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ABSTRACT: Becoming proficient in the use of brain-
machine interfaces (BMIs) represents a challenging task
for the subjects, requiring long and intensive training. In
this paper, we propose and explore the use of a collabo-
rative BMI (cBMI) as an innovative training protocol that
allows two subjects to learn together by cooperating in
the control of a real robotic arm. Preliminary results on
three pairs of subjects spanning five days of training high-
light the promises of the proposed approach in reducing
the training time and possibly mitigating the frustration
in naive users.

INTRODUCTION

Motor imagery (MI) brain-machine interfaces (BMIs)
represent the most natural approach to control brain-
driven robotic devices [1]. Indeed, the endogenous
paradigm used in BMIs provides the advantage that sub-
jects can autonomously initiate mental tasks without re-
quiring external stimuli like visual, auditory, or tactile
cues, making the interaction with the robotic system more
natural [2].
However, becoming proficient using MI BMIs is a chal-
lenging scenario that requires a substantial investment of
time and effort for the subject [3]. In the last years, re-
searchers have shown that training directly on the final
application might be more effective than having subjects
engaged in repetitive and artificial mental tasks [4, 5].
However, this approach may not always be practical for
naive subjects, given the inherent limitations in the accu-
racy of their BMIs and the consequent frustration caused
by their low performances to perform the given task. This
is often attributed to their limited experience, causing
them to struggle in effectively generating effective con-
trol commands [6].
In this scenario, researchers have recently proposed col-
laborative brain-machine interfaces (cBMIs) to deal with
such limited performance [7, 8]. In this approach, multi-
ple subjects are simultaneously engaged in the same BMI
task and the output of their BMIs is combined to enhance
the decoding accuracy or increase the number of com-
mands.
One crucial aspect of cBMIs is how the data originating
from multiple sources is integrated to generate a single
control signal. In the literature, two main approaches

are reported: on the one hand, researchers investigated
the possibility to merge the sources at the feature level
and then to exploit this unified signal to train a single de-
coder [9, 10]. On the other hand, it has been explored the
feasibility to train a decoder for each subject, and then to
combine the output at the decision level to obtain the final
command for the external device [7, 8, 11].
In literature, cBMI are typically employed in experiments
with BMI based on exogenous visual stimulation or pat-
tern recognition. In a study by Wang et al. [11], 15 sub-
jects were divided into subgroups and they performed
animal categorization and single-photograph recognition
with a Go/noGo paradigm through a series of flashing
pictures. Similarly, Poli et al. [7] instructed 10 subjects
to determine whether two subsequent shapes, with the
second one masked, were identical and pressing a but-
ton consequently. In another study by Valeriani et al. [9],
participants were asked to identify the specific geometri-
cal patterns of two horizontal and vertical bars to use a
switch to send the decisions.
To date, research on cBMI with MI BMI is limited, and
the studies that apply this concept to control a robot in
real-life scenarios are neglected. For instance, Yijie et
al. [10] independently trained eight subjects in hands and
feet motor imagery for moving a point on a grid. They
combined the individual subjects’ results offline to simu-
late a collaborative protocol. In a different study, Bonnet
et al. [8] developed a game where subject pairs control
the movement of a virtual ball using motor imagery, both
collaboratively and competitively, to place it inside a net.
The game software uses the two decoders’ output to de-
cide in which direction the ball should move and change
the feedback accordingly. However, the literature pre-
dominantly emphasizes subject performance and meth-
ods to enhance classification accuracy, and there are no
studies reporting on the subject’s learning during cBMI.
In this work, we aim to investigate this particular aspect
by exploring the cBMI as a novel approach to assist sub-
jects during the training of MI BMI. Our training pro-
tocol grounded on the concept that when we learn com-
plex skills in our daily life (e.g., cycling, driving), we are
not alone. Based on this, we have designed an alterna-
tive training protocol utilizing a cBMI where two subjects
work together to accomplish the same task of controlling
a robotic arm during reaching operations. The rationale
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is that the presence of a second subject can help the less
proficient one to still conclude the task, decreasing nega-
tive mental states due to frustration or inefficiency present
in other BMI [12]. We hypothesize that this approach
can increase overall performance and promote learning
in both subjects [13].
The objective of this work is twofold: firstly, to showcase
the viability of MI cBMI for controlling a real robotic
device even in the early stage of the training; secondly, to
investigate this collaborative approach as a promoter of
individual learning of BMI skills.

METHODS

Participants: Six healthy subjects, with an average age
of 25±2 years, were recruited and divided into three pairs
(G1-C7, G2-D7, C9-C8). Moreover, three of them had no
experience with BMI system before (G1, G2, C9). The
first three sessions took place over two weeks in Decem-
ber 2023, while the remaining three sessions were con-
ducted over three weeks in January 2024. Each partici-
pant provided consent by signing a form detailing the use
of recorded data and privacy protocols, adhering to the
principles outlined in the Declaration of Helsinki.

