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Abstract

The perception system is a critical component of Ad-
vanced Driver Assistance Systems (ADAS) and Automated
Driving (AD), playing a pivotal role in reducing traffic ac-
cidents caused by human error. For ADAS/AD systems to
be seamlessly integrated into everyday life, it is essential
to ensure the reliable operation of their perception sys-
tems, even under challenging conditions such as adverse
weather. This paper presents a novel perception pipeline
for real-time object detection with YOLOv3 across diverse
weather scenarios. The pipeline incorporates adaptive
model selection based on current conditions to optimize
detection performance dynamically. To address the com-
putational limitations of embedded systems in constraint
environments, we propose a three-step approach: (1) re-
duction of YOLOv3 complexity using L1 regularization
for feature selection, followed by (2) weight pruning and
(3) knowledge distillation to recover precision lost in ear-
lier steps. This results in lightweight models up to 70%
smaller than the base model while maintaining high preci-
sion through knowledge distillation. Finally, the optimized
models are evaluated on resource-constrained embedded
devices, including the NVIDIA Jetson AGX Orin, NVIDIA
Jetson Nano, and Raspberry Pi 4, demonstrating robust
and efficient performance under real-world conditions.

1. Introduction

Advanced Driver-Assistance Systems (ADAS) play a cru-
cial role in enhancing road safety by mitigating risks as-
sociated with human error [2], which remains a leading
cause of traffic accidents. According to the European
Commission’s 2021 accident report [8], approximately
100,000 traffic accidents involving personal injury oc-
curred in the EU, with 20% resulting in fatalities. Hu-
man factors such as distraction, fatigue, or delayed reac-

Figure 1. The detection examples demonstrate the need for adap-
tation in real-time. The second row shows detections with the
clear weather model on a foggy image, while the last row shows
detections with our adaptive perception pipeline on a foggy im-
age. Fog was injected artificially into the clear weather image.

tions account for a significant proportion of these inci-
dents. ADAS technologies have the potential to prevent
many of these accidents or at least reduce their severity,
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making their development and deployment critical.
Traditional ADAS functionalities, such as forward col-

lision warning, automatic emergency braking, and traffic
sign recognition, rely predominantly on rule-based sys-
tems. While effective in specific scenarios, these systems
are highly application-specific and lack adaptability to di-
verse environments or evolving requirements. With the
advent of deep learning, ADAS have gained significant
versatility and accuracy, enabling tasks such as object de-
tection, scene understanding, and environment perception.
These capabilities form the foundation for both ADAS
and automated driving (AD), where reliable detection of
traffic participants is essential for safe and efficient oper-
ation. Despite the advancements brought by deep learn-
ing, these methods often require large-scale, meticulously
annotated datasets to perform reliably. The process of
collecting, storing, and labeling such data poses signifi-
cant challenges. Memory and processing constraints fur-
ther complicate the ability to save and review all recorded
scenes, particularly in dynamic environments. Determin-
ing which scenes should be labeled for training or analy-
sis is a complex task that relies on exhaustive data explo-
ration, increasing time and resource costs.

A practical approach to this challenge is deploying
lightweight, real-time object detection systems directly on
the recording platforms. These systems serve as an ini-
tial filter to pre-select scenes containing relevant objects
or events for further processing. By focusing on critical
areas of interest, such as scenes with traffic participants
or specific environmental conditions, such systems reduce
the burden of exhaustive data storage and labeling while
ensuring that the most informative samples are identified.
Although accuracy is not the primary goal in this context,
detectors with higher precision naturally lead to better-
informed data selection decisions, ultimately enhancing
the performance of subsequent deep learning pipelines.

