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Introduction: Electroencephalography (EEG) data are essential for BCI tasks such as motor imagery

and mental state analysis. Traditional Euclidean approaches overlook the manifold structure of multi-

channel covariance matrices, which reside on Symmetric Positive Definite (SPD) manifolds. This neglect

diminishes accuracy and obscures critical inter-channel relationships[1]. Recognizing these limitations,

researchers have turned to Riemannian geometry to analyze the inherent structure of SPD matrices.

This paper adopts a Riemannian-based convolutional neural network (CNN) paradigm that integrates

geometric insights into feature extraction and classification steps. In doing so, it maintains important

spatial dependencies among EEG electrodes and takes advantage of the interpretability afforded by

manifold-based representations[2].

Materials and Methods: We used the BCI Competition IV dataset 2a (BCIC-IV-2a), which provides

four-class motor imagery data from nine subjects. Each session comprises 288 trials collected over 22

electrodes at a sampling rate of 250 Hz. Initial preprocessing includes noise reduction, down-sampling

to 128 Hz, and extraction of 3.5-second epochs to focus on the most discriminative time window. This

procedure yields 22× 22 covariance matrices per trial, and these matrices are then viewed as points on

the SPD manifold. In our approach, we first feed the raw EEG signals into a CNN-based feature extractor

to learn preliminary spatial and temporal filters. However, instead of applying standard Euclidean oper-

ations, we compute covariance matrices from the learned features to preserve the inter-channel structure

in a geometry-aware manner. A Stiefel manifold transformation reduces matrix dimensionality while

maintaining orthonormal constraints, which is critical to avoid distortion of manifold geometry. We

then map these lower-dimensional SPD matrices into a tangent space using the matrix logarithm, allow-

ing subsequent linear layers to handle the features more effectively. Throughout training, orthonormal

constraints on the Stiefel manifold are enforced via a custom optimizer that corrects parameters after

each gradient update. This design adheres to a geometry-aware classification pipeline. Rather than

flattening or ignoring inter-channel correlations, we exploit the SPD manifold structure to reflect the

nuanced relationships among electrodes. By localizing covariance in a Riemannian tangent space, the

model aligns with intrinsic EEG signal geometry and is better positioned to overcome the non-linearities

often overlooked by purely Euclidean CNNs.

Discussion and Significance: By integrating Riemannian geometry into CNNs, we address the misalign-

ment between Euclidean assumptions and the manifold nature of EEG covariance data. Evaluated on the

BCIC-IV-2a dataset, this approach achieves a validation accuracy of approximately 80% for four-class

motor imagery, representing a 10% improvement over purely Euclidean CNN approaches, credited to its

faithful representation of channel dependencies and covariance-based noise robustness. Beyond boost-

ing accuracy, this geometry-aware model improves interpretability by revealing global spatio-temporal

patterns and effectively generalizing across subjects. Its promise extends to cognitive workload as-

sessment, neurorehabilitation, and adaptive BCIs, where inter-channel dynamics are crucial. Future

directions include exploring alternative Riemannian metrics and developing manifold-aware neural lay-

ers for end-to-end geometry-preserving representations, underscoring the potential for deep learning and

Riemannian geometry to further advance EEG-based BCI systems.
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