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ABSTRACT: Electroencephalogram (EEG)-based
brain-computer interfaces (BCI) emerged as systems
to aid impaired people in daily life. Nowadays, the
number of applications and target users of BCI has
increased, including those for education purposes.
An example of these applications, called neurotutor,
was posited in 2015 for improving students’ learn-
ing process. As a first step towards developing a
neurotutor, we analyzed the EEG responses related
to two types of reading. Specifically, this work as-
sessed whether a machine learning algorithm can dis-
tinguish accurately between both classes from fea-
tures obtained from the signals using one of three
wavelet-based techniques. Also, the impact of epoch
length on classifier performance was assessed. The
method performance was analyzed under two sce-
narios (intra-subject and inter-subject), outperform-
ing previous work. The best average accuracies
were 94.40 ± 5.10% and 54.40 ± 6.7% for intra-
subject and inter-subject classification, respectively.
Although the progress obtained for the intra-subject
scenario is promising, several steps must be done
to effectively implement a neurotutor, especially in
inter-subject scenarios.

INTRODUCTION

BCIs are systems that leverage the neurons’ elec-
trical activity, to generate an alternative channel
that does not depend on muscular or verbal outputs.
Some BCIs’ applications are rehabilitation systems,
videogames, neuromarketing, and recently in educa-
tion [1].
On the other hand, Intelligent Tutoring Systems
(ITS) are computer assistive systems designed to
provide adaptive, personalized content for students
[2]. In 2015, a novel ITS and BCI application named
Neurotutor was elucidated aiming to enhance stu-
dents’ learning experiences and tailoring the content
to individual needs. [3].
A fundamental skill in education is reading, which
serves as a critical gateway to learning and academic
development. Moreover, reading fosters cognitive
skills, such as information processing and inference,

self-learning, and analytic thinking.
Previous works have attempted to analyze EEG sig-
nals related to the reading process [4, 5]. Also, in
[6, 7] a database of EEG signals associated with two
reading states was collected and processed with a
baseline method to differentiate the reading states.
[8] explored this database to characterize the nor-
mal reading paradigm looking for patterns of event-
related potentials.
In this work, a first step toward the development
of an EEG-based neurotutor was made, by analyz-
ing and processing the dataset collected in [6] to
distinguish between two normally employed reading
strategies (types), comprehension reading (NR), and
Task-Specific Reading (TSR aka scanning). Particu-
larly, this study evaluated the capability of machine
learning algorithms to accurately differentiate be-
tween both reading tasks using three wavelet-based
methods. Additionally, the impact of epoch-length
on classification performance was assessed.
A neurotutor would benefit from assessing reading
comprehension to adapt the contents based on the
readability of a text. During NR, the student focuses
on deriving information about the central themes of
the text and drawing inferences. Whereas TSR is
a reading strategy in which the reader focuses on
specific information (keywords). TSR is usually em-
ployed as a pre-reading strategy, in which the user
can decide whether a text provides relevant infor-
mation for the task in question, or after reading,
to locate segments of interest. Therefore, recogniz-
ing when students engage in one strategy of read-
ing could guide the neurotutor, leading it to adjust
to contents that promote deeper comprehension, all
while trying to maintain the engagement and moti-
vation of the user.

