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ABSTRACT: Brain-Computer Interfaces (BCIs) have
emerged as vital tools in understanding and assisting in-
dividuals with LIS due to neurological diseases such as
ALS. This study focuses on the and feasibility of recog-
nizing spoken syllables from implanted HD-ECoG sig-
nals as a platform for Speech BCIs. We propose a hy-
brid deep learning model, which uses a modified EEG-
Net as a feature extractor coupled with an LSTM. A pri-
mary challenge in this domain is the limited quantity of
ECoG data. To address this challenge, we employ win-
dow clipping as a data augmentation technique, effec-
tively increasing the amount of training data available for
the model. Using a dataset comprising recordings from
six subjects implanted with HD-ECoG, we evaluate our
proposed method. Results indicate a notable improve-
ment in classification accuracy achieved through the de-
signed hybrid DL model. Furthermore, our findings elu-
cidate the distinctive impact of data augmentation meth-
ods in further enhancing the performance of our designed
model.

Keywords: HD-ECoG, ECoGNet, CNN, LSTM, Data
Augmentation

INTRODUCTION

The realm of Brain-Computer Interface (BCI) systems
has revolutionized human-computer interaction, enabling
direct communication pathways between the human brain
and external devices. Language BCI represent a fron-
tier in assistive technology, designed to empower indi-
viduals with communication disabilities by translating
recorded brain activity into language. Electrocorticogra-
phy (ECoG) due to its capabilities in recording a wide
range of frequency and also high density recording of
a specific areas of the brain which are responsible for
specific cognitive task has been widely used in this re-
gard. In recent years, researchers have made many ef-
forts to leverage various methods to decode language,
particularly deep learning methods as the most promis-
ing method to this aim ( [?], [?], [?]). While various
deep learning architectures have demonstrated success
in decoding of spoken phonemes, words, and sentences
with acceptable performances, the task of syllable de-
coding poses greater challenges. Unlike words, which
vary in length and possess distinct sounds, syllables typ-

ically exhibit uniform length and share acoustic features.
Consequently, decoding syllables presents a formidable
hurdle, as neural networks cannot rely solely on length
or distinctiveness for classification. Also, syllables can
involve overlapping combinations of phonemes making
them useful building blocks for language but also less
distinct. Despite the complexity, decoding syllables is
pivotal, serving as a foundational step towards decipher-
ing spoken words. Addressing this challenge necessitates
the development of robust and adaptable neural networks
capable of enhancing decoding performance, particularly
for individuals with limited data. By exploring the poten-
tial of such networks, we aim to push the boundaries of
language decoding in BCIs, fostering greater inclusively
and effectiveness in communication assistance technolo-
gies.
EEGNet efficiently extracts temporal features reflecting
short and long-term changes in brain activity. While EEG
and ECoG measure brain electrical potential differences
using electrodes, they differ in invasiveness and spatial
coverage [?]. EEG, non-invasive, captures broader spa-
tial coverage with lower density, while ECoG, invasive,
offers higher density with narrower spatial coverage. De-
spite these differences, both methods share preprocess-
ing and feature extraction techniques, often utilizing fre-
quency analysis. Thus, deep neural networks proficient
in extracting frequency information from EEG data could
enhance ECoG analysis.
Peterson et al. [?] introduced a modified version of EEG-
Net tailored for ECoG, incorporating a mapping layer
from individual ECoG electrode positions to a 1D in-
put space. While their approach yielded improved results
over traditional EEGNet in binary classification tasks, we
sought to explore an alternative mapping paradigm. Thus,
we directly adapted EEGNet to investigate this alternative
approach.
Our mapping concept involves translating the inherent 2D
structure of ECoG data into a standardized grid space,
aligning native electrode coordinates. Leveraging this
spatial input in 2D, we have tailored a modified variant
of EEGNet specifically optimized for the unique charac-
teristics of ECoG data. This adapted network, denoted as
ECoGNet, maintains a parallel block structure to EEG-
Net while accommodating the intricacies of ECoG signal
processing.
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An intriguing progression entails merging CNN and
LSTM networks to build hybrid architectures. This syn-
thesis facilitates the concurrent extraction of spatial and
temporal features, correspondingly. This novel approach
bears substantial potential for augmenting the capabilities
of Deep Learning [?, ?, ?].

