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ABSTRACT: The utilization of a visual cue plays a
significant role in enhancing the operational efficiency
of brain-computer interface (BCI) systems for
individuals with Locked-In Syndrome (LIS). This
significance arises from the absence of a reliable
method to discern the actual initiation of attempted
movements in these patients. First, the decoders for
identifying or classifying self-initiated movements need
to be trained on cue-based paradigms. However, these
cues can elicit neural activity (e.g., visual/auditory
evoked potentials, cognitive processing, etc.) that
obscures the neural dynamics of movement, thus
negatively influencing the performance of the decoder.
Therefore, we implemented four novel visual cues with
the intention to reduce these effects to a minimum. Our
research findings indicate that the effectiveness of
classification performance in self-paced EEG recordings
when the decoder is trained on cue-based data for
movement tasks, is significantly impacted by the design
of the cue.

INTRODUCTION

A brain-computer interface (BCI) is a sophisticated
system designed to facilitate communication between
the human brain and external devices. This is achieved
by capturing and interpreting bioelectrical signals,
which are indicative of the user's intentions. These
signals can be obtained through non-invasive methods
such as electroencephalography (EEG) or invasive
techniques like electrocorticography (ECoG). The BCI
serves as a bridge, translating the user's cognitive
intentions into actionable commands for seamless
interaction with external technologies [1],[2]. We aim to
make use of four different gestures and
movement-related cortical potentials (MRCPs) elicited
by these gestures to decode the user's intention. The
rationale for incorporating different gestures in this
study was to anticipate their potential use in the
INTRECOM Project (https://intrecom.eu/) where we
aim to use them for a four directional control of a
speller [3]. The MRCP, a crucial EEG signal tied to
voluntary movement preparation and execution, has
been extensively studied for its insights into neural
processes governing motor planning and control [4], [5].
Comprising components such as the readiness potential
(RP) and the movement-related potential, MRCPs offer

a window into the mechanisms of movement-related
neural events. In case of paralyzed participants, the
movement itself cannot be measured to retrieve the time
point of movement onset. In such cases cues seem
unavoidable. The challenge arises when the cues
essential for the precise timing of a paradigm elicit
visual or auditory evoked potentials (V/AEPs) after
their stimulus. Such V/AEPscan can inadvertently
interfere with the analysis of MRCPs, especially in
experimental paradigms involving self-initiated neural
patterns such as voluntary movements or attempted
movements [6], [7], [8] in an asynchronous BCI
application in a later stage. Meaning, in the realm of
BCIs, asynchronous configurations pose challenges to
decoding performance because the classifier is trained
on MRCPs influenced by cue-related potentials, which
are absent in asynchronous usage.This underscores the
need to refine and optimize the visual cue to produce
MRCPs minimally influenced for training a classifier
that can detect self-paced movement.
Therefore, the primary motivation for this study is to
address a fundamental question: can visual cues be
designed to exert minimal impact on MRCPs during
movement attempts? While past research has compared
cue-based and self-paced MRCPs and explored the
influence of visual, auditory and vibrotactile cues [9],
[10], [11], [12], [13] limited attention has been given to
strategies mitigating the impact of visual cues on
MRCPs. To fill this gap, we draw inspiration from
previous work by Ofner et al. [7], who introduced a
gradually appearing visual cue gradually appearing to
minimize abrupt changes. Consequently, this gradual
adaptation aims to mitigate the interference of cues on
EEG signals. Building on this foundation, we propose
three new cues designed with the principle of exerting
minimal influence on signals associated with movement
execution. By rejecting or minimizing cue-induced
effects, our goal is to ensure that signals recorded during
cue-based activities closely mirror those generated
during self-initiated movement attempts.

