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Abstract

Accurate 3D object detection is a critical component of

autonomous driving, enabling vehicles to perceive their

surroundings with precision and make informed decisions.

LiDAR sensors, widely used for their ability to provide

detailed 3D measurements, are key to achieving this ca-

pability. However, variations between training and infer-

ence data can cause significant performance drops when

object detection models are employed in different sensor

settings. One critical factor is beam density, as infer-

ence on sparse, cost-effective LiDAR sensors is often pre-

ferred in real-world applications. Despite previous work

addressing the beam-density-induced domain gap, sub-

stantial knowledge gaps remain, particularly concerning

dense 128-beam sensors in cross-domain scenarios.

To gain better understanding of the impact of beam

density on domain gaps, we conduct a comprehensive in-

vestigation that includes an evaluation of different object

detection architectures. Our architecture evaluation re-

veals that combining voxel- and point-based approaches

yields superior cross-domain performance by leveraging

the strengths of both representations. Building on these

findings, we analyze beam-density-induced domain gaps

and argue that these domain gaps must be evaluated in

conjunction with other domain shifts. Contrary to conven-

tional beliefs, our experiments reveal that detectors bene-

fit from training on denser data and exhibit robustness to

beam density variations during inference.

1. Introduction

Autonomous driving has been receiving increasing atten-

tion in recent years, as it has the potential to increase road

safety, traffic efficiency, and reduce emissions. To en-

able the decision-making capabilities of Advanced Driver

Assistance Systems (ADAS) or Automated Driving (AD)

technologies, understanding the vehicle’s immediate en-

vironment is crucial. Light Detection And Ranging (Li-

DAR) technology stands out as a particularly effective so-

lution for this task through its ability to directly measure

three-dimensional distances with high accuracy [27].
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Figure 1. (a) Low-density and (b) high-density scan of vehi-

cles at a similar distance. (c) Overall and beam-density-induced

domain gap (in % for IOU=0.4) measured by different meth-

ods. The Cross-Domain and Density-Resampling methods fail

to assess either the beam-density-induced or overall domain gap,

while the Training and Inference Domain Gaps provide a com-

plete picture.

LiDAR-based 3D object detection models have demon-

strated impressive performance on established bench-

marks [2, 5, 12, 25, 37]. However, their performance

often drops significantly when applied across different

datasets due to inherent differences between the source

domain and the target domain. Typical examples are vary-

ing sensor configurations between source and target do-

main or adverse weather conditions covered by the tar-

get but not the source data. When these differences are

substantial, the detection model struggles to generalize to

the new domain, introducing a performance gap known as

the domain gap. This challenge is particularly critical in

real-world applications, where a domain gap is almost in-

evitable due to the variability between the training dataset

and the diverse conditions encountered in deployment.

The common way to mitigate domain gaps is the appli-
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cation of domain adaptation methods. Such methods are

oftentimes tailored towards a specific domain difference,

such as different LiDAR resolutions [15, 20, 40] or vary-

ing object size distributions [23, 39, 44]. Thus, to success-

fully apply domain adaptation methods, the most signifi-

cant domain shifts have to be identified first. A structured

domain shift taxonomy is useful in this context, as it helps

to categorize and systematically understand the specific

shifts between domains, enabling the selection or design

of a targeted adaptation technique.

Despite taxonomies of related work [6, 8, 24, 47], no

study includes all the domain shifts between the datasets

under investigation (described in Sec. 3.1). Thus, we in-

troduce a domain shift taxonomy in Tab. 2. Keeping the

goal of domain adaptation in mind, we distinguish be-

tween domain shifts that can effectively be addressed by

domain adaptation methods and those that persist despite

the application of domain adaptation. We call the former

non-persistent and the later persistent domain shifts.

Motivated by the observation that the domain gap

varies significantly when employing different detectors,

we conduct an object detector architecture evaluation.

While prior studies do not give particular attention to a

thoughtful selection of an object detection model [31], we

aim to identify detectors that are inherently robust against

domain changes. By minimizing the initial domain gap,

the reliance on domain adaptation is minimized, ensuring

that the domain adaptation efforts focus on the most chal-

lenging aspects of domain gap. We find that (1) voxel-

based detectors robustly detect objects, but have difficul-

ties at precisely localizing them and (2) point-based detec-

tors excel at localizing objects in cross-domain settings.

Our experiments suggest that optimal cross-domain de-

tection performance is achieved by combining voxel- and

point-based approaches in a two-staged detector.

A particularly important domain shift stems from the

number of LiDAR beams (see Fig. 1). High-density Li-

DAR sensors produce detailed point clouds with a high

number of points, easing the accurate estimation of ob-

ject sizes and positions. Low-density LiDAR sensors,

which are often more affordable and more commonly used

in large-scale deployments, capture fewer points, lead-

ing to sparser point clouds and less reliable detection re-

sults. This difference in beam density creates a domain

shift when models trained on high-density LiDAR data

are applied to low-density data and vice versa. To ana-

lyze the domain gap caused by varying beam densities,

related studies utilize one of two approaches. The first

approach [15] involves multiple datasets employing Li-

DAR sensors with varying beam densities which are sub-

sequently compared. The second approach [8, 31, 40] is

based on downsampling a dense dataset to create sparser

twin-dataset with varying beam density which are subse-

quently compared.

