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ABSTRACT: Speech Neuroprostheses have the poten-
tial to enable users to communicate without the need
for overt muscle movement. Several recent approaches
have demonstrated the feasibility of decoding textual and
acoustic representations of speech from invasively mea-
sured neural activity. However, most approaches decode
or synthesize speech after several seconds or complete
utterances. While this provides tremendous communica-
tive ability to patients, it lacks the full expressive power
of natural conversations. Ideally, a speech neuroprosthe-
sis would synthesize speech without a noticeable delay.
Here, we present a real-time speech decoding pipeline
that generates speech output in a streaming fashion, i.e.,
with delays of less than 40 ms. Intracranial EEG data is
measured, processed, decoded, and synthesized into an
audio waveform using our fast and modular framework.
Notably, we employ a Transformer architecture for the
decoding step from neural features to a spectral represen-
tation of speech.

INTRODUCTION

Speech plays an important role in human interaction,
serving as a primary means of conveying thoughts and
emotions. It is integral to the fabric of our social existence
and personal identity. However, various conditions, such
as Amyotrophic Lateral Sclerosis (ALS) and locked-in
syndrome, can impair one’s ability to speak, significantly
impacting the quality of life. These diseases may leave
cognitive functions intact, while debilitating the muscu-
lar activity required for speech production.
Speech Brain-Computer Interfaces (BCIs), also called
speech neuroprostheses, are a groundbreaking technol-
ogy designed to help people in need. By harnessing
neural signals through invasive or noninvasive methods,
these BCIs decode speech-associated brain activity. This
process involves extracting and translating neural pat-
terns related to speech formation into actionable outputs,
thereby enabling communication or device control.
The ultimate goal of a speech BCI is to facilitate seam-
less, naturalistic conversation, akin to normal speech.
Achieving this requires real-time processing of neural

signals, a technical challenge that remains at the fore-
front of current research. Despite ongoing advancements,
many existing speech BCI systems rely on offline evalu-
ations, where signal analysis and method validation oc-
cur after data collection [1–5]. While recent studies have
made strides toward closed-loop systems capable of gen-
erating textual representations [6–8] or synthesized sen-
tences [9], these technologies typically operate with de-
lays, processing complete sentences or phrases [10] be-
fore producing output. For completely natural communi-
cation, the patient needs to produce speech output imme-
diately to ensure natural flow, e.g. to interrupt the conver-
sational partner or to modulate their own speech.
This paper introduces a novel real-time streaming syn-
thesis pipeline for speech BCIs, distinguished by its low
latency and modular framework. Developed in Python
and based on the framework Timeflux [11], our pipeline
processes and decodes neural data into a speech wave-
form with less than 40 ms of delay. Longer delays have
been found to severely impair speech production [12].
Notably, our system employs a transformer encoder to
translate sequences of neural data into speech spectral se-
quences. The attention mechanism [13] in transformers
is particularly well suited for learning the temporal dy-
namics in the neural and speech data and has successfully
been used on offline data before [14].
To validate our streaming speech BCI, we conducted sim-
ulated online studies using a previously recorded dataset
of intracranial EEG during speech production [15].

MATERIALS AND METHODS

Participants:
Our closed-loop experiments are conducted with vol-
untary participants implanted with sEEG electrodes as
part of the clinical therapy for their pharmaco-resistant
epilepsy. All participants gave written informed consent
before joining the study, and the electrode locations were
purely determined based on clinical necessity. All partici-
pants were Dutch native speakers and had normal speech,
hearing, and language functions.
For this simulated online evaluation, we employ our pre-
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viously published open-access Single Word Production
Dutch-iBIDS (SWPD) dataset [15], consisting of 10 par-
ticipants speaking 100 words each.

Data recording:
Patients were implanted with platinum-iridium sEEG
electrode shafts (Microdeep intracerebral electrodes;
Dixi Medical, Beçanson, France) with a diameter of
0.8 mm, a contact length of 2 mm and an inter-contact
distance of 1.5 mm with each shaft containing between 5
and 18 contacts. Neural data was recorded using two or
more Micromed SD LTM amplifier(s) (Micromed S.p.A.,
Treviso, Italy) with 64 channels each. Electrode contacts
were referenced to a common white matter contact. Data
was recorded at either 1024 Hz or 2048 Hz.

