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Preface

Artificial Intelligence (AI) is increasingly used for modelling, both for the purpose of understand-
ing certain phenomena and as well as for design and development in engineering. Among other
things, AI has been successfully used for creating, improving, and controlling energy systems,
and for understanding their roles in socio-technical systems. With approaches such as AI-based
design, surrogate modeling for digital twins, and data-driven modeling of large-scale interac-
tions between energy systems and individuals, AI has contributed to more sustainable energy
conversion and transmission. At the same time, the computational cost of AI – most notably of
large foundational models for generative AI – has risen substantially. There is thus a growing
need and wider recognition that AI systems must, like all systems, be designed considering their
environmental costs during development (training costs) and deployment (inference costs).

This workshop, hosted by the Horizon Europe project ENFIELD at Brdo Estate, Brdo pri
Kranju, Slovenia, was dedicated to bringing together experts to discuss 1) the role of AI in the de-
velopment and control of energy systems and 2) approaches that reduce the energy demand of AI
applications. Our program featured presentations on how AI can help estimating the state of the
electrical grid and on how AI can be used for energy management tasks, e.g., in battery systems
or ship energy systems. Also large language models received substantial attention, both in terms
of quantifying and reducing their energy consumption, an as tools for assessing the integrity of
critical infrastructure and regulatory compliance of AI pipelines. Presentations on the topic of
Green AI featured both novel methods that are inherently resource-efficient as well as funda-
mental research investigating the interplay between compression and generalization performance.

In addition to interesting presentations and engaging discussions (that, together with a strike
of the German air personnel, had overthrown our initial agenda), the workshop attendants also
enjoyed two excellently delivered keynotes as well as being spoiled culinarily. We hope that the
connections built during these two days in Brdo will be long-lasting, and contribute to a greener
future.

The Organizers
Klemen Žbontar, Bernhard C. Geiger, Amadej Pavšič

Acknowledgement

The ENFIELD: European Lighthouse to Manifest Trustworthy and Green AI project has received
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Overview of the ENFIELD Project

ENFIELD is a European Center of Excellence and aims to drive research in Adaptive, Green,
Human-Centric, and Trustworthy AI. Focusing on applying research results to sectors such as
healthcare, energy, manufacturing, and space, it directly provides valuable results for critical
parts of the industry in the EU.

The main focus areas of the Green AI research pillar are: (a) Green AI metrics monitoring,
which aims at standardization and adoption of Green AI metrics for assessing AI models regard-
ing their carbon footprint; (b) Green AI on the edge, which aims to develop environmentally
sustainable and efficient AI technologies for deployment on the resource-constrained edge; and (c)
Green AI on the edge-cloud continuum, which aims to advance sustainability in AI by developing
energy-efficient strategies and methods to schedule and/or jointly execute AI tasks across edge
and cloud systems.

The research pillar on Adaptive AI focuses on: (a) Adaptive AI on the edge, which is focused
on creating lightweight, adaptive AI models for real-time processing on resource-constrained edge
devices; (b) Adaptive robustness and trustworthiness, which proposes adaptive AI approaches
that are more robust (e.g., to uncertainty, degraded operating conditions, or out-of-distribution
data) and trustworthy (in the sense of reliability); and (c) Brain-inspired adaptive AI, which aims
to identify those elements of the learning machinery of the brain that enables it to adapt to its
ever-changing environment, and incorporate them into AI algorithms.

Human-Centric AI focuses on: (a) Novel explainable AI methods for decision-making, which
aims to explain how AI algorithms based on black box models, such as deep neural networks,
arrive at their decisions; (b) Methodologies for evaluating human-AI shared decision making,
which aim to develop methodologies for supporting and evaluating trust, reliance, and robustness
in human-AI shared decision making, complementing research on the design, development,
and deployment of such systems; (c) Interpretable data-driven decision support systems, which
aims to explore and create integrated supporting environments in which humans (with different
expertise) and AI tools can collaborate to make decisions; and (d) Societal impacts of AI-aided
decision making, which explores methods to detect and mitigate bias in AI systems.

Finally, Trustworthy AI focuses on (a) Security of AI systems, which explores robust security
frameworks for AI systems to ensure their trustworthiness and robustness; (b) Privacy and
compliance of AI systems, which establishes privacy-by-design approaches for training and
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inference stages of AI systems and develops methodologies that ensure compliance to standards
for AI systems; and (c) AI in distributed systems, which investigates and analyzes the security and
trust implications of distributed AI architectures and develops corresponding secure protocols,
methods, and architectures for software engineering of distributed AI solutions.

ENFIELD prioritizes the acquisition of the best talents and resources toward those goals to
eventually strengthen the EU’s AI competitiveness. The initiative unites 30 consortium members
from 18 countries, including academia, industry, and public sector leaders. Through Open Calls,
ENFIELD supports more than 70 researchers and 18 small-scale projects. It will also organize a
series of training activities, such as summer schools and hackathons. Outreach efforts will foster
engagement, growth, and long-term impact.

Georgios Spathoulas
Research Project Advisor for ENFIELD
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10:15-10:35 Developing a Framework for Green AI practices, Jeriek Paul Van
den Abeele (presentation-only)

10:45-11:00 Coffee Break
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ently interpretable AI models, Ricardo J. Bessa, Francisco S. Fer-
nandes, Lucas Bost, João Peças Lopes
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management, Udayanto Dwi Atmojo (presentation-only)
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(remote, presentation-only)

12:00-12:20 LexAlign: Towards a Multiagent AI System for Regulatory Com-
pliance of Data/AI Pipelines, Sagar Sen, Carl-Henrik Lien, Niko-
lay Nikolov, Adela Nedisan Videsjorden, Erik Johannes Husom,
Shukun Tokas, Arda Goknil, Dumitru Roman

12:20-12:40 Towards a Vision-Language Foundation Model for Critical In-
frastructure Integrity Interpretation, Sagar Sen, Simeon Tverdal,
Erik Johannes Husom

14:35-14:55 Geometric and Information-Theoretic Compression in Neural
Classifier Training, Linara Adilova, Bernhard C. Geiger
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13:45-16:30 Closed Session for ENFIELD Participants
16:30-17:00 Workshop Wrap-Up
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Keynotes

Uroš Salobir – Digitalising the Energy System

Keynote Speaker Biography

Uroš Salobir has been working at the Slovenian transmission system operator ELES for over 25
years. He has worked on management and coordination in power system operations, electricity
markets, infrastructure projects, and technical information systems during this period. He pio-
neered ELES’s strategic innovation activities and was responsible for implementing some of the
most challenging innovation projects in ELES’s history. In 2017, he helped establish the Strategic
Innovation Department he is currently leading. In addition, he and his team recently launched the
first cross-sector partnerships and projects with the mobility, clean gases, and heating and cooling
sectors. He is the Chair of the ENTSO-E Research and Development Committee (RDIC) and holds
prominent positions in CIGRE and EGVIAfor2Zero.

Keynote Abstract

The keynote explored the transformative potential of digitizing the energy system, with a focus on
integrating AI and digital twins into the core business processes of large utility companies. Em-
phasis was placed on the challenges and opportunities of applying large language models (LLMs)
and reinforcement learning in the energy sector, highlighting the necessity of understanding AI
agents to optimize digital twins effectively. The evolution of digital twins from simulators to so-
phisticated tools that enhance system operations and planning was discussed.

The EuropeanUnion’s action plan for the digitalisation of the energy system, known asDESAP,
was detailed. This initiative aims to define future projects and calls for the European Commission,
involving collaboration between Distribution System Operators (DSOs) and Transmission System
Operators (TSOs) to address existing challenges using modern digital tools. The importance of
customer-oriented business models, advanced system planning, and the development of future
control rooms to improve observability and operational efficiency was underscored.

The significance of cross-sector collaboration, particularly between the power system and the
mobility sector, was addressed to optimize energy use and reduce costs. Solution concepts E8 and
Pentlja on how to enhance the interaction between electric vehicles and the power grid, were in-
troduced. Another concept for a community-based heating solution, called KODO, was presented.
These concepts aim to help in achieving green energy goals and underline the necessity of inte-
grating digitalisation efforts across various sectors to create a resilient and efficient energy system.
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Veljko Pejović – Efficient Implementation of AI on Edge Devices

Keynote Speaker Biography

Veljko Pejović received his PhD in computer science from the University of California Santa Bar-
bara, and worked as a Research Fellow at the Computer Science Department, University of Birm-
ingham, UK. From 2015 he is with the Faculty of Computer and Information Science, University
of Ljubljana, where he is an Associate Professor and is leading research on mobile computing,
focusing on resource-efficient mobile systems, human-computer interaction, and cybersecurity in
ubiquitous systems.

