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Introduction: Most prosthetic limbs lack proprioceptive feedback, which is essential for making complex

movements [1, 2]. Intracortical microstimulation (ICMS) of the somatosensory cortex can be used to

elicit sensory perceptions and guide active movements, which could serve as an artificial proprioceptive

signal [3, 4]. However, movements guided by ICMS remain slower and less accurate than those guided

by natural sensation. To improve sensory encoding via ICMS, we have developed a behavioral paradigm

in freely moving mice to efficiently evaluate algorithms for encoding artificial sensory information via

spatial and temporal patterns of ICMS.

Material, Methods and Results: C57BL/6J mice between 3-4 months were implanted with a TDT 8x2

microwire electrode array (N = 5). ICMS stimuluation was controlled by a Ripple Neuro Grapevine

Processor and behavioral data was tracked with DeepLabCut Live. Mice were trained to navigate to

targets within the training cage guided by combined visual and ICMS feedback (Fig. 1a). Target location

(distance and direction relative to mouse’s heading) was encoded via patterned ICMS across all sixteen

electrodes. For electrode i, stimulation frequency at time t was set to fi(t) = δ(t)∗eκ∗cos(ϕi−θ(t)), where

θ(t) is animal’s heading relative to the target direction, δ(t) scales with distance to the target, and ϕi is

fixed for each electrode. Stimulation pulses were cathode-leading biphasic symmetric pulses with a fixed

amplitude between 10-20 µA and pulse frequency ranging from 10-200 Hz; stimulation parameters were

updated at 10 Hz. Once subjects became proficient in the behavioral task, probe trials were introduced:

ICMS-only, visual-only, and sham (no inputs). Mice quickly learned the task, achieving ≥80% accuracy

on combined trials in 4-6 training sessions (400-600 trials). Mice could complete ICMS-only trials with

7̃0% accuracy, which was statistically equivalent to their performance on visual-only trials (Fig. 1b).

Animal performance on combined trials was statistically better than on unimodal trials (ICMS-only or

dim visual-only), suggesting that the two signals were integrated (Fig. 1c).

Conclusion: Mice quickly learn the behavioral task and perform many trials (150-200) per training

session. The speed and extent of learning that we present here support this approach for communicating

multivariate sensory information (direction and distance) to the central nervous system. This behavioral

paradigm can be easily adapted to further investigate how specific parameters of ICMS (such as the

number of electrodes used) impact encoding accuracy. Using this approach, we can aim to delineate the

limits and capabilities of using ICMS to provide artificial sensation.
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Figure 1: (a) Trial structure: Target is randomly selected and trial start is indicated by go cue. Subject receives either combined visual-ICMS,

visual only, ICMS only, or no feedback (sham) and have 5 seconds to reach the target. Successful trials are indicated by a success tone and

rewarded with juice. A new trial starts 5-7 seconds after reward is collected or at the end of a failure trial. (b) Learning of task structure and

ICMS, shown as the (smoothed) fraction of correct trials across training sessions for one subject. (c) Success rates for all subjects for each trial

type over last five training sessions for each subject. Asterisks indicate significant difference in success rates between paradigms. Performance

on sham trials was significantly worse than all others.
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