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ABSTRACT: This study addresses a key challenge in
motor imagery (MI)-based brain-computer interfaces
(BCIs): improving the decoding accuracy of electroen-
cephalography (EEG) signals. We investigate the inter-
task transfer learning potential between motor execution
(ME) and MI to enhance the calibration phase of MI-
BCIs. Utilizing the EEGSym deep learning network, we
demonstrate that ME data can effectively train models for
MI classification. Additionally, our analysis identifies a
significant positive correlation between performances on
ME and MI tasks. These findings support the feasibility
of a ME-based calibration approach for MI tasks in BCI
systems, leveraging the neural and functional similarities
between ME and MI. This approach maintains BCI per-
formance and potentially makes it easier to accommodate
new users to the MI task while recording ME data during
calibration, which could serve as an indicator of the ex-
pected MI accuracy. Furthermore, our results suggest that
we can exploit the synergies between ME and MI with-
out significantly reducing decoding accuracy of the user’s
intentions.

INTRODUCTION

Brain-computer interfaces (BCIs) offer a novel commu-
nication channel, directly linking the human brain to ex-
ternal devices [1].These systems are designed as closed-
loop systems with three stages: the recording of brain ac-
tivity, the processing of this data to interpret the user’s
intent, and providing feedback to the user. Electroen-
cephalography (EEG) is favored in the recording stage for
its non-invasive nature, portability, and excellent tempo-
ral resolution [2]. Furthermore, it is more affordable than
the alternative techniques used for capturing brain dy-
namics. An EEG-based BCI system captures the brain’s
electrical activity using electrodes placed on the scalp.
In the processing stage, these signals are analyzed to de-
code the user’s intentions [1]. The processed information
then translates into feedback, which could be provided as
visual cues on a monitor or the manipulation of a pros-
thetic limb [3]. Despite EEG’s advantages, the technique

faces significant hurdles, such as its inherently low spa-
tial resolution and the challenge of a poor signal-to-noise
ratio (SNR). BCIs, therefore, employ various paradigms
to generate recognizable brain patterns in the EEG, fa-
cilitating the decoding process. Motor imagery (MI), the
voluntary simulation of movement without physical ex-
ecution, is one paradigm that has gained increased re-
search interest. MI activates the primary motor cortex
and associated motor regions, mirroring the neural ac-
tivation patterns observed during motor execution (ME)
[4–6]. This neural overlap between MI and ME has crit-
ical implications, particularly in rehabilitative contexts.
Research demonstrates that employing MI-based BCIs in
a closed-loop system, complemented by functional elec-
trical stimulation as feedback, can significantly bolster
brain plasticity. Moreover, such targeted interventions
have been crucial in enhancing ME capabilities among
stroke patients [6].