Simulated Online Experiment:
To assess the real-time capabilities of our closed-loop
speech decoding pipeline, we conducted simulated on-
line experiments using the SWPD dataset [15]. The
dataset’s recording environment mirrors the anticipated
operational scenario for our pipeline, making it an ideal
choice for our evaluation process. As part of the as-
sessment, we divided the data from each participant into
training and testing sets, allocating 75% for model train-
ing and the remaining 25% for testing. After training the
pipeline with the designated data, we streamed the test-
ing dataset through LabStreamingLayer (LSL), emulat-
ing the amplifier characteristics used in our real setup.
This approach was designed to closely replicate the dy-
namics of real neural signal acquisition and processing,
thereby providing a realistic approximation of how the
pipeline would perform in live application scenarios.

Closed-loop pipeline:
Pipeline Design and Requirements
In the initial phase of constructing our speech Brain-
Computer Interface (BCI) pipeline, we focused on iden-
tifying key requirements to ensure its effectiveness for
real-time communication. Among our primary objectives
were ensuring real-time decoding, rapid model train-
ing, and a high degree of modularity and configurabil-
ity. Real-time decoding is crucial as the pipeline must
process neural signal samples swiftly to minimize la-
tency, thereby enabling near-instantaneous speech syn-
thesis. Given the constraints of on-site training, it was
imperative that the machine learning models employed
could be trained quickly to avoid reducing valuable data
collection time with participants. Additionally, to facil-
itate rapid experimentation and adaptation of new ap-
proaches, the system architecture needed to be both mod-
ular and easily configurable.
Framework and Technology Selection
We used Python and the framework Timeflux [11] for
building the pipeline. Timeflux facilitates the creation of
applications as directed acyclic graphs (DAGs), where
processing nodes are interconnected through YAML
syntax, enabling efficient data flow and simultaneous
processing. For communication between graphs we used
ZeroMQ, an asynchronous messaging library, ensuring
robust data exchange without interrupting the execution.

Pipeline Architecture
The pipeline involves two main stages: Initialization and
Real-time decoding. Each stage consists of a series of
graphs and nodes executed concurrently, optimizing data
processing speed.
Initialization Stage: This stage prepares the system for
the online decoding. It uses the open-loop recorded ex-
periment data, which includes synchronized neural sig-
nals, audio, and markers, to extract the relevant parame-
ters and train the machine learning models.
First, we segregate the data into distinct datasets labeled
“neural” and “audio” and adjust their format, length, and
type.
Irrelevant channels, such as clinical markers and heart-
rate, are eliminated from the “neural” dataset, and the
power line noise and its first harmonic are filtered out,
using causal IIR bandstop-filters. Afterwards, the sig-
nal is extracted in a broadband high-frequency range
(70−170 Hz) and windowed, subsequently calculating
the log power for each window. At the same time, another
graph extracts the “audio” features by decimating the au-
dio signal to lower its sampling rate, then using a sliding
window with the same window size and frameshift as the
neural data to extract a mel-scaled spectrogram, aligned
to the neural features.
The size of the window used for the audio and neural data
can be different. However, the shift needs to always be
the same, allowing seamless alignment between the fea-
tures.
Both feature sets are aligned and scaled before being used
to train the Machine Learning model. When the training
is completed, we save the model parameters and addi-
tional helpful metadata for the decoding stage.
Real-Time Decoding Stage: This stage, presented in
Fig. 1, is responsible for the on-the-fly decoding of neural
signals into audible speech. It encompasses system ini-
tialization, data intake, feature extraction, neural decod-
ing, audio reconstruction, and finally, data management
and preservation.
Initially, all nodes remain inactive and await the initializa-
tion parameters saved during the first stage. After read-
ing the parameters, they are broadcast to all the pipeline’s
nodes while the LSL flow of incoming “neural” data is
paused. The pause lasts 10 s and ensures that all the nodes
are ready to promptly process the data once the flow re-
sumes.
After the flow of LSL-streamed “neural” data is resumed,
the features are extracted. The process is similar to the
one described in the Initialization Stage where the data is
filtered, windowed, and log power is extracted.
The features are scaled and fed into the Transformer
model to obtain audible acoustic representations. We use
1.3 s of features to produce a representation of that same
size, however, only the last 34.69 ms are passed to the
following synthesis stage.
Subsequently, the Griffin-Lim algorithm transforms these
spectral representations into an audio waveform that is
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Figure 1: Illustration of the process of converting neural signals into audible speech. The system initializes by setting up nodes and
pausing data intake. Neural data is then resumed and processed—filtered, feature-extracted, and transformed into a 1.3-second audio
representation by a Transformer model, with only the last 34.7 ms used for sound synthesis via the Griffin-Lim algorithm. The generated
waveform is sent to a sound card for playback. Concurrently, a data management system ensures the integrity and continuity of the
operation without data loss.

send to the sound card for immediate auditory feedback.
We include an efficient data management paradigm that
prevents data loss and does not disrupt the pipeline op-
eration or hinder its speed. The paradigm includes a
resource-friendly data-saving routine executed concur-
rently to maintain operational speed and integrity.