In this paper, we propose a perception pipeline that dy-
namically adapts to various weather conditions via model
selection and runs in real-time on embedded platforms
with constrained resources. In particular, we train a
YOLO [26] expert for each weather scenario, i.e., clear,
rain, and fog to deal with occurring distribution shifts.
While inference, a weather domain classifier decides
which model to use. The proposed expert selection de-
sign ensures precise detections in dynamic environments,
as shown in Fig. 1. To reach real-time performance on
embedded devices, we follow two strategies: 1) model
pruning and 2) tiny models. In both cases, we perform
knowledge distillation from the base model to achieve ad-
equate performance. Our contributions are as follows:

• We propose a real-time perception pipeline, depicted in
Fig. 2, deployable on various embedded devices. This
pipeline tackles distribution shifts by first recognizing
the domain and, secondly, switching to an appropriate
expert model.

• With a sparse training and pruning procedure, we reduce
model size and complexity to perform real-time per-

ception on edge devices. Afterward, we distill knowl-
edge [15] from the base model to regain the precision
lost in the pruning process.

• Finally, we perform exhaustive evaluations in clear and
adverse weather conditions and provide a detailed run-
time and memory analysis on various edge devices.

2. Related work

Object detection. The localization and classification of
objects is a crucial task in many challenging real-world
applications like robotics [13, 30] or autonomous driv-
ing [1]. It becomes even more challenging when applied
in constrained environments like embedded devices [33],
especially when real-time processing is required. To
that end, object detection has been extensively researched
in the past. Examples are EfficientDet [31], DEtection
TRansformer (DETR) [4], or CenterNet [10]. Object de-
tectors can be separated into two categories: By a two-
stage detector using region proposals [12, 27] or by a
one-stage detector with a unified network architecture that
treats object detection as a regression problem [19, 20]. In
our pipeline, we apply the YOLO [26] object detector. It
has a lightweight architecture that applies only a single
stage and provides satisfactory results. With appropriate
optimization, it can run in real time on embedded devices.

Distribution shifts. In Machine Learning, we draw
training samples from a distribution ptrain that we assume
to be independent and identically distributed (i.i.d.). Fur-
ther, we assume our inference data to be drawn from the
same or at least very similar distribution pinference. How-
ever, since not all samples of a highly dynamic environ-
ment are known in advance, e.g., training on clear weather
and inference on rainy weather, unknown samples in-
evitably lead to a distribution shift such that pinference ̸=
ptrain. The need for adaptive model selection arises
to handle adverse weather conditions properly. Pérez-
Gállego et al. [23] tackle model selection for quantifica-
tion tasks. Due to distribution shifts in data for quantifi-
cation problems, they employ dynamic quantifier ensem-
ble selection to select a model trained on a dataset most
similar to the given test sample. To effectively select a
model that precisely predicts the next sample in time se-
ries forecasting on data streams, Boulegane et al. [3] em-
ploy Multi-Target Regression (MTR). Given an ensemble
of models, they assume that for temporal data streams,
each model in the ensemble is an expert in some area of
the stream. To select the model, they simultaneously as-
sess each model in an ensemble based on its ability to pro-
duce a good result for the given test sample.

DILAM [18] addresses distribution shifts using incre-
mental learning through activation matching to prevent
catastrophic forgetting. They store affine transformations
(scale γ and shift β) of batch normalization layers [16]
in a memory bank. For each target domain, the mod-
els are adapted, and their corresponding affine transfor-



Figure 2. The Pipeline framework consists of two stages: data acquisition (top) and perception (bottom). In the data acquisition stage
(ROS-master), a sensor setup composed of multiple cameras and other sensors captures road images. The second stage (ROS-node),
receives the data, recognizes the current domain, and performs object detection with an expert domain model. Image marked with [1]
was adapted from 1.

mations are stored in a memory bank. During inference,
their plug-and-play framework seamlessly substitutes the
model’s current transformations with the pre-stored trans-
formations specific to the target domain based on a learned
domain classifier. However, changing weights during run-
time as in [18] is inefficient. For embedded devices, mod-
els are converted to TensorRT, which makes changing pa-
rameters during runtime inefficient. Instead, we adopted
model selection, which ensures better real-time perfor-
mance and responsiveness on embedded devices.