This paper highlights the shortcomings of the exist-

ing methods. First, comparing the domain gap between

two datasets does not guarantee that the observed domain

gap actually stems from varying beam density or is caused

by other domain shifts occurring between the investigated

datasets. The second approach leads to ambiguous results

because it analyzes the effect of beam density in isola-

tion of other domain shifts. In real-world applications,

the beam-density-induced domain gap is always accom-

panied by other effects influencing the domain gap. We

show that the beam-density-caused domain gap has to be

assessed in conjunction with other domain shifts to accu-

rately evaluate its impact in real-world applications. Our

experiments suggest that (1) in contrast to the results of re-

lated studies [8, 10, 31], it is more beneficial to train object

detectors on dense data, independent of the density of the

target data and (2) concerning the inference domain gap,

detectors are robust against a change of up to 64 beams

(see Fig. 1c). Our contributions can be summarized as

follows:

• We introduce a domain shift taxonomy based on macro-

, sensor-, and object-level domain shifts and distinguish

between persistent and non-persistent domain shifts.

• We conduct a detector architecture evaluation where we

compare different detectors by their inherent domain

adaptation abilities.

• We investigate the domain gap induced by varying beam

densities including 128-beam sensors on real-world

datasets with consideration of other domain shifts.

2. Related Work

Object Detection: In LiDAR-based 3D object detection,

architectural choices heavily influence detection perfor-

mance. Voxel-based methods [43, 54], discretize LiDAR

points into 3D grids, allowing for efficient feature ex-

traction through sparse convolutions. Pillar-based meth-

ods [9, 18, 19, 33] convert the point cloud into a 2D

BEV-image, sacrificing height information for computa-

tional efficiency. Operating directly on the raw points,

point-based approaches [28, 30, 52] retain spatial details

without quantization. Recent transformer-based mod-

els [38, 53, 55], provide an alternative to CNN-based

models [3, 49, 50], capturing interactions across larger

spatial regions. Detection heads in object detection are

either anchor-based [21], relying on predefined anchor

sizes, or anchor-free [46], which directly predict object

centers to generate bounding boxes. Two-staged detec-

tors [34, 36, 36] split the detection into a proposal and

refinement stage, often improving accuracy over single-

stage detectors but at a higher computational cost.

Concurrent to our work, Eskandar et al. [8] empirically

test the impact of fundamental architecture choices. How-

ever, they chose different detectors to represent each ar-

chitectural choice. While Eskandar et al. choose Point-

RCNN [34], VoTr [26] and PV-RCNN [35], we select the

faster or better performing object detectors IA-SSD [52],

DSVT [38] and PV-RCNN++ [36] for the point-based,

Transformer-based and two-staged architectures.

Domain Gap Analysis: Recent works have extensively

studied how specific domain shifts contribute to the over-



all domain gap. Wang et al. [39] analyzed the im-

pact of geographical variations, concluding that differ-

ences in object size distribution can significantly affect

detection performance. Another well-studied factor is

weather [7, 13]: while LiDAR sensors are less suscep-

tible to adverse weather than cameras, conditions such

as snow [17], rain [42], or fog [16] still impair object

detection. Concerning sensor-level domain shifts, Hu et

al. [14] and Fang et al. [10] investigate the impact of dif-

ferent LiDAR mounting positions. There are also some

recent works investigating the effect of varying beam den-

sities [10, 31]. Richter et al. [31] perform a real-world

study comparing a 32-beam and 64-beam LiDAR sensors

utilizing a specially designed dataset, isolating the beam-

density-induced domain gap. However, they do not ana-

lyze beam density in conjunction with other domain shifts

such as geographic location or object size. Fang et al. [10]

perform a systematic study regarding beam density on a

simulated dataset. However, they did not test the transfer-

ability of their findings to real-world datasets.

Domain Adaptation: Domain adaptation methods aim

to improve object detection performance across different

datasets, addressing the challenges introduced by domain

shifts. Broadly, domain adaptation approaches fall into

one of three categories: domain alignment, feature align-

ment, and self-training.

The domain alignment methods SN [39], OT [39] and

SAILOR [23] excel at handling object size discrepancies

by rescaling ground truth bounding boxes during train-

ing or inference. For beam density shifts, methods like

DTS [15], PDDA [20] and LiDAR-CS [10] employ re-

sampling methods to align point cloud densities. ReS-

imAD [48] aligns more complex LiDAR sensor char-

acteristics by reconstructing target scenes and rendering

source-like point clouds. Feature alignment methods [22,

40, 41, 51], another approach, perform domain adaptation

by alignment in feature space instead of aligning the point

clouds directly. In self-training [4, 11, 29, 32, 44, 45],

iterative refinement of pseudo-labels is used to gradually

adapt the detector to the target domain.

While these domain adaptation methods effectively re-

duce the occurring domain gaps, they pay little attention

to the underlying object detector. We show that a thought-

ful selection of the object detector architecture can already

close a portion of the domain gap, which reduces the re-

liance on domain adaptation methods and shifts the focus

to more complex domain shifts which cannot be mitigated

through architecture alone.

3. Preliminary Analysis

Our preliminary analysis lays the groundwork for this

study by addressing three aspects. First, we introduce

the non-public datasets involved in this study and detail

their unique properties. Second, we establish a domain

shift taxonomy, allowing us to systematically assess do-

main differences. Third, we conduct a detector architec-

ture evaluation to identify models that are inherently ro-

Truck Rooftop ZOD

Locations Germany Germany
15 European

Countries

Ann. frames 40k 7.5k 100k

Sequences 2036 251 43468

Top LiDAR
OS2

(128-beam)

VLP 32c

(32-beam)

VLS 128

(128-beam)

Mounting height 3.41m 1.78m 2.01m

Side LiDARs 64-beam 16-beam 16-beam

Front LiDAR 32-beam - -

Avg. pts per frame 178.4k 71.5k 254k

Points per beam 2048 1800 3270

Horizontal res. 0.18° 0.2° 0.11°

License private private CC BY-SA

Table 1. Dataset overview.

bust to domain shifts, providing a foundation for effective

domain adaptation.

