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Introduction: Despite the potential of motor imagery (MI) BCls, their usability outside of laboratory
settings is limited due to the need for frequent system calibration and user training. A promising
direction to create more user-friendly, plug-and-play BClIs is zero-shot learning [1]. This approach
enables models trained on data from a set of subjects or tasks to generalize and perform classification
on unseen subjects/tasks. While this approach has been previously attempted on task-to-task learning
[2,3], very few studies have applied it to cross-subject learning for calibration-free MI-BCls, and those
that have suffer from limitations such as relying on small datasets and hand-crafted machine learning
models [4]. Contrary to past research, this study aimed to leverage end-to-end deep learning (DL) to
evaluate the robustness of zero-shot learning on a large dataset, which included MI EEG signals from
142 participants. Our RQ was: Is calibration-free MI BCI feasible if zero-shot learning is applied to a
large group of users?

Methods and Results: To obtain a large dataset, we aggregated two
existing datasets; Leeuwis et al. (55 subjects, 2021) [5] and Dreyer
et al. (87 subjects, 2023) [6], both employing the same EEG device .
and right- vs. left-hand MI protocol. The signals were resampled o8 8
and overlapping electrodes relevant to MI task were selected (C3, E
C4, Cz, CP1, CP2). For each subject, the available trials (min 120,
max 320) were included. From each trial, 4 seconds of MI was
selected for model training. Five models were selected for zero-
shot learning; an SVM trained with ERD/ERS patterns (used as
the baseline) and 4 DL models namely, EEGSimpleConv [7],
EEGNet, Deep and Shallow ConvNets [8] trained with raw EEG
data. The training pipeline consisted of leave-one-subject-out o

cross-validation (LOSO-CV), where models were trained on all ’ -~ .
subjects except one, and then tested on the left-out subject. The
obtained accuracies per model are presented in Figure 1.
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Conclusion: While for some subjects, EEGSimpleConv and
Shallow CovNet models achieved noticeably better performance Figure 1: Comparison of model accuracies.
compared to the baseline, the overall results show that calibration-

free MI BCls remain a challenging task due to the high inter-subject variability of MI patterns. Future
research could explore the benefits of one-shot or few-shot learning, allowing pre-trained models to
adapt to new users with minimal data.
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