linear approximations, and nonlinear 

numerical modelling near the east pier. 

In the incremental point load test the load is applied directly 

above the crossed fiber-optic strain sensors. The internal shear 

diagram for the bridge thus has a sharp discontinuity exactly at 

the sensor location. Additionally, according to St. Venant’s 

principle the strain field directly under the force is heavily 

perturbed. However, despite these circumstances the average 

measured strain on the north side is in good agreement with the 

linear approximation until the load reaches 1500 kN. On the 

south side the stiffness seems to be less than on the north side 

and the stiffness changes before the load reaches 1500 kN. 

More detailed analysis is needed to explain the difference 

between the response on the north and south side of the bridge. 

The nonlinear numerical model shows stiffer behavior under 

low loads than the fiber-optic measurements and changes 

stiffness when the load reaches 1000 kN. Generally, the 

numerical results are in good agreement with measurements on 

the north side of the bridge. 

8 DISCUSSION 

Simple linear approximations are able to describe the linear 

behavior of this concrete structure. When the load reaches 1500 

kN, a nonlinear response is observed in all studied parameters. 

The load-displacement behavior at midspan demonstrates that 

measured displacements fall between the linear approximations 

of a fixed and simply supported beam, with an estimated 

weighted response of 30% fixed and 70% simply supported. 

While the nonlinear numerical model captures the general 

trend, it predicts a higher load capacity than observed in 

measurements. 

The load-curvature relationship at the east pier exhibits good 

agreement between measurements and the linear 

approximation up to approximately 1500 kN. The nonlinear 

numerical model changes stiffness at 500 kN and 1500 kN and 

generally shows less stiffness than measured values. This 

difference is attributed to the model's exclusion of adjacent 

spans, which would otherwise contribute to the bridge’s overall 

stiffness. Nonetheless, the nonlinear model successfully 

replicates the measured strain behavior at sensor locations, 

validating its reliability. 

An important factor to keep in mind is that Equation (1) is 

based on the assumption that plain sections remain plain and 

that the strain distribution over the height of the cross-section 

is linear. This assumption is true in the linear elastic range of 

the materials, demonstrated by the excellent agreement 

between the linear approximation and the measurements. 

However, after the materials enter the nonlinear regime, plain 

sections do not necessarily remain plain and the assumption 

that the strain varies linearly between the two parallel sensors 

is not necessarily correct. In other words, the slope of the line 

between the two strain measurements in the parallel sensor 

topology does not necessarily accurately describe the curvature 

of the cross-section when the bridge starts to behave 

nonlinearly. The fact that the curvature obtained by this method 

from the strain measurements and the nonlinear model are 

similar demonstrates that nonlinear model successfully 

simulates the strains at the sensor locations. 

The load-shear strain relationship near the east pier reveals a 

strong correlation between measured strains and the linear 

approximation up to 1500 kN on the north side. However, the 

south side exhibits lower stiffness and an earlier stiffness 

change, necessitating further investigation to understand these 

discrepancies. The nonlinear numerical model shows higher 

stiffness at low loads and a change in stiffness at 1000 kN but 

aligns well with measurements on the north side. Strains as 

simulated by the nonlinear OpenSees model are similar to the 

measurements from strain sensors, resulting in curvature and 

shear strain with similar behavior. This result highlights the 

strength of the Truss2 elements in OpenSees in conjunction 

with crossed fiber-optic sensors. 
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9 CONCLUSION 

This paper presents the Steinavötn bridge that was damaged 

during flooding in 2017. Subsequently, before demolition, the 

bridge was instrumented with long-gauge fiber-optic strain 

sensors and LVDT sensors, and tests carried out far into the 

nonlinear regime. This paper presents the load-response 

behavior of the bridge under the incremental point load test 

using the fiber-optic and LVDT measurements, linear 

approximations, and nonlinear numerical modeling in 

OpenSees.  

The analyzed parameters were displacement at midspan, 

curvature at the east pier and shear strain near the east pier 

(under the load). All analyzed parameters exhibit linear 

behavior up to an approximate load of 1500 kN. The results 

highlight the bridge’s nonlinear response at high loads and 

provide valuable insights into its structural behavior. 

More in depth analysis of the nonlinear strain field from the 

OpenSees model is necessary to evaluate the error caused by 

the linear assumptions made in the data analysis of the sensor 

and numerical data. Overall, the nonlinear numerical model 

effectively captures key aspects of the bridge’s nonlinear 

response, despite minor discrepancies in stiffness predictions. 

Future research should focus on refining the numerical 

model, exploring differences between the north and south side 

responses, and evaluating the effects of adjacent spans to 

enhance predictive accuracy. 
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ABSTRACT: This study addresses the need for high-fidelity system identification in Digital Twin (DT) applications for Structural 

Health Monitoring (SHM). As infrastructure ages, its material properties may degrade due to various factors, including damage, 

corrosion, and fatigue. Accurate assessment of material properties is critical for ensuring safety and reliability. High-fidelity 

identification enables the detection of localized damages that traditional methods may not detect, directly impacting maintenance 

strategies and public safety. In this work, we present a formulation of the optimization problem that minimizes errors between 

observed and simulated displacements by varying material properties. Additionally, we utilize adjoint-based sensitivity analysis, 

combined with regularization techniques such as Vertex Morphing, to enhance the efficiency and robustness of the optimization 

process. Our case studies, which include detailed analyses of 2D and 3D structures using real-world data, demonstrate the 

effectiveness of our methods in accurately inferring material properties and revealing structural integrity. By implementing this 

advanced methodology, practitioners can achieve timely and accurate assessments of structural integrity, leading to better-

informed decision-making regarding maintenance and safety protocols. This research contributes to the ongoing advancement of 

Digital Twin technology, promoting safer and more efficient infrastructure management. 

KEYWORDS: High-fidelity Digital Twin, Inverse Problems, Regularization, Adjoint sensitivity analysis. 

1 INTRODUCTION 

Throughout the lifecycle of structures, their material properties 

can deteriorate due to various factors, including damage, 

corrosion, and fatigue. Advances in sensor technology and 

numerical simulation techniques now enable the creation of 

Digital Twins (DT) — dynamic digital representations of 

complex structures. DT  can be defined as follows [7-10]: 

 

“A set of virtual information constructs that mimic the 

structure, context, and behavior of an individual/unique 

physical asset, or a group of physical assets, is dynamically 

updated with data from its physical twin throughout its life 

cycle and informs decisions that realize value.” 

 

A key component in developing DT is system identification, 

which involves evaluating the current state of material 

properties and identifying areas of weakness. This process 

often requires solving inverse problems through appropriate 

parameterization, typically framed as an optimization 

challenge. The formulation steps of the system identification 

problem can be outlined as follows: 

1. System Description: Analyze all available information 

about physical objects and numerical models, including 

documentation, numerical models, or data from the design 

phase, for instance, testing data from wind tunnels or 

experiments with material samples. 

2. State Information: Collect and analyze available sensor 

data, measurements, load tests, and visual inspections to inform 

the assessment. 

3. Definition of Optimization Problem: Define the objective 

function that incorporates the available measured data and 

select system parameters to minimize the errors between 

measured and computed data points. 

Figure 1 illustrates the “twinning” process schematically. In 

real-world applications, the structure can be used under various 

conditions. A digital model can predict performance and 

provide feedback about the structure, indicating whether it 

requires maintenance or can be safely used further. To enhance 

the feedback provided by the digital model, the system 

identification process aligns the real and virtual worlds. 

 
Figure 1. Twinning real and digital worlds. 
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In system identification, various fidelities can be applied, 

which can be categorized into two main types: analysis and 

identification, as shown in Figure 2. Low-fidelity analysis is 

represented by simplified finite element (FE) models, such as 

using beam elements to describe the structure. In contrast, high-

fidelity models incorporate detailed geometry, complex 

material laws, and other intricate characteristics.  

Similarly, low-fidelity identification involves a limited number 

of parameters that typically reflect the overall structural 

behavior of the system. Low-fidelity system identification is 

well solved using artificial neural networks. For instance, in 

[14], the identification parameters are the coordinates of the 

damaged regions and the stiffness reduction factor. This setup 

allows for the localization of damage, but it is limited to a single 

region. In [16], the three-floor structure is studied, where each 

floor has its own set of global identification parameters, which 

describe the structure's properties. As a result the damage 

localization is limited to the floor.  

In high-fidelity identification, however, many system 

parameters need to be determined, for example, a unique set for 

each finite element in the model. Consequently, while low-

fidelity identification can indicate an average weakening in the 

structure, high-fidelity identification can localize many 

damaged regions with different shapes and damage intensity.  

In this work, we focus on high-fidelity FE models and high-

fidelity identification as the most challenging case. However, 

the proposed methodology can also be applied to other fidelity 

cases. 

 
Figure 2. Fidelity levels in the FE model and system 

identification. 

 

An adjoint analysis is an essential component of solving high-

fidelity system identification problems with many parameters. 

The adjoint-based technique for localizing damages in 

structures using displacement and strain measurements is 

presented in [1]. A combination of several sensor approaches 

would also appear highly promising in future applications [11], 

including risk measures and uncertainty quantification [12]. 

Additionally, recent research has demonstrated the potential for 

restoring the temperature field based on displacement and 

strain measurements [13]. 

Frequent updates between numerical and physical assets are an 

essential property of the digital twin in practical applications. 

Live monitoring requires a fast solution to the system 

identification problem to analyze and update the system. In [3], 

the authors studied the possible computational cost reduction 

using various optimization algorithms.  

This study addresses the minimization problem associated with 

identifying material properties within numerical models. The 

cost function is formulated based on the aggregated errors 

between observed and simulated displacements across multiple 

locations. To enhance the robustness of the minimization 

process, we employ various smoothing and filtering techniques, 

including the Vertex Morphing approach, which helps 

regularize the optimization problem. 

We present both 2D and 3D structural case studies, where one 

of the cases are represented by a testing bridge “Concerto”. Our 

examples utilize real-world data alongside numerical 

simulations to demonstrate the effectiveness of our methods in 

accurately inferring material properties and revealing structural 

integrity. This work contributes to the ongoing advancement of 

Digital Twin technology for effective structural health 

monitoring, ultimately promoting safer and more reliable 

infrastructure. 

2 METHODOLOGY 

The system identification of material properties, such as 

damage, can be formulated as an optimization problem 

involving unknown material parameters 𝒑 = [𝑝1, 𝑝2, … 𝑝𝑛]. 
Depending on the applied material model, the unknown 

material parameters can be Young's modulus, Poisson's ratio, 

or other, at each of the elements in the finite element model 

(FEM). Figure 3 illustrates the components of generalized 

system identification, which includes a digital twin and the 

optimization problem. 

The digital twin comprises a physical object, measured data, 

and a numerical model. The key components of the 

optimization process are material parameters, a regularization 

technique, an optimization algorithm, and the formulation of 

the objective function, which incorporates the available 

measured data. The following sections describe details of each 

component and its challenges. 

 
Figure 3. System identification process. 

 Objective function 

One of the key components in setting up the optimization 

process is defining the objective function. Based on the 

available data, the generalized objective function can be 

formulated as a weighted sum of the errors between measured 

and computed quantities. Given l number of the different sensor 

types and n given load cases 𝑭𝑖 , 𝑖 = 1. . 𝑛; 𝑛 ∙ 𝑙 corresponding 

measurements at m measuring points of their respective data 𝜑. 

The variable 𝜑 can represent different quantities based on the 

sensor type, for instance, displacement, strain, temperature, 

acceleration and etc. The generalized objective (cost) function 

is formulated as: 
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𝐽(𝒑, 𝝋(𝒑))

= ∑ ∑ ∑ Φ(𝜔𝑘𝑖𝑗 , 𝝋𝑘𝑖𝑗
𝑚𝑑 , 𝑰𝒌𝒊𝒋

𝒅 𝝋𝒌𝒊(𝒑), 𝒑)

𝑚

𝑗=1

𝑛

𝑖=1

𝑙

𝑘=1

 
(1) 

where 𝜔𝑘𝑖𝑗 are the measurement weights; 𝑰𝒌𝒊𝒋
𝒅  are interpolation 

matrices that are used to obtain the computed value from the 

finite element mesh at the measurement locations. 

Φ (𝜔kij, 𝝋kij
md, 𝐈kij

d 𝝋ki(𝐩)) is a weighted aggregation function, 

for instance, weighted square sum: 

Φ =
1

2
𝜔𝑘𝑖𝑗[𝝋𝒌𝒊𝒋

𝑚𝑑 − 𝑰𝒌𝒊𝒋
𝒅 𝝋𝒌𝒊(𝒑)]

2
 (2) 

In case, only one load case is considered with one sensor type 

with displacement measurements, and the material parameter 

of interest is Young’s modulus, then the objective function 

defined in Equation (1) simplifies to: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝒖𝒋

𝑚𝑑 − 𝑰𝒋
𝒅𝒖(𝑬))

2
𝑚

𝑗=1

 (3) 

 

 Sensitivity analysis 

An important step in the optimization process for identifying 

material parameters is computing the derivative of the objective 

function with respect to the material parameters. Considering 

the objective function introduced in Equation (3), we can apply 

the chain rule: 
𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝑬
+

∂𝐽

∂𝒖

𝑑𝒖

𝑑𝑬
 (4) 

where 
∂𝐽

∂𝑬
= 0 because 𝐽 does not depend directly on 𝑬, 

Equation (4) can be further developed: 

𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝒖

𝑑𝒖

𝑑𝑬
= − (∑ 𝜔𝑗(𝒖𝒋

𝑚𝑑 − 𝑰𝒋
𝒅𝒖)

𝑚

𝑗=1

)
𝑑𝒖

𝑑𝑬
 (5) 

In general, 
𝑑𝐽

𝑑𝑬
 can be computed using either the finite difference 

approach or the adjoint approach. Due to a large number of 

material parameters to identify, the adjoint approach is 

preferred because it is computationally more efficient by 

avoiding the direct computation of 
𝑑𝒖

𝑑𝑬
. Adjoint approach 

requires first solving a primal problem, which is depicted in 

Equation (6) in the residual form, where 𝑲 is the stiffness 

matrix, 𝒖 is the displacement vector, and 𝑭 is the load vector:  

𝑹 = 𝑲𝒖 − 𝑭 (6) 

Then, the adjoint problem is solved for 𝛌 Lagrange multipliers: 

(
∂𝑹

∂𝒖
)

𝑇

𝛌 = − (
∂𝐽

∂𝒖
)

T

 (7) 

and the Lagrange multipliers are used in a post-processing step 

to compute the final sensitivities: 
𝑑𝐽

𝑑𝑬
=

∂𝐽

∂𝑬
+ 𝛌𝑇

∂𝑹

∂𝑬
 (8) 

We would like to note that the Equation (7) is independent of 

the choice of the material parameter. Hence, the adjoint 

approach can be used for various material parameters and 

Young’s modulus 𝑬 has been used as an example. A lot of 

performance and implementation optimization can be achieved 

by solving the adjoint system, because (
∂𝑹

∂𝒖
)

𝑇

= 𝑲𝑇 and 𝑲 is 

symmetric, hence we can re-use the existing left-hand side of 

the primal problem and only have to change the right-hand side 

(i.e. pseudo-load)to obtain 𝛌. 

 Regularization 

Similarly to node-based shape and topology optimization, to 

avoid high-frequency noisy results, we need to apply 

appropriate regularization techniques [2]. Therefore, one 

option is to subject the raw gradients to smoothing using filters. 

In [1], the authors reviewed various gradient smoothing 

techniques for material identification problems, such as simple 

element averaging, weak Laplacian smoothing, and pseudo-

Laplacian smoothing, where the last one has been chosen as a 

better technique. In [3], the authors apply an explicit filter 

called Vertex Morphing to smooth material gradients. In the 

context of Vertex Morphing, thus, the physical material 

properties, for instance, Young’s Modulus 𝑬 are indirectly 

controlled by an unsmoothed control field 𝒑 and a kernel (or 

filter) function ℱ, for example, on the surface Γ with surface 

coordinates (𝜉, 𝜂, 𝜁): 

(ξ0, η0, ζ0) = ∫ℱ
Γ

(ξ − ξ0, η − η0, ζ − ζ0)𝒔(ξ, η, ζ)𝑑Γ (9) 

After discretization of the structural geometry 𝑬 =
[𝐸1, 𝐸2, … , 𝐸𝑛] and control function 𝒔 = [𝑠1, 𝑠2, … , 𝑠𝑛] by 

standard techniques such as the finite element method, Vertex 

Morphing appears as: 

𝑬 = 𝑨𝒔 (10) 

Where 𝑬 is Young's modulus of elements, and they are 

arranged sequentially. 𝑨 is the filter operator matrix, and 𝒔 is 

the vector of discrete control field parameters, again arranged 

sequentially. The most straightforward approach is to add 

control parameters to every element.  

The entries Aij of the filter matrix 𝑨 reflect the filter effect as 

the interaction between two different centers of the elements i 

and j, their center's spatial position vectors 𝑥𝑖 and 𝑥𝑗, and their 

Euclidean distance ‖𝑥𝑖  − 𝑥𝑗‖. For the case of the Gauss 

distribution as kernel function and approximating integration 

by summation, it holds: 

𝐴𝑖𝑗 = ℱ(𝑥𝑖 , 𝑥𝑗)/𝑠𝑢𝑚 

𝑠𝑢𝑚 = ∑ ℱ(𝑥𝑖 , 𝑥𝑗)

𝑗

 (11) 

ℱ(𝑥𝑖 , 𝑥𝑗) = {
𝑒−‖𝑥𝑖−𝑥𝑗‖

2
/2𝑟2

, ‖𝑥𝑖 − 𝑥𝑗‖ ≤ 𝑟 

0.0, ‖𝑥𝑖 − 𝑥𝑗‖ > 𝑟
 (12) 

and 𝑟 is the filter radius. By changing the filter radius, one can 

adjust the filtering intensity. 

 Generalized workflow 

Figure 4 shows the generalized workflow of the optimization 

process for system identification. Every optimization iteration, 

we need to evaluate objective function value and it’s gradients. 

Then, we apply Vertex Morphing (or other filtering technique) 

on the computed gradients and compute the control parameter 

update using optimization algorithm. Then, we apply one more 

time Vertex Morphing on the computed control parameter 

update to compute new model parameters state. This process 

continues till the convergence criteria are met or maximum 

number of optimization iterations are reached.  
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Figure 4. Generalized system identification workflow as an 

optimization process. 

 

Relevant optimization convergence criteria for system 

identification are: 

1. Relative reduction of objective function: 

𝐽(𝒑𝑖)

𝐽(𝒑0)
≤ 𝜀 (13) 

2. Absolute reduction of objective function: 

𝐽(𝒑0) − 𝐽(𝒑𝑖) ≥ 𝜀 (14) 

3. Maximum sensor error: 

max
j

𝑎𝑏𝑠(𝒖𝒋
𝑚𝑑 − 𝑰𝒋

𝒅𝒖(𝒑)) ≤ 𝜀 (15) 

In general, a lot of standard techniques from optimization 

theory can be apply to solve system identification problems, 

including convergence criteria, optimization algorithms, 

aggregation techniques, variable scaling, line search techniques 

and globalization strategies. 

3 CHALLENGES IN SYSTEM IDENTIFICATION 

In this section main challenges of the method are summarized. 

 Modeling the objective function 

The choice of the objective can play a crucial role in system 

identification because various types of measured data have to 

be combined. That require a proper scaling of the measured 

information to keep the objective function dimensionless and it 

allows to find a “correct” solution. Additionally, in 

minimization of the sum of the errors, the component with the 

highest error would have the highest contribution to the search 

direction. The sensor with highest error may change in the 

sequential optimization iterations leading to zig-zagging 

behavior. In [1], authors reviewed few weighting strategies to 

combine strains and displacements. In case of Equation (3), 

these techniques compute weights for displacements as 

follows: 

1. local weighting: 

𝜔𝑗 = (𝒖𝒋
𝑚𝑑)

−2
 

This method may lead to an ‘over-emphasis’ of small 

displacements, that are in regions of marginal interest. 

2. average weighting: 

𝜔𝑗 = [
∑ |𝒖𝒋

𝑚𝑑|𝑚
𝑗=1

𝑚
]

−2

 

This method may lead to an ‘under-emphasis’ of small 

displacements that may occur in important regions. 

3. max weighting: 

𝜔𝑗 = [max
𝑗

|𝒖𝒋
𝑚𝑑|]

−2

 

This method may lead to an ‘under-emphasis’ of smaller 

displacements that can occur in important regions; 

 

4. local/max weighting: 

𝜔𝑗 = max [ε max
𝑗

|𝒖𝒋
𝑚𝑑| , |𝒖𝒋

𝑚𝑑| ]
−2

 

where ε = [0.01, 0.1]. This method works best of all, as it 

combines local weighting with a max-bound minimum for local 

values. 

The weights for strain components (or other measured values) 

can be computed in a similar manner.  

 Large design space 

In our approach, we aim to identify the material parameters for 

each element individually. As a result, there are various spatial 

distributions of material properties that can produce similar or 

identical deformations under a fixed load case. This type of 

optimization problem is known as “multimodal,” meaning it 

has multiple optimal solutions with the same objective function 

values. Consequently, engineering expertise is necessary to 

"narrow" down the design space. For example, if the material 

is expected to weaken over time, we can impose an upper limit 

on Young’s modulus to prevent stiffening of the structure, as 

illustrated in Figure 5. 

 

 
Figure 5. Results of the system identification problem with 

(right) and without (middle) stiffening in the material. 

 

To improve the convergence of the system identification 

process, authors in [4] suggest using a zoom-in approach, 

where they start with a limited number of design variables and 

then gradually reparametrize the problem to zoom into the 

damaged region by switching from low-fidelity identification 

to high-fidelity. This approach improves the robustness of the 

method by better finding the weak areas globally and afterward 

identifying damages on a smaller scale. 

 Discrete gradients 

To localize damage effectively, it is necessary to consider 

many material parameters, such as modifying Young's modulus 

for each element. This results in a large number of parameters 

and the need for gradient-based optimization algorithms. 

Consequently, adjoint analysis is essential. Section 2.2 

discusses the use of adjoint analysis to compute the gradients 

of the objective function. 

The gradients obtained through adjoint methods can be discrete 

and noisy, which may lead to high-frequency solutions. To 

address this issue, regularization techniques are required. One 

such technique is Vertex Morphing, which is introduced in 

Section 2.3. Figure 6 illustrates the effect of Vertex Morphing. 
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Figure 6. Young’s Modulus distribution: top – without, 

bottom – with Vertex Morphing. 

 Optimization algorithm 

The difference between classical mathematical optimization 

problem and system identification problem is that evaluation of 

the objective value typically requires solving the FEM-based 

structure analysis. Therefore, robust and efficient optimization 

algorithms are required with minimal functional and gradient 

evaluations. In [3], the authors compare various optimization 

algorithms and their performance. It has been shown that a 

significant amount of computational cost can be avoided by 

selecting a well-suited algorithm.  

Figure 7 shows the performance of the various algorithms. 2D 

Plate with a hole (Section 4.1) has been used as a benchmark to 

study the performance. The tested algorithms are: SciPy 

Broyden-Fletcher-Goldfarb-Shanno (BFGS), SciPy Limited 

memory Broyden-Fletcher-Goldfarb-Shanno bounded 

algorithm (L-BFGS-B), SciPy conjugate gradient algorithm 

(CG), SciPy Trust-Region Constrained Algorithm (TRC), 

PyRol the steepest descent method with back-tracking line 

search, PyRol Lin-More trust region algorithm (LM-TR) and 

Kratos Nesterov accelerated gradient method with Quasi-

Newton Barzilai-Borwein correction line search (NAG-

QNBB). 

 

 
Figure 7. Convergence rate of the tested algorithms [3]. 

4 NUMERICAL EXAMPLES 

This section demonstrates two examples of the system 

identification process. A simple 2D plate with a hole example 

is a numerical benchmark from [3], which is introduced to help 

the reader better understand the introduced methodology. The 

second example demonstrates the usability of the method on a 

real-world structure, and its measured performance is shown. 

The measured data were obtained from [5]. 

 2D Plate with a hole 

The FE model of the 2D plate with a hole is shown in Figure 8, 

where the left side is fixed, and the distributed force is applied 

on the right side. Figure 9 (left) shows displacements of the 

damaged model and the mapped displacements to the sensors. 

These displacements are used as “measured” displacements to 

identify the given damage. The virtual sensor is modeled as a 

point with x- and y- spatial coordinates, and the measured value 

is associated with its location. The damaged material is visible 

in Figure 9 (right). 

 

 
Figure 8. FEM model [3]. 

 

 
Figure 9. Measured displacements (left ) and 

predefined damage (right) [3]. 

 

The objective function is defined similarly to Equation (3), and 

it is based on the measured and computed displacements in the 

x-direction: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝑢𝑥𝑗

𝑚𝑑 − 𝑢𝑥𝑗
(𝑬))

2
𝑚

𝑗=1

 (16) 

The filtering radius is chosen to be constant, and 𝑟 = 5, 

covering approximately 4 FE elements. The optimization 

process stops when the maximum error in the sensor reaches 

10−5, Equation (15). 

Figure 10 shows the found damaged areas using the system 

identification process. Due to the applied filtering, the found 

damage areas have smoothed boundaries in contrast to the ideal 

predefined damage model (Figure 9).  



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-158 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1054 

 
Figure 10. Found damaged areas using the NAG-QNBB 

algorithm [3] 

 Concerto bridge 

For the long-term evaluation of innovative Structural Health 

Monitoring (SHM) techniques, the experimental plate girder 

bridge "Concerto" was constructed in 2005. The bridge 

measures 17.5 m in total length, 4.0 m in width, and 0.8 m in 

height [5, 6]. Figure 11 shows the support positions (A, B), the 

ground anchors (C), the transducers (C, D), and the cantilever 

arm (E). In the lower part of Figure 11, the instrumentation and 

reference point signalization are depicted. 

 

 
Figure 11. Experimental Bridge “Concerto”. Upper part: 

indication of support (A, B), ground anchor (C), Deformation 

transducer positions (C and D), and cantilever arm (E). Lower 

part: instruments (UAV, laser scanner, and transducer) and 

signalization of reference points [5]. 

 

Figure 12 shows the deformation of the bridge under the load 

from photogrammetric measurements. For more details on the 

measurement techniques, an interested reader is referred to [5]. 

In this study, we utilized data obtained through 

photogrammetric measurements. However, data from other 

measurement techniques can also be applied. We chose 

photogrammetric measurements because they provide 

continuous data, in contrast to the limited number of points 

obtained from tachymetry and transducer measurements. It is 

important to note that laser scanner measurements exhibit a gap 

between 12.5 meters and 15 meters. 

 
Figure 12. According to photogrammetric measurements, 

the deformation of “Concerto” under load is seen from the 

top. Lowered areas are colored in red, elevated areas in green, 

and no elevation change in black [5]. 

 

A finite element (FE) model has been created to model the 

bridge, as shown in Figure 13. This model consists of 77,000 

small-displacement 3D elements that represent the concrete 

domain (depicted in gray), 800 truss elements representing the 

tendons (shown in blue), and 107 small-displacement 3D 

elements that represent the elastomers (illustrated in yellow). 

The load is applied to the red surfaces. 

 

 
Figure 13. FE-model of the Concerto bridge: concrete part 

(gray), steel tendons (blue), elastomers (yellow), applied force 

(red). 

 

To utilize the measured data, we create a series of virtual 

sensors positioned along the x-axis at the midpoint of the 

bridge. Figure 14 illustrates the locations of these virtual 

sensors, represented as spheres, along with their corresponding 

values (displacement in the z-direction) that have been derived 

from the measured data. 

The objective function is defined similar to Equation (3) and it 

is based on the photogrammetric measurements and computed 

displacements in the z-direction: 

𝐽(𝒖(𝑬)) =
1

2
∑ 𝜔𝑗 (𝑢𝑧𝑗

𝑚𝑑 − 𝑢𝑧𝑗
(𝑬))

2
𝑚

𝑗=1

 (17) 

There are three various material domains to identify in the 

model. The largest domain is concrete, where we set the valid 

Young’s modules range to 𝐸 = [1𝑒9, 1𝑒11] 𝑃𝑎 and as the 

initial parameter 𝐸0 = 3𝑒10 𝑃𝑎. In this model, we set the upper 

boundary higher than the initial value because we want to keep 

large identification freedom. The second material domain is 

steel tendons, with parameter ranges 𝐸 = [1𝑒10, 1𝑒12] 𝑃𝑎 and 

𝐸0 = 2.1𝑒11 𝑃𝑎. The last model part is elastomers, which 

model the rubber supports with unknown material properties. 

We set 𝐸 = [1𝑒6, 1𝑒8]𝑃𝑎 and 𝐸0 = 1𝑒7 𝑃𝑎. All material 
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parameters are identified through a single system identification 

process.  

 

 
Figure 14. Applying the measured data to its numerical 

model: measured data at the center line (top graph), virtual 

sensors with mapped data (small circles). 

 

Figure 15-18 shows the final Young’s modulus of the materials. 

The results show that steel tendons are not damaged, and the 

elastomer material converges to 1𝑒8 𝑃𝑎. In Figure 16, we 

highlight the areas with damaged concrete and provide photos 

of these areas. Figure 17 shows the graph comparing the 

measured and computed displacement at the middle line before 

and after system identification. 

 

 
Figure 15.Young’s modulus of steel tendons shows no 

damage. 

 

 
Figure 16.Young’s modulus of elastomers converged to upper 

bound (1e8). 

 

The optimization process took 30 optimization iterations to 

reduce the objective function by 98.9 %. Further optimization 

iterations lead to overfitting the parameters (see Figure 19), 

where the material parameters converge to unphysical values, 

while the reduction of the cost function stays at similar level 

99.1 %. 

 

 
Figure 17. Top: Young’s modulus of concrete. Bottom: 

Pictures of the current state of the bridge in the weakened 

regions. 

 
Figure 18. Comparing z-displacements along the x-axis in the 

middle of the bridge: measured data (green), initial computed 

data (orange), final computed data (blue). 

 

 
Figure 19. Overfitted material parameters. Young’s modulus 

of concrete reaches upper and lower bounds. 

5 DISCUSSIONS 

In this study, we explored the system identification process for 

structural health monitoring using adjoint-based optimization 

techniques. Our findings highlight the effectiveness of 

employing high-fidelity Digital Twin models to accurately 

infer material properties and detect weaknesses in structures. 

The method has been applied to the “Concerto” bridge with 

real-world measured displacement. We have found damaged 

areas that are confirmed by visual inspection of the real state of 

the bridge.  

However, the results are not without limitations. One 

significant challenge is the dependence on sensor 

configuration, which can strongly affect the accuracy of the 

identified material properties. Additionally, the multimodal 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-158 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1056 

nature of the optimization problem complicates finding a “true” 

solution during the identification process, as multiple identified 

states can yield similar results. Another significant challenge is 

the convergence criteria, which, on one hand, should stop the 

optimization process before overfitting the material 

parameters, and on the other hand, shouldn’t stop it too early 

before all damaged regions are found. 

6 OUTLOOK 

Moving forward, we recommend several directions for future 

work:  

1) How can we identify the crucial measured locations / 

optimal sensor placement? 

2) How to load the structure? How many load scenarios 

are required to identify all damaged regions?  

3) How can we include the probability of sensor failure 

and inaccurate measurement? 

4) How can we check which damage can be found by a 

given sensor configuration on the structure? 

5) How to circumvent the overfitting of the data? 
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ABSTRACT: High fidelity finite element model updating plays a critical role in ensuring the accuracy and reliability of structural 

models for complex infrastructure systems. This study focuses on the application of a cooperative game theory model to update 

high fidelity finite element model of a pedestrian suspension bridge. By treating the model updating process as a cooperative game 

model, game theory provides a novel framework for distributing and balancing multiple objectives inherent in this process. The 

proposed approach is compared with conventional finite element model updating methods to assess its efficiency, accuracy, and 

robustness. Key performance indicators, such as the reduction in discrepancy between experimental and numerical modal 

parameters and computational efficiency are evaluated. The cooperative game theory framework is shown to enable an optimized 

and balanced resolution of conflicting requirements in high fidelity model updating, resulting in improved alignment with observed 

structural behavior. The primary objective of this research is to demonstrate the potential of game theory as an innovative and 

effective tool for solving optimization problems in high fidelity FE model updating. The findings are expected to contribute to 

advancements in structural health monitoring by providing a robust methodology for enhancing the reliability of numerical models. 

KEY WORDS: High Fidelity Finite Element Model Updating; Cooperative Game Theory; Structural Optimization; Structural 

Health Monitoring, Dynamic parameters 

 

1 INTRODUCTION 

High-fidelity numerical modelling has become essential in 

modern structural engineering for simulating complex physical 

behavior with a high degree of accuracy. High-fidelity finite 

element (FE) models are characterized by detailed geometric 

definitions, fine mesh discretization, and many physically 

meaningful parameters. These models enable precise structural 

simulations but also significantly increase computational effort 

and sensitivity to modelling assumptions. Despite their 

accuracy, high-fidelity FE models often fail to perfectly 

represent real structural behavior due to uncertainties in 

boundary conditions, material properties, and idealizations 

made during the modelling process. To reduce these 

discrepancies, the Finite Element Model Updating (FEMU) 

procedure is employed. FEMU involves adjusting selected 

model parameters based on experimental data—typically 

obtained from static tests, dynamic modal analysis, or 

continuous structural health monitoring—to improve 

correlation between the numerical model and the actual 

structural behavior [1]. The updating process becomes 

particularly challenging for high-fidelity models, where 

computational demands are high, and the solution space is 

large. In such cases, effective and reliable optimization 

strategies are critical. FEMU methods can be broadly classified 

into direct (non-iterative) and indirect (iterative) approaches 

[2]. Direct methods update the numerical model by modifying 

mass or stiffness matrices in a single step but may lack physical 

interpretability [3][4]. In contrast, indirect (iterative) methods 

adjust physical parameters through successive approximations 

until numerical predictions align with experimental data [5]. 

One of the most widely used formulations is the Maximum 

Likelihood Method, which treats FEMU as an optimization 

problem (Eq. (4)) aimed at minimizing the difference between 

predicted and measured structural responses (Eq. (1)- (3)) [6]. 

𝑟𝑡
𝑓(𝜽) = |∆𝑓𝑡| = |

𝑓𝑡
𝑛𝑢𝑚 − 𝑓𝑡

𝑒𝑥𝑝

𝑓𝑡
𝑒𝑥𝑝 | (1) 

MAC (𝜙𝑡
𝑒𝑥𝑝

,𝜙𝑡
𝑛𝑢𝑚) =

|(𝜙𝑡
𝑛𝑢𝑚)𝑡𝜙𝑡

𝑒𝑥𝑝|
2

((𝜙𝑡
𝑛𝑢𝑚)𝑇(𝜙𝑡

𝑛𝑢𝑚))∙((𝜙𝑡
𝑒𝑥𝑝

)
𝑇

(𝜙𝑡
𝑒𝑥𝑝

))

 (2) 

𝑟𝑡
𝑚(𝜽)=√(

(1 − √MAC )
2

MAC 
) (3) 

These residuals are then combined into a single-objective 

function (Eq. (4)) using weighting factors: 

𝐹(𝜽) = ∑ 𝑤𝑡𝐹𝑡(𝜽)2

𝑛𝑟

𝑡=1

 

𝐹(𝜽) = (∑ w𝑡
𝑓

𝑟𝑡
𝑓(θ)2𝑛𝑓

t=1
+ ∑ w𝑡

𝑚𝑟𝑡
𝑚(θ)2𝑛𝑚

t=1 ), 

𝜃𝑙 < 𝜃 < 𝜃𝑢 

(4) 

This discrepancy is mathematically expressed using residuals 

based on modal parameters—most commonly natural 
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frequencies (Eq. (1)) and mode shapes (Eq. (3)). The residuals 

are defined as: optimization problem into a cooperative game 

structure, enabling a more robust and adaptive solution process 

suitable for updating complex and high-fidelity FE models. 

The performance of this approach is highly dependent on the 

proper selection of the weighting factors and, which balance the 

influence of different types of residuals. However, determining 

these weights is non-trivial—typically requiring trial-and-error 

procedures, sensitivity analyses, and expert judgment [7–11]. 

This process is especially inefficient and unreliable when 

applied to high-fidelity FEMU, where each function evaluation 

involves high computational cost. To overcome these 

limitations, this paper proposes a novel formulation of the 

single-objective FEMU problem using Cooperative Game 

Theory (CGT). In the proposed approach, each residual is 

modelled as a player in a cooperative game. Instead of 

manually assigning weights, the optimization seeks a 

compromise solution by introducing a weighted objective 

function and a super-criterion that captures collective 

performance. This eliminates the need for manual tuning of 

weighting factors and enables a more automated and adaptive 

updating process. The optimization is performed using the 

Harmony Search (HS) algorithm—a population-based 

metaheuristic known for its balance between exploration and 

exploitation, and for its computational efficiency in solving 

nonlinear problems [12]. The proposed CGT-based method is 

applied to the updating of a high-fidelity finite element model 

of a pedestrian suspension bridge, providing a relevant and 

demanding benchmark for testing performance. The results are 

compared to those obtained using conventional optimization 

algorithms, highlighting the benefits of the proposed approach 

in terms of accuracy, robustness, and efficiency. 

The paper is structured as follows. Section 2 introduces the 

cooperative game theory model applied to single-objective 

optimization in the context of high-fidelity finite element 

model updating (FEMU). Section 3 describes the case study 

structure, including numerical modelling and experimental 

testing that define the target structural behavior. Section 4 

presents the FEMU process, including sensitivity analysis and 

comparison between conventional and game theory-based 

optimization. Section 5 discusses the results, and Section 6 

provides concluding remarks based on the findings. 

2 COOPERATIVE GAME THEORY MODEL FOR HIGH 

FIDELITY FINITE ELEMENT MODEL UPDATING 

Game theory (GT) is a mathematical framework used to model 

decision-making, conflict, and cooperation among multiple 

agents, or "players" [13]. Recent trends in optimization 

highlight the transformation of classical optimization problems 

into game-theoretic formulations [14]. Within this framework, 

the fundamental components include players, strategies, utility, 

information, and equilibrium [15]. In the context of 

optimization, objective functions can be interpreted as players, 

with their design variables acting as strategies, and their 

respective function values as utilities [16]. Cooperative game 

models are particularly suitable for complex engineering 

problems, where conflicting objectives need to be aligned into 

a compromise solution through a negotiation model or a super-

criterion [17]. This study applies the cooperative game theory 

(CGT) approach to high-fidelity finite element model updating 

(FEMU)—a process characterized by computationally 

intensive models and the need for precise alignment with 

experimental data. CGT has been successfully combined with 

various soft computing techniques in the literature: Dhingra 

and Rao [18] integrated CGT with fuzzy set theory; Xie et al. 

[19] developed a four-step GT-based multi-objective method; 

Monfared et al. [20] formulated Pareto-optimal equilibrium 

(POE) points via two-player games; and Cheng and Li [21] 

incorporated genetic algorithms into the CGT framework. 

Annamdas and Rao [22] proposed a modified CGT model using 

Particle Swarm Optimization (PSO), which is adapted in this 

work for single-objective optimization. 

 Single- Objective optimization using Cooperative Game 

Theory 

To update high-fidelity FEM models without explicitly 

analysing the impact of weighting factors, this study uses a 

single-objective optimization approach based on the CGT 

model introduced by Annamdas and Rao [22]. In this adapted 

method, Harmony Search (HS) is used instead of PSO to reduce 

computational cost [23]. The procedure includes four main 

steps: 

▪ definition of the objective function; 

▪ minimization, maximization, and normalization of 

objective function residuals; 

▪ formulation of a weighted objective function; 

▪ optimization of the weighted objective function. 

Initially, the HS algorithm is used to minimize the objective 

function and obtain optimal residual values - 𝑓𝑡(𝜽𝑡
∗). Next, 

maximization via HS yields the worst-case residuals -  𝑓𝑡(𝜽𝑡
∗∗). 

These results are used to normalize the residuals: 

𝑓𝑛𝑡(𝜽) =
𝑓𝑡(𝜽) − 𝑓𝑡(𝜽𝑖

∗)

𝑓𝑡(𝜽𝑡
∗∗) − 𝑓𝑡(𝜽𝑡

∗)
 (5) 

The normalized values are then used to define a weighted 

objective function: 

𝐹𝑤,𝑡 = 𝐾1𝑓𝑛1(𝜽) + 𝐾2𝑓𝑛2(𝜽) + ⋯

+ 𝐾𝑘−1𝑓𝑛(𝑘−1)(𝜽)

+ (1 − 𝐾1 − 𝐾2 − ⋯
− 𝐾𝑘−1)𝑓𝑛𝑘(𝜽) 

(6) 

with the constraints 

0 ≤ 𝐾𝑡 ≤ 1,  ∑ 𝐾𝑡 = 1𝑘
t=1  (7) 

To ensure that residuals are as far as possible from their worst-

case values, a super-criterion is introduced: 

𝑆𝐶 = ∏[1 − 𝑓𝑛𝑡(𝜽)]

𝑘

t=1

 (8) 

The final optimization problem is thus defined as: 

𝐹𝑤,𝑡(𝜱) = 𝐹𝐾 − 𝑆𝐶,      

𝛷 = [𝜃1   𝜃2   …  𝜃𝑛   𝐾1   K2   …  K𝑘−1]𝑇 
(9) 

Minimizing 𝐹𝑤,𝑡(𝜱) yields the optimal set of design 

parameters and weighting factors, effectively enhancing the 

correlation between the high-fidelity FEM predictions and 

experimental observations. 
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3 CASE STUDY ON REAL STRUCTURE 

Suspension bridges, though efficient for spanning long 

distances and visually striking, are prone to damage 

mechanisms such as corrosion and fatigue, especially in their 

main cables and hangers. Due to limitations in traditional local 

damage detection methods, global vibration-based approaches 

combined with high-fidelity finite element model updating 

(FEMU) have proven to be a promising solution for monitoring 

such complex structures.  

 Description of the structure 

To evaluate the proposed model updating methodology 

presented in the previous section, a pedestrian suspension 

bridge over the Drava River in Osijek (Figure 1.) was selected 

as the case study. Constructed in 1980, the bridge features a 

single span of 209.5 m, suspended by a parabolic cable 

anchored behind 24 m high steel pylons. 

 

 

Figure 1. a) View on the bridge from the right bank b) 

Longitudinal section and the ground plane of the bridge 

The 5 m wide pedestrian deck is composed of 50 prefabricated 

concrete slabs of three different types, characterized by 

reinforced longitudinal and transverse ribs. The slabs are 

supported by inclined hangers (ϕ 21 mm) on one side and 

longitudinally movable connections (ϕ 28 mm) on the other, 

allowing for limited displacement and load redistribution.  

 

Figure 2. Cross section of the bridge (all dimensions are in 

millimetres) 

The structural system includes two ϕ 61 mm pre-tensioned 

cables on each side, anchored at the base of the pylons to reduce 

deck deformations and mitigate vibrations (Figure 2.). During 

the 1990s war, the bridge sustained damage to its hangers and 

several slabs. It was subsequently rehabilitated to its original 

state. In 2009, an asphalt layer was added and the slab 

connections repaired. Further rehabilitation work in 2022 

included replacement of upper cable connections, reprofiling of 

slab beams, sealing of joints, corrosion protection renewal, and 

repair of the handrail. This real-world example, with its 

complex structural behavior and history of interventions, 

provides an ideal scenario for applying and validating advanced 

model updating techniques within a structural health 

monitoring context. 

 Initial numerical model 

An initial finite element (FE) model of the pedestrian 

suspension bridge was developed using ANSYS software, 

consisting of 20,787 elements (Figure 3.). The structural 

components were modelled as follows: main and transverse 

beams, handrails, and rigid joints with BEAM188 elements; 

concrete slabs with SHELL181 elements; cables and hangers 

with LINK180 elements; and interconnections via COMBIN14 

spring-damper elements. Boundary conditions were applied to 

restrict translations at anchor points and pylons in all directions. 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 3. Initial numerical model of pedestrian suspension 

bridge over Drava River a) 3D view b) y-z plane c) x-z plane 

d) x-y plane 

Material properties and cross-sectional dimensions were 

assigned based on project documentation, and initial tensile 

forces in cable elements were derived from previous 

experimental measurements. Hangers were grouped into four 

categories based on mean axial force values and standard 

deviations (ranging from 30.4 kN to 52.1 kN), while the upper 

main cables were divided into four groups with forces between 

4744 kN and 4852 kN. The lower main cables were assigned a 

prestress force of 1300 kN. A numerical modal analysis was 

performed to extract natural frequencies and mode shapes 

(Figure 4). 

𝜙1
𝑛𝑢𝑚- torsional 

𝑓1
𝑛𝑢𝑚 = 0.335 𝐻𝑧 

𝜙2
𝑛𝑢𝑚- vertical 

𝑓2
𝑛𝑢𝑚 = 0.428 𝐻𝑧 

𝜙3
𝑛𝑢𝑚-torsional 

𝑓3
𝑛𝑢𝑚 = 0.641 𝐻𝑧 

   

Figure 4. First three numerically determined natural 

frequencies (𝑓𝑡
𝑛𝑢𝑚) and mode shapes (𝜙𝑡

𝑛𝑢𝑚) of pedestrian 

suspension bridge over Drava River (t=1, …,3) 
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These results served as a reference for subsequent model 

updating and were compared with experimentally obtained 

modal parameters to assess the model's initial accuracy. 

 Experimental campaign 

A comprehensive experimental campaign was conducted to 

identify the dynamic properties of the pedestrian suspension 

bridge and its key structural components. The investigation 

included determination of axial forces in all hangers (Figure 5.) 

and main anchor cables, natural frequencies of the down main 

cables and pylons, as well as dynamic parameters of 

characteristic edge and span slabs. 

 
Figure 5. Calculated force values in the hangers on the 

upstream and downstream side of the bridge 

Global dynamic properties of the entire bridge were determined 

under ambient excitation from pedestrian walking. Axial forces 

in the hangers were determined using the resonant vibration 

method [24] by measuring the natural frequency of each hanger 

following a manual excitation. These frequencies were 

correlated to tensile force using string vibration theory [25]. 

The results showed highest force values in the mid-span 

hangers and noticeable deviations between upstream and 

downstream pairs. A similar procedure was used to determine 

force magnitudes in the main anchorage cables on both banks, 

with calculated values showing good agreement with historical 

measurements and design data. Dynamic testing of the down 

main cables and pylons was performed using impulse 

excitation with a rubber hammer. Natural frequencies were 

identified using frequency domain decomposition based on 

acceleration measurements in orthogonal directions. To assess 

local behavior, dynamic parameters of a representative edge 

slab and a central span slab (Figure 6.) were identified through 

ambient vibration testing induced by random pedestrian 

walking [26]. 

  
(a) (b) 

Figure 6. Arrangement of the measurement points on 

characteristic slab (a)edge (b) span 

Acceleration responses were recorded at 13 and 29 

measurement points, respectively, and modal properties were 

extracted using FDD. For global structural identification, 

vertical excitation due to pedestrian traffic was used to excite 

the entire structure. Acceleration was measured at 100 nodes 

(50 upstream and 50 downstream) in two directions, resulting 

in 200 degrees of freedom. Natural frequencies, mode shapes, 

and damping ratios (Figure 7.) were extracted using Enhanced 

Frequency Domain Decomposition (EFDD). 

𝜙1
𝑒𝑥𝑝

 - Torsional / X; 𝑓1
𝑒𝑥𝑝

= 0.337 ± 0.011 Hz; 𝜁1
𝑒𝑥𝑝

= 3.83 ± 1.23 

 
𝜙2

𝑒𝑥𝑝
 - Vertical / Z; 𝑓2

𝑒𝑥𝑝
= 0.587 ± 0.06 Hz; 𝜁2

𝑒𝑥𝑝
= 1.746 ± 0.95 

 
𝜙3

𝑒𝑥𝑝
 - Torsional; 𝑓3

𝑒𝑥𝑝
= 0.850± 0.011 Hz; 𝜁3

𝑒𝑥𝑝
1.216 ± 0.52 

 

Figure 7. First three experimentally determined natural 

frequency (𝑓𝑡
𝑒𝑥𝑝

), damping ratio (𝜁𝑡
𝑒𝑥𝑝

) with their standard 

deviation (𝜎𝑡
𝑓

, 𝜎𝑡
𝜁

) and mode shapes (𝜙𝑡
𝑛𝑢𝑚) of pedestrian 

suspension bridge over Drava River (t=1, …,3) 

The analysis revealed distinct global mode shapes consistent 

with the expected behavior of a suspension bridge, providing 

essential input for finite element model updating (FEMU). 

These experimentally obtained dynamic parameters form the 

basis for calibrating and validating the numerical model, as 

described in the following chapter. 

 Comparison of Numerical and Experimental Results 

A comparison between the initial numerical model and 

experimental results was conducted to evaluate model 

accuracy. Natural frequencies and mode shapes were compared 

using relative differences and the MAC coefficient (Table 1.). 

While the initial model showed acceptable agreement, some 

deviations indicated the need for refinement. To improve 

accuracy, finite element model updating (FEMU) was 

performed using two approaches: a conventional multi-

objective (MO) optimization method and a Cooperative Game 

Theory (CGT)-based method. 
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Table 1. Comparison of the pedestrian suspension bridge modal 

parameters predicted by initial numerical model and its actual 

modal parameters based on the absolute relative difference 

between the natural frequency values (∆ft) and modal 

assurance criterion MAC (ϕt
exp

, ϕt
num) 

Mode 

shape 

t 

𝑓𝑡
𝑛𝑢𝑚 

[Hz] 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

|∆𝑓𝑡| 

[%] 

MAC (𝜙𝑡
𝑒𝑥𝑝

,𝜙𝑡
𝑛𝑢𝑚) 

[/] 

1 0.335 0.337 0.597% 0.995 

2 0.569 0.587 3.163% 0.967 

3 0.862 0.850 1.392% 0.960 

4 1.170 1.013 13.419% 0.937 

5 1.142 1.150 0.701% 0.845 

6 1.530 1.400 8.497% 0.870 

7 1.694 1.663 1.830% 0.964 

8 1.791 1.925 7.482% 0.802 

9 2.061 2.188 6.162% 0.974 

10 2.582 2.475 4.144% 0.967 

11 2.661 2.737 2.856% 0.953 

12 2.881 3.037 5.415% 0.812 

13 3.197 3.313 3.628% 0.943 

4 FINITE ELEMENT MODEL UPDATING 

 Sensitivity Analysis 

To identify the most influential parameters for the model 

updating process, a sensitivity analysis was performed using 

the ratio of modal strain energy (MSE) associated with each 

physical parameter to the total MSE of the structure. Initially, 

17 parameters were considered, but based on the analysis 

results (Figure 8.), 13 were selected for updating. The selected 

parameters include material properties (e.g., Young’s modulus 

of concrete and handrails), connection stiffnesses, and cable 

pretension forces (down main cables, hangers, and upper main 

cables).  

 

Figure 8. Results of sensitivity analysis performed on the 

pedestrian suspension bridge finite element model for initial 

selected (𝜃1,…,17
𝑖 ) 17 updating parameters 

To ensure physical feasibility, each parameter was constrained 

within predefined lower and upper bounds. Following 

parameter selection, the optimization problem was structured 

by partitioning the residuals of natural frequencies and mode 

shapes. Using a sorting-based approach [14], the influence of 

each parameter was quantified, and two strategy spaces were 

defined: for natural frequency, 𝑆𝑓 = {𝜃1,  𝜃2, 𝜃3,  𝜃4,  𝜃5,  𝜃6, 𝜃7,

𝜃8,  𝜃9,  𝜃11} and for mode shape, 𝑆𝑚𝑠 = {𝜃10, 𝜃12,  𝜃13}. This 

selection guided the subsequent model updating process to 

achieve more accurate and efficient calibration of the FE 

model. 

 Solution of the MO FEMU problem based on the 

conventional optimization method 

To assess the computational efficiency of the proposed CGT-

based model for high-fidelity FEMU of complex structures, a 

benchmark analysis was conducted using a conventional multi-

objective optimization method sine previous research [23] has 

confirmed its effectiveness and accuracy. The Harmony Search 

(HS) algorithm was adopted for this comparison. The 

optimization process was implemented by coupling ANSYS 

for FE analysis with MATLAB for optimization. Key HS 

parameters were population size (PS = 50), maximum iterations 

(Iₘₐₓ = 100), objective function tolerance (10⁻⁴), pitch 

adjustment rate (PAR = 0.3), and harmony memory 

consideration rate (HMCR = 0.9). The resulting Pareto front of 

the two objective function residuals is shown in Figure 9, 

highlighting the “knee point” as the most balanced solution. 

This optimal solution corresponds to a set of updated model 

parameters that improved the accuracy of the numerical model. 

The total computational time required to reach this solution 

using HS was approximately 192,783 seconds, providing a 

reference for evaluating the performance of the CGT approach. 

 Solution of the FEMU problem based on the CGT model 

Following its proven efficiency and accuracy on a laboratory-

scale bridge model, the Cooperative Game Theory (CGT) 

model was applied to solve the high-fidelity FEMU problem of 

a complex pedestrian suspension bridge. The optimization 

began from an initial strategy vector 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑃𝑆𝐵𝑂
0 =

[1  1  1  1  1  1  1  1  1  1  1  1  1] and iterations were carried 

out until the convergence criterion 𝜉 = 0.001 was met. 

Cooperation weights were set symmetrically w11= w22= w12= 

w21= 0.5 based on the established rules. Upon convergence, the 

optimal parameter set θCGT_PSBO
*

= [0.9997 0.8917 1.0585 

1.0305 0.8686 1.2281 1.7530 1.0488 0.8219 1.0221 1.0086 

0.9969 1.0020] showed strong alignment with physical 

properties, leading to significantly improved correlation with 

experimental data. The CGT model completed the optimization 

in 89,758 seconds, demonstrating both computational 

efficiency and robustness in handling the multi-objective 

FEMU problem for a real-world, large-scale structure. 

5 DISCUSSION 

To evaluate the performance of the proposed Cooperative 

Game Theory (CGT) method for multi-objective finite element 

model updating (FEMU), a comparative analysis was 

conducted against a conventional Harmony Search (HS) multi 

objective optimization approach. Two main criteria were 

considered: solution accuracy and computational time. As 

illustrated in Figure 9, the solution obtained using the CGT 

method closely matches the optimal solution (“knee point”) 

identified by the conventional HS method. Importantly, this 

level of accuracy was achieved with significantly lower 

computational effort. The CGT model required 89,758 seconds, 

compared to 192,780 seconds for the HS algorithm—

demonstrating a reduction in computational time of over 50%, 

without compromising result quality. This efficiency is 
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achieved through the direct identification of the knee point 

using game theory principles, eliminating the need to compute 

the entire Pareto front, as required in conventional methods.  

 

Figure 9. Comparison of the “knee” point obtained based on the 

Pareto front (conventional method) with the position of the 

optimal solution obtained using CGT model 

Furthermore, Table 2 and Table 3 presents the updated natural 

frequencies and MAC values for both methods. The CGT 

approach (Table 3.) yields comparable accuracy in terms of 

relative frequency differences and mode shape correlation 

(MAC factors), confirming its robustness and suitability for 

high-fidelity FEMU of complex structures such as suspension 

bridges. 

Table 2. Correlation between experimental and updated natural 

frequencies and mode shapes using conventional HS 

Mode  

t 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

𝑓𝑡
𝑢𝑝𝑑,𝐻𝑆

 

[Hz] 

∆𝑓𝑡
𝐻𝑆 

[%] 

𝑀𝐴𝐶 𝑡
𝐻𝑆 

[/] 

1 0.337 0.335 -0.46 0.997 

2 0.587 0.596 1.53 0.985 

3 0.850 0.842 -0.94 0.984 

4 1.013 1.025 1.18 0.954 

5 1.150 1.142 -0.70 0.986 

6 1.400 1.386 -1.01 0.982 

7 1.663 1.634 -1.74 0.957 

8 1.925 1.896 -1.51 0.972 

9 2.188 2.215 1.23 0.996 

10 2.475 2.427 -1.94 0.987 

11 2.737 2.692 -1.64 0.993 

12 3.037 3.054 0.56 0.964 

13 3.313 3.258 -1.65 0.993 

Table 3. Correlation between experimental and updated natural 

frequencies and mode shapes using CGT model 

Mode  

t 

𝑓𝑡
𝑒𝑥𝑝

 

[Hz] 

𝑓𝑡
𝑢𝑝𝑑,𝐶𝐺𝑇

 

[Hz] 

∆𝑓𝑡
𝐶𝐺𝑇  

[%] 

𝑀𝐴𝐶 𝑡
𝐶𝐺𝑇 

[/] 

1 0.337 0.334 -0.89 0.997 

2 0.587 0.597 1.70 0.984 

3 0.850 0.843 -0.82 0.984 

4 1.013 1.025 1.18 0.954 

5 1.150 1.141 -0.78 0.987 

6 1.400 1.384 -1.14 0.982 

7 1.663 1.635 -1.68 0.957 

8 1.925 1.898 -1.40 0.971 

9 2.188 2.223 1.60 0.996 

10 2.475 2.425 -2.02 0.987 

11 2.737 2.692 -1.64 0.993 

12 3.037 3.042 0.16 0.964 

13 3.313 3.269 -1.33 0.992 

These results validate the CGT method as a computationally 

efficient and accurate alternative to traditional optimization 

approaches for model updating in structural engineering 

applications. 

6 CONCLUSION 

This research presents a novel and efficient framework for 

high-fidelity finite element model updating (FEMU) by 

leveraging the principles of Cooperative Game Theory (CGT). 

The proposed approach was applied to a real-world pedestrian 

suspension bridge, providing a rigorous testbed to evaluate the 

effectiveness of the method in handling the complexity and 

precision demands of high-fidelity finite element analysis. Key 

contributions and findings include: 

• By formulating FEMU as a cooperative game, the method 

enables a targeted and efficient resolution of conflicting 

objectives, such as matching both natural frequencies and 

mode shapes, without the need to compute the entire Pareto 

front. This aspect is especially beneficial in complex, high-

fidelity models with many interdependent parameters. 

• Compared to the conventional Harmony Search (HS) 

method, the CGT approach achieved equivalent or better 

accuracy with a reduction in computational time of over 

50%. This demonstrates that high-fidelity analysis does not 

necessarily come at the cost of efficiency when advanced 

optimization strategies are applied. 

• The CGT-based method improved the correlation between 

the numerical and experimental modal parameters, 

confirming its suitability for high-fidelity finite element 

analysis where accuracy and detail are critical. The updated 

model captured the structural behavior of the bridge with 

remarkable precision, addressing discrepancies in natural 

frequencies and mode shapes. 

• The method was validated using extensive experimental 

data from a real suspension bridge, including local and 

global dynamic characteristics. The updated model reflects 

the true structural behavior with a high level of fidelity, 

even in the presence of structural uncertainties and 

historical modifications. 

In summary, the CGT-based FEMU framework proves to be a 

robust, accurate, and computationally efficient solution tailored 

to the needs of high-fidelity finite element analysis. Its 

adaptability and performance make it a promising tool for 

advancing structural health monitoring in complex and 

intelligent infrastructure systems. 
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ABSTRACT: Structural Health Monitoring of bridges is being used increasingly to ensure safe operation of bridges. Non-iterative 

and mechanics-based algorithms that were developed in the past to find the material property of a bridge or the live load moving 

over the bridge use the static strain response of the bridge. However, the field strain measurement of these response quantities has 

both static and dynamic components. To apply these non-iterative methods for live load or material property estimation, it is 

important to decouple the static components of the strain from its dynamic components. Hence, in the current study, the dynamic 

components of the bridge strain response are filtered to extract the static components using a low-pass filter.  The adequacy of 

filtering is then measured based on the probability of the static maximum axial strain and average shear strain contained in the 

probabilistically determined dynamic response corresponding to different road roughness. The idea of relating the cutoff frequency 

to the bridge natural frequency is investigated. It is concluded that using a cutoff frequency of half the bridge natural frequency, 

one can sufficiently filter out the dynamic components under any case of vehicle speed, road roughness, and bridge natural 

frequency. 

KEY WORDS: System identification; Dynamic response filtering; Monte Carlo simulation; Vehicle bridge interaction; Low-pass 

filter. 

1 INTRODUCTION 

Bridges play a critical role in a country’s development. The 

bridges built in the past are deteriorating due to degradation 

from the environment and varying operational conditions. 

Although the current method of visual inspection is simple in 

procedure, it has some disadvantages when dealing with many 

bridges. It is time-consuming and subjective.  Hence, structural 

health monitoring (SHM) is emerging as a viable alternative.  

SHM uses technology to access the current state of the bridge.  

The current state of the bridge here refers to either the current 

stiffness or the strength of the bridge.  The strength is 

determined by non-destructive testing, like the rebound 

hammer and ultrasonic pulse velocity. In contrast, stiffness is 

determined by knowing the material parameters, boundary 

conditions, geometric parameters, and live load spectrum.   

In the present study, the focus is on determining the current 

stiffness of the bridge.  This can be computed by finding the 

current material properties and geometrical quantities like the 

moment of inertia and the cross-sectional area.  To do so, the 

usual approach is to minimize the error between the measured 

response and the computed response using an optimization 

algorithm.  But this involves computational costs, the problem 

being ill-posed, and other disadvantages.  So, a mechanics-

based non-iterative algorithm was proposed [1] to estimate the 

material property.  This method has been proven effective for 

quasi-static loading conditions, neglecting vehicle-bridge 

interaction (VBI) dynamics.  However, when it comes to 

realistic traffic scenarios and road roughness profiles, VBI is 

present and leads to a deviation of the measured response from 

the actual static response.  So, one needs to filter out the 

dynamic components to arrive closer to the static response.   

Now, the input to the material parameter estimation 

algorithm can be given in two ways.  Either a known vehicle 

load will move over the bridge, as in [1] or the vehicle load also 

needs to be found using some appropriate measured response 

quantity [2].  The latter is more advantageous than the former 

in the case of continuous monitoring.  So, identifying the 

moving load is also focused on.  In general, moving load 

identification literature again involves optimization-based 

algorithms with the above-mentioned disadvantages. The 

numerous vehicles and bridge parameters must be known or 

optimized to find the axle loads. Such an approach increases 

the uncertainty involved in fixing the parameter values or ill-

posed problem and hence reduces the accuracy of the 

identification.   Instead, an algorithm for load estimation in a 

railway bridge was proposed by [2], which uses a composite 

strain response for estimating the moving load.  An important 

property of this composite response is that it remains constant 

over a period for a single vehicle to pass over the bridge.  But 

once again, the field-measured value of this composite strain 

response quantity can potentially include the dynamic 

components due to VBI and does not remain constant.  

To overcome the above-mentioned difficulties, one of the 

approaches followed is to filter out the dynamic components 

from the measured response to get the static response.  Few 

works on filtering can be found in the literature.   For instance, 

in [3], a digital filtering technique was employed to obtain the 

static bridge response from the dynamic weigh-in-motion data.  

A low-pass filter of frequency ranging from 0.25 Hz to 1.0 Hz 

was used.   But later it was shown that no proper criteria can be 

found for cutoff frequency, and a new technique called the 

equivalent digital filtering technique (EDFT) was proposed [4].  

This uses the pseudo-static response of the bridge and the fact 

Efficacy of decoupling techniques to extract the static strain response from the 

dynamic response of a bridge under a moving vehicle using a low pass filter 
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that the dynamic response (pseudo-static response + dynamic 

effects) and the static response in the frequency domain are 

approximately equal at 0 Hz. It was shown to be highly accurate 

in estimating static vehicle weight on dynamic response 

untainted by other miscellaneous vibrations.  [5] used an 11-

point and 21-point moving average low-pass filter to improve 

the accuracy of identified moving loads by eliminating the 

noise effect.  It was found that the percentage errors were 

significantly reduced, and hence filtering was highly 

recommended.  [6] used a low-pass filter to filter out the 

dynamic components from the identified bridge influence lines.   

In [7], the noise and dynamic components are removed to get 

static strains for moving load identification. It was found that 

when the cutoff frequency is equal to six to eight times the 

fundamental frequency of the train load, the peaks of the second 

derivative of the strain measurements can be identified.   

Recently, [8] used a low-pass filter to isolate the bridge 

response from the vehicle dynamics and other excitation 

sources (the asphalt roughness).  The acceleration signal from 

a vehicle moving at 140 km/h was filtered to obtain the static 

response for identification of the bridge's elastic modulus using 

the correlation method.  A cutoff frequency of 0.5 Hz, much 

less than the vehicle's first natural frequency of 2 Hz, was used. 

It was shown that proper filtering could adequately filter out the 

vehicle dynamics and other excitations.  Now, even though 

many studies on filtering are available, there are not many 

studies that extensively deal with measuring the efficacy of 

filtering algorithms for various vehicle bridge parameters.    

Hence, in the present study, a methodology to filter out the 

dynamic components from the measured strain response is 

developed.  A numerical simulation is performed by modeling 

the vehicle bridge interaction dynamics.  Using a half-car 

model and a classical Euler-Bernoulli beam model, the 

dynamic characteristics of the bridge strain response are 

obtained.  Then, using a low-pass filter based on a cutoff 

frequency, the high frequency components are filtered out. The 

degree of closeness of the static response is measured using a 

probabilistic measure.  The working of the proposed method is 

checked for the practical range of vehicle and bridge 

parameters.   

In this paper, the methodology adopted in the study is 

explained in Section 2, followed by the implementation details 

of VBI modelling, code validation, numerical data taken in the 

study, and modal convergence in Section 3.  The investigation 

relating the cutoff frequency to the bridge natural frequency 

and the effect of various VBI parameters is illustrated in 

Section 4. Finally, the study is summarized, and the findings 

from the study are listed in Section 5. 

2 METHODOLOGY 

The Fast Fourier Transform (FFT) of the bridge response was 

computed to understand its various frequency components.  

The FFT of the mid-span bridge acceleration response and the 

bridge mid-span axial strain response is shown in Figure 1.  It 

is observed that the dynamic components are predominant in 

the acceleration FFT, whereas the static components are 

predominant in the strain FFT.  Hence, it can be observed that 

when one uses strain response, the feasibility of getting the 

static response is much higher than that of using the 

acceleration response.  So, through a threshold frequency called 

“cutoff frequency”, one can segregate the static and dynamic 

components.    First, the dynamic analysis is performed using a 

half-car vehicle model. The dynamic responses of concern in 

the study are the maximum mid-span axial strain and the mean 

of the sum of shear forces at the quarter span and the three-

quarter span.  The reason for choosing them is because of their 

applicability in non-mechanics-based SHM algorithms. The 

maximum mid-span axial strain is used in finding the material 

property of the bridge [1] and the average shear strain is used 

in estimating the moving load [2]. A Monte Carlo simulation of 

1000 random trials is performed to account for the random 

nature of road roughness.  Assuming a typical population 

standard deviation of 2 to 3 micro-strain, a 95% confidence 

interval yields an estimated margin of error of approximately 

0.1–0.2 micro-strain. The best fit distribution and the maximum 

likelihood estimate parameters for the filtered dynamic 

response are then found using the Kolmogorov–Smirnov (KS) 

test in MATLAB.    The adequacy of filtering is then measured 

using the value of the probability for the filtered signal to 

contain the static response.  A bound of ±1 micro-strain is 

considered as a tolerance value for the static response, since it 

is the least resolution one can achieve in the field for electrical 

strain gauges.    

 

Figure 1. FFT plots of (a) bridge dynamic strain response (b) 

acceleration response. 

3 IMPLEMENTATION DETAILS 

 Vehicle Bridge Interaction Modeling 

The vehicle is modeled using a half-car model (HCM) as shown 

in Figure 2.  The bridge is modeled as a simply supported Euler-

Bernoulli beam. In HCM, four degrees of freedom are 

considered – vertical displacement (𝑧𝑣) and pitching rotation 
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(𝜃𝑣) of the vehicle’s center of gravity (CG), vertical 

displacement of the front (𝑧𝑡𝑓) and rear tires (𝑧𝑡𝑟). The vehicle’s 

sprung mass is represented by 𝑀𝑣, pitching moment of inertia 

as 𝐼𝑣 , front and rear suspension stiffness  𝑘𝑠𝑓 and  𝑘𝑠𝑟 and front 

and rear suspension damping as  𝑐𝑠𝑓 and  𝑐𝑠𝑟  respectively.  The 

axle spacing between the two axles is ‘𝑠’ and the distances of 

CG from the front axle and the rear axle are denoted by  𝑠1 and  

𝑠2. The displacements of the bridge at the contact points 

corresponding to the front and rear tires are  𝑢𝑐𝑓 and   𝑢𝑐𝑟  

respectively. The road roughness profile at the contact points is 

represented by  𝑟𝑐𝑓 and  𝑟𝑐𝑟 .  The equation of motion for the 

vehicle’s bouncing motion can be given by taking vertical force 

equilibrium as,  

𝑀𝑣𝑧̈𝑣 +  𝑐𝑠𝑓  (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓) +  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓) 

   + 𝑐𝑠𝑟 (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟) + 𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟) = 0        (1) 

 

Figure 2. Half car model. 

The equation of motion for the vehicle’s pitching motion can 

be found by taking moment equilibrium about the vehicle’s CG 

axis as: 

𝐼𝑣𝜃̈𝑣 + 𝑐𝑠𝑓 (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓)𝑠1 +  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓)𝑠1 

− 𝑐𝑠𝑟  (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟)𝑠2 

                             − 𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟)𝑠2 = 0                     (2) 

The equation of motion for the vertical displacements of the 

front and rear tires can be found as:  

𝑚𝑡𝑓𝑧̈𝑡𝑓 − 𝑐𝑠𝑓  (𝑧̇𝑣 + 𝜃̇𝑣𝑠1 − 𝑧̇𝑡𝑓) −  𝑘𝑠𝑓(𝑧𝑣 + 𝜃𝑣𝑠1 − 𝑧𝑡𝑓) 

    + 𝑐𝑡𝑓 (𝑧̇𝑡𝑓 − 𝑢̇𝑐𝑓 − 𝑣𝑟′𝑐𝑓) + 𝑘𝑡𝑓(𝑧𝑡𝑓 − 𝑢𝑐𝑓 − 𝑟𝑐𝑓) = 0   (3) 

𝑚𝑡𝑟𝑧̈𝑡𝑟 −  𝑐𝑠𝑟 (𝑧̇𝑣 − 𝜃̇𝑣𝑠2 − 𝑧̇𝑡𝑟) −  𝑘𝑠𝑟(𝑧𝑣 − 𝜃𝑣𝑠2 − 𝑧𝑡𝑟) 

    + 𝑐𝑡𝑟 (𝑧̇𝑡𝑟 − 𝑢̇𝑐𝑟 − 𝑣𝑟′𝑐𝑟) + 𝑘𝑡𝑟(𝑧𝑡𝑟 − 𝑢𝑐𝑟 − 𝑟𝑐𝑟) = 0     (4) 

Finally, the bridge’s flexural vibration equation is given by, 

𝐸𝐼 𝑢𝑖𝑣(𝑥, 𝑡) + 𝑚 𝑢̈(𝑥, 𝑡) + 𝑐 𝑢̇(𝑥, 𝑡) =  [−
𝑀𝑣𝑔

2
− 𝑚𝑡𝑓𝑔 +

𝑐𝑡𝑓 (𝑧̇𝑡𝑓 − 𝑢̇𝑐𝑓 − 𝑣𝑟′
𝑐𝑓) + 𝑘𝑡𝑓(𝑧𝑡𝑓 − 𝑢𝑐𝑓 − 𝑟𝑐𝑓)] 𝛿(𝑥 −

𝑣𝑡) +  [−
𝑀𝑣𝑔

2
− 𝑚𝑡𝑟𝑔 + 𝑐𝑡𝑟 (𝑧̇𝑡𝑟 − 𝑢̇𝑐𝑟 − 𝑣𝑟′

𝑐𝑟) +

                   𝑘𝑡𝑟(𝑧𝑡𝑟 − 𝑢𝑐𝑟 − 𝑟𝑐𝑟)] 𝛿(𝑥 − (𝑣𝑡 − 𝑠))                       (5) 

Using the modal superposition technique, the displacement 

𝑢(𝑥, 𝑡) can be represented using,  

                            𝑢(𝑥, 𝑡) =  ∑ 𝑞𝑛(𝑡)𝜑𝑛(𝑥)𝑁
𝑛=1                       (6) 

where 𝑞𝑛(𝑡) is the modal coordinate and 𝜑𝑛(𝑥) represents the 

nth mode shape of the simply supported beam, and N represents 

the total number of modes used. Now, substituting Equation (6) 

in Equations (1), (2), (3), (4), and (5), and then using the modal 

orthogonality principle, the vehicle bridge interaction system 

can be represented in a matrix form as follows:  

 

                    [𝑀]{𝑋̈} + [𝐶}{𝑋̇} + [𝐾]{𝑋} = {𝑅}                    (7) 

 

where [𝑀], [𝐶] and [𝐾} represent the mass, damping, and 

stiffness matrix of the VBI system of size (𝑁 + 4) × (𝑁 + 4). 

{𝑅} represents the force vector and {𝑋}̈, {𝑋̇} and {𝑋} represents 

the acceleration, velocity, and displacement vector, 

respectively, of size (𝑁 + 4) × 1.  This equation is coded in 

MATLAB and solved using Newmark’s technique (constant 

acceleration).  In this study, road roughness is modeled as a 

random process with a normal distribution.  The wavelength 

characteristics are characterized using the spectral density of 

the profile height. The power spectral density coefficients from 

[10] are adopted to represent various classes of road roughness.    

A typical roughness profile is shown in Figure 3. 

 

Figure 3. A typical roughness profile. 

 Validation of the HCM code 

The code for vehicle bridge interaction is validated using data 

from the literature [9].  The values of the VBI parameters taken 

are as follows.  

Vehicle: 𝑀𝑣 = 1794.4 kg; 𝑚𝑡𝑓 = 87.15 kg; 𝑚𝑡𝑟 = 140.4 kg; 

𝑠1 = 1.271m; 𝑠2 = 1.713 m; 𝐼𝑣 =3443.03 kgm2; 𝑘𝑠𝑓 =66.824 

kN/m; 𝑘𝑠𝑟 =18.615 kN/m;  𝑘𝑡𝑓 = 𝑘𝑡𝑟 = 101.12 kN/m; 𝑐𝑡𝑓 =

𝑐𝑡𝑟 = 0 Ns/m;  𝑐𝑠𝑓 = 1190 Ns/m; 𝑐𝑠𝑟 = 1000 Ns/m; 𝑣 = 40 

km/h; Bridge:  𝑚 =20000 kg/m; 𝐿 =100 m; 𝐸 = 207 GPa; 𝐼 =
 0.174 m4;  Roughness: Smooth. The mid-span displacement of 

the bridge obtained using the developed code matched well 

with that from the literature, as shown in Figure 4. 

 Numerical data taken in the study 

The half-car vehicle model values are taken from the 

representative vehicle data set from TruckMaker software.  For 

the bridge, the values of a typical 50m span prestressed box 
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girder for three lane traffic are considered.  And, for road 

roughness, the parameter values were taken from [10], [11] and 

[12].  The numerical values are given below.  

Vehicle: 𝑀𝑣 =22700 kg; 𝑚𝑡𝑓 = 𝑚𝑡𝑟 =1500 kg; 

𝐼𝑣 =71,761.1 𝑘𝑔 𝑚2⁄ ; 𝑠1 = 3.133 m; 𝑠2 =1.667 m; 

𝑘𝑠𝑓 =25000 𝑁 𝑚⁄ ; 𝑘𝑠𝑟 =30000 𝑁 𝑚⁄ ;   𝑘𝑡𝑓 = 𝑘𝑡𝑟 = 1.273 ×

 106 𝑁 𝑚⁄ ; 𝑐𝑡𝑓 = 𝑐𝑡𝑟 = 6000 𝑁𝑠 𝑚⁄ . Bridge: 𝑚 =

11880 𝑘𝑔 𝑚⁄ ; 𝐿 = 50 𝑚; 𝐴 = 4.87 𝑚2; 𝐼 = 4.923 𝑚4; 𝐸 =
31.62 𝐺𝑃𝑎; 𝜈 = 0.2; 𝑓𝑏1 = 2.31 𝐻𝑧 

 

Figure 4. Validation of HCM code. 

 Modal Convergence study 

As the method uses modal superposition, the minimum number 

of modes required to accurately represent the results are found 

using a convergence study.  Towards this, absolute (𝛿𝑎𝑏𝑠) and 

relative (𝛿𝑟𝑒𝑙) convergence is checked wherein the definition 

used is, 

 

                      𝛿𝑎𝑏𝑠 = ∥ ∈𝑁=𝑁𝑚𝑎𝑥
− ∈𝑁=1∥                              (8) 

 

                      𝛿𝑟𝑒𝑙 = ∥
∈𝑁=𝑁𝑚𝑎𝑥− ∈𝑁=1

∈𝑁=𝑁𝑚𝑎𝑥

∥ × 100%                  (9) 

 

where 𝑁 represents the number of modes used; 𝑁𝑚𝑎𝑥  represents 

the maximum number of modes used; 𝜖 represents the 

maximum strain value at the given number of modes. The 

tolerance limit was kept at 0.01 micro-strain for absolute 

convergence and 0.01% for relative convergence.  The 

convergence study was performed for various vehicle speeds 

ranging from 20 km/h to 120 km/h and for four roughness 

classes as per [10].  The minimum number of modes required 

to achieve convergence of the maximum axial strain response 

is shown in Table 1 and Table 2 respectively. It was found that 

53 modes were adequate to satisfy the tolerance.  Hence, further 

in the study, 60 modes were considered for all the 

computations.   

Table 1. Modal convergence study based on absolute 

convergence for maximum axial strain at L/2. 

Roughness  Speed (in km/h) 

Class 20 40 60 80 100 120 

Class A 31 27 17 23 11 27 

Class B 29 19 11 23 13 27 

Class C 27 11 11 21 11 29 

Class D 27 11 13 11 29 15 

4 RESULTS 

 Filtered and Unfiltered response 

To demonstrate the filtering process, as a reasonable estimate, 

a cutoff frequency of half the bridge's natural frequency is 

taken.  The dynamic response of the bridge is simulated for 

1000 random trials of road roughness.  Assuming the velocity 

to be 50 km/h and road roughness as class D, the maximum 

midspan axial strain and average shear strain sum of the 

unfiltered and filtered signals are shown in Figure 5 and Figure 

6 respectively.   

Table 2. Modal convergence study based on relative 

convergence for maximum axial strain at L/2. 

Roughness  Speed (in km/h) 

Class 20 40 60 80 100 120 

Class A 31 29 17 31 15 29 

Class B 31 31 17 31 31 31 

Class C 29 19 13 31 29 31 

Class D 29 11 31 17 29 15 

 

 

Figure 5. Monte Carlo simulation of (a) unfiltered and (b) 

filtered dynamic response of 1000 random trials for maximum 

axial strain at L/2 (dashed line represents the static response). 

 

Figure 6.  Monte Carlo simulation of (a) unfiltered and (b) 

filtered dynamic response of 1000 random trials for average 

shear strain sum at L/4 and 3L/4 (dashed line represents the 

static response). 

The histogram plot for the maximum axial strain and average 

shear strain sum for 1000 trials is shown in Figure 7(a) and 

Figure 7(b) respectively.  One can observe that filtering makes 

the unfiltered response come closer to the static response.  This 

observation was not much in the case of the average shear strain 

sum. Various probability distributions that can sufficiently fit 

the filtered histogram data were checked using the maximum 

log likelihood values in MATLAB.  The plot of various 

distributions fitting the histogram data is shown in Figure 8.  
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A Kolmogorov-Smirnov (KS) test is used to check whether 

two samples come from the same distribution or not.  Here, one 

sample is from the Monte-Carlo simulation data, and the other 

sample is from the fitting distribution (Normal, Lognormal, 

Logistic, Weibull, Gamma, etc.).   The null hypothesis is that 

both come from the same distribution, and the alternative 

hypothesis is that both come from different distributions. A p-

value of 0.05 is used to denote the significance level for the null 

hypothesis to be true.  The distribution that gives the highest p-

value and the log likelihood value is chosen as the best fit 

distribution, and its probability density value at the static 

response is calculated.   

 

Figure 7. Histogram plot for the (a) Maximum axial strain (b) 

Average shear strain sum data. 

 

Figure 8. Best fit probability distribution for strain data. 

The maximum likelihood estimates (MLE) parameters, KS2 

test results, and their corresponding p-value for various 

distributions are shown in Table 3 and Table 4.  One can 

observe that for the unfiltered response, the Generalized 

Extreme Value (GEV) distribution has passed the test with the 

highest p-value of 0.9104.  For the case of filtered response, all 

the distributions tested gave the pass results, but again, GEV 

has the highest p-value of 0.7167.  Hence, the probability that 

the GEV distribution contains the static response ± 1 micro-

strain for the filtered and unfiltered response will be 1.0000 and 

0.0086, respectively.  

 Study of static response probability for different cutoff 

frequency coefficients 

The cutoff frequency was taken as a multiple of the bridge's 

natural frequency.  This multiple will be referred to as the cutoff 

frequency coefficient.  The range of coefficients from 0.2 to 1.5 

was studied.  The variation of the probability value of the static 

response for this range of coefficients is shown in Figure 9(a) 

and Figure 9(b) for a given vehicle speed of 50 km/h and road 

roughness class D.  For the case of axial strain in Figure 9(a), it 

is observed that the probability value becomes zero at very low 

cutoff frequency (here for 0.1 and 0.15).  This implies that there 

are not enough frequency components in the filtered response 

to represent the static value.   Hence, the distribution of the 

filtered response will lie much farther away from the static 

response.   A typical histogram plot for this case is shown in 

Figure 10(a) and Figure 10(b) for a cutoff frequency of 0.15fb1.   

One can observe that the filtered values are much lower than 

the static value.  For all the values after 0.1, the probability 

becomes greater than 0.  This means that the probability of 

static response lying in ±1 micro-strain bound of the filtered 

response is greater than that of the unfiltered response.  This 

demonstrates the effect of filtering.  The maximum effect is 

observed at the one with the highest probability value.  i.e., in 

this case, for a cutoff frequency of 0.45 fb1.  For the case of 

shear strain sum shown in Figure 9(b), the static response 

probability becomes almost close to 1.0 for all the cutoff 

coefficients above 0.1. This is because, for shear strain sum, the 

average value was taken. Even for the case without filtering, 

one can achieve a response value closer to the static value, as 

evident from Figure 7(b).  Hence, filtering doesn't have much 

of an effect in this case. 

Table 3. Maximum Likelihood Estimates, KS Test results, and 

probability values to contain the static response for various 

distributions of unfiltered responses. 

Distribution 
MLE 

parameter 

KS 

test 

p-value Probab

ility 

Normal 
μ=34.13 

 σ = 1.311 
Pass 0.1768 0.0282 

Log-normal 
μ=3.527 

 σ = 0.038 
Pass 0.3078 0.0240 

Weibull 
a=34.79 

 b = 23.82 
Fail 9.8e-6 0.0773 

Gamma 
α=686.3  

β =0.049 
Pass 0.2580 0.0253 

GEV 

μ=-0.1005 

σ = 1.146 

ξ = 33.57 

Pass 0.9104 0.0086 

EV 
μ=34.82 

 σ = 1.494 
Fail 4.6e-7 0.0815 

Logistic 
μ=34.07 

 β = 0.750 
Pass 0.3078 0.0351 
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Table 4. Maximum Likelihood Estimates, KS Test results, and 

probability values to contain the static response for various 

distributions of filtered response. 

Distribution 
MLE 

parameter 

KS 

test 

p-value Probab

ility 

Normal 
μ=31.05 

 σ = 0.18 
Pass 0.5295 0.9994 

Log-normal 
μ=3.435 

 σ = 0.006 
Pass 0.4938 0.9994 

Weibull 
a=31.14  

b = 189.7 
Pass 0.2355 0.9999 

Gamma 
α=29566 

β =0.0011 
Pass 0.5295 0.9994 

GEV 

μ=-0.368 

σ = 0.187 

ξ = 30.99 

Pass 0.7167 1.0000 

EV 
μ=31.14 

 σ =0.164 
Pass 0.2145 0.9999 

Logistic 
μ=31.03 

β = 0.106 
Pass 0.2355 0.9959 

 

 

Figure 9. Variation of cutoff frequency coefficients with the 

static response probability of the filtered signal – (a) 

Maximum axial strain at L./2 (b) Average shear strain sum at 

L/4 and 3L/4. 

 Effect of vehicle speed 

The effect of vehicle speed is studied by taking speed values as 

10 km/h, 25 km/h, 50 km/h, and 100 km/h.  The road roughness 

and bridge natural frequency were kept constant at class D and 

2.31 Hz. The static response probability values for different 

cutoff frequencies are shown in Figure 11 for maximum mid-

span axial strain and in Figure 12 for the average shear strain 

sum.  We can observe that the minimum cutoff required to 

attain a probability value of 1.0 increases with increasing speed. 

For instance, the minimum cutoff coefficients for speed values 

of 10, 25, 50, and 100 km/h are 0.1fb1, 0.15fb1, 0.25fb1, and 

0.4fb1, respectively.  This is because of the shifting of the 

driving frequency with the increase in speed.  Also, the region 

from 0.45 fb1 to 0.75 fb1 has the probability value of 1.0 in all 

the cases and is hence recommended. 

For shear strain sum, the effect of speed is observed in Figure 

12.  Again, the effect of driving frequency on the minimum 

cutoff coefficient can be observed.   Also, after the minimum 

cutoff, at all the cutoff coefficients, the static response 

probability is maintained at 1.0, which was not observed in the 

axial strain case.  This is because of the same advantage of 

taking the average value in the case of shear strain sum, as 

explained previously.  

 

Figure 10. Histogram plot for filtered and unfiltered response 

corresponding to cutoff frequency of 0.15fb1 for (a) Maximum 

axial strain at L/2 (b) Average shear strain sum at L/4 and 

3L/4. 
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Figure 11. Effect of vehicle speed (a) v=10 km/h (b) v = 25 

km/h (c) v = 50 km/h (d) v = 100 km/h – Maximum axial 

strain at L/2 for fb1 = 2.31 Hz and roughness class D. 

 Effect of road roughness 

The effect of road roughness is studied by varying the road 

roughness from class A (Very Good) to class D (Poor).  The 

vehicle velocity is kept constant at 50 km/h, and the natural 

frequency is at 2.31 Hz.   The static response probability values 

for different cutoff frequencies are shown in Figure 13 and 

Figure 14 for maximum mid-span axial strain and average shear 

strain sum, respectively.  It can be observed that for low 

roughness classes, the probability is 1.0 even at higher cutoff 

frequencies. As the roughness class increases, the static 

response probability decreases.  This is because a higher degree 

of roughness corresponds to increased dynamic noise in the 

signal and hence a decrease in the static response probability 

value. For the case of the average shear strain sum in Figure 14, 

there was not much observation.  The probability value reaches 

1.0 for all the cutoff coefficients above 0.15.  

 

Figure 12. Effect of vehicle speed (a) v=10 km/h (b) v = 25 

km/h (c) v = 50 km/h (d) v = 100 km/h – Average shear strain 

sum at L/4 and 3L/4 for fb1 = 2.31 Hz and roughness class D. 

 

Figure 13. Effect of road roughness (a) Class A (b) Class B (c) 

Class C (d) Class D – Maximum axial strain at L/2 for fb1 = 

2.31 Hz and v=50 km/h. 

 Effect of bridge natural frequency 

Finally, the effect of various bridge natural frequencies is 

studied.  The natural frequency of the bridge is varied by 

changing the value of the flexural rigidity of the bridge.  Four 

values of natural frequency – 2.31 Hz, 5 Hz, 7.5 Hz, and 10 Hz 

were studied, corresponding to four EI values – 157 GNm2, 753 

GNm2, 1693 GNm2, and 3008 GNm2.  

 

Figure 14. Effect of road roughness (a) Class A (b) Class B (c) 

Class C (d) Class D –Average shear strain sum at L/4 and 

3L/4 for fb1 = 2.31 Hz and v=50 km/h. 
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Figure 15. Effect of bridge natural frequency (a) fb1 = 2.31 Hz 

(b) fb1 = 5 Hz (c) fb1 = 7.5 Hz (d) fb1 = 10 Hz – Maximum 

axial strain at L/2 for v =50 km/h and roughness class D. 

For all the coefficients between 0.25 fb1 to 0.7 fb1, the static 

response probability for the case of maximum axial strain is 

1.0, irrespective of different natural frequencies, as shown in 

Figure 15. Also, it can be observed that for a given case of a 

cutoff frequency closer to the bridge's natural frequency, the 

static response probability depends upon the relative distance 

between the driving frequency and the bridge's natural 

frequency.   If this difference is high, the probability value 

becomes 1.0; otherwise, the value reduces.  The figure for the 

average shear strain sum is shown in Figure 16. As observed 

previously, the probability value for most of the cutoff 

coefficients is 1.0.  

 

Figure 16. Effect of bridge natural frequency (a) fb1 = 2.31 Hz 

(b) fb1 = 5 Hz (c) fb1 = 7.5 Hz (d) fb1 = 10 Hz – Average shear 

strain sum at L/4 and 3L/4 for v = 50 km/h and roughness 

class D. 

5 CONCLUSION 

The idea of cutting off the higher frequencies from the bridge 

strain response to get the static response of the bridge is 

investigated.  A half-car vehicle bridge interaction model was 

used to simulate the motion of a moving vehicle.  Newmark’s 

constant integration scheme was used to solve the program in 

MATLAB. 

A Monte Carlo simulation of 1000 trials is performed for 

random values of road roughness. A low-pass Butterworth filter 

is used to cut off higher frequencies.  Contrary to the literature 

studies wherein the cutoff frequency was related to the driving 

frequency, in this study, it is related to the bridge's natural 

frequency.  A detailed study on the influence of the cutoff 

frequency so that the filtered signal contains the static response 

±1 micro-strain is undertaken.  And finally, the effect of VBI 

parameters – vehicle speed, road roughness, and natural 

frequency was studied. From the study, the following is 

inferred: 

i. The cutoff frequency of 0.5 times the bridge natural 

frequency seems to have the highest probability of 

containing the static strain response across different 

vehicle speeds, road roughness, and natural frequency 

of the bridge.  

ii. The higher the vehicle speed, the higher is the driving 

frequency, and hence the cutoff frequency to contain 

the static response increases. 

iii. The higher the road roughness, the higher the dynamic 

noise in the response, and hence, the static response 

probability decreases for a given cutoff frequency.  

iv. Both the driving frequency and the bridge natural 

frequency determine the cutoff frequency, which 

would contain the static strain response.  

Further efforts are required to validate the study using field 

data. 
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ABSTRACT: This paper presents key results on the laboratory testing of old girders removed from a flood-damaged bridge located 

near Ljubljana, Slovenia. The structure was widened in 1989 to accommodate pedestrians and cyclists by integrating prefabricated 

prestressed reinforced concrete T-girders. To assess the structural behaviour of the bridge, six girders were subjected to a rigorous 

testing program involving bending and shear tests in a laboratory setting. The tests were performed on girders with static lengths 

of 12.20 meters and 9.90 meters. The program aimed to evaluate the structural performance of the girders. Preliminary results 

indicate satisfactory structural behaviour of the prestressed T-girders under the applied loads, with insights into their performance 

under both bending and shear stresses. This study contributes valuable data for assessing the long-term behaviour of bridges. The 

outcomes are particularly relevant for optimising resource allocation in bridge rehabilitation projects and ensuring safety and 

functionality in transportation networks. 

KEY WORDS: laboratory testing, prestressed girders, assessment, load test, operational modal analysis, damage, acoustic 

emission

1 INTRODUCTION 

Bridges are a key component of transport infrastructure, 

ensuring connectivity and traffic flow at both regional and 

national levels. However, as they age, they become susceptible 

to damage due to material degradation, traffic loads, and 

extreme weather events. Regular condition assessment through 

visual inspections and different structural monitoring systems 

is therefore essential to ensure the safety of both the structures 

and their users. 

Bridge replacement typically entails significant financial 

costs, long execution times, and considerable logistical 

challenges. Consequently, it is crucial to leverage all available 

knowledge to accurately assess the actual safety and remaining 

service life of existing bridges. In this context, experimental 

data plays a vital role, as it provides direct insight into the 

structural behaviour [1, 2, 3].  

This paper presents the ReNos project, a research initiative 

by the Slovenian National Building and Civil Engineering 

Institute (ZAG), which involved laboratory testing of 

prestressed concrete girders recovered from an existing bridge 

structure that had been exposed to flooding. The main 

objectives of the research were: (i) to determine the actual load-

bearing behaviour and (ii) to monitor damage development 

using various sensor types, and (iii) to develop a protocol for 

potential reuse of the girders. 

First, the bridge and the girders are described, including the 

entire process of the adapted demolition and transportation of 

the girders to the laboratory. This is followed by a description 

of the experimental program, preliminary results, and the future 

work plan. 

2 DESCRIPTION OF THE BRIDGE, GIRDERS, AND 

DISASSEMBLY PROCESS 

 Bridge and girders 

The five-span bridge with a total length of 52.6 m and width 

of 8.2 m was located on a state road near Ljubljana, Slovenia. 

The original superstructure consisted of a ribbed reinforced 

concrete slab with brick inserts, supported by thin walls. 

In 1989, the bridge was widened on both sides to 

accommodate pedestrian and cyclist traffic. The extension 

incorporates prefabricated prestressed concrete T-girders 

supported by additional wall piers aligned with the existing 

substructure. These girders were connected transversely by a 

cast-in-place reinforced concrete slab. The extended bridge 

from the upper stream side is shown in Figure 1. 

 

  

Figure 1. Existing bridge before the collapse (downstream). 
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Following the catastrophic 2023 floods in Slovenia, the 

bridge partially collapsed, as shown in Figure 2 from the 

downstream side. While the intermediate supports were 

damaged, an inspection confirmed that the longitudinal girders 

remained in good condition. In agreement with the 

infrastructure manager and demolition contractor, selected 

girders were salvaged for laboratory testing (Figure 3). 

 

 

Figure 2. Partly collapsed bridge after floods (upstream). 

 

Figure 3. Lifting the girders with cranes. 

 Disassembly process 

The process of disassembling the girders proved to be highly 

challenging. Nevertheless, all stakeholders involved, including 

the infrastructure management authority and the demolition 

contractor, demonstrated a commendable level of flexibility by 

adapting the demolition procedure to enable the safe recovery 

of the girders for further purposes, such as experimental testing 

or potential reuse.  

The girder disassembly process comprised the following key 

steps: identification of reusable elements; preparation of the 

demolition method by the contractor; cutting of the concrete 

slab between the girders; removal of the edge girders; lifting of 

the girders using cranes; transportation of the girders; and 

placement at designated storage or testing locations. 

3 EXPERIMENTAL PROGRAM AND TEST SETUP 

The investigation program was based on the testing of six 

girders, focusing on the following parameters: the influence of 

girder length (span lengths of 9.9 m and 12.2 m), the influence 

of the load application point (shear/flexural test), the influence 

of the presence of a reinforced concrete (RC) slab on the girder 

(girders with and without slabs), and the impact of pre-existing 

damage to the girder. 

In addition, supporting activities were carried out, including 

visual inspections of the girders, destructive and non-

destructive testing of the girder materials/aggregates and laser 

scanning of specimens. 

The test setup is presented in Figure 4. The girder was simply 

supported, with a pinned support at one end and a roller support 

at the other side. Both supports were rigidly anchored to the 

laboratory’s strong floor. Lateral stability of the girder was 

ensured using a rigid steel frame. The load was applied by 

means of a hydraulic actuator, which was clamped into the steel 

reaction frame. 

 

 

Figure 4. Experimental setup at ZAG’s Laboratory for 

Structures. 

The essential instrumentation for each test included a force 

transducer, displacement transducers, strain measurement 

devices (extensometers, strain gauges, digital image correlation 

(DIC) system, optical sensors), accelerometers, and acoustic 

emission sensors. 

The testing procedure for the static cyclic tests was generally 

divided into two stages. The first stage was load-controlled, 

while the second stage was displacement-controlled. Each 

stage comprised several phases, defined either by force levels 

(in the first stage) or displacement increments (in the second 

stage). The load, whether force- or displacement-controlled, 

was progressively increased until the girder failed. 

4 PRELIMINARY TEST RESULTS 

Due to the limited scope of the paper, in the following, the 

preliminary results of only the flexural test on the B4 girder is 

presented. This girder, with a span length of 9.9 m, was loaded 

at mid-span during the test. It was tested without the top RC 

slab and had no pre-existing damage prior to the testing. 

 Flexural behaviour of girder 

The flexural behaviour of the girder is represented by the 

hysteretic curve, which shows the relationship between applied 

force and mid-span displacement, as illustrated in Figure 5. The 

triangles indicate the state at initial cracking and the state just 

before failure. The labels S1, S2, and S3 denote engineering-
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defined states employed for damage detection accelerometers, 

as described in Section 4.2. 

 
Figure 5. Hysteretic response of the girder at the middle.  

 

The initial cracks appeared during the second loading phase, 

forming in the load application area with an initial width of 

approximately 0.1 mm (Figure 6). Cracking began at an applied 

force of 246.1 kN and a corresponding displacement of 10 mm. 

These cracks closed completely upon unloading. As the loading 

progressed through subsequent phases, the cracks widened and 

propagated, increasing both in number and extent. Inclined 

(shear) cracks also began to appear in supports’ region.  

 

 

Figure 6. Damage state at the peak of the cycle when the first 

cracks appeared. 

 

Figure 7. Damaged girder in the failure stage. 

In the phase immediately preceding failure, the maximum 

observed crack width reached 4.5 mm, with a residual width of 

3.0 mm after unloading. In the following phase at displacement 

of 22,4 mm and force 497 kN, the girder experienced flexural 

failure, accompanied by the rupture of the prestressing tendons 

in the load application zone (Figure 7). 

 Monitoring of damage with accelerometers 

The damage of the girder at the end of individual loading 

cycles was monitored using 18 DEWESoft 3-axial MEMS 

accelerometers [4], placed on the top flange. This part of the 

experimental program aimed to evaluate the limits of 

acceleration-based monitoring systems to detect structural 

damage based on changes in the specimens' dynamic 

characteristics.  

Damage progression was monitored through ambient 

vibration measurements conducted after each load cycle on 

fully unloaded girders, ensuring consistent initial boundary 

conditions. The specimen’s dynamic properties, including 

natural frequencies, mode shapes, and damping ratios, were 

identified using Operational Modal Analysis (OMA) 

performed with the DEWESoft ARTeMIS OMA software [5]. 

This study presents and discusses the changes in natural 

frequencies of the first two vertical bending modes, shown in 

Table 1. A schematic illustration of the corresponding mode 

shapes is provided in Figure 8. 

Table 1. Change in mode shape natural frequencies during 

experimental phases.  

B4 f1 [Hz] f2 [Hz] Δf1 [%] Δf2 [%] 

Reference 12.4 45.8 \ \ 

S1: after 

crack phase 
12.0 45.2 −3.2 −1.3 

S2: after 

yield phase 
10.3 43.8 −16.9 −4.4 

S3: near 

collapse 
8.0 40.8 −35.5 −10.9 

The reference natural frequencies of the first and second 

vertical bending modes amounted to 12.38 Hz and 45.81 Hz, 

respectively. As damage accumulates during load cycles, the 

girder’s stiffness diminishes, which is reflected in the 

corresponding reduction of natural frequencies in Table 1. A 

reduction of 3% to 36% in the first natural frequency was 

observed as the damage evolved from cracking (S1) to near-

collapse limit state (S3). Smaller decrease was obtained for the 

second vertical bending mode (1% to 11%), which is due to the 

applied load causing more damage near mid-span, where the 

amplitude of the second mode is nearly zero (see Figure 8b).  

 
(a) 

 
(b) 

Figure 8. First (a) and second (b) vertical bending modes of 

B4 girder. 

 

Initial findings indicate that acceleration-based monitoring 

can be used to detect structural damage in a controlled 

environment.  
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 Monitoring of damage with acoustic emission 

During the load test, the evolution and propagation of 

damage were also assessed using acoustic emission methods 

(AEM). Three Physical Acoustic Corporation type PK6I 

sensors were mounted half height of the girder’s web. Physical 

Acoustic Corporation AEWin for Sensor Highway Smart 

Monitor Ver. E5.00 software was used to record the acoustic 

emission parameters and the load. The threshold was set to 

40 dB. 

General acoustic emission activity, represented by the 

amplitude of each hit, the applied load, are time-dependent and 

presented in Figure 9. Nevertheless, The AE activity, i.e. 

damage evolution during loading and unloading phases, is 

visible. In addition, the b-value and the damage parameter as 

used by Vidya Sagar and Raghu Prasad [6] and Elbatanouny et 

al. [7] in similar investigations were calculated to evaluate the 

damage evaluation. The decrease of b-value and the increase of 

damage parameter with increased load are clearly visible. 

Figure 9: Load and amplitude of individual hits, and b-value 

and damage parameter as a measure of damage evolution and 

propagation. 

 

 

Figure 10: Maximum loads (Max - blue), and number of hits 

(N - purple), total energy (Sum - red) and mean count (Mean - 

green) of the hits for individual phases (P1, P2, P3), cycles 

(C1, C2) and stages (loading L and unloading U). 

As an example of a more detailed analysis the number of hits, 

total energy and mean counts of the first three phases are 

presented in Figure 10. Each phase consists of two cycles of 

loading and unloading. A significant difference in AE activity 

between different phases, cycles within individual phases and 

loading/unloading stage was recorded. A more detailed 

analysis is foreseen. It must be noted that some data of the 

phase 3, cycle 1, loading stage (marked L* on graph), was 

unfortunately lost. 

5 CONCLUSION 

The experimental investigation carried out within the ZAG’s 

research project ReNos provides valuable insights into the 

structural behaviour and bearing capacity of prestressed 

concrete bridge girders recovered from a flood-affected 

structure. Preliminary results demonstrate that acceleration-

based monitoring systems as well as acoustic emission can 

identify the progression of damage and help identify critical 

states in the girder's response. This confirms that such systems 

are suitable for structural health monitoring applications. 

Additionally, the study highlights that, with coordinated 

stakeholder involvement, dismantling procedures can be 

executed in a way that preserves structural components for 

further testing and potential reuse. 

Future work will focus on the analysis of remaining test 

results taking into account the main objective of the study: (1) 

to determine the actual load-bearing behaviour and compare it 

with the original design assumptions, (2) to monitor damage 

development using various sensor types, and (3) to develop a 

protocol for the potential reuse of the girders in line with 

circular economy principles.  

Acoustic emission techniques can clearly detect and monitor 

damage evaluation, but a more detailed analysis of the results 

is needed. 
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ABSTRACT: Unusual gaps at the ends of bridge girders can occur due to the displacement of abutments or insufficient initial 

gaps during construction. However, when such irregularities arise, it is difficult to estimate the cause through visual inspection 

alone. As analyses on the causes of these gaps and their expansion are needed, investigations into appropriate remedial measures 

have become important. For these analyses, we developed a device called the Expansion-Gap Measurement System (EGMS), 

which enables the causes of unusual gaps to be estimated based on continuous monitoring for temperature-related changes in gap 

distance. By capturing seasonal variations in gap distance, the system allows us to estimate the progression in abutment movement 

and the causes of damage. This paper presents the case study of a simple bridge made with H-shaped steel girders with unusual 

gaps where the EGMS was installed for approximately three years to investigate the causes of a gap. It was found that during the 

high-temperature summer months, the gap closed completely, whereas in winter, the gap remained. Furthermore, it was confirmed 

that the abutment saw no lateral movement during the winter, indicating the minimal progression of displacement. Based on these 

findings, the cause of the unusual gap was attributed to either an error in the abutment’s initial placement during construction or 

to previous lateral displacement of the abutment. 

KEY WORDS: Unusual expansion gap; Expansion-Gap Measurement System; Long-term monitoring; Girder bridge. 

1 INTRODUCTION 

At bridge girder ends, cases where the main girder is in contact 

with the abutment have been frequently observed [1]. This 

phenomenon is a type of damage known as ‘an unusual gap’, 

which occurs when there is insufficient clearance to 

accommodate the temperature-related expansion and 

contraction of the main girder. As a result, unexpected and 

harmful axial forces develop in the main girder. Additionally, 

it is suspected that some form of horizontal displacement is 

occurring in the substructure. 

The horizontal displacement of the substructure can arise 

from various causes, and in some cases, it may continue over 

time. If such displacement persists, the restoration of the gap 

will be done by cutting off the end of the main girder to shorten, 

but it may lead to the recurrence of the unusual gap. Therefore, 

it is crucial to identify the cause of the substructure's horizontal 

displacement, to assess its persistence, and to formulate an 

appropriate repair strategy for the unusual gap. 

However, identification of the cause of horizontal 

displacement in the substructure is not straightforward. When 

such displacement is suspected, typical approaches to 

determine the cause are to investigate the ground and 

foundation conditions. This process often requires geological 

investigations, such as boring surveys, but it can be costly. 

Generally, it is difficult to estimate the cause of horizontal 

displacement solely through visual inspections. 

To address this issue, the authors have developed the 

Expansion-Gap Measurement System (EGMS) for girders [2]. 

This system continuously measures the gap distance and the 

temperature of the main girder, enabling the cause of horizontal 

displacement in the substructure to be estimated. The details of 

the EGMS are described in Chapter 2. 

In this study, in order to verify the effectiveness of the EGMS, 

we installed the system on a simple steel girder bridge 

composed of H-shaped steel where an unusual gap had been 

observed. Over the course of approximately three years, we 

used the EGMS to determine the cause of the unusual gap. 

2 OVERVIEW OF THE EXPANSION-GAP 

MEASUREMENT SYSTEM (EGMS) FOR GIRDERS 

 Configuration of the EGMS 

The EGMS for girders primarily consists of linear displacement 

sensors and thermometer installed at the gap section. Figure 1 

provides an overview of the EGMS. The linear displacement 

sensors are placed on the upper and lower sections of the main 

girder to continuously measure the gap distance at each location. 

These sensors can detect changes in the gap distance caused by 

the temperature-induced expansion and contraction of the main 

girder. Additionally, the thermometer attached to the main 

girder provides data for calculations on the theoretical 

expansion/contraction amount and the corresponding gap 

distance. 

The collected data is stored in a data logger for retrieval 

approximately once every two months. Since the data logger 

supports wireless data transfer, data can be collected from the 

bridge deck even if the data logger is installed underneath the 

main girder. The system is powered by either a solar battery or 

an 12V deep-cycle battery. A DC/DC converter is used to 

adjust the voltage to 5V, which is required for the linear 

displacement sensors and other components. The data logger, 

Investigation of the causes of the unusual gap between the bridge  
and abutment using long-term monitoring 
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battery, and DC/DC converter are housed in a compact, 

insulated box (approximately 15 × 25 × 20 cm) for protection. 