3.1. Dataset Introduction

In this paper we leverage three datasets (see Tab. 1

and Fig. 2) for training and evaluation. The Rooftop and

Truck datasets are private while the remaining Zenseact

Open Dataset (ZOD) [1] is open-source. All datasets

are specifically designed for autonomous driving appli-

cations and feature frame-wise LiDAR data. Concern-

ing the dataset size, the Rooftop dataset is the small-

est, with about 7.5k annotated frames, while the Truck

and Zenseact Open datasets are substantially larger with

40k and 100k annotated frames. While the Rooftop and

Truck datasets were both recorded in Germany, the ZOD

contains data from 15 different European countries. An-

other substantial difference concerns the organization of

frames. The Rooftop and Truck datasets are structured

in sequences of 20 or 30 frames per sequence, while the

ZOD consists of single frames, where, on average, only

two frames belong to the same sequence. Regarding the

sensor setup, the main LiDAR also differs between each

dataset. The Zenseact and Truck datasets employ a dense

128-beam LiDAR, each from a different manufacturer,

while the Rooftop dataset employs a sparse 32-beam main

LiDAR. We conduct a detailed analysis of the differences

between the datasets in the subsequent Sec. 3.2.

Some inherent differences between the datasets can be

eliminated by dataset alignment. The size difference can

be aligned rather easily by randomly subsampling of the

larger datasets to match the size of the smallest dataset.

We identified three major dataset alignment measures to

address the frame content: coordinate, range and label-

space alignment.

Coordinate Alignment: Datasets often differ in coordi-

nate systems, leading to potential mismatches between Li-

DAR points and object labels. To address this, we align

all data points and labels with the commonly used sen-

sor coordinate system with a forward-pointing x-axis and
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Figure 2. Comparison of the (a) Truck, (b) Rooftop and (c) Zenseact datasets. Differences in LiDAR beam density are clearly visible.

Ground-truth objects are marked by red bounding boxes.

Persistent Non-persistent

Macro-

level

Collection Area Type Object Size Statistics

Geographical Location Weather Conditions

Frame Selection

Sensor-

level

Sensor Setup Beam Density

Intensity Value Horizontal Resolution

Rate of Rotation Field of View

Alignment Error

Object-

level

Labeling Quality Label Space Definition

Labeling Zone

Object Definition

Table 2. Domain shift taxonomy. We differentiate between per-

sistent and non-persistent to highlight domain shifts that can ef-

fectively be addressed by either readily available domain adap-

tation methods or dataset alignment measures.

an upward-pointing z-axis. Since sensors are mounted at

different heights, we standardize the origin by aligning it

with the ground plane.

Range Alignment: Standardizing the Field of View

(FOV) across datasets allows the detector to learn consis-

tent object regions. We define a forward detection range

of 123.2 meters to support high-speed safety applications

and limit the horizontal FOV to 120° to match the ZOD’s

labeled region. We mark objects truncated by the cropped

FOV as “ignore” during training and evaluation, which

prevents the generation of a loss from these objects.

Label-Space Alignment: Inherent label-space differ-

ences of the ground-truth annotations between datasets

necessitate a mapping to standardize object classes. We

categorize objects into four primary classes: Vehicle,

Truck, Single-track, and Pedestrian. Single-track vehicles

are composed of bicycle and motorcycles. Larger vehicles

such as vans, trucks and trailers fall under the Truck class.

To handle varying labeling conventions concerning single-

tracked vehicles and their riders, we merge their bounding

boxes encompassing both as a single object. A detailed

mapping of the label-spaces between the three datasets

can be found in the Supplementary.

3.2. Domain Shift Taxonomy

We propose a domain shift taxonomy which allows for

a detailed and systematic investigation of possibly occur-

ring domain shifts between aligned datasets. We distin-

guish between three main categories. Sensor-level do-

main shifts are directly caused by the mode of collection,

while Object-level domain shifts concern the object def-

inition and labeling. The remaining macro-level domain

shifts are mainly caused by differences in dataset content.

Keeping the final goal of domain adaptation in mind, we

additionally differentiate between domain shifts that can

effectively be reduced by domain adaptation methods, the

non-persistent domain shifts, and those that persist despite

domain adaptation methods, which we refer to as persis-

tent domain shifts.

Concerning the persistent domain shifts, we notice a

few macro-level differences. While the ZOD features

a geographically diverse set of recording locations, the

Rooftop and Truck datasets were exclusively recorded in

Germany. Also, the types of areas differ between datasets:

the ZOD features substantially more City frames com-

pared to the remaining two datasets. Finally, we find

differences that likely originate from the frame selection

process for each dataset. We notice that there is a sig-

nificantly lower number of overall objects in the Rooftop

dataset compared to the Truck and Zenseact datasets. Es-

pecially the Pedestrian and Cyclist classes are signifi-

cantly underrepresented such that the missing diversity of

classes would dominate the domain gap. Thus, we resort

to mainly perform dataset-wise comparisons between the

Vehicle classes.

There are also significant differences on a sensor-level.

The Truck dataset has a unique sensor setup as the sensors

are mounted considerably higher compared to the other

two datasets. The high mounting position has the conse-

quence of a large blind spot right in front of the ego ve-

hicle. The installation of an additional forward-facing Li-

DAR addresses this issue, resulting in a four-sensor setup.

