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Introduction: Navigation through real-world environments remains a difficult task in intelligent robotics, due

to a constantly changing landscape of potential hazards and new information. To address this, roboticists and

neuroscientists have turned to the brains and behaviors of rodents — some of nature’s most successful explorers

— to inspire optimal solutions. [1-2] Most approaches model patterns of activation in the hippocampus and as-

sociated circuitry, leveraging rodents’ exceptional memory of spatiotemporal sequences for navigation. None,

however, have utilized the coupled activity of multiple subcortical regions that balance navigation with regula-

tion (e.g., grooming, immobility), a key optimization that animals use in real-world scenarios. Indeed, activity

in the amygdala, olfactory bulb, hippocampus, along with their functional couplings, have been shown to be

instrumental during free-roaming and navigation tasks involving potential stressors (e.g., novel objects, fear

stimuli, conspecifics, or autonomous agents). [3-5] This recruitment of regions involved in both regulation and

exploration reflects the strategy of switching between these behaviors observed in rats during these paradigms.

The current research investigates the effectiveness of neural oscillations in these brain regions as control signals

for robotic navigation, using the natural hierarchy of rodent subcortical activity as a decision-making architec-

ture for a self-monitoring neurorobotic system. Building such hierarchical control systems with self-regulatory

mechanisms is crucial for developing intelligent robotics that perform natural tasks as biological agents do.

Material, Methods and Results: For this study, we utilize PiRat, a rat-sized robot used in several previous rat-

robot interaction studies. [3] In our simple paradigm, the robot is equipped with a two-dimensional action space

A and a five-dimensional state space S (Fig. 1). We begin our investigation with an offline training procedure us-

ing data from previous recording sessions, during which rats with tetrode implants in the CA2 region of the hip-

pocampus (CA2) and stereotrodes in the medial amygdala (MeA) and main olfactory bulb (MOB) were allowed

Figure 1: State space (S) and Action space (A) defined for be-

havioral cloning model. Function M denotes frequency with

greatest power within the theta frequency band (range cho-

sen based on previous work). [3]

to roam freely in the presence of a conspecific. [3] During of-

fline training, a behavioral cloning (BC) neural network model

designed in PyTorch was trained to generate action a ∈ A based

on state s ∈ S (70/30 train/test split). We then ran the model on

the remaining test data, and the actions generated by the model

at each timestep were combined into a continuous trajectory of

resulting positions. These were compared to the actual rat po-

sitions at each corresponding timestep, serving as a metric for

how rodent-like the robot’s free roaming behavior was. At the current stage of this work, we have learned a

state and action space for the paradigm, and are in the development stages of the BC model.

Conclusion: The defined state and action spaces demonstrate that rodent-like exploratory and regulatory be-

haviors may be generated via streams of local field potential data from CA2, MOB, and MeA.
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