Utilizing Deep Learning for ECoG signal classification
faces challenges due to limited dataset sizes, particularly
in Motor Imagery analysis. K-Fold Cross Validation (K-
Fold CV) addresses this issue by partitioning data into
’K’ subsets, enabling robust model training and evalua-
tion. Hewaidi et al. [?] leveraged K-Fold CV to enhance
their methodology, integrating variational autoencoders,
deep autoencoders (DAE), and CNNs for EEG motor im-
agery classification. Recent literature [?] introduces two
key K-Fold CV methods: inter-subject and intra-subject,
providing insights into model performance across sub-
jects and within individual subjects, respectively.
Data augmentation methods offer a potent solution to
the challenge of limited dataset sizes in Deep Learning.
By expanding the training data, these techniques bolster
classification stability and accuracy, enabling models to
generalize better to new datasets [?]. Moreover, data
augmentation addresses class imbalance issues, crucial
for classification tasks. Techniques such as geometric
transformations and noise introduction effectively diver-
sify datasets, enhancing model robustness. The utiliza-
tion of sliding windows is a prevalent data augmentation
technique across various domains. In neonatal seizure
detection, O’Shea et al. [?] employed overlapping win-
dows, with 8-second trials and 50% overlap, to augment
seizure instances within EEG signals. Kwak et al. [?] ex-
plored different shift lengths, ranging from 10 ms to 60
ms within 2-second windows, revealing superior perfor-
mance with shorter shifts.
In this paper, we present a comprehensive approach to
EEG signal classification, leveraging deep learning mod-
els and innovative data augmentation techniques. We be-
gin by introducing the analyzed data in the Data and Ma-
terials section, followed by an explanation of the used
deep learning architectures. Subsequently, we describe
our designed model and detail the methods employed to
address the inherent challenges posed by limited dataset
sizes. Moving forward, the Results section showcases
the outcomes of implementing our model, with particu-
lar emphasis on the impact of utilizing data augmenta-
tion methods. Finally, we conclude by summarizing the
project’s findings and highlighting avenues for future re-
search and development in EEG signal classification.

DATA AND MATERIALS

Data and Preprocessing: The dataset was collected at
UMC Utrecht and comprises recordings from six sub-
jects. Each subject underwent different trials, and the
electrode configurations varied among subjects. Some
subjects contributed 180 trials, while others had 90, and
due to data collection errors, certain trials were elimi-

nated from the valid dataset. Moreover, the number of
electrodes differed among subjects, with some recorded
using 128 electrodes and others with 64 electrodes. It’s
worth noting that not all electrodes provided valid sig-
nals, as some were too noisy to convey useful informa-
tion. The properties of the dataset are summarized in ta-
ble 1.
The locations of the electrode grids for all participants
are illustrated in Figure 1. Due to various restrictions
and limitations, such as individual anatomical variations
and positioning constraints during data collection, the
electrode placements vary in their standard Montreal
Neurological Institute (MNI) coordinate system locations
across subjects. Here the electrode locations are deter-
mined based on spherical components (Phi and Theta),
with the center of the component aligning with the center
of the brain.

Table 1: Summary of the data of all participants

n. actual/valid Sampling n. actual/valid
Participant trials Freq Electrodes

S01 180/177 2000 128/128
S02 180/173 512 64/52
S03 90/85 2000 128/125
S04 90/89 2000 128/120
S05 90/86 2000 128/121
S06 90/87 2000 128/109

Figure 1: Electrode Grid Placements for Participants

The task entails conducting trials where participants utter
one of nine distinct syllables: “mi”, “mu”, “ma”, “ki”,
“ku”, “ka”, “zi”, “zu”, and “za”. These syllables ex-
hibit similarities in their articulation and serve as the nine
classes we seek to classify. The trial protocol includes
randomization of these syllables interspersed with occa-
sional rest trials. Participants are prompted on the screen
to perform either 10 or 20 repetitions of each syllable.
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The subjects performed the task multiple times leading
to a range in trails from 180 trials, to 90 over subjects,
and due to data collection errors, certain trials were elimi-
nated from the valid dataset.
Two crucial time points are defined: Cue time marks
the initiation of monitoring for the intended syllable, and
Voice Onset Time (VoT) indicates when it becomes dis-
cernible that the participant starts articulating the sylla-
ble. Due to individual differences, participants initiate
pronunciation after different durations following the Cue
time. Additionally, the duration from VoT varies depend-
ing on the syllable and the participant’s capabilities.
To standardize trial durations across participants and syl-
lables, a fixed duration of 1 second is set starting from
VoT, recognized as the most informative segment of the
trial.