MATERIALS AND METHODS

1. Dataset description and preprocessing
The Zurich Cognitive Language Processing Corpus
2.0 (ZuCo 2.0) is a dataset of two physiological sig-
nals, EEG and eye-tracker, of 18 English native-
speaking subjects recorded during two different read-
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ing tasks. In the experiment, subjects were asked
to read sentences from an annotated Wikipedia cor-
pus (in English), in which each sentence is associ-
ated with a specific semantic relation (i.e. Political
affiliation, education, founder, wife/husband, job ti-
tle, nationality, and employer). Participants were
asked to read sentences with two different purposes,
(1) to find an implicit relation in a text (Task Spe-
cific Reading (TSR), 390 sentences) and (2) to fully
comprehend the meaning of the sentence (Normal
Reading (NR), 349 sentences). To encourage read-
ing comprehension during the NR task, some control
questions were randomly presented after some in-
stances. Additionally, each participant was required
to do a linguistic assessment (Lexical Test for Ad-
vanced Learners of English) to measure their lan-
guage proficiency [6].
In this work, only EEG signals were employed for
classification, seeking to reduce the amount of data
needed for the classification. Moreover, EEG signals
are currently being researched to derive implicit in-
formation about the user’s state (memory load, emo-
tions, etc.), this information could aid in the devel-
opment of a neurotutor. The signals were recorded
using a 128-electrode Geodesic Hydrocel System with
a sampling frequency of 500 Hz. EEG signals were
preprocessed by [6], using Matlab’s Automagic and
the Multiple Artifact Rejection Algorithm (MARA).
Twenty-three electrodes were removed during this
stage because of their predominant muscular and oc-
ular information. Furthermore, to reduce data size
and computational load, signals were downsampled
to 256 Hz.

2. Epoch extraction
Since natural and untimed reading was encouraged
during both task reading, the duration of reading
epochs was variable. To standardize the length of
the signals of all participants, epochs of 1, 2, and
3 seconds were selected to analyze the significance
of epoch length in classification performance, full-
length signals were also analyzed to establish a ref-
erence. Records of at least 3 seconds were selected
for this analysis, which created a class imbalance;
thus a random selection of 100 epochs (samples) per
class was applied. Participant YDR was excluded
from this study because of insufficient epochs per
class. Epochs were extracted from the center region
of each sentence, which means the 1-second epoch is
contained in the other two epochs, and the 2-second
epoch is contained in the 3-second epoch. The whole
epoch was also analyzed to obtain a benchmark and
evaluate the significance of using a shorter epoch for
analysis.

3. Channel selection
After the preprocessing stage, a set of 105 chan-
nels were kept. Given the inherent characteristics
of EEG, certain channels exhibit redundant infor-
mation; for this reason and aiming to reduce classi-

fication times, our experiments were focused on 31
electrodes taken from a standard 32-electrode setup.

4. Feature extraction
Wavelet-based methods have been proven to be accu-
rate techniques to characterize and process biomed-
ical signals [9], which due to their complexity and
variability tend to be hard to analyze. In this work,
three wavelet-based techniques were analyzed to find
the best characterization of the EEG signals related
to reading tasks.

4.1 Discrete Wavelet Transform (DWT)
This method decomposes the signal using a series of
filters. The filtering process is limited by the sam-
pling frequency and the length of the signal. DWT
provides n-levels of decomposition, by dividing the
signal into a high-frequency component (detail co-
efficients) and a low-frequency component (approx-
imation coefficient). A second-order Daubechies is
used as the mother wavelet, with 6 levels of decom-
position. A 2nd-order Daubechies is chosen because
of the similarity between the wavelet and EEG pat-
terns; moreover, it has been used successfully to clas-
sify EEG signals for seizure detection in epilepsy [9].
The EEG signal, located within 0.5 to 50 Hz, has of-
ten been characterized in terms of five brain rhythms:
delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 14 Hz),
beta (14 - 30 Hz), and gamma waves (higher than 30
Hz). DWT analyzes the signal in the time-frequency
domain by decomposing it into sub-bands. Given a
256 Hz sampling frequency, DWT efficiently matches
these frequency bands, enabling the extraction of
characteristics pertinent to cognitive tasks. Then for
each level of decomposition, eleven features were cal-
culated: mean, root-mean square (RMS), kurtosis,
median, maximum and minimum amplitude, stan-
dard deviation, energy, Instantaneous Wavelet En-
ergy (IWE), Teager Wavelet Energy (TWE), and Hi-
erarchical Wavelet Energy (HWE). In total, 77 fea-
tures were computed for each channel, resulting in
2387 features per epoch.