Nonetheless, one major drawback of MI-based BCIs lies
in the difficulty of achieving high enough decoding ac-
curacy from EEG signals. Conventional machine learn-
ing (ML) approaches often struggle with BCI inefficiency
[7], a phenomenon where BCI systems cannot reliably
interpret and extract distinct features from an individ-
ual’s EEG signals, impacting an estimated 10-50% of
users in MI-based BCI applications [8]. Such users fail
to attain effective BCI control, a condition that prior re-
search identifies as exceeding a threshold 70% accuracy
in binary MI tasks [9, 10]. This inefficiency has been
attributed to the shortcomings in the classification stage
[11], recording system limitations, or diminished user
motivation over prolonged skill acquisition periods [12].
Moreover, there are elusive additional factors that further
contribute to BCI inefficiency. Given that classical ML
techniques need a calibration stage at the start of each
session to address inter-subject and inter-session variabil-
ity [13], ensuring this calibration phase captures accu-
rate and relevant information becomes critical for the ses-
sion’s subsequent success. However, verifying whether
users have correctly comprehended the instructions or are
engaging in the MI task poses a significant challenge. An
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inadequate calibration run can result in confusing feed-
back, reducing user motivation and potentially leading
to BCI inefficiency. This underscores the importance of
having a more robust calibration process that can effec-
tively minimize these issues.
Prior research has identified the calibration phase in BCIs
as a significant bottleneck, proposing the use of deep
learning (DL) models with strong transfer learning ca-
pabilities to overcome the inter-subject and inter-session
variability [11, 14, 15]. These DL architectures could
be employed in a calibration-less scenario by leveraging
MI trials from various users. However, this strategy en-
counters limitations since the data used to train has been
recorded providing feedback of a similar flawed calibra-
tion, or it is collected without providing any feedback to
the user or the observer on the MI being properly per-
formed. In this work, we investigate a less explored strat-
egy: utilizing inter-task transfer learning not just across
users but also between ME and MI paradigms [16–18].
Lee et al. [16] and Miao et al. [18] demonstrate that a
model trained in ME data can effectively translate into an
MI task with a minimal amount of MI examples. Shuqfa
et al. [17] employ data from both ME and MI trials to
train their classifiers simultaneously, aiming to improve
accuracy due to the similarities between the tasks. We
will further evaluate the feasibility of using data from
users performing ME to classify MI trials, specifically
excluding MI trials in the training set. This approach
could enable objective verification of ME activity being
performed by visual inspection, thus eliciting discernible
brain patterns, which will isolate errors to the record-
ing system. Moreover, it could potentially enhance the
preparation for rehabilitation-focused MI-based BCI ap-
plications through closer alignment with actual ME brain
patterns. Furthermore, leveraging ME data from multiple
users could be more reliable to train deep learning models
that focus on more relevant brain patterns.
Our research investigates the correlation between upper-
limb ME and MI, assessing the extent of transfer learning
capabilities of EEGSym [11], a DL network previously
validated in inter-subject MI classification. Additionally,
we aim to elucidate the impact of current EEG record-
ing system limitation on BCI inefficiency by examining
the performance correlation between ME and MI tasks.
To accomplish this goals, we analyze public database of
non-invasive EEG recordings from 109 healthy users per-
forming MI and ME tasks without feedback [19].

MATERIALS AND METHODS

Dataset and preprocessing:
The Physionet dataset [19] encompasses recordings from
109 healthy participants during one session. These ses-
sions included one run of 42-46 trials focusing on MI
without feedback and another run on ME. In both runs,
the duration of the imagination or execution phase for
each trial was 3 seconds. The 64-channel EEG signal was
recorded using the BCI200 system [20]. The majority of

the dataset, covering 105 participants, was recorded at a
sampling frequency of 160 Hz, while the recordings from
the remaining 4 participants were captured at 128 Hz.
Prior to inputting the dataset into the DL network for
classification, we perform a structured preprocessing
pipeline, detailed as follows: (1) we apply a notch filter
to remove the power line signal, (2) we perform common
average reference (CAR) spatial filtering, (3) we do a re-
sampling to 128 Hz to homogenize the dataset across the
different sampling rates of the input for the DL model,
(4) we extract the trials with a time window length of 3
seconds after the onset, and (5) we apply channel-wise
z-score standardization on each trial.

DL architecture and training:
The open implementation of EEGSym [11] will be used
for classification. EEGSym introduces a pioneering con-
volutional neural network (CNN) architecture designed
for the classification of MI across different subjects pre-
sented in our prior work [11]. Leveraging cutting-
edge DL methodologies, EEGSym incorporates residual
connections, implements data augmentation strategies,
employs inter-subject transfer learning, and features a
siamese-network design that capitalizes on the inherent
symmetry of the brain along the mid-sagittal plane. This
CNN has demonstrated significantly improved accuracy
in binary MI inter-subject classification, outperforming
the performance of four previously established CNNs
developed for EEG classification: ShallowConvNet and
DeepConvNet [21], EEGNet [22], and EEG-Inception
[23]. TEEGSym achieved groundbreaking results, setting
a new benchmark for accuracy in inter-subject MI classi-
fication.
The selection of this networks is primarily motivated by
its tailored design for inter-subject classification scenar-
ios, which was proven by its superior performance in such
tasks. It emerges as one of the better choices to discern
and emphasize patterns universally present among users
engaged in both MI and ME tasks [7]. This property is
expected to also boost transfer learning efficiency across
these tasks, thus enhancing the robustness of comparative
analyses regarding task performance.
This model was trained on a NVIDIA 3080 Ti GPU, with
CUDA 11.2 and cuDNN 8.1.0 in Tensorflow 2.10. For
each analysis’ training iteration, we allocated 10% of the
data from each subject present in the training set for val-
idation, to trigger early stopping. This early stopping
mechanism halts the training if the validation loss fails
to improve for 10 consecutive epochs.

