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ABSTRACT: Severe impairment of the central motor net-
work can result in loss of motor function, clinically rec-
ognized as Locked-in Syndrome. Advances in Brain-
Computer Interfaces offer a promising avenue for par-
tially restoring compromised communicative abilities by
decoding different types of hand movements from the
sensorimotor cortex. In this study, we collected ECoG
recordings from 8 epilepsy patients and compared the de-
codability of individual finger flexion and hand gestures
with the resting state, as a proxy for a one-dimensional
brain-click. The results show that all individual finger
flexion and hand gestures are equally decodable across
multiple models and subjects (>98.0%). In particular,
hand movements, involving index finger flexion, emerged
as promising candidates for brain-clicks. When decoding
among multiple hand movements, finger flexion appears
to outperform hand gestures (96.2% and 92.5% respec-
tively) and exhibit greater robustness against misclassi-
fication errors when all hand movements are included.
These findings highlight that optimized classical machine
learning models with feature engineering are viable de-
coder designs for communication-assistive systems.

INTRODUCTION

Dysfunction of the neuromotor system may precipitate
transient or, in severe cases, enduring global loss of mo-
tor control. Global dysfunction may be referred to as
Locked-In Syndrome (LIS) [1], often characterized by
quadriplegia and aphonia. In recent decades, efforts to
replace dysfunctional motor control have seen pioneer-
ing developments in Brain-Computer Interfaces (BCIs)
[2]. BCIs extract information directly from cortical ac-
tivity to control mechanical or digital effectors without
relying on neuromuscular activation, essentially bypass-
ing the muscular output. Restoration of effector control
can serve several purposes, ranging from object manip-
ulation [3–5], locomotion and mobility [6] and speech
production [7–9]. However, for individuals with severe
impairment, the restoration of the communicative agency
has been identified as one of the most urgent needs [10].
A simple approach towards communication BCI is au-
tomatic letter selection on a digital keyboard [11]. An
attractive signal recording modality for communication
BCIs is electrocorticography (ECoG) due to its high spa-

tiotemporal precision, good signal-to-noise ratio, and re-
liable signal stability over extended periods [11, 12].
Several studies have demonstrated that hand movement
recognition from ECoG recordings can be performed
with high accuracy. Consequently, a variety of hand
movements have been explored for this purpose, includ-
ing but not limited to finger flexion [13–17], reaching
and grasping [3–5, 18, 19], and wrist flexion and ex-
tension [15], more complex hand gestures [15, 20–22]
and handwriting [23]. To identify a reliable motor signa-
ture for a unidimensional BCI control signal (i.e., ’brain-
click’) many studies have examined different types of
hand movements in isolation [13, 14, 20–22], but few
have compared different hand movements against each
other within a unified framework.

Figure 1: The four gestures executed by subject S1 - S5.

The goal of this work is to contribute to a deeper under-
standing of the decodability of individual finger flexion
and hand gestures against the resting state. Specifically,
we explored which hand strategy is the most promising
for a reliable brain-click and which is more transferable
across subjects. In addition, we aim to extend our analy-
sis to the prospect of multidimensional control with four
and eight degrees of freedom (DoF) to investigate which
type of hand movement intrinsically yields a better within
and across-category discriminability. To overcome the
notorious data sparsity in this domain, we employed an
optimized feature selection decoder with different clas-
sification models and assessed which (offline) machine
learning approach yields the best performance on indi-
vidual hand movements (2-DoF), within hand movement
types (4-DoF), and within all hand movements (8-DoF).
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MATERIALS AND METHODS

Data description: This study is based on two ECoG
data sets, consisting of finger flexion, including the index
finger, little finger, and thumb, and hand gestures asso-
ciated with the American Sign Language letters D, F, V,
and Y [21, 24] (see Figure 1).
The data were collected from 8 subjects (NG = 5, NF =
6) in an epilepsy monitoring unit of the University Med-
ical Center Utrecht (see Table 1). These subjects had 32,
64 or 128 high-density subdural ECoG electrodes with an
inter-electrode distance of 3 or 4mm and an exposed di-
ameter of 1 to 1.3mm (AdTech, Racine, USA; or PMT
Corporation, Chanhassen, MN, USA) implemented over
the hand-knob region of the sensorimotor cortex. The
ECoG data were recorded using a 128-channel Micromed
LTM system (subjects 1 - 5; Treviso, Italy; 22 bits, hard-
ware bandpass filter 0.15–134.4Hz; sampling frequency
512Hz) and a Blackrock system (subjects 6 - 8; Microsys-
tems LLC, Salt Lake City, USA, digital bandpass filter
0.3 - 500Hz; sampling frequency 2000Hz). Data were
converted to the BIDS standard format [25].