4.2 Continuous Wavelet Transform (CWT)
Continuous Wavelet Transform highlights the intri-
cate relationship among the frequency, time, and
energy of a signal, through a visual representation
known as the ’scalogram’. In this study, CWT of
each EEG channel was computed using an Analytic
Morlet wavelet as the mother wavelet. The scalo-
gram was then divided into the EEG bands described
in Section 4.1: delta, theta, alpha, beta, and gamma.
From each band, a comprehensive set of 29 charac-
teristics was extracted. These features include the
flux at 0, 45, and 90 degrees, as well as the en-
ergy of the scalogram, which reflects amplitude vari-
ations across the frequency and time axes of the
scalogram. Additionally the RMS, mean, standard
deviation, skewness, kurtosis, maximum value, en-
tropy, and three key percentiles (75th, 50th, and
25th) were computed. Furthermore, an entropy filter
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from Matlab’s Image Processing Toolbox was applied
to each EEG band, this filter computes the entropy
across the image, highlighting the dynamic changes
and complexity of the entropy measure within the
CWT coefficients. For each entropy-filtered scalo-
gram, features such as the mean, standard devia-
tion, RMS, skewness, kurtosis, and the three per-
centiles were computed. Subsequently, the average
waveform was derived by calculating the mean at
each time point across the frequency spectrum of
the segmented scalogram. Seven features were then
extracted from this averaged signal: mean, median,
standard deviation, kurtosis, skewness, RMS, and
sample entropy. As a result, 145 characteristics were
computed for each scalogram, given that 31 chan-
nels were employed within the study, a total of 4495
features were computed per sample.

4.3 Wavelet Scattering Transform
Wavelet Scattering Transform (WST) is a novel
wavelet-based method used for the analysis of time
series that exhibit non-linear and non-stationary
characteristics, such as EEG signals. This advanced
mathematical technique yields sparse representations
that are invariant to translations and stable to de-
formations.
In the first level of WST, a decomposition produces
a series of coefficients at different scales. A modu-
lus operation is then applied to these coefficients to
capture the signal’s energy across various frequen-
cies. The resulting modulus wavelet coefficients are
subsequently averaged, yielding translation-invariant
features of the signal. This operation is recursive
yielding higher order coefficients. Typically, first and
second-order coefficients capture the majority of rel-
evant frequency information of naturally occurring
phenomena. These features are unique to the scat-
tering transform’s framework and serve as the foun-
dation for its powerful signal analysis capabilities.
In this work, the scattering time-invariant first-order
coefficients are divided into five segments related
to brain rhythms (delta, theta, alpha, beta, and
gamma). Similar to CWT, WST yields a visual rep-
resentation often referred to as ’scattergram’, which
relates time, frequency, and power information of
the EEG signal. For each EEG-Band derived co-
efficients, the 29 descriptors described in Section 4.2
were computed, resulting in a total of 4995 features
per epoch.
All three wavelet-based methods were applied to the
three epoch lengths ( 1, 2, and 3 seconds) and for
the complete signal.

5. Classification
This study aimed to compare the wavelet-based
methods for the classification of EEG signals ob-
tained during two types of reading. Given that EEG
signals are highly variably across subjects and even
across sessions, an intra-subject approach was pur-
sued, to validate the discrimination power of the

proposed method. Nevertheless, training individual-
ized models requires gathering extensive data, which
can be time-consuming, so an evaluation of an inter-
subject classification scheme was attempted.

5.1 Intra-subject Classification
For intra-subject classification (IAC), a model was
trained for each subject in the dataset. The model
was evaluated using a 5-fold validation, with 40 sam-
ples (20 of each class) per fold for the testing stage.
Three classification algorithms were tested: Sup-
port Vector Machine (SVM with a quadratic kernel),
K-Nearest Neighbors (KNN with 5 neighbors), and
Random Forest (RF with 100 trees). A total of 36
classifiers were trained per subject due to the lengths
of the four epochs, three feature-extraction methods,
and three classification algorithms were compared.

