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ABSTRACT: Intracranial electroencepghalography 
(iEEG) signals  have established themselves as a key tool 
for studying human brain function due to its distinct 
combination of high spatial and temporal precision. The 
use of both cortical surface and stereo-EEG in effective 
epilepsy treatment has allowed researchers to study 
electrophysiology throughout the brain in relatively large 
numbers of subjects. This provides an opportunity to 
overcome, the sparse and varied nature of the brain tissue 
sampling inherent to the clinical use of iEEG by 
aggregating data across many subjects. Essential to the 
success of large-scale data aggregation is the efficient 
and robust identification of recording channels that are 
dominated by ‘noise’ or artifacts introduced by the 
recording environment or hardware failure. Here we test 
the effectiveness of training a convolutional neural 
network (CNN) for this purpose across multiple types of 
iEEG recordings. We conclude that a small CNN trained 
on hand labeled data from a small set of subjects can be 
applied to identify artifactual channels.  

 
INTRODUCTION 
 
Electroencephalography (EEG) allows for the recording 
of electrical signals generated by brain function and as 
such provides a precise measure of the temporal 
dynamics of brain function. However, extra-cranial EEG 
presents many challenges in terms of precisely locating 
independent neural sources of this activity. In the past 
decades the need to localize brain activity at the spatial 
resolution of tens of millimeters and with ms temporal 
precision to facilitate the localization seizure focus sites 
for medication resistant epilepsy treatment has led to the 
intracranial implantation of electrodes (iEEG) either on 
the cortical surface, often referred to as 
Electrocorticography (ECoG), or along shafts probing 
cortical and subcortical areas, often referred to as stereo-
EEG (sEEG) [1]. The iEEG’s use in epilepsy treatment 
and increased use in awake craniotomies for functional 
localization during brain tumor resection offers a unique 
opportunity to study the brain function of many humans 
performing a variety of motor and cognitive tasks.  
However, due to the nature of the clinical setting in which 
iEEG is often recorded, the locations that are measured 
from only sparsely sample the brain and vary widely in 
number and location between subjects. Hence, showing 

reproducibility of results over humans on a whole brain 
scale for iEEG requires the aggregation of data across 
tenths or hundreds of subjects.  
To facilitate this scale of iEEG data aggregation a robust 
and efficient method for identifying iEEG signals that are 
dominated by artifacts or noise introduced by hardware 
failure or fed by the environment is needed. Often such 
noise screening relies on the evaluation of experienced 
iEEG clinicians and researchers. This process is 
generally quite labor intensive, subjective, and not 
standard between centers or experts. Here we explore the 
effectiveness of training a deep learning model to do this. 
Multiple groups have use the also attempted to use deep 
learning for noisy EEG channel selection. One approach 
is to apply thresholds to certain statistics computed from 
the signals. For example, APP [2] uses correlation and 
dispersion, FASTER [3] utilizes correlation, variance, 
and the Hurst exponent, Automagic [4] employs an in 
dependent component analysis-based artifact correction 
method, CTAP [5] calculates log relative variance and 
compares it to the median, and so on. Additionally, there 
are unsupervised methods. For instance, the Local 
Outlier Factor algorithm [6] identifies bad channels 
relative to the local neighboring channels, while the bad-
by-RANSAC method [7] uses good channels to predict 
other channels and deems the channel poorly predicted 
by others as bad. Furthermore, supervised neural 
networks have also been utilized [8]. 
     Yet, the transference to iEEG of these methods seems 
to be limited, with fewer reports about bad channel 
detection. The common method is to calculate statistics 
over the signals and input these statistics into machine 
learning methods. For example, in [9], the ensemble 
bagging classifier was applied to sEEG data, achieving 
the best accuracy of 99.77% across 110 subjects. In [10], 
multiple machine learning methods were tested on 
pigeons’ ECoG data, including the K-Nearest Neighbors 
Algorithm (kNN), Support Vector Machine (SVM), 
Random Forest (RF), and others, with the best F1-score 
of 0.9089 achieved using RF and Synthetic Minority 
Oversampling Technique (SMOTE) to address the 
imbalanced dataset. 
We chose for a Convolutional Neural Network (CNN) 
architecture because of the its proven ability learn EEG 
and iEEG signal filters at the lower level of more 
complex deep networks such as HTNet [11]. This allows 
us not to relay on predefined derived signal features 

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-069

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

391



while keeping the network relatively simple, since we are 
not interested in differences in electrophysiological 
patterns or there spatial distribution on the cortex, but 
single channel level identification of non-
electrophysiological (noisy or artifactual) signal. We 
apply this model to the three different iEEG recording 
modalities discussed above (clinical-ECoG, high-density 
(HD)-ECoG, HD, and sEEG) from a large number of 
individuals. 
 
