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ABSTRACT: Athletes practice Kinesthetic Motor Im-
agery (KMI) for its many benefits. However, lack of
feedback impairs regular practice. To optimise KMI effi-
ciency, athletes can use BCIs. Whereas current BCI pro-
tocols targeting KMI abilities reward maximum desyn-
chronisation (ERD) of sensorimotor rhythms (SMRs, 12-
15Hz), the neural efficiency hypothesis raises the ques-
tion “what neurophysiological markers should we re-
inforce?”. We hypothesised that experts’ SMR-ERDs
would differ from novices’, in particular when imagin-
ing a mastered task. To test this hypothesis, EEG activ-
ity was recorded during KMI of bio-mechanically simi-
lar tasks: one mastered by experts only and one requir-
ing no specific expertise. Self-reported measures based
on validated questionnaires were collected to assess KMI
ability and MI frequency of use and to measure their po-
tential impact on SMR-ERD. Experts (basketball play-
ers) reported higher perceived KMI abilities than novices,
but similar MI practice frequency. In addition, experts
showed a stronger SMR-ERD than novices. This ef-
fect was only weakly mediated by perceived KMI ability,
seeming mainly driven by sport expertise.

INTRODUCTION

In order to perform, athletes dedicate themselves to both
physical and mental training. The latter can take vari-
ous forms, one of them being Motor Imagery (MI), which
can be defined as a “dynamic state during which one sim-
ulates an action mentally without any body movement”
[1]. Previous research results have shown MI’s positive
impact on motor skills, allowing gains in strength [2, 3]
or even movement precision [4, 5], especially when prac-
ticed in a kinesthetic way. Indeed, by remembering the
associated sensations that can be felt during execution,
such as muscle contraction/relaxation, body heat, pain,
as well as tactile information; one can activate and rein-
force similar neural networks to when actually executing
the movement [6, 7]. Kinesthetic Motor Imagery (KMI)
is therefore a relevant complementary tool for athletes.

However, KMI’s physiological manifestations cannot di-
rectly be perceived hence providing no feedback and ob-

jectivity. Indeed, unlike physical practice where ath-
letes can adapt execution according to the output or their
body’s proprioceptive feedbacks; athletes cannot directly
detect brain activity modulations that occur when doing
KMI and adapt their strategy. This can have detrimental
consequences on athletes’ motivation to diligently prac-
tice KMI as feedback is necessary to learn [8].

Because KMI is associated with an event-related desyn-
chronisation (ERD) of sensorimotor rhythms (SMRs, 12-
15 Hz) [9] it is possible to use Brain-Computer Interfaces
(BCIs) and provide athletes with a real-time feedback on
their brain modulations during KMI. Athletes can then vi-
sualise the employed strategy’s efficiency and optimise it
if needed. Moreover, three recent reviews testify that BCI
training improves both the ability to self-regulate brain
activity and sport performance [10–12]. Many KMI-BCI
protocols reward maximum SMR-ERD [13]. This sug-
gests we consider that growing expertise will be associ-
ated with a higher desynchronisation of neurons in the
sensorimotor cortices [14]. Indeed, some related fMRI
and MEG findings show greater brain activations in high
ability imagers [1, 15] or even in expert athletes in com-
parison to novices [16]. Nonetheless, some results have
suggested the existence of a neural efficiency in experts
[17–19]. According to this hypothesis, experts happen to
have a reduced modulation of neural activity in compari-
son to novices [20–22], which can be attributed to a more
efficient resource distribution. This efficiency would take
form of reinforced temporal and spatial stability during
MI tasks [16, 20, 23]. Therefore, rewarding a maximum
SMR-ERD might not be the optimal solution.

The aim of our work was to investigate the neural corre-
lates of expertise, in sport expertise and perceived KMI
expertise, thereby providing elements to contribute to the
debate on what neurophysiological markers should be tar-
geted during KMI-BCI training procedures. Our main
hypothesis was that experts’ SMR-ERDs would differ
from those of novices, in particular when doing KMI
of a mastered task. Thus, we planned an experimen-
tal design with "Expertise" (2 modalities: basketball-
experts, novices; between groups) and "Task" (2 modal-
ities: free-throw, box-reaching; within groups) as fac-
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tors. KMI ability and MI frequency of use were assessed
with self-reported measures based on validated question-
naires, allowing us to observe potential differences be-
tween groups and if so, add them as co-variables in the
analysis of the main hypothesis.