CNN: Convolutional Neural Networks (CNNs) have
garnered considerable acclaim for their adeptness in ex-
tracting robust spatial features from images through deep
learning. The architectural underpinnings of CNNs en-
sure spatial robustness, which revolves around three piv-
otal elements: local receptive fields, convolutional layers,
and pooling layers. By employing small receptive fields,
convolutional filters adeptly capture fundamental visual
features from distinct regions of the input image. These
extracted features undergo progressive amalgamation and
enhancement across subsequent layers to discern higher-
level features. However, the insertion of pooling layers
following convolutional layers, while essential for pre-
venting overfitting and reducing spatial dimensions, can
potentially entail a loss of precise spatial information—a
concern warranting attention.

Figure 2: EEGNET Architecture

LSTM:
The LSTM architecture revolves around three primary
states: the cell state (Ct−1,Ct), the input state (Xt and
ht−1), and the output state (ht). Additionally, LSTM in-
corporates four crucial gates: the forget gate ( ft ), the in-
put gate (it ), the new memory gate (C′t), and the output
gate (Ot ). These gates play pivotal roles in regulating in-
ternal operations within the LSTM.
The cell state serves as a memory reservoir that facili-
tates information flow across LSTM units. Each LSTM
unit features skip connections in the form of gates, which
intricately control the inflow and outflow of information
to and from the cell state. Specifically, the forget gate
discerns which information to retain or discard from the
prior cell state, while the input gate governs the integra-

tion of new information.
The new cell state is crafted by merging the previous cell
state with inputs from the input gate and the new mem-
ory gate. Finally, the output gate oversees the information
contributing to the LSTM unit’s output. Leveraging these
architectural components, including gates and memory
units, empowers the network to capture and retain per-
tinent information essential for effective learning.
The LSTM’s prowess in managing long-term dependen-
cies underscores its versatility and efficacy across a spec-
trum of deep learning applications.

MODEL ARCHITECTURES (HYBRID CNN/LSTM
APPROACH)

To effectively capture the intricate spatial and tempo-
ral characteristics inherent in ECoG signals, we pro-
pose a sophisticated hybrid neural network architec-
ture that seamlessly integrates Convolutional Neural Net-
work (CNN) and Long Short-Term Memory (LSTM) net-
works. This hybrid approach combines the robustness of
CNNs in spatial feature extraction with the proficiency of
LSTMs in modeling sequential data, thereby augmenting
the analysis and classification of ECoG signals.

In this work we have used EEGNET model as the CNN
component of the designed hybrid model. we adopt the
EEGNET model as the foundation for our CNN com-
ponent, tailored with necessary modifications to suit the
dimensions of our ECoG data (16/8,8,2000/512). This
adaptation ensures optimal utilization of the CNN’s capa-
bilities in discerning spatial intricacies within the ECoG
signals. We call this network ECoGNet.
EEGNet is a Deep Learning model structured with multi-
ple convolutional blocks, outlined in Figure 2 . The initial
block consists of a standard convolutional layer followed
by a batch normalization (BN) layer. Subsequently, a
depth-wise convolutional layer is utilized in the following
block, succeeded by a BN layer, an Exponential Linear
Unit (ELU) activation function, and an average pooling
layer. Additionally, a dropout layer is introduced at the
end of this block. The third block incorporates a separa-
ble convolution, a BN layer, an ELU activation, and an-
other average pooling layer. Notably, dropout layers are
applied both before and after flattening the data. For the
classification stage, a fully connected layer is employed,
followed by a softmax function to classify the data into
nine distinct classes.

In tandem with the CNN component, we incorporate an
LSTM network to capture the nuanced temporal depen-
dencies inherent in ECoG signals. LSTMs, renowned for
their prowess in modeling sequential data, prove instru-
mental in unraveling the temporal dynamics and long-
term dependencies embedded within the ECoG signals.
By seamlessly integrating an LSTM network, our model
gains the ability to discern intricate temporal patterns,
thereby enriching the analysis of ECoG signals.

