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ABSTRACT: The extensively studied P300 component 

of the human event-related potential in cognitive 

neuroscience has significant applications, including 

constructing BCI systems for individuals with motor 

disabilities. However, accurately and efficiently 

identifying the P300 component in EEG data poses 

challenges due to the low signal-to-noise ratio and 

biological diversity among subjects. To address this, 

cutting-edge deep learning architectures were developed 

and employed. Initially, digital signal processing 

techniques were applied, followed by training and 

evaluation of DL models like Chrononet, EEGNet, 

DCRNN, CNNs, and RNNs. Results revealed that our 

lightweight CNN model, combined with K-fold cross-

validation and weighted class, achieved the highest 

average classification accuracy of 98% surpassing other 

models for subject-dependent P300 classification. This 

high-performing CNN model facilitated the creation of 

NeuroPhone, a communication application grounded in 

the core principles of BCI systems. 

 

INTRODUCTION 

 
Electroencephalography (EEG) has opened a window 

into the human brain, allowing us to visualize its 

electrical activity and delve into the hidden language of 

its neurons. From its widespread medical applications to 

its growing presence in research and consumer domains, 

EEG offers a powerful tool for understanding and 

interacting with the mind. At the heart of this interaction 

lies the fascinating world of brainwaves, different 

patterns reflecting different states of consciousness. 

From the high-frequency beta waves associated with 

focused attention to the slow delta waves accompanying 

deep sleep, each frequency serves as a neural biomarker 

for specific cognitive states [1]. 

Among these brainwaves, the P300 event-related 

potential (ERP) holds a special position. This distinctive 

positive spike, peaking roughly 300 milliseconds after a 

specific stimulus, reveals much about our cognitive 

processes. Researchers have extensively studied the 

P300, recognizing its crucial role in attention, memory, 

decision-making, and information processing [2]. Its 

potential, however, extends beyond research labs, paving 

the way for revolutionary technology called Brain-

Computer Interfaces (BCIs). 

BCIs offer a direct communication channel between the 

brain and external devices, bypassing traditional input 

methods. By harnessing the power of P300 and other 

EEG signals, BCIs empower individuals to control 

computers, prosthetic limbs, and even communicate 

through their thoughts [3]. Yet, despite the immense 

promise of BCIs, their path to widespread adoption is met 

with two key challenges: achieving robust and accurate 

P300 detection and overcoming the computational 

limitations of existing BCI systems. Current models 

often struggle to extract the subtle P300 signal from the 

inherent noise of EEG data, and their demanding 

computational requirements prevent seamless integration 

with mobile devices, a crucial step towards accessibility 

for a wider population. 

In this study, we present the development of 

NeuroPhone, an efficient BCI in the form of a 

communication application designed to break down these 

barriers. NeuroPhone leverages the P300 peak, enabling 

individuals with motor disabilities to control their 

smartphones and engage in digital communication solely 

through their visual attention. By employing cutting-edge 

deep learning techniques tailored for mobile device 

processing power, NeuroPhone aims to overcome the 

previous limitations of accuracy and accessibility. This 

paper delves into the development of NeuroPhone 

including the implemented digital signal processing 

(DSP) techniques, deep learning architectures used, and 

specifics of the development process of NeuroPhone's 

application software. 

 
METHODS 

 

We aimed to develop a comprehensive and 

computationally efficient classification model based on 

the detection of P300 event-related potential (ERP). We 

first went on exploring and evaluating different 

architectures, such as ChronoNet, EEGNet, DCRNN, 

and others, to determine their effectiveness and 

performance in a subject-dependent task. Then, we 

introduced a lightweight convolutional neural network 

(CNN) architecture that excels in capturing unique ERP 

features, leading to superior classification accuracy 

compared to existing state-of-the-art architectures. 

In the subsequent sections, we first present details about 

the datasets we utilized in our work, including the online 

EPFL BCI Group dataset [4] and the data we collected 

offline using Emotiv EPOC headset. After that, we 
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provide a comprehensive overview of the models we 

investigated. Then we present the architecture of our 

CNN model. Additionally, we outline the training 

methodology we employed, highlighting the steps and 

techniques utilized to optimize and fine-tune the models 

for optimal performance. And finally, we explain the 

details of NeuroPhone’s application software, and the 

technology used. 

     Datasets: The EPFL BCI group dataset, which was 

employed in our research, played a crucial role in 

evaluating the performance of various models. This 

dataset was specifically curated by the Brain-Computer 

Interface (BCI) group at École Polytechnique Fédérale de 

Lausanne (EPFL) and is widely recognized in the field. 