Additionally, to verify the system’s performance in cold 

environments, an operational test was conducted at −35°C [3]. 

The system was confirmed to function properly even at 

extremely low temperatures.  

The system is designed to determine the cause of unusual 

gaps simply and efficiently, without relying on large-scale 

equipment. As described above, it is composed of readily 

available devices. 

 

 Causes of Deformations Determined by the EGMS 

In the EGMS, the gap distance at both the upper and lower 

sections of the main girder at each support, together with the 

temperature of the main girder, are continuously measured. 

Since the system records the temperature of the main girder, the 

theoretical gap distance at each support can be calculated 

(Figure 2(a)). At the same time, the EGMS measures the actual 

gap distance at the upper and lower sections of the main girder, 

allowing for a comparison between the theoretical and actual 

gap distance. 

For example, in the case of a simple girder, if the gap distance 

becomes 0 mm during summer, when the main girder 

temperature is high, and recovers in winter, when the 

temperature is low (Figure 2(b)), then it can be assumed that 

the abutments remain stationary and that the gap reduction is 

stable due to an initially insufficient clearance between the 

abutments. In such a case, cutting off the end of the main girder 

would prevent further reductions in gap distance. 

On the other hand, if one of the abutments (fixed bearing) 

undergoes horizontal displacement and continuously pushes 

the superstructure, the gap distance at the movable bearing 

remains 0 mm regardless of temperature changes (Figure 2(c)).  

Additionally, if tilting occurs, a difference in the gap distance 

between the upper and lower sections of the main girder can be 

expected. In this scenario, since the horizontal displacement of 

the abutment is ongoing, cutting off the end of the main girder 

would lead to another reduction in the gap distance. Therefore, 

measures to stop the horizontal displacement of the abutment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are necessary. 

Although based on a classical approach, the Expansion-Gap 

Measurement System for girders enables the determination of 

the cause of unusual gaps by analyzing the horizontal 

displacement of the substructure. Furthermore, it facilitates the 

development of an appropriate repair strategy. 

 

3 OVERVIEW OF EGMS INSTALLATION 

 Bridge Covered by the Study 

Figure 3 provides an overview of the bridge investigated in this 

study. The target bridge is a simply supported non-composite 

H-shaped steel girder bridge in Hokkaido, Japan, with a total 

length of 14.6 meters. Each of the four main girders has the 

dimensions of H800×300×14×26 mm. The deck is a 19 cm-

thick reinforced concrete slab with a 70 mm-thick asphalt 

pavement. The abutments are of the reversed T type and are  

Figure 2. Example of theoretical and actual gap distance 

of a simple girder. 

Figure 1. Overview of the EGMS. 
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constructed of concrete. The foundation consists of six steel 

pipe piles each with a diameter of 600 mm and a length of 14 

meters. The lowest winter temperature in the region where the 

bridge is located is approximately −30°C [4]. 

Regarding the ground conditions, the soil to a depth of 4 m 

below the road surface consists of a gravel layer with an N-

value of approximately 10. Below this, from the depth of 4 to 

18 m, clay layers with N-values ranging from 2 to 11 are 

distributed. Beneath the clay layers, a sandy layer with an N-

value of 30 or higher (bearing layer) is present. According to 

the design drawings, the pile foundation reaches the bearing 

layer.  

The bridge was completed in 1971, but a periodic inspection 

in 2012 found the gap at both abutments to be 0 mm. However, 

there were no indications of lateral movement, and the cause of 

the unusual gap remained unknown, posing challenges to the 

selection of appropriate remedial measures. 

 

 Installation Status of the EGMS 

Figure 4 illustrates the installation locations of the EGMS for 

girders. The linear displacement sensors were installed at both 

the upper and lower sections of the girder ends on the north-

side main girder (the G4 girder), with one sensor placed at each 

location. These sensors exhibited a measurement range of 

50 mm, with an accuracy of ±0.3% at full scale. Figure 5 shows 

the installation of the linear displacement sensors. Additionally, 

a thermometer was installed on the web of the G4 girder to 

measure the temperature of the main girder. Various devices, 

including the data logger, were installed on the bearing seat 

surfaces of each abutment. 

The measurement interval for the gap distance and the 

temperature was set to 30 minutes. Continuous measurements 

were conducted from September 30, 2021, to October 21, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 MEASUREMENT RESULTS AND DISCUSSION 

 Gap Distance Measurement at the Fixed Bearing 

Figure 6 shows the measured gap distance at the A1 abutment, 

which serves as the fixed bearing. The gap distance is displayed 

with the initial measurement value set to 0 mm. Figure 6 also 

includes the temperature of the main girder for reference. 

    At the fixed bearing, the variation in gap distance was 

minimal, remaining within the range of ±0.7 mm. Since the 

bearing at the fixed support has a 2 mm clearance, it is 

presumed that movement within this range occurred at the 

bearing. This confirms that the fixed bearing is functioning 

properly. 

    On the other hand, a difference in gap distance between the 

upper and lower sections of the main girder was observed over 

time. This discrepancy suggests that the abutment may have 

tilted. Therefore, a more detailed investigation of this issue is 

conducted in Section 4.5. 

 

 Gap Distance Measured at the Movable Bearing  

Figure 7 shows the measured gap distance at the A2 abutment, 

which serves as the movable bearing. As for the A1 side, the 

gap size is displayed with the initial measurement value set as 

0 mm. The temperature of the main girder is shown as a blue 

line, while the theoretical gap distance, calculated based on the 

girder temperature, is indicated in gray. 

 At the movable bearing, significant variations in the gap 

distance are observed in response to temperature changes. 

During the winter, when temperatures were low, the main 

girder contracted, and the measured gap distance closely 

Figure 5. Installation status of 

the linear displacement sensors. 

(a) A1 (b) A2 

Figure 4. EGMS installation locations. 

Figure 3. Overview of the target bridge. 
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matched the theoretical gap distance. In the summer, when the 

temperatures were high, the gap distance decreased. However, 

the gap reduction was less than the theoretical value. Onsite 

inspection confirmed that the main girder was in contact with 

the abutment parapet. A more detailed investigation into the 

gap distance behavior during warmer periods is discussed in 

Section 4.6. 

 

 Temperature Measurements 

To verify the accuracy of the temperatures measured by the 

thermometer installed on the main girder, a comparison was 

made with the temperatures recorded by thermometer at a 

nearby station of the Japan Meteorological Agency’s 

Automated Meteorological Data Acquisition System 

(AMeDAS) [4]. Figure 8 presents this comparison. The bridge 

and the AMeDAS thermometer are approximately 15 km apart. 

As shown in Figure 8, the temperature measured by the 

thermometer on the main girder closely approximates the 

temperature recorded at the AMeDAS station. However, the 

temperature variations observed on the main girder are smaller 

than those recorded by AMeDAS. This is likely due to the fact 

that the main girder is made of steel, which takes time to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respond to changes in ambient temperature. Since the measured 

values were generally consistent with the nearby temperature 

data, the measurement results are considered valid. 

 

 Transition of Battery Voltage 

The battery used for the displacement sensors may experience 

voltage drops at low temperatures. Since the displacement 

sensors output data based on voltage, a drop in input voltage 

makes accurate displacement measurements difficult. 

Therefore, the battery voltage was also monitored. Figure 9 

shows the changes in the voltage of the battery installed in the 

system at the A1 abutment. 

The battery voltage decreases due to system operation, so 

periodic replacements were planned. However, at the end of 

2021, the battery voltage dropped sharply, causing the system 

to shut down. This was attributed to power consumption by the 

system and to the cold temperatures. Therefore, from 2022 

onward, the battery was replaced approximately every two 

months to prevent system shutdowns. 

Except for the period at the end of 2021, the battery voltage 

remained above 10 volts. Since the 5 volts that is required to 

operate the displacement sensors and other components was 

maintained, the gap measurements obtained by the system were 

Figure 8. Comparison of temperatures measured at the 

main girder with those measured by nearby thermometer. 

Figure 9. Battery voltage variation (A1 abutment). 

Figure 7. Variation in clearance (A2 abutment). 

Figure 6. Variation in clearance (A1 abutment). 
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confirmed to be accurate. Additionally, by replacing the battery 

regularly, it was confirmed that this system can be applied even 

in cold environments where temperatures drop below −20°C. 

 

 Evaluation of the Abutment Inclination using the 

Difference Between the Upper and Lower Displacement 

Sensors 

To investigate the cause of the difference in gap distance 

between the upper and lower segments of the main girder at the 

fixed bearing over time, Figure 10 illustrates the transition of 

that difference for each abutment. 

As shown in Figure 10a, at the A1 abutment (the fixed 

bearing), the difference became negative and that negative 

difference continued to increase over time. It is noted that the 

difference fluctuated significantly during the cold winter 

season, likely due to girder deflection caused by snow 

accumulation and the impact of snow removal. In contrast, the 

change in the difference at the A2 abutment (the movable 

bearing) remained minimal. 

Referring to Figure 6, while the lower gap distance of the 

main girder remained around 0 mm, the upper gap distance 

showed a decreasing trend. This indicates that the increase in 

negative difference is caused by a decrease in the upper gap 

distance. Since the lower gap distance remained unchanged 

while the upper gap distance decreased, it is assumed that the 

A1 abutment is tilting toward the main girder. Therefore, it is 

presumed that the cause of the unusual gap lies in the A1 

abutment. 

However, since the decrease in the upper gap measurement 

was approximately 0.5 mm over three years, it is considered to 

have no immediate impact on the safety of the bridge. 

 

 Determination of Damage Causes Using the 

Correlation Between Temperature and Gap Distance 

To examine in detail the condition of girder gaps during periods 

of rising temperatures, Figure 11 shows graphs for each linear 

displacement gauge, with temperature on the horizontal axis 

and gap displacement on the vertical axis. To show the 

transition of gap distance, data points are color-coded by year, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the theoretical gap distance is represented in gray.  

At the A1 abutment (the fixed bearing) (Figures 11a and 11b), 

the gap distance fluctuates within the range of ±0.4 mm 

regardless of temperature. Additionally, while the gap distance 

of the lower segment of the girder changes linearly with 

temperature, no distinct trend is observed in the upper segment. 

This is likely because the lower segment primarily undergoes 

thermal expansion and contraction due to the steel material of 

the girder, whereas the upper segment is constrained by the 

concrete deck, which has a different specific heat capacity. 

However, since the overall variation in displacement is small, 

it is confirmed that the A1 abutment is functioning as a fixed 

bearing. 

At the A2 abutment (the movable bearing), it is observed that 

the gap distance increases as the temperature decreases. 

However, when the temperature exceeds 15°C, the decrease in 

displacement plateaus. The difference between the theoretical 

and measured gap distances increases, and at 30°C, this 

discrepancy reaches approximately 2 mm. 

Since gap distance is maintained during periods of 

temperature decrease at the A2 abutment, it is unlikely that the 

abutment is consistently leaning against the girder. In contrast, 

as noted in Section 4.5, a slight tilt was observed at the A1 

abutment. This suggests that one possible cause of the unusual 

gap is the gradual tilting of the A1 abutment after the bridge 

was completed. However, since no significant inclination is 

visible on the front of the abutment, another potential cause 

could be past abutment movement or an insufficient distance 

between abutments during construction. 

In any case, since no ongoing horizontal displacement of the 

abutments was detected and the average annual tilt of the upper 

part of the A1 abutment is approximately 0.1 mm, cutting off 

the girder ends is expected to be effective in preventing axial 

force from being input into the main girder. 

 

5 CONCLUSION 

We have presented a case study in which the authors utilized 

their Expansion-Gap Measurement System (EGMS) for girders 

to identify the cause of unusual girder gaps in a simple steel 

Figure 10. Variation in the difference of clearance between the upper and lower parts of the main girder. 

(a) A1 abutment (fixed bearing) (b) A2 abutment (movable bearing) 
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girder bridge composed of H-shaped steel. The following 

findings were obtained. 

(1) The EGMS enables the long-term monitoring of girder gap 

variations. 

(2) In the investigated bridge, the A1 abutment was found to 

be tilting toward the main girder, suggesting that the cause 

of the unusual gap lies in the A1 abutment. 

(3) As the temperature rises, the gap displacement at the A2 

abutment decreases, and when the girder temperature 

reaches 30°C, the difference between the theoretical and 

measured gap distance is approximately 2 mm. Since the tilt 

of the A1 abutment on this bridge is gradual, cutting off the 

girder ends is considered effective to prevent axial force 

from acting on the main girder. 
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ABSTRACT: This paper presents a comprehensive monitoring study of the dynamic sensitivity of the Solkan footbridge in 

Slovenia, with a focus on its response to user-induced actions. An extensive ambient vibration measurement campaign was carried 

out, during which 26 triaxial accelerometers were strategically deployed along the bridge to capture its modal characteristics in 

all three spatial directions. The structure’s dynamic response was monitored under both regular pedestrian traffic and elevated 

loading conditions during a local marathon event, allowing for the assessment of its behaviour across a broad spectrum of real-

world scenarios. Preliminary measurements revealed reduced pedestrian comfort, primarily due to resonance effects resulting 

from bridge–user interaction. The study highlights the importance of field-based dynamic assessments in diagnosing performance 

issues and informing mitigation strategies. The findings contribute to the advancement of resilient and dynamically efficient design 

and maintenance practices for pedestrian bridges. 

KEY WORDS: Modal model validation; Footbridges; Ambient vibrations; Dynamic sensitivity; User-induced excitation. 

1 INTRODUCTION 

Pedestrian footbridges are particularly challenging structures to 

design due to their pronounced susceptibility to dynamic issues 

resulting from bridge–user interaction [1]. These interactions 

can lead to serviceability concerns such as excessive vibrations, 

which in turn affect user comfort and, in some cases, may even 

raise long-term durability concerns [2] [3]. Addressing these 

challenges requires going beyond conventional static checks 

and incorporating advanced dynamic analyses aimed at 

identifying and mitigating resonance-related problems [4]. 

Current standards and guidelines provide recommendations 

for the frequency ranges typically excited by pedestrians and 

runners and require dynamic analysis when a bridge’s natural 

frequencies fall within these ranges [5-8]. The critical 

frequency range for vertical vibrations is between 1.5 and 3.5 

Hz, while for horizontal vibrations, it is between 0.5 and 1.5 Hz 

[5]. According to Sétra guidelines [6], resonance risks are 

particularly high for vertical vibration frequencies between 1.7 

and 2.1 Hz, and for horizontal vibration frequencies between 

0.5 and 1.1 Hz. To prevent resonance, the fundamental 

frequencies of footbridges should ideally exceed these ranges. 

However, achieving this is often challenging in lightweight and 

flexible structures, such as suspension or cable-stayed 

footbridges. Therefore, detailed dynamic assessments are 

essential to ensure acceptable levels of pedestrian comfort. For 

instance, Eurocode [7,8] mandates dynamic analysis for 

footbridges with predominant vertical frequency below 5 Hz 

and horizontal frequency below 2.5 Hz.  

Given the complexity of structural dynamic response, post-

construction measurements are crucial to verify performance in 

real-world conditions. Ambient vibration testing, combined 

with operational modal analysis (OMA), offers a non-invasive 

and effective means of identifying a bridge’s dynamic 

characteristics [2]. These data can be used to calibrate 

numerical models and support robust methodologies for 

evaluating and improving dynamic performance. 

In addition to typical service conditions, there is growing 

recognition of the need to monitor the structural response of 

footbridges under extreme user-generated actions, such as 

dense crowds, synchronized movements, or dynamic events 

like running or jumping. Long-term dynamic structural health 

monitoring (SHM) enables the detection of changes in modal 

properties, transient amplification effects, and possible 

structural degradation under such rare but critical loading 

scenarios. Integrating SHM strategies into bridge management 

enhances safety, informs maintenance decisions, and supports 

the development of resilient infrastructure that can withstand 

both everyday usage and exceptional dynamic demands. 

This paper investigates the dynamic behaviour of a 

pedestrian footbridge spanning the Soča River in Slovenia, 

which has shown reduced pedestrian comfort during regular 

use. The bridge's dynamic response and its sensitivity to user-

induced excitation are evaluated through an experimental 

monitoring campaign utilising strategically placed triaxial 

accelerometers [9].  

2 METHODOLOGY 

 Bridge description 

The Solkan footbridge is a single-span cable-stayed suspension 

structure crossing the Soča River in Slovenia with total span 

120.0 m (see Fig. 1). It features an open-section steel deck 

suspended from two main parabolic steel cables anchored on 

both riverbanks. The main cables are supported by two steel A-

shaped pylons mounted on reinforced concrete abutments. 

Vertical hangers, spaced at 6.0-meter intervals, connect the 

deck to the main cables. The deck is additionally laterally and 

longitudinally stabilised by a parabolic cable anchored to the 

abutments, along with four straight bracing cables attached at 

one-quarter of the span length from each end. The deck is 
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supported at both ends by four elastomeric bearings, two of 

which allow for longitudinal movement to accommodate 

thermal expansion.  

The material of the pylons is S235 steel according to EN-

1993-1-1, while the material of all deck members is S355 

steel. The cables are constructed with high-strength steel ropes 

with tension strength fu = 1500 MPa and modulus of elasticity  

E = 165 GPa. The cross-section and material characteristics of 

the bridge are summarized in Figure 1. Footbridge over the 

Soča River (Slovenia). 

Table 1.  

 

 

Figure 1. Footbridge over the Soča River (Slovenia). 

Table 1. Characteristics of footbridge’s structural parts  

(FLC – Full Coil Rope, OSS – Open Spiral Strands,  

D - Outside diameter, tw - Wall thickness) 

Element Property Material 

Main cables FLC, D = 72 mm  High-strength 

steel 

Hangers FLC, D = 16 mm High-strength 

steel 

Stabilising 

parabolic cables 

FLC, D = 60 mm High-strength 

steel 

Stabilising 

straight cables 

FLC, D = 38 mm High-strength 

steel 

Connecting cables OSS, D = 12 mm High-strength 

steel 

Pylon (legs) Circular hollow 

section, D/tw = 

355/10mm  

S235 

Pylon (traverse) Hollow circular 

section, D/tw = 

254/10 mm  

S235 

Long. girders IPE400 S355 

Trans. girders IPE270 S355 

Bracing diagonals IPE200 S355 

 Concept of investigation 

The experimental campaign aimed at investigating the bridge’s 

dynamic characteristics and its sensitivity to user-induced loads 

was conducted in November 2024. The measurements 

included:  

• ambient vibration measurements, 

• controlled pedestrian loading tests to assess its dynamic 

performance under user-induced excitation,  

• monitoring of the bridge's response during a marathon 

event, to evaluate its behaviour under dense, real-world 

extreme pedestrian traffic.  

Under controlled pedestrian loadings, the program included 

pedestrian sweeps, running, and synchronized marching tests 

with both small and large groups. This methodology allowed 

for evaluating the structure’s general susceptibility to user-

induced excitations. 

Overall, the investigation was guided by two primary 

objectives: 

• identification of the structure’s modal properties, 

• evaluation of the bridge’s dynamic sensitivity to user-

induced excitation. 

3 MODAL MODELS 

 Monitoring setup 

The footbridge’s reference modal model was established based 

on experimental data obtained through ambient vibration 

measurements. For this purpose, the acceleration response of 

the bridge was recorded at multiple control points distributed 

across the structure. In total, 26 accelerometers were used in the 

campaign. Measurements were taken in all three global 

directions at each control point, with a sampling rate of 500 Hz. 

The sample of the measured acceleration signals consists of 

1 hour of ambient vibration data. A representative control point 

with a tri-axial accelerometer is depicted in Figure 2. 

 

 

Figure 2. Representative control point.  

The measuring system was composed of twelve MonoDAQ-E-

gMeter MEMS accelerometers and fourteen IOLITEi-

3xMEMS-ACC accelerometers, both connected with 

EtherCAT cables to an industrial PC running the DewesoftX 

acquisition system. Both types of sensors are triaxial 

accelerometers, featuring low-noise performance (96 dB 

dynamic range and 25 µg/√Hz spectral noise density), 

integrated data acquisition, and EtherCAT connectivity. The 

MonoDAQ-E-gMeters were mounted on aluminium plates and 

were attached to the deck’s transverse girders via magnets, 

while the IOLITEi-3xMEMS-ACC were attached to steel 

tripods and were placed directly on the bridge deck.  
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Data acquisition and initial processing were carried out using 

DewesoftX software, which enabled signal recording, real-time 

analysis, and visualization. The collected data were 

subsequently exported for further analysis in FlexPro, 

Simcenter Testlab (LMS Test.Lab), and Dewesoft Artemis 

OMA, supporting both time- and frequency-domain 

evaluations. 

 

 Experimental modal models of the footbridge 

Based on data collected during ambient vibration monitoring, 

the modal models of the footbridge were extracted using 

methods belonging to two main methodological groups that are 

strongly oriented towards OMA, namely [9]:  

• Frequency Domain Decomposition (FDD), 

• Stochastic Subspace Identification (SSI).  

Accordingly, the following approaches were compared: 

Enhanced Frequency Domain Decomposition (EFDD), Curve-

fit Frequency Domain Decomposition (CFDD), Unweighted 

Principal Component (SSI-UPC), and Extended Unweighted 

Principal Component (SSI-UPCX). Figure 3 presents an 

example of data recorded in the mid-span of the footbridge 

during ambient vibration testing, shown in the time-frequency 

domain. The experimental modal models were validated using 

the Modal Assurance Criterion (Eq. 1), with the AutoMAC 

matrix employed for this purpose [10]. 

 𝑀𝐴𝐶𝑖𝑗(𝜓𝑖
𝐴, 𝜓𝑗

𝐵) =
({𝜓𝑖

𝐴}
𝑇
{𝜓𝑗

𝐵})2

({𝜓𝑖
𝐴}

𝑇
{𝜓𝑖

𝐴})({𝜓𝑗
𝐵}

𝑇
{𝜓𝑗

𝐵})
 (1) 

The modal models obtained from different identification 

techniques are summarized in Table 2. Figure 4 illustrates the 

3D AutoMAC matrix for the SSI approach, and Figure 5 

provides a comparison of the damping ratio estimates across 

the various methods. 

 

Figure 3. Acceleration and frequency time histories 

for ambient vibration (mid-span, vertical direction). 

 

Figure 4. AutoMAC matrix for SSI OMA. 

 

Table 2. Natural frequencies of the footbridge obtained  

with different OMA techniques. 

Mode* 
Frequency [Hz] 

FDD CFDD EFDD SSI 

1V 0.574 0.570 0.569 0.571 

2V 0.764 0.764 0.765 0.770 

3H 0.847 0.843 0.843 0.844 

4V 1.052 1.054 1.054 1.053 

5H 1.096 1.096 1.097 1.098 

6T 1.145 1.144 1.145 1.142 

7V 1.743 1.740 1.741 1.735 

8T 1.819 1.804 1.804 1.818 

9V 2.202 2.196 2.201 2.194 

V – vertical; H – horizontal; T - torsional 

 

 

Figure 5. Damping ratios for the identified modes. 

4 SENSITIVITY OF THE BRIDGE TO USER-INDUCED 

EXCITATION 

 Controlled pedestrian loading tests 

The primary objective of the field tests involving pedestrians 

and runners was to evaluate the footbridge’s susceptibility to 

resonance effects. Therefore, a series of experiments was 

carried out, during which various dynamic scenarios were 

considered, including walking and synchronized group 

movement, to identify critical excitation frequencies and assess 

the resulting vibration levels in different structural locations. 

The responses were evaluated using acceleration and frequency 

time histories obtained from Short-Time Fourier Transform 

(STFT) analysis with a window size of 0.54 s and 50% overlap.  
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Based on dynamic responses, a series of resonant frequencies 

induced by various human activities were observed. In the 

random walk case, the dominant response frequency in the 

horizontal direction was 0.84 Hz (see Fig. 6b). This resonance 

was exciting by walking-induced dynamic loading at a 

frequency of 1.64 Hz in the vertical direction, as shown in Fig. 

6a. This suggests that the excitation falls within the resonance 

range of the first horizontal mode, which also contributes to the 

vertical response, particularly evident in the 7V mode (see Tab. 

2). The excitation frequency (1.64 Hz) corresponds to 

approximately 95% of the mode’s natural frequency (1.74 Hz). 

This is a significant observation, as both the 1.64 Hz and 0.84 

Hz components originate from the same pedestrian passage, 

corresponding to the vertical and horizontal components of the 

walking-induced forces, respectively.  

 

(a) 

 

(b) 

Figure 6. Acceleration and frequency time histories 

for random walking (mid-span) for vertical (a) and (b) 

horizontal direction. 

 

 

Figure 7. Acceleration and frequency time histories 

for marching group of people (mid-span, vertical direction). 

Figure 8 presents the time-domain response recorded during the 

user-induced frequency sweep, ranging from 1.50 to 3.50 Hz. 

This was performed by three volunteers moving in synchrony, 

guided by a preprogrammed metronome recording. MP3 files 

with impulse sounds have been generated (intended to 

synchronize volunteers ' stomping on the bridge). Each file 

contains a sweep of frequencies from 1.5 Hz to 3.5 Hz, in 0.1 

Hz increments (i.e., 1.5, 1.6, 1.7, ..., 3.5 Hz), with smooth 

transitions between frequencies (no pauses) and an 

approximate total duration of 385 seconds. 

The Short-Time Fourier Transform (STFT) analysis, 

represented in terms of normalized Power Spectral Density 

(PSDnorm), revealed that several natural frequencies were 

excited over the course of the experiment, indicating a dynamic 

interaction between the excitation and the structure's modal 

characteristics. Notably, the most prominent response occurred 

in the frequency range between 0.8 and 1.70 Hz, which 

corresponds to the range of several resonant frequencies of the 

structure (3H to 7V, see Table 2). This suggests that the system 

exhibits a strong sensitivity to excitation near these frequencies. 

The largest amplification occurred at a frequency of 

approximately 1.2 Hz, which is close to the first torsional mode 

of the footbridge (6T). A clear amplification of the response in 

the range of resonant frequencies confirms the effectiveness of 

the frequency sweep in exciting the relevant modal behaviour. 

 

 

Figure 8. Acceleration and frequency time histories for  

user-induced frequency sweep (mid-span, vertical direction). 

 Footbridge's response during a marathon event 

The monitoring campaign also included continuous data 

acquisition during a marathon, allowing for the assessment of 
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the structure’s dynamic behavior under dense pedestrian 

loading. Figure 9 presents the time-domain response recorded 

during the marathon at mid-span in the horizontal direction. 

STFT analysis revealed that several natural frequencies were 

excited during this large-scale social event, which represents an 

extreme loading scenario. This indicates a dynamic interaction 

between the excitation and the modal characteristics of the 

structure. The most significant response was observed at a 

frequency of approximately 1.10 Hz in the horizontal direction. 

 

 

Figure 9. Acceleration and frequency time histories 

for marathon (mid-span, horizontal direction). 

5 CONCLUSIONS 

Based on the presented study, several key conclusions were 

drawn. Within the frequency range of 0–2.50 Hz, nine vibration 

modes were successfully identified. Among them, two modes 

belonged to the commonly recognized critical set for 

footbridges, including one vertical (1.74 Hz) and one horizontal 

mode (0.84 Hz), which suggests sensitivity of the bridge to 

user-induced excitation. Notably, both modes were excited by 

a single pedestrian passage, making the response particularly 

concerning. This is further amplified by the fact that the random 

walk scenario, responsible for triggering both modes, is the 

most frequent type of loading expected during regular bridge 

use. A high level of consistency was achieved across all 

developed modal models, with a mean error of less than 2%, 

confirming the reliability of the applied identification 

techniques. 

The analysis of dynamic responses revealed a dominant 

resonant frequency of 1.64 Hz under both random walking and 

marching activities, indicating a strong excitation associated 

with the vertical component of pedestrian loading. 

Additionally, during random walking, a significant response 

was observed at 0.84 Hz, which corresponds to the horizontal 

component of the same excitation. These results demonstrate 

that human-induced vibrations can simultaneously activate 

multiple modal components of the structure. Furthermore, 

during the marathon event, extreme horizontal vibrations were 

recorded, to the extent that participants were unable to continue 

running across the footbridge. This highlights the severity of 

the dynamic response under real, large-scale crowd loading. 

The use of user-induced frequency sweeps during experimental 

testing proved to be an effective method for capturing a wide 

range of vibration modes and natural frequencies. 

These findings underscore the importance of considering 

both vertical and horizontal components of pedestrian-induced 

loading in the dynamic analysis, design, and safety assessment 

of footbridges. The observed variation in identified modal 

parameters across different load scenarios highlights the need 

to account for uncertainty in vibration-based evaluations. 

Future research should address this aspect more systematically 

by following established best practices in pedestrian bridge 

monitoring and incorporating statistical methods to quantify 

confidence levels in the extracted modal data. 
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ABSTRACT: A new subway line is under construction in Prague, Czechia. The drilling and construction potentially affect the 

structural health of buildings and infrastructure in the zone of influence. As part of geotechnical monitoring for the Metro Line D 

construction, subsidence is monitored through satellite interferometry (InSAR). Measurements from TerraSAR-X/PAZ are 

analysed using a customised PS-InSAR algorithm to capture evolving deformation patterns during construction. In addition, 

several add-on methods have been developed to provide targeted trend analysis and geotechnically relevant metrics. The 

retrospective “passportization stage” has been followed by standard monitoring stages with adaptive stage duration and frequency 

of satellite acquisitions. The nonlinear characteristics of displacement trends present challenges for InSAR. Particularly in X-band 

data, phase unwrapping errors compromise spatial interpretation, elevate noise levels, and diminish the reliability of results. Issues 

are addressed by tailored enhancements to the InSAR methodology, including advanced time series segmentation considering 

statistically significant differences in displacement velocities or noise levels. Validation confirms strong agreement between 

displacement trends measured through InSAR and conventional geotechnical methods. 

KEY WORDS: InSAR; Subway; Subsidence; Structural health. 

 

1 INTRODUCTION 

 MT-InSAR as a tool to monitor tunnel drilling impacts 

in an urban environment 

Urban tunnelling projects, particularly those involving 

mechanised excavation methods such as Tunnel Boring 

Machines (TBMs), are known to induce subsidence ground 

deformations that can compromise the structural integrity of 

buildings and infrastructures above the tunnel alignment. 

Monitoring and assessing these effects is crucial for mitigating 

risk in densely built environments. Interferometric Synthetic 

Aperture Radar (InSAR), particularly advanced multi-temporal 

techniques (MT-InSAR), has emerged as a reliable and cost-

effective method for monitoring such deformations with 

millimetric precision over extensive spatial and temporal 

scales. 

Recent studies have demonstrated the efficacy of InSAR in 

tracking surface displacements due to tunnelling activities in 

various urban contexts. For example, [1] utilised InSAR to 

monitor tunnel-induced ground movements and demonstrated 

its value in complementing conventional geotechnical 

instrumentation during tunnelling operations in Turin, Italy. 

Similarly, [2] applied InSAR to assess accumulated settlement 

related to highway tunnel construction in Genoa, Italy. The [3] 

showcased a novel integration of MT-InSAR and the relative 

stiffness method to assess structural damage during the London 

Crossrail project, highlighting the role of soil-structure 

interaction in deformation modelling. These approaches allow 

for better estimation of tensile strains and more accurate 

prediction of damage potential compared to greenfield 

assumptions. 

 

The [4] emphasised the integration of InSAR in all phases of 

tunnelling—from planning to post-construction monitoring—

noting its advantage in detecting both anticipated and 

unexpected deformations across large urban sectors. 

Meanwhile, [5] applied retrospective PSI analysis in East 

London during the Lee Tunnel construction, revealing 

previously undetected geotechnical anomalies and advocating 

for InSAR's role in early risk identification. 

Beyond deformation detection, translating InSAR-derived 

ground displacement data into actionable insights for building 

vulnerability assessment is gaining traction. Damage level on 

buildings and infrastructure caused by subsidence depends on 

the asset’s position in the subsidence bowl, displacement 

direction and magnitude [6]. The [7] and [8] successfully 

derived empirical fragility curves by correlating InSAR-

derived displacements with in-situ damage surveys, enabling 

probabilistic assessments of structural risk across extensive 

building inventories. These methods have proven especially 

pertinent in older urban centres, where subsidence impacts are 

compounded by complex underground networks and historical 

constructions, such as in Madrid [9] and Pistoia [6]. 

 MT-InSAR supporting geotechnical monitoring during 

subway construction in Prague 

In this context, the present study describes the operational use 

of MT-InSAR as a component supporting complex 

geotechnical monitoring during the construction of the Prague 

D line subway. Spatially dense and temporally resolved 

deformation data from MT-InSAR complement traditional 

operational monitoring techniques, providing additional 
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insights about the extent and chronology of tunnelling-related 

hazards. 

A new subway line is under construction in Prague, Czechia, 

traversing from the city’s peripheral regions to its central 

districts through geologically complex and challenging 

conditions. The influence of subway construction potentially 

affects the structural health of buildings and infrastructure in 

the zone of influence, which is being monitored by standard 

geotechnical and geodetic techniques, including precise 

levelling. A network of more than 900 static measurement 

points has been established in the zone of influence between 

planned stations Pankrac and Olbrachtova by the client. 

Measurements identify deformation trajectories reaching or 

exceeding pre-established hazard warning levels to allow early 

and timely mitigation during construction. 

InSAR complements the monitoring in two ways: 

• Stage 0: Provision of passportization status 

documenting the level of (in)stability within and 

beyond the zone of influence before the 

construction started as of April 2022. 

• Stage 1-8: Regular monitoring during construction 

with variable monitoring interval lengths (6 – 12 

months) and satellite data acquisition frequency (11 

– 33 days). The InSAR monitoring set-up has been 

designed to be efficient and cover periods with the 

highest expected deformation rates and 

measurement frequencies.  

As of the end of 2024, the fifth monitoring stage has been 

completed, with stages 6-8 planned for 2025-2026 (refer to 

Figure 1). The overall size of the core area of interest (AOI) 

along the zone of influence is approximately 0.5 km2. InSAR 

monitoring covers the area of the AOI extended by a 0.5 km 

wide buffer. 

 
 

Figure 1: Passportization (Stage 0) and subsequent monitoring 

stages (up to Stage 5). The average frequency of TSX imagery 

acquisition is indicated below the graph. From 2025 on, 

additional stages follow up after Stage 5. 

 

2 SATELLITE DATA 

TerraSAR-X data (X-band, wavelength 3.08 cm) in StripMap 

mode (spatial resolution 3x3 m) are being used for InSAR 

monitoring. The images cover the monitoring period 2016-

2024, and their total number is 129. 

As a supplementary dataset, freely available Sentinel-1 (C-

band, wavelength 5.6 cm) data were processed for the same 

area of interest from three tracks (ascending 146 (looking from 

West) and descending 22 and 95 (looking from East)). The look 

angle is flatter than that of TerraSAR-X and, therefore, more 

sensitive to the horizontal (East-West) displacements. Sentinel-

1 images were processed from 2015 to the end of 2024, 

amounting to 430-450 images per track. An overview of 

satellite datasets is listed in Table 1. 

Digital terrain models (DTMs) and digital surface models 

(DSMs) obtained from open data sources [10] were used to 

estimate the location of each PS point (ground, facade, roof, 

etc.) and to determine its height above ground. 

 

Table 1. Baseline and supplementary satellite datasets. 

Satellite/mode 

/ track 

Images 

used 

Inc angle 

[deg] 

Spatial 

resolution 

[m] 

TerraSAR-X / 

SM / D2 

   129 22   3x3 

Sentinel-1 / 

IW /D95 

441 32 20x5 

Sentinel-1 / 

IW / D22 

436     44   20x5 

Sentinel-1 / 

IW / A146 

429 39   20x5 

 

 

3 METHODOLOGY 

 MT-InSAR analysis 

The InSAR processing was performed using the persistent 

scatterers algorithm (PS-InSAR) in the SARproZ(c) software, 

which is tailored for infrastructure monitoring. For Sentinel-1, 

all pixels within the area of interest were processed to reach the 

highest possible point density. In contrast, for TerraSAR-X, 

point selection was based on local amplitude maxima to 

streamline the processing timeline. A reference point was 

selected in another stable part of the city to avoid being 

influenced by the construction works. 

Subsequently, proprietary post-processing techniques have 

been employed to enhance results from the standard PS-InSAR 

algorithm. In particular, the detection of temporally coherent 

targets and time series segmentation has been used to retain a 

higher density of candidate PS measurement points.  

The time series of each PS point was segmented into intervals 

with constant velocity and noise, and abrupt movements were 

excluded within a single segment. The segmentation method is 

data-driven, based on statistical tests to compare principal 

values for subsequent segments (such as velocity and noise). 

The segmentation enables us to more accurately estimate the 

quality of the time series for PS points experiencing highly non-

linear displacement. In conventional InSAR workflows, the 

estimated reliability expressed by coherence “averaged” over 

the whole monitoring period is low for these points, resulting 

in their discarding in the candidate selection phase. For each 

segment, displacement noise was estimated, and if it was too 

high, that segment was considered unreliable. However, if a 

point is reliable for at least part of the monitoring period, it can 

be interpreted for that period. The tolerable noise level was 

calculated based on statistical simulations, considering 

ambiguous fundamentals of InSAR, and depends on the SAR 

wavelength and the length of a segment. Generally, the allowed 

noise level is around 2.8 mm for TSX for long segments, and 

slightly lower for shorter segments. This is particularly 

important in areas with ongoing construction work, where a 

point may become unreliable for shorter periods and then 

regain reliability. These periods may repeat frequently. The 
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segmentation is performed for each PS point individually; 

therefore, the segments vary between points. 

With special attention, the displacement velocity in the last 

reliable segment (i.e. the most recent displacement velocity) is 

estimated, together with its standard deviation, at the end of 

each monitoring stage. 

 Estimation of horizontal component 

The TSX dataset, featuring a steep incidence angle in the area 

of interest, is particularly suitable for detecting displacements 

with a dominant vertical component. In addition, due to 

suspicions of displacements with strong horizontal components 

in certain zones of the drilling influence zone, the Sentinel-1 

dataset has been employed. Measurements from opposite 

ascending and descending orbits feature flatter incidence angles 

and are more sensitive to horizontal displacements in the East-

West direction. Standard decomposition using a custom grid 

size was implemented to convert displacement rates from the 

LOS (radar line-of-sight) to vertical and horizontal deformation 

components. Sentinel-1 measurements at the end of Stage 3 and 

Stage 5 from their most recent reliable displacement rates (in 

mm/year) were used. This option turned out to be less noisy 

compared to processing options utilising stage-wise or 

cumulative displacements (in mm). 

 Estimation of buildings affected by geotechnical hazard 

Geotechnical hazards and the structural health of buildings can 

be assessed using PS-InSAR results through various 

methodologies. For the pilot demonstration of technology 

utility for the D line subway in Prague, we focused on testing 

existing approaches, their customisation, and developing a new 

one.  
The [11] combined PS-InSAR with damage surveys to 

develop empirical building fragility curves. The approach 
focuses on monitoring settlement-induced damage through 
parameters summarily ranked as SRI (Subsidence-Related 
Intensity), such as differential settlement and relative rotation 
(deflection ratio), calculated from a cloud of PS points for 
building polygonal footprints or their immediate vicinity. 
Ancillary metrics (length, width, buffer) are computed from the 
polygonal geometry. SRI proxies the potential damage risk for 
different classes of building construction materials. 

The [9] employ PS-InSAR to monitor deformation in urban 
environments, particularly in historical city centres, where 
underground activities may induce ground subsidence. Their 
method applies novel classification indices, including 
deformation velocity, dispersion, and acceleration indices, as a 
proxy for assessing the structural health of buildings.  

To complement the above methodologies for specific types 

of buildings in dense residential urban stock (tall and with a 

small footprint area), we developed an additional index to 

indicate the potential tilt of the building.  It is based on the 

correlation between the estimated height of a PS point (above 

ground) and the estimated displacement velocity. Figure 2 

displays the simple model of the situation. 

Supposing the correlation exceeds the threshold and the 

difference between the highest and lowest PS points in the 

footprint exceeds the set value, then the rate between the 

displacement velocity and height is estimated and converted to 

tilt angle, assuming that the differential displacements are 

horizontal (East-West direction). In our case, the tunnel's 

orientation is ideal for InSAR, as the expected East-West 

displacements are most sensitive to this technique. 

 

 

Figure 2: Illustration of the relation between the measured 

line-of-sight displacement and height for a tilted building. 

To estimate the tilt angle, the least squares method 

accounting for errors in both x and y axes (i.e., height and 

displacement velocity) was used [12], as both values were 

estimated from the original InSAR data. Practically, the 

stochastic model is not precise as it does not consider the 

relation between the estimated height and displacement 

velocity. This is because the relationship is not straightforward, 

as the height is calculated from all the SAR data, while the 

displacement velocity is not. Moreover, outliers were excluded 

from the adjustment. Finally, the tilt angle was confirmed only 

if it was higher than its standard deviation; the tilt angles are 

overall smaller than, e.g., 2.5 times the standard deviation.  

The correlation method can only be used for X-band data. 

Sentinel-1 data have a high standard deviation in height, which 

leads to a too-high standard deviation of the estimated tilt angle. 

 Cross-validation 

Total displacements measured converted to vertical direction 

were compared with geodetically measured settlements for a 

set of buildings in the zone of influence.  

4 RESULTS 

At the end of each monitoring stage, results with a 

standardised structure and formatting are delivered to the 

construction monitoring committee. These include maps of 

ground displacements in LOS from the baseline TSX dataset 

complemented by additional metrics derived by analysis of 

segmented deformation time series (refer to Figure 3): 

• Displacement rates – average, last reliable velocity 

(mm/yr)  

• Stage-wise and cumulative displacement (mm) 

• Acceleration 

• Classification of displacement trend typology 

• Classification of reflecting target type 
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In total, more than 4,000 temporally coherent PS measurement 

points are being detected for each monitoring stage in the core 

AOI from the TerraSAR-X dataset, and over 22,000 

measurement points for the extended AOI.   

 

Figure 3. Example of PS points’ displacement time series 

from a building affected by repeated drilling-induced 

settlements and injecting-induced uplifts in the meantime. 

  

   

Figure 4. Ground displacement velocity (from at least a 1-

year-long reliable time-series segment) in the core AOI from 

the Sentinel-1 dataset decomposed from LOS to (a) vertical 

and (b) East-West direction, which is roughly perpendicular to 

the subway drilling axis (please note: displacement velocity 

magnitude could not be disclosed). 

Validation revealed discrepancies between InSAR 

displacements from TSX converted to vertical direction and 

geodetic measurements by levelling. These discrepancies in 

measured settlements amounted up to 3-4 mm over a 

comparable measurement period for a line of tall buildings at 

the east side of the settlement zone, while being negligible in 

other areas. After a thorough analysis, we can attribute these 

discrepancies to the influence of horizontal displacements – the 

buildings are slightly leaning away from the satellite in LOS. 

These displacements increase the displacement magnitude in 

the LOS and subsequently in the vertical direction, if projected 

without considering the horizontal component. Furthermore, 

the horizontal component estimated from InSAR for tall multi-

storey buildings is higher than the magnitude measured 

trigonometrically at the buildings' foot or first storey level. As 

a result of tilting, the horizontal displacement is more 

pronounced at the rooftop level, where most of the PS 

measurements are located, than at the ground. 

 After realising the occurrence of horizontal displacements 

(accompanied by building tilting), the ground displacements 

map from the TSX has been complemented by MT-InSAR 

analysis of the Sentinel-1 dataset, followed by decomposition 

of LOS velocities into vertical and horizontal displacement 

components for selected monitoring stages. These results (refer 

to Figure 4) confirm the existence of horizontal displacements 

and show the extent and heterogeneity of the phenomena. 

The methodology of [8] was found helpful in detecting 

differential settlements for larger buildings as an indicator of 

potential damage risk. Buildings need to have enough PS points 

detected within the building footprint. Furthermore, the 

distance between PS points with minimum and maximum 

deformations, which is used to calculate the deflection angle, 

needs to be sufficiently long. The method is applicable to 

buildings regardless of their height; however, the deflection 

angle is estimated more reliably for buildings elongated parallel 

to the settlement sloping gradient vector. 

Similarly, [9] provides a means for more complex assessment 

by considering aggregated displacement velocities 

complemented with their acceleration and spatial dispersion 

within a building polygon. This is an indicative proxy metric 

for building tilting regardless of height; however, buildings 

must have enough PS points within the footprint.  

The correlation-based tilting indicator supplemented the 

above techniques by pointing to tilts of high buildings with 

relatively small footprints, which are common in the residential 

urban fabric.  

5 CONCLUSIONS 

During its operational execution, InSAR proved to provide 

highly valuable and complementary insights into the spatial and 

temporal context of settlement phenomena during Prague’s 

Metro D line construction. 

The most pronounced advantages and benefits of InSAR 

identified by its practical and operational application are listed 

below: 

- High density of measurements that allows more precise 

delineation of the zone of influence.  

- Delineation of the real extent of the zone of influence. 

Assessment of specific drilling-induced trend patterns in 

measurement time series and their spatial distribution 

reveals that this extent is larger in some areas compared 

to the projected zone of influence.  

- Delineation of additional settlement zones within and 

beyond the core AOI. The geotechnical and 

hydrogeological interpretation indicates their 

association with groundwater withdrawal in the aquifers.  

- Differentiation between drilling-induced settlement and 

subsidence caused by other drivers. This may turn 

instrumental for assessment and passportization of 

damages and as evidence in potential legal disputes.  

Furthermore, results showcase that: 

- The use of the temporally coherent targets variant of the 

PSI algorithm is instrumental in maintaining a high 

density of measurements during different monitoring 

stages. 

- TSX data are indispensable to obtaining the highest 

measurement density, allowing detailed settlements and 

uplift impact assessment at the level of individual 

buildings. 

- TSX measurements from single track suffer from biased 

displacement rate magnitude in LOS when buildings tilt 
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in a direction parallel to LOS. The bias is propagated in 

a vertical direction after simple reprojection. 

- The monitoring should be complemented by InSAR 

measurements from ascending and descending paths of 

Sentinel-1 and their decomposition to map the extent of 

the horizontal deformation field.  

- Appropriate geotechnical methodologies and metrics 

need to be selected, customised, and combined to 

indicate risk and tilting for a broader spectrum of 

different building sizes and heights. The reflective 

position of the PS measurement point (on the roof, 

facade, or from the ground) needs to be estimated and 

considered.  

ACKNOWLEDGMENTS 

We would like to express our sincere gratitude to Jakub 

Bohátka and Jiří Bárta from SG Geotechnika, a.s. for their 

invaluable assistance with validation, geotechnically oriented 

insights, and interpretation, which contributed to the quality of 

the InSAR outputs. 

DISCLAIMER 

Detailed results and scales of vertical or horizontal 

displacement velocities could not be disclosed due to their 

sensitive nature.  

REFERENCES 

[1] Barla, Giovanni & Tamburini, Andrea & Del Conte, Sara & Chiara, 

Giannico. InSAR monitoring of tunnel induced ground movements. 

Geomechanics and Tunnelling. 9. 15-22. 2016.  
[2] Roccheggiani, Matteo et al, Detection and monitoring of tunneling 

induced ground movements using Sentinel-1 SAR interferometry. 

Remote Sensing 11.6, 2019. 
[3] Milillo, Pietro et al, Multi-temporal InSAR structural damage assessment: 

The London crossrail case study, Remote Sensing 10.2, 2018 

[4] Del Conte, Sara et al, Satellite InSAR monitoring in urban tunneling 
projects, https://site.tre-altamira.com/wp-content/uploads/2018_InSAR-

monitoring-in-urban-tunneling-projects_DelConte-et-

al_Tunneling_Trenchless-Conference.pdf, accessed 7.4. 2025 
[5] Scoular, Jennifer et al, Retrospective InSAR analysis of East London 

during the construction of the Lee Tunnel, Remote Sensing 12.5, 2020. 

[6] Saeidi Ali, Olivier Deck, and Tierry Verdel, Development of building 
vulnerability functions in subsidence regions from empirical methods, 

Engineering Structures 31.10, 2009. 

[7] Ezquerro, P., M. Del Soldato, L. Solari, R. Tomás, F. Raspini, M. 
Ceccatelli, J. A. Fernández-Merodo, N. Casagli, and G. Herrera, 

Vulnerability Assessment of Buildings due to Land Subsidence Using 

InSAR Data in the Ancient Historical City of Pistoia (Italy). Sensors 20 
(10): 2749, 2020. 

[8] Peduto, Dario et al, Full integration of geomorphological, geotechnical, 
A-DInSAR and damage data for detailed geometric-kinematic features of 

a slow-moving landslide in urban area, Landslides 18, 2021. 

[9] Garcia, Adrian Jesus et al,  Building health monitoring in the old town of 
Madrid: applicability of SAR Imagery to the monitoring of underground 

works through classification indexes, International Journal of Digital 

Earth 14.3, 2021. 
[10] Geoportál Praha, https://geoportalpraha.cz/data-a-sluzby/clanky-a-

projekty/3D-model/3D-model-dtm, accessed 4.4.2025. 

[11] Nappo N., Peduto D., Polcari M., Livio F., Ferrario M.F., Comerci V., 
Stramondo S., Michetti A.M., Subsidence in Como historic centre 

(northern Italy): Assessment of building vulnerability combining 

hydrogeological and stratigraphic features, CosmoSkyMed InSAR and 
damage data, International Journal of Disaster Risk, 2021. 

[12] Cantrell, C. A, Review of methods for linear least-squares fitting of data 

and application to atmospheric chemistry problems. Atmospheric 
Chemistry and Physics, 8.17, 2008. 

 

 

 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-165 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1094 

ABSTRACT: Dams are used worldwide to, e.g., manage flooding, generate energy, or secure the freshwater supply. They play an 

essential role in the local economy. However, an operational or structural failure also poses a significant threat to the environment 

and the local economy. Therefore, it is vital to ensure their structural health and functionality.  

In this study, we present the ground surface deformation of the Parapeiros-Peiros Dam during the later stages of its construction, 

first filling, and shortly afterwards. Since data services, such as the European Ground Motion Service, surfaced and provide freely 

available ground motion datasets, one might think that in-house processing of SAR data for surface deformation monitoring of 

critical infrastructure is obsolete. In order to explore the advantages of in-house processing, we compare ground motion datasets 

generated by Fraunhofer IOSB and the European Ground Motion Service based on advanced differential synthetic aperture radar 

interferometry techniques. The dataset consists of sets of measuring points, their mean deformation velocity, and the associated 

displacement time series. Based on the mean velocity maps, we present a spatial analysis of the observed deformation patterns. In 

addition, we analyzed the temporal deformation pattern of individual measuring points by employing the Persistent Scatterer 

Deformation Pattern Analysis Tool (PSDefoPAT®). This tool can be used to fully automatically identify the statistically best 

fitting model to describe the temporal deformation pattern of a persistent or distributed scatterer (i.e., linear, quadratic, piecewise 

linear, or periodic) and provides insight into the dynamics of the surface deformation. It can aid with the analysis of changes in 

the structural health of the dam. 

KEYWORDS: Embankment Dam; Persistent Scatterer Interferometry; European Ground Motion Service; Deformation 

PSDefoPAT®.

1 INTRODUCTION 

Dams are large engineering structures used for centuries to stop 

the surface water flow. They have at least two components: a 

dam body and a reservoir. The dam body is used to either 

redirect or impound surface water. The impounded water 

creates an artificial lake, which is referred to as a reservoir. The 

main purposes of these structures are storing water for 

irrigation or human consumption, energy generation, flood 

control, fish farming, and storing tailings. Thus, they have a 

significant influence on the local economy. They can have a 

positive impact on the region, but a failure of the dam body or 

an operational failure can also be detrimental to the local 

economy, human settlements, and the environment. Therefore, 

it is essential to ensure their structural health and functionality 

[1]. Depending on the construction type of the dam body, the 

set of parameters that need to be monitored varies. In the case 

of an embankment dam, which is the most common type used 

worldwide, the International Commission on Large Dams 

(ICOLD) stipulates monitoring structural deformations, 

movements, and temperature of the dam body, as well as uplift 

pressure, seepage, drainage rates and the chemical composition 

of the seepage water [2,3].  

This study will focus on the surface deformation of 

embankment dams. Those dams are subject to numerous loads 

during their lifetime, which can result in the deformation or 

displacement of the entire or parts of the dam body [4]. Recent 

studies have demonstrated that Synthetic Aperture Radar 

Interferometry (InSAR) techniques, such as Persistent Scatterer 

Interferometry (PSI), can be used to map and analyze the 

surface deformation of dams for short phases of their lifetime 

[5,6]. 

In this study, we map and analyze the deformation of the 

Parapeiros-Peiros dam during the time of the first filling of its 

reservoir and shortly after. The dam is located in southern 

Greece on the Peloponnese Peninsula. Its construction finished 

in early 2019, and the reservoir filling process started in 

September 2019. We acquired two different datasets of the area 

of interest. The first dataset, Dataset A, consists of 119 

Sentinel-1 (S1) Synthetic Aperture Radar (SAR) images and 

was processed in-house. The second dataset, Dataset B, was 

obtained from the European Ground Motion Service (EGMS), 

which provides ground surface deformation measurements for 

most European countries based on S1 SAR images and 

advanced DInSAR processing. Dataset B covers the time from 

January 2019 to December 2023. Since data services, such as 

the EGMS, are freely available, one might think that in-house 

processing of SAR data for surface deformation monitoring of 

critical infrastructure is obsolete. However, the EGMS does not 

provide customized datasets for specific events or time spans 

and is delayed by at least three quarters of a year. In order to 

explore the advantages of in-house processing, we compare our 

own results with those generated by the EGMS regarding the 

observable spatial and temporal deformation patterns. Both 

datasets provide maps with the mean deformation velocities 

and displacement time series for individual measuring points 

(MP). The mean deformation velocity maps were used to 

Utilizing PSDefoPAT® to analyze surface deformation of embankment dams 
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analyze the spatial deformation pattern of the Parapeiros-Peiros 

dam, while the individual displacement time series were 

analyzed using the Persistent Scatterer Deformation Pattern 

Analysis Tool (PSDefoPAT®) developed at Fraunhofer IOSB, 

which automatically assigns each time series a best-fitting 

model [7]. The estimated time series models offer information 

on the temporal deformation pattern, which is not directly 

visible in the mean deformation velocity maps.  

This paper is structured into five sections. The Parapeiros-

Peiros dam and the data used to monitor it are described in 

Section 2. Section 3 provides an overview of the methods used 

to analyze the data. The results are presented and discussed in 

Section 4, and finally, our conclusion is presented in Section 5. 

2  PARAPEIROS-PEIROS DAM 

The Parapeiros-Peiros dam is located in the municipality of 

Patras in the northwest of the Peloponnese Peninsula (Greece). 

It consists of an embankment dam, a diversion dam, and a 

reservoir. The total capacity of its reservoir is 44 million m³ of 

water. The impounded water is intended to supply more than 2 

million people in three regions (Patras, Erymanthos, and Dytiki 

Achaia) with fresh water. While the diversion dam reroutes the 

Peiros River, the embankment dam impounds the water of the 

Peiros and Parapeiros rivers. In detail, the dam is about 75 m 

high and 900 m long. Its construction finished in early 2019, 

and the filling process of the reservoir started in September 

2019 [8,9] and. is estimated to take about three years. 

The first reservoir filling is particularly interesting, since 

the construction is subject to all the loads it was built to 

withstand for the first time. The dam body is expected to 

deform as a consequence. At this point, only the most 

significant deformation phenomena will be mentioned. A 

detailed description of the many deformation phenomena was 

provided by Evers [10]. The deformation phenomena can be 

sorted into three patterns: 

 

(1) subsidence, 

(2) uplift and 

(3) horizontal displacement. 

 

The building and foundation materials of the dam body are 

compressed by the weight of the construction, resulting in 

partial or complete subsidence of the dam body. The dead load 

of the increasing amount of impounded water only fosters this 

process [11]. Moreover, collapse compression on the upstream 

shoulder can add to the subsidence rates. A partial uplift of the 

dam body can be caused by a decrease in the effective stress in 

the upstream shoulder resulting from the increasing water load 

during the filling process. The third deformation category is the 

horizontal displacement of the entire or parts of the dam body. 

The cause for horizontal displacement is the increased lateral 

tension within the dam body during the filling process [4]. 

Two advanced DInSAR datasets were used to analyze the 

spatial and temporal deformation of the Parapeiros-Peiros dam. 

The goal is to explore whether it is obsolete to process SAR 

images in-house for surface deformation monitoring of critical 

infrastructure such as dams, since ground motion datasets are 

freely available and updated regularly.  

Dataset A consists of 119 S1 SAR images recorded with a 

descending acquisition geometry and Interferometric Wide 

Swath mode. The time series extends from September 2019 to 

November 2022, which corresponds to the time of the first 

filling of the reservoir. The images depict the area surrounding 

the Parapeiros-Peiros dam, allowing for the mapping and 

analysis of the deformation of the dam body and the 

surrounding slopes. Dataset B is a ground motion dataset of the 

same area provided by the EGMS. The EGMS provides ground 

motion measurements at a millimeter scale using persistent 

scatterer (PS) and distributed scatterer (DS) techniques. The 

service was first made available at the beginning of 2022 and 

documented in its first edition the ground motion of most 

European countries from 2015 to 2020 based on all available 

S1 images from this time span. The dataset is regularly updated, 

always considering S1 images of the past five years [12]. The 

new dataset is made available in the following fall. For this 

study, a dataset covering the period from January 2019 to 

December 2023 was used, which corresponds to the time 

immediately preceding the first filling, the first filling itself, 

and approximately two years afterward. The chronology of the 

datasets and the time of the construction and commission phase 

of the Parapeiros-Peiros dam they cover are illustrated in 

Figure 1. The goal is to explore whether  

3 METHODS 

 Persistent Scatterer Interferometry (PSI) 

InSAR and PSI are techniques used to map surface deformation 

Construction First Filling Reservoir in Operation 

time

Begin: Construction End: Construction &
Begin: First Filling

End: First Filling &
Begin: Reservoir in Operation

Approx. 2012 Approx. 202209.2019

Dataset A

Dataset B

Figure 1. Timeline of the construction and commission phase of the Parapeiros-Peiros dam and the Datasets A (S1 images processed                  

by Fraunhofer IOSB) and B (provided by EGMS). 
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over a wide area. In contrast to InSAR, PSI uses a time series 

of SAR images to identify pixels with a low noise level to 

reduce the influence that phase decorrelation and the 

atmospheric phase delay have on the deformation estimates. 

The algorithms that implemented this concept were developed 

by, e.g., Ferretti and Hooper [13, 14]. An adapted version of the 

StaMPS PSI algorithm, which can be used in a Windows-based 

framework, was used in this study to process Dataset A.  

As stated previously, Dataset B was obtained from the 

EGMS. Processing the S1 SAR images for the EGMS with 

advanced DInSAR algorithms was carried out by four different 

companies, e-GEOS, TRE Altamira, NORCE, and GAF, who 

each have their own well-established processing chains. DSs 

were not taken into consideration for all regions processed in 

the EGMS. The type of scatterer, PS or DS, is indicated by the 

attribute field “mp_type” in the downloaded EGMS datasets 

[15]. In the case of the northwestern region of the Peloponnese 

Peninsula, no MPs marked as DS were identified in the EGMS 

dataset. The service distributes several InSAR products at 

different processing levels: (1) Level 2a (L2a), (2) Level 2b 

(L2b), and (3) Level 3 (L3). The L2a datasets are precise 

InSAR displacement measurements in the line-of-sight (LOS) 

of the sensor. The displacements are relative values calculated 

with a local reference point. The L2b displacements were 

calibrated with a Global Navigation Satellite System (GNSS) 

model and are no longer relative measurements. L2b datasets 

in ascending and descending geometry were used to calculate 

the horizontal and vertical displacements for the L3 datasets 

[12]. For this study, we used an L2a dataset. 

In addition to an analysis of the spatial deformation pattern, 

based on mean deformation velocity maps, both datasets were 

processed with the Fraunhofer IOSB tool PSDefoPAT® [7] to 

analyze temporal deformation patterns. PSDefoPAT® extracts 

relevant information on the temporal deformation patterns not 

directly visible in the typically presented mean deformation 

velocity maps. 

 Persistent Scatterer Deformation Pattern Analysis Tool 

(PSDefoPAT®) 

The tool PSDefoPAT® was developed at Fraunhofer IOSB to 

ease the analysis of the individual displacement time series of 

a large set of PS [7]. Most PSI algorithms provide a map of the 

mean velocity of each PS found in the area of interest and the 

associated displacement time series for each PS. The advantage 

of the mean velocity maps is that areas of active deformation 

are easily recognizable. Also, their spatial expansion and the 

direction of the deformation in the LOS of the sensors are 

provided. However, the mean velocity is calculated assuming 

the deformation is linear. More complex deformation patterns 

are not considered, such as a periodically varying surface 

deformation or an accelerating or decelerating deformation 

pattern. Thus, information on the dynamic nature of the 

deformation is completely lost to the analyst. PSDefoPAT® 

estimates the best-fitting model to describe the deformation 

pattern of each PS over time and thus provides information on 

the dynamic nature of the deformation. PSDefoPAT® separates 

the long-term trend, periodic, and noise components of each 

displacement time series in six steps. The order of these steps 

is illustrated in Figure 2. The displacement time series is first 

denoised using wavelet transformation. Afterward, the 

periodogram of the remaining time series is calculated, and a 

Fisher’s g-test is conducted to determine whether or not the 

time series has a significant seasonal component. If the time 

series has such a component, the seasonal and trend 

components are estimated in one step. 

 

  
(a) Dataset A (b) Dataset B 

Figure 3. Mean deformation velocity for MPs on the dam body of the Parapeiros-Peiros dam in Greece. 

 

Time Series 
Denoising

Test 
Seasonality

Test Model 
Significance

Determine 
Best-Fitting Model

Model Estimation:
Seasonal + Trend Component

Model Estimation:
Trend Component

Time Series 
Segmentation

Yes
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Figure 2. Workflow of PSDefoPAT® [7]. 
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Valid time series models are (1) purely seasonal, (2) 

seasonal with a linear trend, and (3) seasonal with a quadratic 

trend. Only the trend component is estimated if the time series 

has no significant seasonal component. Applicable models for 

the trend component are (1) linear, (2) piecewise linear, and (3) 

quadratic time series models. Before the different models are 

estimated, the time series is segmented using a top-down 

segmentation algorithm to provide change points for a 

piecewise linear model. Lastly, the best-fitting model is 

determined using the Bayesian Information Criterion (BIC) and 

the value for the adjusted coefficient of determination R2
adj. 

Both parameters provide information on the goodness of the fit, 

taking into consideration the complexity of the model and, 

therefore, preventing overfitting [7]. PSDefoPAT® 

automatically generates four plots by default to visualize its 

results. The plots indicate: (1) the type of trend component, 

whether or not the time series features a periodic component, 

(3) the amplitude of the periodic component, and (4) the 

goodness of fit for the entire time series model. A practical 

example of these plots is presented in Figure 4 and Figure 5, 

which visualize the results for the Parapeiros-Peiros dam. With 

these plots the temporal deformation pattern, not directly 

visible in the typically presented mean deformation maps, of 

the MPs in the AOI can be analyzed. For example, MPs 

effected by a periodic behavior can be easily spotted.  

4 RESULTS AND INTERPRETATION 

In the following section the results generated with 

PSDefoPAT® for Dataset A processed by Fraunhofer IOSB and 

Dataset B obtained from the EGMS are presented and the fit of 

exemplarily displacement time series and the estimated time 

series models of individual MPs are discussed.  

The mean deformation velocities for the measuring points (MP) 

in Dataset A and Dataset B located on the dam body of the 

Parapeiros-Peiros dam are presented in Figure 3. The color map 

ranges from red, indicating a deformation velocity larger than 

20 mm y⁄  in the direction towards the sensor, to blue, 

indicating a deformation velocity larger than -20 mm y⁄  in the 

direction away from the sensor. Both images show that the 

mean deformation velocity on the dam body varies along the 

downstream shoulder, with more -20 mm y⁄  at the crown and 

close to zero at the toe of the dam body. This is a typical spatial 

deformation pattern observed for embankment dams [16]. In 

order to analyze the temporal deformation pattern, the 

displacement time series of Dataset A and Dataset B were 

processed with PSDefoPAT®. The results are visualized in 

Figure 4 and Figure 5. Figure 4 (a) showing Dataset A and (b) 

Dataset B indicate whether the processed displacement time 

series exhibit a linear (cyan), quadratic (yellow), piecewise 

linear (red) trend, or no trend (blue). In both cases, the majority 

of MPs at the center of the downstream shoulder of the dam 

body exhibit a quadratic trend, and MPs located closer to the 

edges or adjacent to the dam exhibit a piecewise linear trend. 

This pattern is mirrored in Figure 4 (c) and Figure 4 (d), which 

present a measure for the goodness-of-fit in the form of the 

adjusted coefficient of determination R2
adj for the estimated 

time series model for Dataset A and B, respectively. The 

estimated time series model for MPs at the center of the dam 

body fit the displacement time series better than those estimated 

for MPs at the edge of the dam body, for both Datasets. 

 

 

 

 

  

  
(a) Trend component for Dataset A (b) Trend component for Dataset B 

  
(c) Goodness of the fit for Dataset A (d) Goodness of the fit for Dataset B 

Figure 4. Trend component and the goodness of the fit for the entire time series model. 
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Figure 5 indicates whether the estimated time series model 

includes a periodic component (magenta) or not (cyan), along  

with the corresponding amplitude of the periodic component. 

While the estimated time series models for Dataset A, see 

Figure 5 (a) and Figure 5 (c), show that only some MPs exhibit 

a periodic behavior, in the case of Dataset B, see Figure 5 (b) 

and Figure 5 (d), significantly more MPs exhibit periodic 

behavior. This may be due to the different time spans that 

Dataset A and Dataset B cover. In order to investigate the 

displacement time series and estimated time series models 

further, we examined four exemplary MPs located at the 

downstream shoulder (MP I and MP III) and crown (MP II and 

MP IV) of the dam body for both datasets. The MPs are marked 

in green in Figure 4 and Figure 5. The selected MPs for both 

datasets are not identical, however, they were picked as closely 

together as possible to ensure comparability. Their 

displacement time series (black dots), overall estimated time 

series model (green), and the lower and upper error margins 

(red) are presented in Figure 6 and Figure 7. The estimated 

parameters for the time series models are also summarized in 

Table 1. Figure 6 displays the displacement time series for 

MP I and MP III, which are located on the downstream 

shoulder of the dam body. Both estimated time series models 

exhibit a quadratic trend. While the linear coefficients of both 

models are similar, with −11.1 mm y⁄  for MP I and 

−10.1 mm y⁄  for MP III, the scaling parameter of quadratic 

time series model differs. The scaling parameter is estimated to 

be  −1 mm2 y2⁄  for MP I and −0.5 mm2 y2⁄  for MP III. A 

smaller value for the scaling parameter leads to a wider opening 

for the parabola, approximating the displacement time series. 

This difference in the scaling parameter might be influenced by 

the slightly different time spans that Dataset A and Dataset B 

cover. While Dataset A covers only the time of the first filling 

of the freshwater reservoir, Dataset B covers a short time before 

the first filling and about a year afterwards.  

  
(a) Indication of a periodic component for Dataset A (b) Indication of a periodic component for Dataset B 

  
(c) Amplitude of the periodic component for Dataset A (d) Amplitude of the periodic component for Dataset B 

Figure 5. Periodic component and the corresponding amplitude of the periodic component. 
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Table 1. Model parameters and estimated mean velocity of the selected MPs. 

 Mean 

Velocity 

Best-Fitting Model R2
adj 

 

Downstream Crown: 

Dataset 

A 
−25.1 mm a⁄  𝑑 = −29.7 mm a⁄ ∙ 𝑡 + 2 mm2 a2⁄ ∙ 𝑡2 − 4.6 ⋅ sin (

2𝜋

798.3d
(𝑡 − 391.9 d)) 0.99 

Dataset 

B 
−28.1 mm a⁄  𝑑 = −26.6 mm a⁄ ∙ 𝑡 − 0.3 mm2 a2⁄ ∙ 𝑡2 − 1.6 ∙ sin (

2𝜋

519.9𝑑
(𝑡 − 119.4 d)) 0.99 

 

Downstream Shoulder: 

Dataset 

A 

−16.1 mm a⁄  𝑑 = −11.14 mm a⁄ ∙ 𝑡 − 1.0 ∙ 𝑡² mm² a²⁄   0.99 

Dataset 

B 

−17  mm a⁄  𝑑 = −10.1 mm a⁄ ∙ 𝑡 −  0.5 mm2 a2⁄ ∙ 𝑡2 0.99 
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The estimated time series model of MP II and MP IV, 

which are located on the downstream side of the crown, are 

presented in Figure 7. Again, both displacement time series are  

approximated by a quadratic model for the trend component. 

The values of the linear coefficient are significantly higher than 

those estimated for MP I and MP III. The coefficients were 

estimated to be −29.7 mm y⁄  for MP II and −28.1 mm y⁄  for 

MP IV. The observed varying deformation rates from the 

crown of the dam body, along its shoulder to the toe, are 

common for embankment dams [16]. Additionally, both time 

series models have a periodic component. However, the 

estimated amplitude and cycle length of the periodic 

component for MP II and MP IV diverge from one another. The 

amplitude is -4.6 mm for MP II and -1.6 mm for MP IV, and 

the corresponding cycle lengths are 798.3 d and 519.9 d, 

respectively. These differences are again possibly influenced 

by the varying time span the datasets cover. Two events of 

quick water level rise in the reservoir occurred during the filling 

process [17]. The first one occurred in late 2020 and the second 

one in late 2021, both time spans are marked in purple in 

Figure 6 and Figure 7. The displacement time series of MP II 

diverges significantly from the quadratic during this time, see 

Figure 6 (a). The displacement time series of MP IV also 

diverges from its trend during this time, see Figure 7 (b). 

However, the periodic component is not as prominent as in the 

time series model of MP II. This might be due to the more  

extended time span that the displacement time series of MP IV 

covers. The displacement time series includes data from 2022 

and 2023, in addition to 2020 and 2021. The events of 

accelerated water level rise from fall and winter 2020 and 2021 

did not repeat in the same severity at the end of 2022 and 2023. 

Therefore, the displacements due to these events have been 

smoothed over in the longer displacement time series and thus 

have led to different estimations for the periodic component of 

MP IV in comparison to MP II. 

Based on the analysis of the mean deformation velocity 

maps, presented in Figure 3, the spatial deformation pattern of 

both datasets for the Parapeiros-Peiros dam are very similar. 

Using PSDefoPAT® in post-processing to analyze the temporal 

deformation pattern reveals that short-term temporal 

deformation patterns are not only smoothed over in the mean 

deformation map but also in cases where longer time series, 

such as Dataset B, are used. Highlighting the advantage of 

customizing the dataset to a specific time span that needs to be 

examined. For infrastructure monitoring, both long-term trends 

and short-term events are of interest. Thus, in-house processing 

of SAR images for surface deformation monitoring is still 

necessary. 

 

  
(a) MP I in Dataset A (b) MP III in Dataset B 

Figure 6. The displacement time series (black dots), overall estimated time series model (green), and the lower and upper error 

margins (red) for MP I and MP III, which are located on the downstream shoulder of the Parapeiros-Peiros dam. 

 

  
(a) MP II in Dataset A (b) MP IV in Dataset B 

Figure 7. The displacement time series (black dots), the overall estimated time series model (red), and the lower and upper error 

margins (red) for MP II and MP IV, which are located on the downstream crown of the Parapeiros-Peiros dam. 
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5 SUMMARY 

In this study, we examined the surface deformation of the 

Parapeiros-Peiros dam during its first filling and shortly after, 

based on two datasets. The first dataset consists of 119 S1 SAR 

images and was processed in-house. The second dataset was 

downloaded from the EGMS. The observable spatial and 

temporal deformation patterns of both datasets were compared 

to explore the necessity for in-house advanced DInSAR 

processing for surface deformation monitoring of critical 

infrastructure, such as a newly built dam. An analysis of the 

spatial deformation patterns based on the mean deformation 

velocity maps showed good agreement between both datasets 

and that the highest deformation rates can be observed at the 

crown of the dam body, which agrees with the spatial 

deformation pattern typically observed in embankment dams 

[15]. The analysis of observable temporal deformation patterns, 

not directly visible in the mean velocity maps, was aided by the 

post-processing tool PSDefoPAT® developed by Fraunhofer 

IOSB. The tool extracts relevant information on the temporal 

deformation pattern of advanced DInSAR datasets by 

automatically determining the best-fitting time series model for 

each displacement time series of the dataset. In the case of the 

two datasets examined in this study, it was revealed that short-

term displacement events are not only smoothed out in the 

mean deformation velocity maps but also in cases where longer 

time series are examined, e.g., Dataset B. Both long-term 

displacement trends and short-term events of diverging 

displacements are important to document and analyze in 

infrastructure monitoring. Pointing out a disadvantage of using 

the EGMS for infrastructure monitoring, which always 

examines a time span of five years. Another disadvantage is the 

time delay in providing the data, which is currently at a 

minimum of three-quarters of a year. Both of these aspects led 

us to the conclusion that the possibility of customizing the 

dataset to the deformation phenomena in question and the 

timelier fashion of processing still render in-house processing 

of SAR images for surface deformation monitoring of 

infrastructure necessary. 
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ABSTRACT: Remote sensing, in particular multi-temporal Synthetic Aperture Radar interferometry (MT-INSAR), is becoming 

an operational technique for landslide and subsidence monitoring, and it shows significant potential as an effective tool for bridge 

monitoring as well. In this case study, the possibilities of MT-INSAR-based structural health monitoring were demonstrated on a 

motorway bridge in Austria. The bridge is a perfect test object to compare the achieved accuracy due to the availability and good 

coverage of TerraSAR-X and Sentinel-1 data in combination with an in-situ deformation monitoring system. Due to the 

overlapping period of one year, a statistical evaluation of the obtained deformations along the bridge could be made. Another topic 

addressed in this contribution is the modelling of typical bridge deformation patterns, which are primarily caused by thermal 

expansion of the bridge. To detect critical displacement patterns, it is therefore necessary to separate the thermal component from 

the critical one. After completing this step, we applied and evaluated newly developed algorithms that detect changes in bridge 

deformation patterns and raise alarms when necessary. Furthermore, an interesting comparison was made between processed 

Sentinel-1 time series as provided by the Copernicus Land Monitoring Service via the European Ground Motion Service (EGMS) 

and the custom processing of the area of interest exclusively, utilizing site-specific temperature data. 

KEY WORDS: Bridges, InSAR, MT-InSAR, Structural Health Monitoring, Sentinel, TerraSAR-X, thermal displacement. 

1 INTRODUCTION 

The transport infrastructure and its structures must be 

functionally intact, provide reliable performance and guarantee 

the safety of road users. Above all, this requires high standards 

for engineering structures such as bridges in terms of resistance 

to impacts, durability and sufficient fulfilment of requirements 

on structural safety. Other important aspects include low 

maintenance costs, few service interventions and cost-efficient 

operation over the entire life cycle. 

In addition, the tasks of infrastructure operators with regard 

to their facilities have shifted from new construction to the 

maintenance and repair of existing structures or their 

replacement with new ones. The combination of an ageing 

infrastructure with limited financial resources makes this a very 

challenging task. For example, 50% of Austrian/German/Swiss 

motorways are now over 40 years old and most bridges are 

about to undergo major maintenance. 

As of today, the condition of bridges is mainly determined by 

on-site inspections (visual inspections and close on 

examination). The main advantage of this method is the use of 

experienced personnel with knowledge of the historical 

development of the structural condition. Bridge monitoring 

systems with sensors are only used in special cases. A 

comprehensive, sensor-based examination of all structures is 

currently too time-consuming and costly to be used across the 

entire transport network. 

 InSAR for bridges 

Remote sensing, particularly multi-temporal synthetic 

aperture radar interferometry (MT-INSAR), has a strong 

potential to be utilized for bridge monitoring. In this context, 

the advantages of MT-INSAR are the large spatial and the 

dense temporal coverage (4-12 days, in the case of the Sentinel-

1 constellation) of SAR data, the possibility of retrospective 

bridge monitoring and the fact that many bridges can be 

semiautomatically monitored at the same time. Furthermore, 

MT-INSAR techniques allow for the monitoring of slow 

movements that are often not apparent in visual inspections. 

But it is precisely the slowly occurring deformation patterns 

that play a major role in the assessment of the structural health 

of bridges. This could be shown by retrospective InSAR-based 

measurements of the bridge in Genoa (Italy) [1] after its 

collapse. First signs of critical deformation were identified 

several months/years in advance. However, [2] analyzed the 

same data sets as in [1] with two independent MT-INSAR 

methods and found no pre-collapse displacements in their 

consistent results, leading them to deeply disagree with the 

findings of [1]. In the reply, the importance of innovative 

research in the emerging field of InSAR applications to civil 

engineering structures is highlighted.  

 Motivation 

The main focus of the study is to demonstrate the case study 

of the accuracy of the vertical deformation measurement of 

bridges based on MT-InSAR processing using Sentinel-1 and 

TerraSAR-X data. This was achieved by direct comparison 

with in-situ measurements for a selected motorway bridge in 

Austria. Although several such studies have been carried out 

[3], there is still a need to include more examples to increase 

their statistical significance. The conceptual basis of a flagging 

system to distinguish between normal bridge movement 

behavior resulting from environmental conditions and 
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abnormal behavior that may indicate structural damage is 

described here. Accurate bridge temperature is an important 

issue for this task. Therefore, different data sources on 

environmental conditions have been investigated and their 

influence has been analyzed. 

 Description of the chosen bridge and its in-situ 

measurement system 

The bridge structure G46 is an integral bridge on the A2 Süd 

Autobahn of Austria, located in the south of Graz consisting of 

two identical structures, each carrying one traffic direction. It 

was built in 1969 and has a steel structure: a box girder with an 

orthotropic deck. The bridge is designed as a single-span 

composite frame, where the reinforced concrete columns 

support a steel beam with a span of 88 meters. It rests on non-

inspectable lead bearings, presenting a challenge for direct 

inspection and assessment. Shortly after the completion, a 

sloping on the longitudinal beams was noticeable. A 

hydrostatic leveling monitoring system was installed in 2015 to 

monitor the structural integrity over time. Together with 

geodetic measurements, there was a confirmation of this 

sloping that is particularly relevant in the northern beam. A 

second monitoring system was then installed in 2018 which 

was complemented in 2020 with a redundant hydrostatic 

leveling system. 

Hydrostatic levelling is a monitoring system used to measure 

relative displacements in the vertical direction. By 

interconnecting different liquid vessels, it is possible to use 

fluid pressure sensors to measure the movements of these 

vessels and the structures that these are attached to. This allows 

for very precise measurements over long distances and 

obstacles, that provides the relative vertical position between 

the sensors with accuracy under the millimetric scale. 

RED Bernard installed two independent hydrostatic levelling 

systems each in one of the independent structures. These are 

installed in the abutment and the midspan of the bridge, which 

provides data about the displacement of the center of the bridge, 

taking the abutments as fixed points. An overview of the bridge 

and the sensors installed is shown in Figure 1. 

 

Figure 1. Highway bridge selected for the case study with 

schematic layout of the measurement system. 

 InSAR Data 

One of the aims of the study was to compare the results 

obtained using different satellites and different processing 

methods. Both Sentinel-1 (C-band) and TerraSAR-X (X-band) 

data were used for this purpose. Sentinel-1 data was processed 

specifically for the area of interest, but the centrally processed 

level 2a data from the EGMS platform [4] was also employed. 

Knowledge of the local temperature can improve the accuracy 

of custom processing. To evaluate this effect, processing was 

carried out separately using different temperature sources. 

Those used included global meteorological models, such as 

ERA5 [5], estimated structure temperature through Virtual 

Sensing [7][8], based on raster weather data from the 

GeoSphere data hub [6], and in situ temperature measurements 

from sensors installed on the bridge surface. TerraSAR-X data 

was available only from a single orbit and for a limited amount 

of images/acquisition dates, while Sentinel-1 data is available 

long-term and from three orbits. For a fair and direct 

comparison, it was decided to use only one ascending Sentinel-

1 orbit (ASC146) for an initial comparison of the quality and 

quantity of data points. A large stack of data was processed for 

Sentinel-1 and the final (short) monitoring period was then 

cropped. An overview of the data used, including time frame, 

spatial resolution and orbit direction, is given in Table 1. 

 

Table 1. Overview of satellite data used 

Satellite (mode) Sentinel-1 

(Interferometric 

Wide Swath) 

TerraSAR-X 

(StripMap) 

Image no. 135 25 

Timeline 08/20-08/23 05/22-03/23 

Spatial 

resolution 

5x20 m 3x3 m 

Orbit direction Ascending 146 Ascending 

2 METHODOLOGY 

 Processing of the Sentinel and TerraSAR-X data 

MT-InSAR processing was performed in SARproZ(c) 

software, independently for Sentinel-1 and TerraSAR-X data, 

listed in Table 1. Topography signal was subtracted using 

Copernicus DEM [9] and temperature effects were estimated 

based on in-situ measured, Virtual Sensing or ERA5 

temperatures.  

After thermal effect subtraction, Sentinel-1 time series (each 

point individually) were divided into segments with linear 

displacement and for each temporal segment, the noise level 

was estimated and segments with too high noise level were 

indicated as unreliable. Points which are not reliable for at least 

3 years were discarded. After the segmentation, the thermal 

effects were re-added to the data, which was necessary for a 

direct comparison with the bridge deformations based on the 

EGMS and with the in-situ measurement, since in both of them 

the temperature effect is not compensated. 

For TerraSAR-X data, the segmentation could not be 

performed because of too short timeline. As a quality criteria, 

interferometric temporal coherence was used, and points with 

coherence lower than a threshold of 0.8 were discarded. 

Unfortunately, the separation of thermal and permanent 

displacement was erroneous at the bridge center due to the short 

timeline: the minimum recommended timeline to reliably 

separate the permanent and thermal displacement is around 1.5 

years [10]. 
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It shall be noted that in spite of the fact that Sentinel-1 and 

EGMS resources are calculated using the same satellite data, 

the processing methodology slightly differs, as well as the 

criteria for point dropping. 

MT-InSAR displacement time series were converted from SAR 

line of sight direction to vertical direction geometrically, based 

on the assumption that the displacement is purely vertical. If 

some points move in a horizontal direction, such a conversion 

gives incorrect results. 

 Clustering of the persistent scatterer (PS) Points on the 

bridge 

The PS points for each of the three configurations (EGMS, 

Sentinel, TerraSAR-X) were first filtered to contain only points 

on the bridge based on their geo-location. As expected, the 

number of obtained PS points varied widely ranging from 34 

(EGMS Figure 2a), 86 (Sentinel Figure 2b) up to 368 

(TerraSAR-X, Figure 2c). To calculate the vertical 

deformations of the bridge with respect to its longitudinal 

coordinate, the PS points were clustered into 7 groups, which 

were distributed evenly along the bridge axis as shown in 

Figure 2.  

 

 

 

Figure 2. PS Points with the background form OpenStreetMap 

(OSM), a) EGMS, b) Sentinel-1, c) TerraSAR-X 

A time history of the deformation for each cluster was 

obtained as an average of these points, corresponding to the 

bridge deflection for that area. This approach is based on the 

assumption that the points in this area move together, which is 

approximately true for a bridge deck, neglects however the 

effects of torsion along the bridge axis. This has been 

additionally testified with TerraSAR-X data, as there are 

enough PS points to divide each area further into three clusters 

across the width of the bridge. If the bridge had been subject to 

torsional deformations, it would have been visible, but none 

were observed.  

Once the clustering was complete, the PS points were 

reselected based on the correlation matrix, which is a table 

showing the correlation coefficients between all PS points 

within a zone. The correlation coefficient is a statistical 

measure that expresses the extent to which two PS points are 

related. It ranges from -1 to +1, where +1 is a perfect positive 

correlation, -1 is a perfect negative correlation and 0 means no 

predictable relationship between the points. We estimated, that 

to classify a PS point as correlated with the others, it must be 

correlated with at least 1/3 of all points with a threshold of 0.5. 

It should be noted that this approach is case sensitive and must 

be carefully adapted when used for other bridges.  

This step would be particularly important for bridges with 

many PS points underneath, as it would help to distinguish 

which points were on the bridge. In this case there is mostly 

water, where no PS points are present. Nevertheless, the use of 

this criteria helped to discard single points without any 

correlation to the others, which could be caused by the 

reflection of a non-structural element with some additional 

movement that does not reflect the deformation of the bridge. 

The next step was to calculate a median value for each cluster 

based on the selected data points, including time series. This 

greatly reduced the noise of the PS points, removed the outliers 

and produced a smooth time series as can be seen in Figure 3.  

  

Figure 3. Calculation of the time – series for a cluster in the 

mid span for EGMS data. 

 Normal bridge deformation patterns 

A critical task for MT-InSAR bridge monitoring and damage 

identification is the recognition of normal bridge deformation 

patterns resulting from environmental influences. This 

movement must subsequently be subtracted from the measured 

deformations to obtain a clear pattern. This step is not required 

when using the SARproZ(c) software mentioned above, as the 

estimation (and subtraction) can be performed within MT-

a) 

b) 

c) 
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InSAR processing. However, it is essential for EGMS data or 

other MT-InSAR processing algorithms that do not 

automatically include it. 

There are two common approaches to achieve this: data-

driven and model-based. Both are effective in achieving the 

goal, but each has some advantages and limitations. Mostly, the 

first one is used and only when the time series is not long 

enough, the model-based one is employed. 

In this study, we combined these approaches by identifying 

the normal bridge deformation pattern from the data and cross-

checking it with an adapted finite element (FE) model. In this 

way, a link can be established between the single PS point 

approach and the whole bridge deformation shape. This 

approach requires two steps, which are described below. 

The first step is to relate the deformation values calculated 

for each zone, as described in the previous section, to the 

structural temperature. If the data set is too short (less than 1.5 

years), as may easily happens with commercial data (such as 

TerraSAR-X), this can be done with EGMS data (Figure 4). 

The structural temperature can be obtained either from in-situ 

measurements, if available, or by using the Virtual Sensing 

method developed by AIT [7][8]. If none of the above is 

accessible, the air temperature can be used, but a lower 

accuracy has to be accepted. 

In the second step, a simple FE model was created, although 

only limited information about the cross-section geometry was 

available. In case of the examined integral bridge the 

longitudinal extension was restrained on both sides by very stiff 

elastic spring elements. To verify the temperature induced 

deformations, a uniform temperature was applied to the model 

and the deformations in vertical and horizontal directions were 

extracted for the same zones as defined for MT-InSAR 

processing. This was valuable for the decomposition of the 

Line of sight (LOS) deformation described in the next chapter 

and for the plausibility validation of the MT-InSAR results. 

 

Figure 4. Thermal bridge deformation for each cluster based 

on EGMS. 

In this way, not only the influence of temperature on the 

movement of each PS point was identified, but also the bridge 

deformation shape. The latter can be used to validate the 

deformation over the entire length of the bridge if enough PS 

points are available. 

 LOS decomposition 

The decomposition of dlos into dvertical requires in general 

either both ascending and descending orbits or prior knowledge 

of the horizontal bridge movement based on normal bridge 

deformation patterns [3]. The analysis described in the previous 

section has shown that the temperature induced movement of 

the bridge is almost exclusively in the vertical direction. 

Therefore, the decomposition of dLOS into dvertical, which is of 

interest in this case, can be simplified to equation (1). 

 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙̇ =
𝑑𝐿𝑂𝑆

cos⁡(𝑎𝑙𝑝ℎ𝑎𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)
 (1) 

 Flagging system 

In this study, we developed a method to detect abnormal 

bridge deflection. The purpose of this system is to identify 

bridges that require additional on-site inspection, rather than 

immediately triggering an alarm or leading to bridge closure 

based solely on MT-InSAR results. This approach ensures that 

potential structural issues are carefully evaluated before taking 

further action. 

The flagging system was based on a data-driven approach in 

order to be flexibly adaptable to different types of bridges. The 

proposed system is designed to distinguish different classes of 

bridge displacement behaviors based on the time series of 

dvertical: 

• no trend or breakpoint, 

• linear trend, 

• one or more breakpoints, 

• accelerating trend (i.e. at least one breakpoint and two 

different downward trend slopes βt2 < βt1, where t2 > 

t1 and βt1, βt2 < 0). βt1, βt2 denote the slopes of the 

model segments before and after the breakpoint. 

A data-driven approach assumes that normal bridge 

deformation patterns can be derived from the deformation time 

series as described in section 2.3. However, this may not always 

be the case as MT-InSAR time series may be too short to 

assume a pattern to be stable. In this study, only the Sentinel-1 

time series was used as the displacement time series derived 

from TerraSAR-X was too short. Additionally, the flagging 

system provides for the possibility of applying user-specified 

thresholds on linear trends and total displacement. In order to 

minimise noise the PS points were grouped according in seven 

segments along the length of the bridge. 

3 RESULTS 

 Influence of the temperature accuracy on MT-InSAR 

results  

For data-driven methods to estimate/subtract temperature 

effects, temperatures at the acquisition times are necessary and 

their accuracy directly influences the (temporal) noise of the 

final time series of each point, and in some cases (especially 

those with shorter timeline), also other results, such as the 

displacement or estimated thermal dilation coefficient. 

Results achieved using in-situ and Virtual Sensing 

temperatures are comparable, as the average differences 

between these two temperature sets is 0.7 degrees and the 
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maximum difference is 3.1 degrees (acquisition time for this 

data is 5PM UTC). 

The differences between Virtual Sensing and ERA5 

temperatures, on the other hand, (compared in a different 

processing not considered here), are much higher: average of 

2.5 degrees and maximum 5.2 degrees (even if the acquisition 

time for this case was 5AM UTC). 

If the number of images is high enough and the monitoring 

period long enough to provide numerical stability of separation 

between linear and thermal displacement components (at least 

1.5 years according to [10]), the temperature inaccuracies (if 

not systematic in time) influence only the noise, i.e. the 

estimated point quality, which may slightly influence point 

density. 

If temperature accuracy is lower but the number of points is 

high enough to provide for statistical processing, and the 

thermal dilation is also significant, higher accuracy can be 

achieved by temperature refinement procedure [10]. 

 Comparison with in-situ measurements 

To compare the accuracy of the three data sets considered, 

the recalculated values of vertical bridge deformation in the 

mid-span (zone 4) were compared with the in-situ 

measurement. A period of time from May 2022 to April 2023 

was selected, which was common to all data sets. The direct 

comparison is shown visually in Figure 5, where green dots 

represent the in-situ measurements, while the red curve shows 

EGMS, black Terra-SAR-X and blue custom processed 

Sentinel-1 data. The normal bridge deformation patterns were 

not removed from either the reference in-situ or the InSAR 

data. If it was already subtracted during the MT-InSAR 

processing, it was added afterwards for the purpose of this 

comparison. 

 

Figure 5. Comparison between the reference measurement 

(green dots), EGMS (red line), TSX (black line) and Sentinel 

(blue line) for the central segment of the bridge 

The differences between each InSAR data set (EGMS, 

Sentinel-1 and TSX) and the reference were statistically 

analyzed and the resulting standard deviations are shown in 

Table 2. To compare the InSAR data with the reference 

measurements, first the mean value is calculated for all the 

Persistent Scatterer (PS) points belonging to the cluster 

associated with the location of the reference measurement. This 

mean value represents the average displacement derived from 

the InSAR dataset for that area. Next, any offset between the 

two datasets is removed to align both to the same baseline. 

Once aligned, the mean value obtained from the selected 

InSAR cluster is then subtracted from the corresponding 

reference measurement. This difference reflects the deviation 

between the two datasets at the reference location. Finally, the 

standard deviation of these differences is calculated to quantify 

variability and assess consistency between InSAR-derived 

values and reference data. 

Table 2. Comparison with in-situ measurement 

data set Std. deviation in mm 

EGMS 3.8 

Sentinel 2.1 

TSX 1.7 

 

The bridge deformations from the in-situ measurement are 

only given for the mid-span, so only these values were available 

for comparison. Therefore, a FE model of the bridge was used 

to perform a plausibility check on the deformed bridge shape 

that results from the MT-InSAR analysis. First, it was slightly 

updated to match the deformation in the center of the span by 

adjusting the stiffness of the constraining springs at the bridge 

abutments. Next, several TerraSAR-X acquisition times were 

selected and structural temperatures were calculated for each 

date and time. These temperatures were then applied to the FE 

model and the resulting bridge deformations were extracted and 

plotted as a solid line in Figure 6. Equivalent bridge shapes 

resulting from the TerraSAR-X data were plotted with the 

dashed line and the in-situ measurements with a point. The 

colors were kept the same for each date to enhance visual 

comparison. Not only does the mid-span deformation match 

very well between the FE model, reference measurement and 

MT-InSAR, but also the shape over the entire length of the 

bridge is similar. This demonstrates very high quality of the 

bridge deformation measurement obtained by MT-InSAR 

processing. 

 

Figure 6. Comparison of the bridge shape according to FE 

Model (solid line), TSX (dashed) and reference (dots) 

Once the direct comparison of the three datasets was 

complete, the analysis was repeated for the remaining two 

Sentinel-1 orbits. To obtain the total vertical deformation for 

each zone, the average of the results from each orbit was 

calculated after interpolation between acquisition times. In this 

way a combined EGMS and Sentinel-1 solution was obtained. 
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In addition, a combination of Sentinel-1 and TerraSAR-X data 

was derived for a total of four orbits. All three options for zone 

4 (mid-span) were again compared with the reference 

measurement and the resulting standard deviations are shown 

in Table 3.  

Table 3 Comparison with in-situ measurement for all 

available orbits 

data set Std. deviation in mm 

EGMS 1.7 

Sentinel-1 1.4 

Sentinel-1 + TSX 1.3 

 

The use of multiple orbits greatly improved accuracy, 

especially for EGMS. It is also evident that locally processed 

Sentinel-1 data can give better results than centrally processed 

EGMS, although both are based on exactly the same radar data. 

This is particularly true for the single orbit approach shown in 

Table 2. A novel combination of Sentinel-1 and TerraSAR-X 

data could improve the quality even more, but as the standard 

deviation is already very small, it does not bring that much 

improvement. It is expected that for bridges with scarce 

Sentinel-1 coverage the enhancement would be much more 

significant. 

 Flagging system 

The developed algorithm for the flagging system was then 

applied to the processed data for each zone. This step allowed 

us to automatically evaluate potential anomalies in the bridge 

deflection and determine if the bridge may require further field 

inspection. 

Figure 7 and Figure 8 show linear displacement rates up to 

0.6 mm pear year. Displacement rates of this magnitude were 

deemed too small to flag any of the anomalous behaviors listed 

in section 2.5. Breakpoints along the time series were detected, 

e.g., in zone 5, however, the overall displacement trend along 

the time series is close to zero. Overall, no flags were raised for 

any of the bridge segments. 

 

Figure 7 Overview of annual displacement rates for each of 

the seven bridge segments. OSM is used as background map. 

 

Figure 8 Displacement time series for four segments with 

fitted trend lines and 95% confidence intervals of the fitted 

lines. 

4 CONCLUSIONS 

While MT-InSAR bridge monitoring has certain limitations, 

it also offers unique advantages. One key advantage is its 

ability to provide retrospective monitoring when historical data 

are available, with Sentinel-1 data being available globally 

from 2015. However, due to its limited spatial resolution, 

Sentinel-1 data typically provides reliable results only for 

larger structures. For higher point density and improved 

accuracy, high-resolution satellite data from sources such as 

TerraSAR-X or Cosmo-SkyMed are required. 

In this study, deformations from in-situ measurements of a 

highway bridge in Austria were compared with three different 

InSAR datasets: EGMS, processed Sentinel-1 and TerraSAR-

X. As can be expected the number of PS points on the bridge is 

significantly higher for X-band radar compared to C-band. 

Nevertheless, the result show, that for the investigated bridge a 

remarkable accuracy, with standard deviations lower than 

2 mm, can be achieved with all three datasets, especially if all 

available Sentinel-1 orbits are taken into consideration. This 

result not only highlights the great potential of MT-InSAR-

based monitoring for detecting bridge deformations with high 

accuracy, but also raises the question whether expensive X-

band data is required for bridge monitoring or often the freely 

available Sentinel-1 data is sufficient for this purpose. 

To accurately assess actual bridge displacements and 

distinguish them from normal deformation patterns, thermal 

effects are estimated and subtracted from the MT-InSAR 

results. This correction helps to refine the analysis, ensuring 

that detected displacements more accurately reflect structural 

behavior rather than temperature-induced variations. 

Finally, by implementing the flagging system, an automated 

method for identifying potentially problematic bridges was 

developed and demonstrated. However, it is important to 

emphasize that this approach is not intended to replace on-site 

inspections. Rather, it serves as a complementary tool that 

provides additional information to assist in the assessment of 

bridges that may require further investigation. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-166 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1107 

ACKNOWLEDGMENTS 

 This research was funded by the Austrian Space Applications 

Programme (ASAP) through the project BOOST (FFG project 

number 892659). 

REFERENCES 

[1] Milillo, P.; Giardina, G.; Perissin, D.; Milillo, G.; Coletta, A.; Terranova, 

C. Pre-Collapse Space Geodetic Observations of Critical Infrastructure: 

The Morandi Bridge, Genoa, Italy. Remote Sens. 2019, 11, 1403. 
[2] Lanari, R., Reale, D., Bonano, M., Verde, S., Muhammad, Y., Fornaro, 

G., Casu, F., & Manunta, M. (2020). Comment on “Pre-Collapse Space 

Geodetic Observations of Critical Infrastructure: The Morandi Bridge, 
Genoa, Italy” by Milillo et al. (2019). Remote Sensing, 12(24), 4011. 

https://doi.org/10.3390/rs12244011 

[3] Giordano, P. F., Kwapisz, M., Miano, A., Liuzzo, R., Vorwagner, A., 
Limongelli, M. P., Prota, A., & Ralbovsky, M. (2025). Monitoring of a 

multi‐span prestressed concrete bridge using satellite interferometric data 

and comparison with on‐site sensor results. Structural Concrete, 26(1), 1-
24. https://doi.org/10.1002/suco.202400881 

[4] https://egms.land.copernicus.eu/, accessed on 12.2024 

[5] Muñoz Sabater, J. (2019): ERA5-Land hourly data from 1950 to present. 
Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 

DOI: 10.24381/cds.e2161bac 

[6] https://data.hub.geosphere.at/dataset/inca-v1-1h-1km, accessed  12.2024 
[7] Vorwagner, A., Kwapisz, M., Leopold, P., Ralbovsky, M., Gutjahr, K. 

H., & Moser, T. (2024). Verformungsmonitoring von Brücken mittels 
berührungsloser Satellitenradarmessungen. Beton- und Stahlbetonbau, 

119(0005-9900), 636-647. https://doi.org/10.1002/best.202400017 

[8] Schlögl, M., Dorninger, P., Kwapisz, M., Ralbovsky, M., & Spielhofer, 
R. (2022). Remote Sensing Techniques for Bridge Deformation 

Monitoring at Millimetric Scale: Investigating the Potential of Satellite 

Radar Interferometry, Airborne Laser Scanning and Ground-Based 
Mobile Laser Scanning. PFG-JOURNAL OF PHOTOGRAMMETRY 

REMOTE SENSING AND GEOINFORMATION SCIENCE, 2022. 

https://doi.org/10.1007/s41064-022-00210-2 
[9] Copernicus DEM – Global and European Digital Elevation Model, 

https://dataspace.copernicus.eu/explore-data/data-

collections/copernicus-contributing-missions/collections-
description/COP-DEM, accessed 20.3.2025 

[10] M. Lazecky, I. Hlavacova, M. Bakon, J. J. Sousa, D. Perissin and G. 

Patricio, "Bridge Displacements Monitoring Using Space-Borne X-Band 
SAR Interferometry," in IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, vol. 10, no. 1, pp. 205-210, Jan. 

2017, doi: 10.1109/JSTARS.2016.2587778 

https://doi.org/10.3390/rs12244011
https://egms.land.copernicus.eu/
https://doi.org/10.24381/cds.e2161bac
https://data.hub.geosphere.at/dataset/inca-v1-1h-1km
https://doi.org/10.1007/s41064-022-00210-2
https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM
https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM
https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM


13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-167 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1108 

ABSTRACT: Resilient high-voltage grids are essential for ensuring energy supply and preventing. However, climate change, the 

energy transition and the required expansion of electricity grids pose growing challenges for infrastructure operators in the energy 

sector. In Austria, landslides in alpine regions and decreasing groundwater levels in flat areas represent significant potential risks 

to power pylons. The Austrian Power Grid AG (APG), which operates the Austrian transmission grid, faces growing demands to 

detect damage at an early stage and to guarantee grid security amid changing climatic conditions. Satellite-based Interferometric 

Synthetic Aperture Radar (InSAR) potentially provides millimeter-precise, area-wide monitoring of ground motion and structural 

deformations. Periodic InSAR data updates (e.g. semi-annually) enable a complete and continuous analysis of all single structures 

such as power pylons and thus facilitate an assessment of the structural integrity of the entire grid. This allows the early 

identification of risks such as landslides or structural changes and the implementation of predictive maintenance. This paper 

highlights previous experiences and future potentials of integrating the InSAR technology into APG's workflows and risk 

management, which contributes to sustainable planning and increased grid stability in an increasingly complex system. 

KEY WORDS: Wide-area InSAR; Power Grids; Monitoring; Predictive maintenance. 

1 INTRODUCTION 

The Austrian Power Grid AG (APG) plays a central role in 

Austria’s energy infrastructure. As the operator of the Austrian 

electricity transmission network, APG is responsible for 

ensuring a continuous and reliable power supply. A critical 

factor in maintaining efficient and secure grid operations is the 

early detection of potential disruptions or structural changes in 

the transmission infrastructure. 

APG manages an extensive network of power lines, 

substations and more than 12.000 power pylons in Austria, that 

require regular monitoring. Identifying ground movements, 

structural deformations, and other potential risk factors is 

essential to minimize unplanned outages and enhance 

operational security. In this context, a feasibility study is being 

conducted to evaluate the integration of satellite-based InSAR 

technology into APG’s monitoring strategy, aiming to enhance 

early-warning capabilities and risk mitigation. 

2 BASICS OF INSAR TECHNOLOGY 

Synthetic Aperture Radar (SAR) satellites use radar signals to 

generate high-resolution images of the Earth's surface, 

independent of weather conditions or daylight. The principle is 

based on transmitting microwave pulses, which are reflected by 

the Earth's surface or manmade objects and received by the 

satellite. These signals are processed to create detailed images 

through complex signal processing techniques. 

 Reflection of Radar Waves 

The reflection of radar waves follows the physical principles of 

electromagnetic wave propagation. The strength of the 

reflected signal depends on two main factors: 

 

• Geometry of the Reflector: When incoming radar 

waves are reflected at an appropriate angle, a 

significant portion of the signal returns to the satellite. 

Smooth, metallic surfaces or structural elements 

enhance reflection. 

• Material Properties of the Surface: Materials with high 

electrical conductivity, such as metals, reflect radar 

waves effectively, whereas natural surfaces like 

vegetation or snow scatter waves in various directions, 

reducing the returned signal strength. 

 Different Frequency Bands for Various Applications 

SAR satellites operate at different frequency bands to serve 

specific applications: 

• L-Band (1-2 GHz): Commonly used for agricultural 

and forestry monitoring due to its ability to penetrate 

vegetation. 

• C-Band (4-8 GHz): Frequently used by Earth 

observation satellites like Sentinel-1, offering a 

balance between resolution and penetration depth. 

• X-Band (8-12 GHz): Employed in high-resolution 

applications such as infrastructure monitoring and 

military surveillance, providing high spatial resolution 

but limited penetration capability. 

 Orbit and Imaging Geometry 

SAR satellites typically follow a polar or sun-synchronous 

orbit, capturing data in both ascending (ASC) and descending 

(DSC) imaging geometries. In the ascending geometry, the 

satellite moves from the South Pole toward the North Pole, 

while in the descending geometry, it moves from the North Pole 

toward the South Pole. A schematic representation of the flight 

Satellite-based InSAR for monitoring and safeguarding high-voltage power pylons 

amid the energy transition 
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directions can be seen in Figure 1. This configuration allows 

for continuous monitoring of the Earth's surface. 

 

 

Figure 1. Ascending (ASC) and descending (DSC) geometry 

[2]. 

 Line of Sight (LOS) and Incidence Angle 

The SAR system’s viewing direction (azimuth angle) is 

typically oriented sideways (90° to the flight path). In the ASC 

geometry, the satellite looks eastward, while in the DSC 

geometry, it looks westward. The incidence angle is the angle 

between the vertical and the incoming radar beam, varying 

depending on the satellite system and terrain conditions. A 

larger incidence angle occurs further from the nadir (directly 

below the satellite), affecting shadowing, measurement 

accuracy, and displacement detection. 

Since SAR images capture displacements along the LOS, 

movements perpendicular to this direction remain partially 

undetected. This limitation can be mitigated through multi-

orbit analysis (see chapter 2.6) or integration with ground-

based data sources. 

 From SAR to InSAR 

As SAR satellites repeatedly capture images of the same area 

over time, they provide insights into surface changes. Each 

SAR acquisition records two essential parameters: (a) 

Amplitude, representing the energy of the reflected signal, and 

(b) Phase, related to the distance between the sensor and the 

target. 

 

Figure 2. Schematic representation of how InSAR 

(interferometric SAR) works. The phase shift (∆r=R2-R1) 

results from the phase information (R) of two or more images 

of the same area at different times or different positions [2]. 

Interferometric SAR (InSAR) compares phase differences 

between two or more SAR images to detect changes in distance 

between the satellite and the Earth's surface along the LOS-

vector. [1] This technique enables millimeter-accurate 

measurements of slow ground movements, such as landslides, 

earthquakes, and subsidence. Figure 2 shows the phase 

calculation that is performed for each individual measurement 

pixel. 

 Displacement Vectors and 2D Decomposition 

InSAR primarily measures displacement along the LOS. To 

derive vertical or horizontal displacement components, a 2D 

decomposition technique is applied using data from both ASC 

and DSC imaging geometries. This method allows for 

estimating movement in the east-west and vertical directions, 

while north-south displacement remains largely undetectable or 

at least underestimated and requires complementary data 

sources, such as GNSS measurements. 

3 DATA PROCESSING 

 SqueeSAR® Analysis 

In this study, the applied SAR data was processed using the 

multi-interferogram technique known as SqueeSAR® [1]. 