Keynote Abstract

The keynote addressed the growing environmental impact of Information and Communication
Technology (ICT) and the urgent need for sustainable practices. It was highlighted that ICT’s
greenhouse gas emissions are projected to increase significantly, potentially reaching 35% of global
emissions if current trends continue. This underscores the necessity for policies and holistic ap-
proaches to mitigate ICT’s environmental footprint.

Research on resource-efficient mobile systems was presented, focusing on approximate mobile
computing. This approach aims to reduce computational demands by adjusting the precision of
operations based on user needs and context. The Mobiprox framework was introduced, allow-
ing dynamic approximation of neural network operations on Android devices, enabling signif-
icant energy savings without compromising user experience. The framework supports various
approximation techniques, such as row and column perforation and filter sampling, and includes
a cross-platform profiler to ensure optimal performance on mobile devices.

Additionally, the application of approximate computing in real-world scenarios was discussed,
such as human activity recognition and spoken keyword recognition on mobile phones. These ap-
plications demonstrated substantial energy savings while maintaining acceptable accuracy levels.

Another research was also presented that showed the potential of on-device AI for drones in
agriculture. The Squeeze Slim Unit, a neural network architecture optimized for low-cost drones
to perform real-time weed detection, was introduced. This innovation promises to enhance agri-
cultural practices by enabling immediate action based on real-time data, despite the constraints of
limited computational resources and network connectivity.

The keynote concluded with an emphasis on the importance of efficiency and sustainability in
mobile computing. The presented research offers practical solutions to reduce ICT’s environmental
impact while maintaining high performance and user satisfaction.
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Grid State-Estimation with Least Square Methods and
Minimum PMU Infrastructure

Rene H. Jilg1 W. Elmenreich1

1Alpen-Adria University, Klagenfurt, Austria

1 Introduction

The transition toward a sustainable energy future relies on the widespread adoption of renewable
energy sources (RES) such as wind and solar power (Zhou et al., 2019). However, their inherent
volatility presents challenges for grid integration, particularly in Distribution Networks (DN). At
the same time, rising electricity demand from electrification—such as electric vehicles and heat
pumps—further strains the grid, especially when local energy generation and consumption are
not properly balanced. Without effective grid management and control (GMC), fluctuations in key
electrical parameters like voltage, current, and power can lead to inefficiencies, energy losses, and
potential safety risks when operational limits are exceeded. A key for effective GMC is accurate
grid state estimation (SE). It directly influences grid stability but also supports a more sustainable
energy system by reducing unnecessary energy losses, optimizing resource use, and minimizing
the environmental impact of monitoring infrastructure. In this paper, we present investigation
results of grid observability analysis with minimal Phasor Measurement Unit (PMU) infrastructure.

1.1 The Necessity of Grid Power Management and Grid State-Estimation

Power management as a control task is the procedure to actively manage controllable grid devices
(CGDs) following a control strategy. Examples of CGDs are power generators, transformer tap
positions, battery energy systems (BESS), STATCOM, etc. A medium-term (e.g., over the next 24
hours) "base control trajectory" for the CGDs can be obtained by performing an Optimal Power
Flow Calculation (OPF). The OPF calculation can be done offline and incorporates optimization
models, including minimizable cost functions (e.g., minimization of power losses) and constraints
(e.g., considering voltage and current safety limits). Inputs to the OPF are, besides the network
model, estimated power productions and consumptions in the network. For the volatile RES, the
productions can be estimated by means of weather forecasting values and production models.
In any case, during operation, deviations from the predicted grid quantities will occur. Reasons
include stochastic production due to clouds and wind, deviations in predicted consumptions (e.g., EV
charging times), inaccurate models, or outages and failures of grid-relevant components. Depending
on the impact on the critical grid quantities (voltages, currents), grid control needs to react in real
time. Hence, it is necessary to know the physical state of the grid in real time. The process of
obtaining these grid state values (state vectors (SV)) is called Grid State Estimation (SE).

1.2 Challenges in Grid State Estimation

Key challenges in power system state estimation for distribution networks include:

• Measurement Inaccuracies (Gómez-Expósito and Abur, 2004)
• Data Synchronization Issues (Monticelli, 2000)
• Limited Observability in Distribution Networks (Abur and Exposito, 2004)
• Unbalanced Loads and Network Configurations (Karimi et al., 2019)
• Low X/R-ratio especially in DG (Zhao et al., 2017)
• Cybersecurity Concerns (Chung et al., 2018)

This paper is focusing on the limited observability of a network.

AIEnergyGreenAI 2025 Workshop © 2025 the authors, released under CC BY 4.0
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(a) IEEE-14 transmission network (University of
Illinois at Urbana-Champaign)

(b) OLS and WLS estimates with true values ob-
tained from Power Flow Calculation

Figure 1: IEEE-14 transmission network and a comparison of OLS and WLS estimates.

2 Method and Experiments

2.1 Measurement Configuration

In this simulation setup only PMUs are used, while each PMU is able to measure the voltage phasor
(voltage magnitude 𝑉𝑚𝑎𝑔,𝑖 and voltage phase angles 𝜃𝑉 ,𝑖 ) at the installation bus 𝑖 and the current
phasors (current magnitudes 𝐼𝑚𝑎𝑔,𝑖 𝑗 and current phase angles 𝜃𝐼 ,𝑖 𝑗 ) of the connected branches
between bus 𝑖 and bus 𝑗 . For all the calculations the reference bus is defined at bus 1 (𝜃𝑉 ,1 = 0).
To perform simuluations, the IEEE-14 bus network is used, which comprises 𝑁 = 14 buses and
𝑀 = 20 branches (figure 1a). Althought the IEEE-14 bus is a TransmissionNetwork (TN), conclusions
can also be taken for DN. The goal is to determine the minimum PMUs needed for network state
estimation using OLS and WLS, ensuring cost-effective deployment.

2.2 Applied State-Estimation Methods

When performing SE a mathematical model is necessary, which relates the vector of electrical
states of the system x = [𝑉𝑚𝑎𝑔,1, ..,𝑉𝑚𝑎𝑔,𝑁 , 𝜃𝑉 ,1, .., 𝜃𝑉 ,𝑁 ]𝑇 to the vector of available measurements
z = [V𝑚𝑎𝑔, 𝜃𝑉 , I𝑚𝑎𝑔, 𝜃𝐼 ]𝑇 by means of the measurement equation z = h(x) + e. In that equation h(x)
is a nonlinear vector function containing the measurement functions, e is the vector of disturbances
(e.g. measurement noise) andV𝑚𝑎𝑔, 𝜃𝑉 , I𝑚𝑎𝑔, 𝜃𝐼 are block-vectors which length depends on the numer
of measurements. (Remark: while the relationsship between State-Variables and measurements of
voltage phasor quantities is linear, the relationship of State-Variables and current phasor quantities
is non-linear (Abur and Exposito, 2004)). When using OLS or WLS algorithms the nonlinear
relationsship between SV and measurements needs to be linearized, so that the measurement
function becomes z = H(x)·x+e, whereH(x) is the Jacobianmatrix with elements𝐻𝑖, 𝑗 =

𝜕ℎ𝑖
𝜕𝑥 𝑗

. The SE
calculates iteratively a new state estimate at every step according Δx̂𝑘 = (H𝑘

𝑇W𝑘H𝑘 )−1H𝑘
𝑇W𝑘Δz𝑘 ,

where H𝑘 again is the measurement Jacobian at iteration step k andW𝑘 is the weighting matrix
at iteration step k. The latter is equal to the identity matrix in case of OLS. The states are finally
iteratively estimated by x̂𝑘+1 = x̂𝑘 + Δx̂𝑘 . According to observation theory, a necessary condition
that such a system is fully observable is, that the rank of the Jacobian H is equal to the number
of the state-variables (Monticelli, 1999). Observability in that context means that the SV x can be
reconstructed from the measurement z. In the following, two case are considered:

1. PMU placement at the buses [2,6,7,9] which leads to a theoretically fully observable system
(Hussain et al., 2021)

2. PMU placement just at buses [2,6] which leads to a theoretically not fully observable system
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2.3 Results
Both methods (OLS and WLS) have been used in simulation with different measurement noise
variances and initial conditions over multiple runs. The rank of matrix H and the condition 𝜅 (HTH)
as well as 𝜅 (HTWH) were analyzed. Simulations reveal an interesting result: even in a setup at
which theoretical observability is not given (violation of the necessary condition from above) OLS
and WLS methods are capable of consistently estimating the system state. As an example, in figure
1b compares estimated states from both methods and the true values which were obtained from a
Power Flow Calculation. The simulation was done with PMUs installed at buses [2,6] which results
in 𝑟𝑎𝑛𝑘 (H) = 18 which is lower than the number of State-Variables, which is 28.