Inter-task transfer learning analysis:
To assess the transfer learning capabilities across MI and
ME tasks, we evaluated the following training schemes:

1. Training the DL model on all subjects within the
ME dataset, then evaluating the performance on the
MI dataset data, treating left-/right- hand movement
imagination as if it was the trained left-/right- hand
movement execution. In this training scheme, the
ME data from every user, whose MI accuracy is as-
sessed, is included in the training data.
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2. Initially, pre-training the DL model on every sub-
jects’ trials present in the ME dataset except for
one, following a leave one subject out (LOSO) train-
ing scheme. Subsequently, the model’s accuracy
in identifying MI trials for the excluded user is as-
sessed. This process is replicated for every user.

Moreover, we will examine whether including the ME
data of the evaluated user significantly impacts the results
employing the Wilcoxon signed rank test [24].

Task performance correlation analysis:
We evaluate the correlation between the decoding accura-
cies for ME and MI data. Accuracies are obtained follow-
ing a LOSO training scheme. For each task, we train the
model on every users’ data, except for one subject. The
excluded user’s trials serve as the test set to determine
inter-subject ME or MI prediction accuracy [11]. This
correlation is quantified using Spearman’s rank correla-
tion coefficient, which will describe the monotonic rela-
tionship between these inter-subject performances [25].

RESULTS

Our study yielded several key insights. Firstly, our anal-
ysis demonstrated that a DL network, trained on ME tri-
als, is capable of classifying MI trials in the majority of
participants with a degree of accuracy (≥70%), which
is considered sufficient for BCI control in a binary MI
task [9–11]. Secondly, a significant and positive correla-
tion was established between inter-subject performances
on ME and MI tasks, evidenced by a highly significant
p-value of less than 0.001. Additionally, we found no
significant difference in performance between the model
trained with ME data, including trials from the target
user, and the model trained on MI data from other users.

Inter-task transfer learning analysis:
The efficacy of inter-task transfer learning was exam-
ined through two distinct training schemes, the results
of which are summarized in Table 1. Our findings high-
light that incorporating ME data from the target subject
into the model’s training signifantly enhances accuracy
(p-value<0.05), compared to the model that has not been
exposed to ME EEG signal from the evaluated user.

Table 1: Inter-task transfer learning accuracies
Training scheme Accuracy(%)
ME to MI 85.73 ± 10.02
ME to MI without subject’s ME trials 85.10 ± 9.93

Task performance correlation analysis:
The accuracies of the inter-subject transfer learning for
both ME and MI tasks is presented in Table 2 while
the correlation between both tasks performances can be
observed in Figure 1. The accuracy for the ME task
is significantly superior to the accuracy obtained on the
MI task. Nevertheless, there is a positive and signifi-
cant correlation (i.e., p-value<0.001) assessed by Spear-
man’s rank correlation coefficient of 0.6378. Thus, there
is a certain expectation of obtaining low or high perfor-

mances when classifying MI data depending on the ac-
curacy obtained on ME trials. Noteworthy, the accuracy
obtained is way above the chance level for the Physionet
dataset which is 50% ± 13.86% for individual users and
50% ± 1.40% for the entire dataset, both calculated at a
95% confidence level [26].