SqueeSAR®, a patented method developed by TRE 

ALTAMIRA, improves the reliability of InSAR measurements 

in heterogeneous environments by reducing phase 

decorrelation in areas with vegetation or urban structures. It 

combines Persistent Scatterers (PS) and Distributed Scatterers 

(DS) to achieve a high spatial density of measurement points. 

To ensure high precision and accuracy, SqueeSAR® requires 

a dataset of at least 15 to 20 SAR images acquired over the 

same area using the same acquisition mode and geometry. By 

combining PS, which are stable and well-defined radar 

reflectors, with DS, which represent diffuse scattering signals, 

SqueeSAR® can extract reliable movement data even in areas 

with low signal stability. This enables comprehensive 

monitoring of ground deformations. 

 Precision and Accuracy 

Precision and accuracy are crucial in measurement science: 

• Precision refers to the consistency of repeated 

measurements. A measurement series is precise if 

repeated observations under the same conditions yield 

similar values, regardless of their deviation from the 

true value. 

• Accuracy describes how close a measurement is to the 

actual (true) value, meaning a measurement is 

accurate if systematic errors are minimal. 

 Determining Precision in InSAR Data 

The precision of InSAR results is influenced by: 

• Measurement Point Locations: The geolocation 

accuracy of measurement points depends on the SAR 

coordinates and the derived height from the InSAR 

analysis. Higher resolution sensors improve 

geocoding precision. 

• Displacement Time Series: The standard deviation (σ) 

of individual measurements quantifies the variation 

around the mean displacement rate. Lower σ values 

indicate higher precision, while higher values suggest 

greater measurement variability. 
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For a dataset of at least 30 SAR images covering a two-year 

period, measurement points within 1 km of a reference point 

typically exhibit a standard deviation of less than 1 mm/year. 

The average standard deviation for a single measurement is 

usually ±5 mm. While InSAR precision is statistically derived, 

measurement accuracy is usually validated with ground-based 

reference data, such as geodetic surveys, achieving accuracy in 

the sub-millimeter range [1]. 

 MatchSAR® - Transformation of InSAR measurements 

into objects 

MatchSAR® is an advanced algorithm developed by 

AUGMENTERRA in collaboration with TRE ALTAMIRA. It 

transforms millions of InSAR measurement points across 

Austria by aligning them with physical structures such as 

buildings, power pylons, dams, roads, and railways. 

The transformation process consists of several key steps. First, 

a spatial analysis and quality control of all available InSAR 

measurement points are conducted to ensure accurate 

attribution of ground movements to the corresponding 

structures. Additionally, the algorithm integrates InSAR data 

with other terrain and structural datasets, creating a 

comprehensive, multidimensional view of each object. As a 

result, every object processed by MatchSAR® is assigned a 

displacement time series covering at least two to three years, 

enabling in-depth movement analysis (e.g., steady vs. 

accelerating displacement). 

MatchSAR® is a core component of the ‘AUGMENTERRA 

Observer’, a Software-as-a-Service (SaaS) platform featuring 

state-of-the-art 3D visualization. The ‘AUGMENTERRA 

Observer’ is accessible via various devices, including PCs, 

smartphones, and tablets, allowing users to retrieve structural 

and ground movement data within seconds. By automatically 

updating measurement data every six months, MatchSAR® 

ensures continuous tracking of structural movements, 

significantly reducing manual processing efforts and improving 

long-term risk assessment capabilities. 

4 USE CASE: WIDE-AREA MONITORING OF 

STRUCTURAL MOVEMENTS AT APG 

For the APG power pylon monitoring use case, Sentinel-1 data 

is automatically reprocessed every six months for all locations. 

Using a three-year moving window, updated measurement data 

is consistently incorporated into structural stability 

assessments. This approach ensures up-to-date risk evaluations, 

with new measurement pixels available every six to twelve 

days depending on Sentinel-1A/B availability. This guarantees 

a consistent and up-to-date analysis of structural stability over 

time. The results are implemented directly into APG's internal 

GIS using an API solution to ensure maximum availability and 

up-to-date information. Data access and visualization in the 

customer interface is displayed in Figure 3. A detailed time 

series of a moving pylon with an average movement of about 

19 mm/year is shown in Figure 4. 

 

  

Figure 3. Structural movement measurements from InSAR 

and locations of the APG power pylons, visualized using the 

3D WebGIS application ‘AUGMENTERRA Observer’. 

 

 

Figure 4. Time series of a power pylon located in Figure 3. 

The pylon shows an average movement of approx. 19 

mm/year in the LOS direction. The movement behavior is 

homogeneous. 

 Monitoring Ground Deformation and Stability 

One of the primary applications of InSAR for APG is detecting 

and analyzing ground deformations that could compromise the 

stability of power pylons. Subsidence, landslides, and soil 

compaction can lead to shifts in foundation structures, 

potentially endangering the transmission network. This allows 

the definition of hotspots that can be subjected to more 

intensive monitoring. A distinction is made between two main 

processes: 

• Landslide and erosion detection: InSAR can identify 

gradual slope movements that may threaten pylon 

stability. 

• Subsidence monitoring: Infrastructure near mining 

areas, groundwater extraction zones, or soft soil 

regions can be monitored for ground subsidence. 

 Structural Health Monitoring of Power Pylons 

In addition to assessing ground stability, InSAR can also detect 

internal deformations of transmission pylons. While traditional 

structural monitoring relies on ground-based sensors, satellite-

based InSAR provides: 

• Large-scale coverage: Continuous monitoring of the 

entire power grid, including remote areas. 
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• Millimeter-level accuracy: Detection of slight tilting 

or deformation of pylons over time. 

• Historical data comparison: Analysis of past SAR 

images to identify long-term structural trends. 

 Integration with Other Monitoring Technologies 

For optimal monitoring, InSAR data can be combined with: 

• Ground-based sensors: Combining InSAR with GPS, 

inclinometers, and strain gauges enhances 

measurement reliability. 

• Drone and LiDAR surveys: High-resolution aerial 

surveys provide additional validation of deformation 

patterns detected via satellite. 
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ABSTRACT: With Canada's transportation infrastructure aging, compounded by the effects of climate change, the need to enhance 

condition assessment through structural health monitoring is increasingly critical to ensure integrity, performance, public safety, 

and cost-effectiveness. Bridge pier scouring, caused by high river flow and turbulence that erode the surrounding bed material, 

poses a significant threat to bridge stability and can potentially lead to failure. Conventional scouring inspections are often time-

consuming and costly. This paper presents a case study on the Red River Bridge in Winnipeg, Canada, where an innovative, 

multidisciplinary assessment of bridge stability was performed, including both environmental and structural investigations. The 

environmental investigation utilized multispectral satellite imagery and optical-band unmanned aerial vehicle (UAV) imagery, 

combined with large-scale particle image velocimetry (LS-PIV), to assess river flow and turbulence. An anomalous condition near 

a bridge pier, detected in multispectral satellite imagery, was confirmed by UAV photogrammetry and LS-PIV river current 

patterns. The structural investigation, detailed in this paper, incorporated Persistent Scatterer Interferometric Synthetic Aperture 

Radar (PS-InSAR) deformation measurements from satellite imagery, in-situ measurements on the bridge deck, and numerical 

bridge model predictions. This provided an assessment of the bridge's structural behavior and its potential connection to the 

condition observed near one of the bridge piers.  

KEY WORDS: Satellite PS-InSAR; Remote sensing; Bridge deformation; Case study.  

1 INTRODUCTION 

  Background and motivation 

Canada's transportation infrastructure, especially its bridges, is 

facing significant challenges due to aging and environmental 

stresses. Many bridges across the country are nearing the end 

of their design life, necessitating substantial investments in 

maintenance and upgrades [1]. The aging infrastructure is 

further strained by increasing traffic loads and environmental 

impacts, such as extreme weather events and temperature 

fluctuations [2]. These factors accelerate the deterioration of 

bridges, affecting their safety, performance, and economic 

viability. The need for innovative solutions to ensure long-term 

sustainability and reliability is more urgent than ever [3]. 

Bridge pier scouring is a major issue impacting river bridges. 

It occurs when fast-flowing water erodes the bed material 

surrounding bridge piers, leading to instability and potential 

structural failure [4]. This problem is compounded by climate 

change, which is causing more frequent and severe flooding 

events [5]. Such conditions accelerate the scouring process, 

increasing risks to bridge safety and necessitating advanced 

monitoring and mitigation strategies [6]. Research has shown 

that various factors, including water velocity, bed material type, 

and pier shape influence the extent of scouring [7]. Effective 

countermeasures, such as pier modifications and protective 

structures, are essential to mitigate these risks [8].  

In response to these challenges, there is a growing need to 

assess bridge safety and performance through structural health 

monitoring technologies. Remote Sensing for Structural Health 

Monitoring (RS-SHM) is an emerging field that uses 

multispectral and radar satellite remote sensing, combined with 

low-footprint in-situ measurements, to monitor bridge 

structures between routine inspections. This approach, which 

does not require bridge closure or create traffic disruption, 

provides early awareness of developing risks and 

understanding of how environmental changes may affect 

structural behaviour and safety. By integrating satellite data 

with in-situ measurements, engineers can gain comprehensive 

insights into bridge structural behaviour, enabling proactive 

maintenance and risk management. This approach enhances 

safety by providing early detection of risks while improving 

cost-effectiveness through optimized maintenance plans and 

extended bridge lifespan.  

The integration of advanced sensor technologies and cloud-

based platforms in SHM systems allows for continuous real-

time monitoring of bridge conditions. These systems can detect 

even minor structural changes, such as vibrations and 

displacements, which are critical for assessing the health of 

aging infrastructure. The use of SHM technologies not only 

improves the accuracy of bridge assessments but also facilitates 

timely interventions, thereby preventing catastrophic failures 

and extending the service life of bridges. As Canada continues 

to face environmental and economic pressures, the adoption of 

innovative SHM solutions will be crucial in maintaining the 

integrity and safety of its transportation infrastructure. 

Additionally, the implementation of predictive maintenance 

strategies, supported by SHM data, can significantly reduce 

maintenance costs and extend the lifespan of bridge structures, 

which are typically designed for 75 years in Canada. Predictive 

maintenance involves analyzing data from SHM systems to 

forecast potential issues before they become critical, allowing 

for timely and targeted interventions.  
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This proactive approach enhances safety and optimizes 

resource allocation, ensuring that inspection, maintenance and 

rehabilitation efforts are focused on areas with highest risk.  

Ultimately, aging transportation infrastructure requires 

substantial investments to address increasing traffic loads and 

environmental impacts. Adopting advanced SHM technologies 

and predictive maintenance strategies offers a promising 

solution to improve safety, performance, and longevity.  

 Case study site 

The Red River is a shallow meandering river flowing north 

through the city of Winnipeg in Manitoba, Canada. The 258-m 

long Red River Bridge, with four lanes of vehicle traffic and 

one lane of foot traffic, crosses the Red River south of 

Winnipeg.  Figure 1 shows a satellite view of the bridge, with 

annotations for bridge piers (P1 to P6), and west and east 

abutments (WA, EA). Piers P3, P4, and P5 are located in the 

permanent river channel, while Piers P1, P2, and P6 may 

become inundated at their base during periods of high flow.  

From west to east, the bridge structure consists of a total of 

seven spans, including two simply-supported spans between 

WA and P2, where the longitudinal movement is fixed at P1, 

followed by four continuous spans between P2 and P6, where 

the longitudinal movement is fixed at P4, and a last simply-

supported span between P6 and EA, where the longitudinal 

movement is fixed at the east abutment. This detail will explain 

the direction and extent of thermal expansion of deck along the 

bridge length. Ambient temperature data for this site was 

acquired from a local weather station located at the Winnipeg 

international airport, as given in Figure 2.  

 

 

Figure 1. Bridge structure over Red River in Winnipeg, MB.  

 

Figure 2. Ambient air temperature measured at Winnipeg 

international airport during the bridge monitoring period.  

2 METHODS  

 Environmental investigation summary 

In 2023-2024, a multimodal RS-SHM environmental 

investigation (not yet published) was conducted to detect and 

monitor potential hazards at the Red River Bridge and its 

surroundings from multispectral satellite imagery and optical-

band UAV imagery. Eight Maxar Worldview mono orthoimage 

scenes acquired during the ice-free spring and summer months 

of 2022 were evaluated for river flow conditions that may affect 

the bridge structure stability. UAV photogrammetry of the 

riverbanks was conducted in November 2023, and two UAV-

based Large Scale Particle Image Velocimetry (LS-PIV) 

collections were acquired in Spring 2024. These investigations 

did not require bridge closure or disrupt normal traffic, nor did 

they necessitate unsafe surveying practices. The findings are 

used to inform the structural investigation in order to verify if 

a correlation with the monitored bridge deformations do exist.  

 Georeferencing of SAR satellite imagery 

Accurate positioning of SAR satellite imagery data, including 

the integration of up-to-date elevation data, is essential for 

precise georeferencing during the PS-InSAR analysis [9]. This 

process ensures that measurements are correctly aligned with 

real-world coordinates, which is critical for detecting subtle 

ground deformations. A reliable Digital Surface Model (DSM) 

plays a pivotal role in this step by accounting for topographic 

variations. Inaccuracies in the DSM can lead to misplacement 

of Persistent Scatterers (PS), introducing errors in phase 

interpretation and ultimately compromising the reliability of 

deformation estimates. Furthermore, an accurate DSM supports 

the separation of topographic and displacement signals, 

enhances phase unwrapping, and improves the 3D localization 

of PS, particularly in complex urban or mountainous terrains.  

The horizontal coordinate reference frame for this project is 

the North American Datum of 1983 Canadian Spatial 

Reference System (NAD 83 CSRS). The horizontal 

geographical units were projected into planar coordinates in the 

Universal Transverse Mercator (UTM) system, Zone 14 North 

with a central meridian of 99° W. The vertical coordinate 

reference system is the Canadian Geodetic Vertical Datum of 

2013 (CGVD-2013).  

A stereo pair of 50-cm resolution panchromatic-band Airbus 

Pleiades 1-B satellite images acquired on 14 June 2021 was 

used to create a 1-m resolution Digital Surface Model (DSM) 

of the Red River in the Winnipeg metropolitan area, inclusive 

of the Red River Bridge.  Image selection criteria included clear 

views of the river surface in the vicinity of the bridge, with no 

clouds, cloud shadows, or aerosols. The source images of the 

stereo pair were georeferenced using a sparse RTK survey of 

tie points (bases of lampposts on the pedestrian walkway of the 

bridge) on the bridge deck conducted by the University of 

Manitoba with a DJI D-RTK 2 mobile positioning system, 

orthorectified using the High Resolution Canadian Digital 

Elevation Model (HR-CDEM), and used to produce the DSM 

(Figure 3) and image stack with horizontal coordinates and 

elevations in the project coordinate reference system described 

previously.  Horizontal and vertical accuracies of a DSM 

derived from satellite imagery in this manner is estimated at  

+/- 0.5 m horizontal (CE 90) and +/- 1.5 m vertical (LE90) [10].  
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Figure 3. Digital surface model created for the Winnipeg 

bridge and its surroundings.  

 PS-InSAR satellite measurements 

Persistent Scatterer Interferometric Synthetic Aperture Radar 

(PS-InSAR) is a satellite-based remote sensing technique used 

to monitor ground deformation over time. It involves analyzing 

a series of SAR images acquired at different times to measure 

the motion of stable ground features (or objects), known as 

persistent scatterers (PS). This method allows the detection of 

subtle movements and deformations on the Earth's surface or 

man-made structures by comparing the phase information (e.g., 

phase change and intensity) of the radar signals across multiple 

temporal acquisitions. More details on the PS-InSAR technique 

are available elsewhere [11][12], along with its applications in 

preventing bridge collapses [13][14].  

The technique was applied to two image stacks of SAR 

satellite imagery (Figure 4) acquired over the Winnipeg 

metropolitan area from C-band satellites of the RADARSAT 

Constellation Mission (RCM), including one stack acquired in 

ascending viewing geometry (i.e., satellite travelling from 

south pole to north pole, looking to the East) with an incidence 

angle of 45° and a satellite track heading of 350°, and a second 

stack acquired in descending viewing geometry (i.e., satellite 

travelling from north pole to south pole; looking to the West) 

with an incidence angle of 42° and a satellite track heading of 

190°. The bridge heading angle was measured at 62°. The RCM 

imaging mode was the Spotlight mode with a nominal pixel 

resolution of 1 x 3 meters (range vs. azimuth). The minimum 

and maximum satellite revisit times were four days and twelve 

days, respectively. The image acquisition period covered in this 

paper spans approximately one year from May 2023 to June 

2024. Table 1 provides the details on the two satellite image 

stacks processed for this study.  

 
Table 1. Features of RCM satellite image stacks. 

Look direction  Ascending Descending 

Beam mode Spotlight Spotlight 

Incidence angle 45° 42° 

Satellite track heading 350° 190° 

Resolution (range x azimuth) 1 x 3 m 1 x 3 m 

Swath (range x azimuth) 20 x 5 km 20 x 5 km 

Number of scenes 29 55 

Stack start date 1 May 2023 2 May 2023 

Stack end date 16 June 2024 17 June 2024 

 

Figure 4. Winnipeg metropolitan area showing footprints of 

the ascending and descending satellite image stacks.  

 In-situ displacement measurements 

Figure 1 above illustrates some structural parameters of the 

bridge, such as the connection details between girders and 

piers. Permanent survey positions were identified on the bridge 

deck for the in-situ measurements using a total station (TS) and 

GPS. These positions were located on the deck and aligned with 

abutments, piers and mid-spans. Matching markers were added 

to the metal handrail beside the pedestrian walkway so that the 

reflection prism for TS and the GPS Antenna could be precisely 

mounted on the same positions with good repeatability (within 

+/- 1 mm error) during the measurement period.  

The position measurements using the total station were taken 

from each abutment. The two sitting positions for the TS were 

fixed, and their origin coordinates were determined using a 

real-time kinematic (RTK) global positioning system (GPS). 

The coordinates of the position marks were determined by 

moving the 360-degree prism from the WA position to the 

centre of the bridge when the measurements were conducted 

from the west abutment, and by moving the prism from the EA 

position to the centre of the bridge when the measurements 

were taken from the east abutment.  

The measurements using the GPS instrument were conducted 

using a base station and a rover. The base station was mounted 

at the WA position, and the rover was moved to all positions 

from WA to EA. The position measurements from the rover can 

achieve a horizontal positioning accuracy of 6 millimetres with 

a signal correction from the base station, while a vertical 

positioning accuracy of 10 millimetres can be achieved. The 

RTK correction signal was communicated between the rover 

and the base using a radio link. To ensure accuracy, data were 

collected with correction times of 1-2 seconds. The thermal 

movement of the marked positions on the handrail was 

measured against temperature during a period of a few months.   

 Numerical bridge model simulations 

Figure 5 shows the finite element model (FEM) of the bridge 

using the SAP 2000 software, assuming linear elastic material 

behaviour. It was used to study the dynamic vibrations of the 

bridge and the ambient temperature dependence of bridge 

displacements. The bridge's steel girders and concrete slab 

were modelled using thin shell elements connected by stiff link 

elements.  

Bridge 
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The bracing system, brackets, and edge beams supporting the 

sidewalk were modelled using frame elements. The bridge 

abutments were modelled using thick shell elements, and the 

bearings between abutments and girders were modelled with 

special link elements to allow rotation only or rotation and 

relative displacement depending on bearing type.  

 

 

Figure 5. The numerical finite element model of the bridge. 

An element size of up to 600 mm was chosen after comparing 

the results from several mesh sizes for a portion of the bridge. 

The complete model consists of 85,526 nodes, 2,268 frame 

elements, 6,912 thick shell elements, 75,133 thin shell elements 

and 12,704 link elements.  

A FEM simulation is a component of a digital twin, but it 

does not constitute a digital twin on its own. Our work extends 

beyond the mere simulation by continuously updating and 

predicting the structure's performance using real-time data. 

Human intervention plays a crucial role in this process, 

modifying results by comparing outputs from FEM 

simulations, remote satellite imagery, and in-situ GPS, and TS.  

3 RESULTS AND ANALYSES  

 Environmental observations 

The findings of this case study demonstrate how spatio-

temporal environmental information is used to provide context 

to bridge deformation measurements in an RS-SHM study. 

Unexpected river turbulences observed in three different 

datasets (mono ortho satellite imagery, UAV imagery, LS-PIV 

vectors) acquired over a 2-year period indicate the presence of 

unexpected river behaviour upstream of Pier P5. The very high-

resolution UAV photogrammetry collection provided 

particularly interesting contextual information for PS-InSAR 

monitoring, notably that riverbank sediment loss was occurring 

upstream of the bridge and a persistent pile of woody debris 

was present at the base of Pier P5 in all LS-PIV video 

collections but not at any other piers. The LS-PIV results 

confirmed the presence of a subsurface obstruction to river flow 

observed in the satellite image stack and revealed an area of 

unexpectedly high currents near the east bank of the river. 

These observations are sufficient to indicate that more detailed 

assessment of pier stability using other methods is required.  

 PS-InSAR displacement results 

PS-InSAR analysis was conducted independently on each stack 

of ascending and descending satellite images. The resulting 

time series include measurements projected in the one-

dimensional line-of-sight (LOS) of the satellite.  

Three types of displacement measurements were obtained:  

(i) displacement linear rate (or velocity) derived from linear 

regression against time, (ii) displacement thermal sensitivity 

(or unit thermal displacement) obtained from linear regression 

against ambient temperature taken at times of image 

acquisitions, and (iii) cumulative displacements over the 

acquisition period (one year so far).  

Figure 6 illustrates the ascending (top) and descending 

(bottom) sets of LOS linear displacement rates measured over 

the bridge deck, where the bridge concrete barriers with steel 

railings are perfect natural reflectors of SAR energy. However, 

due to the shallow incidence angle and the satellite look 

direction, not all sections of the barriers reflected valid 

persistent scatterers. Most ascending-pass PS concentrated on 

the north-west barrier while most descending-pass PS 

concentrated on the south-east barrier, making it challenging 

for the 2D decomposition analysis (explained next). 

Nevertheless, the study of these datasets reveals no excessive 

LOS displacement linear rates observed in the ascending or 

descending satellite data. Different viewing geometries (i.e., 

ascending and descending) were specifically selected to allow 

for a 2D decomposition calculation of the vertical and 

horizontal (east-west) components of displacement, noting that 

pole-orbiting satellites are not sensitive to pure north-south 

movement [11][12].  

 

 

Figure 6. PS-InSAR LOS displacement linear rates (mm/year) 

measured over the bridge deck from ascending viewing 

geometry (top) and descending viewing geometry (bottom). 

 

Figure 7 shows a horizontal grid of nine consecutive bins along 

the deck centreline, which was used for averaging displacement 

measurements from each viewing geometry. The bins were 

used to calculate the average vertical and horizontal 

components of displacement at the centre of each bin by 

trigonometry. The size of the bins was carefully selected to get 

representative values of displacement for each span of the 

bridge considering the different support conditions at the piers 

and abutments (free, pinned or fixed). The advantage of large 

bins is that each bin can contain multiple persistent scatterers 

from both ascending and descending satellite passes, enabling 

accurate 2D decomposition. A 2nd set of 18 consecutive bins 

was also created for comparison purposes, where the length of 

each bin was exactly half that of the 1st set (i.e., 14.4 m), with 

the aim to get a well-distributed set of average displacements, 

perhaps at the expense of having a few empty bins for either 

ascending or descending viewing geometry.  
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Figure 7. 2D decomposition grid over the bridge deck, 

showing nine regularly-spaced bins. Each bin is 28.8 m long.  

 Figure 8 illustrates how 1D LOS displacement measurements 

from two opposite satellite viewing geometries can be 

combined for a 2D decomposition of the vertical and horizontal 

components of displacement.  

 

 

Figure 8. Satellite viewing geometries and 2D decomposition. 

Equation 1 was adapted for a bridge-centric coordinate system 

[15]. If both the vertical and transverse components of 

displacement can be assumed to be small compared to the 

longitudinal component, then Equation 1 can reduce to 

Equation 2. The east-west component of displacement can then 

be projected onto the longitudinal direction of the bridge for 

direct comparison with other measurement and prediction 

methods.  Similarly, if both longitudinal and transverse 

components of displacement can be assumed to be small in 

comparison to the vertical component, then Equation 1 can 

reduce to Equation 3, as follows:  

𝐷𝐿𝑂𝑆 = 𝐷𝑉 cos 𝛼 − 𝐷𝐿 sin 𝛼 sin 𝛽 + 𝐷𝑇 sin 𝛼 cos 𝛽 (1) 

𝐷𝐿 =  −𝐷𝐿𝑂𝑆 (sin 𝛼 sin 𝛽)⁄    if both 𝐷𝑉 and 𝐷𝑇  ~ 0 (2) 

𝐷𝑉 =  𝐷𝐿𝑂𝑆 (cos 𝛼)⁄    if both 𝐷𝐿  and 𝐷𝑇 ~ 0 (3) 

where 𝐷𝐿𝑂𝑆 is the line-of-sight displacement toward the 

satellite sensor, 𝐷𝑉 is the vertical component in the upward 

direction, 𝐷𝐿  is the horizontal component in the longitudinal 

direction of the bridge from west to east, 𝐷𝑇  is the horizontal 

component in the transverse direction of the bridge, 𝛼 is the 

incidence angle of the satellite LOS, and 𝛽 is the angle 

measured clockwise from the satellite track heading to the 

bridge longitudinal axis.  

 

However, if the vertical and transverse components of 

displacement are not negligible, Equation 4 should be used to 

calculate the longitudinal displacement:   

𝐷𝐿 = [
𝐷𝐿𝑂𝑆,𝑑

cos 𝛼𝑑 tan 𝛼𝑎 sin 𝛽𝑎

−
𝐷𝐿𝑂𝑆,𝑎

sin 𝛼𝑎 sin 𝛽𝑎

] [1 −
tan 𝛼𝑑 sin 𝛽𝑑

tan 𝛼𝑎 sin 𝛽𝑎

]⁄  (4) 

Similarly, if the longitudinal and transverse components of 

displacement are not negligible, Equation 5 should be used to 

calculate the vertical displacement:   

𝐷𝑉 = [
𝐷𝐿𝑂𝑆,𝑑

cos 𝛼𝑑

− 𝐷𝐿𝑂𝑆,𝑎

tan 𝛼𝑑 sin 𝛽𝑑

sin 𝛼𝑎 sin 𝛽𝑎

] [1 −
tan 𝛼𝑑 sin 𝛽𝑑

tan 𝛼𝑎 sin 𝛽𝑎

]⁄  (5) 

where subscripts 𝑎 and 𝑑 represent the components calculated 

from the ascending or descending image stacks, respectively.  

 Comparison between PS-InSAR and other methods 

In-situ measurements were conducted on the bridge, as 

described previously in Section 2.4. The distances from all 

marks to Mark 1 (located at the west abutment) were calculated, 

and the distance changes against ambient temperature variation 

during the measurement period were obtained (Figure 9). It can 

be seen that both in-situ measurement methods agree well with 

each other and to the FEM predictions of unit thermal 

displacement along the bridge, as expected. A small 0.2 mm/°C 

mean error is observed between the two sets of in-situ 

measurements and the FEM predictions.  

 

 

Figure 9. In-situ thermal displacements of bridge along the 

longitudinal direction compared to FEM predictions. 

(Notation: F = fixed joint; Exp = expansion joint). 

In addition, the bridge unit thermal displacement in the vertical 

direction was also predicted with the FE model and measured 

with the total station and GPS instruments, for which the results 

are presented in Figure 10.  

 

 

Figure 10. In-situ thermal displacements of bridge along the 

vertical direction compared to FEM predictions.  
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It can be observed that both types of field measurements agree 

well with the FEM predictions of vertical displacement.  

Given that the FEM predictions of thermal displacements 

appear to be valid based on the horizontal and vertical field 

measurements, the PS-InSAR measurements will be compared 

to and validated against the FEM predictions in the next figures. 

Figure 11 illustrates the average longitudinal thermal 

displacement measured by the RCM satellites for each set of 

bins along the bridge deck from West to East, using the detailed 

Equation 4. The expected movement direction (eastward vs. 

westward) and extent of thermal displacement are well 

characterized, with gradually increasing thermal displacements 

between the two expansion joints (at P2 and P6) and the 

expected sign reversal on either side of each expansion joint 

due to opposite directions of thermal movement going away 

from the pier. The comparison between the thermal 

displacements obtained from each bin size illustrates excellent 

agreement between the results of the two bin sizes, except that 

the smaller bin size returned no data at two locations near P6.  

 

Figure 11. PS-InSAR thermal displacement along the 

longitudinal direction of bridge compared to FEM predictions.  

Similarly, Figure 12 illustrates the PS-InSAR data for the 

vertical component of thermal displacement calculated along 

the bridge using Equation 5 for the two sets of bins. The 

comparison from either set of bins with the FEM predictions 

shows a good match, where the difference ranges from 0.1 

mm/°C to 0.2 mm/°C. These PS-InSAR measurements also 

compare very well with the field measurements in Figure 10 

above.  

Overall, the satellite-monitored bridge thermal displacements 

are observed to be consistent with and very similar to both in-

situ measurements and FEM predictions, confirming satellite-

based PS-InSAR as a promising SHM tool for displacement 

measurements.  

 

Figure 12. PS-InSAR thermal displacement along the vertical 

direction of bridge compared to FEM predictions.  

 Assessment of PS-InSAR calculation method accuracy 

As mentioned in the previous section, the PS-InSAR 

measurements of the longitudinal thermal displacement shown 

in Figure 11 were calculated using Equation 4. These results 

show a maximum difference of 0.3 mm/°C at the expansion 

peaks (P2 and P6) compared with the FEM predictions. This 

difference is believed to be due to an averaging effect from the 

relatively large size of the bins used for 2D decomposition, 

especially around the P2 and P6 discontinuities. Shorter 

averaging bins would have been desired if the density of the 

ascending PS on the downstream barrier and the descending PS 

on the upstream barrier were higher (Figure 6). At P3 and P5, 

where the averaging effect is negligible, a small difference of 

0.2 mm/°C is observed when compared to the FEM predictions.  

Table 2 presents standard deviation and point count statistics 

for the PS results obtained from the 2D decomposition 

depending on pass direction and bin size. It is shown that the 

bin size did not have a significant impact of the accuracy of the 

averaged results, except that the smaller bin size had two empty 

bins around P6 due to the low density of PS for the ascending 

pass. The ascending data exhibited slightly higher standard 

deviations than the descending data, which is likely due to the 

lower PS density in the ascending pass, which also had fewer 

images in its stack (29 vs. 55, as shown in Table 1) compared 

to the descending stack.  

Table 2. Standard deviation and point count statistics for  

PS-InSAR results from ascending and descending passes. 

 
Bin 
no. 

 
 

 
Bin centre 
distance 

from WA 
(m) 

Ascending pass Descending pass 
St. dev. 
within 

each bin 
(mm/°C) 

PS point 
count in 
each bin 

 

St. dev. 
within 

each bin 
(mm/°C) 

PS point 
count in 
each bin 

 
9-bin grid: 

1 14.4 0.09 42 0.08 37 
2 43.2 0.07 24 0.09 24 
3 72.0 0.10 16 0.08 25 
4 100.8 0.09 55 0.07 47 
5 129.6 0.11 27 0.04 27 
6 158.4 0.07 40 0.06 41 
7 187.2 0.10 24 0.05 30 
8 216.0 0.01 2 0.03 15 
9 244.8 0.05 5 0.07 43 

18-bin grid: 
1a 7.20 0.10 19 0.05 19 
1b 21.6 0.07 23 0.05 18 
2a 36.0 0.07 21 0.04 16 
2b 50.4 0.01 3 0.13 8 
3a 64.8 - 1 0.12 11 
3b 79.2 0.10 15 0.05 14 
4a 93.6 0.09 25 0.04 19 
4b 108.0 0.08 30 0.06 28 
5a 122.4 0.07 15 0.04 10 
5b 136.8 0.11 13 0.03 17 
6a 151.2 0.06 27 0.05 24 
6b 165.6 0.08 13 0.04 17 
7a 180.0 0.09 18 0.05 23 
7b 194.4 0.05 5 0.04 7 
8a 208.8 0.01 2 0.03 10 
8b 223.2 - 0 0.04 5 
9a 237.6 - 0 0.04 13 
9b 252.0 0.05 5 0.07 30 
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This study was fortunate to have access to two stacks of satellite 

imagery over the bridge from opposing viewing geometries, 

which allowed the full 2D decomposition of movement for the 

correct determination of horizontal (east-west) and vertical 

components of movement. This is convenient when one needs 

to compare and validate results with field measurements and/or 

numerical simulations for which displacement results are 

typically determined in the vertical and horizonal directions.  

There are cases where satellite imagery is only available for 

one viewing geometry (ascending or descending). While it is 

possible to estimate the horizontal or vertical displacement 

components by simple trigonometry (Equation 2 or 3, for 

example), one needs to ensure that the unknown variable is 

small enough to be safely neglected. Case studies on SAR 

satellite-monitored highway bridges have been successfully 

conducted using SAR imagery obtained only from one viewing 

geometry [16][17].  

In this study, however, it was found that the vertical 

component of displacement could not be neglected. For 

example, Figure 13 presents the PS-InSAR measurements of 

unit thermal displacement in the longitudinal direction of the 

Red River Bridge, which were calculated separately for each 

viewing geometry using the simplified Equation 2, which 

comes with the assumption of negligible vertical displacement. 

The results actually show a poor match with the FEM 

predictions, especially for the descending set of displacement 

data, where differences with the FEM predictions of up to 0.8 

mm/°C can be observed.  

 

 
Figure 13. Longitudinal PS-InSAR thermal displacement 

for either ascending or descending passes compared to FEM 

predictions, using the inappropriate assumption of negligible 

vertical displacements. Dotted lines indicate lack of PS data. 

The inferior match with the FEM predictions for the descending 

image stack is unique to this case study and depends on several 

factors – one of them being the orientation of the bridge with 

respect to the satellite tracks on the ground. As mentioned 

earlier, SAR satellites are not sensitive to movement along the 

satellite track heading (roughly N-S). This is because they are 

typically right-looking polar-orbiting satellites.  

In this study, the angle between the satellite look direction 

(satellite track heading + 90°) and bridge heading is much 

larger for the descending stack (190°+90°−62°=218°) than it is 

for the ascending image stack (350°+90°−62°−360°=18°). 

Consequently, the ratio of vertical movement to the reduced 

observable longitudinal movement from the descending 

viewing geometry becomes apparently larger. This confirms 

the fact that SAR satellites are most sensitive to movement 

aligned with the look direction of the satellite [11][12].  

 Interpretation of results based on environmental context 

As mentioned in the introduction section, the RS-SHM 

approach is meant to provide bridge operators with early 

awareness of developing risks and context to understand how 

changes in the surrounding environment may affect structural 

behaviour and safety.  

The environmental investigation actually identified such a risk 

to bridge stability: a subsurface bluff-body obstruction to river 

flow and unexpectedly high currents near the east bank of the 

river close to Pier P5 of the bridge. These observations were 

sufficiently significant and clear to trigger a more detailed 

structural assessment of bridge stability using other methods.  

The structural investigation, indeed, focused on two major 

aspects of structural behaviour of the bridge. The first aspect 

included the vibration measurements of bridge piers reported 

elsewhere [18]. The vibration study identified the fundamental 

natural vibration frequencies of the bridge piers and will keep 

monitoring them to detect changes where a reduction of the 

fundamental natural frequency is expected to indicate the 

weakening of the pier foundation as a result of scouring. 

Damping is another indicator but is not being considered.  

The second aspect of the structural investigation included the 

thermal behaviour of the bridge, which was obtained by four 

different measurements and prediction methods (PS-InSAR, 

TS, GPS and FEM). The remote PS-InSAR and in-situ 

measurement methods agreed well with the expected bridge 

thermal deformation predictions from the bridge FE model.  

Given the above, there is currently no evidence or signs of 

pier scouring at the bridge. However, due to observations from 

the environmental investigation, the deformations and ambient 

vibrations of the bridge piers, particularly at Pier 5, will remain 

under close scrutiny.  

4 CONCLUSIONS 

As part of a case study conducted on the Red River Bridge in 

Winnipeg, Canada, a structural investigation combining PS-

InSAR deformation measurements from satellite imagery, in-

situ measurements on the bridge deck, and numerical bridge 

model predictions was conducted. It provided an assessment of 

the bridge's structural behaviour with insight obtained from a 

prior environmental investigation. The following conclusions 

can be drawn:  

1. This case study demonstrated the importance of combining 

key environmental observations with structural health 

monitoring data in an RS-SHM approach to provide 

comprehensive risk assessments for river bridges. 

2. The environmental investigation identified unexpected 

river behaviour, including riverbank sediment loss, flow 

contraction during high-water periods, and persistent 

woody debris near Pier P5 of the bridge, suggesting 

potential risks to bridge stability, thus warranting further 

assessment of pier stability.  

3. PS-InSAR displacement measurements were found to be 

consistent with in-situ and numerical model predictions, 

confirming its reliability as a monitoring tool, and have 

proven effective in this case study for assessing bridge 

stability and detecting subtle deformations over time.  
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4. The successful 2D decomposition of PS-InSAR 

displacement data allowed for accurate determination of 

both vertical and horizontal components, emphasizing the 

value of having satellite imagery from two opposing 

satellite viewing geometries.  

5. It was demonstrated that, under some specific conditions, 

analyzing SAR images from only one viewing geometry 

might induce measurement inaccuracies if the simplifying 

assumptions on expected displacements cannot be met.  

6. Although no current evidence of scouring was detected, 

the findings of the environmental investigation highlight 

the importance of remaining vigilant due to the potential 

scouring risks observed at Pier P5.  
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ABSTRACT: Extreme weather events that cause flooding endanger people, economic goods, and the environment. Flood 

protection systems, such as dams, dikes, and levees, defend these valuable assets and therefore their structural health should be 

monitored. The goal of this project is to investigate the potential of Interferometric Synthetic Aperture Radar (InSAR) satellites 

for the monitoring of dams and dikes. The ability to monitor flood protection systems depends on the availability of a sufficient 

number of measurement points. This is influenced by several factors, such as the type of the scanned surface area (e.g. vegetation 

cover, concrete), the orientation of the dike with respect to the satellite’s orbit, the temporal and spatial resolution of the SAR 

sensor, and the period for which the European Ground Motion Service (EGMS) provides the data. It is also of interest to study the 

differences between persistent scatterers and distributed scatterers. Furthermore, the correlation between surface subsidence 

detected by InSAR and the changes in water level, which pinpoint flood events, is also investigated. The use of Corner Reflectors 

or satellites with higher spatial resolution, are also some of the aspects to be explored in the next steps to investigate how to 

maximize the potential of InSAR satellites for the monitoring of flood protection systems. 

KEYWORDS: InSAR, Structural Health Monitoring, Flood Protection, Dike, Levee, Earth dam 

1 INTRODUCTION 

 Motivation 

The occurrence and intensity of flooding constantly increases 

due to climate change and more frequent heavy rainfall events. 

Urban areas, often located near rivers, are threatened in 

particular by this natural hazard. Therefore, sustainable natural 

hazard management and structural health monitoring is 

essential to protect human lives, and their environment. Since 

the catastrophic floods of 2002 in Austria, a shift towards 

integrated flood risk management has been observed. In this 

context, the flood protection measures are complemented by 

the assessment and monitoring of existing protection structures 

such as dikes and levees. 

Currently the condition of flood protection structures is mostly 

monitored by means of "close-up inspection" or by conducting 

geodetic surveys with theodolites along the dams. Only in rare 

exceptional cases are fully automated total stations with 

installed prisms or locally referenced Global Navigation 

Satellite System (GNSS) sensors permanently installed. Initial 

investigations into the use of drones for surveying dams have 

also revealed various limitations, turning these methods 

uneconomical. 

The aim of the project “Flood protection monitoring via 

satellites” (HoSMoS) is to investigate the potential of structural 

health monitoring by means of satellites for flood protection 

systems. Based on multitemporal Interferometric Synthetic 

Aperture Radar (InSAR), long-term deformations on the earth's 

surface can be monitored under certain conditions [1]. The 

special feature of this indirect monitoring method is not only 

the fact that no additional sensors need to be attached to the 

structure, but depending on the mission, it can also offer the 

unique possibility to analyze data retrospectively, 

e.g. Sentinel-1 data goes back to the year 2015. The accuracies 

currently achieved with InSAR are sufficient for monitoring 

trends of mass movements or glacier retreat, for example. There 

are promising results for the use of this technology in the 

monitoring of bridges, where the accuracy can be increased 

significantly by compensating for environmental conditions 

[2]. 

The innovation of the HoSMoS project consists of 

investigating the fundamental applicability of the InSAR 

technology for flood protection. The aim is to investigate 

whether monitoring by satellites is possible in principle under 

the special circumstances that typically prevail at such 

structures. For example, the influence of natural vegetation, 

construction materials, the presence of roads and paths and the 

orientation of linear structures on the satellite monitoring are to 

be investigated. The accuracy achievable with advanced 

differential InSAR (DInSAR) products provided by the 

European Ground Motion Services (EGMS) [3] is to be 

compared with the requirements for monitoring. Seasonal 

effects and relevant environmental conditions that require 

compensation are to be identified. 

Remote sensing by satellites promises a great potential for the 

monitoring of flood protection systems. It would enable the 

simultaneous monitoring of deformations for many different 

structures in a large territory, with a higher temporal and spatial 

resolution than is currently possible. Long-term trends may be 

recognized through the retrospective evaluation of 

deformations. The definition of warning thresholds would 

allow the rapid, systematic identification of potentially critical 

areas and sections that require closer monitoring or inspection. 
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 Remote sensing with InSAR 

The publication of the first differential interferogram related to 

an earthquake in the United States in the 1990s marked the 

beginning of exploiting DInSAR to observe surface 

deformation [4]. Since then, the technique has undergone 

significant advances, including the development of more 

refined approaches such as Persistent Scatterer Interferometry 

(PSI) [5], [6]. 

The key idea of DInSAR is to combine the phase of at least two 

SAR images of the same area of interest (AoI) taken at different 

times and slightly different geometry in an interferometric 

manner to form an interferogram. The interferometric phase 

needs to be corrected for the phase contribution induced by the 

topography of the illuminated scene to extract information on 

the ground surface displacement that occurred between image 

acquisitions [1], [4] 

SAR images from the Sentinel-1 satellites commissioned by the 

European Space Agency (ESA), can be processed with InSAR 

technology to produce displacement maps. They orbit the Earth 

at an altitude of 693 km, whereby the points on the Earth's 

surface are flown over in an approximately synchronous polar 

orbit in two orbital directions, once from south to north 

(ascending orbit) and once from north to south (descending 

orbit). The SAR images are taken in a skewed Line of Sight 

(LOS) with respect to the Earth's surface, see Figure 1, left. The 

return time to the same orbit is 12 days [2], [7]. Originally, 

Sentinel-1A and 1B satellites were used together, which 

doubled the temporal resolution. Unfortunately, satellite 1B has 

been out of service since December 2021 due to a solar storm. 

However, Sentinel-1C has been successfully deployed end of 

2024 as a replacement. 

 

Figure 1. Left figure: The deformation measurement of the 

Earth‘s surface is recorded in so-called scenes during 

overflight; the direction of measurement is right-looking in 

the direction of flight of the satellite (= Line of Sight, LOS); 

right figure: Coherent reflectors (Persistent Scatterers, PS) of 

the recorded pixels are used as reference values and 

differential displacements are observed after approx. n 

recordings and analyzed, source: [8]. 

The basic idea of advanced DInSAR techniques, such as 

Persistent Scatterer Interferometry (PSI) is to identify pixels 

with low noise in a time series of differential interferograms. 

Relevant information about the observed deformation of the 

ground surface is then extracted from the backscattered radar 

signal of only these pixels, also referred to as Persistent 

Scatterer (PS). The backscattered signal of these pixels is 

characterized by the response of a single reflector in the 

corresponding ground resolution cell, which remains stable 

over time, as illustrated in Figure 1, right. The radar signal 

reflected from the Earth's surface is detected, and the relative 

phase change of the PS pixels in between image acquisitions 

can be determined using interference, with the wavelength of 

λ = 54 mm in the case of Sentine-1 operating in C-band, see 

Figure 1 right. Displacement rates in the range of a fraction of 

the wavelength λ can be derived based on the comparison of the 

phase values of corresponding pixels from different 

consecutive differential interferograms [5], [6], [8]. With 

Sentinel-1, the images are taken at a time interval Δt of 6 or 12 

days [8]. In principle, no additional man-made reflector is 

required on site; instead, the already present natural and man-

made scatterers can be used, which provide a coherent signal 

for at least approx. 20 to 25 images. Sentinel-1 satellites acquire 

SAR images of the Earth's surface in a 5x20 m ground 

resolution cell (Figure 1, left), which slightly limits the spatial 

resolution. Other satellites, such as TerraSAR-X, can also 

resolve ground cells down to 1.0 m in High Resolution 

Spotlight mode. The accuracy of the information obtained from 

Sentinel-1 data can be further increased by additionally 

attaching man-made Corner Reflectors (CR) to the Area of 

Interest (AoI). The CRs also be utilized in landscapes without 

already established PS for better object assignment [2].  

Within the scope of this paper and the HoSMoS project, the 

focus is on the analysis of ground motion data provided by the 

EGMS. The EGMS generates fully processed PSI datasets 

based on Sentinel-1 SAR images for all European Countries 

supporting the Copernicus Initiative. The datasets are updated 

yearly using all Sentinel-1 data acquired in the past five years 

[3], [8].  

2 MONITORING OF FLOOD PROTECTION SYSTEMS 

 Overview of satellite-based monitoring in flood 

protection 

Before the potential of satellite-based monitoring of flood 

protection systems is analyzed, a brief overview of previous 

research on the topic is given. Comprehensive work was 

conducted within SAFELevee project organized by the Dutch 

Research Council (NWO) between 2014 and 2019, focusing on 

better understanding of the behavior patterns and situations that 

can lead to a failure of the flood protection structures, 

establishing an International Levee Performance Database [9], 

[10]. In this context, InSAR was investigated for the purpose of 

documenting surface deformations of flood protection systems 

in the Netherlands as a function of hydrodynamic loading and 

examine these deformations in relation to failure mechanisms 

[10]. In addition, the application of PSI was evaluated in 

several case studies in the Netherlands using SAR data from the 

high-resolution satellite TerraSAR-X, the medium-resolution 

satellites ERS-1/2 and Envisat, and the surface deformations 

were documented [11]. The analysis of the case studies showed 

that it was possible to document surface deformation with 

sufficient spatial coverage in all cases. The accuracy of the 

values depends on the orientation of the flood protection system 

and its slope. Based on the given temporal sampling rate, the 

authors see the potential for applying PSI for flood protection 

not in the area of real-time monitoring, but in an early warning 

system that indicates unusual deformation behavior.  

The evaluation of images of Delft from TerraSAR-X in [12] 

showed that not only the density of the selected Persistent 

Scatterer (PS) pixels is sufficient to document surface 
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deformations, but also that the comparatively narrow temporal 

sampling rate can be used to observe the expansion and 

contraction of the flood protection barriers. In addition, it was 

shown that this short-term deformation pattern correlates with 

metrological data. 

Further studies focused on the flood protection systems along 

the Mississippi River in the United States. A fully polarimetric 

L-band SAR mounted on an airplane and the X-band SAR 

satellite, TerraSAR-X, was investigated in [13] in order to show 

that weak points can be identified by means of analyzing the 

backscatter responses of the different polarizations and texture 

features. The same L-band SAR airborne system was also used 

in [14] and [15] to examine dike in California for subsidence 

and seepage in the Sacramento-San Joaquin Delta and the lower 

Mississippi River. Moreover, the polarimetric SAR (POLSAR) 

technique was used to detect seepage from multi-polarization 

images [14].  

 Conventional monitoring methods in flood protection 

To analyze the potential of satellite monitoring methods, it is 

essential to create a base line for comparison. With this in mind, 

the currently available methods of monitoring flood protection 

systems were collected and are briefly systematically analyzed. 

2.2.1 Geodetic surveying 

The most commonly used method of monitoring is traditional 

geodetic surveying. In this process, selected points on the 

structure are marked and measured at regular intervals (e.g. 

monthly or yearly) using a theodolite. The accuracy of this 

method is approximately ± 1 mm [16]. 

2.2.2 Hydrostatic settlement cells 

A very precise option for monitoring settlements is offered by 

hydrostatic settlement cells [17]. The principle of this device is 

based on liquid-level that consists of connected tubes filled 

with liquid causing liquid-level heigh difference or pressure 

differences (when using electronic liquid-level). The difference 

between two or more measurement points can be determined 

even over large distance. 

2.2.3 Magnetic settlement tubes 

Another solution for monitoring settlement is provided by 

magnetic settlement tubes, which allow the simultaneous 

monitoring of numerous vertically distributed measuring points 

located inside a dam [18], [19]. For this purpose, a tube is 

installed in the structure, with magnets placed on the bottom 

and in the wall at the locations, which are to be measured. A 

probe equipped with a reed switch is pulled up through the pipe 

in a controlled manner, starting from the bottom, and is 

activated each time it reaches a magnet, so that its relative 

height with respect to the bottom can be measured. The 

measurement accuracy is approximately ± 3-5 mm [20]. 

2.2.4 Inclinometers 

Inclinometers can also provide valuable information about 

geometric changes in a dam [17]. Inclinometers or tilt sensors 

measure the angular rotation related to the direction of the 

gravitational force. In principle, inclinometers can be designed 

for single-axis or for dual-axis measurements. There is a wide 

variety of different operating principles for inclinometers. The 

simplest inclinometers use a solid-state pendulum, the 

deflection of which can be measured either by inductance or by 

a potentiometer [21]. 

2.2.5 Piezometers 

Piezometers can be used to determine the water or earth 

pressure inside an earthfill dam, but they must be placed at the 

intended location already during construction [16], [22]. 

Tensiometers can also be used for continuous measurement of 

soil moisture in dams [23]. 

2.2.6 Electrical resistivity tomography 

Electrical resistivity tomography (ERT) is a geoelectric method 

for imaging subsurface structures based on measurements of 

electrical resistivity at the surface or through electrodes in one 

or more boreholes. Possible applications of ERT on dams 

include: the localization of cracks, animal burrows, seepage 

points and leaks, the monitoring of water saturation, and the 

determination of geometric dimensions and internal properties 

[24], [25]. The measurements require extensive preparation and 

are very expensive. However, ERT also allows automated 

continuous monitoring of entire dam sections [26]. 

2.2.7 Fiber optic sensors 

Fiber optic sensors (FOS) make it possible to measure physical 

quantities of the external world such as temperature, strain, 

vibration, magnetic field, etc. along the sensor fiber [27]. In the 

case of earth dams, they can be used primarily to detect seepage 

points by measuring the resulting temperature differences [28], 

[29]. 

2.2.8 Acoustic emissions sensors 

Acoustic waves in a test object can be detected by piezoelectric 

sensors that convert surface displacements (or vibrations) 

caused by the acoustic emission into electrical signals. This 

technology can also be used to monitor piping causing seepage 

failure in dams and dikes [30]. 

2.2.9 GNSS 

A second option for satellite-based monitoring of settlements 

in addition to InSAR is GNSS (Global Navigational Satellite 

System). The main difference to the InSAR technology is that 

a receiving device of the GNSS signal must be positioned on 

the structure to carry out measurements. In order to achieve 

greater accuracy, an additional reference station is required, the 

exact location of which is usually determined by classical 

surveying methods. The main advantage over InSAR is that not 

only long-term deformations but also dynamic processes can be 

observed. The two satellite technologies can also be combined. 

As an example, global positioning system was employed for 

monitoring of river embankment in [31]. 

2.2.10 Terrestrial laser scanning and Photogrammetry 

Another alternative for capturing the geometry of flood 

protection structures is Terrestrial Laser Scanning (TLS), also 

referred to as terrestrial topographic Light Detection and 

Ranging (LiDAR). A TLS device scans its surrounding by 

means emitting light pulses in raster-like fashion. The distance 

between the scanner and the object is recorded and, depending 

on the scanning mode, one or two angles are recorded between 

the light and the vertical and horizontal axes. The scanning 

device can also be mounted on Unmanned Aerial Vehicles 
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(UAVs), i.e. aircraft that can operate autonomously or remotely 

and do not need to carry a human crew. When the UAV is 

expanded to form a complete system with recording 

technology, a control unit, a communication method, etc., it is 

referred to as an unmanned aerial system (UAS). Among UAS, 

drones are the most common because they can fly in confined 

spaces and are able to hover and take off and land vertically 

[32]. Drones can be equipped with various types of sensors, 

such as cameras [33] or LiDAR [34]. A study on the achievable 

accuracy for an earth fill dam showed an accuracy of 

approximately 1-2 cm for TLS and 2-4 cm for drone-based 

photogrammetry [35]. 

 Comparison of monitoring methods in flood protection 

The satellite monitoring of flood protection is now compared 

to the conventional methods described above in order to 

highlight the potential of the latter. In this context, important 

aspects are not only the spatial (density of measurement points) 

and the temporal resolution (measuring frequency), but also the 

accuracy of the measurement as well as required effort in terms 

of working hours and costs needed for carrying out a 

measurement and installation of the monitoring system. 

Geodetic surveying requires significant effort due to the need 

of trained personnel to carry out measurements and operate a 

theodolite in the field. Another consequence of the modus 

operandi of this method is that the spatial and temporal 

resolution is low. This is noticeable particularly for large 

structures where scanning the surface’s structure with InSAR 

has significant advantage.  

Hose leveling system installation requires more planning and 

some kind of intervention into the structure as the theodolite 

surveying method. The very high effort needed to set up the 

measuring system is compensated with very high measurement 

accuracy and very high temporal resolution since the 

measurements can be automatized without the necessity of 

human supervision. As regards spatial resolution, the 

installation of this system is limited to a number of 

measurement cells and length that is bonded to a particular 

structure. 

Electromagnetic settlement tubes require similar effort for 

setting up the measurement system as the hose leveling, 

needing a dedicated sensor for one measurement point. The 

advantage of this measurement system is high level of 

accuracy. The spatial and temporal resolution are average when 

compared to other methods. 

One receiver device per measurement point is also required 

when using GNSS. If higher precision measurements are 

required, an additional reference station has to be in place, 

making the required effort very high and offering low spatial 

resolution. On the other hand, displacement monitoring with 

GNSS provides very high temporal resolution when compared 

to InSAR measurements.  

Laser scanning offers very high spatial resolution stemming 

from the principle of this method when many measurement 

points around the TSL device are acquired. However, when 

aerial vehicles are used to increase scanned area in shorter time 

the accuracy of this method is compromised. Similar to the 

geodetic surveying, the measurements have low temporal 

resolution due to the trained labor that is necessary each time a 

measurement is taken. 

Monitoring inclination is unique in measuring angular changes 

rather than displacements, which provide a slightly different 

viewpoint on the health status of the flood protection structure, 

that is obtained from InSAR data. The inclinometers also 

provide very high temporal resolution since the device is 

permanently located at the measurement point. However, the 

fact that one measurement device is needed for one 

measurement point limits the spatial resolution and increases 

the required effort for installation of the measurement system. 

Water or soil pressure measurements by means of piezometer 

sensors share the same levels of temporal and spatial resolution 

as with the inclinometers. The accuracy of this method is high, 

although the effort required to employ this method is also high 

since they have to be installed during construction of the dam. 

The advantage of using this measurement technique is that it 

offers information that cannot be directly obtained from any 

InSAR measurements.  

Another technique that provides unique insight into health 

status of a flood protecting structure in comparison to SAR 

satellites is electrical resistivity tomography (ERT). However, 

it is very expensive to carry out ERT measurements, which 

require elaborate preparation. In comparison to other 

measurement techniques, ERT provides good accuracy and 

average spatial resolution, but low temporal resolution. 

An excellent spatial and temporal resolution with high accuracy 

is provided by fiber optic sensors. However, in comparison to 

SAR satellites the installation of the fiber requires rather high 

amount of effort. 

Similarly demanding on effort is acoustic emission method. 

This measurement technique also allows for high temporal 

resolution, but rather low spatial resolution and an average 

accuracy in comparison to the InSAR measurements. 

The comparison of InSAR and other monitoring methods for 

flood protection systems in terms of effort for the operator of 

the infrastructure, accuracy, spatial and temporal resolution is 

summarized in Table 1. 

3 RESULTS 

Satellite based monitoring is particularly suitable for types of 

failure that develop over a longer time period and affect 

medium or large areas, such as subsidence, tilting or sliding. 

The accuracies and repeat-pass periods achievable through 

InSAR measurements are sufficient for monitoring these types 

of failure and the low cost compared to other monitoring 

methods makes this method particularly attractive. However, 

the question that arises based on the basic evaluation is whether 

and under what conditions a sufficient number of natural 

reflection points are available on dikes and other flood 

protection structures to carry out meaningful satellite 

monitoring. 

In the present project analyses are carried out to answer this 

question, mostly based on selected representative AoIs, but in 

some cases also considering all flood protection systems in 

Lower Austria region along Danube River. Occasionally 

comparable systems abroad, where more suitable data is 

already available, are analyzed. The various investigations are 

explained individually and thematically separated below, and 

the results of each are briefly presented. 
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Table 1. Comparison of monitoring methods for flood protection systems in terms of measured property, effort, accuracy, 

measurement point density, and frequency 

Method Measured 

property 

Effort 

required 

Accuracy Spatial 

resolution 

Temporal 

resolution 

InSAR Displacement Low High Medium-

low 

Medium 

Geodetic surveying Displacement High Very high (±1 mm) Low Low 

Hose levelling  Displacement Very high Very high (±1 mm) Low Very high 

Electromagnetic 

settlement tubes 

Displacement Very high High (±3-5 mm) Medium Medium 

GNSS Displacement Very high High Low Very high 

TLS / LiDAR Displacement High Medium-high Very high Low 

Inclinometers Inclination High High Low Very high 

Piezometers Pressure High High Low Very high 

ERT Damaged area High Medium Medium Low 

Fiber optic sensors Temperature High High Very high Very high 

Acoustic Emission Flow High Medium Low Very high 

 Point density depending on surface type and orientation 

The flood protection structures in the Lower Austria region 

were divided into eight surface type categories based on 

characteristic locations, or structures in which they are 

integrated or surrounded. The typical surface types are the 

following: 

• highways and roads, 

• buildings (e.g. a house on a dam), 

• green areas with asphalt paths, 

• green areas with gravel paths, 

• green areas without gravel, 

• residential areas, 

• foreign objects (e.g. electrical poles), 

• miscellaneous (everything that does not fit above). 

It is noteworthy that majority of the investigated dikes are 

situated in green areas, amounting to 60 %. The second and 

third most common surface type groups are highways with 

roads, and residential areas representing 22 % and 10 % of all 

analyzed dikes, see Figure 2.  

 

Figure 2. Distribution of surface types on or in the immediate 

vicinity of the investigated flood protection structures. 

Orientation is a characteristic aspect of a flood protection 

structure since its length is usually significantly longer than the 

other two dimensions. The orientations of the 155 km of 

investigated dikes in Lower Austria along the Danube River 

were analyzed with respect to the cardinal directions. The 

results show that the dikes are predominantly aligned with the 

Danube River as evidenced by 43 % of the total dike length 

being oriented in the east-west direction, which matches the 

river’s course in this region. In contrast, the shortest dike 

orientation of is north-south, accounting for only 18 km or 

12 % of the total analyzed length, see Figure 3. 

 

Figure 3. Orientation distribution of the 155 km-long flood 

protection structures in the investigated area with respect to 

cardinal directions. 

Since the LOS direction of the SAR satellite is related to the 

cardinal direction, the number of available points also depends 

on the orientation of the observed object, such as dike. Based 

on the analysis of the investigated dikes, most of the PS points 

are obtained for dikes that are oriented in north-south direction 

for all surface types except highways and roads, as can be seen 

in Figure 4. Therefore, the number of points in the other 

directions are shown in relation to this most favorable 

orientation. Exceptionally high numbers of points are also 

obtained for all cardinal directions in highways and roads and 

residential areas. An important finding is that in case of all 

types of green areas the number of reflection points drops 

significantly for unfavorable orientations. Particular low 

number of points is obtained for east-west and northwest-

southeast directions, see Figure 4.  

The results of the analysis regarding reflection point density 

with respect to the surface type are unfavorable for the 

investigated flood protection structures. The green areas, where 

the most dike sections belong to, have the smallest point density 

per 100 m. On the other hand, the surface types with the highest 

density are buildings, residential areas, and highway and roads 

as can be seen in Figure 5. 
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The number of available reflection points depend also on the 

date release of the postprocessed InSAR database. The EGMS 

database, used in this study, contains three different releases 

varying in the different time periods (epochs), 2015-2021, 

2018-2022, and 2019-2023. Except for the newest data release 

in “highways and roads” surface type, the number of available 

measurements points slightly increases with later release time, 

see Figure 5. This is probably caused by better and more 

efficient data processing algorithms. 

 Comparison of persistent and distributed scatterers 

Having a high number of reliable reflection points on the object 

or in the AoI is crucial for drawing reliable conclusions on the 

state of the flood protection structure. The potentially higher 

density of reflection points provided by additional distributed 

scatterers (DS) was examined, in order to investigate if their 

inclusion could remedy the situation regarding scarcity of 

reflection points in green areas and unfavorable orientation of 

the investigated objects when using PS. 

In contrast to PS pixels, DS pixels do not stand out due to a 

high coherence over a long period. They rather often exhibit a 

moderate coherence but show a statistically similar behavior as 

their neighboring pixels, since they often belong to the same 

object. This statistical similarity can be exploited to improve 

the signal-to-noise ratio of DS pixels by spatially averaging 

them. Thus, allowing a joint processing of DS and PS pixels. 

While PS pixels are often associated with point-wise bright 

scatters, such as dihedral or trihedral reflectors on buildings or 

naturally occurring boulders, DS pixels are often found in 

desert-like areas, areas covered by debris, and on non-

cultivated land with short vegetation. [5], [36]. 

 

 

Figure 4. Relative number of points for different surface types with respect to the north-south orientation. 

 

Figure 5. Comparison of the point density for different EGMS database releases  

and surface types on or in the immediate vicinity of the investigated flood protection structures. 
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The EGMS data are processed by four consortia using slightly 

different algorithms. While only the PS points are evaluated in 

Austria, the DS are also processed in Spain and France, among 

other countries. Since these are particularly suitable for non-

urban areas, it was verified within the project whether a 

significantly higher number of data points along the dikes can 

be expected with a joint PS and DS processing. 

For this purpose, a dike section in France, approximately 30 km 

long, was selected and examined. This is located on the La 

Loire River between Orleans and Jargeau. Analogous to the 

investigations on the Danube River, all points within 20 m of 

the dam crest, as illustrated in Figure 6, were considered and 

statistically evaluated. It was found that the DS points account 

for only 4.5% of all available points. The added value of such 

data processing is therefore not very high. A small part of this 

section with a particularly high density of PS and DS points 

was discovered and examined more closely. This section is 

almost free of vegetation, the surroundings are flat and treeless. 

The embankment section consists of coarse gravel and has a 

slope of approx. 20° to 30° and is seen from both orbit 

directions, the orientation is NW-SE. These findings are well 

in line with the observations obtained in the Vienna and lower 

Austria area. 

 Correlation of water level with InSAR measurement 

As an example of the potential of using InSAR for flood 

protection structures in Vienna region was showcased for a lock 

in Greifenstein during high water periods. The object of interest 

was the end part of a pier of a lock. Here, three reflection points 

obtained from EGMS data for a period between the beginning 

of 2018 and the end of 2022 were analyzed and compared with 

water level measurement stations in Bärnsdorf and Nussdorf. 

The data from water level measurement stations shows 

periodical increases of water level in the Danube River 

depending on the seasons. In the available time period four 

prominent peaks marking extraordinary high-water level are 

visible on 30.05.2019, 04.02.2020, 05.08.2020, and on 

19.07.2021. Analysis of the InSAR data revealed a settlement 

of approximately 8 mm (shown in red) at one reflection point 

and 12 mm (shown in light and dark green) at the other two 

points, at the beginning of 2020, see Figure 7 for a visual 

representation of the mean values and standard deviations. 

When compared to the water level during this period (shown in 

blue), it seems plausible that this change was related to the 

high-water level event on February 4th, 2020.  

However, this showcase analyzed a rather local effect. 

Interesting results may be obtained after the analysis of the 

floodings in September 2024 in central Europe, once the EGMS 

data for this period becomes available. 

4 DISCUSSION – FUTURE OUTLOOK 

Corner reflectors provide a possibility to introduce a stable 

measurement point in areas or on structures that are absent of 

any reflective elements for L, S, C, or X-band waves. The 

corner reflectors can be also used as a reference to the other 

natural reflectors, to which they can be related to. The 

disadvantage of the corner reflectors is that they require 

additional effort for installation. On the other hand, the 

installation is easy, there is no need for maintenance, and the 

service life is long. The benefit of a corner reflector is that it 

provides a stable reflection point. 

The use of low-cost corner reflectors suited for dikes has been 

investigated and will also be a focus of future research. To this 

date, two couples of concrete corners with edge length of 40 cm 

were installed on a dike along the Danube River. Each couple 

was oriented in opposite directions so that the corner reflectors 

face directly to the LOS of the Sentinel-1 satellite descending 

and ascending flight trajectory, see Figure 8. Thin aluminum 

plates were glued onto the inner surfaces of one couple of the 

concrete corner reflectors as shown in Figure 8 a). The other 

couple of concrete corner reflectors was left untreated, see 

Figure 8 b). The two couples of low-cost concrete corner 

reflectors do not reflect enough signal back to the InSAR 

Sentinel-1A satellite and there would likely be no PS points 

corresponding to these four corner reflectors in the Sentinel-1 

dataset. The reason for this may be small reflective surface or 

slightly obtuse angle between two neighboring inner surfaces. 

In addition to the experimental concrete corner reflectors, a 

standard double-headed corner reflector, shown in Figure 8 c), 

was installed near a dike next to the Danube River as a 

reference. The standardized corner reflector works as expected 

and a new measurement point is recorded by Sentinel-1A and 

is likely to appear in the EGMS dataset. This will be used as a 

reference measurement point in the future research.  

As already mentioned, the choice of the SAR sensor also 

influences the monitoring results that can be achieved on the 

AoI. In addition to the theoretical maximum value of 

displacement rate, factors such as spatial resolution also play 

an important role. There are currently at least six SAR satellite 

missions (e.g. Sentinel-1, RADARSAT, PALSAR-2, 

TerraSAR-X, COSMO-SkyMed, SAOCOM) that generate 

SAR images capable of interferometry and at least two other 

missions (e.g. NASA-ISRO, ROSE-L) that are currently being 

implemented. The missions differ greatly in the wavelength 

used, the achievable spatial resolutions, the temporal sampling 

rate, as well as the general availability and the underlying data 

policy. In addition, commercial micro-satellite providers (e.g. 

ICEYE and Capella Space) are also striving for InSAR 

capability. Hence, it can be assumed that, as already shown in 

some studies [11], based on multi-resolution, multi-temporal 

and multi-frequency approaches the combination of InSAR 

measurements from different SAR constellations will 

significantly increase the added value of this measurement 

method. 

Next research step is an analysis of the areas in lower Austria 

and in Vienna region flooded in September 2024. In 

comparison to correlation of the water level with the settlement 

of the pier, this research will exploit the full potential of InSAR 

that is particularly suitable for examining of middle to large 

areas. 
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Figure 6. Overview of PS (blue) and DS (red) points along the embankment of the La Loire, France (thin blue solid line). 

 

 

Figure 7. Settlement records from the EGMS database for three points (marked by red, light and dark green points, referring to 

the right vertical axis) at the endpoint of a river lock pier in Greifenstein, compared with water levels in the Danube River, as 

measured at stations in Bärnsdorf and Nussdorf (light and dark blue solid curves, referring to the left vertical axis), plotted as a 

function of time. The settlement mean trend lines, µ, are indicated by bold dash-dotted lines and their standard deviations, σ, 

are plotted by thin dashed lines. The dates in blue font near the water level peaks mark high-water events. 
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a)                                                          b)                                                             c) 

Figure 8. Corner reflectors installed on the dike at the Danube River: a) cement corner reflectors with aluminum sheets,  

b) plain cement experimental corner reflectors, and c) standard double-headed corner reflector. 

5 CONCLUSION 

The present paper provides a brief overview of the potentials of 

InSAR monitoring of flood protection structures comparing it 

to conventional monitoring methods. In this context, the EGMS 

data provide high accuracy of displacement measurements with 

low required effort. However, the temporal and spatial 

resolution is limited.  

The temporal resolution is dependent on the number of 

satellites and their repeat-pass periods. Since the return time of 

the Sentinel-1A to the same orbit is 12 days, the resulting 

EGMS data is suitable for monitoring slowly occurring 

changes. With the successful launch of Sentinel-1C in 

December 2024, the temporal resolution will double in the 

future. The spatial resolution can be increased by using 

commercial SAR satellites, which, however, increases required 

costs effort. 

The spatial resolution of the Sentinel-1 satellites, with respect 

to the measurement point availability, was extensively 

investigated in this study. The EGMS database was used to 

examine several aspects of the measurement point availability 

in selected AoIs. First investigated aspect was number of 

obtained reflection points based on surface type and 

orientation. Green areas with gravel, asphalt, and no-gravel 

which constitute 60% of dike length in the investigated area 

(Figure 2), have the lowest point density out of all considered 

surface types (Figure 5). The number of available points is also 

dependent on orientation of the observed object. In this context, 

the most points in investigated AoIs are obtained for objects 

oriented in north-south (Figure 4). Unfortunately, 43 % of dikes 

in the investigated area along the Danube River are oriented to 

east-west direction (Figure 3). 

The number of available reflection points also depends on the 

database release. EGMS provide access to three databases of 

InSAR measurement points, 2015-2021, 2018-2022, and 2019-

2023. With the exception of highways and roads the newer the 

database, the more available points there are for each surface 

type category (Figure 5). 

Since most of the dikes are located in green areas and the 

distributed scatterers are known to be more suitable for natural 

landscape, the potential use of DS was examined. To this end, 

the PS and DS were extracted from EGMS database for 

approximately 30 km dike section. This analysis showed that 

only 4.5 % of all available points are DS (Figure 6), rendering 

usability of the DS points rather low. 

The settlement at a pier of a ship lock could be linked with high 

probability the flood of the Danube River. This case study 

showcased the potential of InSAR utilizing Sentinel-1 satellites 

for monitoring the condition of flood protection structures 

along the Danube River in the aftermath of flood events. 

InSAR is an excellent method to monitor surface displacements 

of large areas in all-weather conditions, providing useful 

insights on the structural health of infrastructure assets. This 

study shows the potential of this method for monitoring dikes 

along Danube River, but also highlights the limitations, 

stemming from the low number of available reflection points. 

Therefore, future research will focus on increasing the number 

of available reflection points, by employing low-cost, 

highly-available corner reflectors, and investigating the 

availability of InSAR data from other existing or upcoming 

InSAR satellite missions. 
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ABSTRACT: This paper presents ISABHEL (Integrated SAtellite and ground-based monitoring for Bridge HEalth Lifetime 

assessment) project, which demonstrates an integrated approach to Structural Health Monitoring (SHM) by combining satellite 

InSAR data, contact sensors, Photomonitoring™, and Finite Element Modeling (FEM). The system is implemented on two bridges 

over the Po River in Turin, Italy: the Amedeo VIII and the Regina Margherita bridges. Each technology complements the others, 

providing a comprehensive understanding of bridge behavior. The InSAR analysis using high-resolution COSMO-SkyMed data 

revealed slight asymmetric deformation in the Regina Margherita Bridge, with the western lane exhibiting higher deformation 

rates. Contact sensors were strategically designed to be positioned based on each bridge's specific vulnerabilities, with the Amedeo 

VIII bridge focused on static monitoring and the Regina Margherita bridge on dynamic monitoring. The calibrated FEM models 

will enable prediction of structural behavior and establish critical thresholds. A web platform integrating all data sources will 

provide real-time visualization and alerts. This paper presents the initial results of this ongoing project funded by ESA, which will 

be completed in the next months. 

KEY WORDS: Bridges; InSAR; Contact Sensors; Photomonitoring; Finite Element Modeling; Data Integration; 5G 

Communication

1 INTRODUCTION 

The bridge infrastructure across Europe is aging, with many 

structures approaching or exceeding their design lifetime. This 

aging infrastructure requires consistent monitoring to ensure 

safety, optimize maintenance schedules, and extend its 

operational life. Traditional monitoring methods often rely on 

periodic visual inspections, which may miss early signs of 

deterioration and are labor-intensive [1]. Modern Structural 

Health Monitoring (SHM) approaches offer continuous data 

collection, but often focus on a single technology, providing 

only a partial view of the structure's condition [2]. The 

ISABHEL (Integrated SAtellite and ground-based monitoring 

for Bridge HEalth Lifetime assessment) project, funded by the 

European Space Agency (ESA), and with the support of the 

Municipality of Turin, demonstrates an innovative approach to 

bridge monitoring by integrating multiple technologies: 

satellite Interferometric Synthetic Aperture Radar (InSAR), 

contact sensors, Photomonitoring™, and Finite Element 

Modeling (FEM). This integration leverages the strengths of 

each technology to create a comprehensive monitoring system 

capable of detecting various deterioration mechanisms at 

different scales. 

The project focuses on two river bridges in Turin, Italy: 

Amedeo VIII bridge and Regina Margherita bridge (Figure 1). 

These structures were selected due to their strategic 

importance, different structural characteristics, and potential 

vulnerability to scouring phenomena. Additionally, the Regina 

Margherita Bridge may be affected by slope movements on the 

nearby hillside. 

The project aims to demonstrate how multi-technology 

integration can provide a more comprehensive understanding 

of bridge health and support evidence-based maintenance 

decisions. 

 

Figure 1. Location of bridges under study 

2 PROJECT OVERVIEW AND METHODOLOGY 

 Case studies in Turin 

The Amedeo VIII bridge is a reinforced concrete structure 

with post-tensioned cables added during a retrofit intervention 

in recent years. The bridge also features Gerber saddles (i.e. 

half-joints) which were strengthened during the same 

renovation (Figure 2). 

The Regina Margherita bridge is a reinforced concrete 

structure with prestressed cables. It consists of two parallel 

carriageways that can be treated as separate bridges (Figure 3). 

Both bridges are subject to potential scouring phenomena due 

to their superficial foundations. The Regina Margherita Bridge, 

moreover, is potentially subject to phenomena induced by slope 

movements on the hillside, which are difficult to perceive by 

on-site measurements but could be easily identified by satellite 

measurements over an extended area. 
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Figure 2: Overview of Amedeo VIII bridge 

 

 

Figure 3: Overview of Regina Margherita Bridge 

The Amedeo VIII and Regina Margherita bridges are 

examples of modern infrastructures, built respectively in 1933 

and between 1970-1972, constructed in reinforced concrete, 

and that experience substantial daily traffic (2,164 and 2,715 

vehicles per day, respectively). Notably, the Regina Margherita 

bridge falls within Class 1 (High) attention level as per current 

Guidelines. The project, conceived on these typologies of 

infrastructures, represents an important chance to develop 

reliable procedures that can be applied to a significant number 

of similar infrastructures, which are very common on the Italian 

territory.  

This aspect is even more important since, in the last years, 

significant attention has been focused on the monitoring and 

safety assessment of bridges, due to the recent problems that 

occurred on some infrastructures because of maintenance 

problems [1]. As evidenced by the publication by the Ministry 

of Infrastructure and Transport, of the document "Linee Guida 

per la Classificazione e Gestione del Rischio, la Valutazione 

della Sicurezza ed il Monitoraggio dei Ponti Esistenti," in April 

2020, surveillance and monitoring of bridge infrastructures 

should be provided especially for bridges ranked in the high 

attention class, which need continuous update of the structural 

model. 

 

 Integrated monitoring approach 

In this project a comprehensive, multi-technology approach to 

bridge monitoring is adopted, ensuring a detailed and accurate 

assessment of structural health. At the core of this methodology 

is the integration of satellite-based and ground-based 

technologies, allowing for a continuous and complementary 

evaluation of deformation patterns and structural behavior. 

The satellite-based component is represented by 

Interferometric SAR analysis (InSAR), which relies on high-

resolution COSMO-SkyMed data to provide both historical 

deformation analysis and long-term monitoring of millimeter-

scale displacements across the entire area of interest. This 

technology provides important information on long-term 

deformation trends and enables the detection of anomalies that 

might indicate structural degradation. 

To complement the satellite data, a network of contact sensors 

is installed on the bridges, providing real-time measurements 

of key structural parameters. These sensors include biaxial 

inclinometers, triaxial accelerometers, strain gauges, 

displacement transducers and temperature probes, all of which 

contribute to acquiring data on both the static and dynamic 

behavior of the structures. The data collected from these 

sensors is transmitted via 5G technology, ensuring fast and 

reliable communication with the central monitoring system. 

In addition to sensor-based measurements, the project 

incorporates an advanced Photomonitoring system. Camera 

installations near the bridges capture regular image sequences, 

which are then processed using Digital Image Correlation 

(DIC) and Change Detection (CD) techniques. These methods 

allow for the identification of visual modifications in the 

structure over time, facilitating the detection of potential issues 

such as cracks, material degradation, or unusual displacements. 

To further enhance the monitoring capabilities, Finite Element 

Modeling (FEM) is employed to create digital twins of the 

bridges. These virtual models are continuously updated and 

calibrated using real-world data obtained from satellite 

observations, contact sensors, and Photomonitoring. By 

simulating different loading conditions and environmental 

factors, FEM enables predictive analysis of structural 

performance. 

All collected data is integrated into a centralized web-based 

platform, which serves as the primary interface for monitoring 

and analysis. This platform not only visualizes the structural 

health status in real time but also tracks changes over time and 

issues alerts when predefined thresholds are exceeded. By 

providing an intuitive and comprehensive overview of bridge 

conditions, the system facilitates informed decision-making for 

infrastructure management, ultimately enhancing safety and 

optimizing maintenance efforts. 

This holistic monitoring approach ensures that all critical 

aspects of bridge health are continuously assessed, from large-

scale deformations detectable by satellite to localized structural 

issues identified through sensor data and image analysis. The 

combination of these technologies provides a robust framework 

for long-term monitoring and early warning capabilities, 

supporting proactive maintenance and extending the lifespan of 

the infrastructure [2,3,4]. 
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3 CONTACT SENSORS CONFIGURATION 

 Monitoring strategy and sensor selection 

Based on field inspections and analysis of bridge 

documentation, the project implemented a differentiated 

monitoring approach for the two bridges. The Amedeo VIII 

bridge focuses on static monitoring, while the Regina 

Margherita bridge incorporates both static and dynamic 

monitoring. This differentiation is due to the different structural 

characteristics and vulnerabilities of each bridge. The contact 

sensor system, developed by Nplus, integrates IoT-enabled 

sensors with advanced data analytics to provide a 

comprehensive assessment of bridge health. The selection 

criteria included sensitivity, durability, reliability, and 

suitability for the specific monitoring objectives of each bridge. 

The Vittorio Infrastructure system by Nplus employs a wired 

architecture with a 2 Mbit/s digital data bus, ensuring 24/7 

reliability in power and data acquisition. The system integrates 

various sensors connected via a fiber optic backbone, which 

also powers the devices. 

 

 Regina Margherita bridge sensor layout 

The Regina Margherita Bridge, constructed between 1970 

and 1972, spans the Po River in Turin, Italy. It is a modern 

three-span arch bridge with a total length of 123.0 meters and 

runs primarily along a North-South axis. 

The structure consists of two separate half-bridges, one for 

each carriageway, which are structurally independent and 

connected only at the mid-lane. This 3-meter-wide section 

between the decks was originally a tram line, later became a 

recreation park, and is currently a green area.  

The bridge is made of prestressed reinforced concrete, while 

the decks are reinforced concrete box girders with variable 

height and six webs. They rest on steel-made fixed bearings on 

the south abutment and double-pendulum roller bearings on the 

north abutment and piers. 

The piers lie on reinforced concrete caisson foundations that 

were sunk by self-weight rather than deep foundations, which 

makes the bridge susceptible to scouring and classifies it as 

high hydraulic risk, according to Italian guidelines. 

The bridge was designed with spans ballasted with lean 

concrete and tie rods anchored in rock at the two abutments to 

reduce total downward deflection at the midspan. 

 For this bridge, both static and dynamic monitoring were 

implemented. The sensor layout was designed to detect 

potential scour-related issues using inclinometers and assess 

the deck's load-bearing capacity through accelerometers and 

strain gauges (Figure 4). While inclinometers and strain gauges 

monitor static behavior, accelerometers analyze dynamic 

behavior, providing a comprehensive assessment of the bridge's 

structural health. 

 

- Inclinometers/accelerometers installed on piers and at deck 

mid-spans and quarters, respectively to: 

- Measure static rotations to check plastic drift and 

reconstruct the deformed span 

- Measure accelerations to perform Operational Modal 

Analysis (OMA), check mode drift, and identify natural 

frequencies, mode shapes and damping 

 

- Strain gauges at mid-spans to monitor axial deformation, 

which can indicate excessive loading, prestressing cable 

relaxation, or changes in restraint effectiveness 

- Temperature sensors on different spans to correlate 

environmental conditions with structural responses. 

 

Figure 4: Contact sensors configuration for Regina Margherita 

Bridge 

 

 Amedeo VIII bridge sensor layout 

The Amedeo VIII Bridge, constructed in 1933, crosses the 

Stura River, a major tributary of the Po River, which it meets 

in Turin. This five-span bridge has a total length of 153.3 m, 

and its main axis lays in a southwest-to-northeast direction. 

The bridge has a single carriageway, consisting of two lanes 

in each direction plus two large walkways - one on each side. 

The girder bridge has a regular grid of reinforced concrete 

(R.C.) transverse and longitudinal beams (these latter ones with 

variable thickness along the bridge's main axis) with the 

addition of post-tensioned cables during a recent structural 

retrofit intervention. 

The deck is simply supported on the R.C. piers and clamped 

at the two abutments. On the second and fourth spans are 

located two half joints (i.e. the so-called Gerber saddles), which 

carry two simply supported half-spans. 

Exactly as in the case of the Regina Margherita Bridge, all 

piers lie on self-sunk R.C. caisson foundations, not deep 

foundations. For the same reasons as before, this classifies it as 

high hydraulic risk according to Italian guidelines. For the 

Amedeo VIII bridge, static monitoring was preferred in order 

to track displacements and rotations (Figure 5). The sensor 

configuration includes: 

• Biaxial inclinometers installed on piers and deck span 

extremes to monitor: 

  - Static rotations of individual spans to check plastic drift 

  - Static rotations of piles to check differential settlement 

  - Rotations of Gerber saddles to check for potential failures 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure   DOI: 10.3217/978-3-99161-057-1-170 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1133 

• Strain gauges installed on Gerber saddles to monitor 

expansions and detect potential saddle failures 

• Temperature sensors installed on different spans to 

correlate environmental conditions with structural responses. 

This configuration focuses on the bridge's main vulnerabilities: 

scouring phenomena (monitored through inclinometers) and 

the Gerber saddles (monitored through inclinometers and strain 

gauges). 

 

 

Figure 5: Contact sensors configuration for Regina Margherita 

Bridge 

4 A-DINSAR ANALYSIS 

 Satellite radar interferometry technique 

In this study, the Advanced Differential Synthetic Aperture 

Radar Interferometry (A-DInSAR) technique [5] is used to 

analyze historical ground displacement rates within the Turin 

municipality. A-DInSAR detects surface deformations by 

analyzing phase differences between successive radar satellite 

observations of the same area. These variations in the RADAR 

signal phase, reflected from objects on the Earth’s surface, are 

directly correlated with ground movement, enabling the 

generation of high-resolution deformation maps [6,7]. 

Specifically, this technique is widely utilized for studying the 

temporal evolution of ground displacement of Persistent 

Scatterers (PS), which are objects within the SAR resolution 

cell (3x3 m2 for CSK) that maintain consistent reflectivity over 

time [8]. 

The applied InSAR methodology follows the Persistent 

Scatterer Interferometry (PSI) approach, as described in 

reference articles [9] and [10]. The PS-InSAR technique 

extracts deformation information from an interferometric stack 

of SAR images, allowing for detailed pattern analysis. SAR 

datasets from the Cosmo-SkyMed (CSK) mission, operated by 

the Italian Space Agency (ASI), were utilized, which has 

provided archived data since 2009 and are free for research 

purposes. The CSK system is equipped with an X-band sensor 

(about 3.1 cm wawelength) that allows for millimetric 

displacement measurement precision. In STRIPMAP mode, it 

offers a spatial resolution of 3m×3m. Over Italy. The revisiting 

time is 16 days with occasional gaps due to the dual use of the 

constellation for civilian and military applications.  

 

For this study, a total of 460 SAR images were processed 

covering the period from 2011 to 2024, acquired in ascending 

and descending orbital geometries: 

• Ascending orbit: 231 Single Look Complex (SLC) 

images acquired between January 18, 2011, and 

August 23, 2024. 

• Descending orbit: 229 SLC images acquired between 

May 18, 2011, and September 24, 2024. 

The A-DInSAR derived deformation rate values (expressed 

in millimeters per year) were estimated relative to a designated 

reference point. To ensure accuracy, our results were calibrated 

and validated using displacement data from the GNSS station 

located in the municipality of Turin. 

To evaluate the reliability of our results, an error analysis was 

conducted, estimating the standard deviation of deformation 

rates, and assessing temporal coherence levels, considered only 

the points with temporal coherence up to 0.4.  

In addition, complementary remote sensing techniques were 

integrated, including ground-based leveling data, to cross-

validate our results. The Turin municipality is characterized by 

complex subsurface conditions, including sandy-gravelly 

alluvium and clayey alluvial soil, which contribute to varying 

deformation patterns. These geological factors were taken into 

account in our analysis to improve the interpretation of 

observed displacement trends. 

 

 Post-Processing and Analysis of Satellite 

Interferometry Data 

The post-processing of satellite interferometry data is carried 

out using the PS-ToolBox Suite, developed by NHAZCA S.r.l. 

and integrated into QGIS. This suite enables the visualization 

of time series, decomposition of line-of-sight displacements, 

and the creation of various data representations to identify 

significant structural movements.  

The vector decomposition process of the data allows the 

generation of velocity maps for the Synthetic Measurement 

Points (SMPs) in both vertical and horizontal (East-West) 

directions. These maps are derived from the decomposition of 

measurements along the sensor's line of sight (LOS) obtained 

through both ascending and descending orbital geometries. 

It is essential to note that displacement and velocity 

measurements are calculated along the sensor's LOS. 

Therefore, the detected displacements represent the projection 

of actual displacements along the sensor-target line. Indeed, the 

observed displacement is the combination of the vertical and 

slightly east-west movement. Combining the observation from 

two looking geometries it's possible to decompose the signal 

along the vertical and horizontal components.  

The data vector decomposition process was performed using 

proprietary algorithms to extract displacement vectors in both 

horizontal and vertical directions. The study area was 

discretized into hexagonal cells with a 5 m radius, arranged on 

a regular grid. The results were displayed only for cells 

containing at least one measurement point for both orbital 
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geometries, referred to as "Synthetic Measurement Points” 

(SMPs). 

PS times series tool allows the interactive visualization and 

analysis of time series derived from satellite datasets, providing 

a detailed representation of the displacement evolution over 

time. The analysis of this time series helps identify patterns of 

progressive subsidence, seasonal variations, or sudden 

displacement changes, which could indicate structural 

anomalies or external influences.  

The Interferometric Section tool creates interferometric 

sections using data analysis from different orbital geometries. 

The sections follow the road alignment and intersect the 

Measurement Points (MPs) of the monitored bridges, allowing 

the visualization of displacement distribution along a 

topographic profile.  

 

 A-DInSAR Results 

The results of the A-DInSAR analysis are presented through 

maps overlaid on orthophoto-based backgrounds, illustrating 

the annual average velocities of the measurement points (MP) 

across the study area, including the two bridges under 

investigation. A color scale, expressed in mm/year, is used to 

represent the average displacement velocity along the satellite 

line of sight (LOS): colors ranging from yellow to red indicate 

movement away from the sensor, while shades from cyan to 

blue denote movement towards it. Green areas correspond to 

measurement points with negligible or non-significant 

displacement variations, with an estimated instrumental 

accuracy of approximately ±1.0 mm/year. The analysis 

provided a well-distributed spatial coverage of MPs across the 

entire study area in both ascending and descending geometries, 

ensuring redundant observation of potential deformation 

processes. A higher density of MPs is observed in urbanized 

areas, whereas a lower density is found in regions with dense 

vegetation or agricultural land. 

A detailed analysis follows, focusing on the bridges, where 

time series of displacement for some measurement points, 

based on the A-DInSAR analysis, are shown for both ascending 

and descending geometries, plotted with the cumulated rain 

over time. 

The final products are represented by velocity maps of the 

measurement points (MP) in the vertical and horizontal 

directions. These maps are obtained from the vector 

decomposition of measurements along the satellite line of sight 

(LOS) for the MP data collected in both ascending and 

descending orbital geometries. 

 REGINA MARGHERITA BRIDGE Results 

The Regina Margherita Bridge exhibits moderate 

deformation in the area where it is structurally stable, 

characterized by a localized movement at the midspan that is 

clearly visible in both satellite acquisition geometries. In Figure 

6, the A-DInSAR analysis for the descending geometry shows 

that, while the bridge’s abutments and piers at the ends remain 

stable, there is a non-negligible deformation  (>2 mm/yr) in the 

LOS direction, away from the sensor. In this geometry, the 

western carriageway seems to be more affected by the 

deformation, but possibly this is an artefact due to the satellite’s 

line of sight. The up-down (UD) component, instead, is limited 

to <2 mm/yr. However, from an engineering perspective, 

considering the uncertainties associated with SAR technology, 

these outcomes will require further analyses to be accepted 

beyond any reasonable doubt. Figure 7 presents three 

representative time series for this carriageway, showing that 

measurement point MP2 at midspan accumulates up to 50 mm 

of displacement over the analyzed period. 

 

Figure 6 Velocity map of Measurement Points (MPs) obtained from 

A-DInSAR analysis in descending geometry for the Regina 

Margherita bridge area. 

 

 

Figure 7 Time series of three measurement points for descending orbit 

on Regina Margherita bridge 

Figure 8 shows the results from the ascending geometry, which 

display a deformation with rates of 2–3 mm/yr on both 

carriageways.  
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Figure 8 Velocity map of Measurement Points (MPs) obtained from 

A-DInSAR analysis in ascending geometry for the Regina 

Margherita bridge area. 

From vector decomposition of the two LOS analyses, 

velocity maps for the vertical and horizontal components of 

displacement in the bridge area were produced (Figure 9). 

Figure 9 Velocity map of the Synthetic Measurement Points in 

vertical direction for Regina Margherita Bridge 

The most representative outputs from the complete post-

processing analysis of the satellite data are presented in Figure 

10, which shows the cumulative vertical displacement along 

both the facade and plan view of the bridge, sampled at 5-meter 

intervals, to detail the deformative behavior in space and time. 

The interferometric section, which illustrates the evolution of 

the bridge’s deformation over time and space, is presented in 

Figure 11.  

 

 AMEDEO VIII BRIDGE Results 

The Amedeo VIII Bridge exhibits deformation values within 

the stable range along its entire length, while the surrounding 

area shows minimal deformation. In figure 12, the descending 

geometry A-DInSAR analysis confirms that the bridge remains 

stable throughout its span, in contrast to adjacent areas that 

display displacement rates on the order of -2 mm/yr. Moreover, 

the time series presented in figure 13 clearly delineates the 

Figure 10 Cumulative vertical displacement on Regina Margherita 

Bridge 

 

Figure 11 Interferometric section over the vertical deformation 

along the longitudinal path double way of the Regina 

Margherita bridge. 
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seasonal cyclic trend, with an average displacement of 

approximately zero.  

 

Figure 12 Velocity map of Measurement Points (MPs) obtained from 

A-DInSAR analysis in descending geometry for the Amedeo VIII 

bridge area. 

 

 

Figure 13 Time series of three measurement points for descending 

orbit on Amedeo VIII bridge 

From the vector decomposition of the two LOS analyses, 

velocity maps for the vertical and horizontal components of 

displacement in the bridge area were produced, as shown in 

figure 14 and 15. 
 

 

Figure 14 Velocity map of the Synthetic Measurement Points in 

vertical direction for Amedeo VIII bridge 

 

Figure 15 Velocity map of the Synthetic Measurement Points in 

horizontal direction for Amedeo VIII bridge 

Finally, the most representative outputs from the complete 

post-processing analysis of the satellite data are presented in 

Figure 16, which shows the cumulative vertical displacement 

along both the facade and plan view of the bridge, sampled at 

5-meter intervals, to detail the deformative behavior in space. 

The interferometric section, which illustrates the evolution of 

the bridge’s deformation over time and space, is presented in 

figure 17. 

Figure 16 Cumulative vertical displacement on Amedeo VIII bridge 

 

 

Figure 17 Interferometric section over the vertical deformation 

along the longitudinal path of the Amedeo VII bridge 

          Along track position (m) 
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It is clear from the interferometric sections, which illustrate 

the deformation behavior over time and space, that the bridge 

is stable, both the piers and the deck show minimal 

deformation. 

5 PHOTOMONITORING 

 Introduction to technology 

PhotomonitoringTM is an innovative monitoring technique that 

can exploit any kind of raster data. Photomonitoring™ is based 

on the identification and analysis of terrain elements and 

structures and their possible variations through examining 

images acquired at different times. The analysis uses Digital 

Image Correlation (DIC) and Change Detection (CD) 

techniques implemented through NHAZCA's proprietary IRIS 

software. IRIS is conceived to work with terrestrial, aerial and 

satellite imagery of any datatype (Optical, Thermal, Near-

Infrared, etc.). The technique allows to reach millimeter 

accuracy in displacement monitoring and can be used 

separately or combined with other monitoring systems [11,12]. 

 Monitoring strategy 

In the ISABHEL project, the images will be acquired by 

cameras installed at the site.  

For both bridges, MOBOTIX cameras with dual-lens 

configuration were deemed as the optimal choice: a wide-angle 

lens providing a global view and a telephoto lens focused on a 

specific pier (Amedeo bridge) or for monitoring crack 

evolution (Regina Margherita bridge).  

On Amedeo bridge a single MOBOTIX M73 camera will be 

installed. The primary focus for the Amedeo VIII bridge is to 

monitor hydraulic action that can cause scouring of the piers 

and overall movement of the structures. The camera will be 

installed on the west riverbank, approximately 60 meters from 

the central area. 

In particular, the wide-angle lens will capture a big part of the 

bridge, including all piers, providing an overview of the 

structure and detecting movements through DIC analysis. A 

telephoto lens will target a specific pier to monitor material 

accumulation (change detection analysis) and scouring caused 

by river flow (displacement of the pier). 

For Regina Margherita bridge, a MOBOTIX S74 camera will 

be installed. The main monitoring objectives for the Regina 

Margherita bridge are crack detection, structural deformation, 

scouring and material accumulation at the base of the piers, and 

monitoring during high water levels or flooding conditions. The 

telephoto lens will be pointed at the nearest span to monitor the 

evolution and appearance of cracks (change detection). The 

wide-angle lens will detect displacements of the entire 

structure, with particular attention to the middle section. 

 Image acquisition and analysis workflow 

For both bridges, image acquisition follows these 

specifications: Static images captured every 5 minutes for 

continuous monitoring; Automated trigger mechanism that 

switches to video recording (30 frames per minute) when 

significant changes are detected; Data processing using the 

IRIS software, which compares images within a 10-15 minute 

buffer to select the best quality for analysis. 

The analysis workflow includes the following tasks: 

- Feature Monitoring: Images processed using the IRIS 

software to assess changes in targeted areas, 

particularly cracks in the nearest arch and scouring at 

the base of piers; continuous comparison of images 

within a 10-15 minute buffer to select the best quality 

for analysis. 

- Change Detection: Identifies structural changes 

while eliminating noise caused by lighting, water 

turbulence, or environmental conditions; specific 

attention to crack propagation and material 

accumulation. 

- Displacement Analysis: Determines the extent and 

direction of structural movement, especially in the 

arches and piers. The system continues analysis until 

the structure returns to a stable state.  

 

 

Figure 18: Example of monitoring of cracks evolution in a viaduct; 

the image below shows the result of change detection analysis. 

 

6 FINITE ELEMENT MODELLING AND 

THRESHOLDSDEFINITION 

 FEM generation 

Before beginning the bridge's structural modelling, two 

essential preliminary activities need to be conducted. First, all 

technical documentation concerning the bridge's structural 

aspects were gathered. Second, on-site inspections were 

performed to evaluate the current site conditions, confirm that 

the built structure matches the original designs, assess the 

current state, and collect other important observations.  

The two bridge models were developed using CSI Bridge, a 

software specialized in the structural analysis of bridges, 

compliant with regulations for moving loads. The models 

enable linear analyses for comparison with data from contact-

based sensors to be installed.  

The modelling evolved from a simplified "frame" model, 

with the superstructure condensed into a single element, to a 

more detailed "shell" model, discretizing the deck with two-

dimensional elements for greater accuracy, also allowing the 

modelling of the complex layout of the prestressed cables.  

The validation phase has begun, with progressive verification 

of the models' accuracy and stability. This iterative approach 

ensures that potential discrepancies are addressed early, 

enhancing the robustness and reliability of the results as the 
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project advances into more sophisticated modelling phases. As 

the monitoring campaign progresses, the experimental data will 

be integrated into the digital twins, minimizing error 

propagation in critical areas of structural performance and 

enhancing the models' predictive capabilities for real-world 

scenarios. In later work stages, the numerical model is thought 

to be updated with material testing results and with the results 

from the ongoing monitoring system. Creating a reliable model 

that delivers consistent results is essential to be able to compare 

and potentially reproduce the phenomena detected through 

satellite monitoring (fig. 19). 

 

Figure 19:  FEM model of the Regina Margherita bridge 

 

  SHM Parameters and Thresholds 

The SHM system monitors several key parameters that indicate 

bridge structural health: 

 

1. Static Parameters: 

- Rotational measurements from inclinometers at pier 

bases, deck spans, and Gerber saddles 

- Displacement measurements from transducers at 

expansion joints and Gerber saddles 

- Strain measurements from gauges at mid-spans 

- Deformation maps and displacement values from 

InSAR and Photomonitoring™ 

- Surface Damage (Cracks Evolution/Appearance) 

through Photomonitoring 

- Debris material accumulation through 

Photomonitoring 

2. Dynamic Parameters: 

- Acceleration measurements for modal analysis 

(natural frequencies, mode shapes) 

- Vibration characteristics in response to traffic and 

environmental loads 

3. Environmental Parameters: 

- Temperature measurements for correlation with 

structural responses 

- Environmental conditions that might affect 

monitoring results 

 

A multi-level threshold approach has been established to 

evaluate the monitored parameters: 

1. Level 1 (Operational Conditions): Defined according to 

evaluations based on preliminary models. This represents 

normal operational conditions. 

2. Level 2 (Statistical Deviation): Based on a data-driven model 

trained on the first period of continuous monitoring. This 

represents a significant (but not ultimate) deviation from 

normal behavior. 

3. Level 3 (Ultimate Limit State): Derived from numerical 

simulations of the FEM models, representing the expected 

ultimate limit state before structural failure. 

These thresholds are calibrated using the multi-source 

data from the integrated monitoring system. The temperature 

data is particularly important, as understanding the structural 

behavior induced by temperature variations is crucial for 

distinguishing normal responses from anomalies. 

 

7 WEB PLATFORM 

The ISABHEL web platform has been designed to provide a 

seamless, real-time interface for infrastructure monitoring, 

offering a user-centric approach to data visualization and 

interaction. Built using Next.js, the front-end ensures high 

performance through server-side rendering and static site 

generation, enhancing both responsiveness and search engine 

optimization. The modular, component-based architecture 

leverages React, allowing for reusability and scalability across 

various interface elements. 

A key feature of the platform is its interactive dashboard, 

which aggregates real-time structural data from multiple 

sources, including contact sensors, Photomonitoring cameras, 

and satellite-based SAR analysis. The dashboard dynamically 

updates through WebSockets, ensuring that users have 

immediate access to the latest structural health indicators 

(figure 20).  

 

 

Figure 20: Dashboard of the web user interface 

Another core component is the interactive GIS map, which 

integrates geospatial data through TileServerGL. This feature 

enables precise visualization of deformation patterns, historical 

trends, and real-time alerts. Users can navigate the bridge 

structures in detail, overlaying sensor readings and risk 

assessments to gain a comprehensive understanding of 

potential vulnerabilities. 

To further enhance the analysis capabilities, the platform 

incorporates an advanced 3D bridge model rendered using 

WebGL technologies such as Three.js. The 3D model of the 

monitored bridge will be presented with a series of "traffic 

lights" to highlight any anomalies, using the three standard 

colors (green, orange, red) depending on whether the signal 

exceeds the predefined thresholds. "Local" traffic lights will be 

placed directly at the sensor's location (for example, the 

rotation of a pile or the movement of a Gerber saddle), while 

"global" traffic lights could refer to analyses at the entire 

structure level (such as generalized movement of the bridge, 
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variation in the fundamental vibration periods, etc.), helping the 

end user understand the nature of any anomalies (21). 

 

 

Figure 21: 3D model viewer with color-coded traffic lights 

The design choices behind the ISABHEL front end prioritize 

usability, speed, and scalability. The use of Supabase for 

database management and authentication streamlines data 

retrieval and ensures secure access to user-specific 

functionalities. Additionally, the real-time notification system 

provides immediate alerts for threshold breaches, ensuring that 

stakeholders can take timely action when necessary. 

 

8 CONCLUSIONS 

The work is in its initial phase and ground-based acquisition 

have not started yet. However, thanks to an in-depth study of 

raw FEM models and based on A-DInSAR results, first-level 

thresholds for the bridge's structural health parameters have 

been estimated, which will need to be confirmed during 

monitoring. Based on the A-DInSAR analysis, the Regina 

Margherita Bridge shows localized deformation at midspan, 

while its abutments and piers remain stable. In contrast, the 

Amedeo VIII Bridge exhibits minimal deformation throughout 

its entire structure, with measurements remaining within the 

stable range (±1.0 mm/year) and displaying only seasonal 

cyclic variations with average displacement of approximately 

zero.  
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ABSTRACT: Natural hazards such as landslides, subsidence, and liquefaction represent growing threats to critical infrastructure. 

Building upon the methodological foundation presented in the SGAM project, this work introduces enhancements to the Smart 

Geotechnical Asset Management (SGAM) framework, with particular emphasis on its hazard assessment component. The SGAM 

system integrates geotechnical monitoring, Earth Observation (EO) data, and machine learning techniques to support predictive 

maintenance of linear infrastructure. In this paper, we present methodological refinements, expanded geohazard integration, and 

new insights from recent applications. A synthesis geospatial layer supports proactive risk mitigation by highlighting high-priority 

intervention zones. These developments aim to improve data-driven infrastructure management. 

KEY WORDS: Infrastructure resilience, geohazards, EO data, AI algorithms

1 INTRODUCTION 

Infrastructure systems worldwide are increasingly vulnerable 

to natural hazards, including seismic events and landslides, 

resulting in significant economic and social impacts. Prior 

studies estimate that around 0.5% of global assets are exposed 

to such hazards annually [1]. These threats often disrupt vital 

services such as transport and logistics, emphasizing the need 

for resilient infrastructure planning. 

In the literature, several frameworks have been developed to 

support multi-hazard risk management, particularly in relation 

to linear assets. These approaches are generally developed for 

integrated and quantitative frameworks capable of modelling 

multi-hazard scenarios, infrastructure vulnerability, and 

resilience. This type of analysis is inherently multidisciplinary 

and typically requires high-resolution input data, including 

detailed fragility curves and comprehensive ancillary datasets 

[2][3]. To overcome the challenges associated with data 

availability, other studies [4][5] adopted index-based 

methodologies, offering a more qualitative approach that 

emphasizes the exposure and vulnerability components of risk 

rather than detailed hazard modelling. In this context, SGAM 

(Smart Geotechnical Asset Management) framework was 

introduced as a semi-automated decision support system 

integrating EO data, geotechnical monitoring, and data fusion 

algorithms [6]. The original SGAM methodology, laid the 

groundwork for a multi-hazard approach to infrastructure risk 

analysis. 

This paper advances that framework by expanding the hazard  

models, improving the integration of InSAR-derived 

movement data with hazard assessments, and streamlining the 

generation of prioritized summary layers.  

2 METHODOLOGY 

The present study builds upon the SGAM framework 

previously introduced in [6], refining its methodology for the 

hazard assessment of linear infrastructure. SGAM remains a 

semi-automated decision support system that leverages satellite 

Earth Observation (EO) data, machine learning techniques, and 

geological knowledge to support asset management and 

predictive maintenance. In this paper, we present 

methodological advancements with specific focus on the 

characterization of landslide, subsidence, and liquefaction 

hazards. 

This version includes a development for individual hazard 

types, aiming to improve interpretability and accuracy at the 

asset level. While the geodatabase architecture and structure 

have already been described in detail in [6], here it is referenced 

as a resource for hazard data management. 

SGAM employs a multi-hazard workflow, integrating 

ground motion data from satellite InSAR with thematic layers 

(e.g., topography, geology, land use) through supervised 

learning algorithms. The spatialized outputs are then 

segmented and intersected with infrastructure elements to 

enable the classification of asset segments into risk levels. Key 

enhancements include differentiated processing for slow and 

fast landslides, velocity-based subsidence scoring, and refined 

soil classification for liquefaction susceptibility. 

In addition, this study introduces a summary geospatial layer, 

which was not present in the earlier framework. This 

integrative product consolidates hazard-specific outputs into a 

unified decision-support layer, providing a risk-informed 

prioritization of intervention areas along the infrastructure 

network. 

 Hazard assessment 

The SGAM project is instrumental in identifying geohazards, 

which are of paramount importance for ensuring infrastructure 

safety, as already mentioned in [6]. The framework was tested 

in a pilot area encompassing a 110 km-long highway located in 

northern Italy. As a preliminary step in the hazard analysis, the 
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available ancillary data were compiled and organized, as 

summarized in Table 1.  

 

 

Table 1: Input data for SGAM application in the pilot area 

These datasets represent the foundational layers from which 

 each hazard-specific analysis is developed, as illustrated 

schematically in Figure 1. 

 

Figure 1: Workflow of SGAM application 

 

2.1.1 Landslides 

Building on the susceptibility analysis presented in [2], this 

study introduces a more detailed approach to characterize 

landslide hazards affecting linear infrastructure. The 

methodology refines both the input data structure and the 

classification logic, with particular attention to the kinematic 

behaviour of slope movements. 