Model compression. The need for model compression
arises due to the immense network parameters in recent
detection architectures. Due to memory and processing
power restrictions, state-of-the-art models are unsuitable
for edge devices. Reducing the model complexity and,
thus, model size requires less memory to store the model.
This enables us to store the model directly on the much
faster on-chip memory, compared to the slow off-chip
DRAM, a large storage area outside the CPU [28].

LeCun et al. [17] first show that a network can be
pruned by removing weights that do not significantly af-
fect the models’ performance. However, this approach is
an unstructured pruning technique that does not consider
the network structure and its layers. This method is suit-
able for dense layers where the weights are independent.
However, this leads to problems for convolution layers
where kernels share weights across spatial locations. In
contrast to [17], Polyak and Wolf [24] preserve the struc-
ture of the neural network and apply channel-level prun-

1https://www.roadtoautonomy.com/metaverse-waymo-spending/.

ing. They either prune each layer’s input or output chan-
nels. The task is to first identify the importance of each
channel by looking at the activation output variance and
then filter and eliminate insignificant ones. Polyak and
Wolf [24] tackle this issue by eliminating channels with
the least contribution variance. Unlike unstructured prun-
ing [17] or channel-level pruning [24], our approach sim-
plifies pruning by pre-filtering insignificant weights using
an L1 penalty, making structured pruning more effective.

Knowledge distillation. The idea of knowledge distil-
lation [15] is to transfer knowledge from a larger, highly
accurate teacher model to a smaller, less accurate student
model by computing a soft loss with the predictions of the
teacher network on top of the data loss. Sau and Balasub-
ramanian [29] extend knowledge distillation by making a
student network learn from multiple teachers via logit per-
turbation. However, they do not directly employ multiple
teacher networks but inject noise and perturbations into
the teacher outputs. By doing so, they effectively simu-
late multiple teachers. Moreover, injecting noise into the
teacher outputs introduces noise in the loss, thus creating a
regularization effect. Chen et al. [6] extend the knowledge
distillation workflow from [15] by considering activation
responses from intermediate layers of the teacher network.
This guides the student network in the correct direction
and improves its accuracy. Our work draws inspiration
from [6] in using knowledge distillation to improve object
detection. However, instead of using intermediate layer
activations, we focus on distilling knowledge through a
combination of classification and bounding box loss com-

https://www.roadtoautonomy.com/metaverse-waymo-spending/


puted with the final teacher and student outputs.

3. Method
During data recording, on-device filtering of data samples
is crucial to minimize unnecessary memory consumption
and processing costs for subsequent labeling or inspec-
tion. We present our object detection pipeline designed
for diverse weather conditions through adaptive model se-
lection. In addition, we provide a pruning and knowledge
distillation strategy for real-time detection on embedded
devices that creates highly optimized models.

3.1. Perception pipeline
Framework. With our detection pipeline, we aim to de-
tect objects in real-time on embedded devices. It consists
of various YOLOv3 detection models, each an expert for
a specific weather condition (i.e., clear, rain and fog), and
a weather recognition module. After classifying the pre-
vailing weather, the appropriate model for detection is se-
lected and applied. We integrate our pipeline into a frame-
work based on the Robot Operating System (ROS) [25] as
illustrated in Fig. 2. It consists of two stages: data acquisi-
tion (top) and perception (bottom). In the first stage, data
acquisition, a sensor setup composed of multiple cameras
and optional other sensors such as LiDAR acts as the ROS
master, providing sensor recordings as a data stream. The
second stage is a ROS node that receives incoming data
from the previous stage and runs our perception pipeline
on embedded devices like the Jetson AGX Orin, Jetson
Nano, or Raspberry PI 4.

Weather recognition. Similar to Leitner et al. [18], we
reuse layers from the YOLOv3 backbone and employ a
linear classification head to recognize the weather condi-
tions. Therefore, we reduce the additional overhead from
a separate model to a tiny linear layer. Furthermore, to get
a model that performs one single forward pass, we inte-
grate the weather recognition into the forward pass of the
object detection. During the weather recognition model
training, we only adjust the weights of the classification
head and leave the rest of the network frozen.