Transformer Architecture:
As mentioned, the pipeline can be easily configured to
extract different neural and audio features and use differ-
ent Machine Learning models. Here, we present initial
results with a real-time-ready transformer architecture.
A Transformer model is an advanced neural network ar-
chitecture that excels in processing data sequences us-
ing self-attention mechanisms [13]. These mechanisms
permit the efficient extraction of hidden context and rela-
tionships within data. Transformers are highly efficient,
scalable, and flexible, making them superior for tasks re-
quiring a deep understanding of complex relationships.
This is why they have become the foundation for many
state-of-the-art solutions in natural language processing
and beyond. Transformers have also been used in decod-
ing speech from offline data successfully [14].
In our context of having a small amount of time-series
data with limited time to train the model, it is challeng-
ing to use a Transformer because they typically require
large amounts of data and significant computational re-
sources to effectively learn the complex patterns and re-
lationships in time-series. Their architecture, designed

for capturing long-range dependencies, struggles to gen-
eralize from small datasets without overfitting and may
not achieve optimal performance within a short training
time-frame.

Despite these hurdles, we used a Transformer model to
reconstruct auditory data from neural signals. Using only
the self-attention mechanism and the encoder block, the
model focuses on efficiently extracting and analyzing
temporal features [16]. This approach reduces compu-
tational demands and training time, while still capturing
complex patterns with less risk of overfitting. Focusing
on prediction rather than sequence generation aligns the
model’s strengths directly with the requirements of time-
series analysis, making it better suited for our tasks.

A challenge in real-time decoding with a sequential
model lies in balancing the need to analyze significant
temporal contexts to accurately decode complex patterns
against the constraints of immediate processing. Recently
published BCI works address this challenge by recording
a large enough sequence of neural data and then produc-
ing the mapping to reproducible audio or text [10, 17].

Processing extensive historical data introduces latency
for real-time applications like audio synthesis from neural
signals, which conflicts with our real-time requirements.
Our proposed solution, which exploits an idea presented
by Shigemi et al. [18] involves using a predefined large-
enough context size for analysis but synthesizing only the
latest segment of the sequence. This approach allows the
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Transformer to leverage enough historical data for accu-
rate predictions, while maintaining the ability to produce
outputs in real-time. It effectively addresses the challenge
of adapting sequence-to-sequence mapping for real-time
decoding, ensuring accuracy and immediacy in applica-
tions such as closed-loop neural interfaces.
Fig. 2 presents our conceived model architecture with the
most relevant parameters. Our model first maps all the F
channels of the input sequence into a 125-dimensional
space through a linear transformation. Then, we use six
standard encoder layers [13], each containing two main
components: a Multi-Head Attention and a Feed For-
ward neural network, followed by an Add & Norm step
to facilitate layer normalization. The Multi-Head Atten-
tion mechanism has five attention heads, and the Feed
Forward neural network has a dimensionality of 2048 on
the inner layer. The output of the last encoder layer un-
dergoes another linear transformation to match the de-
sired output dimension. A dropout rate of 0.25 is applied
throughout the network to prevent overfitting. We use
Mean Squared Error (MSE) as the loss criterion, and the
learning rate is set to a modest 5e-4, which balances the
speed of convergence with the stability of the learning
process.

RESULTS

Given the constrained interaction duration with partici-
pants, it was critical to minimize model training times.
The pipeline averaged approximately 133.11 s for model
training, with a standard deviation of 12.00 s. This du-
ration aligns well with our experimental requirements,
offering a balanced compromise between training effi-
ciency and subsequent decoding performance.
Processing latency per sample was another critical met-
ric. Notably, each decoding operation by the transformer
yields a 1.27-second audio window, from which only the
latest 34.69 ms are utilized for audio reconstruction. To
ensure near-real-time functionality, processing for each
sample must therefore be completed in under 34.69 ms.
Our performance results indicate an average processing
time of approximately 17.62 ms per sample (standard de-
viation 1.01 ms), significantly below the 34.69 ms thresh-
old. This efficiency meets our near-real-time criteria and
provides flexibility for exploring other, more complex de-
coding approaches or even switching to higher-quality
vocoders, such as HIFIGan [19] or VocGAN [20].
The qualitative aspect of our results involves the recon-
struction of speech from neural signals. Fig. 3 aggregates
the correlation outcomes across all participants, with data
points indicating the correlation coefficient between the
spectrograms of the original recorded and the synthesized
audio for each individual, providing a visual represen-
tation of the decoding accuracy and variability among
participants. Correlation are stable across the entire fre-
quency spectrum of the mel-scale (Fig. 3 b), but vary
dramatically between participants. Best results exceed
average correlation coefficients of 0.66 (sub-06, Fig. 3