Susceptibility is evaluated as the intrinsic propensity of 

terrain to generate landslides, based on factors such as slope 

angle, lithology, land use, and morphometry. As in [2], 

machine learning algorithms trained on available inventories 

are employed to model landslide density and generate 

susceptibility maps.  

Persistent Scatterers (PS) from satellite InSAR data are 

incorporated more systematically than in [2], serving as a proxy 

for activity status. These data support the validation and 

enhancement of susceptibility outputs by highlighting zones 

with active deformation. The improved pipeline also includes a 

Landslide Attention Index, which scores infrastructure 

segments based on hazard level and PS data velocities. 

Figure 2 represents the combination of susceptibility classes 

and PS velocities, considering a threshold of 2.5 mm/years. 

 

 

Figure 2: Landslide attention matrix 

2.1.2 Subsidence 

The assessment of ground subsidence hazards in this study 

builds upon the foundations described in [6], introducing a 

more robust integration of vertical ground motion data with 

thematic geological and topographic layers. Subsidence is 

defined as the slow downward movement of the ground surface 

due to natural or anthropogenic causes, such as compaction or 

groundwater withdrawal. 

This analysis integrates lithological characterization, slope 

thresholds, and PS InSAR measurements to identify and 

classify regions affected by subsidence.  

While [6] included initial mapping efforts, the current 

approach incorporates a classification along the infrastructure 

into hazard classes based on maximum vertical velocities and 

contextual geomorphological settings. This classification 

allows infrastructure managers to identify critical zones where 

maintenance or reinforcement actions may be needed. 

 

2.1.3 Liquefaction 

The liquefaction hazard model presented here extends the 

susceptibility mapping approach introduced in [6], offering a 

more detailed evaluation of geotechnical and seismic 

parameters. Liquefaction occurs when saturated soils lose 

cohesion during seismic shaking, compromising ground 

stability. 

The new model introduces a segmentation-based hazard 

index that aligns with infrastructure elements. In contrast to the 

more generalized susceptibility zoning described in [6], this 

version includes quantitative thresholds for seismic 

acceleration and susceptibility reclassification, enabling 

improved spatial resolution. 

Additionally, the workflow supports continuous refinement 

as new geophysical or seismic datasets become available, 

facilitating dynamic hazard re-evaluation over time. 

 Summary layer 

A key innovation introduced in this study—absent from the 

framework outlined in [6]—is the development of a summary 

geospatial layer that consolidates the outputs of the hazard-

specific models into a decision-support product. This synthesis 

layer serves as a comprehensive tool for identifying high-

hazard zones along linear infrastructure, prioritizing them for 

monitoring, maintenance, or intervention. 

The summary layer integrates the results from landslide 

susceptibility (including activity-based scoring from PS data), 

subsidence hazard classification (based on vertical deformation 

velocity), and liquefaction potential (based on seismic-

geotechnical analysis) (Figure 3). These individual assessments 

are spatially combined through a rule-based approach to assign 

a composite risk score to each infrastructure segment. 
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The results are made available within a GIS environment, 

enabling interactive visualization of the hazard assessments for 

each segment of the infrastructure network. By visualizing 

hazard in a single layer, decision-makers can easily identify 

critical areas where multiple hazards converge or where the 

severity of a single hazard justifies immediate action. This tool 

enhances operational readiness and resource allocation, 

offering a practical output directly usable by infrastructure 

managers and planners. 

The introduction of this summary layer represents a major step 

forward in the SGAM methodology, improving its usability, 

interpretability, and impact in real-world applications. 

 

 

Figure 3: Example of SGAM result on linear infrastructure. 

3 CONCLUSIONS AND FUTURE OUTLOOK 

This study expands upon the foundational SGAM 

methodology presented in [6], delivering key enhancements in 

hazard modeling, data integration, and operational usability. 

While the previous version laid out the general framework for 

a semi-automated, EO-based geohazard assessment system, the 

current work provides a more refined and implementable 

approach by detailing the modeling procedures for landslides, 

subsidence, and liquefaction. 

One of the most significant contributions of this study is the 

introduction of a summary geospatial layer, which enables an 

integrated and view of infrastructure vulnerability. This 

addition makes SGAM not only a robust analytical framework 

but also a decision-ready platform for operational use in 

infrastructure management and planning. 

Future developments will aim to expand the temporal and 

spatial scope of SGAM through the integration of multi-

temporal EO datasets, including LiDAR and drone-based 

surveys, and the adoption of automated change detection 

techniques. Additionally, work will continue incorporating 

vulnerability and exposure metrics to complement hazard-

based assessments, building a more comprehensive picture of 

infrastructure resilience. 

The SGAM system, as further developed in this work, offers a 

scalable and adaptable solution, capable of supporting 

infrastructure managers in making informed decisions in the 

face of complex and evolving natural hazards. 
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ABSTRACT: The electro-mechanical impedance (EMI) method represents a promising approach to structural health monitoring 

(SHM), attributable to its ability to simultaneously employ piezoelectric transducers for both actuation and sensing purposes. As 

a result, an extensive volume of literature has surfaced recently, analyzing the efficacy of the EMI method in reinforced concrete 

(RC) structural elements subjected to quasi-static loading sequences. Nevertheless, the investigation into applying the EMI method 

in dynamic loading environments must be more robust within the current body of research. This study evaluates the effectiveness 

of the EMI method for SHM of a one-bay, one-story RC space frame structure under the influence of earthquake excitations. 

Therefore, a shaking table was used to excite the RC frame with progressively increased ground excitation, wherein piezoelectric 

patches are strategically embedded in meticulously chosen locations. The embedded PZT sensors facilitate promptly diagnosing 

earthquake-induced damage to the RC frame. The experimental outcomes reveal that the EMI method effectively and 

expeditiously identified damage formation within the RC frame. 

KEY WORDS: Structural Health Monitoring (SHM), Electro-Mechanical Impedance (EMI), damage diagnosis, dynamic loading, 

Reinforced Concrete (RC) frame. 

1 INTRODUCTION 

In recent years, the secure extension of the service life of 

existing Reinforced Concrete (RC) structures has become 

critically significant due to the aging of a substantial portion of 

the European building stock, some of which have attained their 

original design life [1]. Therefore, Structural Health 

Monitoring (SHM) methods have emerged as an indispensable 

instrument for achieving this objective by evaluating their 

seismic performance and structural integrity [2]. Compared to 

conventional methods, such as visual inspection, SHM systems 

offer continuous inspection, enabling the detection of even 

slight internal damage initiation, by covering the 3D space of 

the structural mass in real-time rather than only after it becomes 

visibly apparent. These systems are permanently installed on 

the structure, allowing for ongoing monitoring without the need 

for manual inspections. Furthermore, the energy renovation of 

existing buildings increases the challenges associated with 

implementing conventional methods, given that the RC 

members are inaccessible due to the insulating materials. In 

contrast to traditional methods, the newly developed SHM 

techniques enable continuous monitoring and prompt damage 

identification. Consequently, these limitations have catalyzed 

SHM advancement in recent decades, during which several 

methodologies have emerged [3,4]. 

The electro-mechanical impedance (EMI) technique, 

recognized as one of the emerging methods in SHM, utilizes 

the coupling properties inherent in piezoelectric materials, 

notably lead zirconate titanate (PZT), to identify the 

deterioration of the assessed structure's mechanical properties. 

Furthermore, the damage within RC structures initially presents 

as distributed microcracks that localize to form significant 

visible cracks [5]. Additionally, a concentration of strain is 

observed within the material medium, accompanied by a 

decrease in the material stiffness matrix, before the emergence 

of visible cracks [6,7]. Consequently, the deterioration of the 

mechanical properties of the structure material is manifested in 

the EMI response of an affixed PZT transducer. Within the 

extensive body of literature, two primary methodologies are 

identified for the application of PZT transducers in RC 

structures: the utilization of externally bonded patches [8,9] or 

their integration as smart aggregates within the RC structures 

[10,11]. According to Naoum et al., embedded PZT sensors, 

like smart aggregates, exhibit increased sensitivity to damage 

formation and stress fields of the host structure compared to 

externally bonded PZT patches [12]. 

Consequently, many research papers have been published 

investigating the efficacy of EMI-based monitoring of RC 

elements. The EMI method has been widely utilized in studies 

for prompt load-induced damage detection of RC and FRC 

beams. Furthermore, research initiatives have examined the 

viability of the EMI method for SHM of full-scale 

subassemblies of RC structures, including RC beams [13–16] 

and RC joints [17,18] under quasi-static loading, yielding 

promising outcomes. In addition, research implements machine 

learning techniques to increase the robustness of the EMI 

method in high-complexity scenarios, such as retrofitted RC 

members [19–22]. Nevertheless, prior research has 

predominantly concentrated on damage identification utilizing 

quasi-static loading conditions, and research regarding the 

SHM of RC structures under dynamic loads remains notably 

limited. 

As aforementioned, SHM methods, particularly the EMI 

method, have been widely investigated in RC subassemblies. 

However, there has been a dearth of research concerning entire 

RC structures. Kaur et al. examine the effectiveness of the EMI 

method in evaluating the pre-stressing force losses in the Sarey 
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Kale Khan Bridge in New Delhi [23]. Moreover, Liao and Chiu 

investigate a PZT-based active sensing system designed for 

SHM of a one-bay, two-story RC space frame structure 

subjected to seismic loads [24]. A distributed array of PZT SAs 

was utilized, with specific units designated as actuators while 

others function as sensors. This approach contrasts with the 

EMI method, which employs the smart aggregates in dual roles 

as both actuators and sensors concurrently. Consequently, the 

EMI method requires fewer PZT transducers to monitor the 

same structure. 

In this work, PZT transducers were embedded as smart 

aggregates in a one-bay, one-story RC space frame structure. 

Specifically, three PZT sensors were strategically positioned 

along the height of the RC columns for EMI-based SHM. 

Subsequently, the RC space frame underwent testing on a 

shaking table, with the Peak Ground Acceleration (PGA) level 

incrementally increased. To attain this incremental loading, a 

spectrogram of the substantial ground motion that significantly 

impacted Thessaloniki in 1978 was meticulously altered and 

determined the dynamic motion of the shaking table. Between 

the seismic sequences, the EMI responses of the PZT 

transducers were captured via a novel autonomous monitoring 

device. The obtained EMI signatures were utilized to expedite 

the identification of damage within the RC columns during the 

shake table test. The results underscore the viability and 

sensitivity of the EMI-based methodology for SHM of RC 

space frame structures subjected to seismic excitations. 

2 ELECTROMECHANICAL IMPEDANCE METHOD 

As previously indicated, the EMI method capitalizes on the 

unique characteristics of piezoelectric materials to generate 

surface electric charges when these materials are subjected to 

mechanical stress and experience mechanical deformation in 

response to an electric field [25,26]. Consequently, the 

reduction in mechanical impedance, associated with the 

formation of damage in RC members, significantly impacts the 

electrical impedance of a mounted piezoelectric transducer 

under harmonic excitation [27]. Furthermore, the EMI 

signatures of the attached piezoelectric transducers are 

frequently measured within a predefined frequency band. Any 

alteration in the EMI signature of each piezoelectric transducer 

signifies the development of structural damage in its vicinity. 

Therefore, numerous studies examine the interaction between 

an attached PZT transducer and the host structure, as 

exemplified in the work of Liang et al., who model this 

interaction [28].  

In this study, a custom impedance analyzer excites the PZT 

transducers within a wide frequency range while 

simultaneously capturing the corresponding signals. Expressly, 

the EMI signature's frequency range was set between 10 and 

250 kHz, with a resolution of 1 kHz. Initially, a set of 

measurements was taken before any seismic excitation to 

document the signatures of the PZTs in the healthy condition 

of the RC space frame structure. Subsequently, the EMI 

response of the PZT patches was recorded subsequent to the 

conclusion of each seismic excitation, while the specimen 

remained at rest. Then, each alteration of the EMI signature 

indicates the formation of damage in the monitoring area of 

each PZT sensor.  

The interaction between the monitored structure and the PZT 

transducer significantly influences the EMI signature of the 

PZT. Consequently, the mechanical properties, including mass, 

damping, and Young's modulus, are reflected in the EMI 

signature of PZT due to these interactions. According to Bhalla 

and Soh, the interaction between the PZT transducer and the 

RC structure is depicted as an impedance signature that consists 

of resistance (the real component) and reactance (the imaginary 

component), as specified in Equation (1) for the complex 

impedance, Z(ω), of the affixed PZT transducer [29]. 

𝑍(𝜔) =
h

 2L2ωj
[ε33

Τ
− d31

2 Y
E

+ (
Ζa

Zs+Za
) d31

2 Y
E

(
tan kL

kL
)]

−1
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Τ

 
Complex electric 
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E
 

Complex Young’s 
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Consequently, as indicated by Equation (1), any alterations 

observed in the electrical impedance of the connected PZT 

transducer arise from variations in the mechanical impedance 

of the monitored area, given that the other components of 

Equation (1) remain unaltered. Thus, notable variations in the 

EMI response measurements suggest the possibility of 

structural degradation in the monitored structure. 

Researchers usually employ statistical scalar indices to 

quantify the damage from the EMI responses of the smart 

aggregates. This study uses the widely utilized damage index, 

Root Mean Square Deviation (RMSD). The RMSD quantifies 

the variations between the output signals at the pristine 

condition and after each loading sequence, according to 

Equation (2). 

𝑅𝑀𝑆𝐷 =  √
∑ (|𝑉𝑝(𝑓)|

𝐷
−|𝑉𝑝(𝑓)|

𝐻
)

2
𝑁
𝑖=1

∑ (|𝑉𝑝(𝑓)|
𝐻

)
2

𝑁
𝑖=1

 (2) 

Where: |𝑉𝑝(𝑓)|
𝐻

 represents the absolute value of the voltage 

output signal extracted from the smart aggregate under the 

pristine condition of the RC structure, |𝑉𝑝(𝑓)|
𝐷

 denotes the 

absolute value of the corresponding voltage output signal 

measured from the same smart aggregate at damage level D, 

and 𝑁 is the discrete number of measurements taken within the 

frequency band of 10-250 kHz. 

3 EXPERIMENTAL PROGRAM 

 Materials and Specimen 

This experimental investigation entails casting a one-bay, 

one-story RC space frame structure, with four RC columns, 

four beams, a slab, four cantilevers and four infill masonry 

walls, all designed in accordance with old code provisions 

(1970s), before the adoption of current Eurocodes 2 and 8 or 

the New Greek Seismic Code for Concrete Structures. 

Furthermore, the specimen was scaled at a ratio of 1:3 in 

accordance with the capacity of the laboratory's shake table, 
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which possessed a maximum tested structure mass of 8 tons and 

a maximum overturning moment of 8 ton·m. Therefore, the 

mass of the specimens was adjusted to 4.3 tonnes, which is less 

than the maximum bearing capacity of the shake table. The 

clear span of the specimen’s beam measured 1.24 meters, and 

the clear height of the specimen’s columns was 1.0 meters. The 

concrete utilized in this study was of a C20/25 grade, and the 

reinforcement employed was referenced as B500C for the slab 

and foundation and for the longitudinal reinforcement of the 

columns and S220 for the column stirrup. The column cross-

section was set to 1313 centimeters, and the reinforcement of 

the specimen was four longitudinal reinforcement bars, each 

measuring 8 millimeters in diameter, strategically positioned at 

each corner. Additionally, a closed smooth steel stirrup 

measuring 5,5 millimeters in diameter was placed every 6 

centimeters to serve as transverse reinforcement. A reinforced 

concrete (RC) slab, which incorporates four balconies and four 

hidden beams, was constructed with a thickness of 20 

centimeters on top of the columns. This heavily reinforced slab 

was utilized to drive the potential damage in the RC columns 

and the brick infill panels as well as to allow for additional mass 

due to renovations involving greenery (with special reference 

to Thessaloniki metropolitan area). Although the occurrence of 

damage in vertical structural components is undesirable under 

current seismic regulations, it is prevalent in existing buildings 

constructed under older standards (strong slab or beams and 

weak columns). Figure 1 illustrates the specimen positioned on 

the shake table in the pristine condition. 

 

Figure 1. RC frame test setup. 

 Adopted SHM Scheme 

As mentioned above, this study investigates a PZT-enabled 

EMI-based SHM approach for the SHM of a one-bay, one-story 

RC concrete structure. Thus, several PZT transducers were 

embedded as smart aggregates in the RC frame specimen. The 

fabrication of smart aggregates involves several stages. 

Initially, two lead wires were welded to the two poles of the 

PZT patch, and the functionality of the sensors was duly 

verified before further action steps. Subsequently, the PZT 

transducers were coated with a waterproof layer of epoxy resin, 

as illustrated in Figure 2. Then, the smart aggregates were 

positioned in meticulously selected locations of the RC 

specimen prior to the pouring of concrete. Although various 

PZT sensors were employed to monitor different aspects of the 

specimen's structural integrity, this study focuses on the prompt 

diagnosis of the formation of bending cracks in the critical 

regions of the columns. Therefore, two piezoelectric sensors 

were placed at various heights along the RC columns. The PZT 

Up and PZT Down were positioned within the critical region, 

where bending cracks were expected to develop, of the RC 

columns for the prompt detection of bending-associated crack 

formation, as depicted in Figure 2. As mentioned earlier, the 

EMI response of each PZT was recorded using  portable EMI-

based monitoring devices capable of capturing the EMI 

response of PZT transducers within the frequency spectrum of 

10-250 kHz. 

 

Figure 2. Ready to implement Smart Aggregate. 

 Shake Table Test Setup 

The shake table tests were conducted at the laboratory of 

Reinforced Concrete and Seismic Design of Structures of 

Democritus University of Thrace, located in Xanthi, Greece. 

The shake table has dimensions of 3.4 m by 3.4 m and a 

maximum velocity of 1.2 m/sec. Furthermore, it possesses a 

maximum uniaxial acceleration capacity of 1.6g for a payload 

mass of eight tons and 2.9g for a payload mass of four tons. The 

maximum displacement capacity of the shaking table was 23 

centimeters, and the range of response frequencies extended 

from 1.0 to 50.0 Hertz. Additionally, a dynamic capability data 

acquisition system acquired the data of twelve accelerometers, 

eight-string potentiometers, and 20 strain gauges. Three out of 

the 12 accelerometers were used to measure the out-of-plane 

acceleration of the infills. Four-string potentiometers were used 

to calculate the story drift of the RC structure, while the 
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remaining devices were used to evaluate the deformation 

associated with the in-plane response of the infills. 

Furthermore, appropriate markers for vision-based SHM were 

strategically positioned on the surfaces of the specimens and 

employed to extract the displacement field from videos 

captured by two cameras positioned perpendicularly. 

The dynamic loading involved the gradual increment of PGA 

levels up to 1,1g peak acceleration, based on the employed 

earthquake component from Thessaloniki in the north–south 

direction (peak acceleration of 0.14g with main excitation 

frequencies ranging from 2 Hz to 10 Hz and minor excitation 

frequencies beyond 26 Hz). The seismic event occurred on 20 

June 1978 at 20:03:21 in the epicenter 30 kilometers east of 

Thessaloniki, revealing the susceptibility of urban centers to 

such natural disasters. According to Theodulidis et al., 4000 

buildings experienced serious, 13000 moderate, and 49000 

minor damage [30]. The north–south component of the strong 

ground motion record at the Thessaloniki-City Hotel station, 

situated 29 kilometers from the epicenter, offered the ground 

excitation time history utilized during the dynamic tests, as 

illustrated in Figure 3. Subsequently, this sequence has been 

meticulously adjusted to stimulate the specimen with peak 

accelerations of up to 0.1g, 0.2g, 0.5g, 0.8g, and 1.1g, following 

a dynamic pushover approach. The ultimate level of the first 

phase of testing of the as-built structure (presented herein) was 

characteristic of a structure with RC members at Serviceability 

Limit States (SLS), where no yielding of steel rebars occurred 

and brick infills with damage initiation but no collapse. 

Thereafter, the EMI response of all the PZT sensors was 

recorded following each excitation. 

 

Figure 3. Ground acceleration time history. 

4 TEST RESULTS 

 Cracking patterns of RC columns 

This sub-section addresses the earthquake-induced damage 

of the specimen and its observed cracking pattern. The 

specimen underwent five progressively enhancing sequences of 

ground excitation. After the third test run, which corresponds 

to a peak acceleration of 0.5g, some slight surface cracks were 

observed in the lower region of the RC columns. Therefore, the 

EMI response captured after the first and second test runs was 

designated as pre-crack, in conjunction with the EMI response 

measured under pristine structural conditions. Conversely, the 

EMI response obtained following the third test run, and the 

formation of the first cracks, was classified as post-crack. The 

cracks were further propagated during the subsequent loading 

sequences. Figure 4 illustrates the damage condition of the RC 

\column Y1 after all the loading sequences. A bending crack 

was formed in the lower region of the column, in proximity to 

the PZT Y1B. Despite the crack propagating through the 

entirety of the column's cross-section, the measured width of 

the crack along with the recorded reinforcement strain suggests 

that the damage sustained was not severe. 

 

Figure 4. Damage state of RC column Y1 

Furthermore, Figure 5 depicts the damage condition of the 

reinforced concrete column Y2 following the completion of the 

final loading sequences. In contrast to column Y1, column Y2 

was in contact with infills in the biaxial direction. 

Notwithstanding the fact that the in-plane infill did not 

encompass the entire span, it nonetheless merely enhanced the 

load-bearing capacity and the overall stiffness of the specimen. 

A minor bending crack has developed in the lower region of 

column Y2, which was sustained in a portion of the column's 

cross-section, in contrast to the bending crack of column Y1. 

This may have been attributed to the beneficial contribution of 

the brick infill. Similarly to column Y1, the crack width and the 

steel reinforcement strain indicate that the damage sustained 

was not severe. Therefore, although cracks developed in the RC 

columns and the brick infill, the structural condition of the 

space RC frame specimen is categorized within the SLS, as 

determined by the experimental design for the initial testing 

phase, as previously noted. 
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Figure 5. Damage state of RC column Y2 

 The EMI response of smart aggregates 

This sub-section presents the EMI response of each PZT 

transducer in terms of Vp—excitation frequency, as captured 

with the RC specimen at rest. The EMI responses were 

measured across a broad frequency spectrum from 10 to 250 

kHz. Figure 6 illustrates the EMI response of PZT Y1B, which 

was placed in the lower region of column Y1. The EMI 

response of PZT Y1B demonstrated a leftward shift subsequent 

to the formation of a bending crack in its vicinity. Furthermore, 

the EMI response does not demonstrate any additional 

alterations, which aligns with the observed cracking pattern, 

where the crack width remains constant. Thus, the proposed 

SHM scheme promptly identifies the formation of the bending 

crack in the lower region of the column through the alterations 

of the PZT Y1B EMI responses. 

 

Figure 6. The EMI response of PZT Y1B 

 Figure 7 shows the EMI response of PZT Y1T, which was 

placed in the upper region of column Y1. In contrast to the 

smart aggregate PZT Y1B, the EMI response of PZT Y1T does 

not vary significantly, as verified by the RMSD values in the 

following subsection. These findings are consistent with the 

column's observed crack patterns, wherein the fissure 

developed in its lower region, as depicted in Figure 4. 

 

Figure 7. The EMI response of PZT Y1T 

Figure 8 depicts the EMI response of PZT Y2B, which was 

placed in the lower region of column Y2. The EMI response 

exhibits a subtle peak shift resulting from the development of a 

bending crack in proximity to the smart aggregate. This is in 

line with the observed crack patterns of column Y2, as 

illustrated in Figure 5. 

 

Figure 8. The EMI response of PZT Y2B 

Figure 9 illustrates the EMI response of PZT Y2T, which was 

placed in the upper region of column Y2. No observable 

alterations in the EMI response of the smart aggregate PZT 

Y2T, which may be attributed to the distance of the formed 

bending crack. 

 

Figure 9. The EMI response of PZT Y2T 

 The RMSD 

As previously mentioned, the RMSD damage index utilized 

to quantify the variations in the EMI responses of PZTs in this 
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study. Figure 10 illustrates the RMSD values of the smart 

aggregates situated in the upper and lower sections of Column 

1. Evidently, the development of a bending crack in column Y1 

initiates a significant increase in the RMSD values of PZT 

Y1B, escalating from 0.5% to 3.2%. On the contrary, the 

RMSD values of PZT Y1T remain around 0.5 throughout the 

seismic sequences. 

 

Figure 10. RMSD damage index values pertaining to the 

smart aggregates in Column Y1 

Additionally, Figure 11 depicts the RMSD values of the 

corresponding smart aggregates of column 2. Similarly, the 

RMSD values of PZT Y2B demonstrate a significant increase, 

rising from 0.4% to 6%. Thus, PZT Y2B has effectively 

identified the development of a bending crack in the lower 

section of column Y2. Furthermore, RMSD values of PZT Y2T 

fluctuated between 0.5 and 0.7 during the seismic sequences. 

Consequently, the SHM scheme indicates that damage has 

occurred in the lower region of both columns, which aligns with 

the observations. 

 

Figure 11. RMSD damage index values pertaining to the 

smart aggregates in Column Y2 

5 CONCLUSIONS 

This study addresses the feasibility of the EMI method for 

SHM of a one-bay, one-floor space RC frame structure 

subjected to earthquake excitations. The specimen was 

subjected to various percentages of PGA of a strong seismic 

event, resulting in bending cracks in the lower regions of the 

specimen's RC columns. The structural integrity has been 

classified into two distinct categories, referred to as pre-crack 

and post-crack. The EMI method effectively identified the 

formation of cracks through the variation induced in the EMI 

responses of the smart aggregates, indicating its feasibility for 

the SHM of RC structures. Additionally, it successfully 

localized these cracks within the lower regions of the 

specimen's columns. SHM was successful even though this 

study was limited to minor damage conditions, relatively close 

to SLS of RC structures. Such RC damages are hard to detect 

as the residual drift of the structure is negligible. Subsequent 

research should further explore the efficacy of the EMI method 

under conditions approaching the near-collapse damage 

condition of RC structures as well as the effects due to 

additional mass after innovative renovations. 
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ABSTRACT: Material ageing, such as corrosion of reinforcements or damage to geotechnical tension elements, can lead, among 

other effects, to load redistribution mechanisms at the interface of structure and the adjacent soil. These mechanisms are difficult 

to capture, as analytical calculations are not practical and three-dimensional numerical simulations, utilizing advanced constitutive 

laws require sufficient monitoring data to validate the calculations. Consequently, it is difficult to determine the reliability of 

damaged structures. To improve existing knowledge in this field, a test setup simulating an anchor wall was developed, to provide 

calibration data for numerical studies and to evaluate load redistribution mechanisms at the soil-structure interface in general. In 

this context, newly developed Tactile Pressure Sensors (TPS) were tested for their suitability as an additional monitoring tool, to 

record changes in compressive stress at the interface and consequently, to complement conventional monitoring devices used for 

deformation and force measurements. Such TPS can enable the visualization of an approximate compressive stress distribution 

across the entire interface, utilizing 576 individual sensing elements over an area of 1.50 m² to monitor changes in stress. Thus, 

additional data is provided to improve the evaluation of load redistribution mechanisms and to be used as validation data for 

numerical models. 

KEY WORDS: tactile pressure sensors, piezoresistive sensors, geotechnical testing, experiment, validation. 

1 INTRODUCTION 

Anchored retaining structures are commonly used as an 

economical solution for the long-term stabilization of steep 

slopes or deep cuts along infrastructure routes. To ensure their 

reliability - encompassing durability, serviceability and load-

bearing capacity - regular maintenance and inspection is 

essential throughout their intended service life [1][2]. These 

inspections often reveal damage, and in some cases, failure of 

the metallic tension elements. Corrosion represents the most 

significant challenge for pre-stressed ground anchors and 

reinforced concrete structures in general, which can lead to 

significant damage (up to failure) of the tension elements, 

affecting the load-bearing behavior of the structure. This may 

lead to a redistribution of forces, both within the retained soil 

and the structure itself. This redistribution can ultimately result 

in the failure of additional (adjacent) ground anchors and 

unexpected deformations of the retaining structure. 

Currently, engineers are dealing with limited guidelines and 

regulations to assess such effects, caused by damage or failure, 

impacting the load-bearing capacity and, consequently, the 

safety of the structure. In this context, complex three-

dimensional numerical models, regardless of their resource 

intensity, are inevitable to provide a reliable safety assessment. 

Such models are essential to determine the probability of 

critical failure mechanisms and their location within the soil 

body, which is mandatory for many existing anchored 

structures. To provide valid calculation data, these numerical 

models must be calibrated accordingly and therefore require a 

suitable amount of measurement data, e.g. on deformations and 

stresses. As such data is usually not sufficiently available for 

existing structures, it is necessary to evaluate the expected 

behavior of the structure in the event of an anchor failure 

differently. For example, in mid-scale experiments, which 

combined with numerical models allow for an upscaling of the 

results to come up with recommendations concerning the 

assessment of existing structures possibly at risk. Based on this 

consideration, it would also be highly beneficial to consider an 

appropriate monitoring concept for future structures.  

This paper describes a mid-scale test facility for simulating 

anchor failures and investigating the resulting load 

redistribution effects in the soil body and at the soil-structure 

interface. The studies provide more information on the 

sensitivity of anchored structures to tension element failure and 

help identify critical areas for potential future monitoring. To 

improve the quantity and quality of data obtained from the 

experiments, a newly developed measurement system is 

presented. These, so called Tactile Pressure Sensors (TPS), 

should enable an approximate two-dimensional recording of 

the stress field at the soil-structure interface and thus provide 

an extended amount of data for the calibration of numerical 

models and the interpretation of the experiment itself. The 

content includes an initial assessment of the capabilities of the 

TPS mentioned. Accordingly, an investigation of the sensors’ 

performance under geotechnical constraints, considering the 

boundary conditions in the test setup, took place. Additionally, 

first results for the simulation of an anchor failure, monitored 

by classic load cells and displacement transducers, are 

presented. 
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2 TACTILE PRESSURE SENSORS 

Standard earth pressure cells only provide a punctual recording 

of the compressive stress at the soil-structure interface, whereas 

the pressure distribution itself ideally needs to be monitored in 

a two-dimensional way. Thus, the evaluation of the problem in 

its entirety requires an alternative measurement system which 

provides a higher measurement resolution and consequently a 

better database to examine load redistribution effects due to 

anchor failure. 

Tactile Pressure Sensors have been used in geotechnical 

experiments since the 1990s [3] and have been part of many 

experiments and publications since [4][5][6]. Due to their low-

profile architecture and the amount of measurement points per 

area, they can be generally applied to determine the stress 

distribution between two structures. In geotechnical 

engineering such measuring equipment is used to determine the 

soil-structure interaction or the load transfer between two soil 

bodies in various setups, especially in geotechnical centrifuge 

testing [7][8]. According to previous experiences made with 

such sensors, the technology seemed to be suitable for the given 

task. Unfortunately, well-known TPS, although applicable in 

terms of metrological performance, did not meet the 

requirements of the planned testing series. Mainly caused by 

limitations in terms of geometry, robustness and high costs. 

Thus, it was necessary to find an alternative system which 

better addresses the requirements resulting from soil-structure 

interaction within the mid-scale experiment. 

 

Figure 1. Sensor design. 

The chosen TPS, developed by sendance GmbH, leverages the 

physical principle of piezoresistivity for pressure detection. 

The core sensing element consists of a circular 0.1 mm thin 

layer of piezoresistive material, with a diameter of 3.5 mm, that 

electrically connects two electrodes. The simplified sensor 

design is shown in Figure 1. Under compressive stress, the 

sensor’s electrical resistance diminishes from values exceeding 

MΩs to tens of kΩ. During measurement, a 3.3V supply voltage 

is applied to one electrode. The other electrode is connected to 

a microcontroller with a 12-bit Analog-to-Digital Converter 

(ADC) and a 20 kΩ reference resistor connected to ground 

(GND). This voltage divider configuration allows the 

microcontroller to measure the voltage change resulting from 

the sensor's resistance variation, caused by the compressive 

stress acting on the piezoresistive material. To ensure a more 

uniform pressure distribution on the piezoresistive material and 

enhance the system’s robustness, the TPS and its wires are 

encapsulated in a silicone coating, achieving a total thickness 

of 1 mm. To compensate for the production variability of 

sensors and to achieve more accurate readings, each sensor is 

individually calibrated. The sensors are usually calibrated by 

36 load-steps spread over the range of 0 to 500 kPa or lower, 

depending on the area of interest. At each load-step, the 

corresponding ADC value, and the acting compressive stress in 

kilopascals are recorded. These calibration data pairs each 

define one calibration point, which collectively form the 

calibration curve. 

This data is subsequently stored within the readout 

electronics, and linear interpolation between the individual 

calibration points is used to determine the pressure 

corresponding to any measured ADC value not directly 

provided by the calibration points themselves. As the devices 

are tailor-made, the sensors can be arranged in any formation, 

limited only by the space required for wiring. Figure 2 shows a 

TPS example with a 4x4 grid formation, used for small-scale 

testing to evaluate sensor performance. In general, each sensor 

row (horizontal) shares one supply line and each column 

(vertical) shares one readout line to minimize wiring amount 

and complexity. Only one supply and one readout line are 

active at any given time, allowing for a sequential readout of 

the sensors with a rate of up to 150 Hz using Bluetooth®. To 

prevent crosstalk between sensors, which means they would 

influence each other’s readings, a diode is added to each sensor. 

 

 

Figure 2. TPS for performance testing (small-scale), placed on 

pressure chamber baseplate. 

The accuracy of the TPS is influenced by several factors, 

including the homogeneity of the applied pressure, the utilized 

pressure range, and the duration of the applied load. 

Consequently, the accuracy of the system must be determined 

within the field of application. 

To evaluate the performance of the sensors under 

geotechnical conditions and to confirm the suitability of the 

TPS for the intended application within the mid-scale tests, 

some information on performance evaluation is provided in the 

following chapters. The focus is on the precision (repeatability) 

of the system’s measurements, including soils. 
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3 TEST SETUP & METHODS 

Mid-scale model tests on anchor failure are conducted in a test 

box (see Figure 3) with dimensions of 1.00 m (width), 1.50 m 

(height) and 3.00 m (length). Within the test box, a retaining 

wall is constructed using nine individual steel elements 

arranged in a 3 x 3 grid, rigidly connected in both horizontal 

and vertical directions. The retaining wall is backfilled with 

gravel (4/8 mm rounded grains). To simplify the assembly 

process, the ground anchors are represented by horizontally 

installed bracing units (struts) placed outside the soil body. 

These struts, which are subjected to compressive loads, rest on 

a horizontal abutment in front of the retaining wall. Each strut 

can be individually pre-stressed by applying torque, allowing 

for different test configurations. Individual struts are released 

to observe the system’s response during the failure simulation. 

Force measurements, using load cells, are taken at each of the 

nine contact points between the retaining wall and the struts to 

capture the resulting force redistribution. Additionally, 

displacement transducers were installed to monitor wall 

deformation. These measurements have not been incorporated 

into this study, as the primary focus lies on the load 

redistribution. 

 

 

Figure 3. Test setup during assembly. 

Figure 3 illustrates the test set-up during the assembly process. 

The labelling scheme is as follows: from left to right, the axes 

are labelled A to C, while from bottom to top, the anchor rows 

are designated 1 to 3. For example, the central anchor is 

labelled B2. Additional details on the set-up can be found in 

[9]. 

Although the change in force, measured by the installed load 

cells, already allows some interpretation of the mechanical 

processes during the experiment, providing more data, to e.g. 

validate a numerical model for post-processing purposes, 

would be highly beneficial Furthermore, more data would be 

crucial to come up with a comprehensive conclusion about the 

occurring load redistribution effects. 

Consequently, it was decided to integrate the previously 

described TPS into the testing facility, positioned at the soil-

structure interface (see Figure 3), to analyze the acting 

compressive stresses. For this purpose, a sensor arrangement 

was designed which allows for 64 sensors on each of the nine 

individual steel elements (see Figure 4) which results in 576 

individual measurement points evenly distributed over the 

entire back-side of the retaining wall, covering an area of 

1.50 m². Compared to the force measurements with just nine 

load cells, the TPS enables an approximately two-dimensional 

analysis of the stress field at the soil-structure interface and 

therefore allows a detailed interpretation of spatial mechanisms 

caused by the load redistribution within the soil body (e.g. 

arching effects) due to anchor failure. 

 

Figure 4. TPS configuration for mid-scale test. 

The TPS system must be calibrated and tested in the 

geotechnical environment to obtain accurate sensor readings 

within the mid-scale model. While the entirety of the grid is 

encapsulated in silicone, the sensors are exclusively present in 

specific regions of the sensor grid, which causes the TPS to be 

inhomogeneously stiff. Areas where sensors are situated 

exhibit a higher stiffness than areas without any sensors 

present. Thus, applying stress to the TPS by e.g. a stiff loading 

plate doesn’t allow for an accurate calibration or repeatable 

testing. Single-point calibration/testing on the other hand, with 

e.g. a load-stamp, would result in a significant testing effort. In 

addition, the use of a load stamp would prevent reliable 

repeatability, as the stamp would have to be positioned at the 

same spot on the sensor (diameter = 3.5 mm) each time, which 

cannot be guaranteed with a manual process, as was observed 

in preliminary studies. 

Therefore, the testing and calibration is performed using a 

calibration chamber, designed to apply air pressure to the 

sensor grid. This approach satisfies the need for an evenly 

distributed compressive stress on the system (isobaric stress 

state), which is not affected by any inhomogeneities in the 

system’s stiffness, which could possibly lead to a 

misinterpretation of the applied stress. Additionally, air 

pressure is well controllable, and the calibration steps can be 

chosen flexibly. Concerning measurements incorporating soils, 

a membrane was introduced to enhance the calibration 

chamber’s suitability. This advancement allows air pressure, 

distributed by the membrane, to act across the soil grains, onto 

the TPS. This prevents additional air pressure being applied to 
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the system, which could act between the grains, although all 

loads should only be transferred by the soil grains themselves. 

First tests to evaluate the TPS’ accuracy were performed 

under load application by air pressure only - without any soils 

incorporated - to assess the sensors’ performance under fully 

controllable and repeatable conditions. This ensured 

benchmark measurements that reflect the pure performance of 

the TPS in the pressure chamber, without the effects of uneven 

loading from soil grains, etc. This data can later be used for 

comparison with measurements of the TPS in soils to put the 

sensors’ performance in different environmental conditions 

into perspective.  

Subsequently, the systems suitability for application in the 

geotechnical environment was evaluated. Thus, soil samples 

with different grain size distributions (GSDs) were prepared to 

investigate the maximum grain size (Dmax) suitable for the TPS, 

as well as to generally analyze differences in performance due 

to the GSD. Sample preparation aimed for very narrow GSDs 

to isolate the critical grain size. Furthermore, angular grains 

were utilized for the tests, as these may cause more distortion 

in the sensor readings compared to round grains and thus 

represent a ‘worst-case’ scenario in terms of sensor 

performance and robustness, which provides the most 

information concerning the overall performance of the TPS. 

4 FIRST TESTS AND RESULTS 

Preliminary studies concerning the TPS performance are shown 

below. All described tests were executed in the previously 

mentioned pressure chamber, using a 4x4 grid (16 sensors), 

which is illustrated in Figure 2. To characterize the TPS for the 

use under geotechnical constraints, the systems accuracy must 

be investigated in terms of precision and trueness, according to 

[10]. The outlined experiments mainly focus on the precision 

of the TPS, also defined as the repeatability of measurements. 

In addition to the studies concerning the TPS, initial 

experiments simulating anchor failure within the mid-scale test 

facility were carried out. The results of these tests are also 

presented and discussed below. 

4.1 Preliminary studies - TPS 

In the following, the term ‘representative sensor’ always refers 

to one and the same sensor on the grid to ensure comparability 

of different measurements. The presented measurements were 

carried out by applying air pressure on the sensors.  

First, all 16 sensors were calibrated, according to the 

calibration procedure, described in chapter 2. Afterwards the 

first test series was performed, which consisted of four 

individual tests with 10 load cycles – loading and unloading – 

of the entire sensor grid. 

 

Figure 5. Recorded load-cycle for a representative sensor. 

Figure 5 illustrates the recorded measurements for a 

representative sensor at a maximum pressure of 100 kPa, for 

one individual test. 

Peak values were detected and marked with a red cross. 

Determining the mean value of the peak values per load-cycle, 

results in 10 measurements per sensor, per test, which 

corresponds to 160 values for the entire TPS. To simplify these 

results, only one mean value was calculated per sensor and test 

across all peak values. Subsequently, an average value was 

calculated from the measurements of all 16 sensors, 

representing the entire system, assuming a smeared 

performance as relevant. This approach represents an 

evaluation of the overall performance of the TPS, while studies 

on individual sensors are presented later. 

Table 1 shows the mean value 𝑝̅ (measured compression 

stresses) for each individual test, as well as the global mean 

value µ, the standard deviation σ, and the relative error δ across 

all tests, at certain pressure levels PL, for the entire TPS. 

Table 1. Preliminary evaluation of TPS performance 

PL [kPa] 𝑝̅ [kPa] µ [kPa] σ [kPa] δ [%] 

100 

98.56 

96.31 4.01 3.69 
91.20 

100.31 

95.18 

200 

195.30 

195.27 2.85 2.37 
193.32 

199.86 

194.58 

300 

290.73 

295.51 3.42 1.50 
297.81 

294.72 

298.79 

 

First tests showed good results with a maximum relative error 

of 3.69 % at a pressure level of 100 kPa as well as 2.37 % and 

1.50 % at 200 and 300 kPa respectively. Furthermore, the 

calculated standard deviations show a good consistency of the 

measurements. 

To extend these first investigations, additional studies were 

conducted. As part of these studies, predefined load steps were 

performed and the corresponding ADC outputs from the TPS 

were analyzed. This allowed for a more descriptive 

interpretation of the sensor performance and avoided any 

distortion of the measurements due to linear interpolation and 

statistical processing of the test results. Thus, six tests were 

performed with load steps evenly distributed over a range of 0 

to 300 kPa, resulting in one curve per sensor per test (run). 

Figure 6 shows the measurement results for a representative 

sensor for all six runs labeled Run 1 to Run 6. The results can 

be considered promising as the curves show good repeatability, 

which is consistent with the results shown in Table 1. 

Especially at higher pressures, from 200 kPa onwards, the 

agreement of the individual measurement points is good, while 

at pressures below 100 kPa a certain deviation can be observed, 

which, however, is not critical. These results agree well with 

the previous observations, which confirms the initial 

assessment of the overall TPS’ precision. 
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Figure 6. Precision test without soil for a representative 

sensor. 

Proceeding with the test series, the TPS’ performance was 

evaluated incorporating soils, simulating the application of the 

system at the soil-structure interface. The aim of these 

investigations was to evaluate the influence of soils with 

different maximum grain sizes on the accuracy of the sensors 

and to compare these findings with the results shown in Figure 

6. To allow for comparison between the different test series the 

following studies were performed in line with the previously 

described procedures, apart from including a membrane, as 

explained in chapter 3. This test series should allow a statement 

related to the maximum tolerable grain size without a drastic 

reduction in sensor performance, which is considered 

mandatory to evaluate the applicability of the TPS in the mid-

scale experiments. All tests were carried out with the same TPS 

system used previously. 

Five samples with different grain size distributions were 

utilized, allowing a continuous increase in Dmax. The samples 

were mainly coarse grained (angular grains) and contained little 

to no fine grains. All samples were artificially prepared by 

sieving a large soil sample into different GSDs, which ranged 

from 0/0.8 mm, with Dmax = 0.8 mm, to 2/4 mm, with 

Dmax = 4 mm and Dmin = 2 mm. 

Figure 7 illustrates the results for this test campaign, 

comparing a representative air pressure curve (Run 1), labelled 

as ‘Air’, from Figure 6, with five curves including soils with 

different GSDs. The curves differ in the lower load range, up 

to ~ 100 kPa, whilst the repeatability seems to improve with 

pressure levels above 100 kPa. Both effects have also been 

identified in the previous tests. 

The results show good repeatability, and the influence of 

grain size appears to be negligible up to a Dmax of 2 mm. 

Though, grain sizes above 2 mm seem to cause a change in 

sensor performance. Curve 2/4 (orange) shows significantly 

lower ADC outputs, from 150 kPa and onwards, than all other 

curves. In general, it is assumed that the silicone coating of the 

TPS acts like a thin load distribution layer, which provides 

good sensor performance if Dmax ≤ 2 mm, as these 

measurements agree well with the air pressure reference curves. 

However, the load distribution effect of the silicone doesn’t 

appear to be suitable for dealing with larger grain sizes. 

 

Figure 7. Influence of grain size (angular grains) on sensor 

curve for a representative sensor. 

To summarize, the preliminary investigations on the sensor 

performance have shown the potential of the system for its 

application in the geotechnical environment. Soil with a grain 

size below 2 mm does not seem to negatively affect the sensor 

performance. However, it will be necessary to implement some 

kind of load distribution layer to improve the TPS for the 

application in larger grain sizes. As the material used in the 

mid-scale tests has a grain size above 4 mm, it is essential to 

adapt the TPS accordingly. This allows its application within 

the setup and enables the collection of more spatial information 

on load redistribution mechanisms. 

4.2 Mid-scale test facility 

Figure 8 and Figure 9 present the initial evaluations of anchor 

failure simulations, conducted by setting the compressive load 

along individual struts to zero. Both figures show the modelled 

retaining wall, with the steel elements arranged in a 3 x 3 grid, 

following the labelling scheme from Figure 3. The failed 

anchor is marked with a red cross, and the changes in load, both 

in percentage and absolute terms, are shown for all remaining 

anchors. The failure simulations started from nearly identical 

stress states, with anchor rows 1, 2 and 3 pre-stressed to 

approximately 7 kN, 5 kN and 2 kN, respectively. 

Figure 8 illustrates the first failure simulation, which 

assumed the central anchor B2 to fail. The results clearly show 

that the load redistribution following the failure of anchor B2 

is almost symmetrical. In absolute terms, the majority of the 

redistributed load is transferred to the adjacent anchors on the 
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left (A2) and right (C2), rather than those above (B3) or below 

(B1). The largest increase, considering absolute terms, occurs 

at anchor A2, which increases by 0.95 kN, a 20% rise from its 

pre-stressing load of about 5 kN. However, in percentage 

terms, the largest increase is observed at anchor B3, which 

experiences a 24% increase from its pre-stressing force of 

approximately 2 kN (equivalent to an absolute increase of 

0.52 kN). The anchors located in the corners (i.e. A1, C1, A3 

and C3) play a minor role in the load redistribution. 

 

 

Figure 8. Failure simulation of anchor B2, adapted from [11]. 

In contrast, Figure 9 shows that the load redistribution 

following the failure of anchor A2 is more complex. The 

majority of the redistributed load is again transferred to the 

adjacent anchor on the right (B2), which increases by 1.23 kN, 

corresponding to a 28% increase from its pre-stressing load. 

However, anchor C2 experiences a significant load decrease of 

1.04 kN, or -24%, from its pre-stressing load. Similar to the 

load redistribution pattern of the failed anchor B2 (see Figure 

8), the maximum percentage increase occurs at the anchor 

directly above the failed element. In this case, anchor A3 shows 

a 50% increase from its pre-stressing load, which corresponds 

to a 0.60 kN increase. 

 

Figure 9. Failure simulation of anchor A2, adapted from [11]. 

As the measurement concept of the previously described tests 

only allowed for the evaluation of total force acting on the nine 

steel elements, future experiments need to conduct additional 

instrumentation to evaluate load redistribution effects in its 

entirety. It is therefore planned to integrate 576 Tactile Pressure 

Sensors to analyze the compressive stress distribution at the 

soil-structure interface. This will not only allow the 

experiments to be evaluated in a comprehensible way but also 

provides enough data to calibrate a numerical model of the 

setup. and to perform a robust back analysis. As a result, 

parameter and sensitivity studies can be carried out within the 

numerical model. Additionally, it is also possible to adjust the 

model scale if required. 

5 CONCLUSIONS & SUMMARY 

Preliminary tests of the presented Tactile Pressure Sensors 

(TPS) showed good sensor performance in terms of precision, 

with a maximum relative error of 3.69 % and a standard 

deviation of 4.01 kPa at a compressive stress of 100 kPa and 

even better results at 200 and 300 kPa. Based on these results, 

the TPS was further tested with soils to evaluate the 

applicability of the system for the planned experiments. On the 

one hand, these tests showed promising results, as soil grains 

up to a size of 2 mm could apparently be handled very well. On 

the other hand, larger soil grains unfortunately led to distortions 

in the measurements. As a result, in its current state, the stand-

alone TPS did not appear to be suitable for the mid-scale 

experiments with 4/8 mm rounded grains. Consequently, 

simulations of anchor failure in the mid-scale test facility were 

not yet carried out as planned, which meant that first trials were 
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monitored with only nine load cells. The performed simulations 

led to the observation of the following load redistribution 

mechanisms. 

Loads released by a failing anchor were mainly redistributed 

to the adjacent anchors, while others did not show significant 

increases in load. Furthermore, some anchors experienced 

significant changes in their pre-stressing loads. Considering the 

design process of such retaining structures and the 

determination of the required bearing capacity of the anchors, 

increases in anchor force of up to 50 %, as observed, may be 

critical for the safety assessment of such structures. 

Although these experiments have provided important 

information on the behavior of the anchor wall in the event of 

anchor failure, the test setup had some limitations that need to 

be addressed. In particular, the presented approach of 

monitoring experiments with only nine load cells considerably 

limits the possibilities for interpreting the tests, as the amount 

and resolution of measurement data is not sufficient to spatially 

evaluate load redistribution effects. Furthermore, these effects 

should ideally be evaluated in terms of stress, not force, at the 

entire soil-structure interface to observe mechanisms such as 

e.g. arching effects within the soil body. Although this cannot 

be achieved completely, even with the presented TPS, the 

approximate area coverage with 576 sensors is a considerable 

improvement compared to point measurements and may allow 

for an assumed stress field. 

Though the Tactile Pressure Sensors were not yet applicable, 

further trials are planned to prepare them for the upcoming 

experiments. To reduce the TPS’ sensitivity to grain size, the 

concept of an additional load distribution layer between the 

TPS and the soil will be focused. For this purpose, a variety of 

elastomers with different thicknesses and stiffnesses will be 

considered. The aim of these studies is to identify an elastomer 

which offers good load distribution effects if applied to 4/8 mm 

rounded grains but also allows for a good measurement 

resolution. Additionally, it will be important to gain more 

knowledge concerning the sensors’ performance, not only in 

terms of precision but also concerning trueness. Consequently, 

new testing rigs are in progress to allow for an appropriate 

testing procedure. As the TPS is fully characterized and the 

necessary load distribution layer is identified, the mid-scale 

testing will continue as planned. 
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ABSTRACT: The Balladelaan Bridge is a key bridge in the city of Amersfoort. The city has asked us to investigate the 

construction quality and remaining lifespan of this 5 span statically indeterminate cast-in-place concrete plate bridge, which was 

built in 1946. For this a pioneering long-term Structural Health Monitoring (SHM) initiative has been implemented in the form of 

a Field lab employing Smart Aggregates (SA’s) using Coda-Wave Interferometry (CWI), augmented with extensive temperature 

measurements, and a short-term measurement using Acoustic Emission (AE) sensors. This study represents an extensive 

application of Smart Aggregates for continuous monitoring of a bridge's structural health over an extended period. The study aims 

to address the suitability of SA’s for long term monitoring and accounting for environmental influences such as temperature and 

humidity on the wave speed in the concrete. Preliminary findings demonstrate a significant influence of temperature on wave 

speed readings, underscoring the necessity of temperature compensation in SHM analysis. After accounting for these 

environmental influences, the study generates critical insights into the bridge's integrity and performance. The outcomes of this 

research will not only enhance the understanding of the Balladelaan Bridge's condition but also establish a benchmark for future 

SHM projects utilizing Smart Aggregates and CWI technology.  

KEY WORDS: SHMII-13; Smart Aggregates; Structural Health Monitoring; Concrete; Bridges; Coda Wave Interferometry; 

Environmental Variability.

1 INTRODUCTION 

Concrete slab bridges designed and built in the post WWII era, 

are relatively sensitive to shear failure. This raises concerns 

about the structural capacity of these bridges and the associated 

remaining service life. 

Structural Health Monitoring (SHM) focuses in monitoring 

the variation of the structural performance a given structure 

with respect to selected dominant failure mechanisms. When it 

is properly designed, it enables asset managers to continuously 

track the evolution of the structural integrity of the bridge from 

the status without acquiring all the key information of the 

monitoring structure. This offers a significant advantage over 

traditional inspection methods, which often only involve 

periodic visual inspections.  

For this a new monitoring solution using Smart Aggregates 

(SA’s) has been installed on the Balladelaan bridge. SA sensors 

can be embedded or drilled into concrete to measure (changes 

in) stress and crack formation between sensor pairs. The 

installation of this field-lab has earlier been described by Cheng 

et al [1]. This paper describes the results of well over 1 year of 

continuous monitoring using SA’s.  

 

2 THE BALLADELAAN BRIDGE 

The bridge in the Balladelaan in Amersfoort was built in 1946. 

It is a cast-in-place concrete bridge with 5 spans, which 

together form a statically indeterminate deck system. The 

bridge has one bus lane (1 lane), a cycle path and a pedestrian 

path. The bridge was chosen for its suitability: 

 

• The multiple span configuration of the bridge allows to 

focus monitoring + data analysis on local response 

variations over time, as an indicator of damage. 

• Because there is no normal car traffic on the bridge except 

a bus with known schedule, there is more certainty 

regarding the traffic load on the bridge. This makes 

calibration of models easier. 

• Compared to new construction, lifespan extension with 

risk management by means of a monitoring system results 

in significantly lower costs and sustainability benefits. 

• The bridge represents many equivalent concrete bridges in 

the Netherlands, so the knowledge gained here can be used 

more widely.  

 

 

 
Figure 2-1 Side view of bridge (source: Google Streetview) 
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Figure 2-2 Top view of bridge (source: Google Maps) 

 

3 SENSOR AND MONITORING SYSTEM 

 

 Smart aggregates 

Smart aggregates (SA’s) are embedded piezoelectric sensors 

that can measure (changes in) stress and formation of cracks in 

concrete between two sensors using interferometry of waves 

through the concrete. An example of such a system is shown in 

Figure 4-5. They were first introduced by Song et al[3], 

designed for long term monitoring of concrete structures. These 

sensors are embedded within concrete structures. This can be 

prior to casting for new constructions or afterwards through a 

drilled hole. They generate high-frequency elastic waves and 

receive them within the concrete. The received wave signals are 

logged and eventually analyzed. There is a relation between the 

wave propagation velocity and the stress on the concrete. Also, 

there is a relation between the shape of the waves and the 

existing cracks in the concrete. Smart aggregates should be able 

to detect this.  

In a typical measurement, one SA functions as the transmitter 

while the remaining SA’s in the cluster act as receivers. When 

a measurement begins, the measurement order is assigned 

remotely, and a high-voltage electric pulse is sent to the 

transmitter to initiate vibration. This electric pulse is converted 

into a mechanical wave that propagates through the concrete. 

Upon reaching the receivers, the wave signals are converted 

back into electrical signals, recorded as 1D time-series data, 

and stored locally at the data station. 

 

 Temperature sensors 

Due to the static indeterminate structure of the bridge, it is 

expected that vertical temperature gradients due to sunlight will 

significantly influence the internal stress distribution in the 

bridge. The wave velocity in concrete is also temperature 

dependent. As these 2 factors will influence the signals 

measured by the smart aggregates, a significant amount of 

temperature sensors was installed to investigate this 

relationship, and in a later stage, compensate for this. Two 

systems were used in this particular setup: 

 

1  PT1000 sensors. These are resistance-based sensors. They 

require a relatively short cable to a sensitive analog-to-

digital converter.  

2 DS18B20 sensors. These are digital sensors that support 

longer cables and can be read from a cheap 

microcontroller. 

 

Both systems have a resolution of 0.01°C, and have been pre-

calibrated in the lab to within 0.1°C accuracy. Part of this 

project was also to test the durability and reliability of both 

kinds of temperature sensors.  

 

 Acquisition system 

The monitoring system comprises a data acquisition (DAQ) 

system for signals received by the SA’s, an ARM embedded 

board for temperature measurements, and a 4G router with a 

SIM card for communication. The DAQ system, designed and 

patented by Delft University of Technology (TU Delft), is 

optimized for ultrasound-based monitoring of concrete 

structures. 

The DAQ system includes a pulser, pre-amplifiers, and 

multiplexers. Thanks to the specialized circuit board design, the 

pulser can generate square pulses with a magnitude of up to 300 

V without interfering with the received signals. For this project 

a single square-wave pulse with a duration < 20 µs was used. 

 The data acquisition system supports a sampling rate of 3 

MHz, enabling the recording of wave signals with frequencies 

up to 300 kHz without aliasing or loss of dynamics. This is 

well-suited for the requirements of ultrasound-based concrete 

monitoring applications. Each measurement lasts for 4 

milliseconds from the moment the transmitter receives the 

electric pulse. 

 

4 INSTALLATION AND DATA PROCESSING 

 

 Sensor locations 

Sensors have been installed in both the center span, and an 

end-span of the bridge. Sensor positions are shown in Figure 

4-1 to Figure 4-4. Distributed data acquisition systems are 

below the bridge with a main station including 4G router on 

shore.  

The distance between the top and bottom SA’s in each hole 

is fixed at 300 mm. During installation the top SA’s are 

consistently positioned 175 mm beneath the top surface of the 

bridge slab, while the bottom SA’s are set 475 mm below the 

top surface.  

Sensors are grouped in three clusters of 3-4 holes, with 2 

sensors per hole. The first cluster (hole A-D) is positioned to 

detect flexural crack development in midspan, which is crucial 

for detecting bridge flexural failure. The second (E-H) monitors 

stress changes or crack opening at intermediate supports. The 

third cluster (I-K) is placed to detect the initialization or 

progression of diagonal cracks in shear critical zones.  
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Figure 4-1 Top view SA-sensor locations center span 

 

 

Figure 4-2 Side view SA-sensor locations center span 

 

 

Figure 4-3 Top view SA-sensor locations end span 

 

 

Figure 4-4 Side view SA-sensor locations end span 

 

 

 Installation process 

Sensor preparation was conducted at TU Delft. SA’s were 

affixed to copper wires using glue to ensure their alignment 

with the specified orientation and spacing, as illustrated in 

Figure 4-5. At select locations mentioned in Section 4, 

temperature sensors were also glued adjacent to the SA’s on the 

copper wires to measure temperatures in close proximity to the 

sensor positions, as depicted in Figure 4-6. 

The entire installation process followed these steps: 

 

• Determining the rebar layout using a radar-based 

rebar detector. 

• Identifying drilling locations based on the rebar 

layout. 

• Drilling holes at the designated sensor locations 

• Installing sensors into the drilled holes 

• Filling the holes with high-strength mortar 

• Installing the data acquisition systems and organizing 

cables 

• Installing the main station on the bank. 

 

 

Figure 4-5 SA sensor at lab. 

 

 

Figure 4-6 SA sensor in the field with added temperature 

sensors 

 

 Wave velocity processing 

Changes in wave velocity are related to changes in stress-

state of the concrete. The wave-velocity change can be 

determined by comparing the two signals in time. When the 

velocity changes are small (which we can assume here), we can 

assume a linear relation between travel time and wave velocity:  

 
𝑑𝑣

𝑣
= −

𝑑𝑡

𝑡
 

 

This means that an increase in travel time is directly related 

to a decrease in velocity. We use the stretching technique to 

find this relative shift in time between two signals. With this 

technique the new signal is stretched in the time domain, 

relative to 𝑡0, which starts at the departure of the wave from the 

sending sensor, such that it fits the other signal (reference 

signal). Then this shift of the time axis between the signal and 

the reference signal is equal to the change in velocity.  

With the stretching technique, we calculate correlation 

coefficients of windowed signals for the different delays.  

𝐶𝐶(𝑡𝑐, 𝑇, 𝜖) =  
∫ 𝑢(𝑡)𝑢′(𝑡(1 − 𝜖))𝑑𝑡

𝑡𝑐+𝑇

𝑡𝑐−𝑇

√∫ 𝑢(𝑡)2 𝑑𝑡
𝑡𝑐+𝑇

𝑡𝑐−𝑇
√∫ 𝑢′(𝑡(1 − 𝜖))

2
𝑑𝑡

𝑡𝑐+𝑇

𝑡𝑐−𝑇

 

 

𝑡𝑐 is the center of the time window, 2𝑇 is the duration of the 

time window and 𝜖 is the stretching factor. When there is an 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-174 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1161 

uniform velocity change in the medium, one can assume that  

the correlation coefficient is maximum at the stretching factor 

that corresponds to the relative velocity change.  

The stretching window can be chosen in different ways. It 

depends on the wave frequency: a window that is too short will 

not contain enough information. The window should also not 

be too large, because in that case you can no longer assume a 

constant time shift within the stretching window.  

In this research, we limited ourselves to direct waveforms. 

These are the waves that travel in a straight line from one sensor 

to the other. One can assume that this is mainly the longitudinal 

/ compression wave, because their wave speed is higher. 

Therefore, we selected a window containing only the first part 

of the signal, which contains approximately 2 cycles.  

 

5 MEASUREMENT RESULTS 

 

 Initial measurements 

Figure 5-1 presents a typical trace in the time domain from a 

measurement obtained from SA’s. Similar patterns are 

observed for other sensor pairs but are not displayed here. The 

data shows a high signal to noise ratio, indicative of high 

quality. 

 

Figure 5-1 Trace of 2 sensor pairs 

 

Figure 5-2 shows how on sunny days, a large temperature 

gradient between the top and bottom of the deck is observed, 

where the top of deck heats (and cools) faster than the bottom 

of the deck, which lags behind. All top temperatures show 

similar temperatures, with 1 sensor deviating. This sensor is on 

the end span, where the deck has some shade from neighboring 

trees.  

 

Figure 5-2 Temperatures in top and bottom of slab over 7 

days 

 

 Wave velocity change 

The resulting velocity change over time for a selected period 

is shown in the figure below. This period is chosen because it 

shows a large fluctuation in the measured temperature. The 

calculations are performed for two sensor pairs: A_top to D_top 

(Figure 5-3) and B_top to C_top (Figure 5-4). The velocity 

change is plotted together with the mean temperature measured 

in the bridge in this cluster by the temperature sensors.  

 

 

Figure 5-3 Temperature and velocity change A-D 

 

Figure 5-4 Temperature and velocity change B-C 

 

The velocity changes in Figure 5-3 and Figure 5-4 are 

obtained by stretching a measurement signal until the 

maximum correlation between this signal and a predetermined 

previous signal is obtained. The resulting correlation 

coefficients as shown in Figure 5-5 are Figure 5-6  are an 

indicator of signal quality and may also indicate crack-opening. 

It can be seen that for the period shown the correlation 

coefficient is high (well over 0.8), indicating no significant 

crack change or deterioration of measurement equipment. 
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Figure 5-5 Correlation Coefficient A-D 

 

Figure 5-6 Correlation Coefficient B-C 

 

Figure 5-3 implies a correlation between the velocity change 

of sensor pair A-D (and therefore the stress state of the 

material) and the temperature. This correlation is also seen in 

the scatter from Figure 5-5. It shows that with a higher 

temperature, there is an increase in the velocity.   

This relation can also be observed in sensor pair B-C, but 

with an approximately 4-hour delay. After shifting the signal 

by four hours, a strong correlation is found, as shown in Figure 

5-8.  

The relation between temperature and velocity change and 

the accompanying time shift is not easily understood, as the 

velocity change is not only directly related to average concrete 

temperature. Due to the 5-span static-indeterminate system, the 

temperature gradients also induce stress which induces a 

velocity change. This will be different in the different 

directions that the sensor pairs have (A-D and B-C). Moreover, 

there is an overall temperature gradient within the bridge that 

fluctuates over time. The delay might be explained by the 

combination of different temperatures in the bridge. Further 

work will be to further analyze the temperature-induced 

changes in wave velocity.  
 

 

Figure 5-7 Temperature vs Velocity change A-D 

 

Figure 5-8 Temperature vs velocity change B-C after 4hr 

shift 

 Long term stability 

The temperature sensors perform as expected. During well 

over one year of measurements, the concrete temperature has 

varied between -2.62°C and +42.20°C, see Figure 5-9. 

 

Figure 5-9 One year of temperature measurements 

 

The digital DS18B20 sensors were unavailable for a short 

period of time due to a broken microcontroller, but this was 

easily fixed. In general, both types of sensors seem suitable for 

long term monitoring. 

The SA-aggregates also perform well. After approximately 

17 months of measurements each SA has sent and received 

approximately 500 days*6 daily runs*7 receiving SA’s * 10 

stacks = 210000 pulses. The sensors have been exposed to both 

freezing (-2.62°C) and high (+42.20°C) temperatures, without 

failure. Proving the system is viable and stable for long-term 

measurements. Due to the nature of the system, no calibration 

of the built-in sensors is needed (or possible), while other 

sensor types may significantly degrade over time impacting 

repeatability. 

As mentioned in 4.3 the change in wave velocity is calculated 

by finding the time stretching factor that results in maximum 

correlation coefficient between the current measurement and a 

specific previous measurement. The specific previous 

measurement may (in general) be chosen in two ways: 

 

1. A(n average of a set of) reference measurement(s) just 

after installation is taken as the reference signal for all 

future measurements. 
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2. Each measurement is compared against its direct 

predecessor (in our case 4 hours earlier), or an average 

of a few direct predecessors. 

 

After one year of measurements these two methods may be 

compared. Method 1 is shown in Figure 5-10. Here specific 

drops can be seen in early January for sensor pair A-D, and 

early March for pair B-C. In the first quarter of 2025 the wear-

layer on the deck was replaced in multiple stages, which may 

have directly or indirectly caused this drop. The lower 

correlation coefficients may also negatively affect the accuracy 

of the time stretching. 

 

 

Figure 5-10 Correlation coefficient relative to first 

measurement 

 

To obtain the optimal time stretching high correlation 

coefficients are preferred. This may be achieved by method 2, 

comparing each signal to its direct predecessor. In our case 4 

hours earlier, as shown in Figure 5-11. Here high coefficients 

are obtained for most of the year. But during days with large 

temperature changes and accompanying temperature gradients 

(March-October as shown in Figure 5-9) the correlation 

coefficients also show variation. This variation is larger than it 

was in previous periods with similar temperature gradients, 

such as August 2024. A possible explanation might be that the 

replacement of the wear layer has induced (micro-)cracking in 

the high-strength mortar that was used to fill the drilled holes 

of the SA’s. 

 

 

Figure 5-11 Correlation coefficient to 4hrs earlier 

 

Both methods have their own advantages and disadvantages. 

Method 2 shows consistently high correlation coefficients, 

resulting in accurate stretch factors. But information about slow 

progressive changes over time are lost. Method 1 gives 

information relative to date of installation, but if the system is 

changed, correlation coefficients drop, and the stretch factors 

may be less accurate.  

A solution may be found by combining both methods. Use 

method 1 until a significant drop in correlation coefficient is 

visible, indicating a change in the system which might be 

indicative of structural damage. Mark this point in time, and 

then apply all future processing relative to just after this event.  

 

   
 

 

Figure 5-12 Correlation coefficient relative to previous event. 

 

An example is shown in Figure 5-12. For 2024 the graphs are 

identical to method 1 as shown in Figure 5-10. For sensor pair 

A-D a sudden and significant change occurred in January 2025, 

which is marked with a vertical dashed line. Just after this 
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change a new reference measurement was selected, and the 

correlation coefficients after this time are calculated relative to 

this new reference. There’s also a vertical dotted line in early 

May 2025. On this day the triggering system was reconfigured 

to improve time-accuracy. Therefore all measurements after 

this reconfiguration are compared to the first measurements 

since reconfiguration. 

With this new processing it is clear that the low correlation 

coefficients of Figure 5-10 are not due to sensor degradation, 

since a new reference measurement can significantly improve 

the results. It is likely that the sudden drops in correlation 

coefficients are caused by structural changes in the bridge, and 

may be indicative of damage. 

Further research is needed to determine the cause of some the 

low correlation outliers. A load tests with a known vehicle 

might be informative to relate the calculated stretch-

coefficients to stress & strain. Further modelling of measured 

temperature gradients with a heat-flow model might also give 

a better understanding of the internal stress due to temperature 

gradients. 

 

6 CONCLUSION 

After well over a year of measurements, both types of 

temperature sensors remain operational. Suggesting there is no 

need for expensive analog temperature sensors and related 

cabling and AD converters. Cheap DS18B20 are accurate and 

reliable. 

The Smart-Aggregate system has also performed well. While 

SA’s are mainly used in short-term tests in the lab, our results 

show a life expectancy of at least 210 thousand pulses 

transmitted and/or received.  

Work on the wear-layer of the deck is clearly visible in the 

correlation coefficient of sensors that are placed well below 

deck. Suggesting the sensors work well for long-term 

monitoring of structural changes. After the replacement of the 

wear-layer the daily variation in correlation coefficients has 

increased.  

The selection of the reference measurement for stretching 

calculation has a significant influence on the resulting 

correlation coefficients and stretch factors.  Using a fixed 

baseline is unfeasible because the correlation coefficient slowly 

degrades. Using a moving baseline however decreases insight 

in progressive changes. It is suggested to use a piecewise 

approach, where significant degradation of the correlation 

coefficient triggers a new reference measurement. 

Results are strongly influenced by temperature, and this 

requires further study to separate the effects of temperature 

gradients from effects due to structural changes. It is advised to 

study this using a (simpler) statically determinate structure, 

where temperature gradients only result in strains, and not in 

stress. In this way the phenomena can be decoupled. 
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ABSTRACT: This research proposes an approach for detecting damage in composite structures using the cost-effective 

electromechanical (EM) impedance method. By employing a piezoelectric transducer driven at high frequencies, the technique 

facilitates localized damage identification by tracking changes in EM impedance signatures that correspond to alterations in the 

structural properties caused by damage. A numerical model of a composite plate with a surface-mounted piezoelectric patch is 

constructed to simulate EM impedance responses under different damage conditions within the composite layers. Damage is 

represented by localized reductions in stiffness, simulating common failure modes such as delamination or matrix cracking. The 

simulation results indicate that the EM IMPEDANCE response is highly sensitive to damage within the composite plate across a 

wide frequency range. 

KEY WORDS: Damage detection; Composite plate; Impedance technique; PZT; SHM

1 INTRODUCTION 

Composite materials are increasingly adopted across various 

critical engineering sectors, including aerospace, marine, wind 

energy, and automotive, due to their exceptional strength-to-

weight ratio, resistance to corrosion, and versatility in design. 

Despite these advantages, the complex, heterogeneous, and 

anisotropic characteristics of composites pose significant 

challenges for damage detection, as many types of damage such 

as delamination, matrix cracking, and fiber breakage typically 

begin within the material and remain hidden from surface 

inspection. 

To maintain continuous health assessment of composite 

structures, a variety of structural health monitoring (SHM) 

strategies have been investigated, ranging from vibration 

analysis and acoustic emission techniques to guided wave 

inspection and piezoelectric-based sensing methods. Among 

these, the electromechanical (EM) impedance approach has 

emerged as a particularly effective tool for damage detection, 

especially in civil engineering systems [1]. This technique 

leverages the capabilities of a compact and economical 

piezoelectric sensor, which is directly attached to the surface of 

the structure and driven by high-frequency voltage inputs. The 

resulting high-frequency actuation enables the system to 

monitor local variations in structural behavior with high 

resolution, facilitating real-time identification of damage [2]. 

When damage occurs, it alters the local mechanical 

properties such as stiffness and damping, which in turn induces 

detectable changes in the impedance spectrum of the sensor. 

The short wavelengths associated with ultrasonic excitations 

make the method highly responsive to subtle or early-stage 

damage [3]. Additionally, EM impedance sensing is relatively 

immune to ambient low-frequency disturbances, enhancing its 

reliability in environments characterized by complex or 

fluctuating dynamic conditions. This resilience and sensitivity 

make the EM impedance method a strong candidate for 

practical SHM deployment in composite systems in complex 

real-world conditions.  

This work presents a numerical study to evaluate the 

capability and sensitivity of the EM impedance approach for 

damage detection in composite structures. Utilizing a detailed 

finite element model developed in ABAQUS that incorporates 

accurate material characteristics and simulates local damage 

effects, the study assesses the detectability of different damage 

severities. The findings contribute valuable understanding of 

the practical applicability of this cost-efficient SHM technique 

and set the stage for future experimental verification. 

2 COST-EFFECTIVE EM IMPEDANCE METHOD 

As shown in Fig. 1, a standard EM impedance measurement 

setup typically consists of a piezoelectric transducer, such as a 

PZT, bonded to the surface of the structure and an impedance 

analyzer that drives the transducer while recording its 

impedance response.  

 

 

Figure 1. The EM impedance technique for composite plate 

 

When a harmonic voltage V is applied across a range of 

frequencies ω, the transducer undergoes mechanical vibrations 

due to the piezoelectric effect, thereby exciting the host 

structure (Park et al., 2003). The measured EM impedance 

response depends on the combined effects of the transducer’s 

intrinsic impedance Za and the mechanical impedance of the 

structure Zs, and it varies as the structural condition changes. 

For a simplified one-dimensional model, the theoretical EM 

impedance response Z can be described by the following 

relationship (Park et al., 2005): 
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where 
33

ˆT is the complex dielectric permittivity, and d31 is the 

piezoelectric coupling coefficient; ha, la, and ta represent the 

width, length, and thickness of the transducer, respectively; 

11
ˆEY denotes the Young’s modulus of the transducer; η 

corresponds to the structural damping loss factor of the 

transducer; and i is the imaginary unit. 

The EM impedance response is inherently sensitive to the 

mechanical properties of the host structure, such as its mass, 

stiffness, and damping characteristics. When damage occurs, 

these mechanical parameters are altered, which in turn leads to 

measurable variations in the EM impedance signal. By 

monitoring such changes using the damage metric, it is possible 

to reliably detect damage within composite materials (Fig. 1). 

Furthermore, due to the short wavelengths associated with 

high-frequency excitation, EM impedance measurements are 

particularly adept at identifying small-scale defects and early-

stage damage in composite structures. 

 

3 NUMERICAL STUDY 

A detailed finite element (FE) simulation of a clamped 

composite laminate was carried out using ABAQUS to 

investigate the EM impedance response, as shown in Fig. 2. 

The FE model replicates an experimental model of composite 

plate with dimensions of 290 mm × 200 mm × 3 mm, rigidly 

fixed along all four edges, as depicted in Figs. 2a and 2b [4]. 

The laminate structure consists of 12 layers of T700/M21 

carbon/epoxy, arranged in a symmetric stacking sequence of 

[45/–45/0/90/0/90]S, as shown in Fig. 2c.  

 

Figure 2. FE modeling 

 

A square piezoelectric patch measuring 10 mm × 10 mm × 

0.5 mm is surface-mounted at the center of the plate via a thin 

adhesive film of 0.04 mm thickness [4]. As shown in Fig. 1b, 

the composite laminate is discretized using 8-node continuum 

shell elements (SC8R), while the adhesive layer is represented 

with 8-node linear brick elements (C3D8). The bonded 

piezoelectric transducer is modeled using 8-node coupled-field 

piezoelectric elements (C3D8E), capable of simulating 

electromechanical interactions. 

The material parameters for both the piezoelectric patch and 

adhesive layer are adopted from established literature [4], and 

a structural damping ratio of 0.02 is incorporated to simulate 

energy dissipation. To evaluate the EM impedance response, a 

sinusoidal voltage excitation of 1 V is applied across the 

piezoelectric patch, specifically, the upper electrode is 

subjected to the harmonic signal V(ω), while the lower 

electrode is grounded. The potential distribution across the 

transducer’s thickness is shown in Fig. 2d. The frequency 

sweep defined in ABAQUS spans from 10 kHz to 30 kHz with 

a frequency resolution of 50 Hz to capture relevant impedance 

dynamics. 

To assess damage sensitivity, a localized defect scenario is 

introduced: a 10 mm × 10 mm square damage zone positioned 

85 mm from the piezoelectric transducer. Variations in damage 

severity are simulated by incrementally reducing the stiffness 

of the plies to 0.1 Pa within the defect region, mimicking 

progressive internal damage such as delamination or matrix 

cracking.  

 

 

Figure 3. Real part of the EMI response under damage 

 

 

Figure 4. Damage detection results using RMSD and CCD 

metrics 

 

As illustrated in Fig. 3, the EM impedance spectra recorded 

between 10 kHz – 30 kHz display multiple well-defined 

resonance peaks. Upon the introduction of damage to the 
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composite plate, these peaks exhibit noticeable shifts, 

predominantly toward lower frequencies, as the number of 

compromised plies increases. This frequency shift reflects a 

decline in local stiffness and a modification of the structure’s 

dynamic behavior. 

To systematically capture these changes, statistical damage 

indices, specifically, the root-mean-square deviation (RMSD) 

and cross-correlation deviation (CCD) [1] are employed. These 

indices are calculated across ten 2-kHz-wide sub-bands (see 

Fig. 4), enabling localized frequency analysis and heightened 

sensitivity to subtle damage. 

The outcomes presented in Fig. 4 clearly illustrate that both 

RMSD and CCD values increase significantly under damaged 

conditions, with the magnitude of these indices growing in 

proportion to the severity of the damage. This trend reinforces 

the sensitivity of the EM impedance technique not only for 

detecting the presence of structural degradation but also for 

quantifying its extent. Such capability is critical in composite 

materials, where damage often initiates internally and may not 

be easily visible through traditional inspection methods. 

Moreover, the identification of multiple damage-sensitive 

frequency sub-bands provides additional insight into the 

damage localization process. These sub-bands exhibit distinct 

impedance shifts, suggesting that the structural response to 

damage is frequency-dependent. By isolating and analyzing 

these sub-bands individually, the detection resolution is 

substantially improved. This is particularly valuable in real-

world SHM scenarios where environmental and operational 

variability may obscure global trends in the impedance 

spectrum. The sub-band approach thus offers a practical means 

to enhance robustness and reduce false positives in damage 

detection systems. 

4 DISCUSSIONS AND CONCLUDING REMARKS 

This study presents a preliminary numerical investigation into 

a low-cost SHM approach for composite structures using the 

EM impedance technique. A FE model of a clamped composite 

plate with a bonded piezoelectric transducer is developed to 

simulate EM impedance responses under different damage 

conditions, introduced as localized stiffness degradation at the 

ply level. To enhance sensitivity, the analysis applies frequency 

sub-band decomposition combined with RMSD and CCD 

damage indices. Results show that the EM impedance 

signatures are highly responsive to structural damage, with 

clear impedance shifts and increasing index values correlating 

with damage severity. These findings validate the effectiveness 

of combining EM impedance-based sensing with sub-band 

analysis and statistical damage indices.  

The EM impedance technique offers a low-cost and sensitive 

approach for real-time damage detection, particularly suited to 

laminated composite structures in aerospace panels, and turbine 

blades, where internal damage is often undetectable by surface 

methods. Its compact size and high-frequency resolution make 

it ideal for embedded sensing in such systems. 

While the current numerical model assumes fixed boundary 

conditions to isolate damage effects, real-world applications 

may involve boundary variability due to thermal or operational 

effects. Future work will therefore include parametric studies 

accounting for changes in boundary conditions, plate 

deformation, and internal stress states, to assess the robustness 

of EM impedanace-based damage indicators under practical 

uncertainties. 

Future efforts will also focus on experimental validation to 

confirm the numerical findings under realistic conditions. 

Parametric studies involving different layups, damage types, 

and sensor placements will help generalize the method. 

Additionally, integrating EM impedance features with machine 

learning could improve damage classification and 

quantification. Extension to complex geometries and real-

world structures is also planned to support practical SHM 

applications. 
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ABSTRACT: Cross-sea bridges are crucial transportation links, ensuring smooth maritime traffic and protecting public safety and 

property. However, ship collisions pose a serious threat, potentially causing extensive damage to bridges, disrupting traffic, 

polluting the environment, and leading to casualties. Therefore, it is extremely important to develop methods for identifying and 

evaluating damage to cross-sea bridges caused by ship collisions. A study has been conducted utilizing a combined approach of 

numerical simulation and experimental validation to analyze the structural dynamic responses of bridges subjected to ship 

collisions. Based on the insights gained, a structural damage assessment method combining response surface method and Monte 

Carlo simulation has been introduced. This method takes into account factors such as the impact height and kinetic energy during 

ship-bridge collisions, establishing a comprehensive evaluation index system. This approach offers a holistic view of the damage 

state of bridges subjected to ship collisions, providing a scientific foundation for subsequent emergency response and repair 

strategies. Ultimately, the research aims to mitigate the adverse effects of ship collisions on the structural integrity of cross-sea 

bridges. 

KEY WORDS: Ship-bridge Collisions; Damage Assessment; Impact Test; Response Surface Method. 

1 INTRODUCTION 

Currently, the safety issues related to bridge ship collisions 

have garnered widespread attention. However, relevant 

research primarily focuses on impact force estimation and 

studies on bridge anti-collision facilities (Chen et al., 2022; 

Nian et al., 2016). However, previous studies have struggled to 

capture the damage evolution characteristics of bridges under 

varying ship kinetic energy impacts. Conducting fragility 

analysis for bridge ship collisions can predict the probability of 

structural damage at various levels, providing practical 

engineering value for structural design, reinforcement, and 

maintenance decision-making. 

The seismic fragility analysis of bridges has garnered 

extensive attention from scholars both domestically and 

internationally. Song et al. (2024) conducted a comprehensive 

brittleness assessment of specimen viaducts under various 

ground motion excitation schemes in order to evaluate the 

impact of modeling detail and analysis complexity on 

estimating seismic performance. Wang et al. (2025) established 

an analysis model of the degradation state of a large cantilever 

cap bridge, and studied the seismic vulnerability of the bridge 

structure under different service times based on the OpenSees 

platform. Li et al. (2025) proposed a copula-based approach 

proposed for seismic vulnerability analysis by incorporating the 

uncertainty of scour depth into the assessment of bridge seismic 

performance. However, research on the fragility of bridges 

under ship collisions is very limited. Kameshwar et al. (2018) 

developed a meta-model to estimate the force requirements and 

vulnerability of bridge pillars under barge impact. Fu et al. 

(2024) proposed a new brittleness assessment framework based 

on the residual bearing capacity of piers. Zhong et al. (2024) 

propose a fragility based framework to determine the most 

unfavorable position of a bridge column for collision with a 

barge. 

However, there is currently no widely accepted and 

convincing damage indicator for assessing pier damage under 

ship collisions. Fan et al. (2021) proposed a bridge ship 

collision vulnerability analysis method combining a simplified 

finite element model with a response surface agent model, and 

obtained the bridge vulnerability curves under two types of 

typical ship impacts. In recent years, some scholars have also 

applied the response surface method to the parameter analysis 

and reliability analysis of bridges under impact, significantly 

improving computational efficiency. Fan et al. (2018) 

conducted an extensive parametric study using the response 

surface method to investigate the effects of reinforcement ratio, 

UHPFRC sheath thickness, UHPFRC strength, and initial 

impact velocity. Duan et al. (2024) proposed an efficient hybrid 

response surface method to study the system reliability of pile-

reinforced slopes. 

In this study, the stress-strain behavior at the base of the pier 

under ship impact was investigated through a combined 

experimental and finite element comparative analysis. Based 

on the response surface, a new bridge impact damage index is 

proposed and applied to bridge brittleness assessment. By 

establishing a full-scale finite element model of the bridge, a 

multi-factor ship collision simulation analysis was conducted. 

Fragility curves of the pier under different influencing factors 

were obtained, providing a reference for the fragility analysis 

of bridges subjected to ship collisions. 

2 EXPERIMENTAL OVERVIEW 

The non-navigational spans of the prototype bridge are 60-

meter span continuous concrete girder bridges, with the main 

body of the bridge constructed using marine-grade concrete 
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C40. Based on the scale ratio, the overall schematic diagram of 

the bridge model structure, as shown in the Figure 1, was 

established by fully considering the interaction relationships 

between the pile caps, pile foundations, bearings, and girder 

segments. Hollow circular steel pipes with a diameter of 89 mm 

and a wall thickness of 2.5 mm were used to simulate the pile 

foundations. The pile length was determined to be 75 cm using 

the 8-times equivalent pile diameter method, and the piles were 

embedded into the pile cap to a depth of 5 cm. 

 
Figure 1. The dimensional drawing of the scaled full-bridge 

model (mm). 

 

To simplify the design, the ship model consists of a bow 

model and a stern model, connected by a force sensor in 

between. Since the stern model does not directly contact the 

bridge model during the collision process, it is primarily 

responsible for accommodating sand and stone ballast to 

achieve different mass conditions. The bow model mainly 

comprises an internal structure and an external shell structure. 

The external shell structure is constructed by assembling 1 mm 

steel plates. Given the difficulty in replicating every detail of 

the actual bow's internal structure, the internal structure of the 

bow is composed of two equivalent supports, which are 

fabricated by welding steel bars with a diameter of 6 mm. 

 
(a) Top view 

 
(b) Side view 

Figure 2. The dimensional specifications of the scaled bow 

model (mm). 

Considering the test site conditions, a pendulum-type loading 

device powered by gravitational acceleration was employed. 

The frame of the loading device was constructed by welding I-

beams, and its base was securely anchored to the ground trough 

using anchor bolts. A movable beam was installed at the top of 

the frame, equipped with universal wheels. The ship model was 

suspended at a pre-calculated height and released by a 

triggering mechanism. Utilizing gravitational acceleration, the 

ship model attained a certain horizontal velocity upon impact 

with the bridge model. The pile foundations were fixed to the 

steel plates in the ground trough using clamps and further 

secured with bolts, as illustrated in Figure 3. 

 
Figure 3 Scaled bridge collision test. 

 

The ship-bridge collision process involves complex 

elastoplastic deformation of the bow. As the velocity increases, 

the deformation of the bow becomes more significant. This 

study conducted collision tests at two different heights, with 

impact points located 250 mm and 350 mm above the base of 

the pier, respectively. Analyzing the time-history curves of 

impact forces under different impact velocities at these two 

heights reveals that the change in impact location has almost no 

influence on the impact force. This is because the magnitude of 

the impact force is primarily determined by the contact area, 

and the change in impact location does not affect the contact 

area, as illustrated in Figure 4. Moreover, when the impact 

velocity exceeds 1.5 m/s, the peak impact force increases very 

slowly with further increases in velocity. This phenomenon is 

mainly attributed to the internal structure of the barge bow. 

Additionally, the stiffness of the barge bow is relatively high 

compared to other types of bows, resulting in the maximum 

impact force being reached almost immediately at the onset of 

collision. 

 
(a) 250 mm 
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(b)350 mm 

Figure 4. Time-history curve of ship-bridge collision force 

 

After being subjected to impact, fine cracks appeared at the 

base of the pier. The cracks generated under the most critical 

impact condition are shown in Figure 5. At this stage, the cracks 

have not yet penetrated the entire cross-section of the pier, and 

their widths remain very small. Additionally, the strain values 

at the base of the pier caused by impacts at two different heights 

with a velocity of 2.5 m/s were recorded, as presented in Table 

1. 

 
Figure 5. Comparative analysis of damage at the base of 

bridge piers 

 

When the impact velocity is the same, a higher impact height 

results in greater strain. Larger strains are more likely to induce 

cracks at the base of the pier, indicating that a higher impact 

location increases the likelihood of damage to the pier base. 

 

Table 1. Strain data at the base of bridge piers 

Impact velocity 

(m/s) 

Height of impact 

(250 mm) 

Height of impact 

(350 mm) 

2.5 113 171 

 

 
(a) 250 mm 

 
(b) 350 mm 

Figure 6. Stress simulation at the base of bridge piers 

 

A finite element model corresponding to the experimental 

model was established, and the stresses at the base of the pier 

under two impact heights with a velocity of 2.5 m/s were 

calculated, as shown in Figure 6. The strain values obtained 

from the experiments were converted into stress values, and the 

results showed minimal discrepancies compared to the finite 

element results. This indicates that the finite element modeling 

approach in this study aligns well with the actual conditions. 

When the stress at the base of the pier exceeds the tensile 

strength of the concrete, cracks begin to form. As the stress at 

the base gradually increases, the cracks progressively penetrate 

the entire cross-section of the pier. According to the Chinese 

building industry standard Code for Design of Concrete 

Structures (GB 50010-2010), the standard tensile strength of 

reinforced concrete can be calculated. When the stress at the 

base exceeds the standard tensile strength of reinforced 

concrete, it indicates that the pier has suffered severe damage. 

3 DAMAGE CLASSIFICATION THEORY 

The Box-Behnken Design (BBD) method was employed for 

sampling value calculations. Taking a three-factor design as an 

example, the distribution of sampling points is illustrated in 

Figure 7. Here, E represents the kinetic energy during ship 

impact, h denotes the impact height, and fc indicates the 

concrete strength grade. Subsequently, an actual ship-bridge 

collision model was established, and sampling value 

calculations were performed using the Box-Behnken Design. 

The obtained data were fitted to a surface, yielding the stress 

data at the base of the pier under the influence of the three 

factors in ship-bridge collisions. 

 
Figure 7. Sampling points for Box-Behnken Design 

 

In the bridge ship collision fragility analysis studied in this 

paper, parameter A is defined as the impact kinetic energy of 

the ship. Specifically, the ship collision fragility is defined as 

the conditional failure probability that the structure reaches or 

exceeds a certain limit state (Ls) when subjected to a ship 
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collision with impact kinetic energy A equal to E, as shown in 

Equation (1). 

( )RF a P Ls A E=  =                            (1) 

The polynomial response surface surrogate model is a 

commonly used form of surrogate model in response surface 

analysis. In this study, a polynomial surrogate model is 

employed to fit the stress at the base of the pier caused by barge 

impact. The impact force generated by the barge collision 

increases with the kinetic energy of the ship. However, when 

the kinetic energy exceeds a certain threshold, the growth of the 

impact force slows down. Consequently, the tensile stress at the 

base of the pier follows the same trend, necessitating a 

segmented calculation approach for the tensile stress. Here, σt 

represents the tensile stress at the base of the pier, E0 denotes 

the critical segmentation point of kinetic energy, and EC 

represents the maximum kinetic energy used in the calculations. 
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The fragility curve of the pier is obtained by performing 

Monte Carlo sampling on the normally distributed random 

variable fc and plotting the failure probabilities corresponding 

to different kinetic energies, thereby generating the fragility 

curve. The probability distribution of C30 concrete strength is 

shown in Table 2. 

 

Table 2 Distribution of concrete strength grades 

Concrete 

strength 

Nominal 

value 

Mean 

value 

Coefficient of 

variation (%) 

fc 30 MPa 30 MPa 15 

4 FAILURE PROBABILITY CALCULATION 

A finite element model of the actual bridge was established, 

with the pier having a width of 3 m, a length of 6.5 m, and a 

height of 20 m. The hull was modeled using the AASHTO 

barge model. A comparison of the impact force and the tensile 

stress at the pier base under different ship kinetic energies 

reveals that the trends of change in impact force and tensile 

stress are remarkably similar. Furthermore, the installation of 

collision protection devices was considered to further verify 

whether the trends of change in impact force and tensile stress 

remain consistent. 

 
Figure 8. Full size bridge collision model 

The results indicate that the trends of change in the impact 

force caused by ship-bridge collisions and the tensile stress 

generated at the pier base are consistent. Even with the addition 

of protective devices, this regularity remains unaffected. 

Therefore, the trend of change in barge impact force with 

respect to ship kinetic energy can be used to describe the trend 

of change in tensile stress with respect to ship kinetic energy. 

Moreover, both the peak impact force and the peak tensile 

stress increase with the rise in ship kinetic energy, but the trend 

of change exhibits a segmented pattern. When the ship's kinetic 

energy is below a critical threshold, the trends of change in 

impact force and tensile stress are rapid. Once the ship's kinetic 

energy exceeds the critical value, the trends of change in impact 

force and tensile stress become more gradual, as illustrated in 

Figure 9. 

 
(a) Without protective devices 

 
(b) With protective devices 

Figure 9. The trend of impact force-tensile stress variation 

 

According to the calculated results, it can be determined that 

the kinetic energy segmentation point for ship-bridge collisions 

without protective devices is 0.7 MJ. According to the sampling 

method of Box-Behnken Design, the tensile stresses at the base 

of the pier under different influencing factors were obtained 

through finite element calculations, as shown in Table 3. 

The obtained tensile stresses at the base of the pier under 

different influencing factors were fitted to a surface, yielding 

the values of the undetermined coefficients for the two 

segments, as shown in Table 4. 
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Table 3. Sampling values for numerical simulation 

Concrete 

strength 

(MPa) 

Height 

of 

impact 

(m) 

Kinetic 

energy 

(MJ) 

Pier 

bottom 

tensile 

stress 

(MPa) 

Kinetic 

energy 

(MJ) 

Pier 

bottom 

tensile 

stress 

(MPa) 

20 3 0.35 1.303 1.35 1.468 

40 3 0.35 1.441 1.35 1.806 

20 9 0.35 2.299 1.35 2.678 

40 9 0.35 2.607 1.35 3.104 

20 6 0 0 0.7 2.178 

40 6 0 0 0.7 2.587 

20 6 0.7 2.178 2.0 2.457 

40 6 0.7 2.587 2.0 2.864 

30 3 0 0 0.7 1.466 

30 9 0 0 0.7 2.798 

30 3 0.7 1.466 2.0 1.808 

30 9 0.7 2.798 2.0 3.022 

30 6 0.35 2.181 1.35 2.593 

30 6 0.35 2.185 1.35 2.598 

30 6 0.35 2.178 1.35 2.587 

30 6 0.35 2.182 1.35 2.588 

30 6 0.35 2.184 1.35 2.592 

 

The obtained tensile stresses at the base of the pier under 

different influencing factors were fitted to a surface, yielding 

the values of the undetermined coefficients for the two 

segments, as shown in Table 4. 

 

Table 4 Sampling values for undetermined parameters 

Coefficient value E<E0 E≥E0 

P1 -0.6629 -1.1001 

P2 0.0266 0.0385 

P3 0.2600 0.5611 

P4 3.0525 0.6283 

P5 0.0017 0.0011 

P6 0.0143 0.0016 

P7 0.1978 0.0032 

P8 -0.0005 -0.0005 

P9 -0.0187 -0.0326 

P10 -3.7999 -0.1819 

 

 
(a) The impact height was 3 m 

 

 
(b) The impact height was 6 m 

 

 
(c) The impact height was 9 m 

Figure 10. The combined effect of kinetic energy and concrete 

strength 

 

 
(a) The concrete strength is C20 

 
(b) The concrete strength is C30 
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(c) The concrete strength is C40 

Figure 11. The combined effect of kinetic energy and impact 

height 

 

 
(a) The impact kinetic energy is 0.35 MJ 

 
(b) The impact kinetic energy is 0.7 MJ 

 
(c) The impact kinetic energy is 1.35 MJ 

Figure 12. The combined effect of concrete strength and impact 

height 

 

The impact height and impact kinetic energy have a 

significant influence on the tensile stress at the pier base, 

whereas the concrete strength has a relatively minor effect on 

the tensile stress at the pier base. Therefore, in the subsequent 

vulnerability calculations, the primary considerations will be 

the effects of impact kinetic energy and impact height. 

The fragility curves of the pier under three impact height 

conditions were obtained through Monte Carlo sampling, as 

shown in Figure 13. Since the tensile strength of C30 concrete 

is 2.01 MPa, the condition where the tensile stress at the base 

of the pier exceeds 2.01 MPa is considered as the onset of minor 

failure, the initiation of cracks in the pier. 

 
Figure 13. Fragility curves for different impact heights 

 

As the tensile stress at the base caused by the impact does not 

reach the standard tensile strength of reinforced concrete, only 

minor failure conditions of the pier need to be considered. For 

the impact height of 9 m, there is a probability of minor failure 

when the barge's kinetic energy reaches 0.18 MJ, and direct 

failure occurs when the kinetic energy exceeds 0.3 MJ. For the 

impact height of 6 m, minor failure begins to occur when the 

barge's kinetic energy reaches 0.3 MJ, and direct failure occurs 

when the kinetic energy exceeds 0.4 MJ. For the impact height 

of 3 m, failure is almost negligible. 

5 CONCLUSIONS 

In this study, the magnitude of tensile stress at the base of the 

pier caused by barge impact is used as the damage assessment 

indicator. A fragility analysis method for bridge ship collisions 

based on the response surface method is proposed. This method 

enables rapid fragility assessment of the pier when subjected to 

barge impact. 

The established high-precision response surface model can 

replace structural models that require complex nonlinear 

calculations. The developed response surface surrogate model 

can be utilized for extensive sample analysis in bridge ship 

collision fragility studies. When subjected to barge impact, the 

trend of tensile stress at the base of the pier is closely related to 

the critical barge kinetic energy, exhibiting a segmented 

characteristic similar to the impact force. Therefore, to 

accurately reflect the true response characteristics of the pier 

under barge impact, the sample design should be segmented 

based on the critical barge kinetic energy. Through a 

comparative analysis of the individual effects of the three 

factors on the fragility of the pier, it is evident that the 

magnitude of tensile stress at the base of the pier is significantly 

influenced by the impact height and impact kinetic energy, 
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while changes in concrete grade have a relatively minor effect 

on the tensile stress. However, the higher the concrete strength 

grade, the greater the standard tensile strength of the pier, 

enhancing its resistance to impact and reducing the likelihood 

of severe damage. 
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ABSTRACT:  

 

This paper presents the development of an advanced system for the rapid post-earthquake safety assessment of bridges using 

advanced sensor technology. Upon completing the assessment, the system generates an automated report on bridge condition. 

To evaluate the serviceability of bridges, engineers frequently employ sensors, such as accelerometers, strain gauges, and tiltmeters 

to measure accelerations, displacements, strain, tilt, and deflections. The obtained data are essential for theoretical and practical 

reasons. Engineers analyze the data to gain insights into real-world bridge dynamics and to develop and validate models that 

inform design codes. On the practical level, the data are used in structural health monitoring (SHM) systems to enhance public 

safety by providing reliable data about bridge conditions, both long-term and after unexpected events, such as disasters and 

earthquakes. Traditionally, bridge inspections are conducted every two years to detect potential deterioration. However, these 

inspections are expensive and may need to be done more frequently following extreme events like earthquakes, fires, or bridge 

strikes. To reduce costs, we propose an innovative automatic rapid assessment system that uses measured bridge response data to 

initiate and minimize re-evaluation efforts. The system works by converting the acceleration data to displacements; subsequently, 

a threshold that defines the serviceability of the bridge is established. When one of the thresholds is exceeded, a report on bridge 

condition is automatically generated. This system is particularly useful in post-earthquake events and after other emergencies. In 

such situations, fast and reliable decision-making is a strong necessity, but also a serious challenge due to common human 

conditions, such as panic and fear. Rapid, automated generation of reports ensures accurate assessments of damage, which are 

crucial for the reduction of serious economic losses and the maintenance of reliable infrastructure access. 

In the paper we will discuss two case studies which illustrate the deployment of automatic, real-time assessment systems. As will 

be shown, these systems enhance the preparedness for disaster scenario and considerably improve bridge safety. 

KEY WORDS: SHM; Disaster; Earthquake; Bridge Safety; Sensors; Automatic System; Safety Report. 

1 INTRODUCTION 

Bridges are vital components of transportation infrastructure, 

serving as critical links that facilitate the movement of goods 

and people. Their safety and serviceability are essential for 

public well-being, economic stability, and emergency response 

capabilities. The integrity of bridges must be maintained to 

prevent catastrophic failures that could lead to significant loss 

of life and disruption of transportation networks. This is 

particularly crucial in seismic-prone regions, where 

earthquakes pose a constant threat to bridge structures [1]. 

Following an earthquake, assessing bridge conditions rapidly 

and accurately is essential to prevent further damage, ensure 

public safety, and maintain transportation continuity. 

Earthquakes can induce severe structural damage, including 

cracks, joint displacements, bearing failures, and even 

complete collapses. Immediate post-earthquake assessments 

are necessary to determine whether a bridge can remain in 

service, requires immediate repair, or must be closed to avoid 

endangering the public. However, conducting these evaluations 

efficiently is challenging due to the scale of transportation 

networks and the inherent risks associated with manual 

inspections in post-disaster environments [2], [3]. 

Traditional inspection methods, which involve manual visual 

evaluations conducted every two years, are often inadequate in 

emergency scenarios. These assessments typically require 

trained personnel to physically inspect bridges, document 

damages, and make qualitative judgments about their structural 

integrity. Such methods are time-consuming, labor-intensive, 

and prone to human error, potentially delaying critical 

decisions about bridge usability. Additionally, access to 

bridges following an earthquake may be restricted due to 

debris, road blockages, or structural instability, further 

complicating manual inspection efforts [4].  

To address these challenges, this paper presents an advanced 

system that leverages modern sensor technology and data 

analytics to facilitate rapid post-earthquake safety assessments 

of bridges. The proposed system integrates a network of 

sensors, including accelerometers, strain gauges, and tiltmeters, 

to continuously collect structural response data before, during, 

and after seismic events. By automating data acquisition, the 

system eliminates the need for labor-intensive manual 

inspections and provides real-time insights into the bridge's 

condition. 

2 SENSOR TECHNOLOGY IN STRUCTURAL HEALTH 

MONITORING 

Structural Health Monitoring (SHM) relies on various sensors 

to evaluate bridge conditions (see Figure 1).  

Commonly used sensors include [5], [6]: 

• Accelerometers: Measure vibrations and dynamic 

responses to external forces. 

• Strain Gauges: Detect strain variations within bridge 

components. 

• Tiltmeters: Monitor angular displacements and inclination 

changes. 

The sensors such are strategically installed on key elements 

of the bridge, including the superstructure, bearings, and 

substructure. These sensors continuously or periodically record 
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physical responses like vibrations, strains, and movements 

caused by traffic loads, environmental changes, or seismic 

events. Each sensor generates analog signals that reflect 

changes in the measured parameter, serving as the raw input for 

the monitoring system. 

These analog signals are transmitted to a local data 

acquisition system (DAQ), which is typically housed in a 

weatherproof enclosure on or near the bridge. The DAQ 

performs several crucial functions: it converts analog signals to 

digital data through analog-to-digital converters, applies 

filtering and signal conditioning, and timestamps each 

measurement for synchronization across multiple channels. 

Depending on the configuration, the DAQ may operate in real 

time or in scheduled bursts, and it often includes onboard 

memory for local storage. Some systems also include edge 

processing capabilities to perform preliminary diagnostics or 

event detection directly at the site. 

Once the data is digitized and preprocessed, it is transmitted 

from the DAQ to a local or remote data center using 

communication methods such as cellular networks (4G/5G), 

Wi-Fi, satellite uplinks, or fiber-optic lines. The data center acts 

as the central hub for data management, enabling long-term 

storage, advanced analysis, and integration with cloud 

platforms. Here, engineers and transportation agencies can 

access the data remotely via secure web portals or custom 

dashboards. Real-time data streams enable continuous 

monitoring, while automated algorithms can trigger alerts when 

structural anomalies are detected. This end-to-end system 

supports rapid decision-making, improves maintenance 

planning, and enhances the resilience of critical bridge 

infrastructure. 

 

 

Figure 1. Typical instrumentation in bridge monitoring. 

 

By continuously recording bridge responses, these sensors 

help engineers assess structural integrity, detect anomalies, and 

validate theoretical models that guide design and maintenance 

strategies. 

3 CHALLENGES OF TRADITIONAL BRIDGE 

INSPECTION 

Traditional bridge inspections are conducted biennially to 

identify potential deterioration. However, after extreme events 

such as earthquakes, additional inspections become necessary. 

Some key challenges include (see Figure 2) [7]: 

• High Costs: Manual inspections require significant 

financial and human resources, including specialized 

personnel, equipment, and logistical support. 

• Time Constraints: Evaluations can take days or weeks, 

delaying crucial transportation access and prolonging 

disruptions in emergency response efforts. 

• Human Limitations: Panic, fatigue, and cognitive overload 

can impair decision-making during crises, leading to 

inconsistent or inaccurate assessments. 

• Safety Risks: Inspectors working in post-disaster 

environments face significant hazards, including 

aftershocks, unstable structures, and difficult-to-access 

areas. 

• Limited Coverage: Manual inspections may not 

comprehensively assess structural integrity, particularly in 

large-scale bridge networks where resources are 

constrained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Challenges of Bridge Inspection. 

 

The introduction of automated systems can significantly 

mitigate these challenges by providing rapid and accurate 

assessments without the need for extensive human intervention. 

Advanced technologies, such as sensor networks, computer 

vision, and artificial intelligence, enable continuous monitoring 

and real-time analysis, enhancing decision-making and 

improving overall safety and efficiency in bridge assessment 

processes [8]. 

By minimizing reliance on manual inspections, these 

automated systems not only reduce labor costs and human error 

but also allow for more frequent and consistent data collection. 

This continuous stream of high-quality data enables a shift from 

reactive maintenance to predictive maintenance strategies, 

where potential issues can be identified and addressed before 

they escalate. As a result, bridge management authorities can 

prioritize interventions more effectively, allocate resources 

efficiently, and extend the service life of critical infrastructure. 

The collected sensor data is processed using advanced 

algorithms, to identify damage patterns, quantify structural 

deterioration, and predict the bridge’s residual load-carrying 
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capacity. This automated analysis enables the generation of 

detailed condition reports, which provide decision-makers with 

critical information needed to implement timely and effective 

mitigation measures. Furthermore, integrating this system with 

geographic information systems (GIS) and cloud-based 

platforms enhances accessibility and facilitates coordinated 

emergency response efforts. 

4 PROPOSED AUTOMATIC RAPID ASSESSMENT 

SYSTEM METHODOLOGY 

Structural Health Monitoring (SHM) is a critical tool for 

assessing the safety of bridges after an earthquake. The 

methodology involves 5 steps: pre-event preparation, real-time 

data acquisition during earthquake, post-event structural 

evaluation, decision-making process and reporting and action 

plan (see Figure 3). 

 

 

Figure 3. Proposed Automatic Rapid Assessment System 

Methodology. 

 

 Pre-Event Preparation 

Effective rapid assessment begins with thorough pre-event 

preparation, which includes identifying critical bridges within 

a transportation network and prioritizing them based on factors 

such as structural vulnerability, traffic volume, and strategic 

importance. Engineers conduct baseline assessments to 

understand the bridge’s current condition and develop models 

that simulate its response to different seismic scenarios. These 

models form the reference point for interpreting data during and 

after seismic events. 