5.2 Inter-subject Classification
In addition to IAC, an inter-subject classifier (IEC)
was trained, using a leave-one-subject-out cross-
validation. Prior knowledge of the best epoch du-
ration and feature extraction method was inferred
from IAC. 2-second and 3-second epochs were ana-
lyzed, using DWT-based features and RF.

RESULTS AND DISCUSSION

The experiments were carried out to evaluate
whether machine learning algorithms, trained on
time-frequency representations of EEG signals and
with different epoch lengths, could detect differences
in brain patterns from subjects engaging in two types
of reading: TSR and NR. Furthermore, this ratio-
nale was analyzed in two scenarios of classification:
intra-subject (personalized models) and inter-subject
(generalized models).

1. Intra-subject experiments
Figure 1 shows an analysis of epoch length and its
impact on classification performance. In this Figure
the global average accuracy for all subjects is taken,
regardless of the classification algorithm used, pri-
marily to determine if the length of the signal af-
fects classification outcomes. A trend is observed
across all wavelet-based methods; as the epoch size
is increased, the performance of the classifier is en-
hanced. This does not hold when analyzing full-
length signals in DWT-derived features. Last, for
this and the remaining figures the chance level (50%
for two balanced classes) is shown as a dashed line. A
non-parametric, Kruskal-Wallis test, with a post-hoc
follow-up Dunn’s test was performed for each wavelet
feature group. Significant differences were found be-
tween the one-second epoch and the 3-second epochs
in all characterizations. Given the trend observed,
and the reduced computational costs in epoch analy-
sis, the two-second and 3-second epochs were further
analyzed as promising for TSR and NR classification.
A comparative analysis of machine learning algo-
rithms (KNN, SVM and RF) was conducted for
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Figure 1: Comparing how epoch length affects classifica-
tion using wavelet-based features, average accuracy from
IAC is shown across KNN, SVM, and RF classifiers. Re-
gardless of classifier type, accuracies are averaged to em-
phasize epoch length’s impact. Significant differences be-
tween epoch lengths are marked with asterisks (p < 0.05,
Dunn’s test).

all feature extraction methods, using the 3-second
epoch, which achieved the highest averaged perfor-
mance. Figure 2 presents a comparison of the clas-
sification algorithm and its effect on global accuracy
across all subjects. Significant differences were found
in CWT-derived methods, for KNN and RF, as well
as for KNN and SVM algorithms. Using WST, dif-
ferences were found between KNN and RF. On the
other hand, the best performances were obtained for
DWT and WST regardless of the machine learning
algorithm used.
For both wavelet-based methods, the best classifi-
cation performance was yielded using RF with an
accuracy of 94.40±5.10%, DWT and 94.80±5.10%,
WST). Furthermore, DWT-based descriptors exhib-
ited consistent performance across all three machine
learning algorithms. DWT has positioned itself as a
valuable tool for EEG classification since it provides
a time-frequency analysis without information loss
or alteration while reducing computational costs [9].
A baseline classifier was trained using the charac-
teristics proposed by [7], and evaluated through the
same classification scheme. Baseline characteristics
were obtained by filtering each epoch into the rele-
vant EEG bands and obtaining the mean amplitude
from each EEG component. To ensure comparable
results, the 31 channels selected in this study were
also used for benchmark classification.
Even though no significant differences were found
within the proposed features and the benchmark, our
approach utilizes epochs of 2 and 3 seconds, mean-
while, the average signal length from the original
recordings is 5.84 seconds for NR and 4.81 seconds
for TSR[6]. Short epochs reduce computational costs
and would be more suitable for online applications.
Figure 3 shows accuracies obtained for each subject,
employing both the DWT-derived features with RF
classifier and 3-second epochs. The best accuracy
(i.e. 99.50 ± 1.11) was achieved by subjects YAK
and YMS. Besides that, all subject accuracies were

Figure 2: Intra-subject performances compared be-
tween wavelet-based and benchmark features using three-
second epochs (optimal length). Asterisks indicate sig-
nificant differences (p < 0.05, Dunn’s test).