MATERIALS AND METHODS

Participants:
17 basketball players (M age = 20.6 years old, SD = 2.4
years; 9 women and 8 men) and 16 non-basketball players
(M age = 22.7 years old, SD = 3.8 years; 8 women and
8 men) were recruited for a two-hour session. Accord-
ing to Edinburgh Handedness Inventory [24], 28 were
right handed (M = 88.68%) and 4 were left handed (M
= -77.38%). Basketball players were considered as the
expert group (Exp-Gp) as it was composed of competi-
tors from District D1 to National Ligue level whereas
non-basketball players were included in the novice group
(Nov-Gp) as they attested never to have taken proper
basketball lessons. Novices also attested that they did
not have a particular expertise in any other sport, in-
strument playing and video games. This inclusion cri-
terion was to prevent them from being experts in KMI
as these activities can require using sensory mental mod-
els as well. All volunteers were healthy, declared having
no sensory or motor deficits and had a medium to good
vision. They were also naive regarding neurofeedback.
After being informed of the research aims, conditions
and financial compensation, all participants gave their in-
formed written consent. This research was approved by
the French Protection of Persons’ Committee (national
number 2022-A00626-37).

Experimental design:
Participants were seated in front of a 27-inch computer
screen and started off with two questionnaires. A mod-
ified version of the Imagery Use Questionnaire (IUQ)
[25] was used to determine at which frequency partici-
pants used MI in their daily life. It consisted of items
such as "To what extent do you use MI in your train-
ing/activities?" that required an answer using a 7 point
Likert scale going from "Never" to "Always". The MI
frequency use score was calculated with 12 items. The
Motor Imagery Questionnaire-Third Version in French
(MIQ-3f) [26] was also completed to assess general KMI
ability. Participants were asked to execute a task (knee
flexion, bust flexion, vertical jump or horizontal arm ad-
duction), imagine it (using visual or KMI) and rate the
vividness of the representation on a 7-point Likert scale.
General KMI ability score was obtained by summing the
4 items relative to this MI method. A general explana-
tory video was then shown to give all necessary instruc-
tions regarding EEG, KMI and the protocol. The exper-
iment (See Fig. 1) consisted of 2 blocks, one for each
task to imagine, composed of a 2min resting state record-
ing, a 3D stick avatar video, 4 runs of 10 KMI trials,
where each run lasted approximately 2min30s, and a gen-
eral KMI ability assessment. A single run consisted of

a 30s resting state period, followed by 10 KMI trials of
10s, separated by 1 to 3s rest periods and 2s of base-
line. Therefore, following instructions, a 2min baseline
was recorded during which a white cross was displayed
on a black screen. Participants had to fixate its center
while "letting their thoughts wonder". A video then pre-
sented a 3D stick avatar executing the task to imagine in
the next steps. The task could either be a basketball free
throw (FreeThrow) or a box reaching action (Reaching)
depending on the randomised order of conditions. The
latter consisted in moving a cardboard box from a knee
height shelf up to a second shelf located high enough to
require from participants to be on the tip of their toes. As
a familiarisation phase, participants had to execute the
task and progressively reduce amplitude until ending up
in a sitting position while doing KMI only. Instructions
were to do KMI of the task once during the 10s trial but it
could be repeated a second time if participants still had a
few remaining seconds. Participants would let the exper-
imenter know when ready and all four runs would then
be recorded for Block 1, with short rest periods between
them. At the end of Block 1, participants could rest and
Block 2 would start as soon as participants felt ready.

EEG recordings and pre-processing:

EEG was recorded with a 32 channel (FP1, FPz, FP2,
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, A1, T7, C3,
Cz, C4, T8, A2, CP5, CP1, CP2, CP6, P7, P3, Pz,
P4, P8, POz, O1, Oz, O2, CPz, AFz, 10–20 system)
ANT Neuro eego™sports gel headset and two amplifiers,
eego™sports or eego™rt. Data was referenced to CPz,
grounded to AFz and targeted channel impedance was set
at 5kOhm. EEG signals were recorded via OpenVibe [27]
and pre-processed with Matlab/EEGLAB [28] and Field-
trip toolbox [29]. Offline pre-processing started with ap-
plying a 1 to 40 Hz band-pass filter and down sampling
the initial data to 250 Hz. Files were then merged to end
up with one file per condition per participant. At this
stage, for each file, a list of bad channels was made with
the EEGLAB Clean Rawdata plugin. A bad channel was
considered so if i) it was flat for more than 5s, ii) its high
frequency noise standard deviation was above 4 and/or
iii) it’s correlation value with nearby channels was higher
than 0.8. However, following most recent recommenda-
tions [30] bad channels were kept and removed only after
Independent Component Analysis (ICA) step. Follow-
ing bad channel listing, epochs could then be determined
as starting 2.5s before the cross on screen appeared and
ending 0.5s after it had disappeared. ICA was then ap-
plied to the data using the EEGLAB runica algorithm and
components were manually rejected according to signs of
artifacted activity, caused for instance by blinking, move-
ment or other sources of noise. Per participant, between 0
and 11 components were excluded out of 32 (M = 5.94).
Finally, we removed the channels from the previously
saved lists, interpolated them and re-referenced the data
to average. Following pre-processing, Fieldtrip toolbox
was used for time-frequency decomposition using Morlet
wavelets (8-35 Hz with 1 Hz steps). Wavelet cycles were
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Figure 1: Session’s protocol, divided in two blocs, one for each task. A bloc started with a 2min resting state EEG recording. Then, a 3D
stick avatar video showed the task to imagine (FreeThrow or Reaching). Participants were asked to execute the task and progressively
switch towards KMI. A run could then start with a 28s resting state recording immediately followed by 10 trials. One trial consisted of
2s of resting state, 10s of KMI and 1 to 3s of rest. A bloc was complete when 4 runs were recorded.

increased by 0.1 at each frequency, starting from a width
of 3 to 5.7 to ensure a balance between sufficient temporal
resolution at lower frequencies and frequency resolution
at higher frequencies. As our focus was on SMRs, data
from 12 to 15 Hz was then extracted before being nor-
malised. To do so, we measured the relative change from
the averaged 10 periods (1s pre-trial) of all trials of a run
(1.5–2.5s of the total epoch). The last step consisted in
rejecting outliers above or under Median±3*Median Av-
erage Deviation [31].

Analysis:
For the behavioural data, two t Tests were used to com-
pare groups’ IUQ MI frequency use and MIQ-3f KMI
general ability scores. In order to investigate the SMR-
ERD power evolution associated to an expertise level
and its potential link with general KMI ability, a two-
way ANCOVA for repeated measures was performed.
Group (Exp-Gp, Nov-Gp) and Task (FreeThrow, Reach-
ing) were used as independent variables, SMR-ERD
power as a dependent variable and kinesthetic MIQ-3f
score as a co-variable. Effect sizes are reported with a
partial eta squared (η2 p) for the ANCOVA and with Co-
hen’s d for t Tests. Statistical analyses were computed
using Jamovi v.2.4.11.0 [32], a software that implements
R statistical language [33].

RESULTS

Because of a technical issue, two participants had to be
excluded from the analyses. Therefore, both groups were
composed of 16 participants. We also had one Exp-Gp
participant with 10 missing trials out of 40 and another
one with 2 missing trials. Considering the low proportion,
they were included anyway.

MI frequency use:
A Shapiro-Wilk test revealed that no violation of the as-
sumption of normality was made for MI frequency use
scores (W = 0.969, p = 0.464). Thus, we performed a
parametric t-test (See Fig. 2) that showed no significant
difference between groups concerning the MI frequency
of use [(t(1,16) = 1.18, p = 0.246, d = 0.418; Exp-Gp (M
= 3.11/14); Nov-Gp (M = 2.55/14)].

General KMI ability:

For general KMI ability, Shapiro-Wilk test confirmed
data was normally distributed (W = 0.969, p = 0.476).
A t Test (See Fig. 2) showed significant difference be-
tween groups (t(1,16) = 2.09, p = 0.045, d = 0.739), with
Exp-Gp score (M = 20.9) being significantly higher than
Nov-Gp score (M = 17.7).