Table 2: Accuracies of inter-subject task
Task Accuracy(%)
Inter-subject ME 87.35 ± 8.40
Inter-subject MI 85.65 ± 10.42

Figure 1: Correlation chart between ME and MI performances

DISCUSSION

ME-based preparation run for MI:
The results obtained in this study have provided a clear
picture of the possibilities of transfer learning between
the tasks of ME and MI. Of note, we have obtained a com-
parable performance on decoding MI between a model
only trained with ME data, 85.73% ± 10.02%, and the
same model trained only on MI data of other participants,
85.65% ± 10.42%. There is a minor, but significant, in-
crease in the MI performance obtained between a model
that includes ME data of the final user. Furthermore, the
relationship between ME and MI not is only restricted
to the possibility of this inter-task transfer learning, but
there is also a correlation between ME and MI accuracies
as shown in Figure 1.
There have been previous works that have exploited
the relationship between ME and MI EEG data [16,
18]. While these works explored this relationship, they
have applied it as a previous step to initialize their DL
networks without exploring the fully inter-task transfer
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learning capabilities. The fully transfer-learning possi-
bility explored in this work, in addition to the correlation
between ME and MI performances, could be exploited
by establishing a preparation run based on ME where the
user can be shown how the instruction and feedback will
be presented. There are clear benefits from this ME-based
preparation run. For new BCI users, understanding how
to perform MI tasks can be difficult. Training users with
ME tasks, which are more intuitive and easier to perform,
can serve as a stepping stone, helping users learn how
to modulate their neural signals effectively before transi-
tioning to MI tasks. This can shorten the learning curve
and improve overall BCI control. Furthermore, ME tasks
can be performed with less mental effort from the user.
Furthermore, the accuracy of this ME-based preparation
run could be used to indicate the expected accuracy on MI
tasks. Additionally, collecting high-quality MI data can
be challenging, especially for BCI users who may strug-
gle with performing consistent MI tasks without physical
movement. Collecting ME data can provide a more ro-
bust dataset for training BCI algorithms, as ME tasks can
be more easily performed and monitored for correctness,
leading to higher-quality training data. Finally, in reha-
bilitation settings, a model trained on ME data could lead
a more targeted recovery of the lost functions since it will
search for the lost patterns common to the users included
in the training ME data.

Limitations and future work:
While our study offers promising insights into the rela-
tionship between ME and MI, as well as the capabili-
ties of inter-task transfer learning, we recognize certain
limitations that future research should address. To be-
gin with, our analysis was focused on binary upper-limb
classification tasks, which may not encompass the com-
plexity or challenge of distinguishing among more var-
ied types of ME/MI tasks involving movements with less
spatially distinct neural activity. Expanding this research
to include multi-class classification tasks that incorporate
a wider range of movements could offer a more compre-
hensive understanding of the applicability of our findings.
In addition, the analysis was conducted using data col-
lected in a single session from participants who did not
receive feedback, limiting our ability to assess the poten-
tial for learning or adaptation over time. Investigating the
long-term effects of using ME-based preparation run on
MI task performance, as well as user satisfaction, could
provide valuable insights for the development of more
personalized and effective MI-based BCI systems. More-
over, assessing the impact of MI-based rehabilitation, en-
hanced with feedback from models trained on ME data,
in comparison to those trained solely on MI data, would
significantly contribute to our understanding of the most
effective strategies for leveraging BCIs in rehabilitation
contexts.

CONCLUSION

In this study, we explored the potential of inter-task trans-

fer learning between ME and MI, uncovering that ME
data can be effectively utilized to train DL models for MI
classification. Additionally, we identified a significant
correlation in performance across both tasks. These in-
sights have prompted us to propose an ME-based prepara-
tion strategy for MI tasks. By integrating this ME-based
preparation run into MI-based BCIs, we introduce a prag-
matic solution that leverages the inherent neural and func-
tional similarities between ME and MI. This approach
not only maintains BCI performance but also improves
accessibility and user experience, making BCIs more in-
tuitive and effective for users. Simultaneously, the ME-
based preparation trials offer the opportunity to generate
a new corpus of EEG data, which assures the presence of
task related information. This enhancement in data qual-
ity facilitates the training of deep learning models with
improved accuracy.
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