greater than 85%. Additionally, the scores provided
in [6] for NR control questions (NR scores), and cor-
rect semantic text identification (TSR scores) were
analyzed to see if task classification was correlated to
individual performance in each task. No correlation
was found between classification performance and
NR/TSR scores (Spearman test). However, a low
performance across classifiers and epochs was consis-
tently observed for YAG, achieving one of the low-
est performances (i.e. 87.70 ± 4.67). This outcome
could be explained because YAG also exhibited a low
performance on semantic identification. On the other
hand, subjects such as YRK, YLS, YMD, YMS, ex-
hibited great performance in both control tests and
similarly an accurate classification in the proposed
methodology. Although YAK received the lowest
score for the set of random questions in NR, the algo-
rithm demonstrated good performance. Since ques-
tions were randomly presented, for NR scores it is
difficult to assess if scores truly reflect the quality of
the task being performed by the user.

Figure 3: Intra-subject accuracies by RF after 5-fold
cross-validation using DWT-based features and 3-second
epochs. Also, NR and TSR scores are shown [6]. NR
scores show the accuracy of responses to randomly posed
comprehension questions, while TSR scores refer to the
correct identification of semantic relations within the
text.
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2. Inter-subject experiments
Despite constructing a universal model to interpret
highly variable EEG signals being a complex chal-
lenge, an experiment for inter-subject classification
was also performed on the data, using a leave-one-
subject-out validation. For this experiment, only
two and 3-second epochs were analyzed, using the
most stable characterization (DWT). Additionally, a
deep-learning architecture specialized in EEG data
(EEGNet) was trained for the identification of NR
and TSR, for the 2 and 3 second epochs. The hy-
perparameters for the network were selected based
on the recommendations of the EEGNet developers
(128 kernel length) [10]. Also, some parameters were
taken from [4] such as Adam optimizer and a batch
size of 16 instances. Since that work analyzed EEG
signals related to the reading process and obtained
promising results. Likewise, 100 iterations were cal-
culated.
A baseline classifier was trained using the charac-
teristics used in [7] and evaluated through the same
classification algorithms. Benchmark features were
originally calculated using full-length signals. All the
models were trained using data from the 31 selected
channels. Table 1 presents the performance for all
trained models.
The best classification performance, 54.4±6.7, was
achieved by DWT-derived features, using a 2-s
epoch. Despite baseline features achieving a global
classification accuracy lower than the chance level,
all proposed methods and EEGNet slightly outper-
formed the chance level for the two classes. This
could imply different cognitive processes are under-
taken in both reading tasks that could be general-
ized efficiently across subjects through the proposed
methodology and EEGNet. Despite no classifier got
a higher average accuracy than the empirical chance
level for 100 trials per class (58%) [11]; this threshold
was overcome for eight subjects.

Table 1: Performance comparison between DWT-based
models, EEGNet and baseline descriptors for inter-
subject classification.

Method Average Median Max - Min
2-s epoch 54.4 ± 6.7 53.5 68.0 - 45.0
3-s epoch 51.7 ± 7.2 52.0 66.0 - 37.0
EEGNet 2-s 52.9 ± 8.8 52.0 74.5 - 38.5
EEGNet 3-s 48.06 ± 11.54 50.0 66.5 - 27.0
Baseline 49.5 ± 12.0 46.5 80.0 - 31.5

Figure 4 shows the individual test accuracy obtained
after leave-one-subject-out validation. Both the pro-
posed methodology and EEGNet implementation
generally achieved accuracies surpassing the theoret-
ical random classifier. Specifically, EEGNet showed
an accuracy above the 50% threshold for approx-
imately 8 subjects, whereas the proposed method
achieved this for 12 out of 17 subjects. For the em-
pirical random classifier, 5 subjects surpassed the

Figure 4: Test accuracy for each subject after leave-one-
subject-out validation is shown for three methods: (1)
Proposed method using a 2-second epoch, DWT-derived
features and RF; (2) EEGNet classifier, and (3) Baseline
method trained with the features from [7] and RF. The
theoretical and empirical [11] chance levels are indicated
by black and red dashed lines, respectively.