3 Discussion and Outlook
The simulation results have shown, that also for the case 2 (theoretically not fully observable), both
LS estimation methods are able to estimate the state of the system accurately. This fact can be
summarized by the following effects:
1. Redundancy in Current Phasor Measurements: A single PMU measures voltage at its bus and

currents in connected branches. Since currents depend on neighboring voltages via the admit-
tance matrix, this redundancy enhances numerical observability, even without full theoretical
observability (Zhao et al., 2020).

2. Impact of Network Topology and Admittance Matrix: The power grid’s topology determines
how measurement information propagates. The Jacobian matrix structure often retains full rank
numerically, allowing OLS and WLS to perform well (Zhao et al., 2020; Monticelli, 2000).

3. Small Measurement Noise and Well-Conditioned Problem Structure: PMUs offer highly
accurate voltage and current phasor measurements. The low noise levels in these measurements
reduce numerical instability, allowing state estimators to converge despite limited data (Abur
and Exposito, 2004).

It has been shown that under some circumstances it is possible to obtain consistent state-estimations
even in the case of theoretical non fully observability with simple LS algorithms based on PMU
measurements being sufficient. If the sparsity of the measurement matrix increases, alternative
methods such as Sparse Bayesian Learning (SBL) become more beneficial.
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Synthetic Data Generation for Electric Vehicle Charging

Iroshani Jayawardene1 Magdalena Skrzycki2 Xiang Ma1 Ahmet Soylu3

Dumitru Roman1,4

1SINTEF AS, Norway
2Leiden University, Netherlands
3Kristiania University of Applied Sciences, Norway
3OsloMet - Oslo Metropolitan University, Norway

1 Introduction
The increasing adoption of electric vehicles (EVs) significantly contributes to reducing carbon
emissions but also complicates energy systems due to increased demands for residential charging.
A fundamental challenge is the lack of detailed, high-quality data on EV charging patterns.

High-quality synthetic datasets are crucial to effectively manage and predict future needs
of integrated energy systems, as traditional data sources often lack the necessary granularity to
capture the complex inter-dependencies between energy components and user behaviors. This
abstract proposes a generative model for EV charging data that incorporates temporal, spatial, and
environmental conditions, leveraging real-world open-source datasets and employing advanced
techniques such as data augmentation, and imputation. This approach supports customized scenario
analyses for energy management research, enhancing the EMS’s optimization for improved grid
stability and efficiency. Additionally, a framework to evaluate synthetic data quality and a graphical
interface for researchers, utility companies, and policymakers is proposed. The anticipated results
include a versatile tool for data synthesis, providing new insights to enhance grid stability and
energy management practices amid the increasing prevalence of EV charging. This work is done in
the context of a prototype energy management system (EMS) that includes a 10 kW photovoltaic
(PV) system, 193 kWh of battery storage (split into four 48.4 kWh units), an EV charging station,
and a grid connection (Jayawardene et al. (2023)).

2 Method and Case Study
This work focuses on developing a generative diffusion-based model (Cao et al. (2023)) to create
realistic synthetic data for EV charging, accommodating temporal, spatial, weather conditions,
and energy pricing factors. The model will incorporate advanced machine learning techniques,
including Long short-term memory (LSTMs) and cross-attention mechanisms (Zheng et al. (2021)),
to enhance the realism of time-series data.

2.1 Data Description
The primary datasets include the dataset of EV charging records (Sørensen (2024)) and historical
weather data from Open-meteo 1, complemented by Ember energy dataset 2 for energy pricing in
Norway. These datasets will provide the foundational real-world data necessary for training and
validation.

2.2 Data Pre-processing
Data pre-processing targets normalization and imputation to manage gaps and ensure robust
modeling inputs. The focus will be on ensuring data quality, especially regarding the temporal and
spatial consistency needed for precise synthetic data generation.

1https://open-meteo.com
2https://ember-energy.org/data
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2.3 Model Development

The modeling approach will utilize a conditional diffusion framework integrated with time-series
specific layers to accurately simulate individual charging sessions. A Graphical User Interface (GUI)
is under development3, enabling users to customize data generation based on specific scenarios
and conditions.

2.4 Evaluation

Synthetic data will be validated against real-world data using statistical tests like the Wasserstein
distance SciPy (2023) and Kullback-Leibler divergence Unknown (2023) to ensure data quality
and realism. The synthetic outputs will also be compared against benchmarks from established
synthetic data generation models to gauge performance enhancements.

3 Discussion and Outlook

Based on the initial investigations and literature review, the integration of daily and session-specific
weather variables alongside hourly electricity prices through synthetic data generation is poised to
significantly enhance themodel’s precision in predicting EV charging behaviors and cost estimations.
As we advance, continuous refinement of data pre-processing and model integration of dynamic
variables like real-time weather and fluctuating energy prices is crucial. These advancements in
synthetic data generation are key to accurately mimicking real-world complexities in our datasets.
Ultimately, the methodologies developed are expected to greatly improve the granularity and
accuracy of EV charging data models, supporting the evolution of energy management systems that
adeptly adjust to user behavior and environmental shifts, thereby driving forward the development
of sustainable, efficient urban energy frameworks.

Acknowledgements. The work is funded partially through the projects SEP SynDaGen (SINTEF
internal funding), enRichMyData (HE 101070284), Graph-Massivizer (HE 101093202), and UPCAST
(HE 101093216).
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1 Introduction

In recent years, there has been a significant increase in the integration of photo-voltaic capacities
across the world, which in turn has made the electrical grid more difficult to maintain. The reason
for this is the high variability of solar power generation. Hence, to be able to operate the grid
successfully, grid operators require accurate forecasts of solar power generation.

For this purpose, our work focused on predicting 2-hour ahead solar power generation at
15-minute intervals – a typical resolution requirement for solar power plants and system operation
measurements. Wemade solar power generation forecasts for 233 different locations across Slovenia
– more extensive research regarding the number of photo-voltaic locations than what can be found
in the literature on this topic. We showed that the state-of-the-art deep learning architecture called
Temporal Fusion Transformer (TFT) (Lim et al., 2021) outperforms well-established benchmarks in
solar forecasting by significant margins across all metrics and training settings considered.

2 Method and Experiments

TFT, as visualized in Figure 1, is among the first transformer-based architectures designed for time
series forecasting. It was designed to build separate feature representations for different input types
(static, known, and observed input types) passed to the model. In addition, the model has a modular
structure, meaning that each part of the model tackles a specific issue related to the dataset or
forecasting problem at hand. These 2 model features have led to strong model performance on a
wide range of problems (Lim et al., 2021).

We compared the performance of TFT against several well-established benchmarks in the field
of solar forecasting: climatology (Yang, 2019), naive persistence and smart persistence models
(Pedro and Coimbra, 2012), as well as a multi-layer perceptron (MLP) (Rumelhart et al., 1986). The
results of the experiments are presented in Table 1. The table lists MSE, MAE, and the skill score
metric (in parentheses), along with their corresponding standard errors for all models considered.

3 Discussion and Outlook

As visible in Table 1, TFT is the best-performing model across all metrics and training settings
considered. However, we believe that there are additional neural network architectures that could
even better utilize the information present in satellite images. A fitting example for this task is
the series of weather models developed by Google DeepMind and Google Research: MetNet-1
(Sønderby et al., 2020), MetNet-2 (Espeholt et al., 2021) and MetNet-3 (Andrychowicz et al., 2023).
Adapting the MetNet model architectures for the task of solar forecasting is a path worth exploring.

Acknowledgements. The numerical weather predictions were provided as part of a 1-year direct
access to the European Centre for Medium-Range Weather Forecasts (ECMWF) Archive Catalogue,
available at http://apps.ecmwf.int/archive-catalogue/. This data product is published under Cre-
ative Commons Attribution 4.0 International (CC BY 4.0). To view a copy of this licence, visit
https://creativecommons.org/licenses/by/4.0/.
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Figure 1: A visualization of the TFT architecture. We can see the gated residual networks (GRN) and
variable selection networks in more detail on the right-hand side. The figure is borrowed
from the work by Lim et al. (2021).

Table 1: Model evaluation results. The results of the best-performing model are in bold.