3.2. Model compression
Embedded devices are constrained in resources and per-
formance. Therefore, model compression is needed to re-
duce the network complexity, speeding up the inference.
As illustrated in Fig. 3, model compression consists of
multiple steps. To effectively reduce the model size, we
first need to eliminate redundant weights from the model.
However, the question of which weights are essential and
which can be safely pruned without affecting the perfor-
mance of the resulting pruned model arises. We start by
looking at our base model, YOLOv3, which follows the
YOLO network architecture and shares a common pattern
throughout the network: a convolution layer followed by a
batch normalization (BN) [16] layer. To effectively lever-
age this structure, we look closer at the BN layers.

Batch normalization (BN) [16] in deep neural networks
improves stability while training and speeds up the con-
vergence of the model. The BN layers first normalize the
input and afterward scale and shift it to reduce internal
covariance shifts [32]. The normalization process of BN
layers is described as follows:

z =
xin − µxin√

σ2
in + ϵ

, (1)

where xin is the output of the previous convolution layers,
µin the mean of xin and σ2

in the variance. By normalizing
the input, we will have zero mean and unit variance. This,
however, decreases the representational power of the net-
work. BN layers introduce γ and β parameters to retain
the representational power. These parameters need to be
learned by the network, where the β parameter learns the
optimal shift for each BN layer and γ the optimal scaling
factor. The output of BN Layers is described as follows:

zout = γ · z + β, (2)

where z is the normalized data [21].

Sparse training. Inspecting Equ. 2 in detail, we can
conclude that a smaller BN scale factor γ indicates less
influence on the corresponding channel in the convolution
layer. Hence, we aim to get a network structure where
only a few key features of the network (high γ) are re-
sponsible for the final detection result while most channels
have a γ close to zero [21]. However, the model should
still learn a meaningful representation and provide highly
accurate detections. Afterward, we can safely prune away
the convolution channels along with the corresponding
scale and shift factors γ and β for channels contributing
minimally to the final detections.

We employ sparse training to get such a sparse network
representation of the YOLOv3 model, where the detec-
tion result depends only on a small number of key features
within the network. Leveraging a technique called proxi-
mal gradients, we compute the gradients w.r.t the regular
YOLOv3 loss function. Afterward, we apply a proximal
operator, namely, a soft-thresholded L1 penalty on the γ
factors of the BN layers. By applying soft thresholding,
we encourage the γ factors to become zero or close to zero
and hence induce sparsity into the network. The final loss
function during sparse training is described as follows:

L =
∑
(x,y)

l(f(x, θ), y) + λ
∑

g(γ), (3)

where l(f(x, θ), y) is the YOLOv3 loss using the param-
eter vector θ and g(γ) is the soft-thresholded L1 penalty
on the BN γ factors described as follows:

g(γ) = sign(γ) ·max(|γ| − τ, 0). (4)

τ denotes the threshold. Every value below this threshold
will be set to zero. The hyperparameter λ represents the
balance between YOLOv3 loss and L1 penalty [21].



Figure 3. Overview of our method. Firstly, we sparsely train a network to filter unimportant weights. Secondly, the insignificant
weights from the sparse network are pruned. Thirdly, the initial large pre-trained network distills knowledge into the pruned network.
Afterward, we convert this distilled network from PyTorch to ONNX and TensorRT on the embedded device. Finally, we apply the
pruned and converted model within our perception pipeline.

Figure 4. Distribution of BN scale factor γ after sparse training.
Here we can see that not all layers have the same importance.
The earlier layers have high γ values and thus are more impor-
tant than the middle layers. We can also see that nearly most of
the weights of the middle layers go to 0 after sparse training and
hence can be pruned away safely.