MATERIALS AND METHODS

A. EEG recordings: cue-based and self-paced data

In this research, 22 individuals in good health,
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averaging 26.2 ± 4.2 years of age, participated in EEG
activity recording. Each participant willingly gave
written consent after receiving detailed information
from the researchers regarding the study's goals,
content, and procedures. Participants were assured the
autonomy to cease their involvement at any point
without obligation to provide a reason. The
experimental protocol obtained approval from the ethics
committee at TU Graz before initiation. Additionally,
the recorded data for each participant underwent
anonymization. Participants engaged in the recording of
EEG activity as they executed four distinct hand
movements (gestures) using their right hand while
seated in front of a computer screen. The EEG signals
were recorded using a 64-channel actiCAP system
(Brain Products GmbH, Gilching, Germany) at a
sampling rate of 500 Hz. EEG signals were collected
from all cortical areas through 60 electrodes positioned
based on the 10-10 electrode system, while the
remaining four electrodes served as electrooculography
(EOG) electrodes. EOG electrodes were strategically
placed at the outer canthi of both eyes and above and
below the left eye to monitor saccades and blinks. The
ground electrode was situated at the right mastoid, and
the reference electrode was positioned at FCz.To
identify actual movement onsets in both cue-based and
self-paced sessions, we utilized a motion capture system
developed in the institute with a sampling frequency of
30 Hz. A marker was positioned at the nail of the
participant's pointer finger. The data output provided
spatial information along the x, y, and z axes.
The gestures (Fist, Pincer, Y, Pistol) were chosen based
on classification results of previously performed studies
[7], [14], [15] in light of the assumption that gestures
can differ significantly due to variations in involved
joints and rotation thus producing variations in the EEG
movement-related dynamics. The experiment consisted
of two parts: (i) cue-based data collection applying
different cues and gestures. (ii) a self-paced phase
where participants were instructed to freely execute
corresponding gestures at any time. Data recorded
during this phase were used to evaluate the performance
of an offline asynchronous decoder, trained on the data
of (i).
For the cue-based part participants were instructed to
execute four specific hand movements precisely at
predetermined start times, signaled by various visual
cues. Six successive movements of all four gestures
were performed resulting in 5-minute runs, followed by
a 30-second rest period. The cue was constant
throughout this period, while the presentation order of
the gestures was randomized for each trial. This process
was repeated over 32 separate runs, each with a
randomly shuffled cue, resulting in a cumulative total of
192 trials for each individual gesture (48 trials per cue
and per gesture). The core concept underlying these
cues is their gradual appearance; they do not appear
abruptly but transition smoothly to their initial positions
through methods like shrinking, rotating, or fading. A
single trial, exemplified on the reference cue [7], has the

following sequence (Fig. 1): the gesture was displayed
for 1s, followed by a fixation cross positioned in front
of a filled green circle ('ready cue'). After a variable
period (2-3s), the green circle would gradually shrink.
This phase was designed to function as a preparatory
period for participants, serving as a smooth visual
transition between cues and minimizing visual cue
effects on EEG. The preparation phase was succeeded
by the 'go cue,' signaling the initiation of movement
execution (3s of execution and holding the end position
of the gesture). After that a rest phase with a blank
screen was presented for 1.5s. In this study, alongside
the reference cue, three novel visual cues were
introduced which are based on the same principle (see
Fig. 2) the fading cue, the rotation cue, and the star cue.

Figure 1: Timings of the different phases during one
gesture trial. Starting with the gesture presentation,
followed by the ready cue, thereafter the preparation
phase, then the goe cue and at last the blank (rest)
phase.

Figure 2: Four cues. A. Initial position/shape of the
different cues . B. End position/shape.

In the self-paced part, participants were instructed to
execute the same gesture and hold it for 3s (same
procedure as in the cue based part) at approximately
10-second intervals over the course of a 5-minute run.
The timing of one run can be seen in Fig. 3. This
protocol was repeated across a total of 8 runs, leading to
60 trials for each distinct gesture. It is worth mentioning
that the amount of movement trials for each subject
differ slightly, since the self-paced paradigm instructs
the participants to do the movements approximately
every 10s, leading to some variation between subjects.