Model MSE MAE

Climatology 10169.68 ± 0.00 (-3.62 ± 0.00) 65.66 ± 0.00 (-1.93 ± 0.00)
Naive persistence 3390.90 ± 0.00 (-0.46 ± 0.00) 30.31 ± 0.00 (-0.35 ± 0.00)
Smart persistence 2199.73 ± 0.00 (0.00 ± 0.00) 22.42 ± 0.00 (0.00 ± 0.00)
MLP 7310.65 ± 0.62 (-2.32 ± 0.00) 61.60 ± 0.00 (-1.75 ± 0.00)
TFT 1736.49 ± 0.39 (0.21 ± 0.00) 21.69 ± 0.00 (0.03 ± 0.00)
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1 Introduction

Accurate prediction of battery failure is crucial for ensuring reliability, safety, and longevity in
energy storage systems across diverse applications, from electric vehicles to renewable energy
grids. Effective battery management relies on analyzing multivariate time-series data to capture the
dynamic and evolving characteristics of battery degradation Lipu et al. (2022). Traditional predictive
maintenance methods, including reactive (run-to-failure) and scheduled (time-based) approaches,
often entail high costs, significant risks, and either premature or delayed maintenance interventions,
Fioravanti et al. (2020). Consequently, there is a critical need for more sophisticated methods that
can deliver early failure detection and accurate degradation forecasting, thus enhancing operational
safety, system reliability, and significantly reducing maintenance costs and downtime.

2 Method and Experiments

Recent advancements in predictive maintenance have introduced a range of methodologies, such
as in Chen (2020); Cavus et al. (2025) from a rule-based threshold checks to complex data-driven
models. In this work, we propose a brief conceptual comparative analysis of two symbolic AI
reasoning approaches: Answer Set Programming (ASP) as in Lifschitz (2019) and Multi-Agent
Systems (MAS) as in Šarunas Raudys and Zliobaite (2006); Salvador Palau et al. (2019), utilizing the
NASA Prognostics Batteries dataset introduced by Saha and Goebel (2007). This dataset comprises
comprehensive cycle-by-cycle measurements, including voltage, current, temperature, capacity,
and impedance, from Li-ion batteries subjected to varied operational profiles (charge, discharge,
and impedance)

In the ASP-based framework as illustrated in Figure 1a, raw battery cycle data is initially
subjected to preprocessing and feature extraction. A sliding window method is applied to the
processed time-series data to mitigate the effects of transient anomalies and measurement
errors. Subsequently, the data within each sliding window is converted into a structured
set of logical facts suitable for reasoning in ASP. Expert domain knowledge is then encoded
into declarative rules, defining specific conditions for battery failure. or example, a rule
may state that if the measured capacity during a discharge cycle falls below 1.4 Ahr (a 30%
fade from the rated capacity of 2 Ahr), then the battery is considered to have reached its
end-of-life. ASP solvers then compute answer sets that explicitly reveal the battery’s state by
enforcing these constraints. This method offers high transparency and a clear traceability of
the decision-making process, which is especially valuable for diagnosing specific degradation events

In the proposed MAS framework shown in Figure 1b, we aim to deploy multiple specialized
agents, each monitoring a specific aspect of battery data such as capacity, impedance, voltage,
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and temperature. Each agent processes incoming real-time data streams, assesses them against
predefined thresholds, and communicates potential anomalies through established message-passing
protocols. For instance, a dedicated ’Capacity Agent’ identifies and flags cycles where the battery
capacity falls below critical thresholds, while an ’Impedance Agent’ monitors abnormal impedance
trends. A central coordinator, the ’Diagnosis Agent,’ aggregates alerts from these diverse agents,
synthesizes the findings, and generates dynamic, real-time predictive maintenance decisions. This
decentralized structure ensures adaptability and real-time responsiveness, essential for promptly
adjusting assessments as new data becomes available.

(a) Detailed Workflow of the
ASP-based approach (b) Workflow of the ASP-based approach

Figure 1: Overall caption describing both subfigures.

3 Discussion and Outlook

At this stage, we anticipate distinct strengths and limitations from each method. We expect that
ASP would excel in transparency and explainability because it explicitly uses human-readable
logical rules to interpret battery states. However, we also foresee potential limitations regarding
computational complexity and scalability, particularly for large datasets or real-time scenarios, due
to the resource-intensive nature of grounding and rule-solving processes. Conversely, we anticipate
that MAS would demonstrate advantages in real-time responsiveness, adaptability, and scalability
because of its distributed and modular architecture. However, MAS may offer only moderate
transparency due to the complexity arising from multiple interacting agents. This conceptual
analysis provides an initial framework to guide future practical evaluations and helps in identifying
which criteria will be crucial for eventual benchmarking.

In summary, a conceptual framework comparing two symbolic AI reasoning methods: ASP and
MAS for predictive battery maintenance has been presented. In future research practical validation
and quantitative comparison will be provided. We aim to implement and experimentally validate
both approaches, assessing key performance metrics including accuracy, computational efficiency,
transparency, scalability, and real-time responsiveness. Additionally, we plan comprehensive
benchmarking against established predictive methods such as classical machine learning and deep
learning to confirm their practical applicability.

Acknowledgements. Funding is acknowledged from the European Union’s Horizon Europe research
and innovation programme under grant agreement no. 101137725 (BatCAT)
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1 Introduction

Recently, Large Language Models (LLMs) are becoming popular, powering applications such as
chatbots, content generation, and intelligent assistants [1]. Cloud computing has long been the de-
fault infrastructure for hosting LLMs, providing on-demand scalability, access to high-performance
GPUs, and global availability. Yet, cloud instances for LLMs can be inefficient, as bursty workloads
lead to idle resources and unnecessary costs, especially for sporadic inference requests, e.g., chatbots
experiencing peak traffic during business hours but remaining underutilized at night.

Serverless computing has emerged as a complementary paradigm for cloud computing, offering
a cost-efficient, flexible alternative that dynamically scales resources while eliminating the need
for manual infrastructure management [3, 4]. Platforms like Hugging Face’s Inference Endpoints1
leverage this paradigm to provide serverless access to thousands of LLM models. However, cold
start latency, i.e., container initialization before processing requests, plus network overhead, delays
LLM inference for token generation and limits cloud suitability for real-time or restricted-data
applications, driving interest in edge computing. Edge-based LLM inference on servers or low-power
CPUs, GPUs, or TPUs can reduce network latency, cloud costs, and energy overhead while enabling
offline operation, allowing LLM models to function without Internet connectivity and efficient
processing through task-specific models. However, hardware constraints and limited scalability
remain key challenges.

This short paper compares serverless LLM deployed on Google Cloud Functions with an edge-
based deployment on an NVIDIA Jetson Nano (NJN) running open-source serverless platform.
We evaluate latency and scalability to analyze the trade-offs between serverless edge and cloud
inference, contributing to “Systems for AI” [2] by assessing infrastructure impact on LLM efficiency.

Keywords

Serverless Computing, Edge-Cloud Computing, Large Language Models (LLM), Systems for AI.

2 Evaluation Setup

We conducted all experiments on Google Cloud Run2, a cloud-based serverless platform that
dynamically allocates resources with an NVIDIA A100 GPU for cloud deployment, and NVIDIA
Jetson Nano (NJN) edge device, featuring a Quad-core ARM Cortex-A57 CPU@1.43 GHz with 4 GB
RAM, running OpenFaaS3, an open-source serverless platform deployed atop Kubernetes4. Both
platforms hosted LLaMA-2 (7B parameters, 4-bit Q4_K_M quantization) in .gguf format, downloaded
from Hugging Face as a dockerized serverless function. To ensure a diverse workload, we selected
100 unique queries from MMLU (Massive Multitask Language Understanding) [6], covering general

1https://huggingface.co/inference-endpoints
2https://cloud.google.com/run
3https://www.openfaas.com/
4https://kubernetes.io/
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Figure 1: Impact of query per second (QPS) on (a) average response time, (b) request throughput (RPS),
and (c) failure rate across deployment environments.

knowledge, reasoning, and code generation tasks. For load testing, we employed Locust5, where
queries were formatted as JSON payloads, dynamically sampled, and sent at varying concurrency
levels (1 to 10 queries per second (QPS)), returning sequence of tokens as outputs for further analysis.
We monitored resource utilization via Prometheus6 at the edge and Google Cloud Monitoring7

on the cloud.

3 Experimental Results

For each query, we measured the total response time, capturing the full sequence generation latency,
including request transmission, processing, and response return. Cold start latency was evaluated
by deliberately forcing function inactivity before execution, triggering container reinitialization
in Google Cloud Run and function reloading in OpenFaaS. As shown in Fig. 1 (a), increasing
QPS leads to higher response times due to increased processing overhead. While edge deploy-
ments benefit from reduced cold start latency, their limited computational resources exacerbate
performance degradation under load. Moreover, larger container sizes and increasing loads on
resource-constrained edge devices further contribute to failures (Fig. refresult (c)), highlighting the
scalability advantage of cloud deployments for handling high query loads.

To evaluate the scalability of cloud and edge deployments, we measured requests per second
(RPS) as 𝑅𝑃𝑆 = #𝑄𝑢𝑒𝑟𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙_𝑇𝑖𝑚𝑒 , where a higher RPS indicates better scalability and throughput. As QPS
increased, RPS initially scaled but eventually plateaued or degraded due to resource saturation
(Fig. 1 (b)). This confirms the earlier discussion, where cloud platforms sustain higher throughput
under load while the edge experiences bottlenecks from computational capacity and queuing delays.