Pruning. In the context of neural networks, pruning de-
scribes a technique used to eliminate weights from a net-
work based on their importance selectively. After sparse
training, we can start pruning insignificant weights from
the network. The result is a model reduced in size, which
also increases the inference speed. However, not all lay-
ers of the YOLO network have the same importance as
shown in Fig. 4. Hence, it is crucial to prune weights also
depending on the importance of layers. Following Chu
et al. [7], we flatten all BN γ factor vectors in the network,
concatenate them into one vector, and set a pruning per-

centage to determine a threshold. Every value below this
threshold will be set to zero. Afterward, we remove every
zero weight in bias, scale γ, and shift β vectors. In a sub-
sequent step, we create a mask of the same length as each
layer’s corresponding γ vector. This mask has the value
one if there is a non-zero entry at the corresponding γ vec-
tor index and zero if there is a zero entry. We can safely
prune convolution layers with this mask by removing each
convolution channel, where the corresponding mask entry
is zero [7].

Knowledge distillation. After reducing the complexity
of the model and pruning weights that we have deemed in-
significant in previous sections, the model’s performance
may deteriorate compared to the larger base version of the
network. The reason is that we may have pruned too much
of the network or that weights we had deemed insignifi-
cant since they were relatively small were, in fact, signif-
icant. To counter that, we use a technique called knowl-
edge distillation [6, 15]. Knowledge distillation describes
a technique in Machine Learning where a minor student
network is taught by a more extensive teacher network
how to perform a specific task. In our case, the small stu-
dent network is the pruned version of the base network,
and the teacher network is the base version. We sample
from the training dataset and run this sample through both
the teacher and the student network. In the first step, we
use the student network predictions and ground truth la-
bels to compute the YOLOv3 loss. The second step is to
compute the loss with the predictions of the teacher net-
work. We first transform the teacher predictions into soft
labels using the softmax function and a temperature pa-



rameter T , which controls the smoothness of the output
distribution [5, 15]. The computation of the soft labels is
described as follows:

tout = σ

(
ezi/T∑N
j=1 e

zj/T

)
i

, (5)

where zi denotes the ith output of the teacher network and
σ the softmax activation function. Using these soft labels
tout, we compute Kullback-Leibler (KL) divergence with
the student class predictions sout as follows:

KLloss =
KL(log(σ(sout)), σ(tout) · T 2

batch size
, (6)

where

KL(P ||Q) =

∫ ∞

−∞
p(x) · log

(
p(x)

q(x)

)
dx. (7)

We use the teacher output in the loss calculation be-
cause the output of the teacher network carries signif-
icant information about relations and similarities of the
predicted output. Objects similar to the actual label will
have high probabilities. For instance, we expect a detec-
tor trained on a dataset with three classes, i.e., car, truck,
pedestrian, to have class label predictions for a car be
close to that of a small truck but far apart from pedestrians.
This example demonstrates a semantic relation between
cars and trucks, which can not be incorporated with only
the ground truth labels for loss calculation. Furthermore,
to also consider the bounding box error, we compute a
box loss with teacher-predicted bounding boxes and stu-
dent bounding boxes as follows:

boxloss =
1

N

N∑
i=1

(BSi −BTi)
2, (8)

where BSi is the ith student bounding box and BTi the
ith teacher bounding box.

Model conversion. It is insufficient to only reduce the
model complexity to deploy object detection models onto
embedded devices. Therefore, we need to change their
structure to use the acceleration provided by embedded
devices efficiently. As illustrated in Fig. 3, after success-
fully compressing the models, the next step is to optimize
them for use on the embedded devices. In this paper,
we achieve this by converting the models into the Ten-
sorRT [9] format that automatically derives essential in-
formation on how to use the underlying GPUs efficiently
or accelerate inference times by restructuring the model.

4. Experiments
The experiments are split into two parts: the performance
of the models tested on a workstation with high-end GPU
and the performance of the models on embedded devices.

First, we provide model performances in terms of preci-
sion and model size. Afterward, we investigate the in-
ference speed of our models measured in FPS on various
embedded devices.