In terms of object-level differences, we find disparities

between the datasets caused by deficient labeling. More

specifically, we notice missing ground truth labels for the

Rooftop dataset, especially for distant objects that are hit

by less LiDAR points. The implications are a noisy super-

vision signal for training and a distorted evaluation result

as predominantly hard-to-detect objects are missing. The

ZOD suffers from a similar problem, but hereby, the miss-

ing labels are caused by the labeling procedure. ZOD’s

labeling is based on the camera images. Slight height dif-

ferences between the camera and LiDAR sensors cause

objects to be occluded for the camera while visible for the



Detector
Backbone

Architecture

Detection

Head
Stages

SECOND [43] Voxel CNN Anchor Single

PointPillar [18] Pillar CNN Anchor Single

IA-SSD [52] Point CNN Point Single

CenterPoint [46] Voxel CNN Center Single

PVRCNN++ [36]
Point-

Voxel
CNN

Center/

Point
Two

DSVT [38] Pillar
Trans-

former
Center Single

Table 3. List of 3D object detection methods and their architec-

tural properties.

LiDAR, resulting in missing labels.

We also identify many non-persistent domain shifts. In

contrast to the previous class of domain shifts, the non-

persistent ones can effectively be reduced or even elimi-

nated by domain adaptation methods. Most prominently,

the datasets employ LiDAR sensors with a differing num-

ber of beams as well as varying beam patterns. Fur-

thermore, the ZOD is more diverse in terms of captured

weather conditions as it also features adverse weather con-

ditions such as fog or snow. We also notice differences

in terms of object sizes. As the ZOD contains frames

recorded in multiple different countries, the intra-dataset

object size variability is higher.

Throughout our analysis, we find numerous domain

shifts between the datasets. Most of the identified shifts

cannot be isolated, making it infeasible to estimate the

impact of individual domain shifts on the overall domain

gap by a simple comparison between datasets. We pro-

vide detailed statistics and domain shift examples in the

Supplementary Material.

3.3. Detector Architecture Evaluation

We identify six key differences among commonly used

object detection architectures and select one object detec-

tor representative of each difference. This approach al-

lows us to assess the impact of each architectural choice.

An overview of the selected object detectors is given

in Tab. 3. In terms of data representation, we choose SEC-

OND [43] to represent voxel-based architectures, Point-

Pillars [18] for the pillar-based representation, and IA-

SSD [52] to represent the class of point-based object de-

tectors. Furthermore, we select CenterPoint [46] to assess

the effect of center-based detection heads. To reason about

the effectiveness of two-staged methods, we employ the

point-voxel-based detector PV-RCNN++ [36]. This de-

tector uses a SECOND-like first-stage to extract bounding

box proposals and a point-feature-based second-stage to

refine the proposals for the final bounding box estimation.

Lastly, we test the impact of different feature extractor

architectures. As Transformer-based architectures have

recently established themselves in the field of 3D object

detection [38], we test their performance in comparison

to the well-established sparse-convolution-based architec-

tures.

4. Approach

To evaluate the impact of the beam density on the cross-

domain performance, we first select a detector architec-

ture that demonstrates robustness across domains. In our

initial experiments, we simply evaluate the trained detec-

tors across domains and group the detection results ac-

cording to the domain shifts of interest. Results are re-

ported in both high- and low-IOU settings to differenti-

ate between localization and detection errors. For our

analysis, we primarily focus on detection errors, which

are assessed using low-IOU experiments, as localization

errors can usually be mitigated through domain adapta-

tion methods targeting object sizes [23, 39]. This cross-

domain comparison operates under the assumption that

the datasets are sufficiently similar to enable meaningful

conclusions. However, as elaborated in Sec. 3.2, this as-

sumption rarely holds due to persistent domain gaps aris-

ing from differences in sensor setups, environmental con-

ditions, and other factors.

In our second set of experiments, we analyze the im-

pact of varying beam densities by isolating it from other

domain shifts. Following the approach of [8, 40], we gen-

erate beam-wise downsampled versions of one dataset. A

detector is trained on each version and subsequently eval-

uated on the other versions of the same dataset. This ap-

proach allows us to focus on the impact of beam density,

independent of other domain-specific properties. How-

ever, in real-world applications, a varying beam density is

usually just one of many domain shifts occurring at test

time. In such cases, other kinds of domain shifts may

completely dominate the domain gap, rendering the ef-

fect of beam density negligible. On the contrary, it could

also be the case that due to the cross-domain application,

other more reliable features are missing, resulting in an in-

creased domain gap caused by varying beam density. Fo-

cusing on a single domain shift in isolation fails to capture

these complex interactions. Thus, more sophisticated ex-

periments with the goal of capturing the domain gap by

a certain domain shift in conjunction with other domain

shifts is necessary.

To address the limitations of isolated domain shift anal-

ysis, we propose an experimental setup designed to ac-

count for interactions between beam density and other do-

main shifts. As in prior experiments, we utilize sparsified

versions of datasets to analyze the impact of beam density,

but this time in conjunction with other datasets. Our setup

divides the domain gap into two components: the training

domain gap, caused by differences in beam density during

training, and the inference domain gap, caused by varia-

tions during evaluation, as described by Richter et al. [31].