58% threshold. This suggests time-frequency fea-
tures, along with RF might be useful to discern be-
tween reading tasks. Moreover, when compared to
the baseline classifier leveraging features proposed
by [7], this study showed the majority of the partici-
pants (9) obtained the lowest classification accuracy,
while 13 subjects did not surpass the random classi-
fier. Therefore, baseline characteristics do not seem
suitable for the task (even though the overall best
accuracy was obtained using them, through subject
YRP).
Interestingly, subjects who under-perform in the
intra-subject approach (YAG, YDG, and YFS), have
similar low results for the inter-subject classifier, ob-
taining results near random classification (Proposed,
EEGNet), or below it (Baseline). Similarly, subjects
YAC, YFR, YRK, YMD, overperform both in intra-
subject and intersubject analysis.
Reading is a complex task, that requires the activa-
tion of various brain sub-processes; beyond language
processing and visual decoding, reading evokes re-
sponses from attention, working memory load, ab-
stract reasoning, and memory pathways. Conse-
quently, we hypothesized NR and TSR could be
differentiated through EEG patterns since cognitive
and attention demands are different in each read-
ing strategy. Within this study, DWT-based fea-
tures allowed the distinction of the two types of read-
ing using EEG data. These differences, represented
through the time-frequency domain, result from spe-
cific brain processes, such as attention or cognitive
load. Additionally, inter-subject classification rates
above the random classifier reflect subtle patterns
that are generalized across subjects. Research by
Hollenstein et al. furtherly support this idea, using
eye-tracking. In their study, results indicated sub-
jects focused uniformly on each word when engaging
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in NR, on the other hand, in TSR subjects focused
on words that determined a specific semantic relation
and skimmed through the rest. Reading times were
also reduced while engaging in TSR [7]. Despite this,
more studies are required to identify features that al-
low classification, based on cognitive differences.
An ideal neurotutor, would benefit from the detec-
tion of different reading states to provide active feed-
back about the psycho-emotional state of the user.
Cognitive overload and academic stress can impair
students’ well-being and decrease academic perfor-
mance. Likewise, professors could use this as a tool
for monitoring students’ progress or evaluating con-
tents in concordance with students’ comprehension.
Although scanning or TSR is a common reading
strategy, useful for navigating through large amounts
of information, their extensive use could result in sur-
face level comprehension [12]. A neurotutor could
adapt the contents’ readability and encourage read-
ing comprehension through different activities, thus
helping to reduce the use of scanning and pursuing
deeper comprehension in the user.

CONCLUSIONS

The first approach to NR and TSR classification in-
volved an IAC in which an analysis of epoch length,
feature extraction method, and classification algo-
rithm were assessed. Best accuracy (i.e. 94.40 ±
5.10) was achieved using 2s and 3s epochs, DWT-
derived features, and RF classifier. All subjects per-
formed beyond 85% accuracy. Furthermore, for some
cases, a relation was found between classifier per-
formance and control test scores, which could imply
that diminished performance in task completion re-
duces classification outcomes.
IEC proved to be a complex task; nevertheless, both
the proposed method (2s epoch, DWT, RF) and
EEGNet performed above the random and bench-
mark classifier. From this, it could be inferred there
are brain patterns shared across subjects when per-
forming reading tasks, namely NR and TSR.
Future works will explore the relationship between
classification performance and control questions, to
determine if removing low-performing subjects could
increase classifier performance. Further, techniques
of data augmentation could be employed to gain
more insight into differences in the reading patterns.
Likewise, changes in the inclusion criteria for epoch
selection could be performed, even if it results in
unbalanced classes. Inter-subject complexity derives
from the intricate nature of EEG signals, since they
are variable across subjects and even across sessions.
A generalized model, enhanced by a limited number
of training samples from the new user, could improve
classification accuracy while maintaining the benefits
of limited training time.
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