4 Discussion and Outlook

This work explores LLM deployment in serverless edge and cloud environments, emphasizing
the trade-offs between efficiency and scalability. It advances research on LLM deployment within
“Systems for AI” context through the following insights: (i) Edge serverless LLM deployment enables
offline usage, reduces costs during off-peak periods, and enhances privacy by keeping data local. It
also lowers energy consumption and CO2 emissions, exemplified by 16 ChatGPT queries emitting
as much as boiling a kettle8; (ii) Cloud serverless LLM deployment remains superior in handling
high query loads due to its on-demand scalability and computational power.

Future research directions include enhancing fine-tuning of LLMs at the edge for personalized
adaptation, optimizing quantized models with Retrieval-Augmented Generation (RAG) for efficiency,
and implementing intelligent query routing for cost-aware execution. Advancements in adaptive
resource allocation and bi-objective scheduling solutions like [5] will further improve the scalability
and sustainability of LLM inferences.

5https://locust.io/
6https://prometheus.io/
7https://cloud.google.com/monitoring
8https://piktochart.com/blog/carbon-footprint-of-chatgpt/

2

30 released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


Acknowledgements. This work received funding from the Horizon Europe research and innovation
program (project 101093202 “Graph-Massivizer”) and the Austrian Research Promotion Agency
(FFG project 909989 “AIM AT Stiftungsprofessur für Edge AI”).

References

[1] Zoha Azimi, Reza Farahani, Christian Timmerer, and Radu Prodan. Towards an Energy-Efficient
Video Processing Tool with LLMs. In Proceedings of the 4th Mile-High Video Conference, 2025.

[2] Reza Farahani, Zoha Azimi, Christian Timmerer, and Radu Prodan. Towards Ai-assisted Sustain-
able Adaptive Video Streaming Systems: Tutorial and Survey. arXiv preprint arXiv:2406.02302,
2024.

[3] Reza Farahani, Dragi Kimovski, Sashko Ristov, Alexandru Iosup, and Radu Prodan. Towards
sustainable serverless processing of massive graphs on the computing continuum. In Companion
of the 2023 ACM/SPEC International Conference on Performance Engineering, 2023.

[4] Reza Farahani, Frank Loh, Dumitru Roman, and Radu Prodan. Serverless Workflow Manage-
ment on the Computing Continuum: A Mini-Survey. In Companion of the 15th ACM/SPEC
International Conference on Performance Engineering, 2024.

[5] Reza Farahani, Narges Mehran, Sashko Ristov, and Radu Prodan. HEFTLess: A Bi-Objective
Serverless Workflow Batch Orchestration on the Computing Continuum. In 2024 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER). IEEE, 2024.

[6] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300, 2020.

3

released under CC BY 4.0 31

https://creativecommons.org/licenses/by/4.0/




Swarm Intelligence for Sustainable Logistics: Enabling
Privacy for the Green Freight Delivery from the Bottom-Up

Marija Gojković1,2 Melanie Schranz1 Wilfried Elmenreich2

1Lakeside Labs GmbH, Klagenfurt, Austria, email: {gojkovic, schranz}@lakeside-labs.at
2Alpen-Adria University, Klagenfurt, Austria, email: wilfried.elmenreich@aau.at

1 Motivation
The logistics industry faces a critical challenge with the significantly growing number of empty
truck drives. Eurostat data from Austria reveals an increase in empty truck runs from 40% in 2010
to 45% in 2019 in Austria, alongside a rise in empty kilometers from 31% to 34% (VCÖ Mobilität mit
Zukunft, 2019). These empty runs not only contribute to increased operational costs for logistics
providers, but also have a detrimental impact on environmental sustainability.

Traditionally, logistics providers have relied on intermediaries, such as brokers, to facilitate
order transfers while maintaining confidentiality. These intermediaries act as trusted third parties,
ensuring that sensitive data remains protected from competitors (Fig. 1). While these intermediaries
ensure data confidentiality, they can limit the scope of optimization, reduce transparency, and hinder
adaptability in dynamic markets. True collaborative optimization, without a central intermediary,
has the potential to significantly reduce empty runs, improve resource utilization, and lower overall
costs. However, the fear of data leakage, particularly the disclosure of sensitive information like
cost structures, significantly hinders the widespread adoption of such collaborative models. This
challenge calls for innovative solutions that enable secure and efficient collaboration while ensuring
data confidentiality.

To reduce empty runs and associated 𝐶𝑂2 emissions, we propose a decentralized framework
utilizing swarm intelligence. Inspired by nature, this approach allows logistics providers to col-
laboratively optimize order allocation following simple rules (Schranz et al., 2021) while shar-
ing anonymized data. Unlike resource-intensive methods, swarm intelligence is computationally
lightweight, minimizing environmental impact. This leads to improved resource utilization, reduced
operational costs, and significant environmental and economic benefits, making it an environmen-
tally conscious AI system.

Figure 1: Traditional system architecture involving three parties and one broker that is considered to
be trustworthy (Gojković and Schranz, 2024).
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2 Method and Experiments
To enable secure collaboration, we model the task scheduling problem using agent-based modeling
(ABM). ABM approach eliminates the need for a central broker, enhancing privacy by restricting
data exchange between agents: Freighters cannot access the origin of orders placed by other
freighters. Orders can only access limited details about other orders that share the same truck.
The freighter who placed an order (order origin) is always hidden. However, a freighter has access
to a pool of available trucks to place its order without accessing information on ownership of a
particular truck (e.g., other freighter id). All trucks available in a pool aren’t able to share any
information with one another (e.g., ownership, destination). Lastly, trucks do not have access to
the origin of orders. This decentralized framework, inspired by swarm intelligence, leverages the
ABC algorithm to optimize order allocation while preserving privacy. By modeling trucks as food
sources and orders as bees, the algorithm optimizes resource utilization, minimizes empty runs, and
ensures timely deliveries while adhering to privacy constraints. More details on this implemented
method are given in (Gojković and Schranz, 2024).

Table 1: Performance of swarm-based system compared to benchmark (Gojković and Schranz, 2024).

Ins.11 SI Imp % Ins.139 SI Imp % Ins.180 SI Imp %
Average empty 9.72 9.72 0 8 8.92 -11.5 3.78 3.01 20.37
Total drives 25 25 0 25 26 -4 294 231 21.43

This study evaluates the swarm intelligence approach inspired by the ABC algorithm in three
distinct logistics scenarios, each with varying configurations of trucks, freighters, and orders,
leading to different swarm sizes. The goal is to design a privacy-preserving system that avoids
the exchange of sensitive information while achieving performance comparable to a benchmark.
The results show that the swarm-based system exhibits varying performance across the scenarios.
The largest swarm size (scenario based on instance 180) yields the most promising results, even
in the worst-performing scenario (instance 139). The system maintains privacy by ensuring no
sensitive information is exchanged. In the small scenario, the system achieves performance close
to the benchmark, in the middle scenario there is a degradation of 11.5% and in the large scenario
there is an improvement of 21.43%.

3 Conclusion

This work1 demonstrates the feasibility of a privacy-preserving logistics system using a distributed,
swarm-based approach. By enabling anonymized collaboration, it reduces empty runs, optimizes
resource utilization, and lowers 𝐶𝑂2 emissions, contributing to a more sustainable and efficient
freight sector. The results highlight the significant influence of swarm size on system performance,
underscoring the need for further research to refine configurations that balance privacy, efficiency,
and environmental benefits. The lightweight nature of swarm intelligence makes it a promising
solution for sustainable AI-driven logistics.
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1 Introduction

In the energy domain, Large Language Models (LLMs) have been applied, trained, or fine tuned to
automate the synthesis of complex regulatory texts or forecast energy trends, supporting decision-
making by generating precise, context-aware insights from unstructured data with the help of
retrieval augmented generation (RAG) (Fortuna et al. (2024)). Furthermore, AI Assistants have
become pivotal in processing and generating domain-specific text in the energy sector (Majumder
et al. (2024)).

Estimating the energy consumption of AI models in such scenarios is a challenging task. A new
metric, eCAL, that measures the end-to-end energy cost of AI lifecycle including data collection,
pre-processing, training and inference has been proposed (Chou et al. (2025)). The metric has been
introduced for AIoT systems and has been also proposed as suitable for measuring the energy
consumption of the emerging open and softwarized cellular systems (Chou et al. (2024)). In this
abstract we elaborate on the architecture of the open source calculator that enables computing the
end-to-end energy cost of AI lifecycle for a household smart meter scenario, based on the eCAL
metric.