To measure the training domain gap, we downsample the

training dataset to create multiple versions, each repre-

senting a specific beam density level. By matching or mis-

matching the beam density with the evaluation dataset, we



isolate the effects of beam density variation during train-

ing. Similarly, the inference domain gap can be attained

by varying the beam density of the evaluation datasets

while keeping the training datasets unchanged. These

controlled experiments allow us to isolate the specific ef-

fects of beam density in a cross-domain setting. We note

that in real-world applications, it is typically infeasible to

disentangle the training and inference domain gaps, un-

derscoring the relevance of these controlled experiments.

5. Experiments

To demonstrate the effectiveness of our assessment ap-

proach, we conduct experiments on the two private

datasets Rooftop and Truck and the public Zenseact Open

Dataset [1]. We first present our results for the object

detector architecture evaluation, based on which we then

assess the cross-domain and density-resampling domain

gaps. Finally, we compare our training and inference do-

main gaps to the previously determined domain gaps. De-

tailed experiment results and additional information about

implementation and model training can be found in the

Supplementary Material.

5.1. Evaluation Metrics

We use the Intersection-over-Union (IOU)-based metric

3D average precision APS→T to assess the detection per-

formance of an object detection model trained on the

source domain D
S when evaluated on the target domain

D
T . By lowering the IOU threshold, we can addition-

ally disentangle the detection error from the localization

error. Thereby, localization errors are caused by objects

that are detected but not localized accurately enough to be

considered true positives, whereas detection errors repre-

sent entirely missed or wrongly classified objects. Wang

et al. [39] demonstrated that the 3D average precision sig-

nificantly increases when the IOU threshold is reduced

from the commonly used threshold of 0.7 (70%) to ap-

proximately 0.4 (40%). At this threshold, the domain gap

primarily reflects detection errors, which are of greater

practical significance than localization errors. Localiza-

tion errors can often be mitigated using domain adaptation

methods such as ROS [44], SN, or OT [39]. Therefore,

in our evaluation, we primarily focus on a reduced IOU

threshold of 0.4 to better understand detection errors.

While the cross-domain performance is well suited for

comparing different detectors, it does not adequately cap-

ture the generalization ability of a certain detector across

domains, as it is influenced by the inherent difficulty of

the target dataset. To address this limitation, we employ

the domain gap metric [44], which relates cross-domain

performance to the detector’s maximum achievable per-

formance on the target domain (APT→T ). This relative

metric provides a detached view of domain generalization

ability and allows for meaningful comparisons of detec-

tors evaluated on target datasets with varying difficulty

levels. The domain gap DG, expressed as a percentage

of the maximum achievable performance, is defined as

Detector
mAP ↑

IOU=0.7

mAP ↑

IOU=0.4

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

SECOND 30.6 70.4 47.6 16.0

PointPillars 23.0 63.9 56.4 21.5

IA-SSD 34.7 66.1 41.5 18.3

CenterPoint 28.6 68.1 49.7 18.0

PV-RCNN++ 37.2 71.2 42.8 16.2

DSVT 33.4 68.4 47.7 20.1

Table 4. Detector comparison results overview. We calculate the

cross-domain performance by averaging over all cross-domain

results. We report the average domain gap and the cross-domain

performance using the AP metric at the IOU thresholds of 0.7

and 0.4 for the Vehicle class.

DG =
APT→T −APS→T

APT→T

· 100 (1)

5.2. Detector Architecture Evaluation

With the goal of finding a detector that is robust against

domain changes, we examine the impact of each archi-

tectural choice on the overall performance in the cross-

domain setting (see Tab. 4). The first architectural

comparison concerns the voxel and pillar discretization

methods. We find that the voxel-based detector SEC-

OND [43] outperforms the pillar-based PointPillars [18]

by a substantial margin. While PointPillars is the worst-

performing detector across all metrics, SECOND exhibits

surprisingly good performance in the low-IOU settings.

This indicates that SECOND is good at detecting objects

but fails to precisely locate them in 3D space. This dis-

crepancy stems from the quantization process. During

voxelization, the exact geometric structure is lost, hamper-

ing the precise localization of objects. In terms of different

data representations, we also test the point-based detector

IA-SSD [52]. This detector shows a very strong perfor-

mance in the high-IOU setting, indicating that it is also

good at predicting the 3D location of objects. This can be

attributed to the detector’s direct access to the point data.

Subsequently, we test the effects of different detection

heads. More specifically, we compare anchor-heads, as

employed in SECOND or PointPillars, with center-heads,

as introduced in CenterPoint [46]. Contrary to expecta-

tions, center-heads result in degraded performance com-

pared to anchor-heads.

Next, we apply PV-RCNN++ [36] to test the impact of

an additional second stage. This detector outperforms all

others in terms of cross-domain performance while stay-

ing competitive in terms of domain gap. Similar to IA-

SSD, the second stage of PV-RCNN++ benefits from di-

rect access to raw point data, which likely enhances its

performance. We can conclude that, for our experiments,

the addition of a second stage significantly benefits the

object detectors regarding generalization abilities.

Lastly, we examine the effect of Transformer-based

backbones. While DSVT [38] achieves excellent in-

domain results, its cross-domain performance and domain



Source→Target
avg. DG in %

IOU=0.7 ↓

avg. DG in %

IOU=0.4 ↓

Beam

Density

Dense→Dense 23.9 14.4

Dense→Sparse 36.4 11.1

Sparse→Dense 67.4 23.0

Table 5. Domain gap in percent for the object detector PV-

RCNN++. The different cross-domain settings are grouped and

averaged by beam density. We report the average domain gap

calculated with the AP metric at the IOU thresholds of 0.7 and

0.4 for the Vehicle class.

gap metrics are only moderate. Our experiments suggest

that Transformer-based backbones do not benefit object

detectors in terms of domain generalization.

