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Introduction: This study explores the relationship between brain activity (measured via fMRI from
eight participants [5]) and the internal representations of language models like USE [1] and MPNet
[4]. A deep neural network decoded text embeddings from fMRI voxel representations, leveraging a
reading-out-loud task for alignment.

Materials, Methods, and Results: We analyzed the publicly available fMRI dataset [5], where nine
right-handed adults read Chapter 9 of Harry Potter and
the Sorcerer’s Stone [3], one word at a time (0.5 s/word).
Imaging volumes were acquired every 2 s using a 3T 059 % MPHat
scanner, yielding voxel-wise time series of approximately
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25,000-31,000 voxels per participant. The final data - T

encompassed 1211 time samples per subject. Two S 02

pre-trained embedding models were considered: 6

paraphrase-MiniLM-L6-v2 (USE) [1], which produces S g = s
384-dimensional embeddings, and all-mpnet-base-v2 Sequence length

(MPNet) [4], which produces 768-dimensional  spun 1 Guesait simiiorin seores aemss subjects @ @
embeddings. Each embedding was synchronized with the m af the embeddding modle! and sequence femgth.

fMRI time series by grouping four consecutive words into

one embedding per 2 s interval, introducing a lag of eight words to account for delayed hemodynamic
response [2]. Longer sequences (eight or twelve words) were also examined to assess the effect of
additional context. A DNN mapped voxel intensities to text embeddings, and performance was
evaluated via the cosine similarity index between predicted and actual embeddings using 5-fold
cross-validation. USE and MPNet embeddings were decoded at the above-chance levels for all
participants and at word-sequence lengths. USE consistently outperformed MPNet (F(2, 70)=132.75,
p<10""), and longer sequence lengths improved decoding accuracy (F(4, 70)=281.78, p<10~*), though
there was no interaction between model type and sequence length (F(4, 70)=0.07, p>0.9).

Conclusion: This study validates the ability to decode text embeddings from fMRI data, providing a
significant step toward mapping the internal representations of large language models (LLMs) to
human cortical activity. Both USE and MPNet embeddings were successfully decoded, with the
former showing more substantial alignment with brain representations. These findings underscore the
potential for integrating human neural data with LLMs, advancing our understanding of Al-human
cognitive alignment and paving the way for future cross-disciplinary research to refine and interpret
these models.
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