MATERIALS AND METHODS 
 
     Data: Data from 47 patients implanted with iEEG 
electrodes for the purpose of drug resistant epilepsy 
treatment at the University Medical Center in Utrecht 
were used is this study. The study was approved by the 
Medical Ethical Committee of the University Medical 
Center Utrecht in accordance with the Declaration of 
Helsinki (2013). The patients had either sEEG or clinical 
scale ECoG electrodes implanted according to clinical 
needs and gave written informed consent to participate in 
research tasks and will be referred to as subjects in this 
work. A subset of the subjects gave additional consent to 
have HD-ECoG implanted solely for research purposes. 
Data from and additional 3 patients undergoing an awake 
craniotomy for tumor removal, in which HD-ECoG grids 
are briefly placed on the exposed cortical surface, who 
also consented to performing brief research tasks were 
also included.  
Data from clinical-ECoG implants were recorded from 
implanted grids and strips of evenly spaced platinum 
electrodes with an inter-electrode distance of 10 mm and 
a 2.3mm exposed recoding surface. Implanted sEEG 
props had 8-15 platinum-iridium cylinder contact points 
of 0.8 mm diameter and 2mm height with a 1.5 mm inter-
contact distance. The HD-ECoG grids used were equally 
spaced grids of 32-128 platinum with 1.3 mm exposed 
surface diameter and an inter-electrode distance of 3 or 4 
mm. 
A total 96 data sets from 50 subjects performing one of 
19 different cognitive tasks. Tasks range from simple 
relaxation without movement to overt and imagined 
movements to overt and covert speech. Subject data were 
organized into groups and based on the type of iEEG 
implant used to facilitate exploration of implant type on 
noisy signal detection (see Table 1). Furthermore the 
Clinical-ECoG group was split into an adult group (Ca) 
and a child group (Cc) test for an age effect on noise 
detection and the HD-ECoG group (HD) was divided by 
the recoding setting since a subset of this data was 
recorded in the operating room (OR) and not in outside 
the Intensive Epilepsy Monitoring Unit (IEMU) like the 
remaining subjects because it is known the OR has more 
noise sources and recordings are made while the 
electrode grids are still exposed to the air. In the case of 
the IEMU recordings are made after the scull has been 
replaced. The sEEG group (sE) was not further 
subdivided. 
 
 

Table 1: Data Groups  
Grid type Sub-

group 
Subject 
count 

Channel 
count* 

Ratio  
good:bad 

Clinocal-ECoG adult 11 1500 44:1 
(Ca + Cc) child 13 1900 104:1 
sEEG adult 10   
(sE) child 4   (14) 2700 43:1 
HD-ECoG IEMU 9   
(HDe + HDor) OR 3  (12) 2000 33:1 

(* = rounded to 100s) 
 