Table 1: Subject Details

Sub- Task Trials Age Sex Hand Hand- Hemi- Grid
ject (C / T) edness sphere (incl.)

S1 G 37 / 74 19 F Right Right Left 4x8 (32)F 90 / 181

S2 G 68 / 138 45 F Left Left Right 8x8 (59)

S3 G 34 / 69 29 M Right Right Left 4x8 (29)

S4 G 32 / 67 19 M Right Right Left 4x8 (31)F 90 / 181

S5 G 34 / 69 42 M Right Right Left 4x8 (32)F 88 / 177

S6 F 89 / 179 30 F Left Right Right 16x8 (123)

S7 F 85 / 171 20 F Right Right Left 8x8 (64)

S8 F 84 / 169 36 F Right Right Left 16x8 (128)

Note. Trials are presented as the ratio of hand movement trials per condition (C)
out of all trials (T; including the rest trials). In Grid, (incl.) indicates the number
of channels included. Abbreviations: Gesture, G; Finger, F, Male, M; Female, F.

Experimental Design: Subjects were instructed to ini-
tiate movements based on visual cues that were presented
in a randomized, event-driven design. For the gestures,
the subjects imitated the depicted gesture after stimulus
onset and maintained the posture until the end of the trial
before returning to a resting position. Each subject per-
formed 10 trials with an intertrial interval of 4.4s and
a run duration of 6.7m. Rest trials were implicitly cal-
culated from a small time interval before the onset of
the next movement. For finger flexion, the subjects per-
formed two finger flexions immediately after cue onset
and then returned to a resting position afterward. In con-
trast to the gestures, each movement was interleaved with
an explicit resting trial. The design consisted of 30 tri-
als with an intertrial interval of 7s and a run duration of
8.2m. In both experiments, each subject performed the
tasks with the hand contralateral to the grid location, and
subject 2 performed the task twice. In addition, a data

glove (5DT, Irvine CA, USA, 20 ms sampling time) was
used during both experiments to record motor activity.

Preprocessing: Data preprocessing included the re-
moval of bad trials and channels (identified by [21, 24]
based on data glove data and raw signal inspection), fol-
lowed by common average referencing, notch, and band-
pass filtering (56 Hz - 130 Hz) to remove artifacts. Finger
flexion data, sampled at 2000 Hz, were downsampled to
512 Hz for consistency across subjects. The data were
then subsequently aligned with movement onset markers
obtained from data glove recordings and segmented ac-
cordingly. For decoding individual hand movements and
within hand movement types a segmentation window of
WF = [-0.5, 1.5s] and WG = [-0.5s, 2.5s] was used. For
decoding all hand movements, the two 4-DoF settings for
subject 5 were combined with a common segmentation
window of WFG = [-0.5s, 2s]. In all three settings t = 0
represents the motion-aligned stimulus presentation.
Features were extracted using a continuous Morlet
wavelet transformation, which produced spectral power
features for the high-frequency band (60 Hz - 126 Hz)
in 2 Hz frequency bins. To reduce the feature space the
power was averaged and the time dimension was deci-
mated to TG = 154 and TF = 102 time points per channel
for the fingers and gestures, respectively. The resulting
feature vectors were used for subsequent model training.
Preprocessing was conducted in Python (v3.9) using the
MNE library (v1.16).