These findings highlight the critical role of detector

architecture in achieving robust domain generalization.

Comparing the best and worst-performing detectors, we

observe a performance difference of 61.7% in the high-

IOU setting and 11.4% in the low-IOU settings. We fur-

ther find that purely voxel-based detectors excel at detect-

ing objects and the addition of point information drasti-

cally improves the localization error. The object detection

architecture evaluation conducted by Eskandar et al. [8]

yields similar conclusion concerning the effect of point

information. However, our experiments do not support

their finding that Transformer-based backbones improve

cross-domain generalization.

5.3. Crossdomain Results

Beginning our examination of the domain gap induced by

beam density, we conduct a simple cross-domain eval-

uation. As shown in Tab. 5, the sparsely-trained de-

tector (trained on Rooftop) applied on denser datasets

(Sparse→Dense) exhibits approximately twice the do-

main gap compared to applying a densely-trained de-

tector (trained on Truck or ZOD) on a sparse dataset

(Dense→Sparse). This trend persists when isolating the

detection error by evaluating with reduced IOU thresh-

old. In terms of domain generalization, we could conclude

from this initial analysis that for these particular datasets,

it is beneficial to train a detector on the dense datasets as

they generalize towards sparse and dense datasets. As the

effect of beam density is just one of many factors con-

tributing to this observed domain gap, further analysis is

required to make stronger statements.

5.4. Densityresampling Results

We continue by isolating the beam-density-induced do-

main gap in our second set of experiments. To keep track

of the resampled density, we call the original dense dataset

ZOD128 and the sparser variants ZOD64 and ZOD32,

where the index represents the number of beams. As

shown in Tab. 6, the density-resampling analysis con-

trasts with the findings from the cross-domain analysis. In

the high-IOU setting, the sparse-to-dense cases (top-right

of the results matrix) give better results than their dense-

Target

ZOD32 ZOD64 ZOD128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

ZOD32 - 1.8 5.1

ZOD64 4.3 - 1.9

ZOD128 9.4 0.9 -

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

ZOD32 - 0.6 2.3

ZOD64 2.7 - 1.6

ZOD128 3.0 -0.9 -

Table 6. Density-caused domain gap for the density-resampling

setting. We report the domain gap calculated with the AP metric

at the IOU thresholds of 0.7 (top) and 0.4 (bottom) for the Vehi-

cle class.

to-sparse counterparts (bottom-left of the results matrix).

More broadly, we notice that the performance differences

between all datasets are comparably small. This indicates

that the detectors generalize very well towards the same

dataset when solely varying the sampling. However, in

real-world applications, variations in sampling is usually

accompanied by other kinds of domain shift. In the fol-

lowing experiments we thus investigate the beam-density-

induced domain shift in the presence of other kinds of do-

main shifts by measuring the training and inference do-

main gaps.

5.5. Training and Inference Domain Gap Results

We first examine the training domain gap in Tab. 8. Com-

pared to the density-resampling setting (recall Tab. 6),

the overall domain gap level is significantly higher, as

many more factors contribute besides the beam density. In

the high-IOU experiments, trends are consistent with the

density-resampling case: larger differences in beam den-

sity lead to larger domain gaps. However, when isolating

the detection error in the low-IOU setting, a different trend

emerges. Densely-trained detectors show overall better

performance for the dense and sparse target datasets, indi-

cating that they are able to detect more objects than their

sparsely-trained counterparts in the cross-domain case.

This setup also allows us to quantify the impact of beam

density on the overall domain gap. When evaluating on

the Rooftop dataset, training on a denser 128-beam dataset

reduces the domain gap from 13.1% to 9.2%, reducing the

domain shift by almost one-third (shown in Fig. 1c).

Next, we analyze the inference domain gap in Tab. 7.

The high-IOU results (top-left of the table) show greater

domain gap variability between the Rooftop and Truck

datasets than within each dataset across beam densities.

This observation supports our earlier assumption about

persistent dataset-caused domain gaps in cross-domain

evaluation settings (recall Sec. 4). Overall, the results in-



Target

ZOD32 ZOD64 ZOD128 ZOD32 ZOD64 ZOD128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

Rooftop
32

55.0 58.0 67.4 13.9 11.8 13.4

Truck128 28.6 19.0 16.3 16.9 8.5 8.2

AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑

IOU=0.4

AP ↑

IOU=0.4

AP ↑

IOU=0.4

Rooftop
32

25.1 26.7 22.4 60.5 69.0 73.0

Truck128 39.7 51.4 57.6 58.4 71.6 77.4

Table 7. Inference domain gap caused by varying beam densities in a cross-domain setting. We report the domain gap (top) and the

cross-domain performance (bottom) using the AP metric at the IOU thresholds of 0.7 (left) and 0.4 (right) for the Vehicle class.

Target

Rooftop
32

Truck128 Rooftop
32

Truck128

Source
DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.7

DG in % ↓

IOU=0.4

DG in % ↓

IOU=0.4

ZOD32 38.4 41.5 13.1 28.0

ZOD64 41.2 37.2 11.1 23.7

ZOD128 45.8 32.5 9.2 20.5

Table 8. Training domain gap caused by varying beam densities

in a cross-domain setting. We report the domain gap calculated

with the AP metric at the IOU thresholds of 0.7 (left) and 0.4

(right) for the Vehicle class.

dicate that the detector is relatively robust to beam density,

provided the number of beams does not change drastically.

