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ABSTRACT: In this study, we developed and validated 

an online analysis framework in MATLAB Simulink for 

recording and analysis of intracranial 

electroencephalography (iEEG). This framework aims 

to detect interictal spikes in patients with epilepsy as the 

data is being recorded. An online spike detection was 

performed over 10-minute interictal iEEG data recorded 

with Brain Interchange CorTec in three human subjects.  

A pool of detected spikes is then broadcasted using User 

Datagram Protocol (UDP) to an external graphical user 

interface for further post-processing and visualization. 

The real-time spike detector demonstrated a 99% 

similarity index with the previously published offline 

detector, identifying interictal spikes. Furthermore, our 

findings indicated that channels with highest spike rates, 

captured with Brain Interchange CorTec, were in the 

epileptogenic focus. By enabling the detection of 

interictal spikes in an online fashion, this work provides 

early feedback on the probable seizure onset zone 

(SOZ) and suggests a promising direction for enhancing 

SOZ localization accuracy to clinicians, which is crucial 

for the surgical treatment of epilepsy.  

 

INTRODUCTION 

 
Epilepsy is a neurological disease marked by recurrent, 

unprovoked seizures, affecting millions of individuals 

worldwide [1]. A significant subset of these individuals 

(around 30%) suffer from medically intractable 

epilepsy, where seizures are not able to be well-

controlled by medication. The localization of the seizure 

onset zone (SOZ) — the brain area responsible for 

initiating seizures — is crucial for successful surgical 

intervention [2,3]. Intracranial electroencephalography 

(iEEG) has emerged as a fundamental tool in this 

endeavor, allowing for the precise monitoring of brain 

activity associated with epileptic discharges [4]. In 

recent years, interictal spiking activity, a brief transient 

event, has received considerable attention for SOZ 

localization. Although contradicting studies [5] were 

reported regarding the effect of interictal spikes and 

ictogenesis, these have been hypothesized by other 

studies as a potential biomarker for mapping the SOZ 

[6].  

The recent development of implantable devices capable 

of both recording and stimulating the human brain via 

iEEG contacts has offered great opportunities for 

treating neurological diseases [7-8] and has opened a 

new frontier in the development of brain-computer 

interfaces (BCIs). In this scheme, we showed the 

feasibility of recording iEEG with the Brain Interchange 

(BIC) of CorTec [9-10]. In this study, we expanded the 

framework with a new feature that can capture interictal 

spikes in an online fashion while iEEG data is being 

recorded. Despite the pioneering works [11-12], and 

advanced machine learning techniques in identifying 

spikes with high accuracy, the challenge of online 

detection of these events in a clinical setting remained 

primarily as an important step. 

This study introduces a novel MATLAB Simulink 

framework designed to automatically detect the spikes 

in an online fashion. By leveraging the robust recording 

capabilities of the BIC CorTec amplifier and online 

signal processing algorithms, our system provides a 

fully online analysis platform for iEEG data. Unlike 

previous offline frameworks [13-14] that may have 

required post-recording analysis, our framework detects 

interictal spikes as the data is being recorded. We send 

these detected spikes to an external application using 

user datagram protocol (UDP) for visualization of the 

morphology of these events, their spatio-temporal 

distributions, and further post-processing. 

To evaluate this framework, we draw comparisons with 

a previously published offline spike detector [13], 

highlighting our framework's capability to achieve a 

high similarity index in spike detection. Furthermore, 

our analysis of spike detection rates within and outside 

the clinically defined SOZ offers compelling evidence 

of the system's utility in surgical planning. 
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In summary, our work contributes to technological and 

clinical advancement in epilepsy research and treatment 

by providing an online, accurate, and reliable method. 

Moreover, we opened a new avenue for immediate 

clinical decision-making and intervention, ultimately 

aiming to improve the lives of those affected by 

medically intractable epilepsy.  

