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Introduction: Generating realistic synthetic EEG can alleviate dataset size, privacy, and session variabil-

ity concerns in motor imagery (MI) brain–computer interfaces. Conventional diffusion-based models

risk off-manifold artifacts, ignoring the manifold structure of EEG in space and time[1]. We employ

Symmetric Positive Definite (SPD) matrices derived from EEG covariance to capture electrode correla-

tions. Constraining diffusion on this SPD manifold yields higher-fidelity reconstructions and generated

signals for MI tasks[2].

(a) Time-domain comparison of Real (blue), Generated

(green), and Reconstructed (red) EEG signals for Chan-

nel Fp1.

(b) Spectral comparison of Real (blue), Generated

(green), and Reconstructed (red) EEG signals, empha-

sizing alpha-band retention.

Figure 1: Combined time-domain and spectral comparisons of real, generated, and reconstructed EEG signals for Channel Fp1.

Material, Methods, and Results: We used the BCI Competition IV dataset 2a (BCIC-IV-2a), which

includes four-class motor imagery EEG from nine subjects, with 288 trials per session recorded over

22 electrodes at 250 Hz. Preprocessing steps involved noise reduction, down-sampling to 128 Hz, and

segmenting 3.5-second epochs, producing 22×22 covariance matrices on the SPD manifold. A forward

stochastic differential equation (SDE) was defined,

dz = f(z, t) dt+ g(z, t) dw,

where z represents latent SPD coordinates, and f(·), g(·) regulate manifold-constrained noise injection.

The reverse-time SDE was approximated by a neural network using mean squared error and cosine simi-

larity, incorporating log and exp mapping operations alongside a multi-scale diffusion strategy. Synthetic

SPD outputs were mapped back to time-domain EEG through Cholesky factorization. Figures 1a and 1b

demonstrate that the generated signals preserve amplitude fluctuations and alpha-band peaks (10–12 Hz),

improving classification accuracy and reducing Fréchet distance compared to Euclidean baselines.

Discussion and Significance: Constraining diffusion to the SPD manifold minimizes off-manifold arti-

facts and preserves critical temporal and spectral features of the MI EEG. The overlap between real and

synthetic signals demonstrates the retention of inter-electrode correlations and alpha oscillations, mak-

ing this approach valuable for data augmentation in small-sample or privacy-restricted scenarios. Future

work could refine Riemannian metrics, extend to multi-class MI tasks, and validate on larger clinical

datasets, solidifying manifold-based diffusion as a reliable method for generating realistic EEG data.
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