Decoder: The architecture of the decoder, depicted in
Figure 2, revolves around an optimized data-driven fea-
ture engineering approach for conventional classical ma-
chine learning classifiers. The decoder encompasses four
modules: Normalization, Incremental Feature Selection
(IFS), Feature Reduction (FR), and Classification.
The initial step of the decoder normalises the spectral
power of the spatio-temporal feature vector (N) via a
Box-Cox transformation [26], followed by mean cen-
tering and unit variance scaling to ensure data normal-
ity and variance stabilisation. Feature selection employs
Variance Thresholding (VT), Mutual Information Crite-
rion (MIC) [27, 28], and Recursive Feature Elimination
(RFE). RFE iteratively removes a set of features (S = 1e-
3 * N) corresponding to the least important coefficients,
and akin to MIC, retains a subset of the best K tempo-
ral features across all channels. Each selection method
generates a binary mask indicating the retained features.
The individual modules are applied incrementally, with
the specific combination and its parameter configuration
being delegated to a Bayesian optimization algorithm,
which avoids manual tuning and efficiently navigates
through the high-dimensional parameter space. In partic-
ular, this approach aims to balance the advantages of filter
and wrapper methods [29] to remove noisy and redundant
features while prioritising discriminative ones. The Fea-
ture Reduction (FR) method can be applied in isolation
or in conjunction with IFS processing. In the classifica-
tion phase, four algorithms were selected to compete with
each other: Logistic Regression (LR), Linear Discrim-
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Figure 2: General decoder architecture. The pipeline is composed of four modules: Normalization, Incremental Feature Selection
(IFS), Feature Reduction (FR), and a Classification Model. A Box-Cox (BC) transformation and a Standard Scalar normalize the signal.
The incremental selection procedure can recruit different combinations of Variance Thresholding (VT), Mutual Information Criterion
(MIC), and Recursive Feature Elimination (RFE) to select the relevant features from the spatio-temporal representation. RFE iteratively
removes the set of S least important features from the pool N until it reaches KRFE features. After feature selection, the feature space
can be further compressed with various Feature Reduction (FR) methods. The resulting vector is forwarded to one of four classifiers. A
Bayesian optimization algorithm orchestrates the order and method of feature selection (OIFS, MIFS), other pipeline configuration (λ BC,
TrVT, KMIC, KRFE, CRFE, CFR), and various model-specific hyperparameters. Dotted lines represent meta-routing processes; single
and double-lined boxes represent dynamic and predefined processes, respectively. Abbreviations: LBC, Lower Confidence Bound; EL,
Negative Expected Improvement; PI Negative Probability Improvement

inant Analysis (LDA), Boosted Decision Trees (BDT),
and Support Vector Machines (SVM). A Majority Class
Predictor, which predicts the most frequent hand move-
ment, was evaluated on the data to establish a ’chance’
baseline. Performance is assessed using the F1 scoring
metric, adjusted for label imbalance with the inversely
weighted class distribution.
For this ’black-box’ optimization problem, the Bayesian
algorithm [30] approximates an expensive non-smooth
objective function by inference, essentially guiding the
search process based on prior results. To find an op-
timal decoder candidate in the large parameter space,
a Gaussian Process model [31] with a hedging portfo-
lio strategy [32]is used, where hedging probabilistically
choose the best acquisition function from three candi-
dates: Lower Confidence Bound, Negative Expected Im-
provement or Negative Probability Improvement. The
search is restricted to a maximum of 256 candidates, ex-
ploring a hyperparameter space, ranging from 9 (LDA)
to 20 (BDT) configurations for different algorithms, of
which up to 60% are conditional hyperparameters; the
number-of-components hyperperameter for the FR step
was shared among all three methods. Model performance
is evaluated using stratified 10-fold crossvalidation, with
the best candidate further assessed through leave-one-
out crossvalidation. The decoder pipeline adheres to the
scikit-learn architecture, ensuring compatibility with the
scikit-learn library and its derivatives. The implementa-
tion is in Python 3.9, using scikit-learn (v1.4.0) and xg-
boost (v2.0.3).

Statistical Analysis: The analysis relies on a Fried-
man ANOVA to identify a general effect and Dunn’s test
with Benjamini-Hochberg’s false discoveries rate correc-
tion the post hoc analysis and pairwise comparison. The
statistical analysis was performed in Python 3.9, using
scipy (v1.13.0) and scikit-posthocs (v0.9.0).