4.1. Dataset
In this paper, we conduct experiments on the KITTI-
Dataset [11]. This dataset provides a comprehensive re-
source for developing and evaluating autonomous driv-
ing systems. The KITTI dataset is recorded in sunny
weather conditions. However, we need additional data
alongside the sunny dataset to conduct experiments for ad-
verse weather conditions. Mai et al. [22] add artificial fog
and Halder et al. [14] add artificial rain to the KITTI-clear
images. KITTI-rain consists of eight severities of rain, and
KITTI-fog consists of seven different severities of fog.

4.2. Implementation details
For our initial training of the YOLOv3 network, we use a
batch size of 32 and a learning rate of 0.0001. We train the
network for 500 epochs in total. For the sparse training,
we set α=0.01, which controls the step size for our prox-
imal gradient, and sr=0.001, which controls the sparsity
level. In the knowledge distillation setup, we use a batch
size of 8 and train for 2000 epochs to give the teacher net-
work enough time to teach the student network.

All models and training scripts are implemented in
Python 3.8 and PyTorch 2.0.1. We train and test our mod-
els on an NVIDIA RTX 4090 GPU. For experiments on
embedded devices, we run the models on three different
platforms: NVIDIA Jetson AGX Orin, NVIDIA Jetson
Nano, and Raspberry PI 4 Model B.

4.3. Baselines
The first step for our experiments is to get baseline models
for validating the performance of our pruned and distilled
models. Table 1 shows the results for our models trained
on their respective domain, e.g., clear, fog 30m, fog 50m,
and rain 200mm/h. From these experiments, we can see
that we achieve a mean average precision of 96.24 at an
IoU threshold of 0.5 (mAP@.5) for a large float32 pre-
cision model (large-32) trained on the clear domain. Fur-
thermore, we observe that the performance of our model
for the most challenging weather condition, fog 30m, is
sufficiently good, with a mAP@.5 of 93.36.

We can see that the model’s mAP does not decrease
significantly when we quantize the weights from float32
precision to float16. Additionally, we can see that the tiny
models denoted as tiny-32 and tiny-16 (for float32 and
float16 precision) have significantly lower mAP than our
large YOLOv3 model. This is because these tiny models
are 86% smaller than their base variants. Considering the
model’s small size, its performance is remarkable.

4.4. Performance evaluation
Before deploying our models on the NVIDIA Jetson AGX
Orin, NVIDIA Jetson Nano, and the Raspberry PI 4



Model KITTI-clear KITTI-fog 30m KITTI-fog 50m KITTI-rain 200mm/h model size

large-32 96.24 93.36 94.64 95.72 246.70 MB
large-16 96.26 93.32 94.78 95.81 123.35 MB
tiny-32 70.68 57.58 60.32 67.00 34.8 MB
tiny-16 70.70 57.55 60.26 66.93 17.8 MB

Table 1. Mean average precision at an IoU threshold of 0.5 (mAP@.5), when testing models on their respective domains.

Model B, we need to make sure our model’s performance
measured in Average Precision (AP ) and mean Average
Precision (mAP ) is satisfactory.

Pruned Models. Firstly, we need to mention that sparse
training before pruning is absolutely crucial. The reason is
that before sparse training unimportant weights have not
been identified, therefore leading the pruning process to
eliminate weights that are crucial to do object detection.
During our experiments, we could not recover lost preci-
sion during pruning if we did not perform sparse training
before pruning.

To show the efficiency of our pruning pipeline, which
keeps the structure of the network intact, and our knowl-
edge distillation pipeline, which recovers lost precision
during pruning, we prune our large-32 and large-16 base-
line models with different percentages, i.e., 30%, 50%,
and 70%. Table 2 shows the AP@.5 and the mAP@.5
for models pruned with different percentages and tested
on the KITTI-clear weather domain. We can see that the
Pruned models, denoted as pruned-32-30 and pruned-16-
30, perform well compared to our baseline models named
large-32 and large-16. Both models perform pretty well
on the clear domain with a mAP@.5 of 93.79 and 93.78.
Even if we prune 50% of the network weights, the AP
does not decrease drastically.