2 Method and and Case Study

Figure 1 depicts the computation blocks and the flow of the eCAL calculator on an example with a
household smart meter. The horizontal blue arrow shows the smart meter data flow from collection
to abstraction in an AI model. The data collected by the smart meter is assumed to be transmitted
via wireless connectivity to some computing device where the measurements are pre-processed
and then used to train and evaluate an AI system. The resulting model is then used for inference.

Figure 1: Computational blocks and flow of the eCAL calculator on an example with a household
smart meter.
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The calculator, available on GitHub1, contains a transmission modeling block that can be con-
figured to use generic value for data and control plane overheads as well as per OSI layer overheads.
Additionally, it can also be configured to include specific protocols such as the ones from the
TCP/IP stack. It also includes a data processing block currently implementing three pre-processing
models: normalization, min-max scaling and Grammian angular field transformation. The training
and evaluation block contains methods for modeling multilayer perceptrons, convolutional neu-
ral networks, Kolmogorov Arnold Networks and transformer decoder. However custom models
or exiting models can also be added. The inference block is able to model all the architectures
supported by the training and evaluation block. For the computational blocks, the calculator first
estimated floating points operations (FLOPs) that are required for performing the respective data
manipulation operation corresponding to that block. Finally, for all blocks, the calculator computed
per block energy estimation based on configurable processor and transmitter power. Finally, eCAL
is computed based on configurable number of inferences the model is expected to make during its
lifetime.

3 Discussion and Outlook

In this abstract, we showcased a modular and open source calculator that can be used as is or
extended to estimate the energy consumption of the entire lifecycle of AI models in a household
smart meter scenario, from data collection to their last inference. It can be used for a large variety
of AI tasks including to estimate the energy of developing models for energy forecasting, disaggre-
gation, data analysis through conversational agents with configurable communication technologies
for smart grids and neural architectures including MLPs, CNNs, KANs and transformers. In our
existing and future work on AI applied to smart infrastructures, we plan to add eCAL results to
quantify the energy footprint of the developed technology and we invite the community to use and
extend the calculator.

Acknowledgements. The work is funded partially through the Slovenian Research Agency under
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Eco-RETINA is an innovative and eco-friendly algorithm explicitly designed for out-of-sample
prediction. Functioning as a regression-based flexible approximator, it is linear in parameters but
nonlinear in inputs, employing a selective model search to optimize performance. The algorithm
adeptly manages multicollinearity while emphasizing speed, accuracy, and environmental sus-
tainability. Its modular and transparent structure facilitates easy interpretation and modification,
making it an invaluable tool for researchers in developing explicit models for out-of-sample fore-
casting. The algorithm generates outputs such as a list of relevant transformed inputs, coefficients,
standard deviations, and confidence intervals, enhancing its interpretability.

Now implemented in Python and soon available on GitHub, Eco-RETINA introduces several
new features, including measuring CO2 emissions and energy consumption. These enhancements,
alongside improved data transformations, bottleneck elimination, and a user-friendly interface, sig-
nificantly boost its performance. The algorithm achieves remarkable reductions in carbon footprint
and power consumption (ranging from 50% to 90%) while significantly reducing computational time.
Empirical results indicate that Eco-RETINA is not only a sustainable alternative to conventional
neural networks but also surpasses them in certain aspects, offering a competitive edge in accuracy,
interpretability, and environmental impact.

1 Motivation and Characteristics
The power consumption and carbon footprint associated with AI-related algorithms have become
pressing concerns for researchers, industry, and policymakers. Kaack et al. (2022), OECD (2022)
OECD (2022), Barbierato and Gatti (2024), among others, have highlighted the critical importance
of addressing these issues, with some researchers predicting the potential depletion of available
energy resources by 2030. To tackle these challenges, major technological firms and initiatives such
as the European Commission’s Enfield project are investing heavily in sustainable AI solutions.

The energy costs of developing, training, and deploying deep learning models have surged
in recent years, driven by the increasing complexity of neural networks and their reliance on
computationally intensive resources like GPUs and TPUs. As a result, the development of efficient
and sustainable algorithms has become imperative. However, many of these innovations come at
the cost of reduced performance compared to their original counterparts.

Eco-RETINA addresses this gap by providing a green algorithm specifically designed for
out-of-sample prediction. Building on the foundational work of Perez-Amaral et al. (2003), Eco-
RETINA (Capilla, 2024) integrates substantial improvements over previous versions. It operates
as a regression-based flexible approximator, linear in parameters for improved convergence and
nonlinear in inputs for enhanced flexibility. The algorithm’s selective search process allows faster
execution without compromising accuracy. It effectively handles multicollinearity through a
threshold-based approach and incorporates robust mechanisms for outlier detection and manage-
ment.

Eco-RETINA is modular and transparent, enabling users to replace individual components with
alternative modules tailored to specific problems. Unlike black-box models, its transparent nature
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Figure 1: The duration of Eco-RETINA vs. a relevant NN

allows for modification and understanding by the user. Its outputs, akin to those of traditional
econometric packages, include explicit forecasting models, point estimates, parameter standard
deviations, and confidence intervals, all of which are interpretable.

Written in Python and soon available on GitHub, Eco-RETINA incorporates functionalities
for measuring CO2 emissions and energy expenditure. The algorithm also allows for a range of
data transformations, including ratios, cross-products, inverses, and logarithmic transformations
of inputs. Bottleneck elimination during programming ensures optimal performance by avoiding
repetitive, time- and energy-intensive operations. A newly developed user interface enhances
accessibility and usability.

Eco-RETINA is faster over much of the relevant range of the number of variables (see Figure 1).
In an example modeling the prices of diamonds as a function of their characteristics (e.g., carat
weight, measured lenghts and widths, quality of polish, etc.), the algorithm gives us a parsimonious
model using 9 (possibly transformed) inputs plus the constant (see Figure 2). Eco-RETINA also
provides the usual statistics for regression.

2 Conclusions

Eco-RETINA represents a significant advancement over its predecessors by integrating additional
capabilities such as outlier management, enhanced multicollinearity handling, expanded input
transformations, bottleneck elimination, and the ability to measure power consumption, carbon foot-
print, and execution time. Experiments demonstrate that Eco-RETINA achieves prediction errors
comparable to earlier versions while significantly reducing power consumption and computational
time (up to 4.25 times faster).

When compared to neural networks, Eco-RETINA shows several advantages. While neural
networks may achieve slightly lower prediction errors, Eco-RETINA’s training emissions are
substantially smaller in most experiments. Additionally, it outperforms neural networks in accuracy
when used with a moderate number of inputs. Its openness, interpretability, and speed position it
as a strong contender among Green AI algorithms.

Eco-RETINA provides an explicit forecasting model based on transformed inputs, along with
comprehensive diagnostics such as estimated coefficients, 𝑡 and 𝐹 statistics, and coefficient of
determination. As a transparent and efficient tool, it complements neural networks and serves as a
cost-effective exploratory data tool for identifying promising subsets of transformed inputs.
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Figure 2: Eco-RETINA output summary

In an era where sustainable AI is increasingly essential, Eco-RETINA’s emphasis on speed,
accuracy, and environmental sustainability underscores its critical role in the future of algorithm
development. By offering a green, interpretable, and high-performing alternative, Eco-RETINA
sets a new standard for sustainable machine learning and forecasting tools.

Acknowledgements. This work was supported by the European Union’s HORIZON Research
and Innovation Programme under grant agreement No 101120657, project ENFIELD (European
Lighthouse to Manifest Trustworthy and Green AI).
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1 Introduction

Current AI technology lacks true understanding. Even in advanced transformer architectures,
learning remains statistical. Unlike mammalian brains, they lack an internal model of the world
which would allow them to genuinely extract hidden causes behind observations by counterfactual
reasoning. The lack of world models in AI systems has dire consequences: Despite the vast amounts
of training data, they still generalize poorly to unseen situations.

Cloned-structured causal graphs (CSCGs) are an innovative approach for world model learn-
ing (George et al., 2021). CSCGs are based on Hidden Markov Models, with multiple hidden states
for a given observation - so-called clones - and a sparse emission matrix (Dedieu et al., 2019).
Trained on sequences of observation and action pairs, clones learn to distinguish the context of
similar observations. The transitions between the clones define an interpretable graph, which
captures the structure of the world that generated the observations.

While CSCGs explain learning dynamics in the brain (Sun et al., 2025) and enable desirable
computations, such as schema learning and hierarchical planning, their current matrix-based
formulation is rigid and limited to well-defined scenarios (Raju et al., 2024).

2 Method and Experiments

In this work, we demonstrate, as a proof-of-principle, that CSCGs can be implemented using deep
neural networks. For this purpose, we replace both transition and emission matrices with multilayer
feed-forward neural networks and optimize them by reformulating the training process as gradient
optimization (Rabiner, 1989; Tran et al., 2016).