RESULTS

Individual Hand Movements: In the context of individ-
ual hand movements, all classification models exhibited
a high F1 performance (averaged across subjects), ex-
ceeding 98.0% for each finger flexion and gesture (details
summarised in Table 2 and Figure 3 A). Notably, the In-
dex finger (99.59%), Gesture V (99.11%), and Gesture F
(98.09%) were the most promising candidates for brain-
click BCI control. Interestingly, they share a commonal-
ity in index finger flexion. Within the hand gestures, no
gesture significantly outperformed the others (Friedman
ANOVA and Dunn’s test; ns). Similarly, within the finger
flexions, the overall effect was significant, χ2(3) = 15.32,
p = 4.71e−4), but no finger flexion was significantly dif-
ferent from the others (Dunn’s test). Moreover, decoding
performance remained remarkably stable for each subject
across all hand movements and models, with consistent
trends in variability observed for each subject (i.e., sub-
ject 1 consistently had the lowest and highest scores for
the fingers and the gestures, respectively).

Hand Movements Types: For the hand movement
types, a different trend emerged. For 4-DoF classifica-
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Table 2: Mean performance across all subjects of the Optimize Feature Selection Decoder for Individual Movements (2-DoF),
Within Types (4 DoF) and Within all Hand Movements (8-DoF).

Models Fingers (vs. rest) Gestures (vs. rest) Multi-DoF (incl. rest)

Index Little Thumb Gesture D Gesture F Gesture V Gesture Y 4-Finger 4-Gesture* 8-Hand**

A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1 A F1

Chance 75.3 64.6 75.5 64.9 74.9 64.2 83.3 75.7 79.8 70.8 79.4 70.3 79.8 70.9 50.3 33.7 56.6 40.9 50.4 33.8

LR 98.2 98.3 98.3 98.4 95.9 96.0 97.4 97.5 98.2 98.2 98.7 98.7 96.6 96.8 95.7 95.7 91.3 91.5 87.4 87.7
BDT 99.6 99.6 98.1 98.1 98.1 98.0 97.6 97.7 98.7 98.7 98.4 98.5 98.2 98.2 95.8 95.8 92.0 92.0 88.6 88.7
LDA 99.3 99.3 98.7 98.8 97.5 97.6 98.1 98.1 98.7 98.7 98.0 98.0 96.4 96.6 96.1 96.1 91.1 91.1 93.1 92.9
SVM 99.5 99.4 98.8 98.8 97.7 97.6 97.9 98.0 98.8 98.89 99.1 99.1 98.4 98.4 96.7 96.6 92.5 92.5 92.7 92.6

Note. Values are in %. *The 4-DoF gesture decoding includes Gesture F, Y, and V. ** The 8-DoF decoding of all hand movements was only obtained from subject 5.
Abbreviations: Accuracy, A; Versus, vs; Inclusive, incl.

Figure 3: Box plots for different machine learning models of the decoder for (A) all individual fingers and (B) the three multi-DoF
comparisons. Each point represents one subject, with the upper and lower error bars representing an interquartile range of 25 and 75,
respectively, and where omitted when performance for one or more subjects exceeded this range. The 4-DoF gesture decoding includes
Gesture F, Y, and V. The red line represents the highest chance level among all subjects.

tion, finger flexion (95.7% - 96.6%) outperformed the
hand gestures (91.1% - 92.5%; average across subjects),
which could be statistically verified (Dunn’s test), p =
0.031; we excluded the worst decodable gesture (Gesture
D) to ensure a similar task complexity. An extension to
8-DoF classification preserves a high F1 score for Subject
5 (88.7% - 92.9%), with remarkably minimal confusion
between gestures and fingers. On visual inspection, fin-
gers exhibit more confusion with the resting state, while
gestures are more often confused among themselves (as
depicted in Figure 4).

Classification Models: When training classification
models within an optimised feature engineering frame-
work, no model emerges as significantly superior to the
others (Friedman ANOVA;), χ2(4) = 60.48, p = 2.3e−12,
(Dunn’s test; ns), although, all perform significantly
above chance level (Dunn’s Test), p < 1.28e−8. In gen-
eral, Boosted Decision Trees (BDT) and Support Vector
Machines (SVM) demonstrate the highest classification
performance across all conditions, except for Little Fin-
ger and Gesture D.