In Fig. 4 we can see that the earlier and later layers in
the YOLO network are the most important for the object
detection task after the sparse training. By pruning 70%
of the network, we can observe a significant drop in AP.
This observation indicates that we have already eliminated
significant weights from the earlier and later layers. When
pruning 90% of the weights, our model degenerates and
cannot detect objects anymore.

To increase the performance of the tiny models (tiny-
32 and tiny-16) we apply our proposed knowledge distilla-
tion pipeline to boost its ability to detect objects. By doing
so, we increase the mAP of the YOLOv3-tiny models by
around 12 points, from 70.70 to 82.48. When comparing
this tiny model to our large-32 baseline, we can see that we
only have a 14-point difference in mAP@.5. This preci-
sion is particularly good considering that the tiny model is
86% smaller than the large-32 model.

4.5. Performance on embedded devices
After verifying our models’ results on a regular PC
and reducing the model’s complexity, we deploy them

onto resource- and performance-constrained embedded
devices. In this case, we are mainly interested in the in-
ference speed of our models when tested on the KITTI
dataset. Table 3 shows our results. We can see that for the
large models (246.7 MB), we achieve 93.45 FPS when
running inference on images of size 416× 416 on the Jet-
son AGX Orin. The FPS drops considerably when we de-
ploy the same model onto a smaller embedded device like
the Jetson Nano or Raspberry PI 4. Due to the compact
size and performance constraints of both of these smaller
embedded devices, the performance drops by 97.52% and
99.78%, respectively. To reach the domain of real-time
inference, we need to achieve at least 24 FPS to outper-
form the sensor recording frequency. Pruning 30% of the
network weights increases our FPS from 93.45 to 100.00
on the Jetson Orin. We are more than twice as fast on the
Jetson Nano and the Raspberry PI 4.

To finally reach real-time inference even on the Jetson
Nano, we utilize the YOLOv3-tiny model. This model has
a significantly smaller network architecture. We can see
that this model is 86% smaller than our large-32 model.
With this model, we achieve 23.8 FPS, and by quantizing
the model’s weights to float16, we achieve 31.25 FPS. On
the Raspberry PI 4, we increased the performance by more
than 9 times compared to the large-32 model by using the
tiny model.

Furthermore, we can also see that for the Raspberry PI
4, the float32 precision models are faster than the float16
precision models even though the latter are smaller. This
is because The Raspberry has no GPU and thus does not
provide GPU acceleration. Furthermore, CPUs have na-
tive support for float32 and can, therefore, handle them
more efficiently than float16. Reducing the complexity of
our models leads to a reduction in the number of floating
point operations (FLOPS).

5. Limitations and future work

Our object detection and weather classification model is
limited by how many domains it can effectively work
with. We have trained both the object detection part and
the weather classification part with synthetic data. There-
fore, we will encounter a significant drop in precision
for any domain unavailable at training time. To ensure
the seamless operation of the perception system under a
broader range of adverse weather conditions, including
rain and snow, it is crucial to have large and diverse pub-
licly available datasets. These datasets will support the



Tested on KITTI-clear
Model Car Van Truck Ped Psit Cyc Tram Misc mAP@.5 Model size

large-32 98.26 98.81 99.28 90.53 90.38 96.30 98.97 97.37 96.24 246.70 MB
large-16 98.26 98.79 99.27 90.60 90.38 96.54 98.93 97.35 96.26 123.35 MB

pruned-32-30 97.84 97.91 98.91 86.11 80.60 93.47 99.03 96.46 93.79 173.40 MB
pruned-16-30 97.82 97.93 98.91 86.14 80.62 93.36 99.03 96.45 93.78 86.70 MB
pruned-32-50 97.22 97.41 98.35 84.80 86.20 91.64 98.40 94.60 93.56 134.00 MB
pruned-16-50 97.20 97.40 98.34 84.61 86.23 91.51 98.41 94.60 93.52 67.00 MB
pruned-32-70 93.28 91.97 93.35 70.61 60.94 77.88 87.32 75.82 81.40 76.30 MB
pruned-16-70 93.24 91.93 93.36 70.39 61.28 77.76 87.20 76.06 81.40 38.15 MB