The dataset consists of meticulously recorded 

electroencephalogram (EEG) signals, making it a 

valuable resource for investigating brain-computer 

interfaces. The dataset has a population of five disabled 

and four able-bodied subjects. Subjects were facing a 

laptop screen on which six images were displayed. The 

images were selected according to an application 

scenario in which users can control electrical appliances 

via a BCI system. The EEG was recorded at 2048 Hz 

sampling rate from 32 electrodes placed at the standard 

positions of the 10–20 international system. Each subject 

recorded 4 sessions and each session had 6 runs. For a 

single run, the images were flashed in random sequences, 

one image at a time. Each flash of an image lasted for 100 

ms and during the following 300 ms none of the images 

was flashed, i.e. the interstimulus interval was 400 ms, 

see (Fig. 1).  

For our collected dataset, we followed the same 

recording paradigm as EFPL dataset. We used the 

famous Emotiv EPOC headset with 14 channels placed 

at the standard positions of the 10–20. We recorded the 

EEG signal from a single male subject. The subject was 

faced by NeuroPhone’s application screen which 

displayed 6 images (icons), each represented a certain 

functionality that allows the user to communicate with 

others, see (Fig. 2). More details are provided at the 

application subsection. The subject recorded 6 sessions; 

each session had a duration of 90 seconds with a 

sampling rate of 256 Hz. 

     Preprocessing: The data underwent several 

preprocessing steps to ensure optimal analysis. The re-

referencing step involved utilizing the average signal 

from the two mastoid electrodes for re-referencing 

purposes. To obtain a desired signal range of 1 to 12 Hz, 

a band-pass Butterworth filter of order 3 was applied to 

filter the signal [5]. Subsequently, the signal was down 

sampled by 64 Hz to reduce computational load. Then, 

data was segmented such that each segment was 

corresponding to an event. A duration of 1 second was 

taken after each stimulus event and given that the 

duration of the flashing event was 400 ms, there was a 

600 ms overlap. On a single segment, z-score 

normalization was implemented to normalize the signal. 

To handle extreme values, the signal underwent a 

Winsorizing process, where the 10th and 90th percentiles 

were calculated for samples from each electrode. Any 

amplitude values falling below the 10th percentile or 

above the 90th percentile was substituted with the 

respective 10th or 90th percentile value [4].  These 

preprocessing steps collectively aimed to optimize the 

data for deep learning models’ training. The input signal 

shape for the models was (32 × 32) where the first 

dimension is the number of time samples, and the second 

dimension is the number of channels. And in our 

collected data input shape was (32 × 14) because 

EMOTIV dataset contained only 14 channels. 

     Deep Learning architectures: In our quest for the 

optimal deep learning architecture for subject-dependent 

P300 classification, we explored a diverse range of 

models, each offering its own set of advantages and 

limitations. Chrononet and EEGNet, specifically 

designed for EEG analysis, leverage convolutional layers 

to efficiently capture the temporal characteristics of the 

P300 component, making them well-suited for this task 

[6][7]. However, their deep architectures can be 

computationally expensive to train and might require a 

substantial amount of data for optimal performance. 

DCRNNs, combining the strengths of CNNs and RNNs, 

excel at capturing both the spatial and temporal 

information crucial for P300 detection [8]. Despite their 

effectiveness, DCRNNs can be more complex to design 

and train effectively, requiring careful hyperparameter 

tuning to unlock their full potential. Finally, standard 

RNNs, while adept at learning sequential data like EEG 

signals, can suffer from vanishing gradients, hindering 

their ability to learn from long sequences. 

     Our CNN model architecture: The proposed CNN 

architecture is designed to extract salient features from 

2D EEG signals for robust P300 component 

classification. The model comprises two convolutional 

layers with 32 and 64 filters (3x3 kernel size), applying 

learned filters to extract spatial patterns relevant to P300 

detection. ReLU activation introduces non-linearity. A 

max-pooling layer (2x2 pool size) down-samples feature 

maps, reducing dimensionality and promoting spatial 

invariance. A flatten layer prepares the extracted features 

for classification by two fully connected layers (128 

neurons with ReLU activation, and 1 neuron with 

sigmoid activation), see (Fig. 3). 

 

    
Figure 1: The interstimulus interval of each flashing 

event. 

 

     Training Methodology: To ensure robust model 

performance and mitigate the effects of overfitting, a K-

fold cross-validation strategy was employed during 

training.  Specifically, a 5-fold cross-validation approach 

was implemented (K=5). This technique divides the 

dataset into five partitions (folds) while preserving the 

proportion of P300 and non-P300 examples in each fold. 