Sensor deployment is a key part of preparation. Various 

sensors including accelerometers, strain gauges, and tiltmeters 

are installed on structural components most susceptible to 

damage. The placement is informed by structural analysis and 

past performance data. In addition to physical installation, 

sensors are calibrated to ensure accuracy and synchronized 

with the local data acquisition system (DAQ), which includes 

real-time clocks and backup power sources to maintain 

continuity during power loss. 

Finally, a communication framework is established for 

transmitting sensor data to remote servers or data centers. The 

infrastructure includes reliable network connectivity (e.g., 

cellular, satellite, or wired connections) and cybersecurity 

measures to protect data integrity. Pre-event simulations and 

drills are also conducted to validate the system’s performance 

and ensure all stakeholders, engineers, emergency responders, 

and transportation officials are familiar with the protocols in 

the event of a real earthquake. 

 Real-Time Data Acquisition During Earthquake 

When an earthquake occurs, the sensor network activates 

automatically or continues uninterrupted if running 

continuously. Force balance accelerometers capture ground 

and structural accelerations in three dimensions, while strain 

gauges and displacement sensors measure localized 

deformations. These signals are digitized by the DAQ and time-

stamped to ensure synchronization across multiple channels 

and locations. 

The DAQ processes the raw data using onboard algorithms 

to filter noise and detect events that exceed pre-set thresholds. 

Once significant shaking is detected, the system flags the event 

and immediately begins streaming prioritized data packets to 

the central server. Some systems also include edge computing 

capabilities, allowing for initial damage classification and 

triage to be performed locally and transmitted as summaries, 

reducing bandwidth requirements and accelerating response. 

During this real-time acquisition phase, data flows 

continuously or in event-driven bursts to a central data center. 

There, automated software correlates input from multiple 

bridges, maps the earthquake’s effects regionally, and 

compares the measured response with known damage 

thresholds from the pre-event models. This allows emergency 

management teams to quickly determine which bridges may be 

compromised and require immediate inspection or closure. 

 Post-Event Structural Evaluation 

After the shaking subsides, the system transitions to post-event 

evaluation. This involves aggregating the seismic response data 

and analyzing it against the bridge’s baseline condition and 

predicted performance models. Engineers can assess the 

magnitude of forces experienced by each structural component 

and detect anomalies such as excessive displacements, residual 

vibrations, or sensor signal losses, which may indicate potential 

damage. 

The evaluation process uses advanced algorithms. These 

tools identify patterns in the data that correlate with specific 

types of damage (e.g., joint failure, deck uplift, or bearing 

dislocation). By automating this analysis, the system reduces 

reliance on manual inspections and accelerates decision-

making, particularly when multiple bridges are affected over a 

large geographic area. 

Visualizations such as shake maps, bridge health dashboards, 

and risk scores are generated for each bridge. These outputs are 

reviewed by structural engineers and decision-makers to 

confirm automated findings. In high-priority cases, the system 

may recommend sending an inspection team or deploying 

drones for visual assessment, thus focusing on limited 

resources where they are most needed. 
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 Decision-Making Process 

The decision-making process combines sensor-derived 

analytics with predefined action thresholds to classify bridge 

conditions into categories such as “safe,” “needs inspection,” 

or “likely damaged.” This triage helps agencies prioritize their 

response efforts, enabling the reopening of safe routes and the 

timely closure or detour of potentially unsafe bridges. 

A critical component of this process is the decision support 

system, which integrates real-time sensor data, historical 

performance, and geographic context to recommend next steps. 

The system presents stakeholders with actionable insights, 

supported by confidence levels and potential consequences, 

empowering transportation officials to make informed, 

defensible decisions under pressure. 

Human oversight remains essential. While the system 

automates much of the analysis, expert engineers review key 

findings to validate system outputs, especially in cases of high 

uncertainty or critical infrastructure. Collaboration between 

departments of transportation, emergency response, and 

engineering is coordinated through centralized platforms to 

ensure consistent, fast communication and execution of 

response plans. 

 Reporting and Action Plan 

Once the structural condition of each bridge is assessed, the 

system generates standardized reports that summarize sensor 

readings, algorithmic evaluations, and recommended actions. 

These reports include timestamps, structural response graphs, 

and comparison with design-level seismic criteria. They are 

shared through secure digital platforms with transportation 

authorities, emergency managers, and relevant stakeholders. 

For bridges flagged as potentially compromised, the system 

issues automated alerts accompanied by suggested action plans. 

These may include full closures, restricted traffic use, or on-site 

inspection. In more advanced deployments, the system 

integrates with traffic management infrastructure to redirect 

traffic automatically, display warnings on digital signage, and 

update navigation systems. 

The final component of the action plan involves post-event 

documentation and learning. All data and actions taken are 

archived for forensic analysis, regulatory compliance, and 

refinement of future response protocols. This feedback loop 

allows the system to improve over time, helping bridge 

operators become more resilient to future seismic events and 

more effective in their emergency response. 

5 CASE STUDY 1: YUCAIPA EARTHQUAKE IMPACT 

ON BEAUMONT - I10/60 INTERCHANGE BRIDGE 

In this case study, the automatic assessment system was 

deployed on Beaumont - I10/60 Interchange Bridge (see Figure 

4). The bridge is located in Riverside County, California, near 

the city of Beaumont, where Interstate 10 (I-10) and State 

Route 60 (SR-60) converge (see Figure 5). This critical 

interchange lies in Southern California’s Inland Empire region 

and serves as a major transportation corridor linking Los 

Angeles to the Coachella Valley and beyond. Positioned in a 

seismically active area near the San Andreas Fault, the bridge 

plays a vital role in regional mobility and freight transport, 

making its structural integrity and seismic resilience essential 

for public safety and economic continuity. 

 

Figure 4. Beaumont - I10/60 Interchange Bridge. 

 

 

Figure 5. Bridge Location. 

 

The bridge is composed of 2 abutments and 3 bents; the span 

of the bridge is 112.78 m (370 ft) and a height of 8.23 m (27 

ft). In 1992, the bridge was instrumented with six force balance 

accelerometers as part of a seismic monitoring initiative (See 

Figure 6). This instrumentation was implemented through an 

interagency agreement between the California Department of 

Transportation (Caltrans) and the California Department of 

Conservation (DOC). The collaboration aimed to enhance the 

structural health monitoring capabilities of critical 

transportation infrastructure in seismically active regions, 

enabling the collection of high-quality acceleration data to 

support seismic performance assessment and emergency 

response efforts. 

On June 16, 2005, the bridge was exposed to the Yucaipa 

Earthquake. The epicenter of the earthquake was located 3.39 

km (2.1 mi) NE of Yucaipa, CA, USA; had a magnitude of 4.9 

and a depth of 12.6 km (see Figure 7). The Yucaipa earthquake 

was a moderate seismic event and occurred at approximately 

8:05 PM local time. Its epicenter was located within a 

seismically active zone influenced by the complex interactions 

between the San Andreas Fault and other nearby fault systems 

in the eastern Transverse Ranges. The event was widely felt 

throughout the Inland Empire and greater Los Angeles area, 

prompting temporary evacuations and raising concerns about 

infrastructure resilience in the region. 

Beaumont - I10/60 

Interchange Bridge 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-177 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1180 

 

 

Figure 6. Instrumentation on the bridge (Source: Center for 

Engineering Strong-Motion Data -CESMD). 

 

Although the 2005 Yucaipa earthquake did not result in any 

fatalities or major structural damage, it caused minor non-

structural damage, such as cracked walls, fallen ceiling tiles, 

and items displaced from shelves in homes and businesses. The 

shaking intensity reached Modified Mercalli Intensity (MMI) 

level VI in the immediate vicinity, indicating strong shaking. 

The event highlighted the seismic hazard in this part of 

Southern California and reinforced the importance of 

earthquake preparedness and monitoring. For researchers and 

agencies, the earthquake served as a valuable data point for 

evaluating the performance of early seismic instrumentation, 

ground motion characteristics, and local soil amplification 

effects, especially in areas with vulnerable infrastructure such 

as bridges, schools, and hospitals. 

In this context, the instrumentation installed on the bridge 

provided a critical opportunity to assess structural performance 

during the 2005 Yucaipa earthquake. The sensors captured real-

time data on ground motion and structural response, offering 

insights that would have been difficult to obtain through visual 

inspections alone. This event demonstrated the practical value 

of instrumented bridges in seismic regions, as the recorded data 

allowed engineers to verify the integrity of the structure without 

interrupting service. The success of this monitoring effort laid 

the foundation for more advanced automated assessment 

systems, capable of rapidly analyzing sensor outputs, 

identifying potential damage, and supporting immediate post-

earthquake decision-making—thus addressing many of the 

challenges associated with traditional inspection methods. 

 

 

 

 

 

 

Figure 7. Yucaipa Earthquake (Source: Center for 

Engineering Strong-Motion Data -CESMD). 

Traditional inspections required extended closures and 

significant financial investment. Following an earthquake, the 

system could successfully: 

• Detected abnormal vibrations exceeding the established 

serviceability threshold. 

• Generated an automatic report, recommending immediate 

structural reinforcement. 

• Enabled engineers to assess the damage remotely, reducing 

the need for manual inspections. 

As a result, the system significantly decreased bridge 

downtime and ensured rapid decision-making for emergency 

response teams.  

6 CASE STUDY 2: CALEXICO EARTHQUAKE 

IMPACT ON BEAUMONT - I10/60 INTERCHANGE 

BRIDGE 

In this case the Beaumont - I10/60 Interchange Bridge was 

exposed to the Calexico Earthquake on April 4, 2010.  The 

epicenter of the earthquake was located 49.57 km (30.8 mi) 

SSE of Calexico, CA, USA; had a magnitude of 7.2 and a depth 

of 10.0 km (see Figure 8). The Calexico earthquake and the 

Yucaipa earthquake differed significantly in both magnitude 

and regional impact. The Yucaipa earthquake registered a 

magnitude of 4.9 and occurred in the inland region of Southern 

California, near the San Andreas Fault system. It resulted in 

minor non-structural damage and served primarily as a data 

point for evaluating local ground motion and instrumentation 

performance. In contrast, the Calexico earthquake, also known 

as the El Mayor–Cucapah earthquake, was a much larger event 

with a magnitude of 7.2. It struck near the U.S.–Mexico border, 

affecting both countries and causing extensive structural 

damage in the city of Calexico and surrounding areas. 
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Figure 8. Calexico Earthquake (Source: Center for 

Engineering Strong-Motion Data -CESMD). 

 

The automatic rapid assessment system showed higher 

displacements in the bridge for the Calexico Earthquake (see 

Figure 9 and Figure 10). 

 

Figure 9. Automatic Rapid Assessment System 1/2. 

 

 

 

Figure 10. Automatic Rapid Assessment System 2/2. 

 

What sets the proposed automatic rapid post-earthquake 

evaluation system apart from existing automated solutions is its 

ability to collect and process real-time acceleration, velocity, 

and displacement data immediately following a seismic event. 

Unlike conventional systems that primarily rely on periodic 

assessments or post-processed sensor data, this approach 

enables near-instantaneous evaluation of structural 

performance during and after an earthquake. By integrating 

high-frequency data acquisition with advanced algorithms, the 

system provides a more accurate and timely understanding of 

potential damage, allowing for faster decision-making and 

more effective emergency response. 

Importantly, this system is designed to support, not replace, 

structural engineers. By delivering actionable data in real time, 

it empowers engineers to make informed decisions more 

quickly and confidently after events. The tool enhances 

professional judgment with rapid, data-driven insights, 

improving both the efficiency and reliability of post-earthquake 

assessments while maintaining the essential role of expert 

evaluation. 

7 CONCLUSIONS 

The proposed advanced system for rapid post-earthquake 

bridge safety assessments integrates sensor technology, 

automated data processing, and real-time reporting to enhance 

disaster response capabilities. By replacing traditional, labor-

intensive inspections with automated evaluations, the system 

ensures timely, cost-effective, and reliable infrastructure 
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assessments. The case study illustrates its effectiveness in 

different bridge settings, reinforcing its applicability in both 

urban and rural environments. Future advancements in SHM 

technology, including artificial intelligence integration, could 

further improve the accuracy and predictive capabilities of such 

systems, ultimately leading to safer and more resilient bridge 

infrastructure. 

By adopting this technology-driven approach, transportation 

agencies and emergency management teams can significantly 

improve the efficiency and accuracy of post-earthquake bridge 

assessments. The implementation of modern sensor-based 

monitoring systems enhances safety by enabling early detection 

of structural vulnerabilities, reducing the reliance on subjective 

visual inspections, and expediting repair and maintenance 

actions. Ultimately, the integration of these advancements 

contributes to more resilient transportation infrastructure and 

ensures the continued functionality of bridges in the aftermath 

of seismic events. 
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ABSTRACT: Scour around bridge piers is a leading cause of failure but detecting it reliably and cost-effectively remains a 

challenge. Vibration analysis offers a potential solution by monitoring changes in vibrational mode frequencies, as scour reduces 

a bridge’s natural frequencies. This study measures traffic-induced vibrations on both bridge piers and decks, enabling continuous 

monitoring without disrupting traffic. An important consideration in using vehicle-induced vibrations is that each vehicle tends to 

preferentially excite certain vibrational modes, influenced by factors such as vehicle speed and span length. Therefore, obtaining 

a representative vibrational spectrum requires the passage of many vehicles. In this work, we found that the passage of 10 to 50 

vehicles is necessary to reduce errors to the level required for robust vibrational analysis. Continuous monitoring of vibrational 

frequencies also enables compensation for seasonal variations in environmental factors such as temperature. In this study, a 

medium-span bridge was monitored over approximately 10 months. By correlating frequency data with temperature, we can 

account for environmental influences. After compensating for temperature, frequency changes exceeding ±1.7% can be detected 

and may indicate the presence of scour. The measured frequencies closely matched predictions from finite element model 

calculations. 

 

KEY WORDS: SHMII-13; field measurement, superstructure, vibrational analysis 

1 GENERAL GUIDELINES 

Scour can cause collapse of bridges by eroding the pier 

foundation systems and lead to large economic losses due to 

loss of infrastructure and transportation routes[1], [2]. There 

has been progress in solutions for mitigating scour [3], [4], but 

it remains critical that there is early detection so that 

rehabilitation and maintenance measures can be applied before 

scour reaches the point causing bridge failure [5], [6].  

Scour is a process that excavates and removes the soil and 

sediments by the flowing water, particularly by the flooding. 

Natural scour is a degradation process of the level and 

conditions of waterbed due to the flow along the waterway; 

contraction scour is associated with the varying velocity and 

shear stresses of the flowing streams due to the bridge 

foundation structures; the formation of horseshoe vortex 

around pier structures is a localized scour process. These scour 

processes can reduce the rigidity of the surrounding earth 

foundation thus degrade the stiffness and the stability of the 

pier structures. In addition to the direct visual inspection of 

scour, many detection methods and instruments have been 

extensively explored to detect scour depth around piers and 

abutments, such as float-out devices and tethered buried 

switches, time-domain reflectometry (TDR) and ground-

penetrating radar (GPR) devices, gravity-based magnetic and 

positioning sensors, electromagnetic and acoustic wave-based 

pulse-echo devices, fiber-Bragg grating sensors, and electrical 

conductivity-based devices [5]. However, the installation and 

operation of these instruments are practically very challenging 

in the harsh underwater environments, and measurement 

efficiency is restricted by the complex interfaces between the 

waterbed and the flowing streams. Due to the large size of 

structures, some local scour holes are not easily detected with 

these measuring approaches. Different from these methods that 

measures the scour depth by installing the instruments under 

water, the dynamic response of bridge structures to scour 

progression has been investigated as a means of detecting scour 

[7], [8], [9], [10], [11]. The principle of detection is that 

structural vibrations depend on the mechanical properties and 

boundary conditions existing around bridge piers. The pier 

length, stiffness and its foundation rigidity are affected by scour 

depth and scour holes around a pier and its abutment as well as 

the supporting earth. The variation in vibration modes of a pier 

will hence signal the structural problems related to scour 

progression. The dynamic vibrations can be measured using 

sensors such as accelerometers. The measured acceleration 

signals can be processed and analyzed using spectral analysis 

tools. Observing frequency change provides an avenue to 

detecting the scour occurrence. An advantage of this method is 

that the instrument installation on a bridge above water is much 

cost-effective in practice and measurement operation is more 

efficient comparing to those measuring systems underwater. It 

could potentially become a less expensive and efficient tool for 

diagnosing scour related structural damage of a bridge. 

There are many examples of laboratory and numerical 

simulations of scour comparing vibrational frequencies with 

depth of scour around bridge piers [11]. The vibrational 

frequencies are predicted to decrease as scour progresses. The 

field observation of changes in vibrational frequencies due to 

scour is very challenging. However, there are some examples 

of field observations that are relevant to this study. In one 

example, during the repair of scour damage, an additional 3 m 

was excavated from around the pier. The ambient bridge 
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vibration before and after the excavation was measured and a 

drop in vibrational frequencies near 1.5 Hz of 11 % was 

observed [12]. In another example, the frequencies of lower 

order vibrational modes were observed to drop by ~20% over a 

3-year period due to scour. Kong and Cai also predicted a ~20% 

decrease in lower order vibrational mode frequencies before 

and after scour [12]. Tubaldi et al. also found in a 3 m x 3 m 

field tested scale model of spread footing a change of ~ 20% 

with scour under the footing [13]. 

In this paper, we examine the extraction of vibrational mode 

frequencies on a medium span bridge over the full seasonal 

temperature swings (Figure 1). The vibrational excitation was 

traffic induced, and this study also examines the improved 

accuracy of vibrational frequency determination by averaging 

over many vehicle passages. Finaly the minimum frequency 

change that can be reliably determined after vehicle averaging 

and correction for environmental changes is determined. 

2 METHODS 

 Accelerometer measurements 

The vibrational measurements of pier structures were 

performed using a data acquisition device consisting of an 

accelerometer (ADXL355) and a microcontroller (Arduino 

Giga). The 3-axis accelerometer has low noise density, low 

offset drift, low power consumption, and selectable 

measurement ranges. It can be used for cost-effectively low-

level vibration measurement applications such as structural 

health monitoring (SHM). The microcontroller was 

programmed to sample the vibrational signals sensed by the 

accelerometer in x, y, and z directions, and the collected 

acceleration signal was processed and stored in a USB drive. 

About once a week, the logged data was retrieved, and 

frequency domain analysis with Fast Fourier Transform (FFT) 

was performed offline using Python programming. 

Our preliminary tests were conducted by placing the data 

acquisition device on three pier caps of the selected bridge as 

shown in Figure 2. The pier vibrations were excited by the 

passing vehicles. The sampling rate for the vibration signal is 

chosen as 100 Hz which is sufficient to capture the vibrational 

frequencies, as expected to be less than 25 Hz. The peak-to-

peak acceleration of the pier due to traffic is typically about 20 

mg. 

The acceleration was sampled in blocks of 8192 readings and 

an FFT was used to produce a signal spectrum. This block 

length provides the necessary frequency resolution of 

200Hz/8192 = 0.024 Hz. Each block was stored as a data file. 

Individual spectrums were not consistent due to the variety of 

excited vibrations in different time slots. To improve the 

accuracy of the vibrational frequencies, more datasets are 

required for doing FFT analysis to obtain average frequency 

spectrums. The measurements were first carried out on three 

pier caps, pier 2, pier 3 and pier 4 as in Figure 1. Then the 

measurements were carried out on the bridge deck directly over 

pier 4.  

Since the vibrations of the pier were easily observed by 

putting the sensor on the pier caps, it was also decided to 

investigate if the pier vibrations could be observed from the 

bridge vibrations by putting the sensor on the bridge deck. 

Therefore, in addition to the measurements on the pier caps, 

vibration data were also acquired using the accelerometer 

device installed on the bridge barrier wall directly above pier 4. 

The measurements were carried out by collecting about 1014 

data files each day, typically, about 507 files the during the 

period of daytime (8 am - 8 pm) were chosen for doing the FFT 

analysis considering the traffic is considerably reduced during 

night. 

 

 

Figure 1. Schematic diagram of the bridge under observation  

 

 

Figure 2. A) The data acquisition device on a bridge pier cap. 

B) View from the bridge deck of the DAQ system sitting on 

the pier cap. 

 

When dealing with the bridge vibration, the peak frequencies 

of the averaged FFT spectrum were determined using a peak-

finding algorithm in Python library SciPy. The found peak 

frequencies represent the vibration modes of the bridge. To 

determine the number of data files needed to adequately locate 

the individual peak frequency, the data processing for obtaining 

averaged frequency spectrum was conducted by randomly 

selecting subpopulations with the bootstrap approach. From the 

507 data files, 10 files, 25 files, 50 files, 100 files, 250 files and 

500 files were chosen for doing spectrum analysis, 

respectively. The simple linear average of the spectrums was 

calculated for each subpopulation of files, for instance, using N 

= 400 subpopulations of 10 files to find peak frequency 

distributions for each observed vibrational mode. The 

histogram of the peak-frequency distribution of each mode was 

plotted against the subpopulation of data files. 

 FEM modelling 

Figure 3 shows a bridge model for finite element analysis 

(FEA) using the SAP2000 software, it was used to simulate the 

dynamic behaviors of the bridge vibrations and to determine 

the expected vibrational modes of the bridge in addition to the 

effect of the scour on the vibration properties of the bridge. The 

bridge’s steel girders and concrete slab were modeled using 

thin shell elements. The girders and the slab were connected 
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using stiff link elements. The bracing system, brackets and edge 

beams supporting the sidewalk were modeled using frame 

elements. The bridge abutments and foundations were modeled 

using thick shell elements. The bridge bearings between the 

abutments and the girders were modeled special link elements 

to allow for rotation only or rotation and relative displacement 

depending on the type of bearing. Rotational and vertical sprigs 

were added to the bottom of piers 3, 4 and 5 to simulate the 

effect of the soil at the foundation level. Horizontal area springs 

were also added to footing and pier shafts to simulate the effect 

of the soil on the sides of the piers. A maximum element size 

of 600 mm was chosen after comparing several mesh sizes for 

a portion of the bridge consisting of a girder and part of the 

concrete slab. In total the model consisted of 88643 nodes, 

2268 frame elements, 7764 thick shell elements, 75529 thin 

shell elements and 12704 link elements. 

 

 
Figure 3. The bridge simulation model for dynamic analysis  

 

3 RESULTS AND DISCUSSION 

 Traffic induced vibration of piers 

The accelerations of the piers were measured as the vehicles 

passed. A typical example of vibrations is shown in Fig. 4A, 

which is for the sensor mounted on the cap of pier 4. In this 

example, it appeared several vehicles passed during the 

measurement. The passing vehicles excited vibrations, and the 

vibrations were then damped and decayed. The vibration 

amplitudes cover a span from 5 mg for smaller vehicles to 40 

mg for larger vehicles. Each data file (a block signal) contains 

the sampled acceleration readings of 8192 at the rate of 100 

samples per second. The average FFT spectrum of many data 

files was calculated to achieve higher and smoother signal 

amplitudes over background signals. A typical example is 

shown in Fig. 4B, the data was collected from pier 4 cap. There 

are obvious vibrational peaks at approximately 2.28 Hz, 9.0 Hz 

and 12.9 Hz. The obtained frequency spectrums show that only 

vibrations along the direction of the traffic flow were observed. 

The vibrations in the other two directions were not observable 

above the noise level from their FFT spectrums. This is 

physically reasonable when the geometrical shape and 

mechanical properties of the piers are considered, the pier 

structure in a thick-shell-shape is very long and sturdy in the 

direction perpendicular to the traffic flow and in the up-down 

direction, the vibrations in these two directions are barely 

exited and observable, only flexural vibrations in the traffic 

flow direction are easily excited and observable from the 

frequency spectrums. 

 Traffic induced vibration of the bridge superstructure 

Accessing the pier caps is difficult. As part of this study, we 

also explored measuring the vibrational frequencies on the 

bridge deck, which is much easier to access. In the case of this 

bridge, the deck can be accessed via a walkway. Our hypothesis 

is that the pier vibration will be coupled to the deck and 

therefore the pier vibration can be accessed via the 

superstructure. In this case, the accelerometer was attached to 

the impact barrier. The details are given in Fig. 5A and 5B. The 

location is also noted in Fig. 1. In this case, a larger capacity 

battery could be used and vibrational signals could be gathered 

for approximately 24-48 hours. These signals were gathered 

periodically over 10 months. The vibrations of the bridge deck 

were observed in all three directions since the bridge deck is 

free to vibrate. A typical example is shown in Fig. 6A, where 

the acceleration signals in the direction of traffic flow were 

processed using FFT to produce spectrums. A simple algorithm 

was used to find an estimate of the frequency peak positions. 

These peaks are labelled with a black dot in Fig. 6A.  

 

 

 

Figure 4. (A) Vibration measured on the cap of pier 4. (B) 

FFT spectrum of sampled acceleration from (A) 
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Figure 5. Location and mounting of DAQ apparatus on bridge 

 

 

 

Figure 6. Vibrations measured on the bridge deck. (A) FFT 

spectrum. (B) Stacked frequency histogram  

 

Table 1. Frequency estimates versus sample size 

Sample 

size 

Mean 

frequency 

Median 

frequency 

SD 

frequency 

10 2.286 2.289 0.026 

25 2.286 2.289 0.013 

50 2.285 2.289 0.007 

100 2.286 2.289 0.004 

 

 

Single vibrational spectrum cannot produce good estimates of 

the vibrational frequencies with uncertainties that are small 

enough for this application. Therefore, multiple frequency 

spectrums are averaged to produce better results. We have 

investigated the uncertainty of the frequency estimates versus 

the number of the frequency spectrums being averaged. The 

outcome is presented as a stacked histogram in Figure 6B. The 

number of data files for frequency averaging used 10, 25, 50, 

100 and 250. With 10 averages, the peak frequency estimates 

fall into several bins. As the number of averages increases, the 

estimates fall into fewer bins. As shown in Table 1, for each 

block signal consisting of 8192 acceleration readings at a 

slightly higher sampling rate of 125 Hz, frequency estimates 

were done using different numbers of the block signal (sample 

sizes) by repeating FFT calculation of 400 trials, and the 

stacked frequency histogram was obtained by calculating the 

mean, median and standard deviation of a certain number of 

burst signals. For the averages of 10 spectrums, the standard 

deviation was 0.026 Hz. This would give a 95th percentile 

confidence limit of +/-0.052 Hz. As we will show later, this is 

greater than the uncertainty remaining after temperature 

compensation is applied, which is +/- 0.040 Hz. Using 25 

averages, the standard deviation was 0.013 Hz. This would give 

a 95th percentile confidence limit of +/- 0.026 Hz. This is less 

than the uncertainty remaining after temperature compensation 

is applied and would be suitable for the detection of scour. 

Finally, the average number of 50, 100 and 250 provides better 

estimates well below the variability remaining after 

temperature compensation is applied.  

 

 

Figure 7. (A) vibrational frequency versus temperature. (B) 

residuals versus temperature for compensation. 

 

 Temperature induced changes to vibration and 

temperature compensation 

Temperature is one of the main sources of environmentally 

induced vibrational change [14]. The mechanical properties of 

materials can change with temperature as well as the boundary 

conditions. Bearing restraint can also be influenced by 
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temperature [15]. The extracted peak frequencies were plotted 

against temperature to determine if the effects of temperature 

could be compensated for. The temperature used in this case 

was the average daily ambient temperature. This was used 

because the heat capacity of the bridge superstructure is 

relatively large and the change of bridge thermal properties 

with daily temperature is considered insignificant. 

The vibration frequencies were extracted from the sampled 

data over a 10-month period, covering the full seasonal 

temperature swings expected for this structure. Each data point 

in Fig. 7 represents the vibrational average over a 24-hour 

period and was derived from an average of greater than 250 

spectrums. According to the results of the uncertainty estimates 

as stated in section 3.2, here the uncertainty of each 

measurement point is expected to be less than 0.01 Hz. 

Fig. 7A is the plot of vibrational frequency versus 

temperature. There is an obvious dependence of the vibrational 

frequency on temperature. The dependance was modelled using 

simple linear dependence. The linear dependence model was 

then used to compensate the measured frequency data for 

temperature.  

  The residuals versus temperature are plotted in Fig. 7B. Over 

the entire temperature range and period, the residuals fall 

within +/- 0.04 Hz. This result is similar to that observed on 

other bridges [16]. Therefore, if a vibrational frequency was to 

fall outside this range, it would indicate that a structural change 

had occurred. The significant frequency change beyond the 

temperature compensation range could be due to several 

factors, but one possible factor would be the change in 

boundary conditions due to scour. Because a field experiment 

using excavation to simulate scour on this structure is not 

feasible, numerical calculations using a FEA model will be 

helpful for studying the vibrational modes of the bridge and 

scour effect.  

 Comparison of FEM calculations to measured response  

A finite element model was developed as outlined in section 

2.2. This model was used to simulate the dynamical vibration 

behavior of the bridge superstructure. Table 2 presents a few 

vibration modes obtained from the FEM model, where the 

corresponding frequencies from the measurements are also 

listed for comparison. The simulation agrees with the 

measurement very well for those modes. Modes #2 and #3 are 

not presented and could not be compared to the measured 

frequencies because they correspond to the bending of piers 5 

and 3 respectively where the connection with the superstructure 

allows for relative displacement and therefore the vibration 

transferred to the superstructure is very weak. Additionally, no 

direct vibration was measured on those piers.  

  There are many vibration modes derived from simulation, 

such as, the rocking mode, the flexural and twisted modes of 

the bridge deck together with the piers, here the modes listed in 

Table 2 are of most interest to this study since these vibration 

modes were also observed from the field measurements. Some 

simulated lower vibrational modes and higher modes were 

either insignificant or unobservable in the field measurements, 

and they were either not excited or quickly damped out. Table 

2 shows that the match between the calculated and observed 

frequencies is within 8%. In addition, the frequency of 2.289 

Hz is the same as the measured for the sensor on pier 4 cap in 

Figure 4B, this vibration mode can be considered the coupling 

between the pier 4 and the bridge deck. It provides a convenient 

way to monitor the pier vibration without accessing the pier. 

The FEM model was also used to estimate the effect of the 

scour on the natural frequencies of the bridge. The scour was 

simulated by removing the top lateral springs representing the 

effect of the soil at the top of the pier. Scour values of 1 and 2 

meters were simulated for piers 3, 4, and 5. Table 3 shows a 

comparison of three natural frequencies representing the 

bending of the piers with and without scour. It is apparent that 

the scour has a significant effect on the natural frequencies and 

therefore could be used to detect scour. The pier natural 

frequencies are not easily observed in the vibrational spectra. 

This may be due to the traffic induced vibration not 

preferentially exciting the pier natural frequencies. The more 

easily observed vibrational modes appear to be associated with 

the bridge superstructure. However, since the pier-

superstructure system is a coupled mechanical system scour 

will affect both the pier and superstructure natural frequencies.  

Table 2. Comparing the simulated and measured frequencies 

 

Table 3. Scour effect on first modes of three piers 

 
 

 Impact of truck mass on estimated vibrational 

frequencies.  

One issue with the use of traffic induced vibration is that the 

presence of the vehicle will perturb the vibrational frequencies. 

When the truck passes over a span, the mass of the truck will 

perturb the vibrational frequency [17]. After the truck passes, 

the vibration will continue. This can be thought of as a driven 

vibration time and a free vibration time. In our case, we are 

using the complete time sequence and the signal would be a 

mixture of driven and free vibrations. If the driven vibrational 

frequency and the free vibrational frequency are significantly 

different, then one might expect the vibrational peak to be 

broadened out as it would be a mixture of driven and free 

vibrations. In this case, the peaks are well defined, and any 

broadening does not appear to be significant. In future work, 

the time variation of vibrational frequency as vehicles pass over 

will be examined more closely. 

4 CONCLUSIONS 

For this medium-span bridge, vibration measurements of the 

piers and the bridge deck were performed, and the 

corresponding frequency spectra were derived. The dynamic 

behavior of the bridge was also simulated using Finite Element 

Analysis (FEA). The major vibration modes identified from 

field measurements were found to match those obtained 

through FEA simulation. A common vibration mode at 

approximately 2.289 Hz was observed in both Pier 4 and the 

bridge deck above it, attributed to dynamic coupling between 

the structural components. With compensation for temperature-

Mode #1 #4 #5 #6 

Measured 0.26  2.06  2.29  2.81  

FEM  0.29  1.98  2.12  2.75  

calculated     

 

Mode 
Natural frequency Hz 

Without scour 1 m scour 2 m scour 

1 bending of  Pier 4 0.292 0.282 (-3.5%) 0.277 (-5.17%) 

2 bending of  Pier 5 0.431 0.264 (-38.8%) 0.146 (-66.2%) 

3 bending of  Pier 3 1.384 1.278 (-7.67%) 1.204 (-13.04%) 
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induced frequency changes, frequency shifts of less than 1.7% 

can be reliably detected. FEA simulations showed that scour of 

1–2 meters around the base of the pier resulted in natural 

frequency shifts greater than 10%. In future work, finite 

element model predictions of traffic-induced vibrations will be 

compared with the 1.7% detection threshold. This combined 

approach of in-situ measurements and numerical simulations is 

expected to provide a viable alternative for monitoring bridge 

scour. 
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ABSTRACT: Navigation locks are essential components of inland waterways. They enabling vessels to traverse sections with 

differing water levels. These structures are increasingly vulnerable to damages caused by (1) scour i.e., erosion of sediment due 

to natural water flow and ship-induced currents, and (2) sediment or debris obstructing lock gates. Scour-induced damage threatens 

the structural integrity of locks, leading to costly maintenance, prolonged closures, and economic and environmental 

consequences. Traditional monitoring methods, including visual inspections and fixed instrumentation, are often hampered by 

water turbidity, high costs, and susceptibility to debris damage. Sonar technologies provide a non-invasive, cost-effective 

alternative for detailed underwater imaging, even in challenging environments. This paper explores the application of 2D sonar 

imaging for monitoring navigation lock approaches, with a focus on bed morphology and scour progression. Using the Prinses 

Beatrix Lock in the Netherlands as a case study, the paper demonstrates the effectiveness of 2D sonar systems in (i) detecting 

morphological changes such as scour and sediment transport from bed protection layers and (ii) estimating ship drafts. The findings 

underscore the importance of integrating sonar-based structural health monitoring systems to extend the lifespan of navigation 

locks, enhance safety, and optimize maintenance strategies for aging waterway infrastructure. 

KEY WORDS: sonar technologies; navigation locks; morphological changes; ship draft. 

1 INTRODUCTION  

Inland waterway transport is significantly more efficient than 

land-based (i.e., road and rail) transport, as waterways allow for 

the movement of large cargo volumes with low energy 

consumption and reduced environmental impact [1]. 

Navigation locks play a critical role in facilitating inland 

waterway transport, enabling vessels to traverse sections of 

canals or rivers with varying water levels. These structures are 

subjected to various environmental and operational stressors, 

which can lead to structural deterioration over time. One of the 

primary concerns in the maintenance of navigation locks is 

scouring, which is the removal of sediment caused by 

hydrodynamic forces [2]. Scouring can lead to morphological 

changes in the bed protection layer, potentially compromising 

the stability of the lock foundation. The interaction between 

ship-induced currents and the lock bed remains a significant 

challenge, particularly for older lock chambers that were not 

originally designed for large and high-powered vessels [3,4]. 

The issue is exacerbated by increasing global shipping 

activities, where vessel sizes and engine power have also 

grown, leading to intensified hydrodynamic forces in lock 

approaches [5]. The propeller wash from these vessels 

accelerates bed degradation, increasing maintenance demands 

and potential structural risks. The existing bed protection 

layers, designed decades ago, may not effectively withstand 

these forces induced by modern vessels. 

Traditional monitoring techniques for scouring in navigation 

locks rely heavily on periodic visual inspections, divers, or 

stationary sensors. These methods are often costly, labour-

intensive, and ineffective in real-time damage detection, 

particularly in turbid waters where visibility is poor [6]. Some 

advanced techniques, such as 3D sonar imaging, provide high-

resolution data but are prohibitively expensive for widespread 

implementation. The lack of an affordable and continuous 

monitoring system leaves lock operators and maintenance 

teams with limited options for proactive maintenance strategies 

[7]. The necessity for continuous monitoring of scouring in 

locks has been well established in existing literature [8], 

particularly in cases where the structural integrity of the lock 

foundation is at risk due to progressive erosion. 

The issue of sediment transportation in lock complexes, 

originally designed for smaller vessels, becomes more 

pronounced with the use of large modern cargo ships. These 

vessels have a deeper draft, which brings their propellers close 

to the canal bed. As the vessel moves through the lock, the 

propeller's interaction with the sediment can cause stones or 

debris to be displaced and rolled toward the lock chamber. This 

can result in blockages that obstruct the closure of the lock 

gates. The presence of such obstructions can cause damage to 

critical components of the lock system, such as the de-icing 

pipes [5], which are essential for preventing freezing in cold 

climates. To prevent such incidents, a continuous monitoring 

system is essential for detecting these "rolling stones" at an 

early stage. Such monitoring system is also anticipated to 

provide insights into how the depth of the ship’s draft, which 

can be correlated with sediment displacement. 

To address these issues, an affordable and scalable  

monitoring system employing 2D sonar imaging has been 

designed to continuously assess the approach to a lock 

complex. This novel approach offers scour monitoring, 

detection of rolling stones and estimation of ship’s draft  in 

navigation locks. The monitoring system incorporates an image 

processing algorithm to detect bed morphology changes and 

provides assessment of vessel-induced impacts on the lock bed. 

2D sonar techniques for monitoring the canal bed morphology of entrances to 

navigation locks 
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By enabling early detection of bed morphology changes, the 

system allows for timely interventions and mitigation measures 

to prevent further degradation of the lock complex. This 

approach aligns with the broader objectives of structural health 

monitoring of navigation locks, which aims to extend 

infrastructure longevity while reducing maintenance costs, 

thereby enhancing maintenance strategies. The findings of this 

study can be applied to other navigation locks facing similar 

challenges, offering a scalable solution for sustainable lock 

maintenance and improving the overall reliability of inland 

waterway infrastructure. 

2 BACKGROUND  

This section explains causes of scour, particularly, in lock 

complexes, scour monitoring techniques and sonar 

technologies.  

 Scouring 

Scour can be categorized into three forms: local scour, 

contraction scour, and general scour. General scour typically 

happens as a result of alterations in the natural flow of water, 

causing the river/canal bed to experience both aggregation and 

degradation. Contraction scour, on the other hand, is a result of 

an increase in the flow velocity in conjunction with a reduced 

cross-sectional area of the waterway. The consequence is the 

removal of sediment from the waterway’s bottom and side [9]. 

Local scour, the third form, takes place due to turbulent vortices 

generated by the flow of a current impacting the bed or 

foundation of the waterway, leading to erosion of surrounding 

sediment [10]. 

Local scour is a gradual process that evolves through 

multiple stages. The initial stage is characterized by the 

occurrence of erosive effects and damage due to extremely high 

velocity. Subsequently, scour transitions to the development 

stage, where the rate of erosion slows down compared to the 

initial stage. Finally, it reaches the equilibrium stage, where the 

depth of scour remains stable, and any changes in its depth 

become imperceptible [11]. The depth of the scour hole in the 

equilibrium stage is compared with the critical depth of the lock 

slab or foundation. Local scour takes place in two distinct 

forms: clear-water and live-bed flow conditions. 

Differentiating between the two can be determined by 

observing whether sediment is eroded and replenished (live-

bed) or eroded without replenishment (clear-water flow) [10]. 

The latter condition is often investigated in scour studies.  

Local scour is generally linked to turbulent vortices [12–15]. 

Unlike in cases of bridges, where this turbulence arises from a 

change in the cross-sectional area of the watercourse due to 

bridge piers, in locks, the turbulence is caused by the change in 

the bed roughness introduced by the weir or lock floor. 

Therefore, structures like locks and weirs, constructed on a soft 

bed in watercourses, tend to induce local scour, especially in 

the surrounding bed. To counteract this, a bed protection layer 

is applied to stabilize the adjacent loose bed. 

The intensity of the turbulent vortices generated by this 

change is directly proportional to the velocity of water flow, 

higher velocities resulting in greater intensity. In the navigation 

locks, two factors influence the water flow velocity. Firstly, 

during the emptying of the lock chamber through small 

openings, the velocity increases. The intensity of this effect 

depends on the water level difference between the two sides of 

the lock. The second factor affecting velocity is the passage of 

large vessels through the navigation locks. The propeller wash 

from these large vessels significantly increases water flow 

velocity, expediting morphodynamical changes in the 

surrounding bed through scouring. Ships, especially during the 

initial movement or acceleration, exert the most stress on the 

bed. Figure 1 (top) illustrates a schematic of a scour hole due 

to the currents from the emptying of the chamber, and Figure 1 

(b) depicts a schematic of a scour hole due to the currents from 

the propeller wash of entering ships. 

 

 

Figure 1. Development of a scour hole downstream of the lock 

head resulting from (top) currents caused by emptying the 

chamber, and (bottom) propeller wash of entering ships 

When the propellers and thrusters initiate spinning, they set 

the previously stagnant water in motion. Consequently, they 

need to overcome the water's initial inertia, leading to the 

creation of localized vortices and high shear stresses. This shear 

stress is the cause of bed erosion or scouring. However, once 

the inertia is surmounted, the stress levels tend to diminish over 

time [16]. The scour hole generated by the propeller wash can 

be described as a combination of three polynomial components, 

including (1) a small scour hole located directly beneath the 

propeller, (2) a primary scour hole downstream of the initial 

one, and (3) a deposition mound situated farther downstream of 

the primary scour hole. This description is based on a setup with 

non-cohesive sediment [17]. 

The erosive process of scouring creates a depression in the 

immediate bed area, and if the slab/foundation's critical depth 

is surpassed, it can ultimately lead to the undermining and 

collapse of the foundation. On the other hand, the scoured 

material can alter the required depth for the navigation of ships. 

Therefore, in old navigation locks, the scour holes need to be 

refilled quite often and the sedimentations dredged, otherwise, 

countermeasures such as a bed protection layer have to be 

applied. Both scenarios, reduce the efficiency and operability 

of the lock, causing considerable economic loss [4]. 

Accordingly, scour holes induced by propeller wash of the 
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ships turned into one of the most prominent concerns for the 

design and maintenance of the waterways system.  

Scour is a complex physical phenomenon involving 

interactions between flow, structures, and soil. Predictive 

models for scouring remain unreliable, contributing to the 

inherent uncertainty in its understanding. Therefore, there is a 

pressing need for the regular monitoring of scour at critical 

infrastructures that face a higher risk of scour-induced failure 

[8]. Continuous monitoring of areas prone to scouring is crucial 

due to the time-dependent nature of this phenomenon. This 

helps prevent scour-induced damage from becoming severe and 

causing critical failures. 

 Scour monitoring 

The most widespread incidents of scouring in wet 

infrastructures are related to bridges, which is one of the main 

causes of bridge collapse [18]. An economically applicable and 

effective method to combat scouring is to monitor its progress 

over time and apply countermeasures before poses problems to 

the structure. The most prevalent monitoring scheme that is 

commonplace in engineering is visual inspection. In the case of 

wet infrastructures, visual inspections usually are undertaken 

by the divers. However, the risk of this inspection method 

during the flood is high. There is also one important fact about 

scouring that scour holes might be refilled, accordingly, the 

strength of the bed is not what it shows in the inspection [7]. 

Therefore, an effective method could offer continuous 

monitoring of the depth of scouring. As scour monitoring 

techniques are relatively well developed for bridge structures, 

and the origin of failure in locks is the same, the treatment can 

be generalized to these wet infrastructures as well.  

As for bridge scour monitoring, some sensors have been 

employed that can measure the depth of scour holes such as 

single-use, pulse or radar, fibre-Bragg grating, driven or buried 

rod, and sound wave devices [7]. All these sensors are 

applicable in monitoring the progress of scouring in navigation 

locks. Among the mentioned methods, the last one; sound wave 

devices, provides region-wise monitoring, while the rest are 

spot-wise. In an extensive area such as a lock entrance bed,  

since the exact spot of scouring is hard to determine, the most 

promising method is using sound waves or so-called sonar 

devices [6]. 

 Sonar techniques for scour monitoring 

Sonar is a vital technology used to explore the underwater 

environment. Sound waves propagate and penetrate more 

effectively than light through water, especially in conditions of 

high turbidity. This feature makes it an ideal tool for 

underwater mapping and detection. Moreover, sound reflection 

shares similarities with light reflection; surfaces with different 

textures reflect varying fractions of the incidence of sound. For 

instance, textured surfaces cause reflection, scattering, and 

absorption. Surfaces with low reflection have more absorption 

[19]. The reflecting surface also determines the direction of the 

reflection. On smooth surfaces, the angle of reflection, 

measured from the normal to the surface, is equal to the angle 

of the incident of the wave [20]. However, rough surfaces 

scatter the waves or reflect them in all directions [19]. 

Based on the principles of sonar, sonar images can provide 

information about the location of bed surfaces with (i) strong 

reflectivity, such as rocks, that (ii) are normal to the sonar 

transducer (hot/light-coloured pixels). These surfaces may 

include the uphill side of projections or depressions in the bed. 

On the other hand, the location of surfaces with low or no 

reflectivity is also known in the sonar images (cool/dark-

coloured pixels). For example, surfaces that are parallel with 

the sonar transducer, silt or mud-covered areas, areas 

overshaded by rocks, or the downhill side of depressions and 

projections. Figure 2 schematically demonstrates reflection 

intensities against surfaces of the seabed in different directions 

such as the uphill/downhill facing of projections/depressions. 

 

Figure 2. Reflection intensity of acoustic signals 

When a rock resting on the waterbed is subjected to a force 

from high-velocity currents, depending on the weight of the 

rock, it may undergo displacement from its previous location. 

In this case, the intensity of signal reflection received by the 

sonar alters in a specific time interval that is related to a certain 

location. These alterations occur due to variations in the 

incident angle of the signals, resulting in modification of the 

sonar image at that particular location. Additionally, the 

presence and shape of shadows may undergo changes that 

indicate a change in the location or orientation of its source. 

Therefore, by placing a 2D imaging sonar underwater at a 

suitable altitude and a fixed position facing toward the area of 

interest on the bed, the changes in the bed features can be 

captured. 

3 THE BEATRIX LOCK COMPLEX 

The Princess Beatrix Lock is the largest monumental inland 

navigation complex in the Netherlands. The lock complex, with 

three chambers, is located within the Lekkanaal, connecting the 

Lek River and the Amsterdam-Rhine Canal. This connection is 

the main and shortest freight corridor and inland waterway 

between the North of the Netherlands/Amsterdam and 

Rotterdam/Antwerp. Around 50,000 vessels pass through the 

lock every year [21]. The Beatrix lock is positioned in the 

north-south direction, the water flow is northwards. Filling and 

emptying the lock system is performed via the gates. That 

means water is brought into or leaves lock chambers through 

openings in gates, instead of bypassing culverts or stilling 

chambers. The hydraulic head differences between the two 

sides of the lock can exceed two meters. Two of the chambers; 

the twin chambers, with a length of 225 m and a width of 18 m 

were built in 1938. These chambers can host ships with a 

maximum draft of 3.5 m. However, the third chamber, built in 

2019, is designed to accommodate vessels of CEMT class Vb 
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with a draft of 4 m. The length of the third chamber is 276 m 

and its width is 25 m. Figure 3 shows an annotated aerial view 

of the Beatrix lock complex. 

 

Figure 3. Aerial photo of The Beatrix lock [22] 

The filling and emptying system of all three chambers of the 

Beatrix lock is the opening gate. The gates of the twin chambers 

have six openings at a height of one meter from the floor of the 

chamber. The hydraulic head differences between the two sides 

of the opening are variable and sometimes reach two meters. 

This difference affects the flow velocity of the opening outlet. 

In fact, the high-velocity currents from emptying of the 

chambers (levelling downward) accelerate the progress of 

scouring at the downstream side of the lock. This is potential 

damage that occurs due to the operation of the lock by itself, 

without any ships. 

The effect of ship propeller wash on the scouring is 

intensified by reducing the distance between the ship propeller 

altitude and the bed. To minimize this effect, a minimum under-

keel clearance needs to be considered when the ships pass 

through the lock. According to the waterways guideline of 

Rijkswaterstaat, which is the executive agency of the Dutch 

Ministry of Infrastructure and Water Management, the water 

depth in navigation canals should be at least a factor of 

1.4 times the loaded draft of a passing ship relative to the 

normal low water level [21]. For example, for ships with a draft 

of 4 m, the water depth should be at least 5.6 m. This 

consideration is to minimize the scouring effect of ships’ 

propeller wash on the canal bed. Also, the guideline provides a 

minimum keel clearance above the chamber floor in locks for 

different ship categories. For the ships in classes I, II, and III, 

keel clearance above the chamber floor is 0.6 m, for classes IV 

to Vb 0.7 m, and for classes VIa and VIb 1.0 m. This 

consideration needs to be met to minimize the erosion effect of 

propeller wash related to passing ships. 

It is important to know whether the required water depth in 

the Beatrix lock is in accordance with the guidelines or not. 

Consequently, the minimum under-keel clearance of the 

passing ships from the Beatrix lock during the past years of 

2019 and 2020 is investigated. To compute the water depth at 

the moment of passage of ships, the water level and level of the 

canal bed are needed. By subtracting these two levels, the water 

depth is determined. In the Rijkswaterstaat database, all the 

passing ship’s details are registered. These details include the 

date and time of ship entry to the lock, lockage time duration, 

chamber, direction of passing, and ship category. It is good to 

mention that ships within the same category have the same 

loaded draft. However, the status of the ships 

(loaded/unloaded) is unknown in this dataset. 

The level of the canal bed is extracted from a bathymetry map 

of the lock and surrounding canal. The bathymetry is conducted 

by Martens en Van Oord in the year 2021. Figure 4 shows a 

segment of the bathymetry map of the chambers and the 

approach at the downstream side of the lock. Bed levels at the 

twin chambers and approach are estimated at -4.62 m and 

- 4.95 m respectively (these numbers are circled in the figure). 

Therefore, the water depth of the old chamber during the 

passage of class VIa ships is on an average between 4.24 m and 

4.56 m for the chamber and approach of the lock respectively. 

However, according to the guidelines, in this case, the water 

depth should be at least 5.6 m. 

 

Figure 4. The bathymetry map of the north side of the Beatrix 

lock (downstream) 

To gain insight into the condition of the approach bed of the 

Beatrix lock, the bathymetry data of the lock is investigated. 

According to the available drawing from the Beatrix lock in 

combination with the bathymetry of the canal around the lock 

structure,  there are two changes in the roughness of the 

watercourse bed along its approach. The first change is related 

to the junction of the lock head and the bed protection layer of 

the canal, which is implemented immediately after the lock 

head. The second change is associated with the junction of the 

bed protection layer and the natural bed of the canal. Therefore, 

the junction of these two beds with different roughness is the 

area where local scour takes place. According to a diver 

inspection report on the bed protection layer of chambers 1 and 

2, the layer is composed of pieces of rock affixed with a cement 

paste. However, the cement paste does not fully cover the 

rocks, resulting in a rocky finishing surface. 

The point cloud data in Figure 4 from the north side of 

chamber 1 indicates degradation of the protection layer at its 

intersection with the natural bed, revealing the progress of the 
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scour hole. While the protection layer on the south side of this 

chamber shows signs of degradation, the intensity or depth of 

degradation is not as high as observed on the north side. This 

difference could be attributed to the lower water depth on the 

downstream (north side) resulting in more pronounced effects 

of the ship's propeller wash. The bed protection of the north 

side of chamber 2 and the south side of chamber 3 have not 

experienced any significant degradation. However, on the south 

side of chamber 3, a scour hole has formed at the natural bed of 

the canal, which could be an initial indication of degradation in 

the protection layer. 

4 SONAR FOR THE LOCK MONITORING 

 Selection of sonar device 

A variety of sonar devices are available for marine applications 

such as seafloor mapping, underwater structure inspection, 

navigation, and commercial fishing [23–26] Given the cost 

constraint of under €25,000, a 2D sonar was selected for its 

affordability compared to 3D alternatives.  

To identify the most suitable option, 12 commercially 

available 2D sonar devices were evaluated using a rating 

system based on criteria including price, frequency, range, 

power consumption, weight, resolution, casing, field of view, 

and beam angles. Each device was scored, normalised, and 

expressed as a percentage. All criteria were equally weighted, 

as established through requirement analysis. The ISS360 

imaging sonar emerged as the optimal choice. Details of the 

scoring method are provided in  Table 1, while the performance 

results and corresponding ranking are presented in Table 2. 

Table 1. The scoring system and the description of the criteria 

 
 

Table 2. Evaluation results for sonar device selection 

 

 2D Sonar system 

The ISS360 2D imaging sonar from ImapctSubsea is selected 

as the sonar device for the lock monitoring system. This sonar 

is a single-beam rotary sonar that scans the area by rotating a 

transducer via an in-built stepper motor. The transducer emits 

an acoustic beam with a height of 23° and a width of 2.2° at a 

central frequency of 700 kHz. It operates within a bandwidth of 

600 kHz to 900 kHz and has a range performance ranging from 

0.15 m to 90 m. Frequencies below 700 kHz are employed for 

distances greater than 35 m.  Figure 5 shows the geometry of 

the ISS360 imaging sonar sensor and its fan-shaped acoustic 

beam.   

 

Figure 5. ISS360 imaging sonar sensor and with its principal 

dimension (left) and beam angles of the sonar (right) [27] 

The sonar’s power consumption is 150mA at 24V DC during 

scanning. The sonar device is powered by the Mean Well 

AC/DC PSU - LRS-75-24 - PSU 1, which outputs 24V/0-3. To 

enhance its ingress protection (IP) rating, the power supply is 

enclosed in a (150×110×70 mm) junction box with an IP56 

rating. This protective case ensures the power supply can 

operate in wet environments and raises its IP rating to IP56. 

The sonar must be firmly kept in its desired location with 

minimal vibrations. The sonar mount is specifically designed 

for this purpose. It restrict the displacement of the sonar to a 

maximum of 1 mm. This necessitates the mount to be rigid 

enough to prevent any vibrations or displacement caused by 

intense ship-induced currents. Another requirement for the 

sonar mount, associated with the selected sonar device, is to 

ensure electrical isolation from the housing of the sonar. 

Considering the diameter of the sonar (47 mm), two scaffold 

clamp sizes of 50 mm, coupled with two brackets, are 

employed as the sonar mount. In one clamp, the sonar is fixed, 
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while in the other clamp, the mount pipe is fixed. The mount 

pipe can then be affixed to a wall using another clamp and 

bracket. This coupled clamp system allows the sonar to be 

positioned and fixed in all orientations. Figure 6 (left) presents 

the clamp system with sonar and the pipe. To meet the isolation 

requirement of the mount, a non-conductive spacer (Figure 6 

(right)), made of Polylactic Acid, was designed. It is installed 

between the sonar and the clamp. 

 

Figure 6. A coupled clamp system with sonar and the mount 

pipe (left) and a 3D sketch of the spacer (right) 

The thickness of the spacer was considered to be 1.5 mm so 

that, when placed around the sonar, the total diameter of the 

sonar and the spacer is 50 mm, fitting the size of the clamp. To 

minimize the risk of the sonar slipping off the mount under 

high-pressure currents caused by ship propellers, the spacer 

was designed to provide a firm grip between the sonar and the 

clamp. The grip between the sonar and the clamp is facilitated 

by a projection in the spacer that fits into a recess in the sonar 

housing. Additionally, two teeth were added to the outer side 

of the spacer to ensure the grip between the spacer and the 

clamp. Figure 7 shows the detailed design of the spacer. To 

dampen vibrations between the sonar and the spacer, anti-

vibration damper strips were affixed to the spacer. Shows the 

printed spacer placed between the sonar and the clamp. To 

prevent self-loosening of the clamp nut and ensure that the 

sonar remains securely in its place, a spring washer with a 

double nut configuration is being considered for the clamp 

 

Figure 7. Detailed parts of the spacer 

 Sonar location 

The north side of chamber 1 is found to be the critical area of 

concern in the approach bed of the Beatrix lock. The sonar is 

installed to cover this area. Long-term monitoring of this area 

may reveal changes in the scour hole in the bed protection layer. 

The weakness of the protection layer in that region makes it 

susceptible to further growth, i.e., erosion. The concrete floor 

of the lock chamber also needs to be included in the sonar’s 

field of view. Such configuration is expected to verify the 

capability of the monitoring system to capture the deposits on 

the threshold. If rolling stones/deposits on the concrete floor 

can be captured, it implies that they can also be captured on the 

gate threshold. Situating the sonar system between these critical 

areas ensures comprehensive coverage while considering the 

trade-off between range limitations and image resolution. 

Figure 8 provides a top-down view of the point cloud from the 

north side of chamber 1 superimposed on the drawing of this 

region. Both the concrete floor of the chamber and the scour 

hole are illustrated. The location of the sonar is on the east side 

of the chamber in between the critical areas.   

 

Figure 8. The top-down view of the point cloud of the north 

side of chamber 1 superimposed on the drawing indicating the 

sonar location. 

The system must not disrupt the operation of the lock. This 

requirement prohibits any projection of the sonar installation 

into the track of passing ships. Consequently, the sonar is 

installed behind the fendering wood of the canal wall. Another 

requirement is to restrict the sonar displacement to a maximum 

of 1 millimetre. For this purpose, a galvanized steel pipe 6 m 

long with a diameter of 50 mm is used for the sonar mount. The 

mount pipe is clamped at two points to the fendering timbers 

with a distance of 1 m to provide the required rigidity for 

restricting vibrations caused by the turbulence of the ship’s 

propeller. Figure 9 (a) depicts a schematic of the sonar 

installation, providing information about dimensions, while 

Figure 9 (b) shows an above-water view of the sonar location. 

Additionally, Figure 9 (c) offers a cross-sectional view of the 

canal, demonstrating that the outward projection of the sonar 

does not obstruct the ship's path. 

 

Figure 9. A schematic of sonar installation with some principal 

dimensions (a), the view of sonar location (b), and projection 

of sonar toward the ship track (c). 
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5 MONITORING RESULTS 

 Changes in the canal bed  

The image rendered by the sonar contains two distinct parts; the 

bed protection layer, where the change in its feature is being 

sought, and the concrete floor, where the presence of sediment 

or rolling stone is sought. This section focuses on the bed 

protection part of the image to evaluate the ability to capture 

change in bed.  

To verify the bed scanning subsystem, over a period of 7 days, 

the sonar continuously scanned the bed area of interest. 

Sequential images were acquired by capturing a screenshot 

from the software window every minute. These images were 

subsequently compared to evaluate the subsystem’s 

effectiveness in capturing changes in the bed. Effective 

functionality necessitates, firstly, the absence of any changes in 

the sequential images as long as no source of excitation, such 

as the passage of ships or emptying the chamber, occurs. 

Secondly, changes are expected to occur in the images 

following a severe excitation.  

It is important to note that the emphasis is on changes resulting 

from the removal of spots with high-intensity reflection, rather 

than changes due to the appearance of new spots. The removal 

of spots that have endured for an extended period, signifies 

their resilience against relocation by heavy ships. The longer a 

pattern of spots remains in place, the more assuredly it is 

considered fixed parts of the protection layer. In the event of 

such changes, it signifies that the initially heavy and securely 

fixed spot has been relocated due to severe excitation, 

interpreted as degradation of the protection layer, allowing for 

the identification of problematic passages. Conversely, the 

emergence of a new spot suggests a stone coming from 

elsewhere (probably as a result of removal from somewhere 

else). 

To facilitate image comparison, each sequential image is 

divided into small ROIs, and each ROI is then compared with 

the corresponding ROI in the subsequent images. Focusing on 

only a ROI of this image, for instance, an 8.5 m ×10.5 m area 

near the scour hole (see Figure 10), numerous green/reddish 

spots can be seen with specific locations and sizes. 

 

Figure 10. A magnified ROI (yellow box) of the sonar image 

near the scour hole. 

These green spots represent the rock pieces of the bed 

protection layer. They constitute the distinctive features of the 

layer, forming a specific pattern depicted in Figure 11 with 

connected white circles of varying sizes and locations. Upon 

comparing this pattern in sequential images spanning a 2-day 

period, no changes are observed. This ongoing steadiness 

serves as evidence that the level of noise does not compromise 

image details, thereby satisfying the requirement of a signal-to-

noise ratio greater than 1.45. Furthermore, the consistent 

presence of these green spots, despite various excitations such 

as ship passages and chamber emptying during this period, 

indicates that they are fixed components of the protection layer. 

 

Figure 11. A region of interest in the at three different times, 

illustrating changes in the fixed pattern of the bed protection. 

However, after a ship passage following this period, one of 

the green spots within this pattern changed its location. 

Subsequently, the pattern remained unchanged for 5 days. 

Interestingly, another ship passage after this period led to the 

same green spot undergoing a change once again. This suggests 

the presence of a loose stone in the bed protection, potentially 

indicating degradation of the protection layer. Figure 11 

illustrates the initial location of this green spot circled in pink 

at the measurement’s outset and its two new locations after the 

severe excitations. This serves as compelling evidence of the 

bed scanning subsystem’s functionality, successfully capturing 

changes in the bed protection layer induced by specific 

excitations. 

It is also possible to identify weak parts of the bed protection 

layer. For instance, upon an examination of the collected sonar 

images, specific locations in the bed protection layer exhibited 

a consistent pattern of spots for 6 days. However, numerous 

changes in the arrangement of spots, deviating from the fixed 

pattern, occurred after each passage. This observation indicates 

the presence of loose stones that are not securely fixed in their 

location or the void left by a detached stone, subsequently filled 

with sand. Both scenarios signify a weak section in the bed 

protection layer. 

All constraints of this requirement have been satisfied, 

specifically, that the system captures changes occurring in at 

least 3 min within a minimum area of at least 0.5 m². The 

scanning time for the area of interest at the highest resolution 

of the sonar device is 1 minute, ensuring the system can capture 

changes within a 3-minute timeframe. Upon examining the 

detected change on 27-10-2023, at 04:02’, it was found that the 

change occurred within one minute. In the preceding image, the 

location of the green spot differed. This change is attributed to 

a shift in the location of a stone in the bed protection layer, 

measuring 0.5 m². Figure 12 illustrates the stone in two 

different locations in two sequential images with a 1-minute 

interval. 
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Figure 12. Detected change in the bed protection layer within 

an area of 0.5m² 

 “Rolling stones” on concrete floor 

This section concentrates on the concrete floor part of the sonar 

image, aiming to evaluate the subsystem’s capability in 

capturing rolling stones. Upon examining sequential images in 

this part, a green spot is consistently evident in all images, 

situated in the north-western part of the concrete floor. This 

reflection indicates the presence of a projection at that location, 

as a significant amount of signal is reflected compared to its 

surroundings, where such reflection is not expected. To 

confirm this assumption, an underwater drone was sent to that 

location to capture a video from the concrete floor. The video 

revealed a substantial piece of rock resting on the concrete 

floor. Figure 13 (left) presents the identified green spot circled 

in yellow, and Figure 13 (right) shows a drone-captured image 

revealing the presence of a substantial rock. 

 

Figure 13. A green spot (circled in yellow) on the concrete 

floor (left) is a rolling stone, which is captured in an image 

taken by an underwater drawn (right). 

Additionally, certain images display sporadic green spots on 

the concrete floor, appearing in one image and disappearing in 

the next. This fleeting presence suggests they are likely fish or 

other lightweight objects in that area. Contrarily, in many 

instances, these green spots endure for more than an hour, 

remaining unchanged in shape and location across many 

images. This extended presence indicates a heavier object, like 

stones, in those locations. Figure 14 depicts three incidences of 

stones observed on the concrete floor. Reviewing images 

collected over three days of scanning revealed the presence of 

stones on the concrete floor in multiple instances.  

It is noteworthy that the system can capture hills/projections 

from a distance of 30m. However, the height of the projection 

cannot be measured due to the lack of access to the stones on 

the concrete floor captured by the sonar. 

 

 

Figure 14. Incidents of persistent green spots (circled in 

dashed yellow line) suggesting the presence of rolling stones 

on the concrete floor 

 Ship’s draft 

the draft measuring subsystem shares the same components as 

the bed scanning subsystem. To evaluate the draft measuring 

subsystem’s capability in measuring the actual draft of ships, 

the sonar was positioned in the same location with a slight 

modification in its orientation. Due to the inherent limitations 

of 2D imaging sonar in capturing vertical faces underwater, the 

sonar mount was tilted 90°, as illustrated in Figure 14 (right), 

allowing it to render vertical surfaces underwater. In this 

horizontal orientation, the sonar captures a cross-sectional view 

of the canal, including the canal bed, wall, and water surface. 

Figure 14 (left) illustrates the sonar image, overlaid onto the 

background image, presenting a cross-sectional view of the 

canal outlined by the red lines. The water surface in the 

background image is partially cut to reveal a point cloud view 

of the underwater canal from the same angle. This view allows 

the observation of the canal wall and bottom. 

 

Figure 67 An illustration of a phot combined with 3D point 

cloud data and the sonar image of the cross-sectional of the 

canal (left), and the sonar tilted 90° (horizontally mounted) for 

measuring the ship’s draft (right) 

When a ship passes the sonar, its hull blocks the sounds, 

causing a strong reflection due to its surface being 

perpendicular to the sonar. Consequently, its draft is expected 

to be captured in the sonar image. Figure 15 (left) presents the 

sonar image illustrating a cross-sectional view of the canal 

while a ship is passing the sonar. In this figure, the ship’s draft, 

depicted in red, signifies the extent to which it extends toward 

the canal bed, providing the dimension of the under-keel 

clearance. Considering the sonar’s depth of 3.5 m, if the ship 

hull's bottom is not rendered in the image, it implies a draft 

greater than 3.5 m. Figure 15 (right) displays two passages of 

large ships with drafts of approximately 3.5 m and 3.6 m. The 

bottom image, suggesting a larger ship with more draft, blocks 

the opposite wall completely compared to the top image, 

despite their equal distance from the sonar. 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-179 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1197 

 

Figure 15. Sonar images rendering the cross-sectional view of 

the canal during a ship’s passage (left) introducing the ship's 

hull in the sonar image, and estimated draft of two large ships 

at the same distance from the sonar (right).  

Analysing historical traffic data before system design 

revealed a significant number of large ships passing through the 

old chambers with drafts of 3.5 m and 4 m. However, this data, 

obtained from Rijkswaterstaat, did not specify whether the 

ships were loaded or empty. The difference between loaded and 

unloaded ships can be up to 2 m. Examining the collected data 

from measuring ship drafts over 50 hrs uncovered 22 passages 

of ships with drafts exceeding 3 m, indicating a notable 

frequency of loaded ships in groups IV and V. Therefore, it is 

important to note that not all ships with large drafts were 

necessarily empty. 

6 CONCLUSIONS 

This project aims to investigate underwater dynamics and ship 

interactions with the canal bed by visualising changes in the 

bed protection layer near the lock structure. Reports indicate 

that this layer consists of large stones fixed with cement, some 

of which may detach due to excessive water pressure or 

excitation. Detached stones can obstruct the lock gate, risking 

damage. Monitoring their movement and understanding the 

causes i.e., chamber emptying and ship propeller wash, is 

crucial. The system is designed to detect changes in the bed 

protection layer, track rolling stones, and measure passing 

ship’s drafts to prevent structural degradation and operational 

hazards. 

The study draws the following conclusions: 

• The sonar-based system successfully detects changes in 

the bed protection layer by capturing consistent images 

over time. A low noise-to-signal ratio ensures reliable 

detection, while variations in high-intensity reflections 

indicate potential degradation caused by ship passages. 

• The system can identify and track stones on the concrete 

floor of the lock chamber. The size of the stones can be 

estimated using benchmarks, and their movement can be 

monitored to assess potential risks to lock infrastructure. 

• Some ship passages generate significant turbulence, 

leading to the displacement of stones from the bed 

protection layer. By correlating these events with sonar 

images, the system provides evidence that specific 

passages contribute to degradation. 

• Tracking the origin of rolling stones is difficult due to the 

limited field of view of the sonar. However, adjusting 

sonar placement and analysing traffic data can help 

determine whether stones move due to ship passages or 

chamber emptying. 

• By measuring ship drafts and turbulence profiles, the 

system reveals how propeller wash affects the bed 

protection layer. High air bubble concentrations in sonar 

images indicate strong disturbances, which may accelerate 

degradation of the canal bed. 

Future studies should collect a comprehensive dataset using 

the monitoring system, with at least six months of continuous 

data to identify change patterns. The current limited dataset 

provided evidence of bed protection degradation but lacked a 

complete understanding of the underlying causes. Expanding 

the investigation to other chambers of the Beatrix lock will 

reveal trends in scouring and improve detection of loose stones. 

Implementing automated detection and event correlation will 

help categorise ship passages, clarifying their role in bed 

protection degradation. 
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ABSTRACT: This study aims to perform leak detection on an old oxygen underground pipeline in operation. The target pipe is a 

220-meter section of nominal diameter 80A steel pipe that supplies oxygen for welding in heavy industrial facilities. In order to 

observe the response characteristics of the coupled vibration propagating through the pipe, an impact experiment was conducted 

to experimentally derive the frequency band and propagation velocity of the coupled vibration in the tested compressible fluid 

transportation pipe. Conventional leak detection methods mainly depend on frequency-domain filtering because it is difficult to 

improve the signal-to-noise ratio through averaging in the time domain due to the random nature of the leak signal. In this study, 

we propose a leak detection algorithm with improved detection performance by utilizing an ensemble cross-correlation function 

that applies averaging in the τ-domain based on the deterministic arrival time difference characteristics of the leak signal. In 

addition, leak detection using two sensors is likely to misjudge the leak source near the sensor due to noise propagating outside 

the detection range, and a single damage positioning result is insufficient to determine the leak damage. Therefore, this study 

proposes a distributed measurement-based leak detection technique and a decision map based on multiple damage localization 

results. The experimental results confirmed that damage localization using coupled vibration is possible in compressible gas 

transport pipelines, and experimentally verified that leakage can be effectively detected with a location error rate of approximately 

1.37% in industrial sites that are always in operation. 

KEY WORDS: On-line monitoring; Underground pipelines; Leaks; Source localization; SHM. 

1 INTRODUCTION 

Acoustical and vibrational signals can be generated by a 

number of different damage sources in underground pipelines 

such as growing cracks, corrosion progress, connection part 

movement, third party interference, direct impact and leakage 

etc.. On-line monitoring technology for buried pipeline is one 

of the main concerns for most underground pipeline 

management systems that maintain buried structures that are 

difficult to access. There are many factors that can threaten the 

health of buried pipelines, but among them, leakages by aging 

and damages by third-party interference are known to be one of 

the main causes of failure, and it is emerging as a major social 

problem that causes safety problems such as leakage and 

ground subsidence due to damage. Ultimately, the pipeline 

failure owing to these kinds of damage lead to economic loss 

and huge accidents such as a ground collapse by a sinkhole, an 

eruption by leakage. Hence, it is extremely important to detect 

and localize such damages at the very early stage in order to 

prevent catastrophic failures. However, most of underground 

pipelines are located in very noisy urban areas, and these harsh 

conditions inflicted on practical difficulties in measuring 

meaningful acoustic vibratory signals. Especially, several kinds 

of background noise such as traffic, natural environment and 

sound pollution causes difficulty in signal analysis. Therefore, 

this study proposes a distributed measurement-based leak 

detection technique and a decision map based on multiple 

damage localization results and monitoring range information, 

and implements an algorithm to improve the reliability of 

damage localization in industrial sites where noise is 

frequent.[1-6] 

 

2 WAVE PROPAGATION AND EXPERIMENT 

In this study, acoustic wave propagation coupled with 

surrounding boundaries including cast iron and steel pipes is 

theoretically analyzed and the wave speed was confirmed 

with experiment. 

When the impact by foreign damage occurs on a fluid 

filled pipe, a structural pipe vibration as well as a fluid-pipe 

coupled vibration will occur. That is, a pipe vibration mode 

appears in various mode shapes in shown in Figure 1. Also 

the fluid borne wave, non-dispersive wave in free space, is 

changed to dispersive wave by coupled vibration. This role 

is executed by “n=0” mode. In other words, the 'Breathing' 

mode creates a new wave in the fluid filled pipe domain. 

This “Breathing” mode is important for detecting a damage 

sources.[1] 

 

 

 
Figure 1. Mode shapes of a circular cylindrical shell [1]. 

 
In this study, the buried pipe used in the field experiment was 

an oxygen supply pipe for welding process, and seven sensors 
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were installed in a 220 m section. Several types of impact 

hammer and accelerometer were used as the artificial impact 

source and sensors. To examine the possibility of damage 

location markers in compressible fluid transport pipelines, the 

velocity change characteristics were compared for 

compressible and incompressible fluids. Steel pipes with a 

nominal diameter of 80A, which is the diameter of actual 

pipelines installed in the field, were used. Basically, one-

dimensional source location algorithm was used to estimate the 

time delay with the cross-correlation method. 

In order to experimentally verify the speed of the coupled 

vibration propagating in the compressible fluid transport pipe, 

an impact hammer(086D20, PCB Piezotronics, United States 

of America) was used to generate coupled vibration at an 

arbitrary location to reproduce the impact damage situation, 

and vibration accelerometers(393A03, PCB Piezotronics, 

United States of America) were installed at distances of 42.15 

m and 220 m from the damage location, respectively. 

Additionally, the pressure applied to the buried pipe during the 

experiment was 55.154 Pa. Theoretically, it can be confirmed 

that incompressible fluids exhibit propagation velocity 

dispersion characteristics starting from a lower frequency band 

than compressible fluids. The velocities at 0 Hz are 

approximately 1381 m/s, 1319 m/s, 444 m/s, and 326 m/s, 

respectively.At this time, the theoretical propagation speed of 

the coupled vibration is approximately 326.5 m/s. 

 

3 VERIFICATION AND RESULTS 

First, we defined a ‘time history frame’ as each separated 

intrinsic parameter of input time signal. Then we obtained a 

couple of parameters such as frequency and intensity from time 

signal. We proposed a leak detection algorithm with improved 

detection performance by utilizing an ensemble cross-

correlation function that applies averaging in the τ-domain 

based on the deterministic arrival time difference 

characteristics of the leak signal. Figure 2 shows typical raw 

signal based on ensemble cross-correlation function. 

 
 

Figure 2. Typical raw signal based on ensemble cross-

correlation function. 

 

 In addition, leak detection using two sensors is likely to 

misjudge the leak source near the sensor due to noise 

propagating outside the detection range, and a single damage 

location positioning result is insufficient to determine the leak 

damage. Therefore, this study proposes a distributed 

measurement-based leak detection technique and a decision 

map based on multiple damage localization results and 

monitoring range information, and implements an algorithm to 

improve the reliability of damage localization in industrial sites 

where noise is frequent. Among these results, in the case of 100 

m, the possibility of an abnormal location is ambiguous 

because the result is from only a single combination, whereas 

in the case of the range of 55~60 m, the result is judged to be 

significant because the results from multiple combinations are 

the same. Figure 3 shows that the result of a distributed 

measurement-based source localization. 

 

 
Figure 3. Distributed measurement-based source localization. 

 

4 CONCLUSIONS 

In this study, seven sensors were installed in a 220 m section, 

and micro-leakage was detected in a 55-60 m section by 

applying the proposed algorithm. The experimental results 

confirmed that damage localization using coupled vibration is 

possible in compressible gas transport pipelines, and 

experimentally verified that micro-leakage can be effectively 

detected with a location detection error rate of approximately 

1.37% in buried pipelines in industrial sites that are always in 

operation. 
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ABSTRACT: In recent years, relevant brittle fractures of external grouted post-tensioning tendons in bridges have been reported 

due to corrosion damage, compromising the structural safety and stability of the bridges. A previous detailed finite element (FE) 

modelling approach for grouted tendons has been developed by the authors and compared with experimental results presented in 

the literature, ensuring an accurate reproduction of experimental results by accounting for steel plasticity and large deformations. 

This modelling approach considered a bonded contact to model the strand-grout interface. That is, an immediate re-anchoring of 

the strands in the grout is assumed in case of failure and, consequently the influence of the bond stress-slip behaviour is not 

considered in the modelling approach. This paper presents an alternative FE modelling strategy where the differences with the 

previous one are: i) the modelling of the strands as beams instead of solid bodies, ii) the presence of the sheathing duct, and iii) a 

non-linear model to reproduce the strand-grout bond stress-slip behaviour. The objective is to investigate the influence of different 

models to define the grout-strand interface: a bonded model or a bond stress-slip model, while validating the author’s previous FE 

approach. These models are also compared with the experimental results from the literature. Normal stresses along the strands and 

in the grout are studied, and degradation curves are derived, that is, the effective tensile force and natural frequencies versus 

damage (defined as the percentage of broken strands). These degradation curves serve as a key performance indicator of the 

structural performance of the tendon for structural health monitoring systems, anticipating to severe damage and potentially 

dangerous scenarios.  

KEY WORDS: Damage detection; Corrosion damage; Post-tensioning tendons; Finite element modelling. 

1 INTRODUCTION 

External post-tensioning tendons are key structural elements in 

bridge engineering, offering advantages like the ease of 

inspection, re-tensioning and substitution; however, they are 

also vulnerable to corrosion. Since the 1990’s, relevant brittle 

fractures of external grouted post-tensioning tendons have been 

reported in bridges due to corrosion damage [1],[2]. This 

situation significantly compromises the structural integrity and 

safety of these bridges. 

In externally grouted post-tensioning tendons, strand 

breakage does not necessarily lead to a significant reduction in 

the overall tensile force of the tendon. This is because the 

surrounding grout prevents the movement of the broken strand, 

effectively re-anchoring it and enabling the transfer of its 

tensile force to adjacent strands. As a result, the adjacent non-

broken strands experience a localised increase of their tensile 

stress near the breakage region [3]. This stress redistribution 

occurs over a defined transfer length, which is the distance 

needed for the strands to nearly recover their original tensile 

force [3]. However, if a considerable number of strands are 

affected by corrosion, the resulting stress concentration may 

exceed the remaining strands’ capacity, potentially leading to a 

brittle failure of the tendon. 

Numerical research on the mechanical behaviour of external 

post-tensioning tendons affected by corrosion remains limited. 

Aparicio et al. [3] studied the re-anchoring phenomenon in 

monostrand tendons. A numerical model validated with 

experimental tests was developed to assess the sensitivity of 

parameters such as the grout elastic modulus, the mesh, or the 

friction coefficient in stress redistribution when there is wire 

breakage. However, they did not consider the constitutive non-

linear behaviour of the tendon materials. Subsequently, Vecino 

et al. [4] (the authors of the present paper) proposed a numerical 

modelling approach of external grouted post-tensioning 

tendons to be used within a parametric study to evaluate tendon 

failure. The grout-strand contact was modelled as bonded (that 

is, no sliding between them is allowed), but accounting for a 

prescribed re-anchoring length, plasticity was considered for 

the high-strength steel of the strands, and the grout was 

considered perfectly elastic in such a way that the sheathing 

duct was not explicitly modelled. The modelling approach 

presented in the previous paper was validated through the 

experimental results obtained by Lee & Kang [3]. They carried 

out a laboratory experimental campaign to analyse the variation 

in dynamic parameters and the tensile force of tendons 

subjected to progressive corrosion. 

Thus, this study focuses on modelling strategies for the grout-

strand interface to carry out numerical approaches that are both 

efficient and accurate. The numerical results obtained are 

compared against experimental data available in the literature 

and previous numerical studies performed by the authors, 

which assume a bonded contact between the strand and the 

grout. The accuracy of this modelling assumption is assessed to 

determine whether it serves for practical purposes or if a more 

complex contact approach, such as incorporating a non-linear 

bond stress–slip relationship, is required. 

Establishing an appropriate modelling strategy for grouted 

tendons and the re-anchoring behaviour of strands is essential 

Effects of grout-strand interface modelling on the degradation of external grouted 

post-tensioning tendons 

Belén Vecino1, 0009-0002-9234-4005, Carlos M.C. Renedo1, 0000-0003-1014-0878, Luis Chillitupa-Palomino1, 0009-0001-5274-0436, Iván M. Díaz1, 

0000-0001-9283-5109 

 

1Department of Continuum Mechanics and Theory of Structures, ETSI Caminos, Canales y Puertos, Universidad Politécnica 

de Madrid, Calle Profesor Aranguren 3, Madrid, 28040, Comunidad de Madrid, Spain 

 

email: b.vecino@alumnos.upm.es, carlos.martindelaconcha@upm.es, luis.cpalomino@upm.es, ivan.munoz@upm.es 

 



13th International Conference on  

Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-181 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  

This CC license does not apply to third party material and content noted otherwise 1204 

for the reliable analysis of their structural performance. 

Accurate numerical models can support comprehensive risk 

assessments in the context of structural health monitoring 

(SHM) and serve as a tool for engineers and practitioners to 

complement inspections and prevent safety-critical situations. 

The present paper is organised as follows. Section 2 provides 

a detailed description of the finite element (FE) model 

developed here and present a former model previously 

validated by the authors to study tendon degradation. Section 3 

provides a discussion of the results obtained by the proposed 

modelling approach and using different grout-strand contact 

laws. Finally, Section 4 outlines some conclusions from the 

study. 

2 FINITE ELEMENT MODEL 

 Experimental tests carried out by Lee & Kang 

The experiment conducted by Lee & Kang [3] is used as a 

reference to compare their experimental results and the 

numerical results obtained in this investigation in terms of the 

degradation curves, which are: i) the tensile force with damage, 

and ii) the natural frequencies with damage. Damage is defined 

as the quotient between the number of broken strands and the 

total number of strands of the tendon: 𝐷 =  𝑁𝐵/𝑁, where 𝑁𝐵 

is the number of broken strands and 𝑁 is the total number of 

strands.  

This experiment was also used to validate the detailed FE 

modelling approach previously carried out by the authors [2], 

whose results on degradation curves are also contrasted with 

the ones obtained in this paper. 

The Lee & Kang experiment stresses a 10 m tendon at 

approximately 70% of the ultimate load of a prestressing 

strand. Then, five strands are broken successively by 

accelerated corrosion in 24 hours. To carry out the breakage of 

the strands, the grout is retired in the 30 cm central section, 

leaving the strands exposed. 

 

 

Figure 1. Strands subjected to accelerated corrosion [3]. 

 

 FE model 1: 3D elements and bonded strand-grout 

interface 

The Lee & Kang experiment was reproduced by the authors 

[4] using a FE detailed model of a seven-strand tendon 

surrounded by grout, except for the central section of 60 cm, 

which is modelled without grout to reproduce the Lee & Kang 

experiment, and to consider the re-anchoring length. This 

parameter was prescribed in the model due to the grout-strand 

contact considered, which will be explained hereafter. 

The stress state reached by the stressing of the strands is 

modelled by a thermal load, at 70% ultimate stress, 𝑓𝑝𝑢, which 

is 1900 MPa. Then, the stressing force of the tendon is 1241 

kN. The strands’ breakage due to corrosion damage is 

represented by the elimination of elements. The FE model was 

developed in ANSYS Mechanical using 3D SOLID185 

elements for the grout and the steel strands. The duct (which 

has the main function of confining the grout to prevent its 

breakage) was neglected by assuming a perfectly elastic 

material for the concrete with a higher density (to include the 

duct weight). Sweep meshing method was used so that the 

positions of the nodes of the grout match with those of the 

strands in each section. Both ends of the seven strands were 

modelled with fixed support, that is, rotation and translation 

were restrained at both supports. A linear elastic surface-to-

surface contact model was assumed between the grout and the 

strands; specifically, a bonded contact, which prevents 

separation and sliding. The bonded contact model does not 

capture the re-anchoring effect; a re-anchoring length had to be 

predefined in the model to simulate this behaviour. Plasticity of 

steel strands is considered. The elastoplastic model used 

presents the following characteristics: i) Bilinear isotropic 

hardening law, defined in Table 1, ii) Von Mises yield criterion, 

and iii) Associated flow rule. 

 

Table 1. Bilinear isotropic hardening model parameters. 

𝐸𝑠 [GPa]  𝑓𝑝𝑦 [MPa] 𝜀𝑝𝑦 [%] 𝑓𝑝𝑢 [MPa] 𝜀𝑝𝑢 [%]  

195.5 1760 0.9 1900 6  

      

 

 

Figure 2. FE tendon model developed previously by the 

authors in [4] (FE model 1). 

 

 FE model 2: beam elements for strands and non-linear 

springs for the interface 

The bonded contact employed in the FE model 1 for the 

grout-strand interface may not accurately capture the re-

anchoring phenomenon, as this process involves bond 

mechanisms such as adhesion, friction, and mechanical 

interlock [6]. A bond stress-slip law has been proposed and 

validated by Wang et al. for strands. Thus, a new modelling 

approach that considers a bond stress-slip law to model the 

strand-grout interface is developed. The implementation of this 

law in the model eliminates the need to introduce the re-

anchoring length as an input parameter, as in the FE model 1, 

allowing it to be intrinsically determined. 

The Model Code [7] proposes a bond stress-slip relationship 

for ribbed bars, considering the bond stresses between concrete 

and reinforcing bar for pull-out. This relationship is defined in 

Figure 3 and its defining parameters are listed in Table 2. 
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Figure 3. Bond stress-slip relationship [7]. 

 

Table 2. Parameters defining the bond stress–slip relationship 

[7].  

𝜏𝑚𝑎𝑥   𝜏𝑓  𝑠1 𝑠2 𝑠3 

2.5 √𝑓𝑐𝑚 0.4 𝜏𝑚𝑎𝑥   1 mm 2 mm 𝑐𝑐𝑙𝑒𝑎𝑟  

 

Parameter 𝑓𝑐𝑚  is the concrete compressive strength (a typical 

value of 30 MPa is considered), and 𝑐𝑐𝑙𝑒𝑎𝑟  represents the 

spacing between the ribs of a deformed bar. Considering the 

similarity in bond behaviour between steel strands and 

deformed bars embedded in concrete, the parameter s3 is 

defined as half of the distance between the concrete interlock 

region and the adjacent wires [8], and it is taken as 10 mm. 

To introduce the bond stress-slip law in the FE model, non-

linear springs are defined in every grout-strand coincident 

node. The elements used to create the non-linear springs are 

COMBIN39, with one degree of freedom in the longitudinal 

direction. COMBIN39 is defined by two nodes and a non-linear 

generalised force-deflection relationship. 

The main purpose of this paper is to validate and critically 

discuss the interface modelling approach developed previously 

by the authors when considering bonded behaviour (FE model 

1) [4]. For that, a new approach to numerically model the Lee 

and Kang experimental campaign has been developed (FE 

model 2). This new approach differs from the previous one in 

the following aspects: 

1) Modelling of the HDPE sheathing duct, which is 

considered elastic. 3D SOLID186 elements are used for 

the duct, and the duct-grout contact is modelled as 

bonded. The grout is also modelled with these elements. 

2) BEAM188 elements are used to model the strands. This 

simplifies the introduction of non-linear springs node-to-

node to model the grout-strand interface. Also, 

considering beams for the strands reduces considerably 

the number of nodes and elements of the model, reducing 

the computational demand as well, which is one of the 

main limitations of the previous modelling approach. 

3) Considering a non-linear bond stress-slip model to 

characterise the strand-grout interface. The Model Code 

bond stress-slip is introduced using non-linear springs 

(COMBIN39) in the longitudinal direction, whereas 

linear springs (COMBIN14) of high stiffness (k = 1012 

N/m) are modelled in the transversal directions. The first 

branch of the bond stress-slip model (from s=0 to s=s1) 

is considered linear for simplification. 

 

 

Figure 4. FE tendon model developed (FE model 2). 

 

 

The differences between the modelling approaches are 

compiled in Table 3. 

 

Table 3. Comparison of modelling approaches: FE model 1 

and FE model 2. 

 Sheathing duct 
Strand 

elements 

Strand-grout 

interface 

FE model 1  

[4] 
Not modelled SOLID186 Bonded contact 

FE model 2 
SOLID186 

elements 
BEAM188 

Non-linear springs 

(bond stress-

slip/bonded) 

 

 

Then, four different results are compared: 

(i) Lee and Kang experimental results. 

(ii) FE model 1 with bonded contact between strands and 

grout. 

(iii) FE model 2 with bonded contact between strands and 

grout. 

(iv) FE model 2 with non-linear bond stress-slip behaviour. 

 

 Analysis description 

A non-linear static analysis by load steps is performed. A sparse 

direct solver and the Newton-Raphson algorithm with 

convergence in forces, displacements, and moments are used. 

The non-linearity is caused by the activation and deactivation 

of elements. The influence of strands’ plasticity, large 

displacement analysis, the grout-strand contact modelling (re-

anchoring effects), and the mechanical properties of the grout 

on the FE modelling are studied. The FE analysis follows these 

steps (Figure 5): 

i) Stressing of the strands by applying a thermal load. The 

stressing of the strands was executed at 70% of their ultimate 

stress, 𝑓𝑝𝑢. The temperature decrease Δ𝑇 is equal to:  

Δ𝑇 =  
0.7 𝑓𝑝𝑢

𝐸𝑠 𝛼
,                        (1)         

where 𝐸𝑠 is the elastic modulus of the strands, and 𝛼 is the 

thermal expansion coefficient, taken as 1.2·10-5 ℃−1. 

ii) Activation of the grout to simulate injection. 

Slip, s [m]
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iii) Successive breakage of five strands in five different steps 

by eliminating elements. The order of strand breakage is from 

1 to 5, the strands numeration is illustrated in Figure 5. 

 

 

Figure 5. Steps of the FE non-linear static analysis performed. 

Furthermore, a modal analysis is performed after each strand 

breakage step to assess the progressive reduction in the 

tendon’s natural frequencies, which are useful as performance 

indicators (PIs) when performing vibration-based SHM of 

these elements. The characteristic stress state corresponding to 

each load step is incorporated into the modal analysis through 

the application of a preload state. 

3 RESULTS DISCUSSION 

 Tensile force degradation with damage 

The evolution of tensile force, 𝑇, with damage, 𝐷, in the 

anchorage (outside the transfer length) is shown in Figure 6. 

The re-anchoring effect is captured by the proposed modelling 

approach (FE model 2), with a similar trend to the experimental 

and previous numerical results (FE model 1). It must be noted 

that the re-anchoring length in the FE model 1 was an adjusted 

parameter to replicate the experimental results, whereas in the 

FE model 2, it is a result of the implemented contact law. Thus, 

FE model 2 can replicate the phenomenological behaviour 

without requiring any preliminary calibration, as opposed to FE 

model 1. However, the differences observed in the most recent 

modelling approach compared to the previous one are 

noticeable. This may be due to modelling the strands as beam 

elements instead of solid bodies, which may not adequately 

capture the internal stress distribution within the strand volume. 

When comparing the two grout-strand interface models 

(represented by the green and blue curves), the results are 

almost identical, indicating that the influence of the interface 

model used does not affect the accuracy of the results in 

reproducing the re-anchoring of the strands. However, these 

results also suggest that the interface modelling for ribbed bars 

exhibits greater stiffness compared to that for strand re-

anchoring in grout. 

 

 

Figure 6. Tensile force degradation with damage. 

 

 Natural frequencies degradation with damage 

The evolution of the first four natural frequencies, 𝑓𝑖, of the 

tendon as damage progresses is also analysed in Figure 7. In 

this figure, 𝑓𝑖,𝑒𝑥𝑝 refers to the frequencies obtained in the Lee 

& Kang experiment, 𝑓𝑖,𝑛𝑢𝑚 to the ones corresponding to the FE 

model 1, whereas the other two frequency groups refer to the 

FE model 2 with bonded and bond stress-slip models. 

A behaviour similar to that observed in the tensile force 

degradation is noted when comparing the FE model results with 

the experimental data. While the overall trend is consistent, the 

natural frequencies predicted by the models are slightly higher 

than the experimental values, and the new modelling approach 

exhibits more pronounced discrepancies. However, the results 

obtained using the different interface models remain 

phenomenologically similar.  

The degradation of natural frequencies becomes more 

pronounced at higher damage levels and is more significant in 

absolute terms for the higher modes. Accurately quantifying the 

absolute reduction in frequencies is important for their effective 

use as a PI in structural health assessment [4].  
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Figure 7. Frequency degradation with damage. 

 

 FE model 2: normal stresses along the strands 

Two strands are considered for the study of the normal 

stresses along the strands: i) Strand 5, which is the central 

strand and is the last to break (Figure 8), and ii)  Strand 6, which 

is a central that remains continuous throughout the entire 

analysis (Figure 9). The two interface models (bonded and 

bond stress-slip) are also compared. 

Strand 5 exhibits a local increase in stresses as a result of the 

successive breakage of strands, becoming more pronounced as 

damage progresses, with fewer continuous strand remaining to 

carry the stresses of the broken ones. Additionally, the re-

anchoring effect is observed in both models, where, in regions 

distant from the vicinity of breakage, the stress along the strand 

remains constant. Along the re-anchoring length, a transition 

occurs between the constant stress away from the breakage 

zone and the increased stress near the breakage. Both models 

effectively represent the re-anchoring effect; however, the 

primary difference lies in the re-anchoring length. The bond 

stress-slip model (Figure 8 (a)) shows a larger re-anchoring 

length, approximately 1.9 m, with a smoother transition in 

stresses, while the bonded model (Figure 8 (b)) exhibits a 

shorter re-anchoring length, around 0.9 m. This results in a 

difference of approximately 1 m in the re-anchoring length 

between the two models. 

 

 

Figure 8. Normal stresses along strand 5 for different strand-

grout interface modelling. (a) Bond stress-slip model. (b) 

Bonded model. Blue shadowed areas indicate the re-anchoring 

length. 

 

Similar results are observed for strand 6. The stress evolution 

along the strand demonstrates the stress redistribution resulting 

from the successive breakage of strands. In a similar manner as 

for strand 5, the re-anchoring length is greater for the bond 

stress-slip model, where it is 2.2 m, compared to 1.9 m for the 

bonded model. The difference of 0.3 m is smaller in this case, 

as this strand does not break during the analysis. Given the 

exponential nature of the re-anchoring phenomenon, the re-

anchoring length is a highly sensitive parameter to the point at 

which complete re-anchoring is achieved. 
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Figure 9. Normal stresses along strand 6 for different strand-

grout interface modelling. (a) Bond stress-slip model. (b) 

Bonded model. Blue shadowed areas indicate the re-anchoring 

length. 

 

 FE model 2: normal stresses in the grout 

The normal stresses in the grout as a function of damage are 

shown in Figure 10 for the two interface models studied, 

obtaining similar results for both. The grout normal stresses are 

analysed to characterise the grout’s mechanical response, given 

that it has been modelled as perfectly elastic, which may not 

accurately represent the typical grout constitutive behaviour.  

 

 
Figure 10. Normal stress in the grout with damage progression. 

The compressive strength of the grout is 30 MPa, this value 

is reached for approximately a 45% of damage. Beyond this 

point, crack formation and propagation are expected to start. 

For the maximum damage value studied (71%), the stresses 

reach 70 MPa, which are considerably high, more than twice 

the compressive strength of the material. These stress values 

are not realistic; this highlights the limitations of the linear 

elastic assumption and suggests the need for a more accurate 

non-linear constitutive model. 

4 CONCLUSIONS 

The following conclusions are drawn: 

1. The tensile force and the natural frequencies serve as PIs 

for damage detection within the context of SHM, 

provided that their degradation due to damage is 

accurately reproduced numerically. It can support early 

identification of deterioration mechanisms, complement 

fieldwork, and contribute to a more effective 

maintenance. 

2. The new FE modelling approach shows discrepancies 

compared to the authors’ previous numerical results, 

which may be attributed to the modelling of strands as 

beam elements instead of solid bodies. This also may 

explain the increased deviations from experimental 

results. However, the use of beam elements reduces 

computational demands, which was a limiting factor in 

the previous modelling strategy. 

3. The influence of different literature-based grout-strand 

interface models is minimal compared to a bonded 

interface behaviour, as the results obtained are nearly 

identical. The primary difference lies in the re-anchoring 

length, which is approximately 1 m longer for broken 

strands when using the bond stress-slip model. 

4. The interface models used to simulate ribbed bar pull-

out may not be directly applicable to prestressing strands 

in external grouted tendons. The results indicate that the 

stiffness of the grout-strand interface may be 

considerably lower. 

5. Future research aimed at improving the FE modelling of 

grouted tendons should focus on incorporating a non-

linear constitutive model for the grout and a more 

realistic bond stress-slip behaviour with much less 

stiffness than those used for internal tendons or rebars. 

6. In previous work [4], the authors applied the modelling 

strategy to conduct a parametric study to identify the 

critical number of strands broken leading to tendon 

failure. A reliable and efficient FE modelling approach 

can serve as a valuable tool in SHM applications, 

enabling risk assessment and early damage detection. 
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ABSTRACT: Cables and external post-tensioning tendons are key elements of modern strategic bridges; however, their structural 

integrity has been questioned due to some structural collapses registered during the last decades. In this context, cost-effective 

vibration-based monitoring strategies can be implemented to improve their maintenance by continuously estimating their tension 

force (a key damage indicator) from their natural frequencies. These frequencies may vary in time due to environmental changes, 

modification of the service loads, and tensioning processes produced during cable substitution manoeuvres. In monitoring systems 

that only use one accelerometer per cable (the most common situation in practice), a robust and accurate peak-picking method is 

required to adequately identify which are their actual almost harmonic natural frequencies and to which modal order they 

correspond to. Ideally, this method should be automated (to run continuously), autonomous (with as few hyperparameters as 

possible) and self-regulating (to discard poor quality spectra and outliers). Additionally, the method must be able to cope with two 

well-known phenomena experienced in practice that dirt cable spectra: i) the double peak effect, and ii) the presence of bracing 

belts between cables. Thus, this paper works on developing an autonomous peak-picking procedure to cope with the 

aforementioned phenomena for enabling a reliable tension force estimation method in cable structures. This methodology has 

been applied to a one-week monitoring data set of measurements of real external post-tensioning tendons of a road bridge in Spain. 

KEY WORDS: Cable dynamics, Tension estimation, Post-tensioning tendons, Automatic peak-picking, Condition monitoring

1 INTRODUCTION 

Cables and tendons are crucial elements in bridge engineering 

but also are vulnerable structural elements because they are 

usually subjected to fatigue and corrosion problems. Thus, 

vibration-based non-destructive techniques have been used for 

external post-tensioning tendon assessment. The main 

parameter to assess in these cases is the tension force, as this 

performance indicator can give a clear idea of the condition of 

the cable and thus, the overall condition of the structure. The 

tension force is usually estimated from the measured natural 

frequencies, which are used to inversely solve the dynamic 

equation of an elastic tensioned cable.  

The higher the number of natural frequencies identified, the 

better the tensile force estimation, Indeed, the estimation of 

several natural frequencies results compulsory when the 

bending stiffness of the cable is not negligible. However, this 

frequency identification is especially challenging when only 

one accelerometer is employed for monitoring the element, as 

in these cases, it has to be performed by detecting peaks on the 

vibration signal's power spectral density (PSD). In the case of 

simply-supported cables, when their bending stiffness is 

negligible, the frequencies of these peaks should be perfectly 

periodical (which corresponds to the blue straight line in Figure 

1, where the frequency values are represented against their 

modal orders). When the bending stiffness has a considerable 

influence on the cable dynamics, these frequencies are quasi-

periodical, gradually increasing the distance between 

consecutive peaks. This effect can be clearly seen in the orange 

line of Figure 1. 

 

 

Figure 1: Effect of bending stiffness on natural frequencies. 

Although peak-picking may appear to be simple, some issues 

make difficult the identification procedure and its 

automatization. First, the variation over time of the natural 

frequencies to be identified makes more suitable methods that 

do not use initial guessing values to detect these peaks. Second, 

the presence of double peaks (doublets) within the PSD. This is 

caused due to the fact that the cable section may not be perfectly 

symmetric and thus, certain bending modes may decompose in 

couples of closely-spaced peaks. Third, the presence of bracing 
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belts between homologous cables may couple their similar but 

not identical vibration, also contributing to create doubles. 

Fourth, in external post-tensioning tendons running through 

several spans, the vibration of the different sections of the cable 

between deviators (with different span lengths) may be 

coupled, providing dirty spectra in which harmonics of 

neighbouring cable segments are mixed. Finally, interactions 

between the measured cable and other structural elements may 

dirt the PSD signals, thus, perturbing the frequency 

identification process and provoking an unreliable tension 

estimation. A typical situation of this type occurs in cable 

stayed bridges, when the vibration of the deck is transmitted to 

the stay cables or hangers.  

Some authors have faced in the past the problem of 

developing a real-time and automatic frequency identification 

methodology for performing an accurate tension estimation in 

cable elements. This automatization has been solved in a 

variety of ways within the literature. Most of them detect these 

frequencies by performing an automatic peak-picking process 

from the signal’s PSD. Initially, Cho et al. [5] belowproposed 

a simple iterative process that lacked the necessary robustness.  

Then, Sim et al. [6] studied a frequency tracking method based 

on providing reference initial guessing values around which the 

peak search is performed. They claim its validity based on two 

facts: i) the frequencies variation due to environmental changes 

are small, and ii) the searched peaks are well-separated. 

Regarding deep learning applications, Kim et al. [7] have 

developed a tool based on object detection for performing 

automatic peak-picking from PSDs images with a region based 

convolutional neural network (a similar method is researched 

by Chen et al. [9]). The main advantage of this approach lays 

on the fact that no guessing values need to be provided, 

although the robustness of these tools rely on their training data 

set. Later, Jeong et al. [8] applied this latter method for 

performing automatic tension estimation on cables. They worry 

about the detection of undesired peaks not corresponding to 

cable natural frequencies. For that, they use the frequency 

distance between peaks, also named as ‘interval’. The main 

drawbacks of such a methodology will be discussed later. 

However, they do not cover issues as: i) how to correctly assign 

the modal order to each peak,  ii) how to manage missing peaks 

that interrupt a series of consecutive frequencies, and iii) how 

optimize the computational cost for its proper in-line 

implementation in continuous monitoring systems.  

One of the most revealing contributions is the one by Zhang 

et al. [10] that provided a clear explanation of the main 

challenges arising when performing tension estimation from 

cable vibration data, namely: i) detection of useful PSDs with 

recognizable peaks, ii) automatic and robust identification of 

frequency peaks, and iii) assignation of modal orders to the 

identified frequencies. They proposed a simple methodology 

based on updating a threshold prominence value till a minimum 

number of peaks has been identified. After this, they discard 

fake peaks if their frequency is not a multiple of the most 

common value for the interval. With this same principle, they 

assign the modal order to the peaks. This method results quite 

applicable to cables with low-bending stiffness (EI), however, 

when EI is remarkable, its applicability is limited, as 

proportionality is lost for higher modes. Another important 

contribution is the one of Jin et al. [2] in which the automated 

peak-picking is covered in detailed, remarking important facts 

such as the necessity of removing the baseline from the PSD 

curve to assess all the peaks with the same floor level. Their 

proposal is based on the application of a breakthrough 

multiscale-based peak detection algorithm (previously 

developed by [1]) combined with a criterion based on the 

median absolute deviation of the detected peaks. They 

compared this method with the one developed by Jeong et al. 

[8] confirming a substantial enhancement. Despite this, they do 

not provide any strategy to detect false peaks apart from the 

robustness of the method.  

The present research provides a modified methodology for 

performing autonomous peak-picking detection based on the 

findings by Jin et al. [2]. To the authors knowledge, all the 

contributions covering autonomous tension estimation of cable 

structures have dealt with long cables of cable-stayed bridges 

with EI not influencing their dynamic. This paper, for the first 

time, addresses this automatization problem in much shorter 

external post-tensioning tendons with non-negligible EI 

influence.  

This paper has been structured as follows: after the present 

section, Section 2 presents the autonomous peak-picking 

methodology. Section 3 illustrates a variation of the 

methodology for its in-line integration into a continuous 

monitoring system. Section 4 demonstrates the application of 

the methodology to data obtained from a week-long continuous 

monitoring measurement in an in-service post-tensioning 

tendon. Finally, Section 5 provides some conclusions and 

future works.  

2 AUTONOMOUS PEAK PICKING METHODOLOGY 

As mentioned before, an autonomous peak-picking method is 

an essential previous element to continuously estimate the 

tension force of cables from a single vibration measurement 

registered within a continuous monitoring application. The 

present paper proposes a method for that, based on the 

contribution of Jin et al. [2] in which the main innovation is the 

implementation of the so-called multi-scale peak detection 

algorithm previously developed by [1]. This algorithm, which 

is the core of the method, was conceived to detect periodic 

peaks within signals (indeed, it has been applied to detect heart 

beats). This is done through building the so-called local 

maximum scalogram (LMS) of the signal being analysed. A 

scalogram is a graphical representation of a given signal’s 

magnitude, resulting from analysing it using moving windows 

of different scale (number of samples). With the LMS, it can be 

detected the particular scale related to the interval of the 

periodic peaks being searched. Jin et al. [2] applied this concept 

to successfully analyse the PSDs of cable vibrations.    

On the one hand, for smoothly detecting environmental 

changes on the natural frequencies of cables, a great frequency 

resolution, ∆𝑓 = 1/𝑇 (𝑇 being the duration of the time-domain 

measured signal) and high sampling frequencies are required to 

detect a significant number of harmonics, are needed within the 

PSDs to be analysed. On the other hand, if these PSDs are such 

long vectors, the computational cost and memory involved on 

computing their LMS matrices may prevent from performing 

this process in real time within a continuous monitoring loop 

(the complexity of the problem is O(n2/2)). To cope with this 

issue, a two-step procedure has been proposed: i) developing 
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the LMS of a low-resolution PSD for roughly detecting the 

frequencies of the harmonic peaks. Then, frequency bands for 

later searching them more precisely are created, and ii) 

searching the final frequency values within a high-resolution 

PSD using these bands. Apart from these aspects, the following 

sections cover other considerations which are capital for 

successfully implementing the methodology in practice when 

dealing with post-tensioning tendons.  

 Signal pre-processing 

This process has been depicted in Figure 2. First, the time signal 

obtained from the monitoring system is detrended to eliminate 

any drifting caused by many factors, such as instrumental 

nonlinearity or signal offsets. Then, a low-pass filter is applied 

to eliminate peaks belonging to unimportant high frequency 

vibration that might shadow the actual peaks of interest. 

Furthermore, the filter cutoff frequency should be in 

accordance with the higher frequency order of interest for the 

posterior tension force estimation. Finally, the data is 

resampled (first interpolated and then decimated) to convert the 

original low-filtered signal to a lower rate in accordance with 

the low cutoff frequency.   

 
 

Figure 2: Signal pre-processing steps. 