DISCUSSION

The current work demonstrates that optimised spatio-
temporal feature engineering of finger flexion and hand
gestures, recorded from high-density ECoG, enables reli-
able decoding for one-dimensional brain-click, 4- and 8-
DoF decoding tasks, even with very small data volumes.
Notably, within each category, no single hand movement
emerged as superior decodable. However, upon qualita-
tive inspection, the index finger and Gestures V and F, all
sharing index finger flexion, appeared as the most promis-
ing candidates. Moreover, the fingers exhibited a better
performance in more complex 4- and 8-DoF decoding;
finger flexion may possess more discriminative properties
for multi-DoF tasks. Finally, no classical machine learn-
ing model outperformed the others, but BDT and SVM
may have a small advantage.

Hand gestures entail a more complex interplay of motor
components than simple finger flexion, including wrist
and finger flexion, and lateral extension, among others.
However, our results revealed that individual finger flex-
ion alone yields a near perfect neuroelectrical signature.
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Figure 4: Confusion matrices of the LR model for subjects 1, 4, and 5. In each confusion matrix, the horizontal axis represents the
predicted hand movement (or rest), and the vertical axis represents the ground truth hand movement (or rest). Henceforth, the diagonal
elements represent the total correct values predicted per hand movement. The colour coding represents the proportion of absolute
counts for each hand movement ranging from black (0%) to white (100%).

Consequently, the addition of supplementary motor com-
ponents may not increase decodability but rather confront
the decoder with a motor signature that inherently has a
higher variability in its signal. As we evaluated the de-
coder on small data volumes, an effect of additional com-
ponents on decoder performance may emerge with larger
sample sizes. Extending this rationale, gestures might
possess a more intricate spatial and temporal pattern, re-
cruiting various neuronal populations from a larger ef-
fector field in the sensorimotor cortex. The absence of
advanced feature transformation techniques in our classi-
cal machine learning approach might hinder the decoder
from exploiting the full potential of the gesture’s electri-
cal signature. In addition, differences in sample size, with
fewer than 30 trials for fingers and only 10 trials for ges-
tures, may impact the comparison, while the overall small
sample size may not provide sufficient power to detect a
potential statistical difference.

In line with the evident discernible difference between
the 4-DoF types, misclassification errors were more pro-
nounced for gestures, with frequent confusion among dif-
ferent fingers and the resting state. Notably, substan-
tial confusion between hand movements and the resting
state suggests a potential contamination of the rest peri-
ods with unintended movement. This may be attributed
to the design of the experimental design of the gestures,
which lacked separate explicit rest trials. Incorporating a
threshold based on data glove recordings could be bene-
ficial. However, defining true rest may not be practically
feasible for real BCI applications, as it necessitates exten-
sive subject training to suppress such activity [11, 12, 19],
and a more naturalistic approach would be to build a de-
coder that can successfully discriminate between mean-
ingful and non-task-related sporadic motor activity. Fur-
thermore, some features along the temporal dimension
may not reflect actual motor activity, but ’resting’ activ-
ity, especially before the movement onset and towards the
end of the segmentation window.

The proposed decoder design surpassed prior approaches
evaluated on gesture data for four out of five subjects
[20, 21], albeit a direct comparison is difficult due to
differences in task complexity. For communication as-
sistance systems, the proposed decoder design can offer
a viable alternative to deep learning approaches for one-
dimensional brain-click tasks [19] and even larger DoF
applications [14, 17], where data acquisition is challeng-
ing. Although trained offline, the decoder can process
individual segments of preprocessed data in as little as
2 - 10ms. Consequently, although theoretically deploy-
able in an online setting, regular offline retraining on new
data is necessary to address concept drifts for ensuring
long-term stability, in particular for individuals with neu-
rodegenerative diseases. Importantly, the experiments in-
volved movement execution by epileptic individuals, fur-
ther validation in attempted movement is imperative to
extend applicability to online BCI settings for individu-
als with LIS.

CONCLUSION

Electrocorticography data provides a high-resolution spa-
tiotemporal feature representation, forming a suitable
foundation to tailor an optimised classical machine learn-
ing decoder with automatic feature engineering to the
large feature space. We demonstrate that within this
framework, both finger flexion and hand gestures enable
reliable decoding across multiple subjects, and when ex-
tended to a multiple degrees of freedom, maintain high
discriminability between hand movements. For click-
based letter selection in communication-assistive BCI
systems, the index finger flexion emerges as an optimal
candidate. Moreover, all tested models consistently ex-
hibit high classification performance across multiple sub-
jects - a comparable performance to deep learning ap-
proaches.
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