Figure 3: Timing of the self-paced paradigm and
different steps during one 5-minute run.
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B. Processing of recordings

The recorded signals underwent offline processing and
analysis using MATLAB R2019a and the EEGLAB
toolbox ([16]). For the offline analysis, the EEG signals
from 60 channels in a standard 10-10 setup underwent
preprocessing steps. Initially, a zero-phase band-pass
filter, implemented as a third-order Butterworth filter
was applied to the signals within the frequency range of
0.3 to 70 Hz. To eliminate power line interference at 50
Hz, a notch filter was employed. Independent
component analysis (ICA) was utilized to remove
artifacts related to eye and muscle activity. A common
average reference (CAR) was then applied. As we
concentrate specifically on MRCPs for this study, we
bandpass filtered the data in the low-frequency range of
(0.5 - 5 Hz) by using a 3th order IIR filter and thereafter
we resampled the whole signal at 10 Hz to decrease
computational workload. Temporal alignment of all
trials occurred with respect to the cue onset, within a
window spanning from -2 s to 2 s. After a thorough
visual inspection, epochs exceeding the threshold of ±50
μV were excluded. Kinematic data related to gestures
were used to calculate the velocity of participants' hand
movements. Movement onset was determined when the
hand's velocity surpassed a predefined threshold (which
was set to the same velocity value for all participants)
between the "go" cue and the cue for the break, ensuring
accurate detection while minimizing false positives (FP)
for small movements during rest. We had to exclude one
participant's dataset due to exceptionally poor signal
quality and kinematic tracking.

C. Training a classifier on the different cues and
applying it on self-paced data

In this study, our main goal was to develop an
MRCP-based classifier capable of predicting when a
gesture occurs regardless of the specific gesture itself.
We therefore combined, for each participant, trials from
all four gestures into a single class, labeled as
‘movement’ (4 gestures x 48 trials = 192 trials). Data
from the rest condition (independently of the cue type)
were utilized as a 'rest' class (4 cues x 4 trials = 192
trials).
To identify the point of maximum discrimination
between the two classes around the cue onset, we
employed a 2-class shrinkage linear discriminant
analysis (sLDA) [17], [18], using overlapping
1.2-second window segments of current and past EEG
lags within each participant. We experimented with
various window lengths and selected the one that
yielded the highest accuracy. The input of the classifier
included EEG data (band-pass filtered between 0.5 - 5
Hz, as described in section B.) from both gesture (i.e.,
‘movement’) and resting (i.e., ‘rest’) trials, which were
aligned around one of the four previously mentioned
visual cues. To evaluate the performance of the
classifier within each window, we applied a trial-based
10x1 fold cross-validation approach. Subsequently, we

selected the window with the highest cross-validated
accuracy to train the final classifier, utilizing data from
all trials. This classifier was then used to predict offline
movement instances during the self-paced paradigm.
To prevent multiple detections during a movement
period and to reduce the number of FP during the
self-paced paradigm, we adjusted the threshold for the
movement class probability and we additionally
introduced a dwell time and a refractory period [13],
[19]. The dwell time verifies whether there are
consecutive detections within a specified timeframe,
and only when this condition is met a movement is
finally predicted. Once a movement has been predicted,
the refractory period skips any further check for
movement until a specified amount of samples have
passed. For the classification of the asynchronous data
the class probability, the dwell time and the refractory
period were optimized individually for each subject and
varied between 0.6 to 0.99, 0.5 to 2s and 2.5 to 4s,
respectively. By adjusting these parameters, we ensured
that multiple detections did not occur within a detection
window (defined as [-0.5 1] seconds around an actual
movement), while maintaining an overall FP count to 2
FP/min. Furthermore, considering that the gesture was
performed for approximately 3s, an additional MRCP
was produced when the participant returned to the
resting state. Therefore, the refractory period was
crucial to avoid detecting these movements upon
returning to the resting state.

