
Redwood: A User Friendly Extension to the BCPy2000

System for Developing Advanced BCI Applications

Z.V. Freudenburg*1, E.J. Aarnoutse1, E. Erdal1, E.C. Offenberg1, J. Berezutskaya1, M.J.

Vansteensel1, N.F. Ramsey1,2
1Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht

University, Utrecht, The Netherlands; 2Donders Institute for Brain, Cognition and Behaviour, Radboud

University, Nijmegen, The Netherlands. ∗P.O. Box 1234, Utrecht, Netherlands. E-mail: Z.V.Freudenburg@umcutrecht.nl

Introduction: BCI2000 [1] is a widely used software platform in BCI research. It has been integrated

with a large range of brain signal acquisition modalities and hardware systems and has been used in

many BCI research paradigms. The growing trend towards using advanced machine learning tools for

online brain signal analysis has also led to the integration of Python, which provides cutting edge

machine learning tools, into BCPy2000 [2]. While this allows for both Python-based signal processing

(SP) and application (App) development it runs the Python code within the traditional C++-based

BCI2000 framework. A fundamental feature of this framework is the process block cycle that ties the

speed at which BCI Apps can update the feedback screen to the computational time needed to acquire,

process and save new brain data. While BCI2000 has proven itself in the BCI research arena, we present

Redwood as an extension to the BCPy2000 framework that aids in advanced BCI App development.

Materials and Methods: BCI2000 is a modular system with 3 modules for: signal acquisition, signal

processing (SP), and BCI application logic (App). These 3 modules are governed by an Operator module

that calls each module in sequence each process cycle. The Operator process cycle is determined by the

‘block size’, which is the number of data samples acquired, processed and responded to by the App.

Communication between the modules is achieved via ‘state’ variables that can be defined, read, and
written by each module and are saved to a ‘dat’ file with the block of raw data samples each process
cycle. BCPy2000 supports Python use in the SP and App modules. The Redwood system builds on the

BCPy2000 framework by adding a thread (Screen) that runs a PyQt based application parallel to App

and accesses state variables via the BCI2000Remote class. In this way the BCPy2000 App logic that

updates state values and responds to SP output is split from logic updating the visual feedback to the

user. Redwood also opens a RedwoodOperator window to provide direct interaction with App.

Results: Building on BCPy2000, Redwood inherits its advantages while adding features that ease

Python application development. By decoupling the Screen logic from that of App the update rate of

the user feedback screen is no longer tied to the BCI2000 process cycle. This allows for two advantages;

Firstly, complex logic defining the visual response to BCI events (e.g. computing AI agent behaviour

or using language models for word completion) can be spread across multiple App cycle blocks.

Secondly, the refresh rate of the Screen can be faster than the App cycle block. Given that with a BCI

system of 100+ data channels and advanced SP a BCI2000 cycle time below 100ms is challenging,

when a user initiates a screen action it will be made at 10fps if the screen is updated by App. However,

Screen can easily meet the lower bound of 30 fps often needed for acceptable gaming interaction.

Additionally, the RedwoodOperator allows the App to be started after the Screen window has been

resized and positioned for the user, to be paused without stopping the .dat file recording, and to give

real-time feedback about states. Finally, Screen can also create a log of screen events that happen in

response to App state changes at the screen fps time scale.

Conclusion: Redwood expands capabilities for App development with Python while preserving all the

benefits the BCI2000 platform offers.

Acknowledgments and Disclosures: The research is funded by NIDCD U01DC016686, NINDS

UH3NS114439, and EU EIC-101070939. No disclosures to report.

References:
 [1] Schalk G, McFarland DJ, Hinterberger, T, Birbaumer, N, Wolpaw JR, BCI2000: a general-purpose brain-computer interface (BCI)

 system., IEEE Transactions on biomedical engineering, 51(6), 1034-1043, 2004.

 [2] Hill NJ, Schreiner T, Puzicha C, Farquhar J, BCPy2000, http://bci2000.org/downloads, 2007.

11th International Brain-Computer Interface Meeting 2025 DOI: 10.3217/978-3-99161-050-2-086

Published by Verlag der Technischen Universität Graz

CC BY 4.0

86
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

http://bci2000.org/downloads