 Low-resolution PSD of the signal 

As previously mentioned, a low-frequency-resolution PSD is 

employed as a workaround to mitigate the high computational 

cost associated with generating a LMS from a PSD with 

sufficient frequency-resolution to capture the variation of 

natural frequencies with temperature. This first PSD is obtained 

applying the Welch’s method using a high averaging of short 

time windows.  

 Baseline correction 

Baseline correction is a crucial step in the methodology, as the 

shape of the spectrum can affect the algorithm's ability to detect 

certain peaks. Figure 3 provides an example of this process for 

a cable PSD. To ensure optimal performance, various methods 

such as polynomial-based, morphological, and asymmetric 

least squares have been investigated within the literature. 

For the baseline correction there are many alternatives such 

as using the Savitsky-Golay filters, as mentioned in [2], but as 

indicated in [3], a better alternative is to rely on the use of 

asymmetric least squares smoothing. 

 

The idea is that for a signal vector 𝑦̅ with a number of samples 

equal to m, there should be a ‘baseline’ signal 𝑧̅ of equal length 

that meets the two following characteristics: i) being enough 

faithful to 𝑦̅, and ii) being smooth. Hence, the following least 

squares function, S, can be built to add together these two 

effects:  

                        𝑆 = ∑ 𝜔𝑖(𝑦𝑖 − 𝑧𝑖)
2 + 𝜆 ∑ (Δ2𝑧𝑖)

2 ,  𝑚
𝑖

𝑚
𝑖           (1) 

where 𝑖 is an index corresponding to each sample of the signal, 

and 𝜔𝑖 and λ are a penalty parameter, and a smoothing  

parameter, respectively, both controlling the balance between 

these two characteristics. The first term of this equation 

measures the baseline ‘fidelity’ to the original signal, while the 

second one regulates the ‘roughness’ of the baseline. 

The higher the value of S, the less these two requirements are 

fulfilled. Thus, S must be minimized in terms of 𝑧̅, to find an 

optimal baseline (d𝑆/d𝑧̅ = 0). After that, the following matrix 

expression can be derived, from which the vector 𝑧̅ can be 

obtained: 

                                  (𝑾 + 𝜆𝑫′𝑫)𝑧̅  =  𝑾𝑦̅ ,                    (2) 

where 𝑫 is a backward second-order-finite-difference matrix 

and 𝑫′ its transpose. 𝑾 is a weighted penalty diagonal matrix 

composed of 𝜔𝑖 values obtained as follows:  

 

                             𝜔𝑖 = {
𝑝    , 𝑦𝑖 > 𝑧𝑖

1 −  𝑝, 𝑦𝑖 < 𝑧𝑖
 ,                          (3)   

 

where 𝑝 is a small value between [0.1, 0.001] which represents 

an asymmetry factor to consider the fact that a PSD baseline is 

usually underneath the original PSD. This factor determines a 

low penalty for positive residuals (𝑦𝑖 > 𝑧𝑖) compared to a high 

penalty applied to negative residuals (𝑦𝑖 < 𝑧𝑖). 

The baseline correction is an iterative process that starts 

assigning initial values to 𝜔𝑖. After that,  𝑧̅ and 𝜔𝑖 are 

iteratively computed using (2) and (3) till achieving 

convergence. Among all, λ is the most influential factor in this 

process. Its value must be manually set between [102, 109].  

 

 

Figure 3: Baseline and baseline corrected PSD. 
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 Local maxima scalogram and optimal scale selection 

From the low-resolution baseline-corrected PSD a LMS is 

created. This is done by analysing the PSD with a series of 

moving windows with different number of samples 𝑤𝑘, defined 

as two times the ‘scale’ of the window 𝑘 (𝑤𝑘 =  2𝑘). This scale 

is a natural number ranging from 1 to 𝐿, being defined as 𝐿 =
ceil(𝑁/2) − 1, being N the total length of the PSD. 

Every window of scale 𝑘 runs though the signal sample by 

sample. Considering 𝑗 as the sample index on which the 

window is centrally positioned, for a given scale 𝑘, 𝑗 will vary 

from [𝑘 + 1, 𝑁 − 𝑘]. The LMS is a matrix of dimensions      

𝐿 × 𝑁 composed of 𝑚𝑘,𝑗  elements resulting from moving 

different windows along the PSD samples. Each 𝑚𝑘,𝑗  is 

obtained using a subset of three samples contained within a 

given window, namely, the two window edges and the central 

sample [𝑦𝑗−𝑘,  𝑦𝑗 , 𝑦𝑗+𝑘] (see  Figure 4). Thus, 𝑚𝑘,𝑗 is computed 

as follows:  

 

       𝑚𝑘,𝑗 = { 
0,

𝑟 + 1,
 
   if     𝑦𝑗 = max (𝑦𝑗−𝑘,  𝑦𝑗 , 𝑦𝑗+𝑘)

otherwise
          (4) 

 

where 𝑟 is a random number between 0 and 1. Finally, the LMS 

matrix, 𝑴, gets the form: 

𝑴 = 𝑚𝑘,𝑗 =  [

𝑚1,1 ⋯ 𝑚1,𝑁

⋮ ⋱ ⋮
𝑚𝐿,1 ⋯ 𝑚𝐿,𝑁

]                     (6) 

Thus, 𝑴 is a matrix whose elements 𝑚𝑘,𝑗 indicate whether the 

current PSD 𝑗th value is higher than the neighbours at the edges 

of the corresponding window with scale 𝑘. A graphical 

representation of  𝑴 is given in Figure 5 (white colour 

corresponds to zero values around the peak regions). 

 

 

Figure 4: Subset value.  

 Once the LMS has been created, a row-wise summation is 

performed in the matrix to obtain the vector 𝛾𝑘̅̅ ̅ (represented in 

Figure 6 as a function of 𝑘) as follows:  

                                     𝛾𝑘̅̅ ̅ = ∑ 𝑚𝑘,𝑗
𝑁
𝑗=1 .                                   (6) 

 

The scale for which the value of this vector is minimum, 𝑘𝑚𝑖𝑛 

is the one accounting with more zero values, thus, it 

corresponds to the rate of appearance of quasiperiodic peaks in 

the PSD. This value is obtained as follows:  

𝑘𝑚𝑖𝑛 =   {𝑘 ∈ ℕ | 𝛾𝑘𝑚𝑖𝑛
= min(𝛾𝑘̅̅ ̅)}                 (7)     

 

Figure 5: Complete scalogram of baseline-corrected low-

resolution PSD.                                 

 

 

Figure 6: Minimum k scale identification. 

Although the methodology works reasonably well, there 

might detect fake peaks near the PSD borders. To address this 

issue, it is recommended to add zero-padding to each side of 

the baseline-corrected-PSD. The extension of this padding 

must be in proportion with the length of the PSD.    

 Rescaled LMS and column-wise sum 

After obtaining 𝑘𝑚𝑖𝑛 the scalogram is ‘cut’ only considering 

scales ranging from 1 to 𝑘𝑚𝑖𝑛.  In this reduced version of the 

LMS a column-wise summation is performed to identify PSD 

samples whose overall sum is zero. This means that for every 

scale from 1 to 𝑘𝑚𝑖𝑛 these particular samples with index 𝑗𝑛,𝑙𝑜𝑤  

have a zero value in the scalogram, and therefore, they can be 

identified as peaks corresponding to cable’s natural frequencies 

𝑓𝑛,𝑙𝑜𝑤 = 𝑗𝑛,𝑙𝑜𝑤 ∆𝑓 in the PSD. Figure 7 shows the reduced LMS 

with red vertical lines indicating the columns where the 

𝑗𝑛,𝑙𝑜𝑤 values are located.  
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Figure 7: Rescaled LMS. 

 High-resolution PSD peaks identification 

Once the peak regions have been located within a low-

resolution PSD, the final peaks positions need to be precisely 

identified within a high-resolution PSD. This high-resolution 

PSD is computed using the Welch’s method, considering much 

longer window lengths (half of the overall signal length) with a 

50% of overlapping. Additional zero-padding is applied to each 

signal segment to improve the frequency resolution. 

Within the high-resolution PSD, a precise search is 

performed in frequency bands associated to each 𝑓𝑛,𝑙𝑜𝑤 within 

the intervals [𝑓𝑛,𝑙𝑜𝑤 − 𝛥𝑓 ∙ (
𝑘𝑚𝑖𝑛

4
) , 𝑓𝑛,𝑙𝑜𝑤 + 𝛥𝑓 ∙ (

𝑘𝑚𝑖𝑛

4
) ]. The 

final natural frequency 𝑓𝑛 is the one associated to the maximum 

of the high-resolution PSD value within the above interval. 

Figure 8 illustrates the aforementioned high-resolution PSD 

peak identification procedure. 

 

 

Figure 8: High-resolution PSD peaks identification scheme. 

Appling this methodology to a PSD resulting from the 

vibration measurement of a cable, the results obtained are 

displayed in Figure 9.  

 

Figure 9: High-resolution PSD with the identified peaks. 

3 EXAMPLE OF APPLICATION 

The procedure presented in the previous section has been 

performed using the data obtained during 7 days of continuous 

monitoring of an external post-tensioning tendon belonging to 

a highway road bridge in Spain. The bridge monitored is a 

precast segmental externally post-tensioned bridge consisting 

of simply supported spans. The tendons monitored were 

grouted tendons made of 31 high-strength steel post-tensioning 

strands, each one made of 7 twisted wires of 6 mm of diameter. 

These strands were embedded inside a HDPE duct of 140 mm 

of diameter. Once tensioned, the duct was filled with grout to 

provide corrosion protection. This grout provides a monolithic 

effect to the tendon’s section, which confers it a non-negligible 

bending stiffness. The accelerometers used were PCB-393B12 

and were mounted using a clamp system attached to the tendon 

duct with bolts. Figure 10 depicts the bridge object of the study. 

The cable section being monitored is highlighted in red.  Figure 

11 shows the accelerometer mounted on the tendon. 

 

 

Figure 10: Description of the tendon being monitored 
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Figure 11: Accelerometer mounted on a tendon. 

 Analysis of a single data block 

A single 10-minute data block has been analysed here to 

demonstrate the usefulness of the presented autonomous peak-

picking methodology. The signal was acquired with a sampling 

frequency of 1651 Hz. The time-history and the corresponding 

PSD of this data block is shown in Figure 12.  

 

Figure 12: Analysis of a 10-minute data block. 

The peaks detected present the noticeable effect of the 

bending stiffness, this effect can be seen in Figure 13, where 

the first 4 natural frequencies show a linear trend while starting 

from the fifth natural frequency the data starts to show a non-

linear trend. 

 

Figure 13: Modal order vs Frequency of a single data block. 

 Analysis of a one-day long data set 

The variation of the different natural frequencies on the cable 

due to the temperature effect through one day has been firstly 

analysed. For that, the absolute frequency variation with 

respect to the initial frequencies being identified (those of the 

first 10-minutes record at 00:00) has been computed. Figure 14 

shows this variation. It can be appreciated that the 4th modal 

order presents a slightly different behaviour this is due to its 

associated doublet. From this analysis, it can be also recognized 

how this variation is higher for higher modal orders.  

 

 

Figure 14: Temperature variation relative to the ones recorded 

at 00:00. 

 Analysis of a one-week long data set 

Figure 15 shows the first 12 natural frequencies identified using 

the presented methodology. From the analysed data set, it can 

be confirmed the influence of temperature variation over 

frequency. While this variation is small, knowing its magnitude   

is fundamental to distinguish between environmental or 

damage variations. These results confirm the validity of the 

methodology applied and its use within a continuous 

monitoring loop.  
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Figure 15: Complete frequency distribution along the week-long continuous monitoring. 
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4 CONCLUSIONS 

An autonomous pick-picking procedure based on two PSDs 

(low and high resolution PSDs) combined with the use of a 

LMS procedure has been presented. The methodology has been 

conceived for its inclusion in continuous monitoring systems 

and to perform in-line tension force estimation since 

computation costs have been considered within the proposed 

methodology. From the results obtained from the one-week 

long monitoring data, it has been shown the performance of the 

proposed methodology. 

Finally, some future works may include the autonomous 

identification of missing frequencies by the method, which can 

difficult cable tension estimation as this calculation depends on 

the natural frequencies and their corresponding modal orders 

correctly identified. Aside from this, the inclusion of the 

optimized asymmetric least squares (O-ALS) [4] baseline 

correction method which does not need hyperparameters fine 

tuning could be included.  
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ABSTRACT: With the increase in the span of cable-stayed bridges, stay cables tend to become more flexible and longer, which 

leads to lower damping and structural natural frequency. Therefore, it is more vulnerable to wind load effects. This study aims to 

investigate the characteristics and mechanisms of vortex-induced vibrations (VIVs) of stay cables based on long-term field 

monitoring for a sea-crossing cable-stayed bridge. First, a vibration monitoring system with a high sampling frequency for cables 

was established. On this basis, the time history data of vibration acceleration for cables with different lengths were collected to 

study the vibration characteristics, such as vibration amplitudes and frequency distributions of cables. For the longer stay cables, 

the cable vibrations with over-limit acceleration amplitudes were observed in a wind velocity region of 6~9m/s with very high 

vibration frequencies, and the wind directions that caused the vibrations were almost vertical to the stay cables. The mechanism 

of cable vibrations was discussed and investigated based on the relationship between wind characteristics parameters and the 

vibration response of cables. VIV occurred because the control frequencies of the cable vibrations coincided with the high-mode 

vortex shedding frequencies of the cables. Finally, the effects of different types of dampers on suppressing VIV were compared 

and investigated. 

KEY WORDS: Cable-stayed bridge; cable vibration; bridge health monitoring; vortex-induced vibration. 

 

1 INTRODUCTION 

In the past few decades, cables have been widely used in long-

span bridges. The cables of bridges tend to be more flexible, 

longer, and prone to vibrate due to low damping and structural 

natural frequency. The wind-induced vibration of stay cable 

can be roughly categorized as rain-wind-induced vibrations 

(RWIV), vortex-induced vibrations (VIV), and dry galloping 

(DG) classified by different vibration mechanisms and 

characteristics.  

VIV of cables is a common form of cable aerodynamic 

instability phenomena with limited vibration amplitudes. When 

flow passes around cables, vortices are generated along the 

profiles of cylinder cables, alternatively on the upper and lower 

sides, and induce forces perpendicular to the wind direction[1].  

As the length of stay cables grows, the structural natural 

frequency tends to be much smaller, indicating a much lower 

critical wind velocity corresponding to the classical vortex 

shedding. For a long cable, a high-mode VIV can be easily 

excited even under a moderate wind speed. 

Field monitoring is meaningful for investigating the 

vibration characteristics of cables. Based on continuous half-

year data from the bridge structural health monitoring system 

(SHMS), Ge found the frequency of the in-plane VIV is around 

9.6 Hz for a 577m cable, and then validated that the cable is 

mainly subjected to high-frequency VIV[2]. Matsumoto 

conducted a field observation for a cable model of the Meiko 

West Bridge and discovered rain-wind-induced vibrations by 

comparing the vibration characteristics under different weather 

conditions [3]. Cable vibrations of the Fred Hartman Bridge 

were also investigated and studied by field monitoring. RWIV 

requires a much higher reduced velocity than that required by 

VIV[4], and the high-order modes play the dominant role in the 

VIV of cables[5]. 

The vibrations of cables may cause fatigue or service 

problems if the vibration amplitudes are not mitigated by 

dampers or other countermeasures[6]. Therefore, aerodynamic 

and damping countermeasures were employed to mitigate cable 

vibrations. To optimize the aerodynamic profile of cables, the 

effects of helical strakes on suppressing VIV are studied by 

field measurements [7] and wind tunnel tests [8]. In addition, 

various types of dampers are usually installed near the anchor 

end of the cables to mitigate cable vibrations, including oil 

dampers, high-damping rubber dampers, viscous shear 

dampers [9], Magnetorheological (MR) dampers [10] and eddy 

current dampers [11]. The mitigation theories of various types 

of dampers for suppressing cable vibrations are different. 

Furthermore, it is still lacking an in-depth study regarding the 

effects of dampers on suppressing cable vibrations based on the 

field observation data of the bridge SHMS. 

In this study, field monitoring was conducted on a cable-

stayed bridge. The time history data of vibration acceleration 

for cables were collected to study the vibration characteristics 

and mechanism. Various types of dampers are adopted on 

symmetrical cables to compare the effects of different dampers 

on suppressing cable vibrations. 

 

2 VIBRATION MONITORING SYSTEM FOR CABLES 

The field monitoring was conducted on a cable-stayed bridge 

(Figure 1) located in Zhoushan of Zhejiang Province in China. 

As part of an important cross-sea passage, the Ningbo-

Zhoushan Expressway between the island and the mainland, 
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this bridge is a cable-stayed bridge with twin towers and a semi-

floating system, and the main span of this bridge is 580m. The 

height of the bridge tower is 151m. The bridge girder is 

supported by a total of 168 stay cables, and the length of the 

cables is 63-298m.  

 

 

Figure 1.  Bridge for field monitoring. 

In the construction stage of the bridge, viscous shear 

dampers were pre-installed near the anchor of every cable of 

the bridge. However, on sunny and no precipitation days, 

obvious cable vibrations can still be found on this bridge. The 

cable monitoring system, as an important part of the SHMS, is 

shown in Figure 4. In total, 52 groups of acceleration sensors 

were installed on the cables at a height of 5m. To analyze the 

vibration characteristics of cables, the time history monitoring 

data of cable acceleration sensors and wind speed sensors were 

analyzed.  

 

3 DYNAMIC CHARACTERISTICS OF CABLE 

VIBRATIONS 

 Vibration characteristics of cables with different 

lengths 

According to a 5-day period of monitoring data for cables, the 

dynamic characteristics of different cables were investigated 

and compared. In this study, cables are roughly categorized 

based on their lengths: short cables (<100m), medium-length 

cables (100~200m), and long cables(>200m). 

For the short cables, the vibration amplitude is quite small 

(Figure 2(a)). Based on the power spectral density (PSD) of 

acceleration, the vibration frequencies are mainly between 5-

10 Hz, which is quite average and not concentrated on one or 

several typical frequencies (Figure 2(b)).  

 

 
(a) Time history data of acceleration. 

 
(b) Acceleration PSD. 

Figure 2. Vibration data and frequency distributions of a short 

cable. 

According to Figure 3(a), for the medium cables, the 

vibration amplitude is larger than short cables but still smaller 

than the warning value defined in “Technical specifications for 

structural monitoring of highway bridges” (JT/T 1037-2022) 

[12]. The vibration frequencies are mainly between 5~20 Hz, 

which is quite average and not concentrated on one or several 

typical frequencies (Figure 3(b)).  

 

 
(a) Time history data of acceleration. 

 
(b) Acceleration PSD. 

Figure 3. Vibration data and frequency distributions of a 

medium cable. 

 
Figure 4. Cable monitoring system of the bridge. 
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For the long cables, abnormal vibrations are excited (Figure 

5(a)). During the vibration period, the vibration amplitude is 

quite large, and the energy is mainly concentrated in the high-

frequency region (Figure 5(b)). 

 

 
(a) Time history data of acceleration. 

 
(b) Acceleration PSD. 

Figure 5. Vibration data and frequency distributions of a long 

cable.  

 

Therefore, the length of the cables is a crucial parameter that 

determines whether abnormal vibrations will be excited or not. 

This is because long cables with lower structural natural 

vibration frequencies and damping are more vulnerable to the 

wind effects and are more easily excited into large amplitude 

vibrations. 

 Vibrations of long cables and mechanism analysis 

A typical large amplitude vibration event of a long cable is 

analyzed to further analyze the vibration characteristics of long 

cables. 

As shown in Figure 6(a), a continuous cable vibration event 

in the period of August 2nd and 5th was recorded by the cable 

vibration acceleration sensors. The root-mean-square (RMS) 

values of every ten-minute acceleration are calculated (Figure 

6(b)), and the maximum value is 723 mg, which is far greater 

than the allowable limit for cable vibrations defined in 

“Technical specifications for structural monitoring of highway 

bridges” (JT/T 1037-2022) [12]. 

 

 
(a) Time history data. 

 
(b) RMS value. 

Figure 6. Time history data and RMS value of acceleration. 

 

Figure 7 shows the average power spectral density calculated 

using every 10-minute acceleration. The vibration was found to 

be concentrated in high-frequency regions, and the main 

frequency of vibration is 17.9 Hz.  

 

 
Figure 7. Acceleration PSD. 

 

To analyze the vibration mechanism, the relationship 

between the vibration amplitude and wind characteristics was 

studied. The wind velocity and wind angle in this period are 

recorded by the wind speed sensors (Figure 8). Therefore, it can 

be inferred that the cable vibration may be excited under nearly 

north-south wind conditions. 

 

 
(a) Wind speed. 

 
(b) Wind angle. 

Figure 8. Time history data of wind. 
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Considering the installation direction of the bridge wind 

speed sensors as well as the angle between the stay cable and 

pylon, the wind yaw angle between the stay cable and wind was 

recalculated. The relationship between the acceleration 

vibration amplitudes and wind angles is shown in Figure 9(a). 

Large vibration amplitudes occur when the wind angle is 

around 90°, which means the wind direction is vertical to the 

cable plane. In addition, the wind speed vertical to the cable 

plane was also calculated (Figure 9(b)). It can be concluded that 

vibrations are maximized at a wind velocity of 6 to 9 m/s. 

 

 
(a) Acceleration response under different wind yaw angles. 

 
(b) Acceleration response under different vertical wind speeds. 

Figure 9. Relationships between acceleration responses and 

wind characteristics. 

 

For the VIV of cables, when the flow passes around the 

section of stay cables, vortex shedding emerges on the upper 

surface and lower surface alternatively, and the frequency of 

vortex shedding 𝑓𝑣 can be defined as equation (1) [13] 

𝑓𝑣 =
𝑈𝑆𝑡

𝐷
                                          (1) 

Where 𝑈 is the average wind speed. 𝑆𝑡 is the Strouhal number, 

which is related to the section configuration, for a circle section, 

𝑆𝑡 = 0.2. 𝐷 is the diameter of the cable. When vortex shedding 

frequencies of cables are close to the structural natural 

frequencies, cables will be excited into VIV resonance. 

The vibration frequencies are calculated to investigate the 

vibration mechanism. In Figure 10, the x-axis represents the 

wind speeds, and the y-axis represents one-minute vibration 

frequencies. The maximum frequency calculated by the PSD of 

acceleration is selected as the main frequency of cables in one 

minute. Therefore, the scatters indicate different main vibration 

frequencies of cables under different wind conditions.  

However, as the height increases, the wind speed apparently 

increases. Therefore, considering the overall speed of the wind 

profile passing around cables, the height of the cable and the 

wind field landform, the wind speed measured on the bridge 

deck should be multiplied by a factor of 1.3. Based on the 

dimensions of stay cables, the fundamental frequencies of 

vortex shedding can be calculated. Therefore, the relationships 

between different orders of vortex shedding frequencies and 

bridge wind speeds can be drawn as a red line (Figure 10). For 

the long cables, the micro-vibrations are mainly concentrated 

in the frequency range of 17~20 Hz, and 2~5 Hz (Marked as 

circles). The micro-vibrations are mainly catalogued into the 

vehicle-bridge coupled vibration and the vehicle load. Except 

for these scatters. The main distribution of scatters coincides 

with the line, especially in the wind speed region of 6~9 m/s, 

which indicates that the vibration frequencies are consistent 

with various modes of vortex shedding frequencies, and thus 

proves that the vibrations of the cable are dominated by VIV. 

 

 
Figure 10. Relationship between vibration frequencies and 

vortex shedding frequencies of cables. 

 

4 MITIGATION OF CABLE VIBRATIONS 

Different dampers are utilized to compare their effects in 

mitigating the cable vibrations.  The damping ratios are set to 

achieve the optimal dimensionless damping coefficient 1.5~2.0 

for different cables to minimize the large vibrations under 

lower frequencies. According to previous monitoring history 

data, under a certain wind field condition, the VIV responses of 

the cables symmetric along the bridge axis are quite similar 

because the structural parameters and natural frequencies of 

cables are almost the same.  Therefore, different dampers are 

adopted for the symmetric long cable groups to investigate their 

effects on suppressing VIV. An eddy current damper (Figure 

11(a)) is mounted on the cable R-20, and an MR damper 

(Figure 11(b)) is mounted on the cable R-21, respectively. For 

the sake of comparison, the new viscous shear dampers (Figure 

11(c)) are employed on the symmetric cables L-20 and L-21. 

The parameters of dampers are designed with the consideration 

of the suppression of low-mode rain-wind vibrations. 
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(a) Eddy current damper. 

 
(b) MR damper. 

 
(c) Viscous shear damper. 

Figure 11. Three types of dampers on cables. 

 

Because the excitation of cable vibration under high 

frequencies (𝑓 >15Hz) is quite difficult, field monitoring is 

conducted under the condition of the ambient excitation of 

natural wind. A typical VIV response occurred in September of 

2024 after the replacement of dampers was selected to study the 

effects of dampers on suppressing VIV.  By comparing the time 

history data and RMS value of acceleration for the symmetric 

cables of R-20 (Figure 12) and L-20 (Figure 13), the VIV 

response of cable R-20 is significantly larger than that of L-20, 

which proved that the viscous shear damper is more effective 

in suppressing the high-mode VIV than the current eddy 

damper. When the high-mode (30th-40th) VIV of cables occurs, 

the position of the damper is close to the stagnation point of 

vibrations, and thus, it needs a large damping coefficient to 

suppress vibrations [14]. However, for the current eddy damper, 

as the vibration frequencies increase, the equivalent damping 

coefficients decrease [15], which is disadvantageous to the 

suppression of a high-mode VIV. 

 

 
(a) Time history data of acceleration. 

 
(b) RMS value of acceleration. 

Figure 12. Vibration data of Cable R-20. 

 

 
(a) Time history data of acceleration. 

 
(b) RMS value of acceleration. 

Figure 13. Vibration data of Cable L-20. 

 

By comparing the time history data and RMS value of 

acceleration for the symmetric cables R-19 (Figure 14) and L-

19 (Figure 15), the VIV amplitude of cable R-19 is a little 

smaller than that of L-19, which proved that the MR damper is 

slightly better than the viscous shear damper in suppressing the 

high-mode VIV. The initial stiffness of the MR damper may 

provide additional damping effects [16].  
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(a) Time history data of acceleration. 

 
(b) RMS value of acceleration. 

Figure 14. Vibration data of Cable R-19. 

 

 
(a) Time history data of acceleration. 

 
(b) RMS value of acceleration. 

Figure 15. Vibration data of Cable L-19. 

 

However, for these three types of dampers, the high-mode 

VIV cannot be entirely suppressed. Because the high-mode 

vibration may have multiple stagnation points along the cables, 

the installation positions of dampers tend to be close to the 

stagnation points. Therefore, stock-bridge dampers should be 

installed at suitable positions of cables as complementary 

dampers to mitigate the specific high-mode VIV [14]. 

5 CONCLUSIONS 

In this study, continuous field monitoring is conducted to 

investigate the vibration characteristics of stay cables for a 

cross-sea cable-stayed bridge. Different dampers are mounted 

to compare their effect on suppressing vibrations. The 

conclusions are as follows: 

(1) According to the field monitoring data, the long cables of 

this long-span bridge are easily excited into a high-mode 

vibration under the vertical wind in a speed region of 6-

9m/s.  

(2) For the high-mode vibrations of long cables, the vibration 

frequencies of cables under different wind speeds are 

consistent with various modes of vortex shedding 

frequencies, proving that the vibrations of the cable are 

dominated by VIV. 

(3) For the mitigation effects of high-mode VIV of cables, MR 

damper>viscous shear damper>current eddy damper. 

However, the effects of the three types of dampers on 

controlling high-mode VIV are limited. Stockbridge 

dampers should be designed to mitigate the specific high-

mode vibration. 
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ABSTRACT: External tendons in prestressed concrete (PSC) bridges are essential for structural performance and durability. 

However, internal damage to strands within grouted ducts is difficult to detect through visual inspection. To address this issue, the 

Korea Institute of Civil Engineering and Building Technology (KICT) developed a non-destructive testing (NDT) sensor based 

on the Total Flux Change (TFC) principle, derived from Faraday’s law of electromagnetic induction. The TFC-based 

electromagnetic (EM) sensor was designed for field use, featuring a lightweight, detachable frame and wireless data acquisition 

system. The sensor generates an alternating magnetic field via a primary coil and measures the induced voltage from a secondary 

coil. A reduction in strand cross-sectional area alters the magnetic flux, resulting in a measurable variation in the induced voltage. 

Field tests were conducted on the Jeongneungcheon Overpass in Seoul, targeting external tendons between piers. The sensor 

successfully measured voltage variations along the tendon length. In tendons with suspected damage, the voltage amplitude 

showed distinguishable reductions, unlike in undamaged control cases. Results were consistent with previous laboratory 

experiments on specimens with artificially induced strand loss. The findings confirm that the developed EM sensor enables 

efficient and intuitive detection of internal tendon damage with practical field applicability, even in actual bridge environments. 

This study demonstrates the feasibility of the TFC-based EM sensor for practical field applications and highlights its potential for 

integration into long-term bridge monitoring systems. 

KEY WORDS: Prestressed concrete bridge; External tendon; Electromagnetic sensor; Total flux change; Non-destructive testing

1 INTRODUCTION 

Prestressed concrete (PSC) bridges have been widely adopted 

in modern road bridge due to their advantages in structural 

safety, aesthetics, serviceability, cost-effectiveness, and ease of 

maintenance. Among various structural components of PSC 

bridges, external tendons play a critical role by enhancing 

structural performance, allowing for flexible prestress control, 

facilitating maintenance, and providing design versatility. 

However, since external tendons contain prestressing strands 

– typically seven-wire strands – embedded within ducts, it is 

inherently difficult to directly inspect them for damage during 

the service life of the structure. A notable example of such a 

limitation occurred in February 2016 with the failure of an 

external tendon in the Jeongneungcheon Overpass, constructed 

in 1999 in Seoul, Korea. The failure was attributed to 

undetected strand damage caused by grout defects inside the 

duct, which could not be identified through visual inspection. 

Following this incident, the Korea Institute of Civil 

Engineering and Building Technology (KICT) initiated 

extensive research to develop non-destructive testing (NDT) 

sensors capable of detecting internal damage to the strands 

within the duct. As a result, a novel electromagnetic (EM) 

sensor based on Faraday’s law of electromagnetic induction 

was developed. This sensor allows for effective detection of 

cross-sectional losses in the strands embedded within external 

tendons. 

However, many of the existing NDT sensors developed for 

detecting cross-sectional loss in external tendons face 

limitations in actual bridge sites. These systems often require 

complex installation procedures, specialized equipment, and 

controlled conditions, making them less suitable for field 

environments. In particular, external tendons located in narrow 

or elevated areas pose significant challenges for sensor 

installation and measurement. As such, not only the accuracy 

of damage detection, but also the workability and field 

applicability of the sensing system become crucial factors for 

successful deployment in practice. The aim of this study is to 

evaluate the field applicability and damage detection 

performance of the developed EM sensor through field tests on 

actual PSC bridges. 

2 PRINCIPLE OF TFC-BASED ELECTROMAGNETIC 

(EM) SENSOR 

 Principle of cross-sectional loss detection 

The EM sensor operates on the principle of electromagnetic 

induction, as governed by Faraday’s law. According to this law, 

a change in magnetic flux induces an electromotive force 

(EMF) in a closed loop. The induced voltage 𝑉 is proportional 

to the number of coils turns 𝑁 and the time rate of change of 

magnetic flux 𝛷, as expressed in Equation (1): 

 𝑉 = −𝑁
𝑑Φ

𝑑𝑡
= −𝑁

𝑑𝐵𝐴

𝑑𝑡
 (1) 

Magnetic flux 𝛷 is defined as the product of magnetic field 

strength 𝐵 and the area 𝐴 perpendicular to the magnetic field, 

i.e., Φ = 𝐵 ∙ 𝐴 . Therefore, if the magnetic field B remains 

constant, a reduction in the conductive cross-sectional area A – 

such as that caused by corrosion or fracture in the tendon – 

results in a corresponding decrease in the induced voltage V. 
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Based on this principle, a sensor has been developed to detect 

cross-sectional loss in prestressing strands located inside the 

ducts of external tendons. As illustrated in Figure 1, the EM 

sensor is installed to encircle the tendon duct, and an alternating 

current (AC) is applied to the 1st coil. As the sensor moves 

along the tendon, it generates a varying magnetic field that 

induces eddy currents within the steel strands. These eddy 

currents, in turn, generate a secondary magnetic field, which is 

detected by the receiving coil as an induced voltage. 

 

 

Figure 1. Principle of section loss detect 

 

If there is a cross-sectional loss in the strands, the magnitude 

of the eddy currents – and thus the induced voltage – decreases 

compared to undamaged regions. By analyzing the variation in 

induced voltage, it is possible to identify and localize internal 

damage to the prestressing strands, even without direct access. 

This method detects damage based on the change in total 

magnetic flux, and is referred to as the Total Flux Change 

(TFC) approach. 

 

 Configuration and features of the TFC-based EM 

sensor 

To enhance field applicability, the developed TFC-based EM 

sensor system was designed with an emphasis on lightweight 

components and low power consumption. The sensor itself 

adopts a detachable and portable configuration, improving 

installation efficiency and reducing operational burden in 

actual bridge environments. 

Unlike conventional solenoid-type sensors that require time-

consuming on-site winding of wires, the newly developed 

sensor consists of a separable frame that can be easily mounted 

and dismounted around the tendon within approximately two 

minutes. Wheels installed at the front and rear of the sensor 

enable smooth movement along the tendon surface during 

scanning. 

The sensor consists of a 1st coil that generates an alternating 

magnetic field, and a 2nd coil located at the center of the sensor 

that detects the induced voltage via electromagnetic induction. 

To improve magnetic field concentration and signal sensitivity, 

eight magnetic cores are embedded within the sensor structure. 

In order to minimize overall weight, the sensor housing was 

constructed with a lightweight skeletal frame rather than a solid 

enclosure. The electromagnetic response of the detachable 

sensor was verified through COMSOL simulations, showing a 

distribution pattern comparable to that of conventional 

solenoid-type sensors. 

For accurate detection of the small induced voltage in the 2nd 

coil, a flat ribbon type cable with a 15-pin D-sub connector was 

used. This configuration enables the equivalent effect of 

winding a single wire 15 times, thereby increasing sensitivity. 

A portable audio amplifier (200 W) was adopted to generate the 

required alternating current at the desired frequency, avoiding 

the need for large, heavy power generators typically used in the 

field. The appearance of the developed EM sensor is shown in 

Figure 2. 

 

 

Figure 2. TFC-based EM sensor 

 

The data acquisition (DAQ) system also emphasizes 

portability and reliability. A microcontroller unit (MCU) was 

employed to generate sinusoidal signals in the range of 10-40 

Hz, which are then amplified by the audio amplifier and 

supplied to the 1st coil. The induced voltage from the 2nd coil is 

captured using a high-resolution analog-to-digital conversion 

board. The MCU wirelessly communicates with a laptop, 

allowing for real-time monitoring and data acquisition 

including 1st coil current, 2nd coil voltage, and distance 

measurements. The entire system is powered by commercial 

DeWalt rechargeable batteries, enhancing mobility and field 

usability. The DAQ system and battery pack for field operation 

of the sensor are shown in Figure 3. 

 

 

Figure 3. DAQ system and battery of sensor 
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3 FIELD TEST RESULTS 

 Overview of Test bridge 

The Jeongneungcheon Overpass, completed in 1999, is located 

on one of the major expressways for vehicular traffic in Seoul, 

South Korea. The field tests for detecting cross-sectional loss 

in prestressing strands were conducted in 2nd section of the 

bridge. The section is a PSC box girder bridge constructed 

using a modified MSS (Movable Scaffolding System) method. 

In this approach, precast panels were assembled on both sides 

of the box girder to form a three-cell cross section. Both internal 

and external tendons were used in the prestressing system of 

this segment. An overview of the structural characteristics of 

the test section is provided in Table 1, and the appearance of 

the bridge is shown in Figure 4. 

 

Table 1. Overview of Jeongneungcheon Overpass 2nd Section 

Item Description 

Bridge name Jeongneungcheon Overpass 

Year 1999 

Design load DB-24 (43.2 ton) 

Structural type 

(Superstructure) 

PSC box girder & 

Steel box girder 

Length 

L=3,500 m  

(Steel box girder: 1,240 m, 

PSC box girder: 2,260 m) 

Width B=27.0 m 

Number of lanes Three lanes per direction 

Bearing Pot bearing 

PSC construction method MSS 

 

 

Figure 4. Jeongneuncheon Overpass Bridge 

 

 Target external tendons for NDT 

The nondestructive testing for detecting cross-sectional loss 

was conducted on external tendons located between Pier 38 and 

Pier 39 of the bridge. Each span of the bridge includes twelve 

external tendons, which are installed within the box girder 

section. Six tendons are positioned on the left side and six on 

the right side of the PSC box girder, as shown in Figure 5. 

 

 

Figure 5. PSC box girder of test bridge 

 

Among the tendons on the left side, some tendons were 

selected for testing due to their accessibility for sensor 

installation. Each tendon consists of nineteen 15.2 mm 

diameter seven-wire strands enclosed in a polyethylene (PE) 

duct filled with grout. The diameter of the duct is 110 mm. An 

example of the external tendons installed inside the box girder 

is shown in Figure 6. The testing procedure using the developed 

EM sensor is illustrated in Figure 7. 

 

 

Figure 6. External tendons of test bridge 
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Figure 7. NDT process of TFC-based EM sensor 

 

 Test results 

The NDT results for three external tendons of the 

Jeongneungcheon Overpass are shown in Figure 8, represented 

by the blue, green, and red solid lines. The plotted data 

correspond to the amplitude of the induced voltage measured 

by the sensor, after noise removal and mean value subtraction. 

 

 

Figure 8. NDT results of TFC-based EM sensor 

 

Among the tested tendons, L4 and L5 were replacement 

tendons installed after the external tendon rupture incident that 

occurred in 2016. Therefore, these tendons are presumed to be 

free from significant strand damage. Although the induced 

voltage did not appear completely flat along the sensor travel 

distance—due to surface contamination, variations in the 

operator's walking speed, and electromagnetic interference 

from adjacent tendons—no distinct voltage drops were 

observed in these two cases. 

In contrast, the response differed clearly from that observed 

in a controlled laboratory experiment conducted in 2023, where 

a tendon specimen with artificially introduced cross-sectional 

damage was tested. In the laboratory specimen with a 6.7% 

section loss (simulated by grinding the strand surface), a 

distinct decrease in the induced voltage amplitude was 

observed at the damaged location. 

These results demonstrate that the EM sensor developed by 

KICT enables intuitive detection of cross-sectional loss in 

prestressing strands while maintaining sufficient workability 

for practical use in actual bridge environments. 

 

4 CONCLUSIONS 

This study presented the development and field application of 

a TFC-based EM sensor designed to detect cross-sectional loss 

in prestressing strands within external tendons of PSC bridges. 

The sensor, developed based on Faraday’s law of 

electromagnetic induction, demonstrated reliable performance 

in identifying potential damage zones by measuring changes in 

induced voltage. Field tests conducted on the Jeongneungcheon 

Overpass confirmed that the sensor could detect localized 

cross-sectional loss with clearly distinguishable signal behavior, 

even under the practical constraints of real bridge environments. 

Compared to conventional solenoid-type sensors, the 

developed system significantly improved field applicability by 

introducing a lightweight, detachable design, wireless data 

acquisition, and low-power operation. These features enabled 

quick installation and stable measurement, proving the sensor’s 

practicality for on-site inspections. 

Future research will focus on further quantifying damage 

levels, validating the sensor performance under various damage 

conditions, and expanding its application to other bridge types 

and tendon layouts. Long-term monitoring and integration with 

digital maintenance platforms are also potential areas for future 

development. These findings highlight the potential of the 

TFC-based EM sensor as a practical and scalable solution for 

non-destructive inspection of PSC bridges. 
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ABSTRACT: With the rapid development of sensing technologies in vibration-based monitoring systems, various kinds of devices 

are connected to exchange data with each other in virtue of cloud computing.  However, challenges arise when transmitting and 

processing large volumes of data, particularly due to latency and bandwidth limitations. To address these issues, edge computing 

has emerged as a promising solution, enabling local data processing to reduce transmission delays and minimize data redundancy. 

In this paper, the possibility of edge computing on lightweight edge devices is explored including the KRYPTON® CPU data 

logger and the ESP32-S3 microcontroller. These two monitoring systems, one with accelerometers and the other with strain 

gauges, are deployed on a four-story building frame model under varying structural mass and damping conditions that affect 

dynamic properties. Each system autonomously collects and caches data (accelerations and strains) locally using embedded code, 

enabling reliable, low-latency edge processing. Experimental results demonstrate the systems' ability to detect changes in dynamic 

behavior, supporting applications in fatigue assessment and damage detection. The proposed approach is scalable to dense sensor 

networks for large-scale structural health monitoring, where edge computing significantly reduces reliance on cloud infrastructure. 

KEY WORDS: Monitoring; System identification; Edge computing; Frame model; Structural dynamics. 

1 INTRODUCTION 

The primary goal of structural monitoring is to evaluate the 

condition of instrumented structures by extracting reliable 

information from measurement data [1], which can inform 

effective management and maintenance strategies. The success 

of this process depends mainly on the quality and reliability of 

the acquired data [2].  Civil engineering structures operate in 

complex and variable environments, often subject to 

demanding monitoring requirements. Consequently, the 

establishment of a reliable and robust sensor system is essential 

to ensure accurate and consistent data acquisition. 

 

With the rapid development of sensing technologies in 

vibration-based monitoring systems, various kinds of devices 

are connected to exchange data with each other in virtue of 

cloud computing [3], which improves performance and 

efficiency in monitoring. For instance, accelerometers can be 

deployed to collect vibration data from concrete structures, 

which, compared to baseline data from undamaged structures 

via cloud-based platforms within the Internet of Things (IoT) 

framework, can enable the early detection of cracks [4]. 

However, problems may arise inevitably when processing and 

sending large amounts of data to the cloud center far from the 

site in a short period of time. As the structural responses are the 

crucial sources of data for detecting structural damage [5], 

sometimes data acquisition requires high-frequency sampling 

rates. If the bandwidth of the network is limited at the same 

time, it may cause network congestion and result in a slow 

network speed. 

 

One promising solution is to offload the computing tasks by 

processing before sending them. In this manner, the data to be 

processed is distributed to edge devices rather than cloud 

centers [6], [7], namely edge computing. Now edge computing 

is emerging to solve the problem of time delay and data 

redundancy in monitoring. For instance, the microcontroller 

unit (MCU) at each sensor node can serve as an edge device 

and perform data preprocessing locally [8]. Despite the 

potential of edge computing, it also faces a series of challenges 

in practice, including its application in monitoring and the 

related algorithms that can be run under limited computing 

resources [9], [10]. 

 

In this paper, explore the integration of edge computing into 

different lightweight edge devices, such as KRYPTON® CPU 

data logger and ESP32-S3 microcontroller. In each monitoring 

system, sensor nodes are distributed to collect the measurement 

data of a four-story building frame model considering different 

cases with variations of the structural mass and damping that 

can change structural dynamic properties. Through the 

vibration tests, different monitoring systems can collect the 

data of the frame model and operate independently for data 

caching with the programming codes embedded in the edge 

device, which makes it possible for edge computing with 

reliable data transmission and minimized data loss.  

2 METHODOLOGY 

This section presents the instrumented four-story frame 

structure, outlines the laboratory testing procedures and 

equipment, and details of the setup, implementation, and data 

processing methods. 

Exploration of edge computing for monitoring a four-story building frame model 
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 Building frame model 

The four-story frame model is composed of six wooden slabs 

(480×240×18 mm3), two of them fixed together as the base (on 

the test setup) and the remaining as the four floor slabs, see 

Figure 1.  Every two slabs are connected by steel columns 

(flexible bodies) at four corners to constrain the vertical 

displacement, and each column has a free length of 240 mm 

between two slabs with a cross-section area of 1×10 mm2. So, 

the four floors only undergo horizontal displacement, which 

can be simplified into a multiple-degree-of-freedom (MDOF) 

lumped mass system. The first two theoretical modal shapes are 

shown in Figure 1 and Figure 2, and the total weight of the 

frame model (including timber and steel) is 6.95 kg. 

 

 

Figure 1. Illustration of the four-story frame model with the 

first two theoretical mode shapes 

 Testing cases 

When performing the vibration test, the two following cases are 

considered: 

1) The frame model only, as shown in Figure 1; 

2) The frame model with a sloshing tank that contains 0.5 kg 

of pure water, placed on the second Floor as shown in 

Figure 2. 

 

 Testing setup and implementation 

Two vibration tests were conducted in the laboratory. The first 

test features force-based excitation. The building frame model 

was fixed on the test-bed under sine sweep excitation and then 

single frequency excitation, both of which were provided by 

low-force LDS electrodynamic shaker, see Figure 2.  

In this manner, the steel column connecting the foundation and 

the first floor of the frame will be subjected to the force with a 

constant amplitude, yet its frequency itself will change over 

time. At time t, the normalized response function of the linear 

sweep excitation is: 

 𝑥(𝑡) = sin {2𝜋 [(𝑓2 − 𝑓1) (
𝑡

𝑇
) + 𝑓1]} (1) 

where T is the test duration; f1 is the start frequency; f2 is the 

end frequency. The nature of the frequency sweep is that the 

excitation signal input is composed of a single frequency at any 

given time. 

 

 

Figure 2. The four-story building frame model 

The sweep can start from the lowest frequency, transition 

linearly to the highest frequency, and vice versa. In the function 

generator, the start frequency f1 was set as 0.1 Hz, the end 

frequency f2 as 10 Hz, with the test duration T of 180s. Due to 

the controllable variation of the excitation frequency, using 

frequency sweep excitation can preliminarily locate and 

identify the natural frequencies and mode shapes of the frame 

model. 

 

After the sine sweep excitation, that was used to identify the 

frame’s first four natural frequencies, the single frequency 

excitations were exerted, respectively, to get the damping ratios 

corresponding to each natural frequency of the frame model. 

Here, the shaker applied the force with a constant amplitude 

and constant excitation frequency. 

 

The second test features controlled free vibrations, with the 

shaker removed. Using a ruler, the top floor was pushed 

sideways to a controlled position, see Figure 3, and then 

released. After the initial displacement, the frame model started 

to vibrate freely until the energy was completely dissipated.  

 

Then, the whole process mentioned above was repeated 

considering the cases above in section 2.2 (with and without the 

sloshing tank). 

 Monitoring system and equipment 

During the first testing, the low-noise accelerometers IOLITE® 

3xMEMS (Figure 4) are arranged (with a total weight of 497 g) 

and fixed at the edge of each floor of the frame model using 

double-sided adhesive to reduce the signal shift and to ensure 

stable and reliable signals. Additionally, the x-axis direction of 

the sensor is parallel to that of the frame’s horizontal 

displacement. Analog-to-digital conversion was done in each 
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accelerometer sensor, which eliminates the noise by analog 

cabling. Then, each accelerometer is linked to each other using 

the high-quality CAT6 cables through EtherCAT interface to 

form a daisy chain, limiting signal interference and data 

transmission error rates. Based on the IOLITE modular, DAQ 

device platform is embedded into each accelerometer 

distributed easily and synchronized down to 1μs device to 

device based on the distributed clocks. Then the acceleration 

signals produced are sent to the rugged IP67 micro-processor 

KRYPTON® CPU in the edge layer for processing the data on 

site. The data was collected at a sampling rate of 100 Hz, to 

avoid any problems with aliasing or signal distortion. 

 

Figure 3. Controlled free vibration 

 

 
(a) 

 
(b) 

Figure 4. IOLITE® 3xMEMS accelerometers (a) and 

KRYPTON® CPU data logger (b) 

During the second testing, two HBM CLY41-3L linear strain 

gauges are glued on the smooth surface of the steel columns at 

the bottom, respectively, to measure strains of the steel columns 

under controlled free vibration, with the sampling rate of 128 

Hz, as shown in Figure 5. 

 

Figure 5. HBM CLY41-3L linear strain gauges 

The strain-monitoring system adopts an edge computing 

architecture and consists of these two strain gauges, two 

external high-resolution analog-to-digital converters (ADCs), 

two instrumentation amplifiers, and most importantly an 

ESP32-S3 microcontroller (MCU) as the edge device, shown 

in Figure 6. 

 

Figure 6 The experimental setup for the strain-monitoring 

system 

In the device layer, the strain gauges are configured in a 

Wheatstone quarter-bridge, powered by a low-dropout (LDO) 

voltage regulator to maintain a stable excitation voltage and 

suppress external interference. Then, the weak voltage 

variations from the bridge are amplified by a high common-

mode rejection ratio instrumentation amplifier AD620, 

followed by a resistor–capacitor (RC) filter with a cutoff 

frequency of 3.4 kHz to effectively reduce high-frequency 

noise and enhance signal quality. To meet the requirements of 

real-time monitoring at the micro strain level (μm/m), the 

amplified signals are digitized by an external 16-bit resolution 

ADS1115, with a sampling rate of 128 Hz and a full-scale range 

of ±6.144 V, where the RMS noise is 187.5 μV and the peak-

to-peak noise reaches 187.5 μV. Finally, the digitalized signals 

are transmitted to the MCU via the I²C (Inter-Integrated Circuit) 

bus. A circuit schematic is presented in Figure 7 with design 

details of the electronic components. 
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Figure 7 Circuit diagram with electronic components 

 

It is noted that when extracting the amplified voltage difference 

in a Wheatstone quarter-bridge, the original bridge voltage 

must be reconstructed to obtain its accurate micro strain (με) 

value. Temperature compensation is not possible in this setup, 

causing normal and bending strains to be superimposed. The 

micro-strain ε is calculated as: 

 𝜀 = 𝜀n + 𝜀b =
4

𝑘
·
𝑉o

𝑉s
− 𝜀s (2) 

where ε is the effective strain; εn is the normal strain; εb is the 

bending strain; εs is the apparent strain; k is the factor 

corresponding to HBM CLY41-3L linear strain gauge; Vo is the 

voltage difference between the bridge legs; Vs is the excitation 

voltage. 

 

In the edge layer, the lightweight ESP32-S3 MCU processes 

the data for the micro-strain. It serves as the edge computing 

core, equipped with a dual-core LX7 microprocessor. One core 

is dedicated to ADC sampling and data transmission, while the 

other performs real-time micro-strain (με) calculations, 

preventing data loss and task conflicts. Its support for hardware 

floating-point operations enables potential implementation of 

fatigue assessment methods at the edge, such as rain-flow 

counting. Synchronization between multiple strain gauges is 

achieved using the ESP32-S3's internal timer, which records a 

timestamp to align the measurement data in time when an ADC 

completes signal conversion. At the end, the micro-strains with 

recorded timestamps are transmitted to via a serial port a laptop 

where a Python script processes the incoming dataflow. 

 

In the whole process, data acquisition, preprocessing, and 

transmission only happen locally (i.e. near the strain gauges), 

rather than relying on the remote cloud server. Particularly, 

edge computing offers low latency, real-time processing, and 

enhanced data privacy by reducing the need to transmit 

measured strain output signals to the cloud center. This 

preprocessing ensures that only the critical and useful data is 

transmitted to other systems, rather than raw, unprocessed 

signals, greatly reducing bandwidth requirements and costs. 

 Data processing 

After the frequency sweep excitation, edge computing can be 

deployed on KRYPTON® CPU based on signals sampled over 

a period. Fast Fourier Transform (FFT) converts the discrete 

acceleration signals in time series to frequency domain to 

obtain the frame’s vibration spectra, including amplitudes and 

phases.  

 

Based on the amplitude peaks captured by FFT, the half power 

bandwidth method is used to calculate the modal damping ratio 

corresponding to each natural frequency. For a low damped 

structure (ζ ≪ 1), the modal damping ratio is: 

 𝜁 = (𝑓r − 𝑓l) 2𝑓n⁄  (3) 

where fn is the natural frequency corresponding to the 

resonance peak; fl and fr are the left and right frequencies at 

which the peak drops to half power of the resonance peak (-3 

dB, or 1/√2 amplitude in the spectrum), respectively. 
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As for the free vibration, the damping ratio in a certain mode 

can be obtained by analyzing the amplitude decrement rate, i.e. 

Logarithmic Decrement: 

 𝛿 =
1

𝑁
ln[𝐴(𝑡) 𝐴(𝑡 + 𝑛𝑇)⁄ ] (4) 

 𝜁 = 𝛿 √4𝜋2 + 𝛿2⁄  (5) 

where A(t) and A(t+nT) are the amplitudes corresponding to 

time t and t+nT, respectively; T is the natural period; n is any 

integer number of successive, absolute peaks. Assume the 

structure is linearly elastic with small deformation, and there is 

a linear relationship between the strain and displacement in one 

dimension. Therefore, the amplitude of strains can be used in 

Equation (4). 

 

Since vibration can occur throughout the whole frequency 

spectrum, filtering is required when using Equations (4) - (5) to 

keep only the one-order mode vibration. 

 

According to the strain time series, the Rain-flow counting 

method is used for strain cycles. Then, the rain-flow histogram 

is obtained statistically for fatigue assessment in the future. 

 

All the algorithms are programmed in Python language and run 

in the edge devices mentioned above. 

 

3 TESTING RESULTS 

This section presents the computing results of the building 

frame model, including its natural frequencies, damping ratios 

with strain cycle counting that is beneficial for structural 

damage detection and fatigue analysis in the future. 

 Identification of structural dynamic properties 

After finishing each vibration test, the output signals of the 

frame model with and without the sloshing tank are processed.  

As the floor acceleration at the foundation level has shown to 

be very small (relative to the other floors) it was neglected in 

this study. The accelerations from the second floor and the 

fourth floor with and without the sloshing tank on the second 

floor are shown in Figure 8. 

From the time history acceleration of each floor, it is obvious 

that resonance occurs when the sweep frequency is near one of 

the frequencies of the frame model. Due to the proximity of the 

excitation to the first floor, its horizontal acceleration is more 

pronounced than that of the fourth floor.  

 

Interestingly, when the sweep frequency reaches the frame 

model’s natural frequency of the first mode (around 1 Hz), the 

sloshing tank placed on the second floor has very little effect in 

reducing the frame’s model responses of each floor, because in 

the first mode, the second floor has small modal amplitude, see 

Figure 1. However, when the sweep frequency reaches the 

second mode (around 3 Hz), it exhibits a good performance in 

vibration reduction of each floor. The reason is that in the 

second mode, the displacements of the first, second and fourth 

floor are the largest, which makes the sloshing tank’s damping 

effect to an ideal state except for the third floor (with zero 

displacement in the second mode). After the second mode, the 

sloshing tank does not reduce the structural responses so much. 

 

Figure 8. Acceleration time histories of the frame model with 

and without the sloshing tank on the second floor 
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(b) With the sloshing tank on the second floor 

Figure 9. Acceleration FFTs of the frame model in under 

frequency sweep excitation 

According to the acceleration FFTs in Figure 9 (a), two peaks 

can be found, corresponding to the first two natural frequencies. 

From Figure 9 (b), the FFT shows again that the sloshing tank 

reduces more efficiently the vibration in the second mode. In 

addition, around the second mode, there are more smaller peaks 

than the scenario without the tank. Essentially, the tank 

annihilates the peak in the second mode – see Figure 9 (b), and 

separates it into several small peaks, which is similar to the 

mechanisms of a tuned mass damper. Because of extra weight 

and damping provided by the tank, the natural frequencies in 

each mode decrease a little bit. 

 

However, the peak in the first mode is far less obvious than the 

peak in the second mode, see Figure 9 (a), which is related to 

the influence of the shaker position. From Figure 1, it is clearly 

shown that in the first mode, the maximum displacement 

happens on the top floor. During the first test, however, the 

shaker is fixed to apply the force in the middle of the steel 

column at the bottom, giving a small displacement in the first 

mode. Meanwhile, because of the frequency sweep excitation 

in a short duration during the testing, the frame model does not 

obtain sufficient energy from the shaker to establish a stable 

first-order modal response. 

 

From Figure 10, dynamic strains of the frame model under 

controlled free vibration from strain gauge 1 are approximately 

sinusoidal throughout the entire frequency spectrum. Moreover, 

with the sloshing tank on the second floor, the frame model has 

a smaller oscillation. 

 

Figure 11 presents the FFTs of strain gauge 1. As observed, the 

initial disturbance on the top floor has effectively excited the 

first mode. Also, the sloshing tank placed on the second floor 

reduces the structural responses in the second mode, not the 

first mode, which was also explained before. 

 

Table 1 and Table 2 present the natural frequencies of the frame 

model with and without the sloshing tank, corresponding to the 

acceleration and strain FFTs, identified through the peak-

picking algorithm within the range of [0, 4 Hz]. 

 

 

Figure 10. Dynamic strains of the frame model in time history 

from strain gauge 1 

 

 

Figure 11. FFTs of strain gauge 1 (based on free vibration 

tests) 

 

Table 1. Natural frequencies of the frame model without the 

sloshing tank 

Mode 
fn (Hz) 

Sweep Single Free  

1 1.04 1.03 0.99 

2 3.00 2.99 2.96 

Sweep: frequency sweep excitation; Single: single frequency 

excitation; Free: controlled free vibration. 

 

Table 2. Natural frequencies of the frame model with the 

sloshing tank on the second floor 

Mode 
fn (Hz) 

Sweep Single Free 

1 0.96 0.95 0.92 

2 2.90 2.87 2.77 

Sweep: frequency sweep excitation; Single: single frequency 

excitation; Free: controlled free vibration. 

 

The above results indicate that the natural frequencies in each 

mode of the frame model measured in different vibration tests 

are consistent (a maximum error of no more than 5%), within 

the allowable error range. In the controlled free vibration, the 

natural frequency measured is believed to be closer to the real 

one due to the absence/removal of the external vibration shaker. 
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During frequency sweep and single frequency excitations, 

factors such as excitation conditions, coupling effects, and 

phase lag have a significant impact on the results. The 

identification of the natural frequency of the frame model relies 

on resonance peaks, which are often close to the natural 

frequency of a structure; basically, when the structure system 

has damping or slight non-linearity, the acceleration resonance 

peak may be slightly shift. In addition, under vibration of an 

MDOF structure, interactions or coupling effects often exist 

between different modes, which may contribute to such "shift" 

of the observed resonance peaks even if the natural frequency 

itself has not changed. Theoretically, single frequency 

excitation has relatively smaller errors than the frequency 

sweep excitation due to more sufficient time for the structural 

system to follow the excitation in real-time. In contrast, during 

frequency sweep excitation, a certain natural frequency may 

have been "swept" over before the frame model fully 

establishes a steady-state response at that frequency, resulting 

in a response lag and a slightly higher observed natural 

frequency. 

 

Table 3. Damping ratios of the frame model  

Mode 
ζ (%) 

Single Free 

1 0.73 (0.78)a 0.75 (0.79)a 

2 0.24 (0.34)a 0.27 (0.34)a 
a Values in brackets are the cases with the sloshing tank. 

 

Table 3 presents the damping ratios obtained under both single 

frequency excitation and free vibration. In fact, there are two 

peaks around 3 Hz in Figure 11. To avoid the overlapping of 

multiple modes, which are close to each other on the spectrum 

and result in inaccurate results. Thus, before the half-power 

bandwidth method, a bandpass filter with a bandwidth of 0.4 

Hz was used to keep only the single mode vibration component 

when obtaining the damping ratio. As can be noted, the 

agreement is very good, indicating that the results from these 

two vibration tests are consistent, which verify reliability and 

correctness. 

 

The damping ratio of the first mode is significantly higher than 

that of the second mode, indicating that the frame model 

experiences a faster energy dissipation because of a higher 

damping in the first mode. Additionally, the sloshing tank 

provides the higher damping among all modes, especially the 

second mode, with a more significant increase of 0.07-0.10%, 

indicating that the damper has a greater impact on the vibration 

mitigation in the second mode. 

 

 Strain cycle counting for fatigue assessment 

From the dynamic strains obtained from strain gauge 1, the 

histograms for Rain-flow Counting are developed to give 

valuable information for future fatigue assessment. 

 
(a) Without the sloshing tank 

 
(b) With the sloshing tank on the second floor 

Figure 12. Histograms of strain cycle counting from strain 

gauge 1 

Figure 12 shows that most strain cycles concentrate between 

200-320 μm/m, making the greatest contribution to fatigue life 

of the frame model; The number of strain cycles decreases with 

the increase of the strain range with fewer cycles in the high 

strain range (500-600 μm/m). 

 

An interesting observation is that with the sloshing tank, the 

number of cycles in the high strain region is reduced, indicating 

that the frame model is subjected to relatively mild strain 

fluctuations, and the sloshing tank can be an efficient method 

of vibration control. 

 

4 CONCLUSIONS 

In this study, the integration of edge computing into different 

lightweight edge devices is explored, including the 

KRYPTON® CPU data logger and the ESP32-S3 

microcontroller.  

 

In each monitoring system, sensor nodes are distributed to 

collect the measurement data (accelerations and strains) of a 

four-story building frame model considering two different 

cases with variations in the structural mass and damping. The 

experimental results demonstrate that these monitoring systems 
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can detect changes in structural dynamic properties under 

vibration, which provides a basis for future fatigue assessment 

and structural damage detection. 

 

Finally, the proposed approach is scalable to dense sensor 

networks that can fuse information from many locations in a 

large-scale structure. Therefore, edge computing plays an 

important role in reducing data transmission to the cloud center 

and ultimately shaping a brighter future for structural health 

monitoring. 
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ABSTRACT: To understand the behavior of healthy structures and the changes to their condition over time, it is imperative to 

perform experimental analysis of existing civil engineering structures. Development of novel sensors measuring rotations enable 

to directly measure important components of the system parameters, as they provide additional information on the structural 

response. Long-term monitoring of existing structures using 6C sensors – 3C translation and 3C rotation, enables a more in-depth 

analysis of the system parameters; frequency, modeshape and damping. Specifically, the translation-based characterization of the 

torsional mode can be enhanced through direct measurement of the torsional angle, center of torsion and more precise frequency 

extraction. Furthermore, the distinction between shear and bending can be analysed through the ratio of angle and deflection, 

instead of using proxies like frequency ratios or shear wave velocity. In this study, we analyse how using 6C datasets for structural 

characterization of high-rise buildings provide further information to understanding the system parameters and their variations 

over time. We find that the rotational components significantly contribute to the understanding of the vibration behavior and 

thereby propose to include 6C sensors to enhance the characterization of structures. 

KEY WORDS: 6C dataset; structural characterization; shear; bending; rotation; translation; system property variation. 

1 INTRODUCTION 

Analyzing seismic data to observe the dynamic behavior of 

buildings is a well-established approach in structural 

monitoring. Traditionally, this has relied on accelerometers and 

seismometers to capture translational motion. Recently, sensors 

capable of detecting rotational motion have expanded these 

capabilities [1]. Combining rotational and translational data 

provides more details on the structures behavior. Collocating 3 

components rotation and 3 components translation improves 

the frequency resolution for torsional modes, and enables the 

determination of 6C mode shapes at the roof level with minimal 

sensor footprint, as shown in [2]. 

A key analysis is to determine a baseline for a healthy 

structure, concerning the system properties—like resonance 

frequency, damping, mode shapes, and waveform-based signal 

statistics [3]. In the absence of damage, these features are 

expected to stay consistent over time. Unless environmental 

parameters such as temperature, wind, or precipitation change, 

then they can temporarily influence the system behavior [4], 

[5]. Torsional modes often respond differently to 

environmental variations compared to translational modes, as 

shown in [6]. 

The translational modes of structures can be approximated 

through a shear or Euler-Bernoulli beam [7]. However, real 

structures are a combination of both. The Timoshenko beam 

theory incorporates both bending and shear [8], and has been 

applied to real structures in [9], [10]. Multiple methods exist to 

assess the prevailing regime - shear or bending, including 

frequency ratios [8], interferometric determination of shear 

velocity [8], and interstory drift analysis using sensor arrays 

[9]. Structural damage can alter stiffness, mass, or damping, 

which in turn modifies the curvature of the resonance mode 

shapes. Monitoring the variation of a mode shape between 

bending and shear thus provides critical insights to a structures 

health [3]. 

The torsional modes are influenced by the eccentricity of the 

structure - which exists when the center of mass and center of 

rigidity do not coincide and the center of torsion. Due to 

inherent asymmetries in the building design or construction, all 

buildings display some torsional motion, which is a key factor 

in seismic damage. Therefore, changes in torsional response are 

vital to track for structural health monitoring. 

This work investigates how 6C measurements can enhance 

structural characterization and monitoring, specifically for 

shear-to-bending and torsional response. 

2 SENSORS AND EXPERIMENT SET-UP 

There are a handful of buildings that have been instrumented 

for continuous 6C monitoring such as the high-rise building 

TAIPEI101 in Taiwan [10]. Where two 6C stations are located 

on the 90th floor comprising of an Eentec R1 rotation sensor 

and a Kinemetrics accelerometer each. Eentec R1 rotation 

sensor has a sensibility of 1.2 · 10−7 rad/s which is frequency 

dependent and is sensitive to temperature [11]. Another 

common rotation sensor is the blueSeis-3A [12] with a 

sensitivity of 2.5 · 10-8 rad/s from DC to 50 Hz. The blueSeis-

3A was used to monitor the high-rise building Prime Tower in 

Switzerland for 1.5 years [2]. Recently high-quality 6C inertial 
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measurement units have been assembled specifically for 

structural health monitoring. The sensor self-noise of the 

rotational sensor is at 1.5 · 10-6 rad/s, therefore depending on 

the vibration amplitude, not always low enough for ambient 

noise, but low enough for active experiments [13]. The optimal 

location for a rotation sensor on a building is generally at the 

top floor, where the amplitude is the largest and an approximate 

modeshape can be extracted. On bridges this location is still an 

open question due to unresolved boundary conditions and 

location of maximum amplitude for rotational motion. 

3 METHODS 

In this study, we analyze the ratio between the horizontal 

rotation angle and deflection as a proxy for the vibration regime 

of high-rise buildings. Additionally, we are investigating the 

ratio between torsion angle and the displacement to extract the 

center of torsion.  

The amplitudes of rotation and translation for each mode can 

be estimated either through the simple power spectral density 

(PSD) peak picking method or a more sophisticated method 

such as the stochastic subspace identification. Either way it is 

imperative that the methods are applied to the rotation angle 

and displacement directly and not the classic rotation rate and 

acceleration timeseries. As the derived ratio needs to be in the 

units of rad/m. Additionally, the relative amplitudes between 

rotation and translation need to be kept and a normalization as 

is often applied for mode shapes would have to be applied to 

all 6 components in the same way. 

 Ratio for shear-to-bending response 

For the shear-to-bending response analysis the ratio between 

the rotation angle and deflection is calculated by simple 

division. For a symmetric quadratic building where the walls 

are oriented along the North-South axis the translational modes 

would either be in East or North direction. To analyse the East 

bending mode, the rotations around North are divided by the 

deflection in East. For the North bending mode, the rotations 

around the East are divided by the deflection in North.  

 Ratio for center of torsion 

For an analysis of the torsional mode concerning the center of 

torsion the ratio between the vertical rotation angle and the 

horizontal translation is calculated. The horizontal translation 

is highly dependent on the location of the 6C station on the 

floor. At the center of torsion almost no displacement will 

occur, while there will be more translation away of the center 

of torsion. So, in theory one can estimate the torsional ratio by 

dividing the torsional angle through either the North, East or 

total horizontal displacement. A change of this ratio will mean 

a change of the center of torsion. 

 Variation of Ratio 

It is expected that the ratio for both the shear-to-bending 

response as well as the center of torsion will vary due to 

environmental and operational changes. These are for example; 

temperature, humidity, air pressure, wind, rain and activation 

of a tuned mass damper. However, it is expected that an 

earthquake could influence the ratio similar to the modal 

frequencies, that often feel a drop and consecutive healing 

effect.  Any permanent change of the ratio could hint at damage 

and would need to be investigated. 

4 CONCLUSION 

This study presents a new method based on the ratio between 

rotation angle and deflection. This ratio contains information 

on the mode shape, and thus the overall vibration regime. Here 

it is introduced to analyse 1) if a structure is in shear or bending, 

2) where the center of torsion is for a structure and 3) why this 

ratio varies over time.  

6C datasets enable the evaluation of vibration regimes in 

high-rise structures. However, the results depend strongly on 

accurate sensor placement, sensor quality, and the ability of 

sensors to remain unaffected by external influences aside from 

the measured motion.  
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ABSTRACT: This study presents an integrated approach that combines seismic interferometry and system identification 
techniques for real-time Structural Health Monitoring (SHM), enabling the automated detection of changes in shear-wave velocity 
profiles for damage assessment. The methodology is validated using data from a 62-story residential skyscraper in San Francisco, 
one of the tallest buildings in the Western U.S., equipped with 72 uniaxial accelerometers across 26 floors. The building 
incorporates advanced structural components, including buckling-restrained braces, outrigger columns, and a tuned liquid damper 
to mitigate seismic and wind-induced responses. Data from the 2014 M6.0 South Napa and 2018 M4.4 Berkeley earthquakes, as 
well as ambient vibration recordings, are analyzed to establish baseline dynamic properties, including modal parameters, shear-
wave profiles, and wave attenuation. We monitor wave propagation velocities, normal mode frequencies, and intrinsic damping 
through deconvolution interferometry, enabling real-time identification of structural stiffness changes. Shear-wave travel-time 
curves from deconvolution show reduced velocities below the 28th floor, coinciding with buckling-restrained braces, while higher 
velocities are observed above. This integrated methodology offers a robust framework for automated damage detection and real-
time structural health assessment, demonstrating the potential to enhance the resilience and safety of high-rise structures during 
seismic events. 

KEY WORDS: Structural Health Monitoring (SHM); Seismic Interferometry; System Identification; Shear-Wave Velocity; 
Damage Detection; High-rise structures. 

1 INTRODUCTION AND BACKGROUND 
Structural Health Monitoring (SHM) plays a crucial role in 
maintaining the safety and resilience of critical infrastructure, 
particularly in regions prone to seismic activity. High-rise 
buildings in seismically active zones such as the San Francisco 
Bay Area must withstand frequent and potentially severe 
seismic events. San Francisco, situated above an intricate 
network of active faults, including the San Andreas Fault, faces 
considerable seismic hazards, with the U.S. Geological Survey 
(USGS) forecasting a high probability of significant 
earthquakes occurring within the next few decades [1]. 

This paper explores the application of an advanced integrated 
SHM methodology to One Rincon Hill South Tower, a 
landmark 62-story, 195-meter-tall residential skyscraper in San 
Francisco, California. Recognized as the tallest residential 
building in California, the tower is instrumented with 72 
uniaxial accelerometers strategically distributed across 26 
floors, facilitated through collaborative efforts between the 
USGS National Strong Motion Project and the California 
Geological Survey’s Strong Motion Instrumentation Program. 
Unique design features, including buckling-restrained braces 
(BRBs), an outrigger column system, a tuned liquid damper 
(TLD), and a robust, twelve-foot-thick mat foundation, are 
incorporated to enhance its resistance against seismic and 
wind-induced forces. 

The study aims to validate an innovative real-time SHM 
system integrating seismic interferometry and system 
identification methods. This integrated approach aims to 
automate the detection of structural anomalies, specifically 
through monitoring changes in shear-wave velocities and wave 

attenuation characteristics. Validation is accomplished using 
data recorded during the 2014 M6.0 South Napa and 2018 M4.4 
Berkeley earthquakes, alongside ambient vibration monitoring 
data. 

Advancements in Structural Health Monitoring have 
increasingly focused on integrating sophisticated methods for 
more accurate and reliable damage detection. Modal analysis 
approaches, particularly Frequency Domain Decomposition 
(FDD), have become standard practice in determining 
fundamental structural properties such as natural frequencies, 
mode shapes, and damping ratios. These methods effectively 
identify changes indicative of structural deterioration or 
damage [2]-[3]. 

Seismic interferometry has emerged as an essential 
complementary approach within SHM, enabling the extraction 
of detailed structural parameters from seismic and ambient 
vibration data. The principle of seismic interferometry involves 
retrieving Green’s functions between sensors, thereby 
providing insights into wave propagation velocities and 
intrinsic attenuation characteristics, independent of knowledge 
of the source excitation [4]-[5]. Among interferometric 
approaches, deconvolution interferometry is particularly 
beneficial in distinguishing between intrinsic structural 
attenuation and scattering attenuation, thereby significantly 
improving stiffness and damage detection accuracy within 
monitored structures [6]-[7]. 

Significant validation of deconvolution interferometry in 
SHM was conducted by Snieder and Safak [4], who accurately 
estimated structural wave velocities and intrinsic attenuation 
parameters in the Millikan Library, demonstrating notable 
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advantages over traditional interferometric methods. 
Additional validation performed by Kohler et al. [9] in the 
Factor Building reinforced these findings, indicating a robust 
potential for application in real-time SHM scenarios. 

However, traditional interferometric and modal identification 
methods independently exhibit limitations, notably insufficient 
sensitivity to localized stiffness reductions, which are critical 
for early-stage damage detection. To address these challenges, 
recent research highlights the importance of integrating seismic 
interferometric techniques with sophisticated system 
identification methods, significantly improving the accuracy 
and reliability of real-time SHM systems [6],[8]. 

This study builds upon previous work by integrating seismic 
interferometry methods, specifically modal identification 
techniques, which are validated using extensive seismic 
datasets from an extensively instrumented skyscraper. This 
innovative integration significantly enhances SHM 
capabilities, particularly for high-rise structures subjected to 
dynamic seismic loads, enabling timely detection and accurate 
characterization of structural health, which is crucial for 
improving resilience and minimizing post-earthquake recovery 
periods. 

2 METHODOLOGY 

 Seismic Instrumentation and Data Collection 
The seismic instrumentation of the One Rincon Hill South 
Tower comprises a comprehensive network of 72 uniaxial 
accelerometers strategically distributed across 26 floors 
(Figures 1–4).  

 
Figure 1. 195m skyscraper in San Francisco (photo is courtesy 

of Magnusson Klemencic Associates). 

 
Figure 2. The primary seismic load-resisting system with 

concrete core and outriggers comprising buckling restrained 
braces. The water tank located at the roof level serves as a 

tuned liquid damper to mitigate wind forces (Figures modified 
from Magnusson Klemencic Associates). 

 
Figure 3. San Francisco Bay Area earthquake faults. The star 
sign indicates the location of the 195m skyscraper. (modified 

from http://earthquake.usgs.gov/regional/nca/ucerf/). 

http://earthquake.usgs.gov/regional/nca/ucerf/
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This dense array was meticulously designed and installed by 
the USGS’s National Strong Motion Project in collaboration 
with the California Geological Survey’s Strong Motion 
Instrumentation Program. Particular emphasis was placed on 
instrumenting floors equipped with critical structural elements, 
including buckling-restrained braces (BRBs) connecting the 
building to the outrigger systems at floors 26–32 and 52–55. 
Additional sensors placed at the base and roof levels facilitate 
the measurement of vertical accelerations, which are essential 
for quantifying the rocking motion induced by seismic 
excitation. 

The recorded data include responses to two significant 
earthquakes: the 2014 M6.0 South Napa earthquake (epicentral 
distance of approximately 48.7 km) and the 2018 M4.4 
Berkeley earthquake (epicentral distance of approximately 15.6 
km). Ambient vibration measurements were also captured, 
providing a baseline for comparison of structural properties. 

 

 
Figure 4. Sensor layout. Red arrows indicate the locations and 

the directional sensitivity of the accelerometers. 

 Seismic Interferometry and System Identification 
Framework 

The methodology integrates seismic interferometry with 
system identification techniques for real-time structural health 
assessment. Seismic interferometry, particularly through the 
deconvolution approach, allows extraction of the structure’s 
impulse response function (IRF) independent of external 
excitation sources. The governing equation for waveform 
deconvolution interferometry, adapted for building structures, 
can be expressed as in Eq. (1). 

 𝐷𝐷(𝜔𝜔, 𝑧𝑧) = 𝑈𝑈(𝜔𝜔,𝑧𝑧)
𝑈𝑈(𝜔𝜔,𝐻𝐻)

 (1) 

where 𝑈𝑈(𝜔𝜔, 𝑧𝑧) is the recorded seismic response at a specific 
height z, and 𝑈𝑈(𝜔𝜔,𝐻𝐻) represents the recorded response at the 
reference level H, typically the roof or base of the structure. 
Eq. (1) may become ill-conditioned when the denominator 
approaches zero. To avoid this condition, the following 
regularized format is used as the estimator of deconvolution: 

𝐷𝐷(𝑧𝑧, 𝑧𝑧𝑎𝑎,𝜔𝜔) = [𝑢𝑢(𝑧𝑧,𝜔𝜔)𝑢𝑢∗(𝑧𝑧𝑎𝑎 ,𝜔𝜔)] [|𝑢𝑢(𝑧𝑧𝑎𝑎 ,𝜔𝜔)|2 + 𝜀𝜀〈|𝑢𝑢(𝑧𝑧𝑎𝑎,𝜔𝜔)|2〉]   ⁄ (2) 

where superscript “*” denotes the complex conjugate, 𝜀𝜀 is the 
regularization parameter (𝜀𝜀=0.01 is used here, based on prior 
experience), and 〈|𝑢𝑢(𝑧𝑧𝑎𝑎 ,𝜔𝜔)|2〉 is the average power spectrum 
of 𝑢𝑢(𝑧𝑧𝑎𝑎,𝜔𝜔).  

System identification was executed using Frequency Domain 
Decomposition (FDD), an established modal analysis 
technique that effectively identifies modal parameters from 
ambient and seismic-induced vibrations. FDD facilitates modal 
parameter estimation by decomposing the spectral density 
matrices of the recorded accelerations into singular values, thus 
accurately identifying natural frequencies, mode shapes, and 
damping ratios of the structure [1]-[2]. 

The integrated approach involves calculating wave 
propagation velocities, normal mode frequencies, and intrinsic 
damping characteristics from the IRFs obtained via 
deconvolution interferometry. Shear-wave velocity profiles are 
computed explicitly by analyzing the propagation times of 
upgoing and downgoing shear waves through different building 
sections. Changes in these profiles effectively indicate stiffness 
alterations, potentially signifying structural damage or 
degradation [3],[5]. 

 Analysis Procedures 
Analysis began by establishing baseline modal parameters 
using ambient vibration data. Subsequently, earthquake data 
from the South Napa and Berkeley events were analyzed to 
quantify structural response under significant seismic loading 
conditions. This comparative assessment between baseline and 
event-specific modal parameters allowed for the precise 
detection and characterization of structural changes. Wave 
propagation velocities, intrinsic damping, and attenuation 
characteristics were estimated in real-time using advanced 
computational procedures integrating seismic interferometry 
and system identification. 

Wavefield decomposition techniques were also utilized, 
providing causal (forward-time) and acausal (time-reversed) 
waveform comparisons. Discrepancies between these 
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waveforms facilitated precise estimation of intrinsic 
attenuation, as scattering attenuation remains invariant under 
time reversal, thus isolating intrinsic material damping 
characteristics effectively [3],[7]. 

The methodological rigor and integrated analytical 
procedures presented herein establish a robust framework for 
accurate real-time monitoring and damage detection 
capabilities in high-rise buildings, particularly under seismic 
excitations. 

3 RESULTS AND DISCUSSION 

 Baseline Dynamic Properties 
Baseline modal properties of the One Rincon Hill South Tower 
were established using ambient vibration data and verified with 
earthquake-induced vibrations from the 2014 South Napa and 
2018 Berkeley earthquakes. Modal analysis using Frequency 
Domain Decomposition (FDD) revealed the first five 
fundamental modes within the frequency range of up to 6 Hz. 
Identified modes included distinct bending and torsional 
behaviors. Specifically, the fundamental bending modes were 
clearly observable at frequencies below 1 Hz, consistent with 
expectations for a high-rise structure of this scale. Notably, 
ambient vibration data revealed subtle torsional modes, which 
were less prominent in the earthquake response data, indicating 
nonlinear behavior activated by seismic events. 

 Shear-Wave Velocity Analysis 
Utilizing deconvolution interferometry, distinct shear-wave 
velocity profiles were extracted, displaying apparent variations 
across the structural height of the building. Figures 5-6 and 
Table 1 illustrate these variations, which were particularly 
evident in areas around structural transitions, such as the 
presence of buckling-restrained braces and outrigger systems. 
Below the 28th floor, significantly reduced shear-wave 
velocities were consistently observed, correlating directly with 
the increased structural flexibility imparted by the BRBs. In 
contrast, increased velocities above this level underscored the 
effectiveness of outrigger columns and tuned liquid damper 
systems in enhancing structural rigidity. This spatial variation 
in wave velocity effectively delineates stiffness transitions, 
which are critical for accurate real-time monitoring and damage 
detection. 

 
Figure 3. Recorded east-west waveforms from the 2017 M6.0 
South Napa earthquake at an epicentral distance of 48.7 km. 

Propagating waves from the first floor to the roof show 
amplification in the order of 4.2. The floor numbers and their 
corresponding height relative to the ground (1st floor) are 
depicted; the maximum roof acceleration is 20.894 cm/s2.  
 

Table 1. Modified Shear-Wave Velocity Profiles. 

Floor Range Average Shear-Wave 
Velocity (m/s) 

Below 28 210 
28 to 52 350 

Above 52 450 
 
 
 

 
Figure 4. Deconvolved waveforms, calculated from the 2014 
Napa earthquake east-west direction acceleration time series, 
are plotted as positive and negative amplitudes for each 
instrumented floor over time. The frequency range of the 
waveforms is 0–4 Hz. 

 Intrinsic Damping and Attenuation Characteristics 
The damping properties of the structure were quantitatively 
assessed using the impulse response functions (IRFs) derived 
from deconvolution interferometry. Results indicated intrinsic 
damping ratios of approximately 4.4% in the east-west 
direction and 3.7% in the north-south direction. These values 
align with expected damping ranges for high-rise buildings, 
reflecting effective energy dissipation during seismic 
excitation. Furthermore, wavefield decomposition analysis 
clearly distinguished between causal and acausal waveforms, 
allowing precise estimation of intrinsic attenuation. Variations 
in these characteristics across different building elevations 
indicated localized stiffness and damping alterations 
potentially associated with structural degradation or minor 
damage [3],[7]. 

These detailed results demonstrate the efficacy and reliability 
of the integrated SHM methodology proposed herein, 
providing a robust analytical framework capable of effectively 
detecting and localizing structural changes. 

 Discussion 
As demonstrated in this study, integrating seismic 
interferometry with advanced system identification techniques 



13th International Conference on  
Structural Health Monitoring of Intelligent Infrastructure  DOI: 10.3217/978-3-99161-057-1-187 

 

CC BY 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en  
This CC license does not apply to third party material and content noted otherwise 1245 

significantly enhances real-time Structural Health Monitoring 
(SHM) capabilities, particularly in detecting subtle and 
localized changes in structural stiffness. The results 
demonstrate the clear advantages of this integrated 
methodology, particularly in terms of sensitivity and precision 
in detecting shear-wave velocity variations associated with 
structural anomalies. 

The observed shear-wave velocity reductions below the 28th 
floor are particularly noteworthy, correlating directly with 
regions containing buckling-restrained braces (BRBs). These 
velocity reductions reflect structural flexibility intentionally 
designed to absorb and dissipate seismic energy. Conversely, 
higher shear-wave velocities identified above this zone 
demonstrate the significant rigidity provided by outrigger 
columns and tuned liquid dampers (TLD). Such explicit 
distinctions in velocity profiles serve as effective diagnostic 
markers, facilitating the precise localization of stiffness 
changes that potentially indicate structural deterioration or 
damage initiation. 

The intrinsic damping characteristics obtained via 
deconvolution interferometry and wavefield decomposition 
provided precise estimates aligning closely with theoretical 
predictions and empirical data for high-rise structures. The 
ability to differentiate between intrinsic damping and scattering 
attenuation effects substantially improves over traditional SHM 
methodologies, which frequently fail to distinguish between 
these phenomena, thereby limiting adequate diagnostic 
accuracy. 

However, some limitations of the current approach should be 
acknowledged. Specifically, assumptions of linear-elastic 
behavior under ambient vibrations may inadequately represent 
the structure’s nonlinear response during significant seismic 
events. Enhancing the methodological framework to better 
account for nonlinear dynamics through advanced system 
identification approaches could substantially increase 
diagnostic robustness and reliability. 

Moreover, practical considerations for real-world 
applications, such as computational demands, processing 
speed, and sensor robustness under extended environmental 
exposure, remain critical. Addressing these concerns through 
improved sensor technologies and optimized real-time 
computational algorithms is crucial for the practical 
implementation and widespread adoption of structural health 
management systems. 
 

4 CONCLUSIONS AND FUTURE RESEARCH 

 Conclusions 
This study comprehensively evaluated an integrated 
methodology combining seismic interferometry with system 
identification techniques, validated using extensive data from 
the instrumented One Rincon Hill South Tower. The 
methodology demonstrates robust capabilities for the 
automated and accurate real-time detection of structural 
stiffness variations through precise estimations of shear-wave 
velocities and intrinsic damping. 
The major conclusions drawn from this research are: 
• Enhanced Damage Detection Sensitivity: The integrated 

seismic interferometry and system identification approach 
significantly improves the detection and localization of 

subtle stiffness reductions, which are essential for timely 
structural health assessments in high-rise buildings in 
seismic-prone regions. 

• Effective Characterization of Structural Components: The 
methodology accurately delineated shear-wave velocity 
profiles corresponding explicitly to structural features, 
such as BRBs, outrigger columns, and tuned liquid 
dampers. This precise characterization offers actionable 
insights into structural integrity and performance under 
seismic conditions. 

• Improved Damping and Attenuation Estimations: Intrinsic 
damping and attenuation properties were effectively 
isolated from scattering effects, significantly enhancing 
the reliability and diagnostic accuracy of structural 
condition assessments. 

• Identification of Linear versus Nonlinear Behaviors: The 
study successfully differentiated structural responses 
induced by ambient conditions (linear-elastic) from those 
triggered by seismic events (nonlinear behaviors). 
Highlighting these differences underscores the necessity 
for continued methodological refinement in capturing 
comprehensive structural dynamics under seismic loads. 

 

 Future research 
• Extending the developed integrated methodology to 

diverse structural types and construction materials 
broadens its applicability and effectiveness. 

• Refining computational algorithms to ensure faster, more 
resource-efficient real-time structural analyses suitable for 
practical applications. 

• Developing advanced nonlinear interferometric and 
system identification techniques capable of fully 
characterizing complex structural behaviors during 
significant seismic events. 

Ultimately, the results and methodologies presented 
significantly advance the discipline of real-time structural 
health monitoring, promising substantial improvements in 
structural safety, resilience, and post-earthquake functionality. 
The presented method could make a significant contribution to 
many of the current structural engineering applications related 
to assessing structures under seismic effects, e.g., [10]–[44]. 
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ABSTRACT: The recent advancements of GNSS technology have enabled multi-frequency and multi-GNSS observations even 

at high-rate measurements (up to 100Hz) with a few-mm to cm-level accuracy, broadening the potentials of GNSS application in 

monitoring dynamic motion of structures. Furthermore, recent studies have revealed the potential of low-cost consumer-grade 

GNSS receivers in deformation monitoring of civil engineering structures of even cm-level and indicated that the type of GNSS 

antenna is the main parameter affecting the quality of the GNSS data. In this study, we investigate the potential of dual-frequency 

smartphone-based GNSS measurements in monitoring dynamic motion of structures. The study is based on controlled experiments 

of static, slow and dynamic motion of various amplitude and motion frequency, where 1-Hz dual frequency GNSS smartphone 

measurements are assessed against more accurate geodetic measurements (GNSS and/or Robotic Total Station). The preliminary 

results show that the GNSS smartphone measurements may suffer from several cycle slips and strong multipath effects, due to the 

linear polarized GNSS antenna of the smartphone, but in several cases the GNSS smartphone measurements were able to express 

the dynamic motion. Also, in this study we examine the performance of the GNSS smartphone measurements in monitoring the 

dynamic response of Wilford Suspension bridge, under various patterns of dynamic loading.   
. 

KEY WORDS: GNSS-smartphone, deformation monitoring, dynamic motion, shake-table. 

1 INTRODUCTION 

Smartphones have been adopted in the last decades in many 

engineering applications. The broad use of smartphones in 

positioning and navigation applications has benefited from the 

development of dual-frequency GNSS receivers in some of the 

advanced smartphone models, enabling those smartphones of 

dual frequency carrier phase measurements. The first 

smartphone was Xiaomi Mi 8 (released in 2018) which 

supports dual frequency GPS/Galileo, single frequency 

BDS/GLONASS code pseudo-range and carrier phase 

measurements (Robustelli et al., 2019, Geng and Li, 2019). 

Nowadays, with the development of more advanced mobile 

phone chipsets, several smartphone manufacturers are 

releasing flagship phones supporting features such as L1/E1, 

L5/E5a dual frequency, multi-GNSS carrier phase 

measurements capability, etc. Thanks to GPSTest mobile app 

developed by Barbeau (2023), the capability of recent 

smartphones as of GNSS performance are crowdsourced and 

documented in GPSTest database (Barbeau, 2021). 

Several studies were conducted focusing on the GNSS-

performance of the first dual-frequency GNSS carrier phase 

Mi8. More specifically, Robustelli et al. (2019) used Xiaomi 

Mi8 in both single point positioning (SPP) and post-processing 

kinematic (PPK) applications, showing a RMS accuracy of 

around 5 m and 1-2 m for the SPP and PPK, respectively. On 

the other hand, Chen et al. (2019) employed Xiaomi Mi8 for 

real time precise point positioning and found that the RMS 

positioning error is 0.81 m and 1.65 m for horizontal and 

vertical respectively. 

Since then, several other studies have been conducted 

assessing the performance of dual-frequency GNSS-

smartphones. Paziewski et al. (2021) assessed the GNSS 

observation quality of several smartphones, concluding that the 

smartphone GNSS data are noisier than the geodetic GNSS 

data, but still feasible to obtain a cm-level static solution. Li 

and Geng (2019) analysed GNSS measurement error 

characteristics from Nexus 9 tablets using both embedded and 

external antennas, revealing that the root mean squared (RMS) 

accuracy for the SPP is about 10-20 m, and cm-level precision 

can be achieved for static PPK solutions.  

Hence, the first experiments reveal promising results about 

the quality of the smartphone-based GNSS measurements, 

indicating that they can achieve cm-level for relative PPK 

positioning (Pesyna et al., 2014; Wanninger and Heßelbarth, 

2020; Geng and Li, 2019; Dabove and Pietra, 2019). However, 

most of the experiments are based on static experiments and 

only one study is based on experiments of dynamic motion of 

smartphone experiments (Vazquez-Ontiveros, et al., 2024).  

With the broader trend of applying low-cost GNSS receivers 

for monitoring applications (Xue et al., 2021; Xue et al., 2022; 

Xue and Psimoulis, 2023), there is great potential for mobile 

phones to be used for precise positioning services such as in 

SHM due to: 1) the relative low-cost with respect the geodetic 

GNSS receiver, 2) the raw smartphone GNSS measurements 

(code and carrier phase, etc.) which are accessible to the 

broader smartphone users community, 3) the potential of 

crowdsourcing data through the smartphones application, and 

4) the availability of various sensors such as accelerometers, 

gyros, which can be combined with GNSS measurements in 

SHM applications (Lăpădat et al., 2021). 

In general, it is expected that the code and carrier phase 

measurements of smartphones are of relatively lower quality 
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than those of geodetic receiver. However, it was shown that 

ambiguity resolution of L1 measurements, which is the 

prerequisite for achieving a precise solution of cm-levelm, can 

be achieved, as it was concluded from experimental study using 

a Huawei P30 smartphone (Wanninger and Heßelbarth, 2020).  

Although there are a few studies regarding deformation 

monitoring with smartphones, most of them, only take 

advantage of its embedded accelerometer, their GNSS 

observation functionality is rarely assessed for its deformation 

monitoring applicability except for few conducted by Zeng et 

al., (2022) and Vazquez-Ontiveros et al. (2023). Vazquez-

Ontiveros et al. (2023) found that an RMS error of 1.4 cm in 

the horizontal component could be achieved for kinematic 

circular trajectory with a rotating speed of 0.44 rad/s (~0.07 Hz) 

and an rotation radius (amplitude) of 19 cm and RMS errors of 

0.7 cm, 1.2 cm, and 4.2 cm in the East, North, and Up 

components could be obtained with static experiment. 

In this study, we present the preliminary results of controlled 

experiments, where smartphone GNSS measurements were 

conducted to monitor dynamic vertical and horizontal motion 

and evaluate the performance of the GNSS measurements. The 

preliminary results are promising, indicating the potential of 

smartphone GNSS measurements for dynamic motion 

monitoring.  

2 METHODOLOGY 

The study was based on two controlled experiments, aiming to 

simulate long-period/low-frequency (up to 0.2 Hz) cm-level or 

larger motion, meeting the main deflection characteristics 

(amplitude and frequency) of flexible structures (e.g., long 

bridges and tall buildings) under normal service conditions 

(Meng et al., 2018). 

The first experiment involved a controlled vertical periodic 

motion (of up to 0.1 Hz) produced manually by a platform, 

following the methodology of the study (Peppa et al. 2018), and 

monitored by smartphone GNSS receiver and a robotic total 

station (RTS) measurement. The mm-level accuracy of RTS 

measurements served as the reference for evaluating the 

performance of the smartphone GNSS (Psimoulis et al., 2008). 

The second experiment focused on controlled horizontal 

oscillations of up to 0.2 Hz, induced by a shake table. Multiple 

GNSS sensors, such as survey-grade, low-cost and 

smartphone-grade receivers, were attached to the shake table, 

along with several accelerometers, all subjected to the same 

excitations. The direct trajectory output of the shake table was 

used as a reference to assess the performance of different 

sensors. The analysis of the GNSS timeseries, using statistical 

and spectral techniques, was applied in both experiments to 

quantify measurement accuracy and identify their dominant 

frequencies. 

3 CONTROLLED VERTICAL EXPERIMENT  

The first experimental assessment aimed to evaluate the 

performance of GNSS-smartphone for monitoring low 

frequency cm-level vertical dynamic motion. We conducted an 

experiment on the open roof of Nottingham Geospatial 

Building (NGB), where periodic vertical oscillations were 

executed by using a heavy-duty tripod with a height-adjustable 

platform and manually controlled vertical movement. On the 

top of the tripod, a 360o-prism and metallic plate were mounted,  

where the smartphone was securely placed. We manually 

introduced vertical periodic oscillations of about 0.05 Hz and 

0.1 Hz by synchronising to a metronome, as described in Peppa 

et al., 2018, and the amplitude of 2 to 3 cm was controlled based 

on the graduation etched on the pole.  

The setup of the vertical controlled experiment is shown in 

Figure 1, where the GNSS base station is consisted of Leica 

AS10 geodetic antenna and Leica GS10 geodetic receiver, 

recording in 1 Hz multi-GNSS observations (i.e. GPS, 

GLONASS, Galileo, BDS; Figure 1A). The Samsung S23 FE, 

equipped with the dual-frequency GNSS receiver, was set on 

top of a ground plate, to limit the multipath effect, recording 

1Hz multi-GNSS observations, using the GnssLogger App, 

developed by Google (Google, 2024). The Samsung S23 FE 

could record L1/L5 GPS, B1i/B2a BDS, E1/E5a Galileo, and 

G1 GLONASS signals. Finally, the 360o-prism Leica prism 

was monitored by Leica TS30 RTS, which was recording at 10 

Hz sampling-rate (Peppa et al., 2018, Peppa and Psimoulis, 

2023).  

We conducted six oscillations; (i) three oscillations of 

approximately 0.1 Hz frequency, and amplitude of ~2 cm (A), 

and ~3cm (B) and C); and (ii) three oscillations of 

approximately 0.05 Hz frequency and amplitude of ~1 cm 

(D),~2 cm (E) and ~3 cm (F). 

The RTS ortho-height timeseries relative to the initial 

position (prior to the oscillation) were exported, expressing the 

vertical displacement of the oscillation. The smartphone GNSS 

data were logged in Receiver Independent Exchange Format 

(RINEX) 3.03 from the GnssLogger App. The GNSS data were 

post-processed using double-difference (DD) in kinematic 

mode in RTKLIB demo5 b34h (Everett, 2023) with mobile 

GNSS data as the rover and Leica GS10 data as the base. The 

multi-GNSS solutions were obtained using GPS, Galileo and 

BDS observations. The GLONASS observations were not used 

for the GNSS solution due to the GLONASS inter-frequency 

bias between the GNSS smartphone and the GNSS base station, 

which affects the ambiguity resolution of the GNSS 

measurements (Msaewe et al., 2017). The Up-component time-

series of the GNSS solution reflected vertical oscillation and 

was compared against the RTS vertical timeseries to evaluate 

the accuracy of the GNSS smartphone data.   
 

 
 

Figure 1. (left) The GNSS base station, (middle) the rover 

station with the prism and a metallic plate where the Samsung 

S23 FE has been mounted, and (left) the RTS recording the 

position of the prism.  
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Figure 2 shows the vertical component timeseries and 

Discrete Fourier Transform (DFT) spectra of the RTS and 

GNSS data for the oscillation case of ~0.05 Hz frequency and 

~3cm amplitude (case F) respectively. It is clearly observed the 

pattern of sinusoidal movement in the GNSS timeseries, with a 

slight downward drift with respect to the RTS timeseries, which 

can be the result of low-frequency noise due to multipath effect, 

to which is susceptible the linearly polarised smartphone 

antenna. 

Likewise, Figure 3 are presented the Up-component time-

series and the respective spectra of GNSS and RTS data for 

case C (amplitude of ~3cm, frequency of ~0.1 Hz). As in the 

experiments of 0.05Hz, it is clearly observed the periodic 

pattern of the motion followed by both GNSS and RTS data, 

with the GNSS data characterized also by a low-frequency 

drift, most likely to multipath effect of the GNSS smartphone 

measurements. 

To quantify the precision of the smartphone GNSS 

measurement in monitoring the oscillation amplitude, with 

respect to the RTS timeseries, we estimated the amplitude of 

the oscillations by using the peak values of each periodic cycle 

of GNSS and RTS timeseries and calculating the mean 

oscillation amplitude of each (GNSS and RTS) timeseries. 

Even though the low-frequency noise of the GNSS timeseries 

could lead to a drift of about 5-8mm, the estimated oscillation 

amplitudes of GNSS smartphone data differ from that of the 

RTS timeseries by 3 cm and 5 cm for the cases F and C, 

respectively. 

Table 1 shows mean amplitude of each experimental vertical 

motion as it was estimated from the RTS timeseries, the Root 

Mean Square (RMS) Error of the GNSS timeseries with respect 

to the amplitude of the RTS and the dominant frequency 

detected for each oscillation scenario derived from the spectral 

analysis of the RTS and the smartphone GNSS time-series. It 

is observed that the GNSS-smartphone precision in detecting 

the amplitude of the vertical oscillation ranges 2-5 mm. It 

should be noted though the impact of the low-frequency drift, 

which may not affect the estimation of the oscillation amplitude  
 

 

Figure 2. (top) RTS and GNSS-smartphone timeseries for case 

F oscillation case, and (bottom) the respective spectra 

but it would affect the estimation of low-frequency semi-static 

displacement. As for the dominant frequency derivation, the 

maximum discrepancy between smartphone GNSS and RTS is 

around 0.007 Hz for 0.1 Hz detection, and 0.003Hz for 0.05Hz 

detection, equivalent to 6-7% bias in dominant frequency 

determination. It is also interesting to note that the spectra for 

RTS timeseries doesn’t seem to have distinct peaks but rather 

shows an area of occurrence of multiple peaks as compared to 

the smartphone GNSS, indicating that it is more sensitive in 

differentiating different frequencies in the signal. 

 

Figure 3. (top) RTS and GNSS-smartphone timeseries for the 

case C oscillation case, and (bottom) the respective DFT 

spectra 

Table 1. Precision of the smartphone GNSS in 

monitoring the kinematic oscillatory displacement for 

scenarios A to F, and the corresponding dominant 

frequency from RTS and smartphone GNSS for each 

case 

 RTS 

amplitude 

(mm) 

RMS 

Error 

GNSS 

(mm) 

Frequency (Hz) 

 RTS GNSS 

A 21 2.5 0.100 0.100 

B 33 2.9 0.100 0.094 

C 31 3.2 0.107 0.100 

D 11 3.2 0.050 0.050 

E 21 2.7 0.050 0.050 

F 30 5.1 0.053 0.050 

 

4 CONTROLLED VERTICAL EXPERIMENT  

The experiments of horizontal dynamic motion were based on 

a shake table and it was designed and conducted on the roof of 

Xinghu Experimental Building at Wuhan University in China. 

The roof is moderately open with few obstructions by 

surrounding buildings. 

In Figure 5 is presented the experimental setup, where several 

mobile phones were placed on top of a shake table device, (i) 

with two smartphones placed outside using their internal GNSS 
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antenna (Huawei P40 and Samsung S23 FE), (ii) two mobile 

phones placed inside of two shielding boxes (Huawei P40 in 

the black box and Samsung S23 PE in the white box). The two 

shielding boxes and the geodetic receiver were both connected 

to the survey grade antenna via a signal splitter. Inside the two 

shielding boxes, there were two devices retransmitting the 

GNSS signal as received by the GNSS geodetic antenna to the 

smartphone. A patch antenna was also placed on the white 

shielding box connecting to a u-blox F9P module, and a survey-

grade accelerometer was fixed on the side of the shake table.  

 

 

Figure 5. (left) The setup of the rover sensors (GNSS 

and accelerometer) on the shake table, and (right) the 

station consisted of survey-grade antenna and receiver 

Both the geodetic rover and base station were measuring at a 

sampling rate of 10 Hz, recording GPS, Galileo, BDS, 

GLONASS and QZSS observations, while all four smartphones 

were configured so that the GPS (L1/L5), Galileo (E1/E5a), 

GLONASS (G1), QZSS (J1/J5), and BDS (B1i/B2a) GNSS 

raw data were recorded with application GeoDataLogger 

developed by PrideLab (2024) at a sampling frequency of 1Hz.  

Additionally, the u-blox receiver recorded GPS, Galileo, 

GLONASS), QZSS and BDS observations at 10Hz sampling 

rate. 

The accelerometer data were also recorded in 

GeoDataLogger at the maximum capacity of the smartphone 

(e.g., around 125 Hz sampling frequency for Samsung and 

around 100Hz for the rest), while the survey grade 

accelerometer (TD) recorded at 100 Hz sampling frequency 

with GPS timestamp thanks to an external GNSS module.  

The Quanser Shake Table II, controlled via a MATLAB 

script implemented in Simulink, was used to perform precise, 

programmed displacements. The shake table was rigidly bolted 

to the roof and carefully orientated in E-W direction. We 

performed in total 25 different motions with various amplitude 

and oscillating frequency oscillating in E/W direction, with 

amplitude ranging from 5mm, 10mm, 20mm, 40mm, and 

oscillation frequency ranging from 0.1 Hz, 0.2Hz, 0.5Hz, 1Hz, 

1.5Hz, and 2Hz. Each oscillation lapsed around 2 minutes with 

at least 1 minute of static period in between consecutive 

oscillations. The shake table could output direct displacement 

timeseries at a frequency of 100 Hz, which we employed as the 

reference data and the ground truth. 

It is worth noting that from the experiment, 

i) Apart from the GNSS measurements and the geodetic 

accelerometer data, all other data was not initially 

synchronised to GNSS time, such as phone 

accelerometer measurement and shake table output 

timeseries.  

ii) The acceleration timeseries derived directly from the 

accelerometers output, with the oscillation axis being 

in East-West direction. The acceleration data of the 

smartphones were acquired depending on the 

orientation of each smartphone.   

iii) The smartphones can record 1Hz GNSS 

measurements, meaning that they can be used only 

for frequencies up to 0.5Hz, due to Nyquist theorem 

iv) The ublox measurement terminated halfway during 

the measurement, causing some data loss. 

The GNSS data were post-processed using the open-source 

software RTKLIB demo5 b34k (Everett, 2024) in the kinematic 

mode, with the GNSS sensors on the shake table as rover and 

the geodetic receiver as base forming multiple baselines. The 

output from the RTKLIB is in E/N/U which is effectively the 

3D projection of the baseline vector in the local E/N/U 

direction. All the GNSS post-processed solutions achieved 

ambiguity fix. 

The synchronisation of the accelerometer and GNSS 

timeseries is based on finding and shifting the optimum lag 

when the cross correlation between the geodetic accelerometer 

and each accelerometer timeseries reached the maximum, 

indicating strong correlation. By adjusting the time for 

accelerometer timeseries, we aligned them to GNSS 

timestamps. 

In this study, we focused only on oscillations with frequency 

motion up to 0.2 Hz, for which the 1 Hz smartphone GNSS data 

can be used to determine the oscillation frequency, as the 

Nyquist frequency is 0.5 Hz, based on the sampling rate of the 

GNSS smartphone data (i.e. 1Hz). The oscillation 

characteristics (amplitude and oscillation frequency) for the 9 

sections from left to right are shown in Table 2. For higher 

frequencies, the 1-Hz GNSS smartphone data would need to be 

integrated with accelerometers data. Hence, we investigated 

only the performance of the 1-Hz GNSS data. 

Table 2. Amplitude and frequency of the executed oscillations 

produced by the shake table.  

Oscillation 
Amplitude 

(mm) 

Frequency 

(Hz) 

1 5 0.1 

2 10 0.1 

3 20 0.1 

4 40 0.1 

5 5 0.2 

6 10 0.2 

7 20 0.2 

8 40 0.2 

9 40 0.2 
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Figure 6. Original timeseries from different GNSS sensors. 

From top to bottom are 1) geodetic receiver/antenna, 2) 

Samsung S23 FE 3) output from shake table. The time-series 

are shifted to avoid overlap between them.  

The RTKLIB setting for processing GNSS timeseries are 

utilising L1+L2/E5b+L5/E5a triple frequency option and 

GPS+Galileo+BDS multi-constellation configuration. Slightly 

different configuration settings were used for phones using 

internal antenna and the geodetic antenna due to the significant 

differences in the antenna since mobile phones antenna is more 

susceptible to multipath error, cycle slips. 

In Figure 6, it is shown the timeseries of the geodetic GNSS 

receiver and the GNSS smartphone, as they have derived from 

the GNSS post-process, and the shake table timeseries (i.e. 

reference data). The start and end time for each oscillation is 

highlighted by two vertical lines segmenting the timeseries into 

9 oscillation sections.  

It can be shown in Figure 6 that the geodetic receivers with 

geodetic antenna time series doesn’t seem to be affected by low 

frequency errors as much as the Samsung timeseries. Also, the 

noise level is significantly larger for Samsung as compared to 

geodetic receiver/antenna when the shake table was static. 