RESULTS

When assessing the effectiveness of visual cues, the
discrepancy between the actual onset of movement and
the onset signaled by the cue is of essential importance.
Therefore, we defined 'temporal variability' as the
difference between the movement onset and the cue
onset for each movement performed by every subject. A
negative time value indicates that the movement
occurred before the cue onset, whereas a positive value
indicates that the movement occurred after the cue
onset. We investigated this variability for the four
different cue types. The temporal variability is shown in
the violin plots of Fig. 4. To evaluate statistically the
differences between cues, we conducted for each pair of
cues a Wilcoxon ranksum test and corrected for
multiple comparisons using the Benjamini-Hochberg
method. It is evident that the rotation and reference cues
exhibit a narrower distribution, whereas the results for
the fade and star cue are much more widely dispersed.
In Fig.5 the grand average MRCPs produced by the
different cues can be seen. The rotation and reference
cues display significantly more distinct grand average
MRCP patterns, whereas the fade and star cues yield
notably more blurred results.
The cross-validated accuracy (%), averaged across all
participants, for the 2-class classification task (i.e.,
‘Movement’ vs ‘rest’) during the cue-based part of the
experiment is depicted in Fig. 6. Fig. 6 essentially
illustrates the temporal evolution of the accuracy around
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the cue onset. The rotation cue achieves its highest
accuracy of 68.1% at 0.97 second, matching the
accuracy of the reference cue, which also peaks at
68.1% and occurs at 0.77 seconds. In comparison, the
Star and Fade cues both demonstrate their peak
accuracy at 0.56 seconds, achieving 65.2% and 64.85%,
respectively.
The results of the classification comparison of the
different classifiers trained on the specific cue and
applied on the self-paced data to predict the self-paced
movement can be seen in Fig. 7. We show the different
true positive rates (TPRs) within the specified detection
window (i.e., [-0.5 1] seconds) around the true
movement onset for the four cue types. The highest
median TPR was achieved with the reference cue and
the rotation cue with a value of 60%, while the fade and
star cue had a significantly lower TPR of 55%. The
highest subject wise accuracy was achieved by the
rotation cue with a value of 67%, while the lowest
accuracy occurred for the star cue with a TPR of 48%.
The accuracy of both rotation and reference cue shows a
similar variation , ranging approximately from 67% to
55%. Similarly, the fade and star cue demonstrate
accuracy levels ranging from 63.5% to 48% and 65% to
48%, respectively. We performed a Wilcoxon ranksum
test and corrected for multiple comparisons using the
Benjamini-Hochberg method to examine potential
variations in results among the different cues. There
were no significant differences between the fade and
star cue, as well as between the rotation and reference
cue. However, there was a significant difference (p <
0.01) between the fade cue and both the rotation and
reference cue, as well as between the star cue and these
two cues.
The rotation and reference cues exhibit similar ranges of
accuracy, both in terms of lower and upper limits.
Similarly, the fade and star cues also demonstrate
comparable levels of accuracy across their respective
lower and upper bounds. Notably, the rotation and
reference cues generally show similar performance, as
do the fade and star cue. Note that the overall FP count
was maintained at 2 per minute for all participants. The
median temporal disparity was for all cues the same and
the difference between the predicted movement onset
and the actual movement onset was 0.3s, indicating that,
on median, the movement was forecasted 300 ms after
the commencement of the actual movement.

Figure 4: Violin plots depicting the time difference
between movement onset and cue onset from all gesture

trials for each of the four cue types. Statistically
significant differences between cues are indicated with
stars (*p<0.05, **p<0.01, ***p<0.001). p-values were
corrected for multiple comparisons using the
Benjamini-Hochberg method.

Figure 5: Grand average of MRCPs during different
cues. MRCPs are aligned to the cue onset (t=0s).

Figure 6: Grand-average cross-validated accuracy (%)
for the 2-class classification task (i.e., ‘Movement’ vs
‘rest’) and for the different cue types within the duration
of a trial (t=0s corresponds to the cue onset).

Figure 7: Boxplot showing the subject-specific TPRs in
% for the different cue types. Statistically significant
differences between cues are indicated with stars
(**p<0.01). p-values were corrected for multiple
comparisons using the Benjamini-Hochberg method.