Iteratively, one fold is designated as the testing set while 
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the remaining folds are used for training. Model 

evaluation metrics are computed on the held-out testing 

set after each training iteration. 

Figure 2: NeuroPhone’s Mobile Application interface 

which contains 6 flashing images (icons). 

 

To address potential class imbalance within the EEG 

dataset, where the number of P300 events (positive class) 

is significantly lower compared to non-P300 events 

(negative class), class weights were computed and 

incorporated into the training process. This approach 

assigns higher weights to the minority class (P300 

events) during training. The specific weights are 

calculated based on the class frequencies within the 

training data. By assigning higher weights, the model is 

effectively forced to pay closer attention to the less 

frequent P300 examples, leading to a more balanced 

learning process and improved classification 

performance for the minority class. 

 

 
Figure 3: Architectural configuration of our CNN model. 

The deep learning models were compiled with the Adam 

optimizer, a common choice for its adaptive learning rate 

capabilities, and binary cross-entropy loss, suitable for 

binary classification. Accuracy served as the primary 

evaluation metric.  

Finally, average loss and accuracy scores across all folds 

were calculated to provide a comprehensive assessment 

of model performance under the K-fold cross-validation 

procedure. 

     Application: The purpose of our application is to help 

disabled people use their mobile phones and perform 

some important functions through it using only their 

visual attention. Our application is designed in a way that 

visually stimulates the user to choose the icon they desire. 

Each icon represents a functionality that enables them to 

control their smartphone. They are: Gallery, Contacts, 

Police, Favorite Contacts, Ambulance, and Fireman. The 

whole set of icons would flash in random order. The user 

would focus their attention on any icon they want to 

choose, and after some repetitions of flashing the whole 

set of icons, the DL model would detect the P300 peak 

that synchronized with the timing of the desired icon’s 

flash, and thus, would fire the start of the execution of 

that icon’s functionality. 

We used Emotiv EPOC X 14 which consists of 14 EEG 

channels and 2 reference channels. The electrodes are 

located at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 

FC6, F4, F8, AF4 according to the International 10-20 

system, see (Fig. 4). The headset was connected to its 

software EMOTIV-PRO on the laptop then we start 

streaming data from Lab Streaming Layer (LSL) option 

in the application. The LSL feature allows efficient, two-

way communication between EmotivPRO and other 

third-party software and devices. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The location of EMOTIV electrodes. 

 

We have created an API with Flask Library in Python 

language. The main functionality of this API is to 

synchronize between the EEG signal coming from 

EMOTIV and the flash timing coming from 

Neurophone’s mobile application.  

The flask API receives raw EEG signal samples from 

EMOTIV in addition to timestamp of each sample, so the 

first step it performs is to segment the raw EEG signal 

and preprocess it. Each segment is 1000 ms long which 

corresponds to 256 signal samples because EMOTIV’s 

sampling rate is 256 HZ. After preprocessing, the 

segment’s length would be 32 samples because of the 
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down sampling step in preprocessing. We also perform 

bandpass Butterworth filter between 1 and 12 HZ and Z-

score normalization. After preprocessing, each segment 

is passed to the DL model to determine whether it 

contains P300 or not. The DL model we utilized in the 

API was our CNN model that we presented its 

architecture earlier in (Fig. 3). We chose CNN because it 

outperformed the others in the offline evaluation. Along 

with the received EEG signal samples and timestamp of 

each sample, Flask API receives each icon’s flash timing 

from Neurophone’s flutter mobile application.  

We used Flutter to create the mobile application. The 

application was running on a Galaxy M31 Phone with an 

Octa-core Exynos 9611 (10nm) Processor and Android 

12 operating system. The Application would 

continuously send each icon’s flash time and icon’s index 

to Flask API. The second step performed by the API is 

synchronization. If the EEG segment that was 

synchronized with an icon flash time contained a P300 

peak, the API would send a firing response back to the 

flutter application to start the execution of that icon’s 

functionality, see (Fig. 5). 

 

RESULTS 

 

In this section, we present the experimental results of our 

study focusing on the classification of P300 in EEG 

signals in subject-dependent task. To achieve this 

objective, we trained a variety of models, including 

Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), Dynamic Convolutional 

Recurrent Neural Networks (DCRNN), EEGNet, and 

ChronoNet. Those models are evaluated on the EPFL 

BCI group dataset and our collected dataset. In Tab. 1, 

we demonstrate the results on the EPFL dataset. We 

provide the average k-fold accuracy and F1-score (across 

the 5 folds). 