The transformation of emission and transmission matrices in CSCGs into neural architectures
enables greater adaptability and generalization. Both emission and transition matrices, defining
the relations between observation and hidden states, can be replaced with neural networks. In its
current form, we focus on replacing the transition matrix and train it as in (Tran et al., 2016).

We compare our approach with the classical CSCG formulation, focusing on learning per-
formance and data efficiency. As input data we use sequences of observation and action pairs
generated by an agent randomly exploring a grid world.

3 Discussion and Outlook

Neuralizing CSCGs opens multiple avenues for future research. A neural network implementation
of CSCG is not only relevant from a neuroscience perspective, but also allows us to subsequently
integrate this approach into existing model-based reinforcement learning architectures, such as
Dreamer (Hafner et al., 2023). We hypothesize that a CSCG-enhanced version of Dreamer will excel
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Figure 1: Neuralizing Cloned-Structured Causal Graphs for World Model Learning
Background CSCGs are trained on sequences of observation and action pairs of an agent
exploring a room. A graph representation can be extracted from the transition probabilities
between hidden clones (George et al., 2021).
ResultWe replace emission and transition matrices by neural networks and compare their
performance.
Outlook Neuralizing CSCGs offers various advantages, such as integration with existing
reinforcement architectures like Dreamer (Hafner et al., 2023).

in challenging navigation tasks, such as the Memory Maze (Pasukonis et al., 2022). Further, we
plan to address how to dynamically allocate clones, how to efficiently reuse learned schemas, and
how to implement this algorithm on energy-efficient neuromorphic hardware.
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1 Introduction

The widespread integration of renewable energy sources is driving a shift toward operating condi-
tions characterized by low system inertia, significant temporal variations in generation, and an
increasing penetration of distributed energy resources (DER). This transition significantly enhances
human operators’ supervisory and control responsibilities in control rooms while also requiring in-
novative power system control strategies (Marot et al., 2022). Examples include frequency-sensitive
modes, fast frequency response, and hidden inertia. Among these, grid-forming (GFM) control
has garnered considerable attention due to its promising ability to enhance system stability and
resilience (Musca et al., 2022).

In this evolving context, ensuring system security becomes increasingly challenging. The
growing prevalence of DER introduces greater susceptibility to instability, as their behaviors are
influenced by both their primary energy sources and control mechanisms. This complexity leads to
large and intricate state-space models, rendering traditional model-based techniques impractical
for online dynamic security assessment (DSA). Moreover, while GFM converters have shown great
potential to outperform conventional synchronous machines, their capabilities remain underutilized.
This highlights the urgent need to redesign and optimize GFM control strategies to harness their
advantages fully in modern power systems.

2 Method and Experiments

For these problems, data-driven approaches are promising alternatives (Wehenkel, 1997). However,
the benefits of these approaches are often undermined by the “black-box” nature of many artificial
intelligence methods. Thus, interpretability is essential for effectively deploying data-driven
decision-support systems. This work introduces a new framework, the Evolving Symbolic Model
(ESM) – depicted in Figure 1 – designed to create highly interpretable data-driven models for DSA
and design of controllers, namely for system security classification and the real-time definition of
preventive measures, as well as search for the best control design of the GFM primary control loop.

This ESM concept has different modes of application, namely: (a) learning a symbolic model
from scratch using historical data and/or synthetic data generated in a digital environment, (b)
imitating a “black-box” model (e.g., deep neural network) and distilling its knowledge into a more
compact and interpretable model, (c) enhancing an existing expert system by integrating insights
from data and/or a digital environment, and (d) redesigning an expert system to learn a new task
or objective using data and/or a digital environment.

The ESM framework uses a meta-heuristic as the core data-driven optimizer of a symbolic
and/or graph template that a human expert defines. For instance, the results for the Madeira
Island case study indicate that ESM achieves classification accuracy by using pruned decision
trees while offering greater global interpretability. Additionally, it outperforms an artificial neural
network (Salimans et al., 2017) in identifying preventive actions. It also shows the method’s
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Figure 1: Evolving symbolic model framework for inherently interpretable AI models

capability to learn efficient controllers without prior knowledge while ensuring interpretable
solutions, representing a step towards automating the design of control systems.

3 Discussion and Outlook
Using model-driven or mathematical formulations has long been a standard practice in the energy
sector and is well-accepted by human decision-makers and operators. However, AI can still play a
valuable role in complementing these traditional approaches by extracting additional knowledge
from data and augmenting this pre-existing knowledge. The ESM concept can applied to other use
cases, such as improving a rule-based expert system to control hybrid energy storage systems (Bessa
et al., 2024), or adaptive protection systems in distribution grids.
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Research and Innovation Programme, Grant Agreement No. 101120657. Views and opinions
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European Union. Neither the European Union nor the granting authority can be held responsible
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1 Introduction
Data and AI pipelines drive modern technology, seamlessly operating across the Internet of Things
and the computing continuum. They process diverse data streams—time-series sensor data, struc-
tured/unstructured text, source code, images, video, sound, 3D point clouds, chemical data types,
and biological omics data—transforming raw inputs into actionable insights. These intelligent
systems drive automation and decision-making across numerous domains, including agriculture,
life sciences, manufacturing, process industries, robotics, smart communities, transportation, en-
ergy, and even space exploration. Embedded across edge devices and the cloud, they process vast
amounts of data, shaping industries and daily life. Despite their rapid deployment, concerns persist
about their harmful effects on society including privacy violations, energy cannibalization, fair
use abuse and algorithmic exploitation. Another major issue is perverse instantiations, where AI
misinterprets intended goals, a risk that Bostrom warns could lead to violations of human inten-
tions (Nick (2014)). To mitigate these risks, regulatory frameworks such as the AI Act, Data Act,
GDPR have been introduced (Pathak (2024)) by the EU. Generally, enforcement has lagged behind
the rapid pace of digitalization, though in some cases, these regulations have already resulted in
fines. Meanwhile, jurisdictions prioritizing market leadership over strict regulation face ongoing
copyright infringement cases such as against Stability AI and Microsoft’s GitHub Copilot, fueling
debates on fair data use (Samuelson (2023)). Therefore, we ask, can we proactively embed compliance
verification into Data/AI pipelines, ensuring alignment with evolving regulations to avoid stepping
into a minefield of regulatory violations while ultimately fostering genuine societal benefit?

2 Method and Case Study
We present LexAlign, a proof-of-principle multi-agent AI system using foundation models and
software tools to detect regulatory violations and enforce compliance within Data/AI pipelines
(Figure 1). By ensuring compliance by design, it prevents legal risks. LexAlign employs a divide-and-
conquer approach, deploying specialized agents that retrieve knowledge from legal documents,
contracts, responsible AI tools, and legal precedents. Built on AutoGen1, agents invoke (multimodal)
foundation models via APIs to verify violations in pipeline artifacts, including data, source code
that is compiled, containerized and deployed, performance and resource usage metrics. Various
observability (e.g. SIM-PIPE 2) and repository mining tools (e.g. PyDriller) can support pipeline
artifacts extraction. Furthermore, context filtering of artifacts (e.g., CodeQL) improves relevance
and reduces context length for agents.

LexAlign agents perform parallel compliance verification, analyzing datasets, code, metrics from
software analytics and execution traces for violations. Findings are processed by guardrails (Dong
et al. (2024)) (e.g., GuardRails-AI3), generating compliance statements at a policy decision point.

1https://github.com/microsoft/autogen
2https://github.com/DataCloud-project/SIM-PIPE
3https://www.guardrailsai.com/
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Figure 1: The LexAlign Framework for Compliance of AI and Data Pipelines

LexAlign then enforces policy by permitting, denying, or conditioning artifact flow while offering
regulatory explanations via an interface. This automated process helps ensures accountability.

We showcase LexAlign in a remote patient monitoring (RPM) compliance scenario, observed
via SIM-PIPE. The workflow includes Retrieve (data collection), Process (FHIR structuring, storage),
and Notify (monitoring, alerts). An AI act lawyer agent verified articles 10, 40, and recital 29 on
sensor data transmitted to RPM finding no violation in data-quality for high-risk, harmonized EU
standards, and manipulative AI practices.