These indicate that the antenna grade is crucial for more precise 

results less affected by multipath.  On the other hand, it is 

promising that the displacement/excitations could be detected 

from Samsung timeseries with a strong positive correlation 

with the geodetic GNSS and shake table timeseries, especially 

for 20- and 40-mm amplitude oscillations. 

To enhance the GNSS timeseries, in terms of reducing the 

noise level, the GNSS timeseries was firstly filtered using high-

pass Chebyshev filter with cutoff frequency of 0.05 Hz to 

mitigate the multipath bias and potential other source errors. 

Then, the residuals were calculated by the difference between 

the GNSS timeseries and the output from shake table.  

In Table 3 is shown the true amplitude of each oscillation 

scenario, as it is derived from the shake table data (i.e. ground 

truth) and computed RMS error of the geodetic and the 

smartphone data in estimating the oscillation amplitude. It is 

observed that the RMSE of the geodetic data does not exceed 2 

mm, with the maximum RMS error observed for the scenarios 

 

 

Figure 7. Similar to Figure 6, timeseries from different GNSS 

sensors but after high-pass filter 

of large oscillation, i.e. 40mm. In all the other scenarios and for 

amplitude equal or smaller than 20mm, the RMS error is 

limited to less than 1 mm. Regarding the RMS error of the 

GNSS smartphone data in estimating the oscillation amplitude 

the RMS error is generally lower than 5 mm, as it is exceeding 

the threshold of 5 mm only for two scenarios of oscillations, i.e. 

10 and 40mm for 0.1 Hz oscillation frequency. In general, the 

RMS error of the GNSS smartphone data is about two to four 

times larger than the geodetic solution. As expected, the overall 

performance of the GNSS smartphone data is lower, in terms 

of noise/errors, comparing it to the GNSS geodetic receiver, 

mainly due to the lower quality of the antenna, since the 

geodetic receiver/antenna are dedicated GNSS instruments, 

whereas the mobile phones has comparatively lower grade 

receiver and antenna. Also, it is observed that the GNSS 

smartphone has low performance in estimating the oscillation 

amplitude for the cases of 5 and 10 mm, as the achieved 

precision is of 3-6.5 mm level, while the results seem more 

promising for the cases of oscillation amplitude of 20 and 40 

mm.  

Table 3. Standard deviation of the residuals for different 

GNSS sensors with reference to Shake table timeseries 

Oscillation 

Scenario 

True amplitude 

(mm) 

RMS Error (mm) 

Shake Table Geodetic Smartphone 

1 (0.1Hz) 5 0.8 4.0 

2 (0.1Hz) 10 0.6 7.6 

3 (0.1Hz) 20 0.7 4.3 

4 (0.1Hz) 40 1.6 6.9 

5 (0.2Hz) 5 0.8 3.6 

6 (0.2Hz) 10 0.5 1.9 

7 (0.2Hz) 20 0.7 2.3 

8 (0.2Hz) 40 1.1 4.0 

9 (0.2Hz) 40 1.5 2.5 
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In Figure 8 are presented the spectra of GNSS geodetic and 

GNSS smartphone timeseries of the experiment of 0.2 Hz and 

amplitude 20mm, as a representative spectral analysis of all the 

conducted experiments of oscillations. The spectrum of the 

GNSS smartphone data is limited to 0.5 Hz, as the sampling-

rate was 1 Hz, whereas the GNSS geodetic timeseries is limited 

to 5 Hz, due to the respective 10 Hz sampling rate. It is clear 

that the oscillation frequency is accurately detected by both 

GNSS timeseries. The smartphone GNSS timeseries is 

characterized by higher noise level, especially for the frequency  

range higher than 0.2 Hz, as the frequency peaks correspond to 

higher amplitude, reflecting the more noisy data of GNSS 

smartphone with respect the GNSS geodetic data. For 

frequencies lower than 0.05 Hz, the noise has been limited due 

to the application of the high-pass filter.  

In Table 4 are presented the dominant frequencies as they are 

estimated based on the spectral analysis of the GNSS geodetic 

data and the GNSS smartphone data and compared based on the 

frequencies of the oscillation as they derive from the shake  

 

 
 

Figure 8. Spectra of GNSS geodetic and GNSS smartphone 

timeseries of the oscillation of 20mm amplitude ad 0.2 Hz 

frequency.   

Table 4. Dominant frequency derived from each sensor, the 

percentages in brackets indicate the deviation in percentage 

from the reference dominant frequency derived from DFT of 

shake table timeseries. 

 Frequency (Hz) 

 Geodetic Samsung 
Shake 

table 

1 0.098 (2%) 0.098 (2%) 0.096 

2 0.099 (2%) 0.098 (1%) 0.097 

3 0.098 (2%) 0.098 (2%) 0.096 

4 0.098 (2%) 0.098 (2%) 0.096 

5 0.197 (-2%) 0.197 (-2%) 0.202 

6 0.200 (-1%) 0.203 (0%) 0.203 

7 0.197 (-3%) 0.203 (0%) 0.203 

8 0.197 (-3%) 0.203 (0%) 0.203 

9 0.202 (2%) 0.200 (1%) 0.199 

table data (i.e. ground truth). It can be observed that frequencies 

estimated from the smartphone GNSS data deviate not more 

than 2-3% from the reference frequency derived from shake 

table output timeseries. Even though, for the oscillations of low 

amplitude (i.e. 5 and 10mm), the GNSS smartphone suffer from 

low-frequency noise resulting in ambiguous waveform, the 

dominant frequency for the oscillation could still be retrieved 

accurately. Similarly, we conducted DFT for the original 

timeseries. The frequency that can be detected from the original 

timeseries is shown in Table 4. 

5 CASE STUDY: WILFORD BRIDGE MONITORING 

CAMPAIGN 

To evaluate the feasibility of using smartphones for 

monitoring purposes, a preliminary monitoring campaign was 

carried out on Wilford Suspension bridge, a test site adopted 

for many experimental research projects of application of 

GNSS and surveying techniques in bridge SHM studies (Peppa 

et al., 2018, Psimoulis et al., 2016). We deployed several 

different grades of GNSS receivers ad Robotic Total Stations 

(RTS) on the bridge, to assess the performance of the various 

GNSS receivers, using the RTS as the ground truth (Psimoulis 

and Stiros, 2008). For this tudy we focused on the analysis of a 

geodetic grade GNSS station (GS04) consisted of Leica GS10 

receiver ad AS10 antenna, and a smartphone Samsung S23. The 

GSS receiver were recording simultaneously the response of 

the bridge under the pedestrians’ excitations, with the geodetic 

GSS receivers recording at 10 Hz sampling rate, while the 

smartphone was recording at 1 Hz sampling rate.   

In Figure 9 are presented the vertical Up) GNSS timeseries 

of the geodetic and the smartphone, and it is obvious the higher 

noise level of the smartphone GNSS timeseries, indicating the 

larger GNSS receiver noise and the significant larger unpressed 

multipath effect (Peppa and Psimoulis, 2023).  

 
 

Figure 9. The GNSS timeseries from the geodetic grade 

GNSS station (GS04) and the smartphone Samsung S23 

GNSS receiver. Both GNSS receivers are located at the 

midspan of the bridge.  

To mitigate the low-frequency errors, a high pass filter with 

cut-off frequency of 0.05 Hz was applied. In Figure 10 are 

shown the filtered GNSS timeseries of the GS04 geodetic 

receiver and the smartphone, whereas several activities can be 

identified from the GS04 timeseries, whilst those response 

could not easily be identified in the Samsung timeseries, 
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probably due to i) the relatively high bridge modal frequency 

exceeding the Nyquist frequency of the GNSS smartphone 

recorded data and ii) the overall high noise level. 

 
 

Figure 10. The same plot as Figure 9 presenting the highpass 

filtered GNSS timeseries of the geodetic and smartphone data.  

To unveil the bridge displacements limited by the smartphone 

GNSS low sampling rate, a common approach is the integration 

of GNSS with accelerometer data. We adopted loosely coupled 

data integration using Kalman filter Rauch-Trung-Striebel 

smoothing algorithm. It could be seen in Figure 11 that the 

noise from the fused timeseries is greatly reduced from GNSS 

only solution. A few excitations are also identifiable in 

correlation with Leica geodetic timeseries and the acceleration 

timeseries. 

 

 

Figure 11 The highpass filtered timeseries of Leica geodetic 

GS04 solution, the smartphone solution after GNSS and 

acceleration data integration and the acceleration (after offset 

removal and scaling) timeseries 

6 CONCLUSION 

In this study, we analysed the performance of smartphones in 

monitoring vertical and horizontal oscillations with controlled 

oscillation setups, particularly for low frequency and low 

amplitude displacement, with frequency less than 0.5 Hz, and 

amplitude less than 4 cm.  

Based on the controlled experiments of horizontal and 

vertical motion recorded by smartphones with capacity of 

GNSS L1/L5, E1/E5a, dual frequency it is observed that it can 

detect the dynamic oscillation pattern in all cases. The 

dominant oscillation frequency was accurately detected in all 

cases meeting the same accuracy as that of geodetic GNSS data. 

Regarding the estimation of the oscillation amplitude, it is 

proved to be more noisy than the geodetic GNSS data, at is 

expected due to the susceptible to multipath effect of the 

linearly polarized GNSS antenna of the smartphones. The RMS 

error of estimating the oscillation amplitude ranges between 2 

and 5 mm in most cases while the respective one for GNSS 

geodetic data was not more than 2 mm. More specifically, for 

oscillation amplitude less than 10mm, the estimation of the 

oscillation amplitude is more noisy, due to the relative high 

noise level of smartphone GNSS data, but for the estimation of 

the frequency it is proved very accurate. For oscillation 

amplitude larger than 10mm, the results of the GNSS 

smartphone data seemed to be more promising.   

However, due to 1 Hz sampling rate from the mobile phone, 

the oscillation above 0.5 Hz could not be detected due to 

aliasing. Therefore, in the future research, we aim to investigate 

the sensor fusion between high frequency accelerometer 

measurement and GNSS measurement for detection of higher 

frequency displacement, which will allow further application 

of GNSS smartphone data in structural health monitoring (Xue 

et al., 2024). 
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ABSTRACT: In this study, some progresses on the identification of structural dynamic loads are reported. First, a series of 

improved Kalman filter with unknown inputs developed by the authors for the identification of joint structural dynamic systems 

and dynamic loads are briefly reviewed. Then, some identification of structural dynamic loads using the physical guided deep 

learning paradigm are presented, including the identification of multi  dynamic  load  positions  and  time  histories  using  physics  

informed  and enhanced  Generative  adversarial  neural  network  (GAN)  and  Convolutional  Long Short-Term Memory 

(ConvLSTM), respectively, the identification of full-field wind loads on buildings using physical informed recursive convolutional 

neural network (CNN), and the identification of stochastic fluctuating wind power spectrum on high- rise buildings using physical 

guided CNN with partial structural responses. The load type of the network during testing can be different from that during 

training. Through numerical simulation, it is proved that the proposed methods can learn the nonlinear mapping relationship 

between the structural responses and the external dynamic loads, and can reconstruct the load time histories well. The proposed 

methods are verified by numerical simulation and the results show that the deep learning methods can identify the unknown multi 

dynamic load positions and time histories, full-field wind loads on buildings and the stochastic fluctuating wind power spectrum 

on high-rise buildings. 

KEY WORDS: Identification of structural dynamic loads; Physics informed deep learning; Physical methods. 

1 INTRODUCTION 

Identification of structural dynamic load  is one of the core 

issues in the fields of structural health monitoring, vibration 

control and safety assessment. Its goal is to infer the dynamic 

loads acting on the structure (such as vehicle loads, wind loads, 

earthquake loads, etc.) from the response signals of the 

structure (such as displacement, acceleration, strain, etc.). With 

the development of technology, the methods in this field have 

gradually evolved from traditional methods that rely on 

physical models to data-driven deep learning methods.In this 

study, some progresses on the identification of structural 

dynamic loads are reported. 

2 STRUCTURAL DYNAMIC LOAD 

IDENTIFICATION—PHYSICAL METHODS 

 Kalman filter with unknown input (KF-UI) 

The Kalman Filter (KF) [1] is a recursive estimation method 

for structural states based on partial observations. As long as 

the estimated value of the state at the previous moment and the 

observation value of the current state are known, the optimal 

estimation value of the current state can be calculated. It is 

suitable for real-time online estimation of structural states and 

can consider the uncertainty of the model and the influence of 

observation noise. Therefore, it is widely used. However, when 

applying KF, the external inputs information of the structure 

needs to be known. In fact, the input information is often 

difficult to be fully observed. To overcome the limitations of 

the traditional KF, we proposed Kalman filter with unknown 

input (KF-UI) [2]. 

 

State  equation 

1k+ k k k k k= + +X X fA G w                        (1) 

Observation equation 

k k k k k k= + +y C X H f v                        (2) 

1) Time update for estimated states from k△t  to  (k+1)△t :  

1
ˆˆ

k+ /k k k/k k k/k= +x A x G f                          (3) 

 The smallest variance estimator of state vector at (k+1)△t :  
*

1 1 1 1 1 1
ˆ

k+ /k+ k+ k+ /k k+ k+= +x K x K y                (4) 

1 1 1 1 1 1 1 1
ˆ*

k+ k+ /k k+ k+ k+ k+ k+ k+= - ( + )K x x K C x H f       (5) 

2) The final update equation of  the smallest variance 

estimator of  state vector at (k+1)△t :  

1/ 1 1/ 1 1 1 1/ 1 1
ˆˆ ( - - )k k k k k k k k k k k+ + + + + + + + += +x x K y C x H f    (6) 

The final update equation of error covariance matrix of the 

estimated state vector:  

 
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3) The final update equation of unknown input at (k+1)△t: 
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To minimize the value of    1/ 1

x

k+ +kP           : 

1/ 1 1/ 1 1/ 1

x x xT

k k k k k k+ + + + + +=P ε ε                       (9) 

1 1/ 1 1 1 1/ 1( )x T x T

k k k k k k k k k+ + + + + + += +K P C R C P C          (10) 

        Data fusion is applied to prevent the drifts in the 

identification caused by low-frequency noise. 

1 1 1 1 1( , )u

k+ k+ k+ k+ k+=  +y h Z f f v           (11) 

 Numerical simulation 

Numerical simulation of the identification of unknown 

excitations for trusses verified the effectiveness of the method. 
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Figure 1. Truss structure 

 

 

Figure 2. Identification results of unknown forces 

2.3 A series of methods for Klaman Filter with Unknown 

Inputs 

A series of methods for Klaman Filter with Unknown Inputs 

have been proposed by authors. 

1) (Extended) Kalman filter under unknown input (KF-

UI；EKF-UI)  

2) Kalman filter/Extended Kalman filter under unknown 

input without direct feedback (KF-UI-WDF; EKF-UI-

WDF） 

3) Unscented Kalman filter under unknown input(UKF-UI) 

4) Unscented Kalman filter under unknown input (UKF-UI-

WDF） 

5) Particle filter under unknown input (PF-UI） 

6) Unscented Kalman particle filter under unknown input 

(UKPF-UI） 

 

3 STRUCTURAL DYNAMIC LOAD 

IDENTIFICATION—DEEP LEARNING METHODS 

The data-driven method for dynamic load identification, which 

does not require a structural model, is more in line with the 

needs of actual engineering. Data-driven deep learning 

methods can establish functional mapping between network 

inputs (structural responses) and outputs (structural dynamic 

loads). Machine learning approaches with clear physical 

interpretability often demonstrate enhanced performance. 

 Physics-Guided Deep Learning for Multi Dynamic 

Load Identification 

Existing methods require identical load distributions during 

training and testing, resulting in poor network generalizability 

and restricted applicability. 

When a single load acts at j, the response at the structural 

measurement point i: 

( ) ( ) ( )
t

j j

i i j
o

z t h t f dt = −                    (12) 

j j

i i j=z H f                             (13) 

Multiple loads fn(n=1,2,…,nf) acts on the structure, where nf is 

the number of loads. The formula for the response of the i-th 

measurement point can be expressed as: 

1

fn j

i i jj=
=z H f                           (14) 

To solve the problem of identifying dynamic loads, it is 

necessary to find the inverse matrix of H. Since positive 

definite conditions need to be satisfied, it is essential to ensure 

that the observed number is greater than the number of 

unknown forces. 

                           

Numerical simulation of the identification of unknown 

excitations for outward-extending beams verified the 

effectiveness of the method. 

 

 

                     

                      

Figure 3.Identification results of unknown forces 

3.2 Physics Guided Deep Learning for Wind Load 

Identification of Tall Buildings 

It is more challenging to identify wind loads, because Wind 

load is a type of complex distributed dynamic load. Currently, 

methods for identifying wind loads mainly rely on theoretical 

inverse identification [3-4]. In this paper, a scheme for 

identifying full-field wind loads using a recursive 

convolutional neural network (CNN) inspired by physical 

mechanisms is proposed.  

The wind load is discretized and sampled spatially. Based on 

spatial correlation to represent the wind profile. If the floor 

height is 3 meters. The correlation between the adjacent two 

floors is 0.954 and that between the three floors is 0.911.  It can 

be assumed that the adjacent two floors are completely 

correlated. Therefore, spatial correlation can reduce the number 

of independent loads. The recursive form of the network, as 

well as the inspiration for its inputs and outputs, is inspired by 

the spatial correlation and the mapping relationship between 

wind loads and structural responses. 

In this study, a 306-meter-high Australian office building is 

utilized, which is the 76-story Benchmark building established 

by IASC-ASCE [5]. In this case, the network is tested using 
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structural responses generated by the stationary Davenport 

spectrum, Harris spectrum and Kaimal spectrum. 

To verify the accuracy of spatial identification results, wind 

load profiles at four time moments are shown in Figure 4. The 

time histories of wind loads at three heights are presented in 

Figure 5. The self-power spectrum of the wind load at the 60th 

floor and the cross-power spectrum between the 60th and 62nd 

floors are shown in Figure 6. The identification results of the 

power spectrum align well with the true values. 

 

Figure 4. Identification of wind loads profiles (Davenport 

spectrum) 

     

Figure 5. Identification of wind loading time histories 

(Davenport spectrum) 

 

(a) PSD   

 

    (b) CPSD 

Figure 6. Identification of the PSD and CPSD (Davenport 

spectrum) 

4 CONCLUSIONS 

 In this study, some progresses on the identification of 

structural dynamic loads are reported. To overcome the 

limitations of the traditional KF, A series of methods for 

Klaman Filter with Unknown Inputs have been proposed by 

authors. The physical method is applicable to problems with 

clear models and simple scenarios. The deep learning method, 

on the other hand, breaks through the bottleneck of model 

dependence and is more suitable for complex scenarios in 

actual engineering. Machine learning approaches with clear 

physical interpretability often demonstrate enhanced 

performance. Physics-Guided deep learning for multi dynamic 

Load identification and for wind load identification of tall 

buildings are proposed respectively.  

In the future, the integrated method of "physical model + data-

driven" will become the mainstream. It will not only leverage 

the explanatory power of physical theories but also utilize the 

strong fitting ability of deep learning, promoting the 

development of dynamic load identification towards greater 

accuracy, robustness, and universality. 
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EXTENDED ABSTRACT 

KEY WORDS: BWIM, Weight in motion, SHM, structural health monitoring 

 

1 INTRODUCTION 

This work presents some results obtained using bridge strain 

data relevant to the Society of Civil Structural Health 

Monitoring (SCSHM) bridge benchmark [1]. Data has been 

processed to obtain information on both bridge behavior and on 

the features of vehicles passing through the bridge. Namely, the 

processing of data from sensors located at different sections of 

the bridge enables to retrieve information relevant to a) the 

dynamic and static bridge characteristics and b) to the passing 

vehicle characteristics such as speed, weight, length and 

number of axles (see Figure 1). Furthermore, in this work it is 

shown how data fusion techniques permit to improve the 

quality of the estimation of relevant information extracted from 

multiple sensors, for both Bridge Weight-in-motion (BWIM) 

and structural monitoring in the SCSHM bridge benchmark. 

2 METHODOLOGY 

The proposed methodology, tested on the SCSHM benchmark, 

allows to extract data from multiple strain sensors positioned at 

different locations of the bridge. The use of multiple strain 

sensors enables the detection of time-related features, such as 

the velocity of the vehicle. Furthermore, each sensor enables 

the retrieval of diverse information. For instance, sensors closer 

to the road surface are more suitable for capturing the local 

response to the passage of single axles, while sensors located 

on the beams capture the global bridge response in terms of 

deflection. If the bridge has several lanes, sensors located under 

each lane will be more sensitive to vehicles passing over that 

specific lane.  

Each step of the methodology is here described. Concerning 

the bridge – related data, it is possible to use all the sensors to 

extract parameters that describe the dynamic behavior of the 

bridge, for example frequencies and modal shapes. This can be 

done either by processing the response of the during the 

passage of a vehicle, (for instance by taking an interval of 10 

seconds centered on the strain peak during the transit), or by 

processing a longer signal obtained concatenating all the 

responses measured by the same sensor at a given location.  

Vehicle-related information is also extracted from strain 

measurements. Vehicle velocity and direction are identified 

based on the time lag between the peak strains at two bridge 

cross sections. The gross vehicle weight is estimated using the 

area method, as presented in [2]. The length of each vehicle is 

calculated by dividing its speed by the duration of the strain 

history recorded at midspan. Since this strain history represents 

the measured influence line for strain at midspan in the time 

domain, it remains non-zero for a period longer than the actual 

time the vehicle spends crossing the midspan. To account for 

this discrepancy a calibrated fictitious length is subtracted from 

the initially estimated length.

 

Figure 1. Flowchart of the proposed methodology. 
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The number of axles is calculated by counting the number of 

peaks in the strain histories for sensors close to the road surface, 

where each peak corresponds to consecutive axles (e.g. when  

two axles or three axles are very close to each other, as in the 

case of a semitrailer, only one peak is counted). 

 Finally, the joint analysis of data recorded by several sensors 

can provide enhanced information about the bridge condition 

and performance. For instance, the comparison of vehicle 

weight and number of axles may be useful for identifying 

overloaded vehicles. Furthermore, it is of interest to combine 

vehicle-related with bridge related data, for instance to 

investigate the dynamic response of the bridge in relation to 

different vehicle typologies and speed.  

3 APPLICATION ON THE SCSHM BENCHMARK  

The proposed methodology is applied to the study of the 

SCSHM bridge benchmark [1]. The investigated structure is a 

simply supported span, with a length of 22.71 m, carrying two 

lanes. The span is instrumented with 32 electric resistive strain 

gages to monitor strains and six thermocouples to monitor 

air/structure temperature under the deck. Strain gages are 

placed at several cross-sections (end of spans, midspan and ¾ 

of the span) and at different locations within each section. The 

dataset contains data recorded during passages of more than 

3000 vehicles, namely strains time histories from the 32 

sensors, environmental temperature, and photos of the vehicles. 

The following results emerge from the analysis of data. 

• The dynamic response is affected by the type and 

speed of the transiting vehicle and by temperature. 

The correlation between temperature and natural 

frequencies is shown in Figure 2 where results 

obtained from data relevant to the passage of more 

than 3000 vehicles are reported. Results highlight that 

an increase in temperature leads to a decrease in 

frequency. The decrease is more relevant where 

temperatures are below 0°C, due to the stiffening 

effect of ice, consistently with findings from other 

case studies [3].  

 
Figure 2. Scatter plot Temperature-Frequency for single 

vehicles passing through the bridge.  

 

• The traffic composition in the two directions can be 

retrieved from the analysis of the velocity, direction 

and weight of each vehicle. Results suggest that the 

number of vehicles crossing the bridge in one 

direction is almost twice the number in the opposite 

direction. Furthermore, the weight distribution is 

slightly different in the two directions. 

• From the combined analysis of vehicle weights and 

the estimated number of axles (see Figure 3), it is 

possible to infer if the vehicle is loaded or not. The 

estimate might be improved by detecting each single 

axle instead of groups of axles. 

• The integration of vehicle-related data into bridge-

related data will contribute to improving the quality of 

the information. For instance, the vehicle weight can 

be better estimated by accounting for bridge stiffness 

correction due to environmental temperature than can 

be appraised from the relationship between 

frequencies and temperature. 

 

Figure 3. Scatter plot comparing vehicle length, vehicle 

weight and number of axles. 
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ABSTRACT: The estimation of vehicle speed is a critical first step in deriving vehicle weight from bridge responses. Various 

strategies have been developed to extract the speed of passing vehicles, primarily relying on sensors that capture signals with 

features related to the vehicle's axles. These signals are processed through diverse methods; however, existing strategies often fail 

to perform optimally across different structural configurations. To address these challenges, the convoluted reciprocity (CR) 

relationship was recently proposed, which was verified numerically and validated experimentally in a laboratory setting. In this 

document, the novel speed estimation strategy based on CR is applied to an operational bridge using signals from the SCSHM 

benchmark. The results confirm that CR provides a robust speed estimation method for cases when the signals lack individual 

axle features. 

KEY WORDS: Speed; Vehicle; Bridge Monitoring; Convoluted Reciprocity; SCSHM. 

1 INTRODUCTION 

Instrumented bridges can be utilised for weighing vehicles as 

they pass over them, enabling the estimation of Gross Vehicle 

Weight (GVW) based on the integral of the recorded signal [1]. 

When integrated into Bridge Weigh-in-Motion (BWIM) 

systems, such instrumentation allows for the identification of 

individual axle loads and axle spacing. This technology has 

gained significant attention in recent years ([2], [3], [4], [5]) 

due to the valuable site-specific traffic data it provides, as well 

as its potential applications in structural health monitoring [6]. 

A crucial first step in any weighing solution based on bridge 

responses is determining the speed of the passing vehicle. This 

requires signals that provide reliable speed estimation. 

Standard approaches include FAD (Free of Axle Detectors) and 

NOR (Nothing on the Road) methods, which utilise specific 

signal features to estimate vehicle speed, axle count, and axle 

spacing [4]. Additionally, alternative methods have 

successfully employed acoustic signals generated by tyres 

passing over bridge expansion joints to determine vehicle 

speeds [7]. 

A recent study by the author [8] investigated various speed 

estimation strategies using strain sensors, demonstrating that 

existing methods perform well in most practical scenarios. 

However, a consistent theoretical framework for speed 

estimation was lacking. The standard approach relies on the 

cross-correlation of signals at different bridge locations, which 

is effective when distinct axle signatures are present but fails in 

certain cases, particularly for simply supported bridges. To 

address this limitation, [8] introduced the Convoluted 

Reciprocity (CR) relationship, developing a novel speed 

estimation method. This approach does not require signals to 

exhibit distinct axle features, making it more widely applicable. 

The Convoluted Reciprocity framework was theoretically 

derived, numerically verified, and experimentally validated in 

[8]. 

This document aims to present the limitations of the 

correlation-based method for speed estimation and to illustrate 

the effectiveness of the novel Convoluted Reciprocity (CR) 

approach. First, the shortcomings of the correlation method are 

visually demonstrated. Then, the CR concept is introduced and 

verified through numerical examples. Finally, the method is 

validated using real bridge measurements from the publicly 

available SCSHM dataset [9]. 

2 THE PROBLEM WITH CORRELATION 

Arguably, the most common strategy for estimating the speed 

of a passing vehicle using bridge responses is based on 

correlating signals recorded at two separate locations along the 

bridge. The key idea is to determine the time lag that maximises 

the correlation between the signals, which indicates the time 

taken by the vehicle to travel between the sensor locations. 

Given the known sensor distance, the vehicle speed can then be 

directly estimated. This method assumes that the signals are 

shifted versions of each other and has been successfully applied 

in many cases. However, its effectiveness relies on the presence 

of distinct peaks corresponding to individual axles in the 

signals, which is not always guaranteed. 

To illustrate this, synthetic bridge responses are used from a 

numerical simulation of a two-axle vehicle traversing a bridge, 

modelled using the open-source VBI-2D tool [10]. The 

vehicle's axles have equal weights and are spaced 5 m apart. 

The bridge has a span of 20 m, with strain measured at sensors 

located at ¼ and ¾ of the span, denoted as S25 and S75, 

respectively. The vehicle travels at a constant speed of 20 m/s 

(72 km/h). For verifying purposes, only the quasi-static 

response is simulated, excluding dynamic effects and noise. 

For a bridge with fixed-fixed boundary conditions, the 

resulting signals are shown in Figure 1(a). The peaks 

corresponding to each axle are clearly distinguishable. 

Although the signals are not perfect shifted versions of each 

other, the correlation method performs accurately. By 

Vehicle speed estimation using convoluted reciprocity for bridge structural 

monitoring 
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computing the correlation and identifying the time lag that 

maximises it, the exact travel time between sensor locations is 

obtained, as illustrated in Figure 1(b). Consequently, the 

estimated speed in this case is precise. 

 

(a) 

 
(b) 

 

Figure 1. (a) Simulated fixed-fixed beam responses due to a 2-

axle vehicle; (b) Cross-correlation of signals. Vertical lines 

indicate the time lag giving maximum correlation and the one 

that should have been obtained for correct speed estimation. 

In contrast, for a simply supported bridge, the responses do 

not exhibit distinct peaks, leading to poor speed estimates using 

the correlation method. Figure 2(a) presents the simulated 

bridge responses for the same vehicle and bridge configuration 

but with simply supported boundary conditions. Applying the 

correlation method in this case (Figure 2(b)) results in a 

significantly inaccurate speed estimate. Specifically, the 

estimated speed is 47.62 m/s, corresponding to a 138% error. 

Therefore, the correlation method is poorly suited for simply 

supported bridges due to the absence of distinct axle features. 

However, even in cases where clear axle features are present, 

such as fixed-fixed bridges, the method does not always 

guarantee perfect results. The speed estimation based on 

maximum correlation may still be imprecise, depending on the 

vehicle configuration and span length. This limitation is not 

new, and various correction strategies exist, but they are either 

specific to certain vehicle types or rely on signal processing 

techniques. A more detailed analysis can be found in [8]. 

Nevertheless, until now, no theoretically sound alternative had 

been established. This gap is addressed by the speed estimation 

method based on Convoluted Reciprocity. 

(a) 

 
(b) 

 
Figure 2. (a) Simulated simply supported beam responses due 

to a 2-axle vehicle; (b) Cross-correlation of signals. Vertical 

lines indicate the time lag giving maximum correlation and the 

one that should have been obtained for correct speed 

estimation. 

3 CONVOLUTED RECIPROCITY 

This section introduces the concept of Convoluted Reciprocity 

and its application to speed estimation, originally presented in 

[8]. Here, a step-by-step example is provided to further explain 

and verify the method. The verification is performed using 

VBI-2D [10] under ideal conditions, considering perfect quasi-

static signals without noise or dynamic disturbances. The 

analysis follows the same case as presented in Section 2, 

ensuring direct comparison with the correlation-based 

approach. 

In [8], it was shown that a relationship exists between bridge 

responses at two different locations (A and B) for two different 

vehicle passages, say Vehicle 1 (V1) and Vehicle 2 (V2). This 

relationship is expressed in Eq. (1). 

 𝑆𝐴,𝑉1(𝑡) × 𝑆𝐵,𝑉2(𝑡) = 𝑆𝐵,𝑉1(𝑡) × 𝑆𝐴,𝑉2(𝑡) (1) 

where 𝑆𝑖,𝑗 represents the measured load effect at location i 

due to the passage of vehicle j, and × denotes the convolution 

operation. This relationship follows from the fact that any 

bridge response to a passing vehicle can be expressed as the 

convolution of the vehicle's forcing function with the 

corresponding influence line. By taking advantage of the 

commutative property of convolution, the expression is derived 

(see [8] for a detailed derivation). This result establishes a 

reciprocal relationship between signals recorded at different 

sensor locations and vehicle passages when convolved 

together, leading to the adopted term Convoluted Reciprocity 

(CR). The expression can be further simplified to: 

 𝐶𝑅𝐴𝐵(𝑡) = 𝐶𝑅𝐵𝐴(𝑡) (2) 

This relationship is rather powerful, as it connects any two 

load effects for any two vehicle passages. It holds under the 
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standard assumption that vehicles travel at a constant speed. 

Using this relationship, the speed of an unknown vehicle 

passage can be estimated if the response of a reference event is 

known. In practice, signals from a vehicle event with a known 

speed are stored as a reference, enabling the speed estimation 

of subsequent vehicle passages. 

For example, Figure 3 presents the signals for a five-axle 

truck with axle spacing and load distribution as specified in 

[11], representing a typical European configuration for a fully 

loaded articulated five-axle truck. Since the vehicle speed is 

known for this reference event, the signals can be transformed 

into the spatial domain. This event serves as a calibration or 

reference event, providing a basis for speed estimation of other 

vehicle passages. 

 

 

Figure 3. Simulated simply supported beam response due to a 

5-axle truck. 

Applying the Convoluted Reciprocity (CR) relationship in 

the time domain, we estimate the speed of the unknown vehicle 

by iteratively testing different speed guesses and evaluating the 

CR relationship. For each guessed speed, the signals from 

Figure 3 are transformed accordingly into the time domain. By 

applying the relationship in Eq. (2), together with the signals in 

Figure 2(a), results are obtained for each speed guess. Figure 4 

presents the left-hand side and right-hand side of Eq. (2) for 

different guessed speeds. The speed estimate that results in a 

match between both curves corresponds to the actual speed of 

the unknown vehicle event. 

To systematically quantify the differences between both 

sides of Eq. (2), we evaluate the norm of their difference (see 

Eq. (3)). The study in [8] explored various norm choices and 

suggested that the 1-norm could be a suitable option. However, 

other p-norms may also yield good results. The best speed 

estimate can be determined by finding the speed that minimises 

the norm of the difference. 

 ‖𝐶𝑅𝐴𝐵 − 𝐶𝑅𝐵𝐴‖ = 0 (3) 

Figure 5 presents the norm of the difference between both 

sides of Eq. (2) for a range of guessed speeds. The minimum of 

this norm corresponds to the speed that best matches the actual 

speed of the unknown vehicle event. This example was 

conducted using ideal quasi-static responses, free from noise 

and disturbances. As a result, the speed estimation is exact, 

confirming the validity of the methodology. However, when 

applying this approach to real signals affected by noise and 

disturbances, the accuracy of the estimated speed may be 

impacted. 

 

(a) 

 
(b) 

 
(c) 

 

Figure 4. Detail of the CR for various speed guesses: (a) 10 

m/s; (b) 20 m/s; (c) 30 m/s. 

 

 

Figure 5. Norm values for a range of speed guesses. 

4 VALIDATION USING SCSHM 

The CR method for speed estimation was verified in the 

previous section using ideal quasi-static bridge responses. This 

section focuses on validating the method under realistic 

conditions by applying it to data from a real bridge, where 

signals include noise and dynamic effects. The CR approach is 

tested using bridge responses from the SCSHM dataset [9], 

specifically for cases where the signals do not exhibit clear axle 

features. 
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 The SCSHM dataset 

The dataset introduced in [9] corresponds to a nine-span bridge 

with a total length of 291 m, located in Manitoba, Canada. The 

bridge carries two lanes of traffic, one in each direction, and its 

superstructure consists of four lines of I-girders supporting a 

reinforced concrete (RC) deck. Of particular interest is Span 2, 

a simply supported span of 22.71 m, which is instrumented 

with strain gauges and thermocouples at various locations. The 

signals are sampled at 200 Hz, and only events exceeding a 

predefined strain threshold are recorded. 

For this study, key sensors are those located at the ends of the 

span (Sections AA and EE), where strain gauges attached to the 

deck capture signals with clear individual axle features. These 

signals were used in [9] to accurately estimate vehicle speeds, 

and these estimates will be taken as the reference speeds in this 

work. Additionally, two other instrumented sections, FF (at 

approximately ¼ span) and BB (at approximately ½ span), 

contain multiple strain gauges on each girder. Here, only the 

strain measured at the soffit will be considered. The dataset 

includes both strain measurements and vehicle photographs 

from several monitoring campaigns, totalling over 3,000 heavy 

vehicle crossing events. For further details on the 

instrumentation setup, refer to [9]. 

 Example for one event 

As an example, this section estimates the speed of a vehicle 

passage using the signals from a reference event with a known 

speed. Specifically, the analysis focuses on vehicles travelling 

in the westbound lane, where strain gauges located on girder 

G2 are considered (channel 10 in section FF and channel 22 in 

section BB). The reference event corresponds to file 04/E00003 

(event 3 in folder 04), with a recorded speed of 17.2 m/s 

(61.92 km/h) and a GVW of 433.3 kN. The signals used for the 

CR-based speed estimation are shown in Figure 6. For speed 

estimation, these signals are first transformed into the spatial 

domain using the known speed of the reference vehicle. 

 

 

Figure 6. Signals of reference event (04/E00003). 

The goal is to estimate the speed of an event with an unknown 

speed using the CR method. The event under analysis is 

05/E00001, corresponding to a truck with a GVW of 319.9 kN. 

The signals for this event are shown in Figure 7. The dataset 

provides a recorded speed of 14.5 m/s (52.2 km/h), which will 

be used as the reference value for validation. 

 

Figure 7. Signals of event to determine its speed (05/E00001). 

Using the CR relationship, the estimated speed must satisfy 

Eq. (2). To apply this method, the speed of the reference 

vehicle is assumed, and the signal is transformed back into the 

time domain by assuming a different speed. As an example, this 

calculation is repeated for three different assumed speeds, and 

the results are plotted in Figure 8. 

 

(a) 

 
(b) 

 
(c) 

 

Figure 8. Detail of the CR for various speed guesses: (a) 40 

km/h; (b) 50 km/h; (c) 60 km/h. 

This process can be repeated for many more guesses. To 

evaluate the similarity between both CRs, the norm of the 

difference between both could be used. For this study, we 

adopted the 1-norm. Only a few guesses are shown below in 
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Figure 9 for visualization purposes. More guesses can be easily 

computed to refine the final speed estimation. The speed that 

gives the minimum norm is considered as the estimated speed 

of the event. Increasing the number of guesses, one obtains an 

estimated speed of 14.44 m/s (51.98 km/h), which for this case 

is almost a perfect match (-0.38% error). 

 

 

Figure 9. Norm values for a range of speed guesses. 

 Database analysis 

This section applies the CR method to estimate the speed of all 

the valid events available in folder 05 in the database. Note that 

only events with a single vehicle are considered. Also, events 

with missing pictures are removed. Therefore, a total of 2149 

events are analysed below. 

To apply the CR method to a real bridge, we need to use a 

reference event for each lane. Speed estimation for each lane is 

done separately. The bridge response is different for each lane, 

so we need to define one reference event for each lane. When 

processing, we can identify which lane the vehicle is traveling 

on simply from the maximum response values across different 

girders. Once this is detected, the CR method is applied for the 

corresponding reference vehicle. 

Figure 10(a) shows all the speed estimation errors in terms of 

difference to those provided by the database. The same results 

can be visualized in a histogram in Figure 10(b). Overall, one 

can see that most of the speed estimates fall within the 5% band, 

which is reasonable for the goal of estimating the GVW of 

passing vehicles. However, there are some instances where 

much higher errors are observed. 

The results below show that the histogram is not centred 

around zero value, indicating an underlying bias related to the 

selected reference vehicles. In this calculation, the reference 

events correspond to normal events traversing at normal 

operational speeds. In practice, it should be possible to calibrate 

the calculation by obtaining signals from a reference event with 

very slow speeds, one for each lane. We can make the reference 

vehicle passages occur at slow speeds, making these events 

almost perfectly quasi-static. The unknown events will have 

dynamics, introducing some error, which is the dispersion 

observed in the results. Furthermore, the separation between 

section FF and BB is rather small; results would improve with 

sensors placed further apart. 

 

(a) 

 
(b) 

 

Figure 10. Single vehicle events speed estimation. (a) 

Estimation errors for each event; (b) Histogram of estimation 

errors. 

Not shown here, but the possibility of improving the 

performance by signal processing the results was explored. 

Low-pass filtering and moving average filtering were explored 

to try to reduce the contributions of bridge dynamics and noise. 

However, the CR method seems to be rather robust, with only 

marginal reductions in errors observed. On one hand, this 

shows that the idea is robust and can be applied directly to 

unprocessed signals. On the other hand, this indicates that there 

is no easy way of improving the performance of the method 

simply by pre-processing the signals. 

5 CONCLUSION 

In general, when the goal is to estimate the speed of passing 

vehicles, signals with individual axle features should be used. 

In those cases, the standard correlation method provides 

satisfactory results. Nonetheless, this method is not 

theoretically sound nor valid for all bridge configurations. 

This document has presented a methodology to estimate the 

speed of passing vehicles supported by the convoluted 

reciprocity relationship. First, an ideal numerical example is 

used to verify the concept. Then, the method is applied to the 

measured single vehicle events available in the SCSHM 

dataset. The reported speed estimation errors show some 

scatter, but most of them are within a 5% error band. 

The methodology presented here enables the speed 

estimation for a wider range of possibilities. It is not strictly 
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necessary to have signals with clear individual axle features. 

Therefore, the methodology can use sensors that capture the 

global behaviour of the bridge. This opens the possibility of 

having vehicle weighting capabilities on existing monitoring 

systems, with other load effects, or installing them on bridges 

that do not have local responses that would show individual 

axle features. Sometimes bridges do not have locations with 

responses that have clear individual axle features, or the bridge 

has an existing installation with the original intention of SHM 

and no sensors with axle features. CR opens the possibility of 

estimating the speed also in those cases. 
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EXTENDED ABSTRACT 

ABSTRACT: This study presents a physics-informed surrogate modeling approach for the SCSHM Benchmark bridge using a 

dual-path LSTM Autoencoder architecture. By combining synthetic data from a finite element model and real strain measurements, 

the model effectively reconstructs structural responses under moving truck loads. Results show good agreement between predicted 

and measured strains. Limitations such as the absence of vehicle–structure interaction effects are discussed, with directions for 

future improvements. 

KEY WORDS: Surrogate modeling, LSTM, SCSHM benchmark, structural health monitoring. 

 

1 INTRODUCTION 

This study presents preliminary results obtained using bridge 

strain data measured on the Society of Civil Structural Health 

Monitoring (SCSHM) bridge benchmark [1]. The benchmark 

dataset contains strain measurements and photos collected over 

nine months by strain gauges and a fixed camera during 

passages of heavy vehicles. A Finite Element (FE) model of the 

Benchmark is also made available together with the dataset. In 

this study, the FE model and the data have been utilized to build 

a surrogate model of the Benchmark structure. 

Traditionally, FE models and detailed simulations have been 

employed to estimate the structural response with high-fidelity 

structural properties. While these models are accurate, they are 

computationally expensive. To address this challenge, 

surrogate models have emerged as an efficient alternative to 

approximate the structural response. Surrogate models in 

structural engineering have gained attention in applications 

such as response estimation, probabilistic assessment, and 

damage detection. Among data-driven methods, neural 

networks have demonstrated strength in capturing nonlinear 

mappings as well as learning from the data. Deep learning 

models have successfully predicted the response of the bridges 

subjected to dynamic train loads, demonstrating the potential of 

these models in emulating complex structural behavior [2]. 

Compared to traditional simulations, these models provide 

rapid and scalable analysis, which is particularly crucial for 

operational digital twins or near-real-time decision-making 

support systems.  

In this context, Long Short-Term Memory (LSTM) networks 

have been an especially powerful tool to learn from time series 

data, thanks to their capabilities to capture long-term temporal 

dependencies in sequential data. LSTMs have been shown to 

work well in response prediction for bridge [3]. In addition to 

the capability to capture the long-term dependencies, LSTM 

Auto-Encoders (AE) learn an efficient representation of the 

input space by compressing and reconstructing data, enabling 

simultaneous learning and data compression. These fusion 

LSTM-AE models are ideal for surrogate modeling of bridge 

behavior under vehicle loading.  

In this study, two parallel LSTM-AE architectures are 

combined and trained through strain simulated by the FE model 

and strain measured on the Benchmark. The architecture is 

conditioned using specific physical conditions such as gross 

weight and velocity of the vehicles.  

2 METHODOLOGY 

The proposed methodology integrates physics-based finite 

element (FE) simulations with deep learning to accurately 

predict strain responses of a bridge under moving vehicle loads. 

A dual-path architecture is built, integrating two parallel 

LSTM-based Autoencoders (LSTM-AEs). The first is trained 

using strain responses obtained from a reduced-order FE 

model, and the second is trained on measured strain data. These 

parallel encoders are fused in a physics-informed manner to 

enable robust learning, even in the presence of sparse or noisy 

real-world measurements.  

The reduced-order FE model of the bridge is created using 

the modal decomposition of mass and stiffness matrices 

derived from a high-fidelity FE model. Reduced matrices are 

then used in a state-space formulation to simulate the bridge’s 

dynamic response under moving truck loads. The moving load 

is applied along the bridge using a defined vehicle path, 

velocity, and gross vehicle weight (GVW) estimated using the 

area method [4]. For unique combinations of GVW and 

velocity observed in the dataset, simulated time series are 

generated at specific sensor locations using the bending 

moment and structural geometry. These are then converted into 

macrostrain using the known strain gauge positions.  

The proposed architecture consists of several key 

components: two parallel encoders, latent representations, 

conditions, and a decoder, as indicated in Figure 1. The first 

Encoder encodes the simulated strain signals into a latent 

representation. These synthetic signals are generated offline for 

each GVW-velocity pair, corresponding to the conditions 

observed in the real measurement dataset. The second Encoder 

encodes the measured strain data into a latent representation. 

The parameters GVW and vehicle velocity are used as inputs 

to the FE model and are inherently included in the real bridge 

measurements, since each truck has its own physical properties. 

They are also used as condition vectors, as they are fed into the 

decoder architecture. Finally, the decoder reconstructs the 

strain measurements using the combined latent representations 

from both the Encoders and the Condition Vector. The model 

is trained end-to-end to minimize the reconstruction error 

between the predicted and the actual measured strain time 

series. 
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Figure 1. Flowchart of the proposed LSTM-AE architecture. 

3 IMPLEMENTATION ON THE SCSHM BENCHMARK  

The proposed methodology is implemented using strain data 

collected as part of the SCSHM bridge benchmark study [1]. 

The structure is a single-span, simply supported bridge with a 

length of 22.71 m, carrying two lanes. The selected bridge span 

is instrumented with 32 electric resistance strain gauges to 

monitor strains under the deck. Strain gages are placed at 

several cross-sections (end of spans, midspan, and ¾ of the 

span) and different locations within each section. The dataset 

includes measurements recorded during controlled load tests as 

well as under normal traffic conditions. For this study, 

operational truck data is utilized due to its high volume and 

variability, which are essential for effectively training a deep 

learning-based architecture. To build the surrogate model, the 

structural responses measured by strain gauges located at the 

midspan section are selected. These midspan measurements are 

representative of the critical section where bending moments 

are typically maximal, making them well-suited for surrogate 

modeling.  

Figure 2 and Figure 3 show the comparison between the 

predicted and measured strain time series at midspan gauges. 

They closely align both in shape and amplitude, showing that 

the model effectively learns the relationship between condition 

parameters and response evolution. Figure 2 illustrates the 

model’s performance on the training set while Figure 3 on the 

testing set. The comparison highlights the ability of the LSTM 

to generalize to unseen data in the test set, where it maintains 

consistent accuracy even on condition pairs not explicitly 

encountered during training.  

The proposed surrogate model integrating physics-informed 

simulations and measurement-based encoders via a dual LSTM 

Autoencoder architecture demonstrates good predictive 

performance in reconstructing bridge strain responses. Even 

though the model is trained using the full dual LSTM-AE 

architecture, only the trained latent representation and decoder, 

together with condition inputs, are used during prediction, 

providing a computationally efficient solution. Despite relying 

on a reduced portion of the architecture for prediction, which 

enhances computational efficiency, the model successfully 

captures the dynamic characteristics of the structural response 

across varying vehicle loading scenarios.  

However, it is worth noting that the current model does not 

account for the effect of the inertia of the moving vehicle, 

which may explain the absence of the fluctuations observed in 

the real measurement data. Neglecting this interaction can 

result in underestimation of transient strain fluctuations or 

increased scatter in the predicted responses. Therefore, this 

study should be considered as an initial attempt to build a 

surrogate model. The future work will focus on incorporating 

vehicle-bridge interaction into the simulation framework to 

enhance the fidelity. 

 
Figure 2. Strain prediction results for the training set.  

 

Figure 3. Strain prediction results for the validation set 
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ABSTRACT: Traffic induced vibration is a promising means of continuously monitoring structural behavior.  The benchmark 

data set measures strain at points that will be subject to traffic induced vibration. However, magnitude and frequency spectrum of 

the induced vibration from an individual vehicle depends on many factors including the vehicle speed and axle weight distribution. 

Therefore, to obtain a spectrum that is representative the average vehicle induced vibration the vibration from many vehicles must 

be examined. In this work several methods for the analysis of the strain versus time data to extract traffic induced vibrational 

spectrums will be compared. Also, the number of vehicles that need to be analyzed to extract a repeatable vibrational spectrum 

will be examined. Typically, ~40-50 vehicles are needed to obtain a repeatable vibrational spectrum suitable to extract frequency 

peaks. This approach is used on the benchmark data set and changes in the vibration frequencies due to temperature induced 

structural changes can easily be observed. The temperature induced structural changes might be the basis training and testing data 

sets that could be used to evaluate the effectiveness of some damage detection algorithms. 

KEY WORDS: SHMII-13; benchmark data, vibrational analysis,  training data

1 INTRODUCTION 

Structural vibrational analysis of bridges has been used for 

many purposes including structural assessment [1], damage 

detection [2], cable damping [2], damage detection in piers [3], 

girders [4], bearing restraint [5] and scour detection [6], [7], [8]. 

Vibrational analysis via moving test vehicles is also an exciting 

direction [9]. Vibrational analysis can be extracted from 

specialized instruments such as accelerometers and geophones, 

but can also be extracted from strain signals from strain gauges 

or strain sensors [10].  

 

Some type of force must be applied to the structure in order to 

detect vibration of the structure. The excitation can be broadly 

classified as intentional or unintentional excitation. Intentional 

excitation can be in the form of hammers, dropped load, 

unbalance rotating shaft or known test vehicles. Unintentional 

excitation can be due to wind, water, ice impact or traffic. One 

advantage of unintentional sources is that they can excite the 

structure more or less constantly and allow for the continuous 

monitoring of the bridge. In this context, continuous means a 

time scale on the order of a fraction of a day. We can use the 

data from the benchmark data set to explore the sue of traffic 

induced vibration to extract vibrational information.  

 

In this paper we examine the extraction of vibrational 

information from the benchmark data set.  We examine 

alternative methods for the extraction of vibrational 

information from the strain versus time data in the benchmark 

data set. We examine the number of truck passages that are 

required to obtain a usable estimate of the vibrational 

frequencies of this bridge span. Suggestions for future 

vibrational analysis of this data set will also be given. 

2 METHODS 

 Sampling strain versus time 

The data being used is the individual truck sampled strain 

versus time data from the benchmark data set [11]. This 

publication contains the details of where the sensors were 

located and how the signals were sampled [11]. Briefly, the 

instrumentation was originally aimed to estimate the GVW of 

vehicles, investigate the transverse loading and to investigate 

the composite action in the structure. The span has two lanes 

and is 22 m long with 4 steel girders. An image of a truck 

passing over the girder is shown in Fig. 1. 

 

 

Figure 1. Truck passing over the benchmark span. 

 

The instrumentation included 32 electric resistive strain gages 

to monitor strains and six thermocouples to monitor 

air/structure temperature under the deck. The bridge was 

instrumented at six cross-sections. 

Vibrational analysis of the benchmark data set  
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The cross-section used in this work is the one located at 

midspan and has electrical resistance strain gauges (ESGs) 

were installed on the web of each girder to measure 

longitudinal strains at the top and bottom flanges, and at mid-

height between the flanges. In this work only the strains near 

the bottom flange are used. 

The data acquisition (DAQ) system features continuous strain 

sampling at 200 Hz, image collection for large events, data 

processing, and data transmission to a server. The strain data 

were filtered using a 7-point moving average window to 

remove electrical noise above 60 Hz. 

The benchmark data set contains subsamples of the full data 

set. Each subsample was selected to contain the sampled strain 

versus time for a large truck. Each subsample contained 2000 

sample points or about 10 seconds of sampled data. The data 

was selected such that the peak strain for the passing vehicle 

was in the center of the subsampled data.  

An example of the sampled strain versus time is shown in 

Fig. 2A. In this plot the strains from each girder are offset by 

20 micros train per sensors so that the strain versus time 

behavior of each sensor can be easily observed. Before the 

passing of the vehicle there is no observable vibration. During 

and after the passage of the truck the vibration is clearly visible. 

After the truck leaves the span, during the period of free 

vibration without the weight of the truck, there are about 5 

cycles per second [12]. This can be observed in the top strain 

versus time curve starting at about 6 seconds. Between 6 and 7 

seconds there are about vibrational 5 cycles.  

 

 

Figure 1. (A) Strains versus time for each of the 4 girders. (B) 

Spectrum of the strain. There is a vibrational peak at ~5Hz.  

The strain versus time signals from the two outside girders 

were summed and then processed using an FFT from the 

Python numpy library. By using signals from the outside 

girders, vibration from trucks passing in both directions are 

captured. The outcome of the FFT analysis of Fig. 2A is shown 

in Fig. 2B. As expected, there is peak in the spectrum near 5 

Hz. However, there is also considerable noise in the spectrum 

and the estimate of the peak position would have significant 

uncertainty. We will examine using averages of many such 

spectrums to improve the estimates of the vibrational frequency 

peaks. To do this N spectrums are averaged using a simple 

linear average. Using these initial estimates, a better estimate 

of the peak frequency was obtained by using a parabolic fit 

using two points lower and two points higher and the initial 

estimate. The peak of the parabola was then used as a refined 

estimate of the peak frequency. This means of estimating the 

peak position is computationally simple and produces a better 

estimate of the peak [13]. 

3 RESULTS AND DISCUSSION 

There are several reasons why it may be necessary to use the 

average of vibrational spectrums from several trucks to obtain 

usable estimates of vibrational frequencies. When each truck 

passes it will preferentially induce vibration at certain 

frequencies. The frequencies that are preferentially excited will 

depend on factors like the velocity of the truck, the distance 

between axles, where the truck passes over the bridge and the 

vibrational properties of the truck. 

An example of the variation in excited vibration is shown in 

Fig. 3(A) and 3(B). The two examples are passing at similar 

velocities with similar maximum strains. Both are traveling in 

the same direction. However, the induced vibration is not 

similar. In Fig. 3(A) during free vibration portion after the 

vehicle has left the span the vibration is largest on the side 

opposite the side on which the truck passed, in girder G4. After 

leaving the span the vibration on the girder nearest where the 

truck passed (G1), is much smaller and not observable. In 

contrast to this the in Fig. 3(B) the after the truck has passed 

and the girder is in the free vibration portion of the vibration 

the magnitude of vibration is roughly about the same in G1 and 

G4.  

In Fig. 3(A) the vibration is torsional with one side moving 

and the other side nearly motionless. In Fig. 3(B) the vibration 

is more flexural with both sides moving up and down 

synchronously. The synchronous motion can be seen in Fig. 

3(B) at 7 seconds where the strains in all the girders are at a 

maximum. In this example, for two similar trucks the mode of 

vibration is very different. It should be mentioned that these 

two examples were found within the first few trucks in the data 

set and did not require any extensive searching. Therefore, in 

general the vibration from a single truck may not excite all the 

modes of interest.  

Using the benchmark data set, we can explore how many 

spectrums need to be considered by using stacked spectrum 

plots of the averaged spectrums. In these examples a simple 

linear average of spectrums is used. The numbers explored 

ranged from 40 to 200 spectrums. When less than 40 were used 

the number of misidentified vibrational peaks increased 

significantly. In Fig. 4(A) a stacked spectrum plot for an 

average of 200 spectrums is shown. In this plot each spectrum 
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is an average derived from 200 truck passages. Each peak is 

identified with a black plus sign. With 200 spectrums being 

averaged there are no misidentified peaks. For each spectrum 

there is a peak near 5 Hz and a second one from 10 to 12 Hz. 

The 10 to 12 Hz peak appears to be shifting from the averaged 

spectrum at the bottom to the averaged spectrum at the top. 

 

 

Figure 3. Strains versus time for the four girders. Fig. 3A is an 

example of asymmetric vibration. Fig. 3B is an example of 

symmetric vibration. 

 

Each truck in the data set has a unique number from 0 to ~ 3300. 

As the truck number increases so does the date on which the 

data was acquired. Truck 0 was taken during a mid-winter cold 

period. By the time truck 3300 was taken it was mid-summer. 

The spectrums are arranged sequentially in number and 

therefore time. The bottom spectrum was from a colder period 

and the top one from a warmer period. The shift in frequencies 

is attributed to temperature effects. Therefore, the results of the 

peak frequency estimates have been plotted versus temperature. 

In Fig. 4(B) 50 averages are used. The same two vibrational 

peaks are identified in most of the averaged spectrums. 

However, several misidentified peaks are also being identified 

due to the decreased signal to noise. Perhaps this could be 

improved with enhanced signal processing.  

These same plots are done as colorized waterfall plots in Fig. 

5 that help make the 10 to 12 Hz peak more easily observable. 

The change in the 10 to 12 Hz peak with the seasonal 

temperature changes is now clearly observable.  

 

 

 

Figure 4. Waterfall vibration spectrum plots for averages of 

200 trucks (A) and 50 trucks (B).  

The correlation with temperature can be plotted more directly 

as each spectrum has also has an associated temperature. If we 

plot the average temperature of each average spectrum against 

the identified vibrational frequency the correlation is easily 

identified. In Fig. 6 this has been done for averages of 40, 50 

and 200 averages. The peak frequencies are highly correlated 

with temperature. Although there may be other environmental 

effects coming into play over this season, temperature would 

appear to be the dominate influence. Principle component 

analysis could be used to quantify the effects of temperature 

versus the time of year. Also, as the number of averages drops 

below 40 the proportion of misidentified peaks increases 

rapidly.  

Using motion sensors mounted on test vehicles to extract 

structural vibrational properties as the vehicle passes over the 

structure is an interesting approach for monitoring fleets of 

bridges [9]. For this field to advance large data sets of simulated 

and field observations are needed. Simulated data sets have 

been created [14]. It might also be possible to create field 

observation from the benchmark data set. The strain is directly 

related to displacement and therefore acceleration can also be 

calculated. Comparing cold and warm weather results would be 

a good test of damage detection using vehicle derived 

responses. Another potentially useful case would be if one 

wanted to simulate the use of a sensor trailer to measure the free 

vibration [15].  
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Figure 5. Waterfall vibration spectrum plots for averages of 

200 trucks (A) and 50 trucks (B).  

Whether or not a damage detection algorithm can detect 

damage using actual field derived data is often an open 

question. Only rarely do owners allow full scale structures to 

be damaged so that actual field responses before and after 

damage can be obtained [3]. However, temperature changes 

often lead to significant structural changes due to effects such 

as due to bearing restraint [5]. A first step towards testing 

damage detection algorithms could be the detection of 

temperature induced structural changes. Due to the temperature 

change over the observation period in the benchmark data set 

there are also significant easily observable structural changes. 

Evidence for this is the frequency change seen in Fig. 6B, for 

example. In order, for the frequency to change there must be 

some significant structural change. The temperature induced 

structural changes can also be easily observed in the girder 

distribution factors. Therefore, the data set could be divided 

into “good” and “damaged” data sets using temperature as a 

means of sorting. Here the “damaged” set would not 

correspond to actual structural damage but would have 

significant structural differences from the “good” data set. For 

example, trucks 2300 to 3300 could be chosen as the “good” 

data set and used to train an algorithm. Trucks could then be 

chosen to test a detection method. Trucks with larger 

temperature differences compared to the “good” set would have 

larger structural differences.  This provides a means to 

quantitively test detection algorithms. One could argue that 

these only tests detection of a particular type of structural 

change. However, this change does include changes in girder 

distribution factors, which are one of the common reasons 

bridge load ratings are reduced [16].  

The benchmark data set also includes strains from multiple 

sections and it might also be possible to also extract vibrational 

mode shape information. 

 

 

Figure 6. Plots of frequency peaks for averages of 40 trucks 

(A), 50 trucks (B)and 200 trucks (C).  

4 CONCLUSIONS 

The sampled strain data from the benchmark data set can be 

used to extract vibrational frequency spectrums. The passages 

from several trucks need to be averaged to extract consistent 

vibrational peaks. Typically, 40 to 50 trucks are required. 

Temperature induced changes in the vibrational peaks can 

easily be observed. The temperature induced structural changes 

might be the basis training and testing data sets that could be 

used to evaluate the effectiveness of some damage detection 

algorithms. 
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ABSTRACT: In conventional structural design and analysis of space steel structures, joints are typically idealized as either 

perfectly hinged or fully rigid connections. However, actual joint behavior deviates significantly from these idealized assumptions, 

with joint stiffness exhibiting semi-rigid characteristics that critically affect global structural performance. This discrepancy 

between simplified joint models and real-world conditions leads to substantial errors in predicting structural stiffness through 

numerical simulations. This paper presents a novel methodology integrating structure health monitoring with refined finite element 

(FE) modeling to quantify the semi-rigid joints effect on global stiffness space steel structure. The joint stiffness parameters are 

inversely identified through stress and deformation monitoring data using Bayesian inference techniques; A multi-scale FE model 

incorporating semi-rigid joint behavior is developed through component-level validation; The stiffness evolution mechanism is 

rigorously validated against full-scale monitoring data from the Shenzhen Nanshan Science-Technology Innovation Center's space 

frame during its service period. Key findings demonstrate that joint flexibility reduces global stiffness by 18-22% compared to 

rigid-joint assumptions, with stiffness degradation rates showing strong correlation to stress redistribution patterns. The proposed 

joint-characterization framework provides a physics-based approach for tracking long-term stiffness evolution in space steel 

structures, offering significant improvements over conventional design methods in both accuracy and predictive capability. 

 

KEY WORDS: Semi-Rigid Joints, Space Steel Structure Stiffness, Structure Health Monitoring. 

1 INTRODUCTION 

Structural connection joints are the critical components of 

space steel structures, which are subject to complex forces and 

are sensitive to defects. The mechanical properties and stress of 

the joints not only affect the safety of the joint itself but also 

have an influence on the stress distribution and deformation of 

the overall structure. 

In China's "Code for Design of Steel Structures", it is stipulated 

that the truss and the space frame should be analyzed according 

to the hinge connection, while the single-layer space shell 

should be processed according to the rigid connection [[1]]. 

However, more and more engineering projects show that 

ideally hinged joints often have certain rigidity, while ideal 

rigid joints also have certain flexibility. The research work of 

Grogan [[2]] and Wheelar [[3]] show that neither completely 

rigid nor hinged joint exist in reality. The uncertainty of joint 

stiffness is mainly caused by the following factors. The 

structure discontinuity of the structure. The bolts are not 

tightened between the nodes and members connected by bolts, 

which leads to insufficient stiffness of the joints. The structure 

has defects. Due to geometric defects such as dislocation or 

slippage between components and nodes during installation, or 

physical defects such as cracks, the stiffness of joints decreases. 

The structure is deteriorating in its service life. The structure is 

affected by fatigue and corrosion, which leads to the 

deterioration of the joints. 

The research on joint stiffness has received extensive attention 

in recent years. The "specification for structural steel structure" 

edited by AISC pointed out that the connection joints of steel 

structures should be divided into three situations, namely ideal 

simple connection, fully restrained moment connections and 

partially restrained moment connections [[4]]. The Eurocode 3 

also has a description similar to that in the AISC code, which 

divides the joints into three types: rigid, semi-rigid and hinged 

[[5]]. Although the Eurocode 3 and AISC code mention the 

general classification standards of three types of joints, there is 

no relevant description on how the stiffness of semi-rigid joints 

is determined, and how the attenuation of joint stiffness will 

affect the overall structure’s stiffness. 

The existing research mainly contains three methods for 

calculating the value of joint stiffness which are numerical 

simulation, laboratory specimen test and mathematical 

statistics. Liu [[6]] used Abaqus to model the pin joints to 

analyze their stiffness, and Cao [[7]] used Ansys to model the 

network frame joints to analyze their stiffness. The numerical 

simulation of joint stiffness is convenient, but the premise 

assumptions of material properties and connection methods 

used in finite element simulation may be different from the 

actual states of joints in reality. Liao [[8]] obtained the load-

displacement curve of the joint by making a scaled model in the 

laboratory for loading, and then calculated the joint stiffness 

data. However, the scaled model cannot reflect the actual stress 

state of the full-scale structure. Frangopol [[9]] obtained the 

probability distribution curve of the deterioration degree of the 

connection joints of steel truss bridges by analyzing the test 

report data of a large number of bridges by means of 

mathematical statistics. However, there are certain regional 

differences in this method. The degree of corrosion and 

deterioration of steel structures under different climatic 

environments is significantly different. The probability 
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distribution cannot determine the change trend of joint stiffness 

of a specific structure. 

In conclusion, there are premise assumptions for numerical 

simulation, differences between the scaled model and the full-

scale structure for laboratory test, and regional differences in 

mathematical statistical analysis. In this paper, the field 

monitoring data of structural stress and displacement are 

obtained based on Nanshan Science and Technology 

Innovation Center monitoring project through stress sensors 

and prisms. The stiffness of the joints of steel truss are obtained 

by inversion of the monitoring data of stress and displacement 

by the deflection method. The updated joint stiffness is 

substituted into the finite element model. The influence of the 

joint stiffness on the overall stiffness of the structure is studied 

through the updated finite element model. 

2 JOINT STIFFNESS CALCULATION 

 Joint Stiffness Calculation Method 

The stiffness of the joints is calculated by the deflection method. 

The total beam deflection comprises two constituent parts: one 

part is the deflection caused by the ideal elastic deflection of 

the beam; the second part is the displacement of a point on the 

beam caused by the deformation of the joint, as shown in Fig. 

1. 

 

Figure 1. General view of deflection method 

𝜇1 is the deflection of the ideal elastic deflection line of the 

beam at this point. 𝜇2 is the displacement at this point due to 

the deformation of the joint. 𝜇 is the real deflection of the point, 

and 𝐿  is the distance from the point to the joint. 𝜇  can be 

calculated as: 

𝜇1 + 𝜇2 = 𝜇 （1） 

The angle of downward deflection at the joint can be calculated 

as： 

𝜃𝑟 =
𝜇

𝐿
= (𝜇1 + 𝜇2)/𝐿 （2） 

In this project, 𝜇  is obtained by prism observation in field 

monitoring, and 𝜇1 is obtained by linear elastic simulation with 

finite element software. The joint stiffness Kj can be calculated 

as: 

𝐾𝑗 = 𝑀/
(𝜇 − 𝜇1)

𝐿
 

（3） 

𝑀 in formula (3) is the bending moment of the joint, which 

is obtained by finite element simulation. 

 

 Joint Stiffness calculation Results 

Shenzhen Nanshan Science and Technology Innovation Center 

includes seven towers (A1-A7) and a huge podium surrounding 

the towers. The steel structure of the podium is located on the 

7th to 11th floors, as shown in Fig. 2. The steel structure of the 

podium consists of a large span truss and a cantilevered truss 

structure. 

 
(a) 

 
(b) 

Figure 2. Shenzhen Nanshan science and Technology 

Innovation Center. (a) completed structure rendering and (b) 

construction process 

The typical joint of the large span steel truss of the podium of 

Nanshan Science and Technology Center is shown on Fig. 3. 

The joints and the members are connected by welding. 

 
(a) 

 

 
(b) 

 
(c) 
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Figure 3. Typical joint (a) Joint model. (b) diagonal web is 

being welded to the bottom joint. (c) The installation of truss 

between A4-A5 is completed. 

In this project, the vibrating wire stress sensor is used to 

monitor the stress of the structure. The prism and electronic 

total station are used to monitor the displacement of the 

structure. In this paper, the displacement monitoring data is 

used to calculate the real stiffness of the structure, and the stress 

monitoring data is used to verify the validity of the finite 

element model after updating the joint stiffness. 

The stress sensors and prisms have been installed on the large-

span trusses connecting the core tubes A1, A2, A4, and A5, and 

the stress and displacement of the structure at the current 

construction stage have been monitored. The positions of stress 

sensors and prisms are shown in Fig. 4. 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Stress sensors and Prisms on truss. (a) truss between 

A1-A2, (b) truss between A4-A5 and (c) sensor installation 

diagram (in red box) 

The finite element analysis of the current phase of the structure 

was performed using Midas Gen, and the truss members were 

modeled as beam elements. The mid-span deflection of the 

lower chord and the bending moment at both ends of the lower 

chord of the large-span truss between A4 and A5 are calculated 

only considering the self-weight load of the structure. The 

vertical displacement diagram and the stress diagram of the 

truss is shown in Fig. 5. 

                                                
(a) 

 
(b) 

Figure 5. Finite element simulation. (a) vertical displacement 

diagram. (b) Stress diagram. 

The deflection 𝜇1 produced by ideal elasticity at the mid-span 

of the large-span truss (the triangle mark in the figure) is 

extracted from Fig. 5. The bending moments 𝑀 of joint L and 

R are extracted from Fig. 6 (b). and midspan deflection 𝜇 of the 

truss between A4-A5 is 6 mm based on field monitoring data. 

The stiffness of joint L and R are calculated based on formula 

(3) and results are shown in Table 1. 

Table 1. Joint stiffness results. 

 Joint L Joint R 
Calculation 

method 

𝜇 (mm) 6 
Monitoring 

data 

𝜇1 (mm) 2.6 
Finite 

element  

𝜃𝑟 (rad) 3.96*10-4 3.96*10-4 Formula (2) 

𝑀 (kN*m) 110.7 80.7 
Finite 

element 

𝐾𝑗 (kN*m/rad) 4.94*105 3.60*105 Formula (3) 

 

3 EFFECT ON GLOBAL STIFFNESS 

 Updating of Joint Stiffness 

According to the calculation results shown in Table 1, the 

previous rigid joint is updated with the stiffness 4.94*105 
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kN*m/rad, 3.60*105 kN*m/rad and 4.27*105 kN*m/rad 

(average of joint L and joint R). 

The bottom joints of the web members of the trusses connecting 

A1-A2, A1-A4 and A4-A5 are updated with new stiffness. The 

joint locations for the updated stiffness are shown in Fig. 6. 

Twelve joints of the web members have undergone stiffness 

updates. The method of joint stiffness updating is to replace the 

original rigid joints in structural model with spring beams with 

springs at both ends. 

 

  

(a) 

  

(b) 

 

(c) 

Figure 6. Positions of joints for stiffness updating. (a) truss 

A1-A2. (b) truss A4-A5. (c) trussA1-A4 

 Finite Element Model Vertification 

Five cases of joint stiffness cases are being simulated using 

finite element method which are rigid, 4.94*105 kN*m/rad, 

4.27*105 kN*m/rad, 3.60*105 kN*m/rad and pinned. The load 

on the structure only considers the self-weight load. The 

remaining cases are simulated in the same way. The structural 

stress obtained from the finite element simulation is compared 

with the structural stress obtained from the field monitoring 

data to verify the model with updated joint stiffness. 

The joint stress at the same position of the monitoring point is 

extracted from the structural stress diagram for comparison. 

The location of measuring points for structural monitoring is 

shown in Fig. 4. The comparison between the simulation results 

and the monitoring data is shown in Fig. 7. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Comparison between the simulation results and the 

monitoring data. (a) stress at end of truss between A1-A2, (b) 

stress at end of truss between truss A4-A5 and (c) stress at 

midspan of truss A4-A5. 

The following conclusions can be drawn from the comparison 

between monitoring data and simulated data in Fig. 7. The 

stress data simulated by the semi-rigid joint model are closer to 

the structural monitoring data. Among them, the model stress 

value after joint stiffness update with the average stiffness of 

joint L and joint is the closest to the monitoring data. This 

indicates that this stiffness is the closest approximation to the 

true stiffness of the bottom joint of the web member of the truss. 

 Effect of Joint Stiffness on Global Stiffness of Structure 

According to the results in 3.2, it is considered that 4.27*105 

kN*m/rad is the true stiffness of the bottom joint of the web 

member of the large-span truss. Apply different vertical 
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uniform loads to the structure and draw the load-deflection 

curves of the large-span trusses A4-A5. The load-deflection 

curves of the ideal rigid joint, semi-rigid joint and ideal hinged 

joint model are compared in Fig. 8. 

 

Figure 8. A4-A5 truss load-displacement curve. 

It can be seen from Fig. 9. that the vertical stiffness of the ideal 

rigid joint model is the largest, followed by the semi-rigid joint 

model, and the vertical stiffness of the hinge joint model is the 

smallest. The truss load-deflection curves of the ideal rigid 

joint, semi-rigid joint and ideal hinged joint model are linearly 

fitted, and the slope of the load-deflection curve is the vertical 

stiffness of the A4-A5 large-span truss. The calculation results 

show that the vertical stiffness of the semi-rigid joint truss is 

5.4% lower than the rigid joint model and 13.4% higher than 

the pinned joint model. 

The mode shapes of the structure has been simulated to analysis 

the joint effect on global stiffness of the structure. The first-

order mode is translation in the x-direction (parallel to the A1-

A2 direction), the second-order mode is translation in the y-

direction (parallel to the A1-A4 direction), and the third-order 

mode is translation in the x-direction. The mode shapes of the 

structure show in Figure 9. The frequency of the structure with 

different joint stiffness is shown in Table 2. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Mode shapes of the structure. (a) first order, (b) 

second order and (c) third order 

Table 2. Frequency of the structure. 

Mode order 

Frequency (Hz) 

Rigid joints 
Semi-Rigid 

Joints 
Pinned Joints 

1 1.3369 1.2366 1.2256 

2 1.4826 1.2823 1.2358 

3 1.7203 1.3199 1.2286 

 

The mode shape simulation result shows that natural frequency 

of the structure decreases as the joint stiffness reduces. Since 

frequency can reflect the stiffness of the structure, the result 

also tells that joint stiffness can strongly affect the global 

stiffness of the structure. 

4 CONCLUSION 

The effect of joint stiffness on overall structure is studied in this 

paper. The influence of the stiffness characteristics of the joints 

at the end of the truss and the mid-span of the truss are different. 

For the joints at the end of the truss, the stress of the semi-rigid 

joint is larger than that of the hinged joint and smaller than that 

of the rigid joint; For the joints at the midspan of the truss, the 

stress of the semi-rigid joint is smaller than that of the hinged 

joint and greater than that of the rigid joint. The semi-rigid joint 

is most consistent with the field monitoring data. The load-

deflection curve of the large-span truss is simulated, and the 

results show that the vertical stiffness of the truss of the semi-

rigid joint model is 5.4% lower than that of the ideal rigid joint 

model and 13.4% higher than the hinged joint model. The 

conclusions of this paper can be references for other steel 

structure analysis. 
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ABSTRACT:  As urban environments increasingly shift towards vertical development, the challenges associated with constructing 

and maintaining tall buildings have intensified. Real-time and dynamic monitoring systems play a vital role in addressing these 

issues by providing accurate positioning and deformation data. The integration of diverse monitoring technologies during and 

after the construction of high-rise buildings is crucial for ensuring structural integrity, safety, and efficiency. 

By combining geodetic and geotechnical monitoring techniques, these systems offer comprehensive insights into building 

behaviour. The fusion of technologies like GNSS, IoT sensors, and remote sensing, alongside traditional survey methods, ensures 

precise data acquisition and analysis. This hybrid approach is essential for optimising construction and maintenance processes, 

reducing costs, and enhancing safety. Furthermore, the ability to process and analyse large volumes of monitoring data efficiently 

is critical for transforming raw data into actionable insights, aiding decision-makers in understanding the magnitude and direction 

of structural movements. 

The successful implementation of these monitoring techniques on iconic high-rise buildings, such as the Burj Khalifa and One 

World Trade Center, highlights their importance in modern construction and post-construction maintenance. Ultimately, the 

intelligent use of integrated monitoring technologies supports sustainable and resilient urban development. 

KEY WORDS: Autonomous; Deformation monitoring; Verticality; Positioning; High-rise; Tall buildings. 

1 INTRODUCTION 

In the rapidly evolving urban landscape, the shift towards 

constructing tall buildings presents unique challenges that 

demand innovative solutions. Ensuring the structural integrity 

and safety of these vertical giants requires advanced 

positioning and deformation monitoring technologies capable 

of delivering real-time and precise data on buildings’ 

behaviour.  

 Environmental forces such as wind and temperature 

variations can lead to significant deformation during 

construction, therefore precise measurements are required to 

maintain vertical alignment and correct positioning. Traditional 

surveying methods, while effective at lower elevations, often 

reach their limits as buildings rise, necessitating the adoption 

of advanced active survey control systems. 

In the lifecycle phase, the safety and integrity of tall buildings 

can again be at risk in case of nearby excavations or movements 

caused by natural events. In such cases, deformation 

monitoring is essential, to provide an understanding of 

structural behaviour. 

In both phases of the building’s timeline, deformation 

monitoring information is crucial for decision-makers.  

2 CONSTRUCTION OF TALL BUILDINGS 

 Surveying challenges 

Constructing tall buildings introduces a range of complex and 

unique surveying challenges primarily due to their height and 

slender profiles, which significantly alter the structure's rigidity 

compared to low-rise buildings. As the geometry shifts from a 

wide base to a narrow top, resistance to deformation decreases, 

necessitating precise engineering surveying and monitoring 

systems to maintain vertical alignment and correct positioning. 

As depicted in Figure 1, environmental forces such as wind 

loads can cause deflection, varying with the stiffness of 

different elements and the location on the building. 

Temperature changes and sunlight can lead to uneven thermal 

expansion, causing the building to lean. Additionally, as 

construction progresses, the increasing mass leads to the 

compression of lower elements, potentially resulting in 

differential settlement and vertical alignment issues. This 

requires adjustments to the vertical datum to account for axial 

shortening and ensure the final height meets specifications. 

 

 

Figure 1 Environmental forces and live load impacting tall 

buildings [1] 

Dimensional control is crucial for each floor's horizontal and 

vertical alignment, involving traditional survey methods like 

optical levelling, plumb line and total stations. These methods 

establish base gridlines at stable ground levels, with new 

references created as construction progresses. However, 

maintaining uninterrupted vertical lines of sight can be 
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challenging and costly, slowing down the construction progress 

and bringing risks to the structural stability of the high-rise 

building. For this reason, between 100m and 200m elevation 

from the ground level, the traditional and passive survey 

methods reach their limits and must be replaced with high-rise 

specific active survey control positioning methods. 

 Active survey control and deformation monitoring 

The introduction of active survey control systems marks a 

significant advancement in the field of structural deformation 

monitoring and positioning systems for tall buildings. These 

systems leverage the power of interoperable connectivity 

between survey instrumentation and Internet of Things (IoT) 

sensors, providing real-time data that ensures accurate 

positioning. By automatically resolving positions to the 

necessary precision, active survey control systems reduce 

human error and enhance efficiency. These systems employ 

Global Navigation Satellite Systems (GNSS) and IoT sensors 

to continuously monitor and report positions, compensating for 

dynamic structural deformation. This capability establishes 

survey control points and a reference frame within specified 

tolerances, streamlining the engineering surveying process.  

The solution provided by Leica Geosystems, Core Wall 

Control System (CWCS) shown in Figures 2 and 3, specifically 

developed and advanced for tall building construction over 15 

years since the construction of Burj Khalifa [2], combines the 

following components: 

• Leica iCON GNSS Smart Antennas placed on the 

uppermost floor to provide continuous, real-time 

positional data collocated with 360° prisms 

• Robotic total stations, such as Leica TS16/60, measuring 

prisms and used for establishing and verification of the 

survey control using positional information provided by 

the monitoring software 

• GeoCloud Drive service responsible for data transfer and 

synchronization of results between the field 

instrumentation and monitoring software 

• WiSenMeshWAN® IoT inclinometers and distance 

meters deliver displacement information at various levels 

• GeoMoS Monitor software for GNSS and IoT data 

processing and publishing positioning results consumed by 

total stations for stakeout 

 

Figure 2 Leica Geosystems' CWCS solution [1] 

The real-time information provided by these systems is used 

to determine live axial shortening values for structural 

compression. This is achieved through multiple vertically 

installed IoT distance sensors, while the rotation component 

from the sensors helps determine live structural tilt. 

Additionally, GNSS positioning data provides absolute XYZ 

locations at the upper working face of the building, creating a 

comprehensive integrated solution. By combining these data 

sets with traditional monitoring of foundation deformation and 

environmental sensors, engineers gain a thorough 

understanding of where to place new elements at the upper 

workface, ensuring that positional data is available and within 

tolerance when required. 

 

 

Figure 3 WiSenMeshWAN® solution for real-time 

compression readings [1] 

Although the accuracy of live RTK GNSS positioning is 

around ± 3cm, averaging the results over the period of at least 

one hour will significantly improve the accuracy. Figure 4 

displays the combination of raw and averaged 6-hour RTK 

GNSS data, where raw data shows horizontal consistency 

within ± 2cm over 24 hours, whereas averaged results filter out 

dynamic movements and reveal slow movements of the 

building influenced by cyclic environmental conditions, 

reaching the accuracy of ±5mm.  
 

 

Figure 4 Raw and averaged RTK GNSS data over 6 hours 
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Real-time monitoring systems extend beyond construction, 

monitoring the building's lifespan and supporting future design 

models.  

 Real-life examples 

Since the first implementation of the Core Wall Control System 

for the construction of Burj Khalifa, CWCS has been deployed 

and further developed in many iconic high-rise and super high-

rise buildings worldwide. Some of the examples are: 

• 432 Park Avenue in New York City [3] completed in 2015 

and standing at 426m   

• The Central Park Tower in New York City [4] – one of 

the tallest residential buildings with 472m, completed in 

2020 

• One World Trade Center in New York City – the tallest 

building in North America with 541m, completed in 2014 

• Millenium Tower in Boston [5] – one of the tallest 

residential buildings in Boston with 208m of height, 

completed in 2016 

• 22 Bishopsgate in London [6] – the second tallest building 

in the UK with 278m, completed in 2020 

• The Shard in London [7] – the tallest building in the UK 

with 306m, completed in 2013 

3 STRUCTURAL HEALTH MONITORING OF TALL 

BUILDINGS 

Every building and structure changes over time due to various 

environmental and structural impacts and neglecting these 

changes can have serious consequences. Tall buildings are 

particularly impacted due to their unfavourable geometry. The 

most common causes of movements in urban environments 

include nearby construction, excavations, ageing of the 

structure, maintenance of the building, natural hazards and 

seismic activity. 

 Choosing the right technology 

No single technology can fully capture the dynamic behaviour 

and the entire scope of high-rise and super high-rise buildings. 

Also, each technology has its advantages and limitations, which 

should be considered when designing the deformation 

monitoring system. Hence, a hybrid approach is essential [8].  

In the case of geodetic monitoring, prism and GNSS 

measurements provide a complete 3D understanding of 

movements but are limited to a small number of single points 

depending on either a clear line of sight or an open sky. 

Automated 3D laser scanning in monitoring [9] on the other 

hand captures thousands of points per second, but can only 

deliver information about deformations perpendicular to the 

scanned surface. Geotechnical sensors, such as inclinometers 

and extensometers, provide point-specific data in a relative, 

non-georeferenced context. However, due to the IoT 

technology, they can be installed indoors and outdoors and 

create a self-forming dynamic radio mesh network which sends 

data to a gateway. 

The fusion of geodetic and geotechnical data creates a more 

complete picture of building deformations. By cross-analysing 

data from different sources, engineers can validate findings and 

ensure the reliability of the monitoring system. This integration 

allows for early detection of potential issues, enabling proactive 

measures to maintain structural integrity. 

 Edge computing, automation and autonomy 

The integration of edge computing, automation, and autonomy 

into monitoring solutions represents a significant advancement 

in the field [10]. These technologies enhance the efficiency and 

reliability of data acquisition and processing, enabling real-

time insights into structural behaviour. 

GeoMoS Edge is crucial in Leica Geosystems’ monitoring 

systems because it addresses the significant challenge of data 

acquisition continuity during communication outages. 

Traditional monitoring systems rely heavily on stable 

communication between sensors and a central server, which 

can lead to data gaps and safety risks when communication is 

disrupted. GeoMoS Edge mitigates this issue by embedding a 

data acquisition component directly on a communication 

device, allowing the system to operate autonomously even 

during periods without connection to the GeoMoS monitoring 

software. 

This autonomy ensures that measurements continue 

uninterrupted, eliminating data gaps that could otherwise pose 

safety threats. By replicating server functionality on edge 

devices such as Leica ComBox60, GeoMoS Edge can perform 

measurement cycles, assess data quality, and trigger repeated 

measurements if necessary. Once communication is restored, 

the collected data is seamlessly delivered to the central 

monitoring software. 

4 CONCLUSION 

The integration of deformation monitoring technologies in the 

construction and lifecycle management of tall buildings is the 

key for stability and health of the structure and the people in its 

vicinity. The combination of GNSS, IoT sensors, and 

traditional survey methods provides a comprehensive 

understanding of structural behaviour during its construction, 

allowing for precise positioning as the building grows. This 

hybrid approach, as demonstrated by Leica Geosystems' Core 

Wall Control System (CWCS), has proven effective in iconic 

buildings worldwide, starting from Burj Khalifa in the United 

Arab Emirates, over 22 Bishopsgate and The Shard in the 

United Kingdom, to The Central Park Tower, One World Trade 

Center and many others in the United States of America. By 

leveraging real-time data from geodetic and geotechnical 

sensors, engineers can monitor axial shortening, structural tilt, 

and environmental impacts with high accuracy, enabling 

proactive measures to address potential issues. 

The continuous development of these technologies, including 

edge computing and automation, further enhances the 

reliability and efficiency of data acquisition and processing. 

Solutions like GeoMoS Edge ensure persistent monitoring even 

during communication outages, mitigating safety risks 

associated with data gaps. This autonomy allows for 

uninterrupted measurements and seamless data integration, 

supporting informed decision-making throughout a building's 

lifecycle. 

Ultimately, the adoption of integrated monitoring solutions 

not only optimises construction and maintenance processes but 

also supports sustainable urban development. As cities 

continue to grow vertically, the demand for precise and reliable 

monitoring systems will increase, driving further innovation in 

the field. By embracing these technologies, stakeholders can 

ensure the safety, efficiency, and longevity of high-rise 
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buildings, contributing to resilient and sustainable urban 

environments. 
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ABSTRACT: The application of digital twin technology in high-rise buildings provides a comprehensive approach to maintaining 

construction safety, tracking project advancement, and evaluating service conditions. This paper proposes a novel multi-scale 

digital twin framework for high-rise structures. The macro-scale model is constructed using spring elements, taking into account 

the dynamic behavior of flexure-shear coupling in high-rise structures. The macro-scale digital twinning is achieved by updating 

the macro-scale model through the integration of modal monitoring data with Artificial Neural Networks (ANN). A multi-scale 

analysis method from the structural macro-level to components of the substructure is developed through information transfer at 

boundary nodes, achieving a balance between computational efficiency and the demand for accuracy of the local components. 

Integrated with multiple monitoring data sources, the proposed framework provides a technical pathway for multi-scale model 

updating, real-time response acquisition, and disaster risk assessment of high-rise structures. 

KEY WORDS: High-rise building; Flexure-shear coupled behavior; Multi-scale analysis; Structural health monitoring; Artificial 

Neural Networks. 

1 INTRODUCTION 

Digital twins are increasingly recognized as pivotal innovations 

within the Architecture, Engineering, Construction, and 

Facility Management (AEC-FM) industry [ 1 , 2 ]. As an 

advanced representation that bridges the digital and physical 

realms, digital twins enable researchers and practitioners to 

gain a more intuitive and in-depth understanding of the real-

time state and operational principles of objects. 

Incorporating mechanical information of the structure into 

the building's digital twin can provide an approach to 

maintaining construction safety, tracking project advancement, 

and evaluating service conditions. Typically, modal monitoring 

data of the building is used to correct the parameters of the 

structural design model [ 3 , 4 ]. The advantage lies in the 

maturity and convenience of the monitoring methods, and the 

structural design model can be detailed to the component level, 

offering a high degree of adjustability. However, the 

computational efficiency of the design model is low, and model 

updating typically requires a large number of iterative 

calculations or reference samples.  

The updating of macro-scale models is a very promising 

research direction, aimed at improving the efficiency of model 

updating while fully utilizing structural modal monitoring data 

[5,6]. However, the coupling effects of bending and shear in 

high-rise structures as well as the complex inter-story force 

distribution can significantly affect the dynamic characteristics 

of macro-scale models. The mapping of macro-scale 

characteristics to model updating through modal monitoring 

data is also significantly influenced by the identification 

algorithms [7,8]. Therefore, researching suitable macro-scale 

model carriers and model updating algorithms are the two main 

research directions in the identification of macro-scale models. 

Macro-scale models can only represent the overall 

deformation of the structure and cannot delve into the load-

bearing status of local components. There are certain special 

components and critical load-bearing areas where there is a 

higher demand for monitoring and digital twin accuracy. To 

balance computational efficiency and simulation precision, a 

multi-scale structural model is an ideal research approach 

[ 9 ,10 ]. Information transfer or coupling between different 

scales is key to implementing this technology. The multi-scale 

twin model that combines macro-scale models with 

component-scale substructure models is still an area that 

requires further research. 

This paper proposes a multi-scale digital twin method that 

integrates both macro-scale and component-scale 

substructures. First, a macro-scale twin is realized through 

Artificial Neural Networks (ANN) and modal monitoring data, 

and then a substructure component-scale twin is achieved by 

constructing a floor boundary condition transmitter. Integrated 

with multiple monitoring data sources, the proposed framework 

provides a technical pathway for multi-scale model updating, 

real-time response acquisition, and disaster risk assessment of 

high-rise structures. 

 

2 MACRO-SCALE MODEL UPDATING 

 Floor deformation characterization 

Story response is often used to quantify the overall behavior of 

high-rise buildings. Therefore, the primary focus is on the 

displacements of the floor boundary nodes to represent the 

overall deformation situation of the high-rise buildings. 

Characterizing the displacements of the numerous boundary 

nodes on each floor is key to building a macro-scale model of 

high-rise structures. 

In this paper, a high-rise frame core tube structure shown in 

Figure 1a is used as an example, The structure has 40 stories, 

each with a height of 4.0 meters. The columns and beams were 
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modeled using Euler-Bernoulli beam elements, and the core 

wall was modeled using shell elements. To simplify the 

complexity of constructing the macro-scale models, uniform 

member sizes and materials were adopted for all structural 

components. All columns were 800×800 mm² rectangular C40-

RC columns and all beams were 500×1000 mm² rectangular 

C30-RC beams, except for the coupling beams in the core wall, 

which have a cross-section of 700×1400 mm².   The material 

properties are: C30 concrete (E = 3.0×10⁷ kN/m², ν = 0.25, ρ = 

25 kN/m³) and C40 concrete (E = 3.25×10⁷ kN/m², with ν and 

ρ assumed identical to C30). The wall thickness of the core tube 

is 900 mm. This model also incorporates simplified simulations 

of infill walls, exterior curtain walls, and rigid panel zones, 

which, due to space limitations, are not discussed in detail in 

this paper. However, these structural details significantly 

increase the computational demands and time costs of the 

model. The multi-scale modeling approach proposed in this 

study is specifically designed to optimize this issue. 

The structural analysis software OpenSees was used to 

model the structure (shown in Figure 1b) for batch extraction 

of the deformation of nodes. Modal analysis of the structure 

was performed (shown in Figure 2) under the assumption that 

deformations are restricted to the x-direction, with rigid 

constraints applied in the other two directions. 

The deformation of the planes where the floor boundary 

nodes are located is illustrated in Figure 3. Due to the rigid floor 

assumption, the horizontal displacement is uniform at all points, 

while the vertical deformation and torsional deformation vary 

from point to point. Therefore, it is proposed to use two 

hypothetical planes to represent the overall situations of 

vertical displacement and torsional displacement, respectively. 

The vertical displacement of each node was fitted to a 

Hypothetical Vertical Displacement Plane (HVDP) using the 

least squares method. The bending deformation of the nodes in 

each slab was averaged to form a Hypothetical Bending 

Displacement Plane (HBDP). The angle of rotation of HBDP 

(αHBDPi for the ith floor) and HVDP (βHVDPi for the ith floor) 

shown in Figure 3 represents their degree of displacement. For 

a given mode, the vertical and bending modal vectors of the 

boundary nodes of each story were fitted to an HVDP and 

HBDP, respectively.  Examples of this fitting for the 1st floor 

of the 1st mode are given in Figure 4. Examples of the angles of 

the HBDPs and the HVDPs of the 1st and 2nd modes were 

calculated and shown in Figure 5. 

 

  

(a) Story plan 
(b) OpenSees 

model 

Figure 1. High-rise frame core tube structure. 

 

 
1st 2nd 3rd 4th 5th 

Figure 2. Mode shapes of the high-rise frame core tube 

structure. 

 

 

Figure 3. Displacements of the story nodes. 

 

 
(a) HBDP 

 
(b) HVDP  

Figure 4. Hypothetical plane of the 1st mode of the 1st 

floor. 
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(a) 1st mode 

 
(b) 2nd mode 

Figure 5. HBDP and HVDP 

 

HBPV offers a way to isolate the displacement components 

induced by bending. The displacement Bi  induced by bending 

for the ith floor  can be approximated by the equation 

 

 (tan + tan )Bi iH   =  (1) 

 

where φ is the angle of HBDP of the story below; ω is the 

change in angle of HBDP of the story; Hi is the height of the 

story; and λ is a correction coefficient (set as 0.5 in the present 

study). 

The displacement induced by shear Δsi for the ith floor can be 

calculated as  

 
1

N

Si Ti Bi

i=

 =  −   (2) 

where ΔTi is the lateral displacement, and N is the total number 

of floors.  

Two normalized difference parameters DVBi and DBTi are 

defined to represent the relationship of the boundary nodes. 
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The introduction of these two hypothetical planes, along with 

the two normalized difference parameters, provides the 

theoretical foundation for the subsequent updating of the 

macro-scale model. 

 

 Model construction and recognition 

To account for the coupling of bending and shear in high-rise 

structures, a macro-scale model framework was constructed 

using spring elements, as shown in Figure 6. Each floor is 

composed of four identical vertical members, two identical 

outside horizontal members, and one inside horizontal member. 

Spring elements that represent the axial, shear, and bending 

stiffnesses of each member are shown in Figure 7. The 6×6 

member stiffness matrix relating the axial, transverse, and 

rotational degrees-of-freedom for each node of the 2-node 

member with spring elements is given in Equation (5) and (6). 

 

 

Figure 6. Macro-scale model of the high-rise structure. 

 

 

Figure 7. Member with springs 
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The macro-scale model of the typical 40-story frame core 

tube structure is constructed using ANN and simulated modal 

monitoring data. As shown in  Figure 8, natural frequencies, 

lateral mode vectors, angular mode vectors of the HBDP, DVB 

and DBT were selected as the features. The stiffness of the 

springs was the target to be recognized, i.e., a total of 7 stiffness 

coefficients (𝑘𝑎 ,  𝑘𝑏 , 𝑘𝑠,  𝑘ℎ𝑏 , 𝑘ℎ𝑠,  𝑘𝑖ℎ𝑏  and 𝑘𝑖ℎ𝑠 ). 𝑘𝑎  is the 

axial stiffness, 𝑘𝑏 and 𝑘𝑠 are the bending and shear stiffness of 

the column, 𝑘ℎ𝑏 and 𝑘ℎ𝑠 are the bending and shear stiffness of 

the outside horizontal members, while 𝑘𝑖ℎ𝑏  and 𝑘𝑖ℎ𝑠  are the 

bending and shear stiffness of the inside horizontal members. 

The initial values of the stiffness parameters were roughly 

estimated through a small number of trial calculations, as 

shown in Table 1. 20000 samples were generated through Latin 

square sampling with the combination of different stiffness 

change ranges as shown in Table 2 and batch modal analysis. 

A type of ANN that is conducive to utilizing the spatial 

information between data, Convolutional Neural Networks 

(CNN) incorporating channel and spatial attention mechanisms 

(CBAM-CNN) [11] were used, and a (non-learnable) Fixed 

attention layer (FixAL) was selectively added to manually 

assign weights to different features [12]. The specific network 

architecture and hyperparameter settings of the ANN are shown 

in  

Table 3 and Table 4, respectively. 

 

 

Figure 8. ANN model construction. 

 

Table 1. Stiffness parameters 

Stiffness Initial Recognized  

𝑘𝑎 7.00×107 6.92×107 

𝑘𝑏 1.50×1014 1.58×1014 

𝑘𝑠 1.00×1012 9.87×1011 

𝑘ℎ𝑏 8.00×1013 7.90×1013 

𝑘ℎ𝑠 1.00×1014 9.87×1013 

𝑘𝑖ℎ𝑏  4.00×1013 3.94×1013 

𝑘𝑖ℎ𝑠 1.00×1014 9.88e×1013 

The units of 𝑘𝑠, 𝑘𝑎, 𝑘ℎ𝑠, 𝑘𝑖ℎ𝑠 are N/mm; and the units of 𝑘𝑏, 

𝑘ℎ𝑏, 𝑘𝑖ℎ𝑏  are N-mm/rad 

 

 

 

 

Table 2. Sample set stiffness variation ranges 

Dataset Variation ranges (%) Size 

1 (80-120) 10000 

2 (90-110) 10000 

 

Table 3. The main structure of the ANN 

Layer Type Output sizea 

Input Modal data bs×1×5×5×40 

FixALb Weight matrix-1 

Weight matrix-2 

bs×1×5×5×40 

bs×1×5×5×40 

CBc Conv3d 

ReLU 

Max pooling 

bs×16×5×5×40 

- 

bs×16×2×2×20 

CB Conv3d 

ReLU 

Max pooling 

bs×32×2×2×20 

- 

bs×32×2×2×10 

CB Conv3d 

ReLU 

Max pooling 

bs×64×2×2×10 

- 

bs×64×1×1×5 

CBAMd Channel attention 

Spatial attention 

bs×64×1×1×5 

bs×64×1×1×5 

DLe - - 

FCf Flatten 

FC cells 

ReLU 

FC cells 

ReLU 

FC cells 

bs×320 

bs×320 

- 

bs×1000 

- 

bs×256 

Output Stiffness parameters bs×7 
a bs = batch size; b FixAL = Fixed Attention Layer; c CB = 

Convolutional Block; d CBAM = Convolutional Block 

Attention Module; e DL =  Dropout Layer;  f FC  =  Fully 

Connected Layer 

 

Table 4. Hyperparameter settings of the ANN 

Parameters Value 

Number of epochs 50 

Batch size 256 

Learning rate 0.0001-0.00001 

Kernel size of Conv3d 3×3×3 

Weight decay 

(L2 regularization) 

1.0e-3 

Dropout rate 0.2 

 

The learning curve is shown in Figure 9, and the recognized 

stiffness parameters with the developed ANN model are shown 

in Table 1. With the recognized stiffness parameters, the 

macro-scale model of the typical high-rise frame core tube 

building was constructed. The modal analysis of the macro-

scale model was carried out as shown in Figure 10. Comparison 

of the dynamic characteristics of the macro-scale model and 

original full-order model is shown in Table 5, Figure 11, Figure 

11 and Figure 12.  It is evident that the recognized model 

provides a good fit for the macro-scale mechanical properties 

of the original full-order model. 

https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
https://www.baidu.com/s?rsv_dl=re_dqa_generate&sa=re_dqa_generate&wd=ReLU&rsv_pq=fed305f40048ef3f&oq=relu&rsv_t=96b7dRvMpRtF0bZ3hIUiVhl/ET8goOTdhqJaoJ7yrrn5yiVttbd0CL8ocsNlzgNd+ySU&tn=baiduhome_pg&ie=utf-8
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Figure 9. Maximum Absolute Percent Error (MAPE) 

difference. 

 

 

 
(a) 1st  (b) 2nd  (c) 3rd    (d) 4th  (e) 5th  

Figure 10. Mode shapes of the recognized macro-scale 

model. 

 

 Table 5. Comparison of the dynamic characteristics  

Mode 

Frequency (Hz) 
MAC 

(%) 

HBDP 

MAC 

(%) 
Original 

model  

Recognized 

model  

Differe

nce (%) 

1 0.35 0.36 -2.15 1.000 0.9997 

2 1.43 1.46 -2.15 0.9999 0.9978 

3 3.00 2.97 1.02 0.9999 0.9986 

4 4.67 4.67 0.11 0.9999 0.9986 

5 6.54 6.55 -0.17 0.9996 0.9884 

 

 

 
(a) 1st mode 

 
(b) 2nd mode 

Figure 11. Lateral mode vectors of the models. 

 

 
(a) 1st mode 

 
(b) 2nd mode 

Figure 12. HBDP angles of the models. 

 

 

 

 
(a) 1st mode 
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(b) 2nd mode 

Figure 13. HVDP angles of the models. 

 

3 MULTI-SCALE DIGITAL TWIN 

 Multi-scale model 

The macro-scale model proposed above can only analyze the 

structural response at the overall level of each floor. However, 

for certain special structural components or critical load-

bearing areas, it is desirable to analyze the structural response 

of specific components.  

Based on the proposed macro-scale model, this paper 

employs the transmission of boundary condition information to 

perform structural response calculations at the component level 

for substructures, thereby achieving multi-scale digital twins. 

The key to the method lies in constructing a boundary condition 

transmitter, as shown in Figure 14, which can expand and map 

the macro-scale deformation of a certain floor to the 

deformation of each boundary node on that floor. This paper 

constructs the boundary condition transmitter using the 

proposed HBDP, HVDP, and the proportional relationships of 

the modal vectors corresponding to each floor's boundary nodes 

under their first-order modes, as shown in Equations (7), and 

(8). 

 

 Bi HBDPi BiM =  (7) 

 Vi HVDPi ViM =  (8) 

 

where ΔBi and ΔVi are the bending and vertical displacements of 

the ith node of the story in question, respectively; Mbi and Mvi 

are the displacements of the ith node of the story in question per 

unit angle of αHBDPi and βHVDPi, respectively. 

The lateral displacement of each node is consistent with the 

lateral displacement of the macro-scale model. Using the 

displacements of the macro-scale model to map the 

displacements of the boundary nodes of the substructure model, 

the substructure's deformation can now be realized. The 

construction of the boundary condition transmitter can be 

refined according to the requirements, and can even further 

consider the coupling relationship between displacements of 

different degrees of freedom, which will be a subject of further 

research. 

 

 

Figure 14. Deformation transfer from boundary nodes to the 

substructure. 

 

 Substructural response 

To verify the feasibility and accuracy of the proposed multi-

scale model, the 20th and 21st floors of the high-rise frame core 

tube structure were selected as the objects of study. The 

mapping relationship MB19,  MV19 and MB21, MV21 were 

established and the substructure model of the 20th  and 21st  

floors was built. A static analysis was employed for an initial 

attempt (as shown in Figure 15a), specifically by applying a 

1000 kN force in the horizontal direction on the topmost floor 

of the macro-scale model. The lateral deformations and HBDP 

and HVDP angles of the 19th and 21st floors were calculated. 

Subsequently, the displacements of the boundary nodes of the 

substructure were calculated using Equations (7) and (8) and 

applied to the substructure. The deformations of the 

substructure were further calculated and are depicted in Figure 

16. 

 

  
(a) Macro-scale model (b) Original model 

Figure 15. Deformation of the models. 
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Figure 16. Deformation of the substructure (magnified). 

 

For reference, a static analysis was performed on the original 

full-order model under the same loading condition. Meanwhile, 

the displacements of all nodes on the 20th  floor for each degree 

of freedom were extracted from both the original full-order 

model and the substructure model for comparative study. Their 

absolute mean values and relative errors are shown in Table 6. 

The results show that the lateral displacement exhibits good 

agreement, while certain discrepancies exist in the vertical and 

torsional displacements. This is because the applied load 

distribution differs from the inertial force distribution during 

structural vibration.  

 

Table 6. Comparison of the static deformation of the models 

DOF 

Absolute mean  

deformation  
Error (%) 

Original 

model  

Substructure 

model 

Lateral (mm) 4.40 4.54 3.26 

Vertical (mm) 0.55 0.45 20.63 

Torsional (rad) 9.03e-05 7.10e-05 21.40 

 

Incremental dynamic analyses were then conducted on both 

the original full-order model and the multi-scale model by 

applying the north-south component of the El Centro seismic 

wave with a total duration of 20 seconds. A Rayleigh damping 

ratio of 0.05 was assigned to the first five modes of the 

structures. Table 7 presents the absolute mean values and 

relative errors of time-history displacements for all degrees of 

freedom (DOF) at the 20th-floor nodes. Taking Node 10 on the 

20th floor (shown in Figure 1) as an example, Figure 17 presents 

a comparison of time-history displacements for three degrees 

of freedom. As can be observed, the substructure model can 

effectively replicate the deformation characteristics of the full-

order model. Some frequency shifts occur in the terminal 

vibration phase due to the minor omission of frequencies in the 

macro-scale model, as well as the accumulation over multiple 

cycles. 

Notably, the multi-scale model's dynamic analysis required 

only 20 minutes of computational time (16 minutes for macro-

scale model and 4 minutes for substructure model), 

significantly less than the full-scale model's 27 hours and 12 

minutes under identical hardware configuration, achieving a 

balance between computational efficiency and the demand for 

accuracy of the local components. 

 

Table 7. Comparison of the dynamic deformation of the 

models 

DOF 

Absolute mean  

displacement   
Error (%) 

Original 

model  

Substructure 

model 

Lateral (mm) 4.23 4.43 4.58 

Vertical (mm) 0.43 0.40 -7.23 

Torsional (rad) 7.29e-05 7.27e-05 -0.36 

 

 

 

 

(a) Lateral displacement 

 

(b) Bending displacement 

 

(c) Vertical displacement 

Figure 17. Time-history displacements of Node 10 on the 

20th floor 
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4 CONCLUSION  

This paper proposes a multi-scale digital twin method for high-

rise structures. Taking a high-rise frame core tube structure as 

an example, a macro-scale model of the high-rise structure was 

constructed using a combination of spring elements, 

considering the coupling of bending and shear as well as the 

impact of the horizontal members on the structure. The macro-

scale model was updated by combining Artificial Neural 

Networks (ANN) and modal monitoring data. Furthermore, an 

information transmitter was constructed using a linear mapping 

method to transfer the deformation from the macro-scale to the 

boundary nodes of the substructure at the story level, thereby 

enabling the calculation of deformations at the component scale 

of the substructure. The multi-scale digital twin method for 

high-rise buildings established in this study not only improves 

[1] Hosamo HH, Imran A, Cardenas-Cartagena J, Svennevig PR, Svidt K, 

Nielsen HK. A review of the digital twin technology in the AEC‐FM 
industry. Adv Civ Eng 2022;2022(1):2185170.  