 
MATERIALS AND METHODS 

 
     Patient’s demographic: We recorded iEEG from 

three patients (two pediatric and one adult) diagnosed 

with pharmacoresistant epilepsy at Texas Children’s 

Hospital (TCH) of Baylor College of Medicine (BCM) 

and Mayo Clinic. This study was approved by the 

Institutional Review Boards (IRBs) of BCM and Mayo 

Clinic, ensuring that all experiments and methods were 

performed in accordance with relevant guidelines and 

regulations. Furthermore, informed consent was 

obtained from all participants and/or their legal 

guardians prior to incorporating their data into this 

study. 

The recordings were acquired in the epilepsy 

monitoring unit (EMU) using the BIC unit (Fig. 1A), 

which consists of 32 channels at a sampling frequency 

of 1 kHz. A subset of these channels was selected based 

on the clinically defined SOZ, while the remaining 

channels were chosen from areas outside the SOZ to 

validate the model. A random 10-minute section of 

interictal data was selected for further analysis. The 

clinical team at the affiliated institutes provided relevant 

medical annotations, including information about the 

SOZ.  

 
Figure 1: (A) The schematic representation of the BIC CorTec Evaluation Kit, illustrating the components, including 

the evaluation implant, the communication unit, and the Simulink model designed for efficient data acquisition and 

online spike detection. (B) The window-based amplitude threshold detector concept to capture interictal spikes in 

multichannel iEEG recordings. (C) The details of the Simulink model architecture, which includes the data acquisition 

model, monopolar to bipolar iEEG data conversion to preprocess the iEEG stream for enhanced spike detection 

accuracy, the spike detection algorithm, and a UDP data transfer block. This block facilitates the transmission of 

detected events to external software for further post-processing and visualization. (D) Showcases the external GUI 

developed for the post-processing and visualization of detected spikes. This interface receives the collected events, 

displays the spatial and temporal distribution of these events, and conducts additional post-processing to distinguish 

spikes with and without high-frequency oscillations (HFOs). (E) Provides examples of detected interictal spikes. 
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     Data recording and Online analysis framework: To 

duplicate a real-time rapid prototyping environment, we 

developed a Simulink model for the iEEG data 

acquisition. The previously recorded data was then fed 

back to the model at real-time speed (Fig. 1B) to 

simulate the real data acquisition. 

Furthermore, spike detection was conducted on the 

band-pass filtered data within the spike band range (10-

55 Hz), and the detected events pool was generated 

within the model (Fig. 1C). This pool was then sent to 

an external graphical user interface (GUI, Fig. 1D) for 

further post-processing and visualization using UDP. 

Additionally, spike detection was performed using an 

offline detector, and the obtained results were utilized as 

the ground truth to evaluate the performance of the 

online detection method. Examples of detected spikes 

are illustrated in Fig. 1E. 

     Wireless data transfer and missing packets recovery: 

The BIC unit facilitates wireless data transfer, which is 

a process inherently susceptible to data loss [9]. In this 

study, we addressed this challenge by employing linear 

interpolation to recover missing packets, thereby 

maintaining signal integrity. It has been demonstrated 

that this technique effectively restores iEEG data with 

minimal packet loss (<5%), particularly for spike 

detection in the frequency band below 80 Hz [9]. The 

recovered signal is then applied to subsequent analyses. 

     Threshold calculation and spike detection: 

To compute the adaptive threshold for spike detection, 

our model applied a second-order Butterworth high-pass 

filter at 1 Hz to remove the DC offset. Subsequently, the 

signal underwent band-pass filtering using a fourth-

 
Figure 2: (A) The schematic of the real-time adaptive threshold calculation within the iEEG data analysis framework. 

Initially, filtered iEEG streams within the frequency range of 10-55 Hz are directed into a buffer block, which captures 

128 ms of samples consecutively without overlap and calculates the standard deviation for each buffered segment. 