Figure 2: Transformer Model Architecture and Parameters. The
model inputs are linearly transformed from F channels to a 125-
dimensional space, followed by six encoder layers. Each layer
consists of a Multi-Head Attention with five heads and a Feed
Forward network with an inner-layer dimension of 2048, fol-
lowed by an Add & Norm step. The final encoder output is
linearly transformed to the desired output size. The model em-
ploys a dropout of 0.25, uses MSE as the loss function, and has
a learning rate of 5e-4.

a).

DISCUSSION

The presented results, particularly concerning processing
speeds and model training efficiency, precisely align with
our pipeline’s rapid training and real-time decoding ob-
jectives. This achievement highlights our pipeline’s ef-
fectiveness in enabling real-time communication for in-
dividuals with speech impairments and its proficiency in
decoding speech from new, unseen words. This latter ca-
pability underscores the system’s robust generalization,
a critical feature for practical Brain-Computer Interface
(BCI) applications where pre-defining a comprehensive
vocabulary is impractical.
Variations in decoding results across participants likely
mirror the differential placement of sEEG electrodes.
This suggests that proximity to speech-related brain areas
might significantly influence both neural signal decod-
ing quality and model training success. Notably, these
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Figure 3: Correlation between original and reconstructed spectrograms. a) Mean correlation coefficients across all spectral bins for
each participant, with error bars indicating the standard deviation. b) Mean correlation coefficients for each spectral bin.

achievements come from training on relatively limited
data, approximately 225 s per participant. This is in stark
contrast to the vast datasets employed in training the cur-
rent state-of-the-art speech BCIs, which often utilize data
ranging from dozens of minutes to several hours [6, 7,
10, 21], highlighting the efficiency and potential of our
approach even with constrained datasets.
Currently, real-time reconstructed speech results are not
intelligible, leaving room for further improvements in de-
coding approach and vocoder.
While the current results stem from simulations using the
SWPD dataset, delineating the pipeline’s capability for
real-time speech decoding from neural signals, present-
ing online results falls outside this paper’s scope. Nev-
ertheless, addressing this gap is a priority in our ongoing
research.
The promising outcomes achieved with the Transformer
model open exciting future research directions, such as
refining model architectures and devising new strategies
to minimize further decoding latency. The 17.62 ms ex-
tra in processing time also permits using a more complex
synthesizer that better reconstructs the audible speech
from the spectrogram.

CONCLUSION

This paper introduced a closed-loop speech decoding
pipeline designed for real-time operation. Our system is
distinctively characterized by its low latency and modu-
lar framework, facilitating seamless, near-instantaneous
communication. Utilizing Python and the Timeflux
framework, we developed a modular pipeline that allows
for swift prototyping and testing, catering to the dynamic
needs of BCI research.

We demonstrated the feasibility of real-time stream-
ing speech synthesis from neural signals through rig-
orous offline validations using aligned neural and au-
dio recordings from the SWPD dataset. Our pipeline
employs a Transformer model optimized for time-series
data, achieving fast decoding speed and reasonable re-
sults. Despite the challenges associated with limited data
availability and the constraints of working within clin-
ical settings, our system managed to train models effi-
ciently, with an average model training time of approxi-
mately 133.11 s and a decoding processing time of about
17.62 ms per sample, well below the threshold required
for real-time functionality [12]. Notably, our streaming
approach could allow for natural conversation, as sound
is produced almost immediately, as opposed to other ap-
proaches which produce chunks of audio corresponding
to whole sentences.

The qualitative results further underscore the efficacy of
our pipeline in reconstructing audible speech. The re-
constructed spectrograms and the correlation coefficients
across participants highlight the potential of our technol-
ogy to provide a voice for those who have lost their natu-
ral ability to speak due to neurological conditions.

Our work showcases an improvement in speech BCIs
and opens new avenues for research and development to-
ward more intuitive and accessible communication solu-
tions. Future work will focus on enhancing the decod-
ing results, reducing latency further, and expanding the
system’s adaptability. By continuing to refine and vali-
date our pipeline, we aim to bring this technology closer
to widespread clinical application, offering hope for im-
proved quality of life for individuals with severe speech
impairments.
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