DISCUSSION

In this work we focused on movement onset prediction
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during self-paced executed movement using classifiers
trained on MRCPs triggered by four different visual
cues.
In this context we observed that there is a significant
difference in the decoding performance among the cues.
Specifically the rotation and reference cue yielded the
highest TPR in the self-paced data - a result that was
expected since the shape of the grand average MRCPs
was in general more pronounced for these cues.
Additionally, the design of the cue considerably
impacted the exact initiation time of participants'
movement execution. As a result, we observed a higher
temporal variability for the fade and star cue in the
movement onsets, which led to blurring in the grand
average potentials. These findings indicate the
importance of the cue design, meaning that the starting
period for the movement needs to be as precise as
possible while the graduating period from the start to
the ‘go’ position of the cue minimizes visual evoked
potentials influencing the MRCPs.
Overall a TPR for the reference and rotation cue of 61%
was obtained, while the fade and star cue achieved a
significantly lower TPR of 56%. The total
corresponding FP count amounted to 2 FP/min. These
findings can be compared to the work done by [7][20],
however, it's important to note that their investigations
are based on attempted arm movement and motor
imagery, respectively.
One reason for the low TPR and quite high FP count
could be that the training of the classifier was based on
MRCPs triggered on the cue onset, where the presence
of temporal variability have adversely affected the
MRCP patterns and thus the prediction performance.
Additionally, the high imbalance of the dataset between
the amount of movement and no movement instances
poses a significant challenge.
In terms of movement onset detection we report a
median temporal time delay of 0.3s for the movement
onset prediction. This is expected since we use a
non-causal filter, whereas in an online scenario the need
of a causal filter would further increase this delay.
For the decoding performance, the correct settings of
the hyperparameters class probability threshold, dwell
time and refractory period proved as crucial for
achieving the optimal balance between an overall low
FP count and the highest TPR. In detail, we tuned the
values of the movement class probability threshold
between 0.5 to 0.99, the dwell time between 0.5s and 2s
and for the refractory period between 2.5s to 4s for each
subject. It is worth noting that the refractory period
could be set up to 4s because we knew in advance how
much time there would be between each movement. For
a real world use the refractory period needs to be
adjusted to a much lower time to allow a higher
communication rate.
Although the study delivered interesting insights into
the improvement of cue design in relation to
synchronous and asynchronous BCI, there are some
aspects to be considered for future work. First, in terms
of the study design it would maybe be better to allow

participants to perform the gestures during the
self-paced part at their own pace, meaning there is no
condition like to hold the gesture for a certain amount of
time. This could lead to a more consistent outcome in
ignoring the movement offset MRCPs, since now it
could be that the participants have a high variance in the
time of hold when returning from the end position of the
gesture to the rest position which is maybe not always
covered by the refractory period. Second, upon analysis,
both the rotation and reference cues consistently
outperformed the fade and star cue across the evaluated
metrics. However, further refinement of their design
principles is necessary to enhance the precision of
indicating the start of movement execution.
Additionally the instructions and test runs for the
participants could be improved to explain to them the
importance of the exact starting time when they are
indicated to do so. This would lead to more pronounced
MRCPs on average when triggered on the cue onset.
When analyzing the differences between cue onset and
actual movement onset, the fade and star cue exhibited
high temporal variability inflicted by the nature of their
design. This suggests that these cues synchronize
movement timing less effectively, which warrants
consideration in future studies.

CONCLUSION

We demonstrated that the variations in MRCP shapes
influenced by visual cue types play a crucial role in
decoding performance when applying a cue-based
decoder on self-paced data. Significantly, the rotation
and reference cue yielded the most favorable results in
terms of the true positive rate, whereas the fade and star
cue exhibited comparatively poorer performance. This
discovery aligns with the hypothesis that the rotation
and reference cue, with their precise onset timing and
more pronounced grand average MRCP patterns, are
better suited for training classifiers in online scenarios.
Future cue designs may be able to further improve the
exact indication timing of the go cue for the movement
to enhance the decoding performance even more. For
the detection of executed movement in an asynchronous
BCI there is a need for further improvements to lower
the FP count and increase the TPR when the classifier is
trained on MRCPs triggered on a cue onset. The tuning
of the three hyperparameters is crucial but future
considerations should also involve enhancing the
methodological aspects of this work,
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