Deep Learning Obstacle:
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Enhancing the proficiency of designed models often re-
lies on providing them with enough data to be learned.
However, in certain applications such as the analysis of
brain signals, acquiring a sufficient amount of data can
be challenging due to constraints imposed by the nature
of the data collection process. This scarcity of data poses
a significant obstacle for biomedical specialists seeking
to train effective models. In this project we have used a
couple of methods to deal with this problem, Cross Vali-
dation, and Data Augmentation.
To mitigate the data constraint, K-Fold Cross Validation
(K-Fold CV) is commonly employed. K-Fold CV di-
vides the data into ’K’ subsets, allowing the model to
train on different combinations and reducing overfitting
while providing robust evaluation of generalization abil-
ity. For instance, Hwaidi et al. [?] utilized K-Fold CV to
enhance the performance of their approach, integrating
variational autoencoders, deep autoencoders, and CNNs
for EEG signal classification. In this work, we have also
used this method to not only try to mitigate the data re-
strictions, but also prevent overfitting. Due to the amount
of the data we have, the 5-fold CV is chosen.
The second commonly used method to deal with the ob-
stacle, is the Data Augmentation method. Data augmen-
tation is a highly effective method for addressing the
challenge of limited dataset size in deep learning. By
increasing the quantity and variety of training data, it
enhances classification stability and accuracy, enabling
models to be more robust and less biased when handling
new datasets [?]. Additionally, data augmentation helps
mitigate class imbalance in classification tasks. It em-
ploys geometric transformations such as translations, ro-
tations, cropping, flipping, and scaling, along with noise
introduction, to expand the dataset and generate new in-
stances. Depending on the type of data involved, various
augmentation techniques can be applied. In the realm of
biomedical signal analysis, window clipping stands out
as a widely utilized method. In our project, we have em-
ployed window clipping to augment the available data.
Nevertheless, this approach encounters challenges, par-
ticularly in determining the optimal quantity of clipped
windows and their overlapping ranges. During our ex-
perimentation, we conducted tests using different num-
bers of windows ranging from 1 to 4, with each window
having a fixed duration of 1 second. Additionally, we ex-
plored various overlapping ranges, spanning from 5% to
50%. These parameters were inherently constrained by
the duration of the useful signal.
In our proposed hybrid architecture, the LSTM compo-
nent follows the CNN component. This architectural ar-
rangement facilitates the seamless flow of information
from spatial to temporal domains, as the output of the
CNN is meticulously fed into the LSTM network. This
cohesive integration empowers the model to discern se-
quential patterns and dependencies within the ECoG sig-
nals, thereby enabling a holistic understanding of both
spatial and temporal aspects of the data.

By harnessing the collective strengths of CNNs and

LSTMs, our hybrid architecture endeavors to exploit spa-
tial and temporal information in tandem, thereby enhanc-
ing the discriminative power and interpretability of our
proposed model. This comprehensive approach facili-
tates a nuanced analysis and classification of ECoG sig-
nals, paving the way for advancements in neuroscientific
research and clinical applications.
In this work, we will analyze the results of our designed
model from 2 aspect. First, we want to find out how
adding LSTM as a classifier to the ECoGNet model may
enhance the accuracy percentage, and then we will test
the effect of using data augmentation method to the per-
formance of the designed model, and comparing the de-
signed model’s performance when we use different num-
bers of windows in data augmentation.

Figure 3: Hybrid Architecture

Figure 4: Modified EEGNET Architecture (Imported data
shape: 2000 x 16 x 8)

To find out the performance of the designed model, we
should provide a baseline model which is strong enough
to classify the ECoG data. As a baseline model, we uti-
lized Spatial Match Filters (SMFs), a non-deep learning
method commonly employed in BCI research, particu-
larly with ECoG data. SMFs have demonstrated promis-
ing results, achieving a classification accuracy of 76%
in four phoneme classification tasks [?]. This technique
involves a trial-by-trial comparison of activity patterns
against mean activity patterns of different conditions. Ini-
tially, the signal undergoes wavelet transformation into
the time-frequency domain, followed by computation of
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mean values across defined frequency bands and time-
points for each electrode, focusing on the high frequency
band between 65 and 95 Hz. The resulting mean val-
ues represent activity patterns for each electrode. Subse-
quently, correlation analysis is performed between each
trial’s activity pattern and the mean activity patterns for
nine classes. This correlation computation, conducted in
a leave-one-out fashion to ensure unbiased estimates, as-
signs each trial to the class with the highest correlation
pattern. Notably, only electrodes with significant func-
tional responses are included in the correlation computa-
tion, further enhancing classification accuracy.