[2] Park J, Lee JK, Son MJ, Yu C, Lee J, Kim S. Unlocking the potential of 

digital twins in construction: a systematic and quantitative review using 
text mining. Buildings 2024;14(3):702. 

[3] Ierimonti L, Venanzi I, Cavalagli N, Comodini F, Ubertini F. An 

innovative continuous Bayesian model updating method for base-isolated 
RC buildings using vibration monitoring data. Mech Syst Signal Process 

2020;139:106600. 

[4] Nguyen A, Kodikara K ATL, Chan THT, Thambiratnam DP. 
Deterioration assessment of buildings using an improved hybrid model 

updating approach and long-term health monitoring data. Struct Health 

Monit 2019;18(1):5-19.  
[5] Lam HF, Hu J, Adeagbo MO. Bayesian model updating of a 20-story 

office building utilizing operational modal analysis results. 

Adv Struct Eng 2019;22(16):3385-3394.  
[6] Prabakaran K, Kumar A, Thakkar SK. Comparison of eigensensitivity 

and ANN based methods in model updating of an eight-story building. 

Earthq Eng Eng Vib 2015;14:453-464. 

the efficiency of model updating and computation, but also 

meets the need for high-precision computation of local 

components. 
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ABSTRACT: The torsional performance of a structure significantly impacts the safety and service life of high-rise buildings. Due 

to deviations between real structures and design models, it is essential to evaluate the torsional performance of in-service high-

rise buildings. This paper proposes a method for evaluating the torsional performance of in-service high-rise buildings based on 

the measured period ratio. By abstracting the high-rise building as an equivalent cantilever beam model with unidirectional 

eccentricity, the free vibration equation of the structure is derived, and the relationship between the period ratio, stiffness ratio, 

eccentricity, and radius of gyration is analyzed. The results indicate that changes in the period ratio can reflect the torsional 

performance of the structure. Based on the Latin Hypercube Sampling (LHS) and Kernel Density Estimation (KDE) methods, the 

probability density function and cumulative distribution function of the period ratio are established, and a four-level classification 

method for torsional performance is proposed. Application to a 40-story high-rise building validates the method. The research 

results provide a new theoretical basis and practical guidance for evaluating the torsional performance of in-service high-rise 

buildings. 

KEY WORDS: Torsional performance assessment; Period ratio; High-rise buildings; Structural health monitoring. 

1 INTRODUCTION 

The torsional effect of high-rise buildings under external loads 

is a significant factor affecting their service performance. As 

building height increases, the dynamic response of structures to 

horizontal excitations such as wind loads and seismic actions 

becomes more complex, and the torsional effect significantly 

intensifies [1-7]. Torsional vibrations can lead to the 

redistribution of internal forces within the structure, exacerbate 

damage to local components, and even trigger overall 

instability. For instance, during the 1995 Kobe earthquake, 

several high-rise buildings experienced asymmetric damage 

due to torsional effects, further underscoring the importance of 

torsional control [8-9]. Therefore, the assessment and 

optimization of torsional performance have become central 

issues in the design and safety maintenance of high-rise 

buildings. 

Accurately assessing the torsional performance of high-rise 

buildings is crucial for ensuring their service safety. Currently, 

domestic and international codes primarily evaluate the 

torsional performance of structures indirectly through 

parameters such as the period ratio. Article 3.4.3 of the Chinese 

code Code for Seismic Design of Buildings (GB 50011-2010) 

[10] explicitly stipulates that the period ratio (the ratio of 

torsional period to translational period) should not exceed 0.9 

to avoid significant torsional irregularity; Article 4.3.5 of the 

Chinese code Technical Specification for Concrete Structures 

of Tall Buildings (JGJ 3-2010) [11] further specifies that 

strengthening measures are required when the period ratio 

exceeds 0.85. Similarly, the American ASCE 7-22 code also 

limits torsional effects through modal participation mass ratios 

[12]. However, these methods are largely based on theoretical 

models during the design phase and struggle to reflect the time-

varying characteristics of torsional performance during service 

due to material degradation, load variations, and accidental 

eccentricities [13-14]. 

To bridge the gap between theoretical models and real 

structures, there is an urgent need to obtain actual dynamic 

parameters of in-service buildings through Structural Health 

Monitoring (SHM) technology [15-17]. The period ratio, as a 

key indicator reflecting the torsional stiffness and mass 

distribution of a structure, can be dynamically updated through 

long-term monitoring data, thereby providing a more accurate 

assessment of the trends in torsional performance. However, 

there is currently a lack of research on the evaluation of in-

service torsional performance based on measured period ratios. 

This paper proposes a method for evaluating the torsional 

performance of in-service high-rise buildings based on 

measured period ratios, encompassing the following main 

aspects: Firstly, a theoretical relationship between the period 

ratio and the stiffness ratio, eccentricity, and radius of gyration 

is established using an equivalent cantilever beam model. 

Secondly, a probabilistic distribution of the period ratio is 

constructed using Latin Hypercube Sampling (LHS) and 

Kernel Density Estimation (KDE), and a four-level torsional 

performance classification standard is proposed. Finally, the 

engineering applicability of the method is validated using a 40-

story reinforced concrete frame-shear wall structure as an 

example. The research results provide new theoretical 

foundations and practical guidance for the assessment of 

torsional performance in in-service high-rise buildings. 

2 CLASSIFICATION METHOD FOR TORSIONAL 

PERFORMANCE LEVELS 

 Analysis of influencing factors of period ratio 

To facilitate analytical derivation and computational modeling, 

a series of idealized assumptions are implemented in the 

structural characterization of the target high-rise building. 

Specifically, the structural system is postulated to exhibit 

unidirectional eccentricity along the Cartesian coordinate 

system - that is, a deliberate offset is introduced between the 

center of mass and the center of stiffness exclusively in the X 

direction, while maintaining perfect spatial coincidence of 

these two critical centers in the orthogonal Y direction. This 

intentional asymmetrical configuration is adopted to isolate and 

Assessment method for torsional performance of high-rise buildings based on period 

ratio 
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investigate the torsional effects induced by eccentricity along a 

single principal axis, thereby simplifying the coupled lateral-

torsional vibration analysis. 

The entire high-rise building is abstracted as an equivalent 

cantilever beam element with prescribed geometric and 

material properties, as schematically illustrated in Figure 1. The 

rationale behind this modeling approach stems from multiple 

considerations: Firstly, the cantilever beam provides a 

mathematically tractable framework for solving equations of 

motion. Secondly, the unidirectional eccentricity assumption 

enables parametric investigation of torsion-translation coupling 

mechanisms without introducing unnecessary computational 

complexity from bidirectional interactions.  

 

Figure 1. Schematic diagram of structural eccentricity. 

 

The undamped free vibration motion equation of the structure 

is 

 [
𝑀

𝐽𝑐
] [
𝑢̈𝑦

𝜃̈
] + [

𝐾𝑦 𝑒𝑥𝐾𝑦
𝑒𝑥𝐾𝑦 𝐾𝜃

] [
𝑢𝑦
𝜃
] = [

0
0
] (1) 

where 𝑀 is the mass of the high-rise building; 𝐽𝑐  is the mass 

moment of inertia about the center of mass, 𝐽𝑐 = 𝑀𝑟2, and 𝑟 is 

the radius of gyration of the structure relative to the center of 

mass; 𝑢𝑦 is the translational displacement in the Y direction; 𝜃 

is the torsion angle of the high-rise building; 𝐾𝑦  is the 

translational stiffness in the Y direction, 𝐾𝑦 = ∑ 𝐾𝑦𝑖
𝑛
𝑖=1 , and 

𝐾𝑦𝑖 is the horizontal lateral stiffness of the structural member 

in the Y direction; 𝐾𝜃  is structural torsional stiffness, 𝐾𝜃 =
∑ 𝐾𝑥𝑖𝑥𝑖

2𝑛
𝑖=1 +∑ 𝐾𝑦𝑖𝑦𝑖

2𝑛
𝑖=1 , 𝐾𝑥𝑖  and 𝐾𝑦𝑖  are the horizontal 

lateral stiffness of the structural member in the X and Y 

directions respectively, and 𝑥𝑖 and 𝑦𝑖  are the distances from the 

component to the mass center, respectively; 𝑒𝑥  is the 

eccentricity in the X direction. 

Assume the response of the structure is 

 𝑢𝑦(𝑡) = 𝐴𝑦sin⁡(𝜔𝑡 + 𝛼) (2) 

 𝜃(𝑡) = 𝐴𝜃sin⁡(𝜔𝑡 + 𝛼) (3) 

Substituting equations (2) - (3) into equation (1) and 

simplifying them, the circular frequency of the structure can be 

obtained. Assuming 𝜔1 < 𝜔2,  

 

{
 
 

 
 
𝜔1 =

√(𝐾𝜃+𝑟
2𝐾𝑦)−√(𝐾𝜃−𝑟

2𝐾𝑦)
2
+4𝑟2𝑒𝑥

2𝐾𝑦
2

2𝑀𝑟2

𝜔2 =
√(𝐾𝜃+𝑟

2𝐾𝑦)+√(𝐾𝜃−𝑟
2𝐾𝑦)

2
+4𝑟2𝑒𝑥

2𝐾𝑦
2

2𝑀𝑟2

 (4) 

Defining stiffness ratio 𝑆𝑦 = 𝐾𝜃/𝐾𝑦 , equation (4) is 

transformed into the following form: 

 
𝑇2

𝑇1
=

2𝜋

𝜔2
2𝜋

𝜔1

=
𝜔1

𝜔2
= √

(𝑆𝑦+𝑟
2)−√(𝑆𝑦−𝑟

2)
2
+4𝑟2𝑒𝑥

2

(𝑆𝑦+𝑟
2)+√(𝑆𝑦−𝑟

2)
2
+4𝑟2𝑒𝑥

2
 (5) 

From equation (5), it can be seen that the ratio of the second-

order period to the first-order period 
𝑇2

𝑇1
 depends on 𝑆𝑦 , 𝑟 and 

𝑒𝑥. 

For eccentric structures, each vibration mode of the structure 

is composed of the superposition of translational vibration 

mode and torsional vibration mode. Substitute equation (4) into 

equations (1) - (3) to solve the ratio of torsional amplitude to 

translational amplitude 
𝐴𝜃

𝐴𝑦
 in the vibration mode. 

By substituting 𝜔1,  

 
𝐴𝜃

𝐴𝑦
=

(𝜂𝑦−𝑟
2)−√(𝜂𝑦−𝑟

2)
2
+4𝑟2𝑒𝑥

2

2𝑟2𝑒𝑥
 (6) 

By substituting 𝜔2,  

 
𝐴𝜃

𝐴𝑦
=

(𝜂𝑦−𝑟
2)+√(𝜂𝑦−𝑟

2)
2
+4𝑟2𝑒𝑥

2

2𝑟2𝑒𝑥
 (7) 

Equations (6) and (7) are the ratios of the amplitudes of the 

torsional direction to the translational direction in the first-

order vibration mode and the second-order vibration mode, 

respectively. 

For in-service high-rise buildings, the radius of gyration 𝑟 
remains constant; stiffness ratio 𝑆𝑦 varies with the increase in 

service years; due to variations in live load distribution during 

the service life of the structure, as well as changes in stiffness 

of individual components over the same period, leading to 

shifts in the stiffness center, therefore the eccentricity 𝑒𝑥 varies 

throughout the entire service life of the structure. The 

relationship between the torsional displacement ratio, stiffness 

ratio and eccentricity is shown in Figure 2. 

As can be seen from Figure 2, the curve of the period ratio is 

divided into two parts: the rising section on the left side and the 

falling section on the right side. According to the calculations, 

for the rising section on the left side, the first-order vibration 

mode is torsion, and the second-order vibration mode is Y-

direction translation. For the falling section on the right side, 

the first-order vibration mode is Y-direction translation, and the 

second-order vibration mode is torsion. Regarding the 

eccentricity, as the eccentricity increases, the ratio of the 

second-order period to the first-order period decreases. 
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(a) 𝑟 = 5m 

 

 
(b) 𝑟 = 10m 

 

 
(c) 𝑟 = 15m 

 

 
(d) 𝑟 = 20m 

Figure 2. Period ratio curve. 

 

 Performance level classification method 

As mentioned in Section 2.1, for in-service high-rise buildings, 

the radius of gyration 𝑟 remains constant, while the eccentricity 

𝑒𝑥 and stiffness ratio 𝑆𝑦 may vary. Regarding eccentricity, the 

Chinese code Code for Seismic Design of Buildings (GB 

50011-2010) defines torsional irregularity in Clause 3.4.3 as 

follows: "Under the specified horizontal forces with accidental 

eccentricity, the ratio of the maximum value to the average 

value of the elastic horizontal displacement (or story drift) of 

the lateral force-resisting members at both ends of a story is 

greater than 1.2." Additionally, Clause 3.4.5 of the Chinese 

code Technical Specification for Concrete Structures of Tall 

Buildings (JGJ 3-2010) stipulates: "Under the specified 

horizontal seismic forces considering the influence of 

accidental eccentricity, the maximum horizontal displacement 

and story drift of the vertical members of a story should not 

exceed 1.2 times the average value of the story for Class A 

high-rise buildings, and should not exceed 1.5 times the 

average value of the story. For Class B high-rise buildings, 

mixed structures exceeding the height of Class A, and complex 

high-rise buildings referred to in Chapter 10 of this 

specification, the maximum horizontal displacement and story 

drift should not exceed 1.2 times the average value of the story, 

and should not exceed 1.4 times the average value of the story." 

Both code provisions mention the concept of "accidental 

eccentricity". Accidental eccentricity refers to the incomplete 

coincidence of the mass center and the stiffness center of a 

structure due to factors such as construction errors, material 

inhomogeneity, and uncertain load distribution, which results 

in additional torsional effects under external loads. To account 

for this uncertainty, seismic codes typically specify the 

introduction of an accidental eccentricity in calculations, 

generally taken as 5% of the structural plan dimensions. 

Therefore, it can be assumed that during the service life of the 

structure, the eccentricity follows a normal distribution, where 

the mean value of the eccentricity is the eccentricity of the 

design model. When the eccentricity is the mean value plus 5%, 

the distribution function of the eccentricity approaches 1 (here 

set to 0.999). This can be expressed in the following formula: 

 𝜇𝑒𝑥 = 𝑒𝑥𝑀 (8) 

where 𝑒𝑥𝑀  is the structural eccentricity obtained from the 

design model. 

Assuming the distribution function of the eccentricity 𝑒𝑥 is 

𝐹𝑒𝑥 , converting it to a standard normal distribution allows for 

the determination of the variance of the eccentricity 𝑒𝑥. 

 𝐹𝑒𝑥(𝑒𝑥𝑀 + 𝑎 ∙ 5%) ≈ 0.999 (9) 

 𝜎𝑒𝑥𝑀 =
𝑒𝑥𝑀+𝑎∙5%−𝑒𝑥𝑀

3
=

𝑎∙5%

3
= 0.01667𝑎 (10) 

 𝜎𝑒𝑥
2 = 0.000278𝑎2 (11) 

where 𝑎 is the length of the structure in the X direction. 

Assuming the initial stiffness ratio of the structure is the same 

as that in the structural design model or digital twin model, the 

degradation function of the stiffness ratio follows an 

exponential function. That is, the variation of the stiffness ratio 

with service years, denoted as 𝑆𝑦(𝑡), is as follows: 

 𝑆𝑦(𝑡) = 𝑆𝑦𝑀𝑒
−0.005𝑡 (12) 
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where 𝑆𝑦𝑀  is the structural stiffness ratio calculated by the 

structural design model or digital twin model; 𝑡 is the service 

time in years. 
Since 𝑡  is a deterministic variable (assuming 𝑡  ranges 

between 0 and 50), 𝑆𝑦  is a deterministic function of 𝑡 . 

Consequently, the distribution of 𝑆𝑦  is contingent upon the 

distribution of 𝑡 . Assuming that 𝑡  follows a uniform 

distribution, the probability density function of 𝑆𝑦  can be 

derived as follows: 

 𝑓𝑆𝑦(𝑆𝑦) = 𝑓(𝑥) = {

4

𝑆𝑦
, 𝑆𝑦𝑀𝑒

−0.005×50 ≤ 𝑆𝑦 ≤ 𝑆𝑦𝑀

0, others
 (13) 

A Latin Hypercube Sampling (LHS) of 𝑒𝑥  and 𝑆𝑦  is 

performed, where 𝑒𝑥  follows a normal distribution and 𝑆𝑦 

adheres to the distribution specified in equation 13. LHS is a 

statistical method for generating a near-random sample of 

parameter values from a multidimensional distribution. It is a 

form of stratified sampling that ensures that the entire range of 

each variable is represented in the sample. The method divides 

the distribution of each variable into intervals of equal 

probability and selects one sample from each interval. This 

approach guarantees that the samples are more evenly 

distributed across the range of possible values than in simple 

random sampling, leading to more precise and reliable results, 

especially in the context of computer simulations and 

sensitivity analyses. LHS is particularly useful when dealing 

with complex models that require significant computational 

resources, as it can reduce the number of simulations needed to 

achieve a given level of accuracy.  

The period ratio of the sample is calculated according to 

equation (5), and the Probability Density Function (PDF) 𝐹 of 

the period ratio is obtained by fitting using Kernel Density 

Estimation (KDE). KDE is a non-parametric statistical method 

used to estimate the probability density function of a random 

variable. Unlike parametric methods, KDE does not require any 

assumptions about the data distribution (e.g., normal 

distribution) and instead estimates the density function directly 

from the data itself. The core idea is to treat each data point as 

the center of a "kernel function" (e.g., Gaussian kernel, uniform 

kernel, etc.) and then sum all these kernel functions to form a 

smooth density curve.  

After obtaining the probability density function of the period 

ratio 
𝑇2

𝑇1
, it can be integrated to derive the distribution function 

of the period ratio 
𝑇2

𝑇1
. Based on this distribution function, the 

torsional performance can be classified into four levels, as 

shown in Figure 3. Specifically, 
𝑇2

𝑇1
|
1
= 𝐹−1(0.20) , 

𝑇2

𝑇1
|
2
=

𝐹−1(0.35) , 
𝑇2

𝑇1
|
3
= 𝐹−1(0.50) , 

𝑇2

𝑇1
|
4
= 𝐹−1(0.65) , 

𝑇2

𝑇1
|
5
=

𝐹−1(0.80) , 
𝑇2

𝑇1
|
6
= 𝐹−1(0.95) . The ordinate in Figure 3 

represents the closeness coefficient, which is a concept within 

the Fuzzy Analytic Hierarchy Process (FAHP). FAHP is a 

decision analysis method that integrates fuzzy mathematics 

with the Analytic Hierarchy Process (AHP), designed to 

address issues of uncertainty and fuzziness. In FAHP, the 

closeness coefficient quantifies the proximity of alternatives to 

the ideal solution. The closeness coefficient indicates the 

optimality of the alternatives, with values approaching 1 

signifying more ideal solutions. This coefficient offers 

decision-makers a straightforward metric for ranking 

alternatives and is extensively applied in multi-criteria 

decision-making scenarios. 

 

Figure 3. Membership function of torsional performance. 

 

3 ENGINEERING APPLICATION 

 Project overview 

The high-rise building under investigation is a 40-story 

reinforced concrete frame-shear wall structure, with a total 

height of 150 meters. The lower section (1st to 5th floors) has 

a story height of 4.8 meters, while the upper section (6th to 40th 

floors) maintains a uniform height of 3.6 meters per story. In 

the longitudinal direction, the structure comprises five spans 

measuring 8.4 m, 5.7 m, 5.7 m, 5.7 m, and 8.4 m respectively, 

resulting in a total length of 33.9 meters. Transversely, the 

building features four spans with dimensions of 8.4 m, 8.4 m, 

3.9 m, and 7.5 m, accumulating to a width of 28.2 meters. The 

structural design incorporates a floor dead load of 5.0 kN/m² 

and a live load of 2.0 kN/m². Detailed specifications regarding 

component dimensions and material properties are provided in 

Table 1, while Figure 4 illustrates the structural layout of the 

high-rise building. A comprehensive three-dimensional finite 

element model was developed using midas Gen software, with 

the complete model visualization presented in Figure 5. 

Table 1. Basic information of beams, columns, and shear 

walls. 

Component 

type 
Floor Size Material 

Column 

1-5 900mm×900mm C60 

6-20 800mm×800mm C60 

21-40 700mm×700mm C60 

Beam 

1-5 500mm×1000mm C60 

6-20 400mm×800mm C60 

21-40 300mm×600mm C60 

Coupling 

Beam 

1-5 500mm×1000mm C60 

6-20 400mm×800mm C60 

21-40 300mm×600mm C60 

Shear Wall 

1-5 Thickness 500mm C60 

6-20 Thickness 400mm C60 

21-40 Thickness 300mm C60 
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Figure 4. Layout plane of the high-rise building. 

 

 

Figure 5. Three-dimensional finite element model. 

 

It can be observed that the structure does not exhibit 

eccentricity in the X direction, but does have eccentricity in the 

Y direction. The modal analysis of the structure was conducted 

using midas Gen, and the results are presented in Table 2 and 

Figure 6. The first mode shape corresponds to translational 

motion in the Y direction with a period of 4.338 seconds. The 

second mode has a period of 3.424 seconds and is primarily 

characterized by translational motion in the X direction, with a 

component of torsional motion. The third mode shape is 

torsional, with a period of 2.321 seconds. 

Table 2. Vibration period of the structure. 

No. Period(s) Direction 

1 4.338 Y 

2 3.424 X 

3 2.321 T 

 

 Torsional performance levels 

This paper separately discusses the methodology for classifying 

the torsional performance levels of structural service based on 

the ratio of the third-order period to the second-order period 
𝑇3

𝑇2
. 

Initially, the radius of gyration 𝑟 of the structure is obtained 

based on the finite element model. For the high-rise building 

examined in this study, 𝑟 = 13.50m. 

 

   
(a) First order (b) Second order (c) Third order 

Figure 6. Structural vibration mode. 

 

First, values of 𝑒𝑦  and 𝑆𝑥  are sampled using LHS, as 

illustrated in Figure 7 (a) and (b), respectively, with 𝜇𝑒𝑦 =

1.35m, 𝜎𝑒𝑦
2 = 0.2211, and 𝑆𝑥𝑀 = 391.63. The 

𝑇3

𝑇2
 values for 

the samples are then calculated using equation (5), as shown in 

Figure 7 (c). 

 
(a) 𝑆𝑥 

 

 
(b) 𝑒𝑦 
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(c) 

𝑇3

𝑇2
 

Figure 7. Latin Hypercube Sampling of parameters. 

 

The KDE was applied to fit Figure 7 (c), resulting in the 

probability density distribution function of the period ratio, as 

illustrated in Figure 8. Subsequently, the cumulative 

distribution function of the period ratio was obtained by 

integrating the probability density function, which is depicted 

in Figure 9. The membership function of the in-service 

torsional performance of the structure is shown in Figure 10. 

 

Figure 8. Probability density function of 
𝑇3

𝑇2
. 

 

 

Figure 9. Cumulative distribution function of 
𝑇3

𝑇2
. 

 

 

Figure 10. Membership function of torsional performance. 

 

4 CONCLUSIONS 

This paper proposes a method for evaluating the torsional 

performance of in-service high-rise buildings based on the 

measured period ratio, establishing a relationship between 

period ratio, stiffness ratio, eccentricity, and radius of gyration. 

Using Latin Hypercube Sampling and Kernel Density 

Estimation, a four-level classification method for torsional 

performance was developed and validated through a 40-story 

reinforced concrete frame-shear wall structure. The findings 

provide a new theoretical and practical approach for assessing 

torsional performance, bridging the gap between design models 

and real-world structural behavior. 
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ABSTRACT: To determine damage and its effects, dense time series data is required, along with information from other sources 

like temperature changes that influence the main damage parameter and the structure itself. This allows the assessment of structural 

behavior, separating periodic and temperature-related effects from damage and ageing-related changes in load-bearing capacity. 

However, existing monitoring systems often lack proper documentation on measured values and their limits. Analog systems, 

suitable for early service life monitoring, provide readings at long intervals (years). Poor accessibility to remote measuring points 

further limits comprehensive time series data, including temperature correlations and other environmental correlations. 

This article presents an approach that can be used to digitize different types of sensors and measuring devices in order to enable 

the autonomous and continuous generation of measurement data. The examples range from displacement transducers to force 

measuring devices, which were already installed in analogue form on existing civil engineering structures. The aim is to use 

digitalization to demonstrate a simple and cost-effective approach on using existing measurement technology as an initial basis 

for giving a statement about the behavior of the structure, its state of preservation and thus, in addition to supplementing the 

inspection process, also serve as a starting point for further monitoring. 

 

KEY WORDS: SHM, monitoring, retrofitting, structural behavior, autonomous sensors, digitalization. 

1 MONITORING AND STRUCTURAL BEHAVIOUR 

 Introduction 

Bridges, tunnels, retaining walls, and similar structures are 

critical components of road and rail infrastructure. Over time, 

these structures inevitably age and deteriorate, necessitating 

regular maintenance and thorough safety assessments in form 

of inspections. As traffic volumes and loads continue to rise, 

maintenance intervals are shortened, and budget is limited such 

evaluations become even more essential. 

Given the high costs of maintenance and the even greater 

expense of premature renewals, accurate assessment and 

prediction models are crucial (predictive maintenance). These 

models must be based on precise, objective, and physically 

accurate data that can be derived from inspections, sample 

testing, and monitoring. 

Most infrastructure operators have their assets already 

digitalized and manage those via databases and graphical 

interfaces. This already digitalized data contains master data, 

drawings, information from the newly built structure and 

sometimes 3D-presentations of the structure. Periodic data on 

the state of preservation, such as inspection reports and 

laboratory analyses, are crucial for assessment. However, they 

are often not yet digitalized, preventing automated processing. 

As part of the research project Candice, which was done for 

the Austrian Motorway Operator (ASFiNAG), a database with 

a graphical web interface has already been established to 

address this issue [1]. Additionally, forecasts for maintenance 

measures and a condition index have been calculated [2, 3]. 

Monitoring data was also incorporated into these calculations. 

While data fusion was still largely manual, the approach 

demonstrated the effectiveness of combining monitoring data 

with condition data from other investigations. 

This paper focuses on the transfer from a mostly manual 

reading of analogue measurement devices to an automated data 

transfer from the object under consideration to a data-platform, 

where an automatic storage is done and an individual display 

of relevant data to the user is possible. The digitalization 

especially with IoT devices allows for a constant flow of data, 

that offers several advantages for the assessment of structures: 

• Direct measurement of physical values, ensuring accuracy 

vs. no subjective/false readings; 

• Long-term data collection, capturing variations due to time 

of day, seasonal changes, temperature, humidity vs. 

usually 1 value per year or less at different seasons and 

environmental conditions influencing the measurement; 

• Capture of rare or extreme events and influences of effects 

due to extreme weather conditions, earthquakes, sudden 

load impacts, settlements; 

• Quantitative data providing objective insights for decision 

making rather than subjective evaluations based on a visual 

inspection of the structure; 

• Elimination of human bias, ensuring reliability in 

assessments; 

• Basic data set for extrapolation purposes related to the 

future behaviour of the structure; 

• Real time integration with simulation and prediction 

models, enhancing cost planning, maintenance planning 

and resource management. 

Digitalization of existing measurement equipment as a valid basis for monitoring and 

structural behavior  
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In inspections the influence of temperature is frequently 

underestimated or too conservatively interpreted. In general, 

physical measures that are affected by environmental 

conditions are often difficult to assess, this holds for loads of 

pre-stressed anchors, inclinations, or displacements of 

components. As mentioned earlier accurate information is 

crucial to be used as a valid basis for decisions related to the 

maintenance, the safety assessment of the object and overall, 

the asset management combining both. 

By leveraging monitoring, infrastructure managers can make 

informed decisions, optimize maintenance strategies, and 

extend their structures lifespan, making it a cost-effective 

solution. The description of the system used here clearly shows 

that digitalization and installing monitoring equipment are no 

longer hurdles. 

 IoT Type Monitoring 

The IoT monitoring system presented and used in the following 

examples is an autonomous, innovative solution that enhances 

infrastructure monitoring for clients and contractors. It is in 

operation since many years across various applications and has 

already proven its reliability, robustness, and ease of use. 

The system comprises of three main components as 

schematically shown in Figure 1: 

1. On-site installation – sensors and IoT nodes placed on 

infrastructure assets are easily applicable even in areas 

without power access; 

2. Data transmission network – nodes wirelessly transmit 

data to the platform for real-time assessment and can even 

be included into warning and alarm models; 

3. Data platform – a secure database with evaluation models 

and web dashboards. 

 

The design of the system for an autonomous operation, with 

battery-powered sensor nodes is capable of functioning for up 

to 15 years. Eliminating the need for fixed power sources 

significantly reduces installation complexity and associated 

disruptions, such as traffic closures. Data transmission is 

encrypted and automated, ensuring secure and reliable 

monitoring. 

Key features and advantages of such an IoT system are: 

• Plug & Forget: Fully automated system monitoring, with 

alerts for any issues; 

• Edge Computing (AIoT): Onboard processing reduces 

data load and enables intelligent evaluation; 

• Flexible Data Integration: External data sources can be 

fused for enhanced analysis; 

• Instant Alerts: Critical conditions trigger automatic 

notifications via email, SMS, or warning and alarm 

systems; 

• Real-Time Access: Mobile Apps and web-based 

dashboards provide instant insights - no additional 

software required; 

• Data transmission is encrypted and automated, using the 

latest wireless technology. 

 

The sensor node (16 × 11 × 7 cm) is designed for harsh 

environmental conditions and ensures robust performance. It 

provides power to sensors, controls measurement cycles, stores 

data, and transmits information via low power WAN (1.5 km 

range in urban areas, 20+ km in open environments). The node 

supports multiple sensor connections (1, 2, or 6 channels), 

enabling flexible deployment across different assets. 

The system requires no on-site configuration or specialized 

technical knowledge, significantly simplifying installation. 

Proper sensor mounting remains critical for ensuring 

measurement accuracy, though once installed, the network 

configuration and data transfer are entirely automated and need 

no interaction by the installation team. Furthermore, the system 

supports a wide range of sensor types, including: 

• Displacement, strain, and force gauges; 

• Pressure and temperature sensors (for air, solids, and 

liquids); 

• Humidity sensors (ambient and material-based, including 

dew point calculations); 

• Pluviometers and acoustic sensors for environmental 

monitoring; 

• Corrosion monitoring and cathodic protection assessment; 

• Water level measurement 

• Water content and pore pressure determination in soils; 

• Inclinations (for piers, retaining walls, mast, settlement of 

buildings and excavations …). 

 

Energy efficiency is a key design consideration, with 

preference given to low-power sensor alternatives to maximize 

battery life.  

Figure 1: Interplay of the monitored assets (sensors and nodes), the data transmission, the platform, and the user. 
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2 SELECTED APPLICATIONS  

 Reasons and benefits 

As structures age, the parameters used to assess structural 

safety and durability worsen. This is particularly crucial for 

structures that approach their planned service life or which are 

in environments where environmental or load parameters 

change significantly over time. Examples here are the ground 

water conditions in geotechnical engineering or the impact due 

to winter maintenance such as de-icing agents. Due to the 

ageing infrastructure in Europe and most parts of the world 

digitalization of existing structures can be one tool to help 

address these issues with respect to longer lasting and safe 

infrastructure especially along road and railway networks. 

By implementing dense monitoring systems, structures can 

be evaluated based on real-time, precise measurements rather 

than relying on conservative estimates dictated by standards. 

This approach can offer the possibility to extend the service life 

of structures by accurately measuring loads and issuing alerts 

before critical situations arise. The importance of such 

measurements increases as structures age, making 

digitalization even more crucial for older structures compared 

to newer ones. 

However, most of the already installed measurement 

equipment is still analogue, nevertheless a wide range of these 

can be digitalized. In geotechnical engineering structures are 

often equipped with extensometers and inclinations for the 

determination of movements, load cells for the measurement of 

the currently applied anchor force and additionally, 

temperature and humidity measurements are available. 

In the following some applications will be presented showing 

the potential of digitizing already existing measurement 

equipment and therefore offering an easy and cost-effective 

first insight into the behavior of a structure. 

 Digitalization of anchor load measurements 

The retaining wall discussed here is shown in Figure 2 and is in 

service since the mid-1990s and some anchors are equipped 

with analog load measurement systems often applied in 

Austria.  

 

 

Figure 2: View of the anchor wall. 

In the course of an inspection, no serious defects or damages 

were found on the wall and the adjacent areas and a generally 

good state of preservation was attested. However, it was 

recognised that some of the anchor load measuring devices 

were only partially functional. Furthermore, a comprehensive 

time series regarding the anchor loads was not given. 

For this reason, it was investigated how the existing hydraulic 

load cells could be reprocessed for analogue readings and how 

digitalisation would be possible. The digitalization solely 

required an additional hydraulic connection and a smart node, 

which could easily be installed within one hour at the site. 

 

 

Figure 3: Time-series of anchor load measurements on three 

anchors along a cross-section. 

Measurements show that the anchor loads are temperature-

dependent, with significant variations throughout the year as 

shown in Figure 3. The observations further show that the 

higher capacity hydraulic load cell (indicated as LPM 1000) 

exhibits smaller force variations, than the two smaller (LPM 

750) ones. 

 

 

 

Figure 4: Correlation between anchor load (ordinate) and air-

Temperature (abscissa) over a periode of 1.5 years; top: M1 

(LPM 750); bottom: M2 (LPM 1000). 
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Figure 4 illustrates the correlation between currently applied 

anchor load and air temperature for the two different LPM 

sizes, which were 750kN and 1000kN as given in the 

designation. It can be easily observed that there is an almost 

linear correlation between the anchor load measured and the air 

temperature. Thus, the change of the anchor load versus the air 

temperature can be calculated for: 

 

1.55 kN/°C LPM 750 

 

1.10 kN/°C LPM 1000 

 

These values may be unique for the configuration found at 

this site and may not be applicable to other sites or structures. 

Nevertheless, those ranges of temperature related measurement 

results for anchor load plates are in alignment with the 

experience from anchor wall inspections as well as analogue 

readings of such measurement equipment. 

 Digitalization of extensometers 

Figure 5 shows a detail of a extensometer of a retaining wall 

that is in service since decades. Based on observations during 

an inspection, it was recommended to shorten the measurement 

intervals, as the prevailing boundary conditions were now 

assessed to be more critical. In order to bridge the period until 

the structural reinforcement could be carried out, a suitable 

permanent monitoring system was implemented.  

    The extensometers were upgraded with nodes and sensors so 

that data was immediately available online and limits could be 

monitored 24/7. During the dense monitoring phase, a torrential 

rain event changed the environmental conditions even more. 

The new system was able to detect this immediately and action 

could be taken if necessary. Later, during the construction 

phase for the installation of new prestressed grouted anchors, 

valuable insights were also gained regarding the impact of 

anchor drilling on the system behavior of the structure. 

    Other applications include anchor force monitoring, bridge 

joints, pier tilting and deflection. Autonomy in the field is a 

must for economical implementation or upgrade of such 

monitoring. 

 

 

Figure 5: Upgrade of existing extensometer for 24/7 and 

online measurement. 

 

 Static and dynamic crack width measurements  

Crack monitoring was conducted on the center span of a three-

span (45/70/45 m) cantilever bridge [4], where cracks were 

observed in the bottom plate and the webs of the hollow box. 

These cracks occured in the transition zone, where the floor 

slab shifts from prestressed to non-prestressed, near the 

anchorages. Cracks in the floor slab are located within the 

prestressed zone, inclined at approximately 45° to the bridge 

axis, while those in the web follow a similar angle with 

continuous prestressing in this area. 

Crack width monitoring, represented in green in Figure 6, 

covers five to six equally spaced cracks (~20 cm apart). The 

cracks run perpendicular to the measurement indications, with 

individual widths reaching up to 0.3 mm and a total width (sum 

of individual cracks) of up to 1.2 mm. Each group of cracks is 

monitored collectively, with the total crack width 

recorded.Warning thresholds were set for immediate detection 

of critical crack widths. Figure 7 illustrates crack width 

variations over a year. While significant, these variations 

remain within acceptable limits. Temperature measurements 

were incorporated to account for thermal deformations, as 

shown in Figure 7. The right-side diagram reveals that lower 

temperatures generally correlate with greater total crack 

widths, though the temperature effect is minimal.Detailed 

investigations revealed sudden spikes in crack width readings, 

suggesting abrupt crack openings. These spikes were detected 

in measurements taken at 15-minute intervals, indicating that 

dynamic loads were not fully captured by these static readings. 

To assess dynamic loads, the system was switched remotely to 

dynamic measurement mode, eliminating the need for on-site 

visits. In this mode, 10 measurements per second were taken 

and processed in the node (edge computing), evaluating 

maximum, minimum, and mean values over 5-minute 

intervals.On the platform, the dynamic range of crack width 

was calculated as the "Total Crack Width Range @ 5-minutes" 

(TCWR), representing the difference between maximum and 

minimum values within a 5-minute slot. Figure 8 shows the 

TCWR over a week, highlighting significant variations. During 

weekends, the TCWR remains low due to Austria's truck 

driving ban, with a notable increase at 22:00 on Sundays when 

the ban is lifted, peaking at 0.4 mm. Similar peaks occasionally 

occurred at 19:00 on weekdays.The highest TCWR (0.4 mm) 

was used to calculate the stress range in the reinforcement. 

Since mean stress is less influential for such steels, stress range 

remains the dominant fatigue parameter. The stress range 

calculation followed Eurocode 2 but incorporated refined 

parameters from literature [5]. Results indicated a dynamic 

stress range of ~90 N/mm², well below critical limits. 

Combined with static calculations of mean stress, the findings 

confirm that reinforcement stresses are not critical. 
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Figure 6:  Overview of the three-span cantilever bridge. The monitoring of the total crack width is shown in green and the cracks 

run perpendicular to the measurements. 

 

 

Figure 7: Variation of crack width for one year. Left diagram shows the values vs. time and the right diagram shows the values vs. 

concrete temperature. 

 

 

Figure 8: Max-Min-range of crack with for one week. 
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Energy consumption in dynamic measurement mode is 

higher due to continuous recording, processing, and data 

transmission at higher intervals. Battery life in this mode is 

estimated at ~1 months. However, after one week in dynamic 

mode, the system was switched back to 15-minute intervals for 

routine crack monitoring. The system has been operational for 

4.5 years, with battery replacement expected in over six years. 

The digitalization of the crack measurement was here an 

absolute game change because with manual readings it would 

have been enormously costly, the readings would not have been 

so dense, the temperature dependence would have been 

difficult to determine and dynamic measurements would not 

have been possible. through the digitalization of crack 

measurement, not only were costs saved by reducing on-site 

visits (and costs for lifting platforms), but the measurements 

also provided significantly more assessment options. This 

reduced the number of unknown effects and enabled a more 

detailed analysis, leading to a focused, durable, and cost-

efficient rehabilitation. 

 

3 DESIGN OF EXISTING STRUCTURES WITH AN 

INCREASED KNOWLEDGE LEVEL 

There are currently only limited technical and legal guidelines 

on how to deal with existing infrastructure - especially with 

regard to existing damage or defects. Although there are 

already corresponding principles and concepts for this in 

maintenance and asset management, there is still a lack of 

corresponding guidelines and regulations, particularly in terms 

of recalculation and assessment. 

Although the application of numerical models and the use of 

high-quality material laws can be used to define the bandwidths 

here, realistic modelling - especially of damage - is only 

possible to a limited extent. An example of this can be found in 

bridge construction. ÖNORM B 4008-2 [6] has laid the 

foundation for the recalculation of existing structures. Here, for 

example, the load models can be adjusted based on monitoring 

the traffic loads. This thus corresponds to a real load, which in 

turn can enable a more truthful design of the component loads 

and, above all, the deformations. 

Furthermore, the integration of monitoring systems into this 

process could make a significant contribution. With regard to 

the difficulties of verifying the serviceability limits, the models 

can be adapted to a digital twin by comparing them with 

monitoring results. Based on such processes, damage patterns 

and their effects on the load-bearing behavior can also be taken 

into account more accurately. 

4 CONCLUSIONS & SUMMARY 

Using an IoT-based monitoring system provides a scalable, 

autonomous, and cost-effective approach to long-term 

infrastructure assessment. Its combination of wireless 

communication, edge computing, and real-time data processing 

enhances decision-making for maintenance and safety 

assessments. By eliminating complex on-site configurations 

and reducing energy consumption, such systems offer a robust 

and sustainable solution for modern infrastructure monitoring 

that does not require extensive training of workers on site. 

The digitalization of existing structures is essential for 

extending the service life and ensuring safety, especially as 

ageing and deteriorate prolong. Many structures, particularly in 

geotechnical and structural engineering, already have 

measurement systems in place, such as extensometers, 

inclinometers, and load cells. By upgrading these systems with 

modern sensors and online monitoring, real-time data can 

replace conservative assumptions, enabling more precise 

assessments. This helps detect critical changes early, 

preventing failures and reducing maintenance costs. 

As infrastructure worldwide continues to age, digitalization 

becomes increasingly important to maintain structural integrity 

efficiently. Furthermore, with the progression of climate 

change-related effects such as the rise in mean temperature or 

the more frequent occurrence of torrential rainfall events, a 

more rapid increase in possible damage is to be expected, 

especially for civil infrastructure. Autonomous, cost-effective 

monitoring solutions can therefore offer a new possibility for 

monitoring, health inspection and structural assessment and can 

be seen as a valid basis for the asset management and the 

decision making related to it. 

The presented applications demonstrate how existing 

measurement devices can be seamlessly integrated into digital 

systems, providing valuable insights for long-term structural 

health management. 
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ABSTRACT: Installing and maintaining structural health monitoring (SHM) systems on infrastructure assets can be expensive. 

These systems may produce large volumes of data that require processing and interpretation before the behaviour of the asset can 

be understood and assessed. However, in-depth understanding typically also requires knowledge of asset construction details and 

loading patterns. These data may be produced and stored using disparate systems, databases, and file types, creating additional 

challenges for data fusion and interoperability. 

 

Additionally, there has been an increasing trend towards public bodies providing access to their data either reactively because of 

freedom of information requests, or proactively to encourage use by researchers or to allow others to provide innovative products 

or services using the data in ways not anticipated by those generating and providing them. 

 

This paper presents potential strategies to leverage publicly available data from sources such as Network Rail Open Data Feeds, 

Rail Data Marketplace, OpenRail Data, OpenStreetMap and others, to contextualise and increase the value of SHM data. Data are 

considered from four instrumented railway bridges in the U.K., each of varying steel, concrete, and masonry construction. This 

paper presents scenarios by which these data might be used to gain network-level insights into other structures on the network and 

discusses the current difficulties in achieving this in practice. 

KEY WORDS: Open data, Structural Health Monitoring, Data formats, Digital Twins. 

1 INTRODUCTION 

It is becoming increasingly common for structural health 

monitoring systems (SHM) to be deployed to monitor key 

transport infrastructure such as bridges. Interpretation of data 

generated by these systems is often challenging and may 

require additional information. For example, to understand the 

strains or deflection of a bridge deck it is also necessary to 

understand the applied loading, including loading from passing 

vehicles, or from environmental factors such as wind, or 

temperature. This requirement usually results in additional 

sensors being specified for the monitoring system.  

For road bridges, detecting traffic can be done using lane 

occupancy sensors, cameras, or weigh-in-motion strips. As 

road traffic is usually completely unscheduled, there is no 

information known a priori about the traffic crossing the bridge. 

Interpreting these data can be challenging and it may be 

tempting to consider using machine learning (ML) techniques 

or computer vision to identify the type and position of vehicles. 

In some cases, such as in Bridge Weigh-In-Motion (B-WIM) 

systems where the primary purpose of the monitoring system is 

to weigh the road traffic [1], there may be sufficient sensor 

coverage to infer vehicle type directly from axle loads. 

However, in general vehicle identification may not be 

straightforward.  

This need not however be the case for most railways. Railway 

operations, timetables, and signalling are increasingly 

digitised. The railway is a known environment, at least as far as 

those responsible for operating the railway are concerned. 

These data are already used to provide information to 

passengers, e.g. through passenger information screens at 

stations. The data are also available to third-party developers of 

smartphone apps and websites. Leveraging data from railway 

timetables and signalling systems as an additional source of 

information for a bridge structural health monitoring system 

may mitigate the need for some sensors on the assets 

themselves. 

 Background 

In 2015 researchers at the Centre for Smart Infrastructure and 

Construction (CSIC) at the University of Cambridge installed 

fibre-Bragg grating (FBG) strain and temperature gauges on 

two new railway bridges during construction: Bridges IB5 and 

UB11 in Staffordshire, UK. 

 

Figure 1: Bridge IB5, Staffordshire, U.K. 

Bridge IB5, shown in Figure 1, is of steel beam construction 

with an in situ concrete deck carrying two railway tracks [2], 
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while Bridge UB11, shown in Figure 2, is constructed from 

nine pre-tensioned concrete beams with an in situ concrete 

deck. 

The initial goal of the project was to evaluate the potential 

benefits of installing instrumentation during construction and 

to create ‘self-sensing’ bridges as technology demonstrators for 

fibre-optic sensors and for Structural Health Monitoring in 

general. These were newly constructed bridges and so there 

was no concern regarding structural integrity, although the 

fibre-optic sensors were used to investigate creep and shrinkage 

of the concrete from pre-tensioning, through installation and 

after commissioning [3]. 

 

 

 

Figure 2. Bridge UB11, Staffordshire, U.K. 

Initially the two Staffordshire bridges did not have permanently 

installed fibre-optic analysers or data loggers as there was no 

permanent power supply available on site. However, a power 

supply was provided in 2021, and permanent monitoring 

systems were installed, with IB5 upgraded with additional 

accelerometers, cameras and laser-based axle sensors [4]. 

These accelerometers and axle sensors were added to augment 

the existing FBG-based strain instrumentation to create a 

bridge weigh-in-motion (B-WIM) system [5]. 

 

 

Figure 3. Bridge HDB-19, London, U.K. 

Subsequently, the centre also instrumented several other 

railway structures in the U.K. including Victorian and 

Edwardian masonry arch bridges, both of which were 

monitored due to potential concerns with the structures: Bridge 

HDB-19 in London – a three-span bridge instrumented with 

FBG strain and temperature sensors, and acoustic emission 

sensors; and CFM-5 in Yorkshire – a single span bridge 

instrumented with FBG strain sensors alongside conventional 

strain and displacement sensors and videogrammetry 

monitoring [6,7].  

 

Figure 4. Bridge CFM-5, Yorkshire, U.K. 

The monitoring systems on the two masonry arch bridges both 

used solar power. Despite using large deep-cycle batteries and 

multiple solar panels, these systems do not function 24 hours a 

day – the systems thus miss the structural response of the 

bridges for most train crossings. 

 Automated Train Identification 

To interpret strain, deflection or accelerometer data measured 

during a crossing of a train over a bridge it is usually necessary 

to know information about the type of train, including axle 

loads and spacings. Trains of similar types are likely to produce 

similar responses, whereas trains of differing types may result 

in responses that are more difficult to compare.  

Various techniques have been used to attempt train 

identification automatically. Alexakis et al. [8] limited their 

analyses of trains crossing the Marsh Lane viaduct, a masonry 

arch structure in Leeds, U.K., to only one type of train – the 

Class 185 three-car diesel multiple unit (DMU). Peak detection 

was used to identify train bogies and thereby determine which 

trains consisted of three carriages, while a comparison of 

readings from two adjacent arches was used to determine the 

train direction. The purpose of the monitoring was to evaluate 

whether the condition of the structure was deteriorating over 

time. Using a single train type allowed a comparison of the 

structural response from similar loading conditions on different 

dates. The trains identified as Class 185 trains represented 

approximately 50% of the traffic crossing the viaduct. Later 

analyses [9] identified other types of three-car train and 

Statistical Shape Analysis and a Support Vector Machine 

(SVM) was used to further classify these trains into Class 185, 

Class 155/158 and Class 170 respectively. The results were 

checked by visual observations of passing trains.  

Cheng et al. [10]  used gradient-based decision trees to 

identify and classify trains crossing Bridge CFM-5. A subset 

(4,900 out of 7,100) of train crossings identified using FBG 

strain data from July 2020 to October 2021 was labelled using 

timetable data obtained ‘by scraping publicly available 

records’. These labels were used to train a model using 

XGBoost [11] to classify trains based on features in the strain 

data such as number and spacing of peaks, amplitude and width 

of peaks etc. This model was then able to classify 930 further 

train crossing events over an 8-month period in 2023 achieving 

a classification accuracy of 97%. 

To classify trains crossing Bridge IB5 where axles spacing 

and loading are provided via the B-WIM system, the authors 

used t-SNE (t-Distributed Stochastic Neighbour Embedding) – 

a statistical technique to group crossing trains into distinct 
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groups by reducing the dimensionality of input data. Input data 

include the number of axles, axle spacing, speed, axle loads etc. 

t-SNE is used to reduce these to just two dimensions which can 

then be plotted.  

 

Figure 5. Groups of trains identified by t-SNE and DBSCAN 

unsupervised train classification 

A clustering algorithm such as the Density-Based Algorithm 

for Discovering Clusters in Large Spatial Databases with Noise 

(DBSCAN) [13]  is then used to distinguish separate groups of 

trains appearing as clusters within the plot.  

Table 1. Labels assigned to groups shown in Figure 5 by 

manual inspection of video from on-bridge cameras 

Label Description % 

A Class 390 9 car 2.28 

B Class 390 11 car 3.36 

C 2 x Class 221 5 car (10 car total) 1.08 

D Class 350 175 tonne Direction 1 6.64 

E New Measurement Train 0.09 

F Class 220 4 car + Class 221 4 car (8 cat total) 0.95 

G Class 221 4 car + Class 221 5 car (9 car total) 0.86 

H Class 221 5 car + Class 221 4 car (9 car total) 0.72 

I Class 220 4 car + Class 221 5 car (9 car total) 5.68 

J Class 221 5 car 11.27 

K Class 221 4 car 1.20 

L Class 350 165 tonne Direction 1 15.46 

M Class 220 4 car 9.85 

N Tamping Machine 0.18 

O Freight Locomotive 0.21 

P Class 221 5 car + Class 220 4 car (9 car total) 5.79 

Q Class 221 4 car + Class 220 4 car (8 car total) 1.14 

R Class 350 165 tonne Direction 2 14.41 

S Class 350 (axle detectors missed one axle) 0.13 

T 2 x Class 350 (8 car total) 0.08 

U 2 x Class 220 4 car (8 car total) 8.86 

V Freight Train 1.92 

W Class 350 175 tonne Direction 2 7.00 

 Outliers 0.84 

Figure 5 shows the plot resulting from 18,800 data points each 

representing a train. Only northbound trains are included due to 

limitations of the B-WIM system.  

By referencing plots of the axle loads and inspecting video 

recordings from the cameras positioned on the bridge, labels 

may be manually assigned to these groups. 

Some types of train such as the Class 220 Voyager and 

Class 221 Super Voyager look similar but may be distinguished 

using axle weights. Class 221 trains are heavier as they include 

tilting bogie mechanisms, absent on the Class 220. Similarly, 

Class 350 Desiro trains appear in four distinct groups on the 

plot. This is because there are two types within the class with 

differing total weights. This is likely because early Class 350 

trains have dual-voltage capability and are able to use either the 

third rail system or overhead line equipment, while later Class 

350s lack the third-rail pickup [14]. The axle loads are also 

asymmetric front to back relative to the direction of the train, 

which leads to two further groups. 

  Once labelled, the data can then be used as training data for 

ML techniques such as Random Forest [15] or XGBoost which 

can then be used to classify future trains. 

 

Other methods that may be used for classifying trains on Bridge 

IB5 utilise computer vision (CV) and video from the on-site 

cameras directly. One such CV technique uses a vertical strip 

of pixels from each frame of a video of a passing train to 

produce a single 2D image where the x-axis represents time. 

Examples of such images are shown in Figure 6. A manually 

labelled set of these images is then used to train a model from 

a partially pretrained convolutional neural network (CNN) with 

Keras [16] as the deep learning framework.  A dataset of 543 

trains was randomly selected, of which 462 were used for 

image classification, split 85%/15% between training and 

testing images, respectively.  

 

 

Figure 6. Examples of (a) Double 4-car Class 220/221, 

(b) 9-car Class 390, (c) 4-car Class 350, and (d) 5-car 

Class 221 trains approaching Bridge IB5. The still images are 

converted from moving video, with time along the x-axis 

The results obtained are presented in Table 2 using a confusion 

matrix. These show classification accuracies of around 90% on 

average across all train classes. The CNN-based model 

achieved high classification accuracy despite the relatively 

small dataset of 543 samples, demonstrating the merit of the 

approach. However, it also highlights limitations which may 

not necessarily be solved by increasing the size of the training 

dataset.  
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Table 2. Confusion matrix of CNN-based train classification 

algorithm. 

          Predicted 
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Class 
350 

220/1 
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220/1 
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6% 88% 6%  
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In particular, the model performs best when distinguishing 

visually distinct train types, but struggles with more subtle 

variations, such as between 4- and 5-car variants of Class 

220/221 trains. These misclassifications suggest that 

incorporating additional features beyond image data, such as 

train speed or axle spacing, could significantly enhance model 

performance. Future work will explore hybrid models that 

combine visual and sensor-based inputs, as well as alternative 

machine learning techniques such as recurrent neural networks 

(RNNs) for temporal data or multimodal architectures that can 

process both image and numerical inputs simultaneously. 

Computer vision techniques are however only applicable on 

SHM systems that incorporate cameras, such as the installation 

at Bridge IB5. It is also vulnerable to issues caused by poor 

lighting conditions such as at night or caused by inclement 

weather conditions leading to water or ice on the lens. 

2 PUBLICALLY AVAILABLE RAIL DATA SOURCES 

 Network Rail 

In the U.K. Network Rail is the organisation responsible for 

maintaining the track, signalling, most stations and operation 

of the railway in England, Scotland and Wales. It is not 

responsible for running train services, which are currently run 

by passenger and freight train operating companies (TOCs).  

Network Rail provides access to some of its operational data 

including dynamic data on signalling, train movement data, and 

real-time performance measures, along with static data such as 

scheduling data and background data needed to interpret these 

datasets. Accessing the data requires registering an account on 

the Network Rail Open Data Platform [17] which is free of 

charge. The dynamic data are streamed via an ActiveMQ 

message queue connection, which requires a constant 

connection. Static data is available to download daily or 

monthly. These datasets have been used by mobile app 

developers to provide real-time information to passengers, such 

as the platform from which their train will depart, or whether 

their train is running late. The available datasets include: 

 

• TD (Train describer): This is a real-time feed of train 

movements between signalling ‘berths’. The signalling ID 

(or ‘headcode’) for each train is given, along with a ‘to’ and 

‘from’ berth number representing a train movement. The 

signalling ID is only unique within a given signalling region 

at any one time. Berth numbers are not unique either. 

Timestamps are to the nearest second. 

• TRUST (Train movement): This is another real-time feed 

of train movements between timing point locations 

(TIPLOCs), usually stations and junctions. Different 

message types describe train activation, movement, 

cancellation. Timestamps are provided to the nearest 30 

seconds. 

• SCHEDULE and VSTP: These provide details of services 

that are due to run. The schedule is updated once per day. 

Each service in the schedule can either be a one-off service, 

or be valid for a number of days, weeks or months. The 

VSTP dataset (Very Short-Term Plan) is a real-time feed of 

additional one-off services for ad-hoc movements not in the 

main schedule.  

 

Documentation for the feeds is available on a wiki-style 

website [18] maintained by enthusiasts. Example source code 

of ActiveMQ clients able to fetch the data feeds is also 

available in multiple programming languages on GitHub [19]. 

Historical train movement data are not available from the 

Network Rail Open Data Feed. This limitation is not generally 

an issue for app developers but does limit what is available for 

interpreting past data from monitoring systems.  

 Rail Delivery Group 

The Rail Delivery Group (formerly the Association of Train 

Operating Companies) in the U.K. provides additional feeds 

and APIs collectively known as DARWIN, which offer data for 

live departure and arrival screens, including estimated arrival 

and departure times for delayed trains. Also provided is the 

Historical Service Performance (HSP) API for historic 

performance data. HSP can be used to query details of past 

services, such as planned and actual arrival and departure times. 

However, as the DARWIN and HSP datasets are primarily used 

for passenger information they do not contain information 

about freight trains, and only list arrival and departure at 

stations, not showing the times when trains pass junctions. 

 Rail Data Marketplace 

The Rail Delivery Group also runs the Rail Data Marketplace. 

This is a platform on which train operating companies, 

infrastructure providers, data aggregators, researchers, or rail 

enthusiasts may release datasets. Datasets include the Network 

Rail and Rail Delivery Group feeds described above, but also 

data on train operators’ carbon footprints, car park occupancy, 

train accessibility, fare information, occupancy and loading, 

complaints etc. Data providers may specify either an open or 

restricted licence for the data, and have the option of making 

data available publicly, or only to subscribers. The data may be 

made available free of charge or require payment. 

 OpenRail Data 

The OpenRail Data website [24] combines data from the 

Network Rail SCHEDULE, VSTP and TRUST feeds to 

provide details of train movements, including cancellations, 

late/early running arrivals and some details of the type and class 

of train. Up to three years of historical data may be queried 
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using a variety of web-based forms, with results returned as an 

HTML page. The source code is available from a GitHub 

repository, and so it would be possible to run customised 

instances of this service, modified to produce output in 

alternative formats such as JSON or XML. However, this 

would not include historic data. 

3 USING OPEN DATA FOR TRAIN IDENTIFICATION 

The TD dataset gives timestamps for when trains on the 

network move between signalling berths. Berths are labelled 

with four-character identifiers, usually consisting of three or 

four digits. These do not indicate any human-readable place 

names, and there does not appear to be any available data 

linking berths with their geographic coordinates. It is however 

possible to look at all train movements that occur within a time 

window either side of a train crossing event as inferred from 

measurements by a monitoring system. This will result in many 

candidate berth numbers. Eventually however, after observing 

enough train crossings it is possible to narrow the berth 

numbers common to all crossings to find those berths that are 

likely to be located on either side of the bridge. Figure 7 

illustrates one such possible method. 

 

  
 

Figure 7. Possible algorithm to deduce TD berth transitions 

corresponding to train crossings identified by an SHM system  

 

Alternatively, third-party websites such as OpenTrainTimes 

[23] provide topological track diagrams showing the real-time 

position of trains using TD data. 

By using both TD and also TRUST data (which does include 

geographical human-readable locations) the creators of these 

sites have been able to infer the position of berths relative to 

stations and junctions. Although these track diagrams do not 

show bridge locations (except for intersection bridges where 

one railway track crosses another) by using these track 

diagrams it is nevertheless possible to narrow the search when 

attempting to identify TD berths located either side of a bridge. 

Table 3 shows the berth transitions that most closely 

correspond in time to observed train crossings for the four 

instrumented bridges. For Bridges IB5 and UB11, these could 

be confirmed using the installed bridge monitoring system, 

while for Bridge HDB-19 these times were verified using 

historical data as displayed on the OpenRail Data website [24] 

and comparing the actual arrival times of trains travelling 

between Enfield Chase station and Gordon Hill station, the two 

stations either side of the bridge which are not far apart. There 

are however points (or switches) north of HDB-19 allowing 

trains to cross the tracks to access the third platform at Gordon 

Hill station. Trains heading to or from the third platform have 

a slightly different berth number transition in the TD feed. For 

Bridge CFM-5 the crossing times of a few trains were observed 

and recorded in person during a site visit. 

The TD data provides a very good correspondence with 

bridge crossings for Bridges IB5 and UB11. However, the only 

useful information provided by the feed besides the timestamp 

is the signalling ID, known as the headcode, of each train. This 

provides no train information such as the type of train or 

possible loading. This must be found either from the TRUST 

feed or via a third-party website such as OpenRail Data. 

Since most of the data from the monitoring systems on these 

bridges dates from before the authors began logging the TD and 

TRUST feeds, the possibility of using historical data from 

OpenRail Data alone was investigated. For Bridges CFM-5 and 

HDB-19, this turns out to be relatively simple. For Bridge 

CFM-5 there are no intervening junctions between Church 

Fenton and Micklefield stations – so any train that reports at 

both locations consecutively must have crossed the bridge. The 

only complication is in calculating the most likely time of the 

crossing as the two stations are approximately 8 km apart, with 

the bridge located slightly closer to Church Fenton station. 

Table 3. TD berth movements that correspond with observed 

bridge crossings 

Crossing Region From Berth To Berth 

IB5 northbound R3 4331 4333 

IB5 southbound R3 4334 4332 

UB11 westbound R3 5611 5615 

HDB-19 northbound Y8 

Y8 

865 

865 

869 

X872 

HDB-19 southbound Y8 

Y8 

870 

872 

864 

864 

CFM-5 eastbound Y2 709 711 

CFM-5 westbound Y2 714 708 
 

Likewise in the case of Bridge HDB-19, any train reporting at 

both Enfield Chase and Gordon Hill stations will have crossed 

the bridge. However, it was noted that in the archived data 

several services are not shown stopping or passing Enfield 

Chase station at all. Trains do however all appear to report at 

Bowes Park station, slight further to the south, so both stations 

were used when searching for trains crossing the bridge. 

For Bridges IB5 and UB11 however, the situation is slightly 

more complicated. Figure 8 shows the layout of the railway in 

the Norton Bridge area. Northbound trains travelling between 

Stafford and Madeley stations either use the West Coast Main 

Line through Norton Bridge Junction and under Bridge IB5, or 

they bypass Norton Bridge Junction entirely by crossing 

Bridge UB11.  Northbound trains travelling between Stafford 

and Stone must cross Bridge IB5, but southbound trains from 

Stone to Stafford may travel either via Bridge IB5 or via Norton 

Bridge Junction.  

 

Using data from a typical day: 
 

Create set U of all timestamped train movements from 
TD data 

Create a list X of timestamped bridge crossing events 
inferred from SHM data 

Create initially empty set C of candidate TD berth 
transitions 

Identify train movements in U that coincide (within a 
tolerance) of the first timestamped crossing event in X 
and add these movements (without timestamps) to set C 

For each further crossing event E in X: 

Identify train movements in U that coincide (within 
a tolerance) with E and intersect these 
movements (without timestamps) with set C 

Output candidate TD berth transitions from set C 
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Figure 8. Map showing locations of Bridges IB5 and UB11, 

railway layout and junctions. (Map data © OpenStreetMap 

available under Open Database License) 

Nevertheless, by inspecting details of several trains crossing the 

bridges, identifying their headcode ID from TD data, and then 

looking up details of each train on the OpenRail Data website, 

sets of rules were developed to identify trains crossing Bridge 

IB5 and UB11 using only historic data available from the 

OpenRail Data website. 

 Train and route information 

Information available from the TRUST and Schedule feeds, or 

the historical data, includes data such as: The Train UID, the 

train operator code, signalling id (headcode), power, timing 

load, speed, catering code, seating class, train status etc. and the 

planned and actual arrival, departure and passing times at each 

timing point or station along the route.   

Of these the power type, timing load and train status are the 

most useful for train identification. Power type refers to diesel, 

diesel multiple unit, electric, electric multiple unit or (for the 

New Measurement Train) ‘HST’. Timing load is an overloaded 

field. It usually contains a number which if greater than 999 

describes the declared load in tonnes. Otherwise, this number 

may indicate the declared load in tonnes, or the class of train – 

e.g. 350, 390 etc. There are some exceptions: a value of 506 

indicates Class 350 upgraded to run at 110 mph (approx. 175 

km/h) while a ‘V’ indicates a Class 220 or 221 train. The train 

status field indicates whether the train is a passenger or freight 

train. Any of the fields may be blank. 

 Comparison with Monitoring data 

For the railway bridge monitoring systems that are operational 

24/7, such as those on Bridges IB5 and UB11, there should be 

SHM data for each train that crossed the bridges, and there 

should also be trains identified from TD, TRUST, or historic 

train movement data corresponding to each event. Where this 

is not the case, this indicates a possible fault with the 

monitoring system. For Bridge IB5 it is also possible to assess 

the coverage of the B-WIM system. 

As can be seen from Table 1 the t-SNE+DBSCAN algorithm 

results in many different groupings for otherwise similar trains 

or combinations of similar trains. However, the train class 

information derived from the timing load field in archived data 

from OpenRail Data does not distinguish between Class 220 

and 221 trains and lists these as a single class. Similarly, these 

data do not distinguish between 9 or 11-car Class 390 trains, or 

the different types of Class 350. 

To allow for easier comparison between the loads classified 

using t-SNE+DBSCAN and traffic identification based on the 

archived data, similar load classifications from the 

t-SNE+DBSCAN results for crossings in July 2023 were added 

together. The results are shown in Table 4.   

The classification of trains using groups found by the 

t-SNE+DBSCAN algorithm shows generally good agreement 

with the identifications derived directly from open data. The 

archived data deduced ten more train crossings than trains 

processed by the t-SNE+DBSCAN algorithm. This 

discrepancy is partly accounted for by double-crossing events 

where two trains cross the bridge in opposite directions within 

a few seconds of each other. The SHM system treats these 

double crossings as a single event prior to any processing by 

the B-WIM system.  

Table 4. Comparison of B-WIM t-SNE load classifications 

and traffic identified from historic open data for trains 

crossing Bridge IB5 in July 2023 

Description B-WIM (t-SNE) Archived data 

Class 220/221 650 50.94% 658 50.04% 

Class 350 401 31.43% 421 32.02% 

Class 390 154 12.07% 139 10.57% 

Other passenger   7 0.53% 

Freight 52 4.06% 60 4.56% 

Tamping machine 2 0.16%   

NMT 1 0.08% 1 0.08% 

Outliers 16 1.25%   

Total 1276 100.00% 1286 100.00% 

  

Both methods are able to distinguish the New Measurement 

Train (NMT) from other trains. This train is a modified 

Class 43 High Speed Train, formerly used to carry passengers, 

but now instrumented with sensors to measure track alignment 

and gauge, and photograph defects while travelling at line 

speed. In the t-SNE+DBSCAN data it appears as its own 

(small) group labelled as ‘E’ in Figure 5. In the archived train 

movement data it is the only train with a train status of ‘freight’ 

but with a power type of ‘HST’ and a speed of 125 mph 

(approx. 200 km/h).  

The B-WIM classifier identified two tamping machines. One 

of these on 7th July 2023 was mis-classified and was actually a 

16-axle Class 350 passenger train, as verified by inspecting 

video of the crossing. However, only 10 axles were detected by 

the B-WIM system, which may have resulted in the train being 

incorrectly grouped. The second tamping machine on the 

Little Bridgeford 
Junction 

Searchlight 
Lane Junction 

Yarnfield 
Junction 

Norton Bridge 
Junction 

UB11 

IB5 

To Madeley 

To Stone 

To Stafford 

One way 

One way 

West Coast 
Main Line 

https://www.openstreetmap.org/copyright
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14th July as shown in Figure 9 was correctly identified from the 

B-WIM derived data. However, it was listed in the archived 

train movement data as a 715-tonne diesel freight train. The 

accompanying route information for the train showed that it 

originated at Whitacre Tamper Sidings, which would indicate 

that it was probably a tamping machine. The declared load of 

715 tonnes is significantly larger than the load as shown on a 

placard on the side of the vehicle (99 tonnes) or the load as 

measured by the B-WIM system (102 tonnes).  

 

 

Figure 9. Tamping vehicle heading after crossing Bridge IB5 

on 14 July 2023 

The archived train movement data are based on SCHEDULE 

and TRUST data. As previously discussed, these data alone are 

not able to distinguish between Class 220 and Class 221 trains.  

Table 5. Comparison of trains deduced to have crossed 

Bridge HDB-19 and the FBG strain events recorded by the 

SHM system. 

 TRUST 

data 

FBG 

events 

Proportion 

recorded 

Passenger    

Class 387 35 2 5.7% 

Class 700 11 0 0.0% 

Class 717 1353 330 24.4% 

Class 800/805 11 0 0.0% 

Class 802 1 0 0.0% 

Other electric 1 0 0.0% 

Sub total 1412 332 23.5% 

    

Freight    

400 tonnes 6 6 100.0% 

600 tones 17 8 47.1% 

715 tonnes 4 0 0.0% 

800 tonnes 3 0 0.0% 

1200 tonnes 19 2 10.5% 

1235 tonnes 12 1 8.3% 

1400 tonnes 9 7 77.8% 

1600 tonnes 67 17 25.4% 

Not declared 17 2 11.8% 

Sub total 154 43 27.9% 

    

Other    

NMT 2 1 50% 

    

Total 1567 369 23.5% 

 

However, other datasets available on the Rail Data Marketplace 

may solve this issue. CrossCountry Trains, which operates the 

Class 220 and 221 trains, makes the planned train formation of 

each train available. The data are available as daily CSV files 

and include serial numbers of the individual trainsets to be used 

for any given service. This is sufficient to determine the train 

class. Other train operating companies also make train 

formation data available. 

For monitoring systems such as those used on Bridges 

HDB-19 and CFM-5 where power is supplied by solar panels 

and batteries, the monitoring system is likely to miss a 

significant fraction of train crossing events while the system is 

powered down. Using the data from TD or TRUST can provide 

an indication of which trains are missed, and whether the 

crossings that are recorded are likely to be indicative of the 

loads that typically cross the bridge. 

FBG strain events from the SHM system on HDB-19 were 

compared with trains crossings from archived TRUST data for 

the period 1st–15th July 2023. When comparing timestamps 

between the SHM system and the archived TRUST data, it 

became apparent that the FBG data did not indicate whether the 

times had been recorded using UTC or daylights savings time. 

Since the trains mostly follow a repeating hourly timetable, 

most train crossings occurring at approximately the same times 

each hour. When the SHM system was initially installed there 

was no requirement for the system to synchronize with any 

external system or data. There was also nothing to prevent 

clock drift other than an intermittent Internet connection to 

time.microsoft.com using the NTP client available on 

Windows. However, after some investigation it appeared that 

the correlation between crossings and logged FBG events fit 

better with the archive TRUST data if it was assumed that the 

FBG timestamps were recorded using daylight savings time 

and not UTC. This illustrates the importance of looking ahead 

when specifying and commissioning SHM systems. 

Table 5 shows the results of the comparison. It can be seen 

that approximately three quarters of the trains deduced to have 

crossed Bridge HDB-19 were not recorded by the FBG strain 

gauges. As the SHM system is solar powered, it only records 

data when the solar panels have charged the battery sufficiently 

for the system to operate, usually from mid-morning to mid-

afternoon. Nevertheless, despite missing some classes of train 

completely, the system was able to record strain data during the 

crossings of a broadly representative sample of the total 

population of trains crossing Bridge HDB-19, including freight 

trains with the heaviest declared loads. However, if all that is 

required is a ‘standard’ train with which to compare data 

recorded on the structure from one day to the next to check 

whether the structural response is changing over time, then the 

Class 717 train would seem to be a good choice. 

4 NETWORK-LEVEL INSIGHTS 

The Network Rail data feeds cover the movement of trains 

throughout England, Scotland and Wales. Once subscribed to 

the feed, data is available for all train movements on the 

network, not just in the locations originally of interest. One 

potential use case of these feeds would therefore be to derive 

bridge specific traffic models (if not necessarily load models) 

for every underline bridge, intersection bridge or viaduct on the 

network. For those bridges located up or down the track from a 
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bridge instrumented with a B-WIM system, it may even be 

possible to produce a bridge-specific load model, assuming the 

bridges have sufficient traffic in common. This however would 

require knowledge of the location of the bridges on the 

network, and ideally the locations of berth numbers either side 

of every bridge. 

 Bridge Locations 

Through a series of Freedom of Information (FoI) requests 

made by members of the public, Network Rail have released 

lists of structures on each line of the network. Data from these 

FoI requests are available in a curated form on the RailwayData 

website [21]. The bridges listed do not typically have either 

WGS84 coordinates, or UK Ordnance Survey (OS) grid 

reference, but instead are described using the number of miles 

and yards (or sometimes miles and chains) from some datum 

which is specific to each line. 

Recently however, because of work done within Network 

Rail as part of its Bridge Strike Prevention Strategy, Network 

Rail has released a list [22] of low bridges at risk of being struck 

by road vehicles. As the intended use for the data is that they 

are incorporated into in-vehicle or smartphone-based GPS 

systems, this list includes bridge headroom data together with 

WGS84 and OS grid references coordinates in addition to the 

usual line/miles/yards location. It provides such coordinates for 

5792 bridges, but as it only lists vulnerable bridges it is not a 

complete list of all underline or intersection bridges, or 

viaducts. The list includes Bridges CFM-5 and HDB-19, both 

rail-over-road bridges. It does not however list Bridges IB5 or 

UB11 as the first is an intersection bridge carrying the railway 

over another rail line, while the second carries the railway over 

a stream. 

Another option is to use data from OpenStreetMap. 

OpenStreetMap is a collaborative volunteer organisation that is 

building a database of mapping data that is released under the 

permissive Open Database License. However, as a volunteer 

effort, there are no guarantees as to the accuracy of the data, or 

that they are consistently labelled in a way that makes it 

possible to query specific features, such as railways and bridges 

carrying railways. 

As an open project, there are services that build upon 

OpenStreetMap to allow additional functionality such as 

searching for specific features within the data using simple 

queries. Overpass Turbo [26] is one such service. It includes a 

‘wizard’ to compose queries from simple prompts. 

A prompt such as: 

 
“((bridge=yes or bridge=viaduct) and railway=rail) in England” 

will result in a query that can be passed to the Overpass API 

with the matching features displayed on a map, as shown in 

Figure 10. 

// fetch area “England” to search in 

area(id:3608484939)->.searchArea; 

// gather results 

( 

nwr["bridge"="yes"]["railway"="rail"](area.searchArea); 

nwr["bridge"="viaduct"]["railway"="rail"](area.searchArea); 

); 

// print results 

out geom; 

 

Figure 10. Result of running an Overpass API query to find 

locations of railway bridges and viaducts. (Map data © 

OpenStreetMap available under Open Database License) 

 Signalling berth locations 

There are various ways one could consider obtaining the 

locations of the signalling berths. One option would be to use 

the GPS position of trains on the network and compare this with 

the live TD feed. This would give the approximate location of 

each berth. These could then be compared with the GPS 

coordinates of the bridges, where known. These data are not 

provided in any currently available Network Rail open dataset, 

but third-party app developers of ‘Find My Train’-style apps 

may have GPS data generated by users of those apps as they 

travel by train. However, these data may not be open data. 

SignalBox.io have such a system but require users to sign up 

for an API key before accessing the data. Other companies such 

as Raildar, Tracksy.uk, Mistral-data and TrainPositions.com 

provide similar services under various subscription options. 

Train operators in some other European countries do make 

real-time location data available. Irish Rail (Iarnród Éireann) 

provide this data via a simple URL, while in Finland train 

locations may be retrieved using a Real-Time General Transit 

Feed Specification (GTFS RT) feed or a via a web-based API.  

Alternatively, as the location of each bridge is available from 

data in the FoI requests, albeit in line/mile/yards format, it may 

be more feasible to calculate TD berth positions in 

line/miles/yards format too. This could be done by looking at 

timestamps of TD berth transitions and comparing these with 

timestamps from TRUST data when trains report at locations 

with known positions, such as stations. Finding berths either 

side of a bridge could then be done simply by comparing berth 

miles and yards locations with bridge miles and yards locations. 

5 RECOMMENDATIONS 

• When planning to install a monitoring system, look for 

potentially useful open datasets early, whether related to 

traffic, weather, or anything else. 

• Consider any secondary uses that the planned monitoring 

system may have that could be enabled with relatively small 

additions. (E.g. Added axle detectors to enable B-WIM that 

https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
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then provides loading data for other bridges on the 

network.)  

• Treat streaming datasets like sensor data. Data that is used 

for operational purposes may have little long-term value to 

the network operator, and these data are often ephemeral. 

To avoid these data becoming digital waste, log them from 

day one (or before). Do not assume that somebody else will 

preserve them. 

• Log data first, process later. If datasets are difficult to 

interpret either because of the sheer volume of information 

or due to a lack of documentation, log them anyway. They 

can be processed later once the data are better understood. 

• Ensure clocks on any monitoring systems are set accurately. 

If a permanent connection to the Internet is available this is 

usually achieved using Network Time Protocol (NTP) to 

keep clocks synchronised, otherwise, if outdoors, a simple 

GPS receiver can be used to provide accurate time. When 

comparing data from multiple sources it is vital that 

timestamps of data logged by monitoring systems and data 

from one or more external datasets may be compared. Agree 

on a time zone.  

• Where data from monitoring systems is combined with 

as-designed and as-built data to form a digital twin, any 

additional data derived from open datasets should also be 

incorporated into the digital twin.  

6 CONCLUSION 

A wealth of data exists that can be used to better understand 

data generated by bridge monitoring systems on Britain’s 

railways. However, the data are unlikely to be generated in 

exactly the format needed by a monitoring project. They are 

instead created (and deleted) according to the needs of the 

network and train operators. 

Nevertheless, once a network-level data source has been 

identified and its potential benefits and limitations understood, 

it may have the potential to be used for train identification or 

bridge-specific load or traffic modelling for multiple 

monitoring projects. Identifying and logging potential data 

sources early mitigates issues relating to data retention. Data 

should be logged as early as possible in the project even if the 

ability to understand them and use them effectively comes later. 

Machine Learning and AI remain valuable tools with which to 

understand data generated from monitoring systems, but 

sometimes there are simpler ways, requiring less computational 

resources, to achieve the same goal. 

DATA AVAILABILITY 

Data supporting this paper are available from the University of 

Cambridge Repository:  

https://doi.org/10.17863/CAM.116750. 
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ABSTRACT: This article describes a comprehensive workflow in several phases that integrates the latest information and 

communication technologies and enables significant improvements in the assessment of both our infrastructure structures, 

especially our bridge structures, and our building structures. For building construction, the workflow includes not only the 

PERIOD mode (= PM) for the normal situation, but also a so-called RESCUE mode (= RM), which provides significant support 

for emergency services in the event of natural disasters such as earthquakes. In all applications in infrastructure and building 

construction, a digital twin is created along the structural axis in Phase I and automatically converted into a BIM model (= 

BIMUAV). The resulting BIMUAV model forms the basis for documenting the general condition of the construction in Phase II, 

which is referred to as the level of maintenance (= LOM) and documented using component-specific damage catalogs. In both 

Phases I and II, autonomous multi-agent condition estimation for UAVs and innovative sensor technology (Lidar, GPS, UWB 

etc.) will be used, the application of which will be demonstrated on a specific bridge project. The anomalies represent performance 

indicators of the components or structure and are categorized according to component-specific damage catalogs, which also 

determine the respective degree of damage. The classification of anomalies into damage classes is automated using neural 

networks or AI. In the infrastructure sector, the algorithm in Phase III enables the asset management of bridge maintainers to 

conduct real-time condition analyses, service life predictions and estimates of the scope of upcoming refurbishment work using 

real monitoring data. In building construction, the archiving the LOM in the BIM model carried out in the PM in Phase II represents 

immense added value for the real estate. The rescue mode (RM) is specifically designed for emergency services and, based on 

simplified dynamic models in Phase III, enables rapid decision-making support for emergency services on site. 

KEY WORDS: Monitoring for bridges and buildings, digital twins, BIM, drones, drone-sensor, condition assessment, level of 

maintenance, condition analysis, service life prediction and refurbishment. 

 

1 GENERAL GUIDELINES 

Improvements in information and communication technology 

like digitizing and the commitment to climate compatibility are 

leading to disruptive changes to our existing strategies in 

planning, construction and maintenance concepts as well. [1]  

Building Information Modeling (BIM) and condition 

assessment using innovative sensors combined with innovative 

drone technology (UAV) have led to the disruptive 

improvements in structural inspection and thus the maintenance 

of our building constructions, both in the planning and 

construction process. The workflow described here for largely 

automated structural inspections in the future integrates the 

above-mentioned technological improvements for a 

comprehensive assessment of our existing buildings, both for 

bridge construction and building construction. This technology 

transfer in structural inspection helps us, above all, to utilize 

our existing resources more effectively and, above all, for 

longer, and in this kind is a significant contribution to climate 

compatibility in our construction world. The asset management 

of the bridge maintenance company, which focuses on the 

implementation and evaluation of structural inspections, is 

therefore the coordinated activity for the maintenance and 

therefore important for the national economic of every state.   

Structural inspections for our existing buildings must be done 

regularly and are regulated by regulations, e.g., for buildings, 

by the ON-B1300 in [2] or by the state-specific building 

regulations in [3]. For our infrastructure structures, the type and 

scope of bridge inspections are regulated by the RVS guideline 

in [4]. The purpose of structural inspections of buildings and 

infrastructure is to document the level of maintenance (= LOM) 

of a structure throughout the service life and represents this data 

an important information with enormous national accounting. 

If natural disasters, such as earthquakes and explosions disaster 

as well, occur during a service life, the structural inspection is 

carried out in the so-called RESCUE mode (= RM). This allows 

on-site emergency services to receive a rapid, high-quality 

assessment of the stability of the supporting structure or parts 

of it. In the research project according to [5], the workflow 3D 

BUDI for the designated rescue mode was expanded and tested. 

The described workflow includes a continuous, digitally based 

structural inspection and, in Phase I, also enables the 

digitization of the existing building in the form of a BIMUAV 

model. Digitization is also an essential prerequisite for 

sustainable construction, as the acquired dataset enables 

targeted improvements for the refurbish concept. 

BIM (Building Information Modeling) has already established 

itself as a planning tool for new buildings, enabling a 

A comprehensive workflow for digitizing and determining condition 
indicators for bridge and building construction 
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supporting, so-called "digital twin" to map all information 

about a building, from planning through construction to 

operation. What is new, however, is that the temporal 

degradation processes of the performance indicators that occur 

during a building's very long service life can be archived in the 

digital twin, thus ensuring that the building's condition is 

always available in real time and enabling meaningful 

condition analyses to be carried out at any time. The digital 

twin, in combination with the informations of the level of 

maintenance (LOM), therefore offers the possibility of 

efficiently performing service and load-bearing conditions in 

condition analyses using recalculations. If unexpected natural 

events occur during a building's service life, a digital model 

becomes even more essential, as the research project in [5] was 

able to confirm. Digital building models enable rapid and 

efficient structural assessments based on simplified dynamic 

models, as can be seen in section 4.1. 

Digital models or BIM models, which contain beside geometric 

and material information all informations about the level of 

maintenance (LOM) from the structure, have the quality to 

provide qualified statements about reliability, the probability of 

failure, and ultimately the service life prediction using 

probabilistic methods. This makes it possible for the first time 

in structural inspection to conduct an assessment of structures 

based exclusively on an objective basis, as opposed to the 

previously mostly subjective assessment.     

The information of level of maintenance (LOM) of our existing 

buildings comes with the highest design-level for BIM model 

and leads to enormous resource and CO2 savings. The 

informations only of geometry and material from digital model 

is therefore not insignificant for further refurbishment and 

replanning of the existing building. The BIM-modelling started 

in the design-phase with informations only of geometry and 

material (LOI = Level of information, LOG = Level of 

geometry) through the approval planning (LOC = level of 

concept) and ends, according to the current state of the art, after 

the construction of a building (LOD = level of development) in 

the as-built documentation (see also [6]).  

For the BIM model, the documentation of the building's level 

of maintenance (LOM) thus achieves the highest level of 

maturity of a BIM model as well. The present workflow now 

makes it possible to automatically transfer the digital 

information on the level of maintenance into the digital twin 

(BIM model). 

In bridge construction, the qualified review of a structure over 

time is carried out by Structural Health Monitoring (SHM) and 

is usually confronted with enormous amounts of data when 

evaluating the acquired data sets. Furthermore, the usual point 

cloud models created using the latest sensor technology do not 

routinely correspond to the standard of BIM model in all four 

BIM levels (LOI, LOG, LOC and LOD)  

This workflow is implemented using drones are supported, 

which include autonomous multi-agent condition estimation 

according to [7] and can be controlled autonomously even in 

GPS-shielded areas. This drone technology is intended to make 

a significant contribution to the digitalization of our existing 

buildings in the future. In a first phase, the existing structures 

will be converted into a 3D BIMUAV in level LOG as 

autonomously as possible, and in a second phase, their 

condition will be documented and archived to scale over time 

in the highest level of maintenance (LOM). A key component 

of the patent-pending workflow [8] is automated damage 

detection using neural networks, as has already been 

implemented, for example, for solid bridges in [9]. 

Ultimately, such improved BIM models including LOM, which 

have such a high maturity level, also enable detailed condition 

analyses and service life predictions via the structural 

assessment in the Phase III. Furthermore the intensity of the 

refurbish-work can be easily and precisely described. 

The individual phases and tools of the workflow are briefly 

described below: 

2 PHASE I: 3D BIMUAV MODEL OF THE EXISTING 

STRUCTURE 

A digital twin of the existing building with real geometric and 

physical properties is created in the form of a BIM model using 

autonomously controlled UAV equipment (multi-agent 

condition estimation with UAV) with special sensors. The BIM 

model created from the real dimensions and properties serves 

as the basis for real global structural models (global factor 

method according to [10]) in both modes, the PERIOD mode 

(PM) and the RESCUE mode (RM). 

The feasibility of phase I was demonstrated on a test bridge 

building during the research project [10]. Seven sensors were 

used: UWB, Lidar, digital-camera, GPS, barometer, 

magnetometer and IMU. 

The drones were localized using UWB, GPS and IMU sensors. 

Figure 1 shows the test bridge with the drone swarm (Fig. 1b) 

and the UAV equipment in the operational area (Fig. 1a). 

 

 

Figure 1. bridge-testing a) UAV with sensors, b) UAV swarm 

around the bridge in phase I 
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 Phase I for bridge constructions 

The workflow in [8] envisions the control of autonomous UAV 

swarms along the bridge axis, which create point cloud ring 

models using innovative sensors Lidar and cameras. Ring 

models have the advantage over full point cloud models that 

they generate significantly smaller amounts of data, which must 

be generated into a network model in a second step. Cross-

sections are generated from the network model, with initial 

tests (see Figure 1) already showing that very high levels of 

accuracy in cross-sectional geometry (precision 10-3 [m]) can 

be achieved from the mesh-models. The cross-sections 

generated in the third step are then transferred to the BIMUAV 

model using commercial drawing software, e.g., Allplan 

software for bridge construction, in the fourth step.   

Figure 2 illustrates the four work steps. 

 

 

 

 

 

 

Figure 2. Four steps in phase I to create the BIMUAV model for bridges 

 

 

 

 Phase I for building construction 

In building construction, the workflow provides for the control 

of autonomous drone swarms along the vertical building axis, 

with the UAVs inside the building communicating with the 

UAVs on the exterior facade. As in bridge construction, point 

cloud ring models are used to create the BIMUAV model. The 

level-by-level linearized floor plan cross-sections (precision 

10-3 [m]) are transferred to the 3D BIMUAV model of a 

conventional software program such as software from Allplan 

or Revit using special excel sheet interpreters. 

   

The BIM models created with the algorithm are referred to as 

3D BIMUAV models. 
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Figure 3. steps in phase I to create the BIMUAV model for building construction 

 

3 DETERMINATION OF THE LEVEL OF 

MAINTENANCE IN PHASE II  

For surveying the level of maintenance LOM the workflow 

using also autonomously controlled drones along a planned 

flight path, which can be created by the inspector in the BIM 

model. Damage classification like crack or spalling results the 

performance indicators by using AI and are summarized into a 

damage-catalog which based on special empirical values. The 

performance indicators classified by a damage-catalog are then 

graphically documented in the BIM model with simplified 

pictograms. But note that not every damage is also a 

performance indicator. This digitally records the level of 

maintenance of the construction and can be accessed at any 

time.  

 

 performance indicators of bridge constructions 

In bridge construction, the inspector designed in asset 

management determines the inspection plan, which 

performance indicators on the individual components are 

subject to routine monitoring and which kind of damages are to 

be identified during the inspection, thus process defining the 

flight path in phase II of the autonomously controlled UAVs. 

The point of interest in bridge construction represents the 

performance indicator (e.g., crack) on the main girder, as 

shown in Figure 4. 

Automated damage detection using neural networks (AI), as in 

[9], classifies the performance indicator based on standardized 

damage catalogs separated by every modes – for Period mode 

(PM) and Rescue mode (RM) - and determines the degree of 

degradation of the performance indicator at the time of 

inspection. 

Both the history and actual damages represented by 

performance indicator are recorded to scale on the surface of 

the BIM model for visual inspection. 

 

 

Figure 4. point of interest in phase II 

 Classification of damage and damage-catalogs for 

building constructions 

 

During periodic structural inspections (PERIOD mode) in 

building construction, the inspection plan is usually 

implemented using a swarm of drones processed instead of 
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individual drones. Individual drones are not sufficient to reach 

the point of interest inside the building. In building 

construction, the point of interest represents, for example, a 

component (e.g., wall panel, column, etc.) on each level.Images 

of this location are taken using innovative sensors, from which 

the material of the component can be determined and a damage 

classification can be carried out. With the help of the data set, 

automated damage classifications can also be carried out via 

neural networks and assigned to damage-catalogs. Separately 

defined damage-catalogs by material and component, such as 

those presented in [11] for the RESCUE mode (RM), enable an 

estimation of the stiffness reduction factors (EJRB) according to 

the respective type of load (bending)In RESCUE mode, severe 

damage or destroyed floor sections are often present, requiring 

not only consideration of stiffness reduction at the component 

level for each floor, but also global statements at the building 

level. In RESCUE mode, therefore, statements about the load-

bearing capacity of individual components or floor levels, as 

well as statements about the overall stability of the building, are 

necessary. A total failure of  

individual levels (the so-called soft-floor effect) is therefore 

also included in the structural assessmentOne added value 

provided by a complete 3D BIM model is undoubtedly the data 

archiving of the condition of the components or the entire 

building, which is done by recording the level of maintenance 

(LOM), certifies a highest level of maturity of the BIM model. 

The BIM model in PERIOD mode is enhanced with LOM to 

provide complete digital information on the condition of the 

individual components of the load-bearing structure, including 

their precise location, at the respective time of inspection. As 

already mentioned at the beginning, this enables a wide range 

of improvement options for the existing building with regard to 

renovation or refurbishment.  

 

Figure 5 shows the damage classification sequence when a 

digital model of the existing structure is available in RESCUE 

mode.  

 

 

 

 

 

 

 

 

Figure 5. demage classification in phase II for the RESCUE mode (RM)  
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4  MODEL-BASED STRUCTURAL ASSESSMENT 

IN PHASE III  

The dataset derived from Phases I and II enables detailed 

condition analyses, remaining service life prediction and 

continuous updates of the cost of refurbishment.  

Knowledge about the level of maintenance (LOM) of the key 

components of the existing structure over time and location, as 

well as their visual inspection in the BIM model, enables 

precise condition analyses regarding the causes of degradation 

and the future performance of the existing structure. Using the 

BIM model, different structural models can be generated for 

both modes, the period mode (PM) and rescue mode (RM), 

resulting in the following advantages: 

Advantages of a perusal condition analysis in PM: 

• Early detection of undesirable developments at the system 

level 

• Early initiation of targeted improvements to extend the 

service life 

Advantages of a perusal condition analysis in RM: 

• Enable consolidated structural assessment for emergency 

services using simplified dynamic models 

 Condition analysis in phase III 

A perusal structural assessment of the effects of local structural 

damage on the structural condition of the structure under 

consideration can be performed using traditional static analyses 

from FE models or using modal parameters according to [12]. 

Modal parameters, especially in RESCUE mode, has the 

advantage of providing a high-quality statement about changes 

to the structure due to damage. Furthermore, model updating 

can be enhanced with local dynamic test results, leading to 

highly meaningful results. In the simplified dynamic 

assessment, a simplified model is created from the 3D-BIMUAV 

model, in which the total of the story stiffnesses (EJo) is 

reduced to a single beam. Material, structure, and construction 

methods are subsumed into a single member stiffness for this 

beam. The advantage is that, even within the same construction 

methods of buildings or bridge types, only marginal differences 

in the responses arise, thus resulting in significant 

simplifications compared to conventional static analyses, 

especially for rapid deployment in the event of a disaster in 

RESCUE mode. 

A comparison of the change patterns of the natural frequencies 

and mode shapes between the reference model and the model 

update, which leads to reduced component stiffness due to the 

damage, enables a qualified statement on the failure probability 

f of the supporting structure in the event of a disaster A 

corresponding demonstrator was successfully completed in 

[12] and is already fully operational 

Since complete data sets regarding the level of maintenance 

(LOM) of our existing buildings and consequently, a structural 

assessment of our buildings and infrastructure are currently 

largely lacking, it would be useful to close this knowledge gap 

in the future through further research on digital structural 

testing and structural assessment. 

 

Figure 6 shows the process of the simplified story stiffness 

calculation for dynamic models in RESCUE mode. 

 

 

 

Figure 6. conditions analysis in phase III in RESCUE mode for building construction 
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 Determination of the service life prediction using 

probabilistic methods 

The tool in 3D BUDI for determining the service life prediction 

of the structure uses the probabilistic assessment method based 

on performance indicators according to [10] to determine the 

reliability level  or the failure probability f. Through the time 

interval of regular monitoring established in the structural 

inspection, the performance indicators can be continuously 

updated with regard to the degree of degradation, and the 

corresponding safety index  value can thus always be 

determined and compared with the target reliability determined 

from the design. This results in qualitatively assessable 

statements about the service life prediction as well as 

statements about the maintenance and further intervention 

strategy. 

 

 

Figure 7. probabilistic method in phase III for service life 

prediction assessment 

 Knowledge of the extent of rehabilitation in phase III 

The quantitative determination of the level of maintenance 

from phase II across the entire structure enables the 

determination of the overall scope of a planned refurbishment 

at the time of inspection, both in building construction and 

bridge construction. These data sets enable the building owner 

to continuously update the costs of refurbishment for the 

respective structure that may be derived from the state of 

preservation. This provides the client with a qualitatively 

assessable basis for decision-making for upcoming initiatives 

on the building.  

Figure 8 schematically illustrates the potential of a bridge with 

a continuously updated state of preservation in terms of type 

and extent for future initiatives by the maintainer. 

 

 

Figure 8. Automated determination of the rehabilitation scope 

from the LOM in phase III 

 

In summary, it can be said that the present workflow 3D 

BUDI will enable clients to evaluate their existing buildings 

according to objective criteria and derive targeted arrangements 

from this. If we can preserve buildings longer through these 

measures, this will reduce our CO2 emissions, which arise from 

the nationally and globally construction industry, and thus 

make a significant contribution to climate neutrality and thus to 

our society. 
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ABSTRACT: Displacement monitoring is a crucial aspect of the construction process, spanning all its stages. Surveying the 

changes occurring in the structure and its surroundings according to a suitable schedule is fundamental to ensuring work safety 

and mitigating investment risks. In this article, we highlight the distinctive features of the IMSGeo system, developed jointly 

by GEOalpin Ltd. and the Warsaw University of Technology (Department of Engineering Geodesy and Measuring Systems). 

The innovative solutions proposed in the system are characterized by the following integrated features: utilization of advanced 

adjustment algorithms within a cohesive system, adjustment of a multi-station network, analysis of reference system stability as 

an integral component of each measurement epoch, reflectless measurement of surfaces and structural elements of objects, 

presented as a unified 2D or 3D entity, capability to position measuring instruments (motorized/robotic total station) without 

the need for additional monitoring devices to ensure station stability, implementation of a fully mobile WEB platform for the 

presentation, interpretation, comprehensive analysis, and archiving of geodata, use of Internet cloud computing for data 

collection, analysis, presentation, and distribution of monitoring results, ensuring independence from local server infrastructure, 

user platform functionality designed based on survey research conducted among investors, contractors, inspectors, building 

supervision representatives, and property managers. The IMSGeo system does not require additional capital investments in 

infrastructure from investors or contractors and is highly available and scalable. The practical section of the article introduces 

the IMSGeo system's WEB platform and its implementation on a selected site in Warsaw, Poland. 

KEY WORDS: structural health monitoring, geodetic displacement monitoring, geodetic services for investments, 

construction site safety, engineering geodesy.

1. INTRODUCTION  

 Systems for monitoring the condition of engineering 

structures have been developed for many years by both 

manufacturers and suppliers of geoinformation technologies 

[8],[13],[14], as well as scientific institutions [2],[3],[4]. There 

are many dedicated solutions known, the creation of which 

was inspired by specific needs. For example, the article of 

Wilde et al. [17] describes the assumptions of such a system 

in the context of monitoring the roof of the Forest Opera in 

Sopot. Other, similar solutions have been described in 

numerous publications [8], [16], [18], [19]. Historically, the 

period of the beginning and the middle of the 2000s in Poland 

was characterized by significant activity of geoinformation 

technology suppliers, especially in the context of 

implementing key projects of the dynamically developing 

national economy. Examples of the first and at the same time 

extremely successful implementations of integrated 

geomonitoring systems include implementations in the 

KGHM Polska Miedź SA company, the Bełchatów Brown 

Coal Mine [5], or during the construction (and the ongoing 

expansion) of the second line of the Warsaw Metro [7]. In 

highly industrialized countries of the world, the development 

of geodetic monitoring systems has been observed for several 

decades. There are many examples of implementations and 

technological problems solved on these occasions. Many of 

them resulted in numerous publications of an interdisciplinary 

nature. It is worth mentioning here [1],[11], although the list 

of possible items to cite would certainly include thousands of 

scientific articles, technical reports, or chapters of 

monographic studies. There are also many textbooks 

published in many languages – mainly in English or German 

[10],[12]. Many similar studies can also be found on the 

domestic publishing market, for example [15]. Geomonitoring 

systems are also a dynamic, developing industry in the field of 

civil engineering. As a rule, however, these are closed 

systems, focused on the use of specific instruments and 

programs. In this area, there are practically no solutions with 

an open structure (so-called "open source"), and the 

possibilities offered by manufacturers - i.e. modules, 

functions, and procedures are usually ready-made 

geoinformatic products. These factors create a demand for 

flexible, mobile and fully scalable systems that can be adapted 

to real needs to the best extent possible. Observing current 

trends in the field of IT, one can notice the dominant role of 

mobile solutions (from "mobile technologies") developed to a 

large extent at the expense of sometimes ineffective desktop 

(stationary) solutions. The current, briefly presented state of 
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knowledge inspired the authors to conduct conceptual work 

aimed at: 

• classifying available solutions in the field of geodetic 

monitoring and highlighting their characteristic features, 

• indicating development opportunities in the context of 

designing new, universal solutions based on the existing 

state of knowledge and technology, 

• proposing an innovative, unique solution that takes into 

account the contemporary needs of the construction 

industry and contemporary contractors of geodetic, 

geotechnical and construction-building works. 

The presented topics are the subject of research by the 

Department of Engineering Geodesy and Measurement 

Systems, Faculty of Geodesy and Cartography of the Warsaw 

University of Technology, implementing a grant from the 

National Center for Research and Development in a 

consortium with the company GEOalpin Sp. z o.o. As part of 

this project, an intelligent deformation monitoring system with 

the acronym "IMSGeo" is being developed, the 

methodological assumptions and results of the work to date of 

which are presented later in the article. 

2. SYSTEM ASSUMPTIONS 

 Robotic Total Station (RTS) is one of the spatial 
geomonitoring technology. It is based on using a total station 
(automated tachymeter) as a sensor collecting measurement 
points. 
 Could we treat the technology such as other geotechnical 
sensors as piezometers, inclinometers, pressure cells, etc? The 
main differences are: 

• RTS is based on the “ancient” surveying trigonometric 
method, 

• RTS use only a few active sensors (in many cases only 
one) Total station and a number of passive sensors prisms. 
Passive sensors don’t work without an active sensor, 

• RTS measurements are not collected strictly at the same 
time – usually we need a few minutes to collect back 
signal from all passive sensors – prism. 

Over the last years we could observe the tendency to replace 
RTS with structural monitoring due to their higher accuracy. 
 RTS technology still has many advantages – for example: 
The installation of passive sensors (prisms) is quite easy. 
Usually the installation covers quite a big territory and is quite 
cheap – It does not need cabling or a wireless connection. 
 Some of them have not still implemented. RTS thanks to 
collected data in a spatial wide XYX reference system it gives 
the option of correlating data from others monitoring 
technologies together. Based on the adjustment with least 
squares methods we good extend the RTS needs keeping the 
highest accuracy for this technology. 

 Intelligent Monitoring System IMSGeo has come back to 

bases of adjustment theory and implemented it to automated 

monitoring and has opened this method for the challenge of 

integrating monitoring data in one high accuracy net reference. 

 Technological details, as well as differences in the 

functioning of geomonitoring systems offered on the market, 

concern both the type of recommended measurement 

instruments, the method of acquiring, processing and 

analyzing the acquired data, as well as the possibility of using 

the program for a given type of design tasks. Among all the 

common features of the discussed solutions, the following 

criteria deserve special attention: 

• the possibility of remote work with the system ("in the 

cloud") using mobile interfaces, 

• the possibility of integrating automatic measurements of 

displacements performed with physical sensors (physical 

monitoring, also known as SHM - from "Structural Health 

Monitoring"), 

• the possibility of handling automatic measurements with 

geodetic instruments (robot tachymeters, GNSS satellite 

receivers, 

• the possibility of handling instruments from different 

manufacturers, 

• the possibility of using reflectorless measurement 

technology (in the case of electronic tachymeters), 

• the possibility of strict alignment of observations (using 

the least squares method). 

3. METODOLOGY 

For the purposes of the IMSGeo project, a dedicated research 

methodology was developed, which includes the following 

task blocks: 

• development of procedures for automating the process of 

determining displacements along with the assessment of 

their significance based on geodetic measurements, 

• functional assessment of the implementation of 

reflectorless monitoring measurements, within which 

both the implementation and conceptual aspects (selection 

of optimal grids of points of monitored structural 

elements) as well as computational aspects (surface 

approximation methods and point cloud alignment) are 

tested, as well as interpolation and visualization of the 

acquired data using various geostatistical algorithms, 

• development of an optimal algorithm for aligning 

observations that allows for taking into account the non-

permanent measuring station in the process of 

determining the displacements of controlled points, 

within which multi-variant simulations of the alignments 

of monitored control networks were performed, taking 

into account the stability or lack of stability of measuring 

stations, 

• development of a "platform" for data exchange with 

access for the client using cloud computing, within which 

will be implemented newly developed procedures and 

algorithms using IT tools and a programming 

environment. 

Test work on the operational efficiency of the system was 

carried out on a special test field in Łódź (the location of the 

consortium members’ office – Warsaw University of 

Technology and Geoalpin Sp. z o.o.), while the functional 

assessment in indoor conditions (with the maximum 

reduction of the impact of systematic errors occurring 

outdoors) was carried out in the Main Hall of the Warsaw 

University of Technology (Figure 1). 
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Figure 

1. View of the test stand and the research team in the Main 

Hall of the Warsaw University of Technology (photo by 

Oskar Graszka). 

According to the assumptions, the presentation of 

measurement results is realized in the form of  

a dedicated geoinformation platform 

(https://imsgeo.geoalpin.pl/login) (Figure 2), in  

a structured form (collected information is divided depending 

on measurement techniques and their location). The new, 

unique solution, unlike similar systems, does not require 

constant measurement control by a specialist and intelligently 

identifies both the displacement of reference points and the 

measurement station. In addition, the so-called "noises" 

caused by mechanical or meteorological disturbances are 

defined.  

 
Figure 2. Website of the IMSGeo system. 

 

Before starting to develop a functional analysis of the system 

and the database, a survey was conducted among experts 

representing various professional groups interested in 

implementing the monitoring system: architects, 

constructors, geotechnics, designers of bridges, roads and 

railways, hydrotechnics and others (Figure 3). 

Figure 3. 

Number of experts participating in the opinion survey on the 

desired functionality of the IMSGeo system. 

 

Figures 4, 5, 6 present the survey results – answers given to 

selected closed-ended detailed questions. As can be seen, the 

greatest interest is in access to data via the Internet platform, 

and monitoring data are most often used to control the 

displacement of individual points of the facility, located in 

critical structural locations, and the data are needed for 

broadly understood analyses, in particular for the analysis of 

the risk of construction failure/disaster during the 

implementation of the investment and in the early phase of 

operation.  

 
Figure 4. Summary of answers to the  

question 3: Why monitoring was usually carried out in those 

projects? 

Figure 5. Summary of answers to the  

question 5: What is your preferred format for presenting 

measurement results? 

 

Based on the collected opinions and their own experience, 

the team of authors created the IMSGeo platform, the main 

functionalities of which consist of the following modules: 

Map, Graphs, Results, Files and External Data (Figures 7, 8 

and 9). 
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.Figure 7. Main page of the IMSGeo system. 

 

 
Figure 8. IMSGeo Graphs module: presentation of sample 

results. 

 

Figure 9. Results module of the IMSGeo system: 

presentation of the assessment of point displacements: color 

green means “OK”, color yellow means “Notifications”, 

color orange means “Alert”, color red means “Alarm”. 

The IMSGeo geodetic monitoring system has already been 

implemented on construction sites in the center of Warsaw, 

and currently a team of surveyors and programmers is 

working on including inclinometric sensors (probes, 

horizontal and vertical chains, tilt meters) and hydrostatic 

leveling techniques in the automatic system. New 

functionalities are being implemented in the "InteliGeo" 

project financed by the Polish Agency for Enterprise 

Development (PARP). 

4. CONCLUSIONS 

Modern geodetic monitoring systems include both 

instrumental, teleinformatic and database solutions. Designing 

such solutions is a complex process that takes into account 

many elements from the borderline of various fields of 

knowledge. Therefore, before starting the study work, it is 

necessary to conduct an in-depth analysis of the current state 

of technology and define the areas that need to be developed. 

The authors of the article performed a functional assessment 

of most of the available commercial and dedicated solutions, 

characterized by different architectures or philosophies of 

operation. In relation to the conducted study work, a unique 

system concept was developed, which is currently being 

implemented in the form of a project financed by the Polish 

National Center for Research and Development. In detail, the 

project concerns the development of technology that allows 

for automatic performance of fast measurements without the 

participation of a surveyor, along with intelligent 

interpretation of results. This will allow for continuous 

examination of the condition of the object and ongoing 

assessment of the impact of various factors - e.g. construction 

works on neighboring buildings. Defined alarm situations 

(exceeding the permissible displacement ranges) will be 

automatically assessed, verified and reported. In terms of 

technical solutions, this approach constitutes a significant 

innovation in the field of building automatic monitoring 

systems for engineering objects. 
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