Among accuracy results, CNN achieved the highest 

average classification accuracy on EPFL data. We also 

explored their performance on our collected dataset. In 

Tab. 2, we demonstrate the results of our single male 

subject data. The demonstrated results on our collected 

are offline results, meaning that the collection and 

evaluation were performed offline and then the best 

performing model in the offline evaluation was utilized 

in the real-time scenario (it was the CNN model in this 

case). 

 

Table 2: Results on our collected data 

Model Accuracy F1-score 

EEGNET 0.94 0.86 

DRCNN 0.92 0.81 

RNN 0.97 0.89 

CNN 0.98 0.95 

 

The results on our in-house data also demonstrated that 

CNN model outperforms the others by achieving a 98% 

average classification accuracy, highlighting the 

eligibility of CNN to be utilized in real-time. 

 

DISCUSSION 

 

We could notice from results in Tab. 1 that subject 8 

achieved the highest average classification accuracy 

across most of the DL models. It may be attributed to the 

fact that the subject was highly motivated during the 

experiments as stated by the authors who collected the 

data [4]. Even though EPFL contained 9 subjects, they 

excluded the data of the fifth subject due to the difficulty 

of communication with him. We could also notice that 

CNN achieved the highest average classification 

accuracy and F1 score across all the subjects compared 

to the other models.  

We acknowledge that the in-house data were small, and 

a larger dataset is required for the results to be 

generalizable. The use of parameters such as information 

transfer rate (ITR) is an essential metric to be utilized for 

an improved evaluation of the BCI system. 

To compare our results with other studies implementing 

P300-based BCI systems, we find that Eric Sellers and 

Emanuel Donchin [9] achieved an average classification 

accuracy of 72% for ALS patients and 85% for abled 

subjects. We could see that Hubert Cecotti and Axel 

Gräser [10] achieved a classification accuracy of 95.5% 

using a CNN model. To compare our results to other 

studies that utilized the same dataset we used (EPFL 

dataset), we find that the authors in [11] achieved an 

average classification accuracy of 95.68% for the healthy 

subjects and 94.69% for disabled patients through their 

CNN model that uses 2-D EEG scalogram images. We 

also see Shojaedini et al. [12] reached a classification 

accuracy of 95.34% using a CNN model with a new 

adaptation method for hyperparameters. Our methods 

achieved a higher classification accuracy for P300 

detection among the studies that used the same dataset. 

While NeuroPhone provides a robust BCI system to 

detect P300 and control the mobile application, there are 

some limitations of the system. The first one is the 

inevitable time delay between the mobile application and 

the API. This delay is attributed to the quality of the 

connection between the phone and the API. We haven't 

accurately measured the delay time, but it was believed 

to be around a few seconds. The second limitation is the 

number of repetitions, in real-time, the user requires 

around 3 to 4 repetitions to select the desired icon. A 

single repetition is the flashing of all the icons, and it lasts 

for 2.4 seconds, so 3 repetitions would be around 8 

seconds. 

  

CONCLUSION 

 

This research demonstrates the power of deep learning 

for EEG analysis and brain-computer interface 

development. Our lightweight CNN model, combined 

with K-fold cross-validation and class weighting, 

achieved superior P300 classification accuracy compared 

to other architectures. This enabled the successful 

creation of the NeuroPhone application. Future research 

will explore transfer learning for improved model 

generalization across subjects and investigate hybrid 
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Table 1: Results on EPFL BCI group dataset 

 

deep learning and signal processing approaches for 

further enhancements.  
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Figure 5: Using NeuroPhones’ Flutter application 

interface, the user gets visually stimulated by the 

flashing, and at the same time, the EEG signal is 

transmitted to Flask API, the API synchronizes between 

the EEG signal and the flash timing and sends back a 

response to Flutter App to execute the desired icon’s 

functionality. 
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 Sub 1 Sub 2 Sub 3 Sub 4 Sub 6 Sub 7 Sub 8 Sub 9 

Model Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

EEGNET 0.89 0.70 0.84 0.64 0.93 0.80 0.90 0.74 0.89 0.71 0.90 0.77 0.95 0.87 0.86 0.68 

ChronoNet 0.93 0.83 0.90 0.75 0.94 0.84 0.89 0.79 0.93 0.83 0.93 0.85 0.92 0.82 0.91 0.79 

DRCNN 0.86 0.65 0.84 0.61 0.89 0.73 0.90 0.72 0.91 0.75 0.90 0.75 0.93 0.81 0.86 0.64 

RNN 0.94 0.83 0.94 0.83 0.96 0.88 0.94 0.83 0.95 0.86 0.96 0.88 0.97 0.92 0.95 0.84 

CNN 0.99 0.96 0.98 0.96 0.99 0.98 0.98 0.96 0.98 0.96 0.99 0.97 0.99 0.97 0.99 0.97 
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