     Preprocessing and labeling: The recordings are from 
over a span of 20 years and have different frequencies, 
ranging from 512Hz to 2048Hz. To ensure that the bad 
channels exhibit similar patterns, all the recordings are 
down sampled to the lowest frequency, 512Hz.  
For every subject, 10 minutes of recordings are included. 
For some subjects 5 minute recordings from the 
beginning are taken from two task files. 
In this study we considered as noisy (bad) channels those 
that are clearly distinct from others in terms of signal 
content and that would likely distort the signals of non-
noisy (good) channels when included in common average 
re-referencing (CAR). Bad channels were identified by 
visual inspection by two independent people (author 2 
and author 3). For that we visually inspected both the 
raw-voltage signals and the power-spectrum (1/f, after 
removal of line-noise and it's harmonics) of every 
channel in one data file. Channels that had a deviant 
voltage amplitude compared with other channels in the 
same file (average voltage amplitude lays between -500 
and 500 mV), excessive amount of line-noise, or 
recurrent large voltage fluctuations throughout the 5 
minutes of data, were labelled as ‘bad’. Besides 
determining bad channels, we also identified borderline-
bad channels, that would not be considered as 'bad 
channel' by an expert but could potentially be labelled as 
such by the algorithm. These channels were labelled as 
'maybe'. The remain channels were labeled as ‘good’. 
In this work a binary classification model is used, since 
we want the model to learn patterns of good and bad 
channels and be able to classify uncertain channels 
afterwards. Therefore, the ‘maybe’ channels are not 
included in the training or testing set.  
The ratio of good vs bad channels in the data is very high, 
ranging from 44:1 to 104:1 (see Table 1). During the 
training, such severely imbalanced data harms the 
performance of the model. To reduce such effects, a 
down-sampling method was used in the training set to 
reduce the ratio of good vs bad channels to 2. The average 
number of good channels needed per subject need to 
achieve the 2:1 with the number of bad channels in the 
training set is calculated. Then random sampling is done 
to reach the designated amount of good channels per 
subject. By down-sampling, the amount of data in the 
training set also decreases, reducing the training time 
drastically. 
According to clinical expertise, a window of 30 seconds 
in a channel contains enough information to show 
baseline patterns and classify channels as good or bad. In 
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addition, the level of noise can change over time due to 
head movements or medical operations. Splitting a 
channel into windows allows the model to classify 
windows in the same channel differently to account for 
possible changes in characteristics over time. Thus, each 
recording is chopped into around 10 30-second windows. 
These windows do not overlap to prevent data leakage 
from the training set into the testing set. For training all 
windows from a channel are given the label of that 
channel. 
     Model and Training: The model is a shallow 
Convolutional Neural Network (CNN) consisting of 2 
convolutional layers with 55 weights followed by 2 linear 
layers with around 500k weights. To prevent overfitting, 
Batch-normalization, MaxPool, and Dropout layers with 
a rate of 0.2 are included. The input of the model is the 
30-sec window, i.e., 30 seconds * 512Hz = 15360 nodes. 
The structure of the model was derived from 
experimentation with a training set containing one or two 
subjects from the Ca group and applied for the rest of the 
analysis. 
     Performance Evaluation: The model produces a 
prediction for each window of data. However, the 
prediction performance of the model for each window is 
not evaluated window-wise. Instead, the prediction of a 
channel is calculated by thresholding on the percentage 
of its windows that are predicted to be bad.  
We chose the Matthews Correlation Coefficient (MCC) 
as our performance evaluation metric because it has been 
shown to be more robust and reliable among common 
metrics for imbalanced datasets [12]. MCC is a metric 
that summarizes a confusion matrix and computes the 
correlation between ground truth and predictions. The 
MCC is bounded from -1 to 1, with -1 indicating all 
predictions are wrong, 0 implying nearly random 
predictions from the model, and 1 indicating all 
predictions are correct.  
Since the channel level performance of the model will 
depend on the chosen windowing threshold discussed 
above a metric for choosing this threshold is needed. In 
this context this comes down to choosing the best 
dividing line between the distribution of percent of 
windows labeled as bad for the set of bad channels 
labeled by the experts as bad and those labeled as good. 
For this we use Brent’s method [13] because it works 
better than other methods for finding the border between 
two distributions when those distributions are multi-
model. Brent’s method is a numeric method to find the 
local minimizer of a certain function. Here, the parameter 
to minimize is the threshold, bounded by 0 and 1. The 
function calculates the negated MCC given the threshold 
and labels of the channels. Brent’s method returns the 
threshold that maximizes MCC.  
In this work we performed both within group and 
between group training-testing comparisons. To evaluate 
within group performance a leave-one subject-out (LoO) 
training testing approach was used. For this all channels 
from a single subject are left out of the training set and 
included in the test set and this is repeated to gain 
prediction results for every subject in the testing group. 

This means that when we reports results for training and 
testing on different sub-groups, if the training group sub-
groups overlap with subgroups in the testing group the 
LoO method was used for subjects within the 
overlapping sub-groups. 
 

 

 

Figure 1: Leave-one subject-out (LoO) results for the 
Clinical-ECoG Adult (Ca) group. Top: Plot of % of 
windows classified as noisy (x-axis) for all channels of 
each subject (y-axis). Red and blue bad and good 
labeled channels respectively. Bottom: Histogram of 
number of channels (y-axis) with a certain percentage of 
windows predicted as bad (x-axis). The red and blue 
bars represent channels labeled as bad good 
respectively. The green vertical dotted line indicates the 
threshold found with Brent’s method. 
 