tiny-32 86.32 74.83 81.97 59.96 59.46 65.15 80.83 56.95 70.68 34.8 MB
tiny-16 86.41 75.07 82.09 60.20 59.00 64.89 80.82 57.12 70.70 17.8 MB

tiny-32-kd 92.71 90.14 93.51 68.66 64.18 78.68 90.87 81.10 82.48 34.8 MB
tiny-16-kd 92.67 90.02 93.55 68.79 66.03 78.61 90.88 81.02 82.70 17.8 MB

Table 2. Average Precision (AP) and mean Average Precision (mAP@.5) for all KITTI classes using models with different pruning
percentages.

Tested on Architecture
Model Jetson AGX Orin Jetson Nano Raspberry PI 4 Model size GFLOPS

large-32 93.45 / 80.65 2.32 / 2.04 0.32 / 0.21 246.70 MB 32.75 / 49.61
large-16 111.11 / 103.09 3.90 / 3.26 0.26 / 0.19 124.30 MB 32.75 / 49.61

pruned-32-30 100.00 / 90.90 5.55 / 4.78 0.61 / 0.49 173.40 MB 14.10 / 21.36
pruned-16-30 116.27 / 108.70 8.69 / 7.29 0.43 / 0.41 86.50 MB 14.10 / 21.36
pruned-32-50 103.09 / 94.33 7.09 / 5.99 0.83 / 0.57 134.00 MB 10.36 / 15.69
pruned-16-50 120.04 / 117.64 10.75 / 9.09 0.72 / 0.48 67.00 MB 10.36 / 15.69
pruned-32-70 111.11 / 100.00 9.90 / 8.00 1.31 / 0.84 76.30 MB 6.31 / 9.55
pruned-16-70 149.25 / 125.03 15.38 / 11.76 1.08 / 0.75 38.15 MB 6.31 / 9.55

tiny-32 181.82 / 142.85 23.80 / 20.19 3.09 / 2.32 34.80 MB 2.75 / 4.15
tiny-16 212.76 / 176.42 31.25 / 27.89 3.04 / 1.53 17.80 MB 2.75 / 4.15

Table 3. Average FPS and model size on different architectures. The values in the Model column consist of the model name, the
precision, and the percentage of weights pruned. The values in the Tested on Architecture column represent the FPS. The first value
denotes the FPS when running inference on images of 416 × 416 pixels; the second value represents the same but with images of
512 × 512 pixels. The FPS values are averaged over 3781 (test set) iterations. The values in the GFLOPs column represent the Giga
Floating Point Operations per Second. Again, the first value denotes inference using an image of size 416 × 416 and the second
represents inference using an image of size 512× 512.

advancement of unsupervised domain adaptation by en-
abling improvements in robust domain recognition and the
refinement of object detection capabilities.

6. Conclusion
In this paper we studied real-time object detection in
diverse weather conditions through adaptive model se-
lection on embedded devices. We particularly focused
on gaining a deeper understanding of model compres-
sion techniques to reduce model complexity and en-
able real-time applications on performance- and resource-
constrained embedded devices. The key findings entail:
• Filtering insignificant network weights is essential to

reduce precision loss during pruning and to make the
model rely on key features for object detection only.

• Knowledge distillation is a suitable technique to regain
the lost precision after pruning.

• Our proposed perception pipeline ensures real-time ob-

ject detection on embedded devices. It recognizes
known domains, selects a suitable model, and performs
robust real-time object detection without interruptions.

These findings emphasize the significance of a structured
approach that reduces model size to increase inference
speed on embedded devices. This enables automatic driv-
ing applications to run robustly in real time and adapt to
adverse weather conditions, such as fog or rain.
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