In the high-IOU experiments, the domain gap increases by

only 3% or less when doubling or halving beam density.

The previous analyses were exclusively done through

the lens of the domain gap metric. For the inference do-

main gap, it is also interesting to examine the performance

values themselves. Especially for the low-IOU setting, we

can see in Tab. 7 that the performance (measured in AP)

increases steadily with an increasing number of beams,

despite the domain gap staying similar. This indicates that

the observed performance gain is caused by easing the de-

tection problem in contrast to better generalizability of the

detectors. As the density increases, more LiDAR rays hit

objects which makes it easier for the object to be detected.

In summary, the results provide a comprehensive view

of the domain gap caused by varying beam densities.

When isolating the effect of varying beam densities

(see Tab. 6), the domain gap appears minor, favoring

sparsely-trained detectors for domain generalization. This

aligns with findings from related studies [8, 10, 31]. How-

ever, when analyzing the training domain gap in conjunc-

tion with other domain shifts, we find that densely-trained

detectors exhibit better domain generalization in terms of

detecting objects (see Tab. 8). Regarding inference do-

main gaps (see Tab. 7), results show that detectors gen-

eralize well as long as beam density changes are modest.

Nonetheless, denser sampling reduces detection difficulty,

leading to better performance irrespective of the detector’s

generalizability.

6. Conclusion

This study presented an investigation of the impact of

beam density on LiDAR object detection performance in

cross-domain scenarios during which we also explored

optimal object detector architectures to address domain

variability effectively. Our object detector architecture

evaluation revealed that combining voxel- and point-based

approaches delivers superior cross-domain performance

by leveraging the complementary strengths of these repre-

sentations. While Transformer-based backbones demon-

strated strong performance in in-domain tasks, their cross-

domain benefits were limited under the conditions tested.

Our findings emphasize the importance of selecting a ro-

bust detector architecture as a prior step to domain adap-

tation.

We further investigated the impact of beam density on

LiDAR object detection performance in cross-domain sce-

narios, offering insights into both training and inference

domain gaps. We found that detectors trained on dense

datasets generalize better across domains, particularly for

detecting objects, where detection error (rather than local-

ization error) is the primary concern. During inference,

detectors showed robustness against moderate beam den-

sity changes, with denser configurations improving per-

formance by reducing the difficulty of the detection task

rather than enhancing generalizability.

A key insight from this study is that domain gaps, in-

cluding those caused by beam density, should not be an-

alyzed in isolation. Instead, we advocate for a holistic

approach to domain adaptation, beginning with the selec-

tion of a detector intrinsically robust to domain changes.

This minimizes the initial domain gap and allows adap-

tation efforts to focus on more complex types of domain

shifts.
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Supplementary Material

1. Dataset Introduction

In the following, we provide the detailed label map

(see Tab. 1) from Chap. 3.1 and elaborate some of the

domain shifts mentioned in Chap. 3.2 in more detail.

We begin by showcasing the effect of geographically di-

verse locations in Fig. 1. The observed country-level

size bias combined with a dataset-specific size-bias re-

sults in different average object sizes between the datasets

(see Fig. 2). Fig. 3 shows differences in recording lo-

cations. We can see that the ZOD contains significantly

more City frames compared to the other two datasets. As

a consequence, a detector trained on the ZOD is more

likely to assign objects that typically associated with City

frames, such as Cyclists, to ambiguous objects than detec-

tors trained on the other datasets. An example of this phe-

nomenon is depicted in Fig. 4, where the detector trained

on the ZOD detects a Cyclist, while the other detectors

correctly detect a Truck. The bias introduced by the frame

selection procedure can be seen in Fig. 5. The Rooftop

dataset contains, on average, less objects per frame than

the other two datasets. This difference is especially severe

for the classes Pedestrian and Cyclist. Finally, we give

an example for imperfect labeling of the Rooftop dataset

in Fig. 6. The camera image shows a black car, which is

captured by 8 points in the LiDAR image. However, no

bounding box is assigned in the LiDAR frame.

Figure 1. Average length of vehicles for different countries in

the ZOD.

2. Experiments

2.1. Implementation Details

In the following, we summarize some implementation de-

tails which are shared across the object detection models.

Figure 2. Comparison of average object sizes for the classes Car,

Pedestrian and Cyclist for ZOD (green), Truck dataset (blue) the

Rooftop dataset (orange). Object sizes of the Rooftop dataset are

significantly larger on average.

Figure 3. Recording area statistics.

Figure 4. Example of a misclassification of an ambiguous object

on a highway. The detector trained on the ZOD (green bound-

ing box) is more likely to assign the class Cyclist to the am-

biguous object compared to the detector trained on the Rooftop

dataset (blue bounding box), which correctly identifies the object

as Truck (red bounding box).

Codebase. All models were implemented in the code-

base 3DTrans1, which is an extension of the open-source

1https://github.com/PJLab-ADG/3DTrans

DOI: 10.3217/978-3-99161-022-9-002
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Detector

Label-Space

Dataset

Label-Space

Truck Rooftop Zenseact Open Dataset

Vehicle
Vehicle Drivable Car Vehicle Drivable Car Vehicle Car

Vehicle Drivable Van Vehicle Drivable Van Vehicle Van

Truck

LargeVehicle Bus LargeVehicle Bus Vehicle Bus

LargeVehicle TruckCab LargeVehicle TruckCab

Trailer Trailer Vehicle Trailer

LargeVehicle Truck LargeVehicle Truck

Vehicle Truck

Vehicle TramTrain

Vehicle HeavyEquip

Cyclist
Vehicle Ridable Motorcycle Vehicle Ridable Motorcycle VulnerableVehicle Motorcycle

Vehicle Ridable Bicycle Vehicle Ridable Bicycle VulnerableVehicle Bicycle

Pedestrian Human Human Pedestrian

DontCare

Dont Care PPObject

Other PPObject Stroller

PPObject BikeTrailer

Vehicle PMD

Table 1. Label-space mapping between the detector label-space and the dataset label-spaces.