Figure 2: Box plots representing: A. The mean MI frequency
of use score as a function of the group (Exp-Gp vs. Nov-Gp) B.
The mean general KMI ability score as a function of the group
(Exp-Gp vs. Nov-Gp)

EEG:
Finally, ANCOVA analyses (See Fig. 3) revealed a main
effect of the group [(F(1,29) = 8.45, p = 0.007, η2 p =
0.226); Exp-Gp SMR-ERD change (M = -10.48%); Nov-
Gp SMR-ERD change (M = 8.45%)] as well as a ten-
dency towards a main effect of KMI ability [(F(1,29) =
3.03, p = 0.092, η2 p = 0.095)]. However they revealed
no main effect of the task [(F(1,29) = 2.076, p = 0.160,
η2 p = 0.067); FreeThrow (M = -0.215); Reaching (M =
-1.816)] nor any interaction for Group x Task [(F(1,29) =
0.002, p = 0.964, η2 p = 0.000); Exp-Gp Task difference
(M = 1.44); Nov-Gp Task difference (M = 1.75)] or Task
x KMI ability (F(1,29) = 1.857, p = 0.183, η2 p = 0.060).

DISCUSSION

The aim of this work was to contribute to the neural ef-
ficiency debate by investigating the neurophysiological
correlates of expertise during KMI. Our interest was ori-
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Figure 3: Box plot representing the mean SMR-ERD power as a
function of the group (Exp-Gp vs Nov-Gp) and task (FreeThrow
vs Reaching)

ented towards knowing if SMR-ERDs evolved with ex-
pertise and if this evolution was specific to KMI of mas-
tered tasks. To do so, we compared experts and novices’
EEG activities during a task mastered by experts only and
a task that both groups mastered. For our experimental
design, we chose to observe EEG activities of basketball
players experts and basketball novices. The task mastered
only by experts was a free throw and the non-specific task
was a box reaching action.
Questionnaire results showed that while expert group did
not report practicing MI more often than novice group,
they self-evaluated their MI abilities higher than novices.
In addition, expert group showed significantly stronger
SMR-ERDs than novices during KMI whatever the task.
As a matter of fact, on average, novices showed an in-
crease of SMR power during KMI as compared to pre-
trial baseline although a decrease was expected. Analyses
revealed a weak effect of self-reported KMI abilities on
that group effect, thus suggesting that the different neuro-
physiological correlates of KMI are mainly explained by
expertise.
Observations of MI frequency use go against well-
established findings that suggest MI use is positively
linked to athletes’ expertise level [25, 34]. The lack of MI
use in experts could be due to the fact that half of the par-
ticipants were competitors at a departmental or regional
level. Although their training experience was consequent,
these basketball players might not be used to engage in
MI as much as higher level amateur or professional play-
ers. Indeed, Cumming and Hall, 2002 [34], showed that
national athletes perceived imagery to be more relevant to
improving their performance and competing effectively
than recreational athletes. Therefore, a future inclusion
of a third group of high expertise basketball players will
allow us to see if MI practice increases with the competi-
tive level. Moreover, to answer IUQ items, novices were
asked to evaluate use of MI for all types of motor actions
encountered in everyday life and activities (creative activ-
ities, skill learning...). On the other hand, basketball play-
ers were only asked about their practice of MI to enhance
their basketball performance. This potentially could have
induced a bias and could have artificially diminished the

discrepancy between groups. Finally, the obtained score
covers visual and KMI practice. Future analysis will con-
sider items separately as the other assessed factors of this
study focus on KMI only. Indeed, experts could be more
familiar with KMI in general, but also in particular during
mastered tasks.

Although MI frequency of use was not significantly dif-
ferent between groups, experts happened to have a sig-
nificantly higher general KMI ability than novices. We
can conclude that although practice makes perfect, a high
general KMI ability does not seem to be exclusively
achieved by having a quantitative MI practice. Hence,
basketball expertise seems to allow athletes to develop
their general KMI ability through other processes than
repetition. Experts could have better MI abilities because
of higher sensory mental models, either because they are
used to allocating important levels of attention to kines-
thetic components during execution and/or have a better
ability to memorise and restore them during MI. An im-
portant limitation however persists as subjective ease of
KMI use may not correlate with quality of KMI.