Subsequently, a second buffering stage accumulates 40 standard deviation samples without overlap, from which the 

median value is derived, serving as an estimation of background neural activity. The final step involves applying a 

multiplier to these median values, thereby generating an adaptive threshold for spike detection across each channel over 

intervals of 5.12 seconds. (B) The percentage thresholds difference between online and offline calculated across all 

channels and subjects. 
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order Butterworth filter with cut-off frequencies of 10 

Hz and 55 Hz. The filtered signal was buffered into 128 

sample-long segments and the standard deviation (std) 

was estimated for each frame. The std values were 

further buffered into 40 segment-long frames, and the 

median within each frame was calculated as the 

estimated background activity of iEEG data for each 

channel. Finally, a multiplier (×7) was selected based on 

the previous work [9] to compute the adaptive threshold 

for the stream of data (Fig. 2A).  

In this study, we observed differences in the threshold 

calculations of the filtered iEEG stream between online 

and offline analyses. These differences are due to the 

distinct filters employed in each process. Specifically, 

for offline processing, we used zero-phase filtering. 

This non-causal, bidirectional method leverages access 

to the entire dataset, leading to threshold values that 

may slightly differ from those generated by the causal 

filters employed in online processing. 

The adaptive threshold is initially computed at intervals 

of 128*40 milliseconds and then transformed into a 

continuous data stream. We utilized a rate transition 

block within our Simulink model to modify the 

sampling rate of the calculated threshold. Thus, aligning 

with the sampling rate of the iEEG data (1 millisecond). 

This adjustment ensures that the threshold applies to all 

iEEG samples and synchronizes with the temporal 

resolution of the data. 

The filtered iEEG and threshold values were then 

buffered into intervals of 640 sample-long segments 

with 512 samples of overlap for spike detection using 

the corresponding estimated threshold. In each segment, 

we found the points crossing the threshold levels and 

grouped them as a single event if their distance was 

smaller than a predefined interval. Furthermore, to 

ensure accuracy and specificity in spike detection, we 

implemented a strategy to exclude polyspike 

components, as discussed in [13]. A spike event is 

selected for further analysis only if its peak value is 

positioned at the center of the frame, specifically at 128 

samples into the 640-sample frame. An essential step in 

the detection process involves distinguishing distinct 

spike events to prevent redundancy. This criterion, 

aligned with the overlap size, helps in accurate event 

identification and isolates individual spikes.  

The channel information, timestamps, and segments 

with identified spikes are aggregated into an event pool. 

This pool is then broadcasted to a secondary computer 

via UDP for further processing. The separation of initial 

data acquisition and spike detection from subsequent 

post-processing and visualization ensures that the 

recording and primary analysis continue uninterruptedly 

with minimal computational demand. By structuring the 

methodology in this manner, we maintain a seamless 

and efficient workflow, allowing for continuous data 

acquisition and spike detection, followed by detailed 

event and pool visualization on a separate system. 

 

 

 

RESULTS 

 

In this study, we compared the adaptive real-time 

threshold with its offline counterpart over all channels 

across three subjects. This comparison is shown as a 

shaded plot illustrating the percentage difference 

between the real-time and offline thresholds for all 

channels across all subjects (Fig. 2B). Remarkably, in 

every instance, the difference between these two 

thresholds remained under 1%, with the maximum 

difference observed in the last subject (P3) being 

0.82±0.98%, indicating a negligible difference between 

real-time and offline threshold calculations. 

Further analysis was conducted by deploying the online 

spike detector on these datasets and comparing its 

performance with those spikes detected offline (Fig. 3, 

left panel). This study focused on the rate and spatial 

distribution of spikes detected in both online and offline 

methods, as well as their occurrence in clinically 

defined SOZ across subjects. Our approach to 

comparing detected spikes involved two individual 

methods. Initially, we evaluated the cosine similarity 

between the spatial distributions of spikes detected, 

discovering the alignment in spike distributions across 

all channels, with similarity indices surpassing 0.99 and 

angular differences between the spatial distribution of 

spike vectors in online and offline analysis measuring 

1.6°, 2.0°, and 1.8°, respectively (Fig. 3, middle panel). 