Figure 5. Class statistics.

3D object detecton codebase OpenPCDet [5]. Models de-

veloped in OpenPCDet can seamlessly be integrated into

3DTrans. All the models were already implemented in

3DTrans for the Waymo Open Dataset [4], with the ex-

ception of DSVT, which had to be adopted from the offi-

cial OpenPCDet codebase. The ZOD dataloader has been

implemented based the provided developement kit2. The

dataloaders for the Rooftop and Truck datasets were im-

plemented from scratch. Our implementations are based

on PyTorch 2.1 and SpConv [1] version 2.3.6 for CUDA

12.0.

Hardware. We conducted the development and testing

of the models on a workstation featuring a single RTX

4090 GPU. We trained the final models on a GPU with

four RTX A6000 GPUs.

2https://github.com/zenseact/zod

Schedule and Optimization. We train all object de-

tectors on each dataset for 100 epochs. All the models

employ the ADAM optimizer [2] and use a OneCycle

learning-rate scheduler [3] with varying learning rate, mo-

mentum and weight-decay parameters depending on the

model.

Data Representation. The voxel-based methods SEC-

OND, CenterPoint, PV-RCNN++, and DSVT require

a discretization of the point cloud into a voxel-

representation before the object detection models can be

applied. To this end, we adapt a voxel size of (0.1m, 0.1m,

0.15m) following the implementation of PV-RCNN++.

For the pillar-based method PointPillars, we use a pillar-

size of (0.32m, 0.32m, 6.0m).

2.2. Detector Architecture Search

In Tab. 2, we provide the raw data used to calculate the av-

eraged results for the domain gap and performance, which

we base our detector architecture selection on. These re-

sults are also used to conduct the initial cross-domain ex-

periment in Sec. 5.3.

2.3. Domain Gap Results

In Tab. 3 and Tab. 4 we provide the performance values

in Average Precision based on which the domain gaps in

Sec. 5.4 and 5.5 are calculated.
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Figure 6. Example of missing ground truth label for the Rooftop dataset. The 3D bounding box of the red boxed car is missing even

though it is clearly visible in the image and LiDAR data.

Target

Truck Rooftop
Zenseact

Open Dataset

Source Detector

AP ↑

IOU

0.7/0.4

AP ↑

IOU

0.7/0.4

AP ↑

IOU

0.7/0.4

Truck

SECOND 55.5/84.9 39.2/73.6 46.9/74.7

PointPillars 49.7/82.4 32.7/67.3 33.5/67.7

IA-SSD 58.6/82.4 41.3/69.5 53.9/72.1

CenterPoint 54.5/82.4 36.9/75.7 43.6/74.2

PV-RCNN++ 65.5/86.4 45.5/74.0 57.6/77.4

DSVT 60.4/86.3 41.0/72.1 53.2/77.3

Rooftop

SECOND 16.7/60.5 58.3/84.6 16.9/66.9

PointPillars 13.6/56.3 51.8/82.3 13.6/65.1

IA-SSD 20.6/59.9 55.1/82.2 29.9/71.7

CenterPoint 13.9/54.4 58.3/84.0 11.7/58.9

PV-RCNN++ 21.0/58.3 61.4/84.3 22.4/73.0

DSVT 20.9/55.2 64.6/86.4 19.9/62.6

Zenseact

Open

Dataset

SECOND 36.7/69.7 27.0/76.8 61.2/82.0

PointPillars 25.3/59.5 19.1/67.6 56.7/79.8

IA-SSD 33.7/54.0 28.7/69.3 63.8/78.6

CenterPoint 38.7/69.8 26.9/75.5 57.7/82.7

PV-RCNN++ 44.2/68.6 32.7/75.8 68.7/84.3

DSVT 38.1/66.2 27.6/77.0 66.4/84.3

Table 2. Detector comparison in terms of the cross-domain per-

formance. We report the performance using the AP metric at an

IOU threshold of 0.7/0.4 for the Vehicle class.
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ZOD32 ZOD64 ZOD128

Source
AP ↑
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AP ↑
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IOU=0.4

AP ↑

IOU=0.4

AP ↑

IOU=0.4

ZOD32 70.3 77.8 82.3

ZOD64 68.4 78.3 82.9

ZOD128 68.2 79.0 84.3

Table 3. Density-caused domain gap for the density-resampling

setting. We report the performance with the AP metric at the

IOU thresholds of 0.7 (top) and 0.4 (bottom) for the Vehicle

class.

Target

Rooftop
32

Truck128 Rooftop
32

Truck128

Source
AP ↑

IOU=0.7

AP ↑

IOU=0.7

AP ↑

IOU=0.4

AP ↑

IOU=0.4

ZOD32 37.9 38.3 73.3 62.2

ZOD64 36.1 41.1 74.9 65.9

ZOD128 33.3 44.2 76.6 68.7

Table 4. Training domain gap caused by varying beam densities

in a cross-domain setting. We report cross-domain performance

with the AP metric at the IOU thresholds of 0.7 (left) and 0.4

(right) for the Vehicle class.
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