RESULTS 
 
    The distinction between gad and bad varies over iEEG 
groups As Figures 1 and 2 illustrate the distinction 
between the good and bad channels in terms of the 
percentage of windows classified as bad varies 
considerable between iEEG date groups. When channels 
are clearly bad or good most of the time and the model is 
able to learn a clear distinction between the two signal 
types you would expect to see the distributions found for 
the Ca group in Figure 1. Here we see that almost 100% 
of the windows are classified as bad for most of the 
channels labeled as bad and often not more than 30 % of 
the windows from good channels are classified as bad. 
This means that a wide range of thresholds (30%-90%) 
will give similarly good MMC scores. In this case a very 
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conservative threshold of 92% that allows for good 
channels to have a lot of bad windows is found by Brent’s 
method to give the optimal MMC score of 0.84 (see 
Table 2, first row). This effectively means that only 5 
good channels 4 channels labeled as noisy (out of ~1500) 
are misclassified. However, as Figure 2 shows, in the 
case of the sE group both the distributions of good and 
bad labels are broader. Meaning that either the network 
has a harder time distinguishing good windows from bad 
windows or that the amount of noise in the sEEG signals 
fluctuates over time causing good channels to have noise 
at times and bad channels to be less noisy at times. In this 
situation the optimal threshold really need to balance the 
false positives (FPs) and false negatives (FNs) to reach 
the optimal MMC, which was found to be 0.32 at 68% 
(Table 2) in this case. It should be noted that this MMC 
is still well above 0 and the good and bad distributions 
for sE are still distinct from each other allowing for 
thresholds to be set that can reduce either the number of 
FPs or FN to almost 0, but not both. 
 

 

Figure 2: Leave-one subject-out (LoO) results for the 
Clinical-ECoG sEEG group. Top: Plot of % of windows 
classified as noisy. 
 
    In general bad electrode classification works well for 
Clinical-ECoG As can be seen in Table 2 all analysis that 
involved training and testing on Clinical-ECoG groups 
performed well. The Cc within group test showed and 
even higher MMC score (0.94) that that of Ca and even 
when training on Ca and testing on Cc an MMC score of 

0.89 was achieved. This indicates that there is little 
difference between the good and bad signal 
characteristics between channels implanted in adults and 
children. This is further supported by the fact that training 
on Ca and Cc also gave high MMCs of 0.92 and 0.82 
when testing on Ca and Cc respectively. 
 
Table 2: MMC and Brent threshold across different 
training and test groups combinations.  
Test 
Group 

Train Group MCC Brent’s 
threshold 

Ca Ca 0.84 92% 
Cc Cc 0.94 85% 
sE sE 0.32 68% 
HD HDe+HDor 0.10 48% 
HDe HDe+HDor 0.43 94% 
Cc Ca 0.89 85% 
Ca Ca + Cc 0.92 70% 
Cc Ca + Cc 0.82 70% 
sE Ca + Cc 0.66 76% 
HD Ca + Cc 0.23 77% 
sE Ca+Cc+sE 0.41 85% 

 
    Distinguishing the bad from the good in sEEG is 
harder but promising While the sE group performance 
discussed above is lower than that of the Clinical_ECoG 
groups introducing data from these groups into the model 
training does improve its performance on the sE group to 
an MMC of 0.41 (bottom row, Table 1). In fact, only 
training on the Ca and Cc groups improve the 
performance on the sE group even further to 0.66. This is 
a marked improvement and inspection of the percentage 
bad windows distributions (Figure 3) indicates that by 
training on channels with clearer bad vs. good signal 
distinctions the model was able to more clearly separate 
good and bad sE channel windows. While there are now 
many bad channels with none of their windows classified 
as bad, the number of bad channels with >80% of 
windows classified as bad was relatively unaffected and 
the number of good channels with >50% of their 
windows classified as bad decreased greatly.  
 

 

Figure 3: sEEG window classification based on training 
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on Clinical-ECoG. 
 
    HD-ECoG presents a challenge to automatic noisy 
channel detection While still above 0 the MMC for the 
HD group was only 0.1 (Table 2) and the fact that the 
optimal threshold was around 50% (48%) and the top plot 
in Figure 4 indicate that the good and bad distributions 
were very mixed. In fact, most of the good and the bad 
labeled channels had around 50% of there windows 
classified as bad. This could indicate that the amount of 
noise in the HD-ECoG channels changes a lot over time. 
It is worth noting that this is especially the case for the 
sub-group of subjects recorded in the operating room 
setting (HDor). When excluding the HDor subjects for 
testing, the performance increases to and MMC of 0.43. 
While training on the Clinical-ECoG groups does 
improve performance on the HD group as a whole similar 
to the sE group, this improvement is mostly due to the 
better distinction on the HDe sub-group (Figure 4, 
bottom plot). In the case of HDor subjects, 0% of almost 
all channels are classified as bad. This is surprising since 
the HD group has the lowest good to bad channel ratio 
(Table 1) and the HDor sub-group has a the majority of 
the bad channels in this group, as can been seen by the 
large number of red circles for the HDor subjects in the 
top plot of Figure 4. 
 

 
Figure 4: HD-ECoG noisy window classification for 
within group vs. Clinical-ECoG group training. Top: Plot 
of % of windows classified as noisy. Bottom: Plot of % 
of windows classified for the HDe and HDor groups after 
training on the Ca + Cc groups. 
 