Additionally, we employed the Kolmogorov-Smirnov 

statistical test to compare the rate of detected spikes 

across all channels in both online and offline analyses. 

This statistical evaluation revealed no significant 

difference, with p-values of 0.93, 0.99, and 0.99 for 

subjects 1-3, respectively (Fig. 3, right panel). 

Importantly, our observations highlighted that the rate 

of detected spikes was consistently higher within the 

SOZ than outside the SOZ across all three cases. 

Notably, the initial two contacts exhibiting the highest 

rate of spikes were identified within the SOZ for all 

subjects. While this finding confirms previous works 

[9], it underscores the efficacy of employing the BIC 

CorTec system for online spike detection and 

emphasizes its potential in accurately identifying 

probable SOZ sites. This insight not only reaffirms the 

precision of our spike detection framework but also 

demonstrates its utility in enhancing the accuracy of 

SOZ localization, offering significant implications for 

the future of epilepsy treatment and management.  

 

DISCUSSION 

 

The current work introduces a fully online framework 

designed for the detection of interictal spikes, capable of 

broadcasting detected events to external applications for 

subsequent postprocessing and visualization. The 

methodology is structured around three main 

components: first, a complete data acquisition module; 

second, an online spike detection module—both 

developed as level-2 MATLAB s-functions handling 

data acquisition and initial spike identification. The 
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third component features a user-friendly GUI that 

receives and visualizes the detected events. All essential 

signal processing blocks have been implemented in 

Simulink MATLAB to better control the entire 

framework. 

The entire processing pipeline was validated by 

randomly selecting 10-minute segment of BIC CorTec 

pre-recorded interictal iEEG from three human subjects 

streamed in real-time as data playback to illustrate the 

online spike detection concept. This approach allowed 

for a comparison with a previously established offline 

spike detector, revealing that channels with the highest 

spike rate were associated with the SOZ. 

In recent years, there has been a growing interest in 

spike-guided surgical intervention, referred to as spike-

tailored surgery [5-6]. Furthermore, a real-time spike 

detection is crucial for enabling closed-loop 

neuromodulation or BCI applications, where timely and 

accurate detection of neural activity allows for 

responsive and adaptive interactions between the brain 

and external devices. In response to these interests, and 

as a tool that is essential for the analysis of iEEG 

recordings, we implemented the online spike detector 

and added it to the main data acquisition setup.  The 

developed Simulink model holds the potential for 

adapting to online spike detection from data streams 

recorded with various biomedical amplifiers, 

broadening its applicability in future research. 

 

CONCLUSION 

 

We have successfully demonstrated the feasibility of 

recording iEEG from human subjects using the BIC 

CorTec device in a basic rapid prototyping environment 

within Simulink. In addition, we have integrated a real-

time scenario for detecting interictal spikes as a new 

 
Figure 3: (Left Panel) The comparison of the spike rates across channels, contrasting the performance of online and 

offline spike detection. (Middle Panel) Illustrates the cosine similarity index between the spatial distributions of spikes 

detected in online and those identified through offline analysis. It shows the degree of alignment between the two 

detection methods were more than 99% in all cases. (Right Panel) Presents spike rates obtained from online and offline 

analyses across channels for each subject. Statistical analysis reveals no significant differences in the rate of spikes 

detected through online and offline analyses across the subjects, with p-values of 0.93, 0.99, and 0.99, respectively. 
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feature on top of this framework. Our goal is to continue 

evolving this framework by incorporating additional 

functionalities that will allow for concurrent analysis of 

iEEG data during the recording process. 

An important aspect of our approach is the concept of 

broadcasting initially detected events, i.e., interictal 

spikes, thus transforming the data acquisition computer 

into a host. The host then streams the detected events to 

various clients for further post-processing and 

visualization. This strategy, when augmented with 

enhanced functionalities in iEEG, has the potential for 

iEEG surgical planning in the future. 
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