EEG analyses revealed that experts reached stronger
SMR-ERDs than novices, whatever the task. As a mat-
ter of fact, it seems that novices increased their SMR
power during KMI as compared to baseline on average,
while experts decreased it. These results are aligned
with many MI-BCI protocols choices to reward a greater
ERD. The choice of the baseline, being the second be-
fore an MI trial, allowed to counterbalance the signal’s
non-stationarity. However, we suspect that this portion
of recording reflects a pre-KMI state rather than a proper
resting state [35]. Kornhuber and Deecke, 1965 [36], re-
fer to this phase as the "readiness potential" and suggest
that a surface negative cortical potential happens around
1s prior to movement. Additionally, it is possible that
novices initiated KMI to early, which could be explained
by a difficulty to voluntarily start and stop MI in an im-
posed timing. In which case, maximum power decrease
would have happened during baseline and would have
then be followed by the expected SMR-Event-Related
Synchronisation (ERS) [9] during the trial, explaining the
positive SMR-ERD power change in novices. It is im-
portant to have in mind that SMR-ERD precise modula-
tion patterns during MI are still unknown. Indeed, obser-
vations of EEG signal during MI have shown very high
variability between individuals [37] but also according to
the number of task repetitions [38]. In a previous pa-
per [38], authors suggested that doing MI of a short task
once does not result in the same EEG patterns than con-
tinuously repeating the MI task during 4 sec. Results
showed ERD and ERS components overlap in time when
performing MI continuously, meaning ERD could be less
detectable and more varied. Our current analysis uses the
mean power values of the 10s trials. However, if trial dy-
namics were to be different than one single ERD per trial,
this should be considered. Furthermore, experts could be
able to maintain their SMR-ERD through a longer pe-
riod of time than novices. Like performing MI continu-
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ously, ERD and ERS would overlap in novices and ex-
plain the SMR power increase compared to baseline. In a
near future, we plan on using time-frequency analysis to
observe modulations through time within and throughout
trials to investigate those dynamics and their relationship
with expertise. ANCOVA also provided non-significant
results for the Task effect. Our initial choice was to com-
pare two bio-mechanically close tasks. Indeed, choosing
two tasks that would have had a different level of com-
plexity as well would not have allowed us to conclude
on the basketball specificity’s role. Moreover, choos-
ing tasks that mostly implied upper body segments but
still involved lower body was a way of assuring us that
SMR-ERD wouldn’t differ strictly because of the spa-
tially different motor and sensory representations in the
Primary Motor and Sensorimotor Cortices [39]. Again,
carrying time-frequency analysis throughout trials will
be interesting to see if final trials reveal a more impor-
tant difference between tasks. Furthermore, we found a
lack of significant interaction for Task x Group indicat-
ing that SMR-ERD difference between tasks was propor-
tionally similar for both groups. This result rejects our
hypothesis that SMR-ERD is different between groups,
particularly in a mastered task (FreeThrow task for ex-
perts). A possible explanation would be that experts ben-
efit from a transfer of competences. The existence of this
process has been greatly documented [40] and could be
applied to KMI. Indeed, experts could have a facility to
do KMI in FreeThrow task that would transfer to Reach-
ing task, illustrated by a negative SMR-ERD change.
Whereas novice group would have difficulty to produce
lower SMR-ERD whatever the task. Such an interpreta-
tion was verified with KMI ability, our ANCOVA’s co-
variable. Although this factor was not significant, it did
not cancel the group effect. We can therefore conclude
that there is an influence on SMR-ERD but that globally,
this difference is mainly explained by expertise level.

CONCLUSION

For decades, we have associated an SMR-ERD closely
followed by an ERS to MI [41], reflecting the activity of
the sensorimotor cortex. We questioned ourselves on the
evolution that SMR-ERD could have with expertise and
what patterns we should be rewarding when using KMI-
BCI to get users to enhance their performance. Currently,
different theories exist. The first hypothesis, historically
based, stipulates that with expertise, ability to process in-
formation increases. This translates into a sensorimotor
region activation and an increased recruitment as well as
an excitability of cortical neurons [9]. The second one,
the neural efficiency hypothesis, goes against it as it sug-
gests that expertise comes with a better cortical and en-
ergetic efficiency [19, 21, 22]. This would translate in a
decreased activation of pertinent regions. Finally a third
hypothesis, suggests that a combination of both these the-
ories could exist [42]. Indeed, in the first stages of learn-
ing, we should reward a maximum SMR-ERD and once

expertise level increases, other neurophysiological mark-
ers should be identified to reflect the optimisation of re-
sources. Our results suggest that experts have a lower
decrease of SMR-ERD compared to novices during KMI
of a free throw and reaching action. Future inclusion of a
higher expertise group will however be needed to provide
more material concerning the mixed hypothesis.
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