3 Discussion and Outlook

LexAlign is an experimental system using foundation model-powered agents to assess compliance
in Data/AI pipelines. Due to the lack of benchmarks, we propose mutation analysis—artificially
injecting compliance violations across privacy, fairness, transparency, and oversight. We injected
an Extreme Outlier mutant into input data for RPM resulting in highly skewed values for weight,
heart rate, and blood pressure. LexAlign detected Article 10: Non-compliant – Data contains
extreme, erroneous, and unrepresentative values. Similarly, we can develop mutation operators to
modify privacy settings, inject bias, obscure changes, bypass audits, manipulate data, distort AI
decisions, remove safeguards, extend retention, or alter logs. LexAlign can detect these violations,
with performance measured as 100 × ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠+𝑚𝑖𝑠𝑠𝑒𝑠 .
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1 Introduction

Critical infrastructure, such as electric power lines, plays a crucial role in ensuring economic
stability and social resilience at both national and continental levels. Recent advancements in UAV
technology, equipped with multimodal sensors like LiDAR and image sensors, now enable rapid
and efficient monitoring of these essential systems. These technologies generate vast amounts
of 3D point cloud and image data, which can be analyzed to assess risks, enhance maintenance
strategies, and improve preparedness against potential threats. Domain experts (e.g. civil/structural
engineers, field inspectors, remote sensing specialists) can further enrich this multi-modal data
with textual reports enhancing the interpretability and usability of the data for informed decision-
making. In an era of increasing infrastructure vulnerabilities and climate-related challenges, can
we automatically interpret critical infrastructure integrity in natural language by learning from
available sensor data and textual reports? We address this question by introducing CriticalCLIP, a
vision-language foundationmodel that establishes connections between UAV sensor data and textual
reports, enabling a semantic understanding of events affecting critical infrastructure. CriticalCLIP
fine-tunes OpenAI’s Contrastive Language-Image Pretraining (CLIP) (Radford et al. (2021)) with
datasets containing images and reports obtained from monitoring critical infrastructure. CLIP
is vision-language foundation model that has been pre-trained on millions of images and text to
learn a shared representation space between images and textual description, enabling the model to
understand and associate visual data with an explanation. Fine-tuning CLIP to specific datasets (e.g.
STN PLAD (Vieira-e Silva et al. (2021))) enables us to build a highly speciailized vision-language
model for interpreting critical infrastructure integrity.

2 Method and Experiments

CriticalCLIP is a proof-of-principle foundation model designed for critical infrastructure analy-
sis, trained on multimodal datasets that include aerial imagery and textual reports accumulated
over time. It incorporates an image encoder for processing visual infrastructure data and a text
encoder for interpreting expert assessments, as illustrated in Figure 1 (a). This enables advanced
semantic understanding and text-based queries for infrastructure monitoring and risk assessment,
as demonstrated in Figure 1 (b). To ensure robustness, CriticalCLIP will be trained using diverse
critical infrastructure datasets, including STN PLAD(Vieira-e Silva et al. (2021)), nuScenes(Caesar
et al. (2020)), and Kitti-360 (Liao et al. (2022)). In cases where textual reports are unavailable,
state-of-the-art large language models, such as OpenAI’s GPT-4o, will be leveraged to generate
synthetic reports along with labeled annotations for the training data, enhancing the model’s
ability to learn meaningful infrastructure representations. Additionally, we explore strategies to
enhance CriticalCLIP’s energy efficiency through knowledge distillation, enabling deployment
on edge devices such as UAVs. This is complemented by event-triggered AI, where edge devices
perform primary filtering, transmitting only high-priority data to cloud models, thereby reducing
computational overhead and optimizing resource usage.
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Figure 1: (a) CriticalCLIP training for connecting images and textual descriptions (b) Retreival of
textual descriptions for new images

3 Discussion and Outlook

This abstract presents a conceptual solution for addressing energy sector challenges using mul-
timodal AI for critical infrastructure monitoring. CriticalCLIP links UAV sensor data, LiDAR,
images, and textual reports for risk assessment and decision-making. While it proposes methods for
semantic understanding and edge AI deployment, no experimental results are provided. Future en-
hancements include integrating LiDARCLIP (Hess et al. (2024)), which bridges LiDAR point clouds
and text by leveraging image-LiDAR data as an intermediate representation, enabling improved
infrastructure analysis.
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Occam’s Razor – the principle that among all explanations, the simplest shall be preferred – has
recently received renewed interest in deep learning. Measuring the simplicity of an explanation
(e.g., a model or a latent representation) via information-theoretic quantities has led to the discovery
of novel generalization bounds, e.g., (Hellström et al., 2025), and to training objectives for neural
networks, e.g., (Alemi et al., 2017). The information bottleneck principle, a mathematical formu-
lation of Occam’s Razor, has furthermore been proposed for understanding the success of deep
learning. Indeed, it has been claimed that stochastic gradient descent inherently removes irrelevant
information from latent representations, which in turn makes overfitting impossible (Shwartz-Ziv
and Tishby, 2017). Subsequent works questioned this claim, e.g., (Saxe et al., 2018), triggering a
discourse in the scientific community that extends to this day. In particular, recently it has been
suggested that the compression observed in classical information plane analyses is geometric, either
inherently due to the stochasticity of the considered networks (Goldfeld, 2019) or via the properties
of common mutual information estimators (Geiger, 2022). Thus, it is currently hypothesized that
information-theoretic and geometric compression are strongly connected.

1 Experimental Setup
To shed some light on this hypothesis, we investigate the behavior of information-theoretic and
geometric compression measures during network training. Specifically, for this extended abstract,
we used the conditional entropy bottleneck framework of Fischer (2020) that trains a stochastic
encoder 𝑝𝜃 (𝑧 |𝑥) and a deterministic decoder 𝑦 = 𝑓𝜓 (𝑧) via minimizing the following functional:

𝐼 (𝑥 ; 𝑧 |𝑦) + 𝛽𝐿CE(𝑦; 𝑓𝜓 (𝑧))
where 𝐼 (·) measures information-theoretic compression via mutual information, 𝐿CE(·) is the cross-
entropy loss, and 𝛽 trades between these objectives. We used a variational approximation of this
functional to train a LeNet5 (LeCun et al., 1998) encoder and an MLP decoder with one hidden layer
of size 1024 on FashionMNIST. We used ReLU activation functions and selected the dimensionality
of the bottleneck variable 𝑧 to 64.

For this network and for various values of 𝛽 , we plot how information-theoretic and geometric
compression change throughout training. We quantify information-theoretic compression via
the loss component 𝐼 (𝑥 ; 𝑧 |𝑦), which is readily available for each epoch. To quantify geometric
compression, we compute, for selected epochs, the unified neural collapse characteristic measure
proposed by Galanti et al. (2021):

𝑁𝐶 =
1

(𝑐 − 1)𝑐
𝑐∑︁

𝑖, 𝑗=1

Var𝑖 + Var𝑗
2∥𝜇𝑖 − 𝜇 𝑗 ∥2

where 𝑐 is the number of classes and 𝜇𝑖 and Var𝑖 are the mean vectors and traces of covariance
matrices of representations 𝑧 generated for samples 𝑥 belonging to class𝑦 = 𝑖 . A strong class-specific
clustering structure of 𝑧 leads to small values of 𝑁𝐶 .
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(a) 𝛽 = 5, training set (b) 𝛽 = 5, test set

(c) 𝛽 = 100, training set (d) 𝛽 = 100, test set

Figure 1: Information-theoretic compression 𝐼 (𝑥 ; 𝑧 |𝑦) vs. geometric compression 𝑁𝐶 at different
epochs of training a stochastic LeNet5 encoder and an MLP decoder on FashionMNIST.
Small 𝛽 (top) indicates a strong relative weight on regularizing 𝐼 (𝑥 ; 𝑧 |𝑦). Compression
measures were evaluated on the training (left) and test sets (right).

2 Results

The results in Figure 1 show that when the networks train successfully (approx. 99% accuracy on
the training and 90% accuracy on the test set), information-theoretic and geometric compression
pursue different paths: Representations 𝑧 appear to compress information-theoretically, but expand
geometrically during training, as can be seen by increasing values of 𝑁𝐶 . We observed such a
negative correlation between 𝑁𝐶 and 𝐼 (𝑥 ; 𝑧 |𝑦) also for end-of-training values for different datasets
and neural architectures. This indicates that the purported connection between information-
theoretic and geometric compression is not as universal as initially believed and appears even
reversed for stochastic networks regularized with mutual information. For small values of 𝛽 , leading
to underfitting networks due to strong information compression, the behavior of 𝑁𝐶 and 𝐼 (𝑥 ; 𝑧 |𝑦)
during training is less consistent. Indeed, when evaluated on the test set, 𝑁𝐶 and 𝐼 (𝑥 ; 𝑧 |𝑦) both
increase throughout training (Figure 1b). This indicates that the network seems to overfit on the
dominant regularization term 𝐼 (𝑥 ; 𝑧 |𝑦), which is minimized on the training set, but increases on the
test set. This phenomenon of overfitting on a loss component that is aimed at avoiding overfitting
seems to be quite interesting and deserves future study.
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