DISCUSSION 
 
In general we found that our simple model worked well 
for identifying noisy artifactual signal in clinical-ECoG 
data and that there is no need to treat signals from 
children as different from those of adults. 
In addition, while we found the our approach was less 
effective regaurding sEEG signals, we did see that  
performance on sEEG channels can be improved by 
applying a model trained on clinical-ECoG channels, 
where there is a larger separation between channels with 
artifactual signals and those with clean 
electrophysiological signals. 
The results suggest that the difficulty in identifying noisy 
sEEG channels could be due to a larger variance in 
electrophysiological signal properties found in sEEG 
signals. When training on sE the model showed a broad 
distribution for both bad and good channels. It is known 
that the electrophysiology of sub-cortical regions differs 
from that of the cortical surface and the model has no 
knowledge of this while the expert labeler does. One 
trend is that the amplitude in signal generally decreases 
with the depth of the implanted electrode. The expert may 
consider this when judging a channel to be good even if 
it has low amplitude. This would indeed make it harder 
to train on sEEG channels as there will be a larger 
variance in the types of patterns associated with channels 
labeled as good. However, the fact the model trained on 
clinical-ECoG greatly increase the number of sEEG 
channels with < 20% of windows labeld as bad without 
decreasing the number of labeled bad or increasing the 
number of labeled good channels with > 80% of widows 
predicted as bad shows that relative to clinical-ECoG 
most sEEG channels contain similar data. This is 
promising for goal of agrigating sEEG data into clinical-
ECoG data sets. 
HD-ECoG presented the hardest challenge to accurately 
predicting bad channels. This was especially true for the 
sub-group of subjects recorded in the operating room. As 
opposed to sEEG this is likely due to an increase in the 
variety of types of artifactual signals in these recording 
compared to clinical-ECoG. This group had the lowest 
good to bad channel ratio and hence the largest number 
of labeled bad channels. The fact that the HD-electrodes 
are smaller means they will have larger impedences and 
potentially pick up more external noise though the wire 
connecting them to the amplifiers. In addition it is known 
that the recordings from the operating room in the HDor 
group will be more sensitive to external noise because 
during the recording the scull is open, unlick in the IEMU 
where the skull has be replaced and the wound sealed, 
before recording. This provides more direct exposure to 
external electrical sources. In addition the fact that most 
labeled bad and good channels have around 50% of their 
windows predicted as bad suggests that there may be 
artifacts that are transient in nature and not consistent 
throughout the recording. Taken together this suggests 
that predicting artifactual signal in HD-ECoG will likely 
require larger set of correctly labeled data to train on. It 
should be noted that often HD-ECoG implants are aim 
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towards BCI use and thus longer term implantation 
where additional work in identifying and labeling 
artifactual signal is justified. 
    Limitations The main limitation of this work is that 
ground truth labeling was based on subjective evaluation 
of channel as a whole. This is sufficient for large scale 
studies, but not a true separation of electrophysiological 
signals from external noise. Each channel is not purely 
noise or brain signal at any one time point. Thus, it could 
also be beneficial to allow for prediction of a percentage 
or probability of noisiness as the recorded signal is 
almost always a combination of both.  
However, this proportion is hard to compute and label. 
This is a limitation inherent to all work on distinguishing 
artifactual signal from electrophysiological signal in that 
work on understanding the true ground truth of what parts 
of recorded iEEG signals are pure reflections of 
electrophysiology is still very much ongoing.  
One approach to overcome this would be to train with as 
good as possible pure electrophysiological signals and 
add known amounts of  simulated noise. In this way there 
would at least be ground truth for the know added signal 
artifacts and knowledge as bout simulating artifacts 
caused by known noise sources is much better due to the 
vastness of the field of electronics. 
Furthermore, the models could be improved by allowing 
for additional types of labels for channels such as the 
cortical or subcortical region where the electrodes are 
located and/or the type of cognitive task the subject is 
performing as these factors are known to influence iEEG 
signal features. In this way, a model trained to identify 
noisy signal characteristics could also be used to specify 
what signal features constitute ‘normal’ iEEG signal 
from different parts of the brain. This suggests another 
possible avenue for future work, which would be to 
explore the signal features encoded in the deeper layers 
of such a CNN. 
 
CONCLUSION 
 
In conclusion we feel this work is encouraging for studies 
aimed at large scale data aggregation over many subjects 
and multiple institutions in that is shows the feasibility of 
automating the identification of channels that can be 
safely included in the analysis and which ones should be 
excluded.  
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