The second baseline model which is used to comparison
aims is EEGNET that has been introduced.

RESULTS

The table 2 shows the results of implementing the de-
signed model to classify the 9 syllabus of each partici-
pant. the results shows a significant improvement in accu-
racy. when a LSTM layer is added. This is highlighted by
the fact that for all subjects the accuracy is at least 9 per-
centage points above the theoretical chance level of 11%
for the Hybrid DL Model while both ECoGNet and SMF
both show 3/6 subjects below or around chance level.

Table 2: Accuracy (%)

Participant SMF EEGNet Hybrid DL Model

S01 39 60 67
S02 24.9 20 20
S03 13.3 12 29.41
S04 0 14.3 33.33
S05 12.5 14.4 21.1
S06 20.2 27.8 27.8

Mean 18.32 24.75 33.11

As it is discussed in previous sections, we have used 5-
fold CV and also window clipping method to overcome
the limitation of data quantity. During our experimenta-
tion, we conducted tests using different numbers of win-
dows and explored various overlapping ranges. These pa-
rameters were inherently constrained by the duration of
the useful signal.

The results, presented in Table 3, clearly demonstrate the
efficacy of data augmentation in improving the model’s
proficiency in classification tasks.

By leveraging data augmentation techniques, we have
successfully enhanced the model’s ability to classify
biomedical signals. This augmentation strategy not only
mitigates the limitations imposed by data scarcity but also
contributes to the overall robustness and generalization
capability of the model.

Table 3: Accuracy with Different Numbers of Windows

Windows

Participant 1w 2w 3w 4w

S01 67 81 62 67.8
S02 20 20 20 20
S03 29.41 32.35 33.3 20.59
S04 33.33 40 43 36.11
S05 21.1 30.6 44.44 47.2
S06 27.8 36.1 27.78 30.56

Mean 33.107 40.01 38.42 37.04

Analyzing the table reveals an intriguing trend: an in-
crease in the number of windows from 1 to 2 correlates
with higher accuracy. However, this pattern falters as ad-
ditional windows are added, resulting in a decline in over-
all performance by mean. This observation underscores
a crucial point: not all segments of each trial contribute
equally to classification accuracy. Indeed, the informa-
tiveness of added windows varies, with non-informative
windows potentially detracting from overall results. No-
tably, this effect can differ across subjects. For instance,
Subject S05 demonstrates an increase in accuracy but ex-
periences a slowdown in processing speed with the in-
troduction of 3 and 4 windows. Conversely, Subject S01
witnesses a decline in accuracy after the incorporation of
the third and fourth windows.

DISCUSSION

Such disparities highlight the nuanced interplay between
participant concentration levels, physical capabilities,
and data quality. Indeed, individual differences among
participants can significantly influence the duration of in-
formative data within each trial. Moreover, the expan-
sion of the number of windows necessitates more exten-
sive data processing, demanding higher computational
resources and potentially leading to longer computation
times. Consequently, a delicate balance must be struck
between model accuracy and computational efficiency.
In certain scenarios, such as those where resource con-
straints are paramount, opting for two windows may rep-
resent the more optimal choice.
Thus, a thorough consideration of the trade-offs between
performance and computational resources is imperative
in maximizing the effectiveness of the classification pro-
cess while ensuring optimal resource allocation.

CONCLUSION

During this work, we proposed a novel hybrid deep learn-
ing model that combines a modified EEGNet for feature
extraction with a LSTM network for temporal analysis.
Our approach addresses the challenge of limited ECoG
data through the innovative use of window clipping as a
data augmentation technique.
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Our experiments, conducted on a dataset comprising
recordings from six subjects, demonstrate promising re-
sults. We observed a significant enhancement in classifi-
cation accuracy compared to previous models, affirming
the effectiveness of our hybrid model in recognizing the
syllabless.
Furthermore, our analysis of data augmentation tech-
niques highlights the importance of optimizing the num-
ber of clipped windows to balance classification accuracy
and computational efficiency. While increasing the num-
ber of windows initially improves accuracy, there is a di-
minishing return beyond a certain point, emphasizing the
need for careful consideration of resource constraints and
performance trade-offs.
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