Experimental design: The experiment comprised six
sessions, each consisting of three runs, as illustrated in
Figure 1a. The initial session (Session - Day 0) involved
the calibration and evaluation of the BMI Gaussian de-
coder of each subject. The following sessions (Session -
Day 1-5) focused on online runs, during which subjects
tested the trained decoder, re-training it if its accuracy
where below 70% [14] with two new calibrations and
evaluations, and subsequently controlled the robotic arm
in collaboration with another subject. All sessions are
subdivided into runs, which can be of three types: calibra-
tion runs for recording the data for training the decoder;
evaluation runs to test the decoder performance; control
runs where subjects controlled the robotic arm using the
proposed cBMI.
During the control runs, subjects were asked to move a
robotic arm from a home position to one of the five tar-
get objects placed on a circle of radius 50 cm in front
of the robot. Subjects were allowed to see the robot and
the workspace on a monitor, with superimposed visual
feedback as depicted in Figure 1b. At the beginning of
each trial, subjects were presented with a target object to
pick, indicated by a blue dot, for 1 s (cue period). After
that, the robot initiated the motion based on the output
of the cBMI. When sufficiently close to an object, the
robot autonomously performed the pick, returned in the
home position, and a new trial started. For each run, sub-
jects were required to pick each of the five objects twice,
hence ten trials in total. Figure 1 (c) shows the exper-
imental setup, comprising the subjects, the robotic arm,
and monitors for visual feedback. The combination of the
brain-machine interfaces (BMIs) output is also provided
as visual feedback using a rotating wheel1.

1Video: https://cloud.dei.unipd.it/index.php/s/TgYJ475A9M7tz3x

Figure 1: Experimental design. (a) Schematic representation
of the experiment division for sessions (days). (b) BMI visual
feedback provided to the subject to control the robotic arm. (c)
Experimental set-up for the controlling runs in which both sub-
jects controlled the manipulator.

Collaborative BMI: We acquired electroencephalogra-
phy (EEG) data with a 64-channel amplifier (AntNeuro
eego sports 64, Netherlands) operating at a sampling rate
of 512 Hz. A 2-class MI paradigm was employed where
the subjects were required to make the kinesthetic imagi-
nation of their feet or their hands. Our method was based
on a classical MI BMI already widely evaluated in liter-
ature [6, 15]. In particular, we selected a subset of 32
electrodes placed over the sensorimotor cortex (i.e., FP1,
FP2, FZ, FC5, FC1, FC2, FC6, C3, CZ, C4, CP5, CP1,
CP2, CP6, P3, Pz, P4, F1, F2, FC3, FCZ, FC4, C5, C1,
C2, C6, CP3, CP4, P5, P1, P2, P6) to detect the neural
patterns related to MI. We used the power spectral den-
sity of the EEG signals with Welch’s periodogram (from
4 to 48 Hz every 2 Hz) in 1-second windows sliding every
62.5 ms. The most discriminant features of each subject
were identified using Canonical Variate Analysis (CVA)
and a Gaussian classifier was trained with these features.
The classifiers were trained on EEG data acquired dur-
ing calibration or evaluation runs. During each calibra-
tion run, the subject was asked to perform 10 trials of
both hands imagination, 10 trials of both feet, and trials
of rest, providing always a positive feedback with the vi-
sual interface. During the evaluation, the feedback was
controlled by the BMI output and the subject was asked
to perform 10 trials of each MI class.

During the robot control, the output of the BMIs decoder
of each subject in the pair was fused to allow the col-
laborative control of the robotic system. To merge the
information coming from the two decoders, we applied a
weighted mean on the posterior probabilities:
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ppmerged =
W1 · pps1 +W2 · pps2

W1 +W2
(1)

The weights W1 and W2 were used to balance the con-
tribution of each subject to the control according to their
performance during the last evaluation run before starting
the control. The weights have been computed using the
balanced binary focal cross-entropy loss [16]. In particu-
lar, the weight for the subject s is obtained as Ws =−1/Ls
with Ls calculated as follow

Ls =
N

∑
Tr=1

NTr

∑
n=1


pp(yn)

γ ·log(1−pp(yn))
NTr

yn ∈ class(0)

(1−pp(yn))
γ ·log(pp(yn))

NTr
yn ∈ class(1)

(2)
where N is the number of trials in the evaluation run,
NTr is the number of samples in each trial and pp(yn) is
the posterior probability of the decoder given the features
yn. We fixed γ = 2 as focal factor which is used to re-
duce the impact on the loss of well-classified samples for
which pp(y ∈ class(0))< 0.6 or pp(y ∈ class(1))> 0.4.
Finally, after the fusion process, the merged probability
were integrated over time using an exponential smooth-
ing function as Dt = β ·Dt−1 +(1−β ) · ppmerged , where
Dt and Dt−1 are the current and previous cBMI output,
respectively, and β = 0.96 is the integration coefficient.

Robot control: The commands in output from the col-
laborative BMI were used as input for the robotic manip-
ulator. To this end, the integrated cBMI output Dt was
mapped to an angular direction dR ∈ {−90◦,90◦}, with
0◦ corresponding to the forward direction, for the move-
ment of the manipulator on the horizontal plane through
the following sigmoid functions [17]:

dR(Dt) =


−90◦+ 90◦

1+exp(−25∗(Dt−β1))
0 ≤ Dt ≤ 0.5

90◦
1+exp(−25∗(Dt−β2))

0.5 ≤ Dt ≤ 1
(3)

Parameters β1 and β2 denote the probability values at
which the sigmoid intersects −45◦ and 45◦, respectively.
These parameters were initialized respectively to 0.25
and 0.75 in the first session, and then tailored to each pair
at the beginning of the control runs based on the perfor-
mance obtained in the previous session [17]. Given the
movement direction, a velocity command was thus deliv-
ered towards that direction with constant speed equal to
5 cm/s.
In order to assist subjects in driving the robotic manip-
ulator towards one of the target objects, the robot was
controlled using a shared control architecture for teleop-
eration based on artificial potential fields (APF) presented
in [18]. In short, the system firstly computed the proba-
bility of each target object to be the goal of the reaching
task from the sequence of input velocity commands and
robot positions. Then, an attractor point for the APF was
generated at each time step as the center of mass of the

objects’ position weighted by their probability:

[x,y] =
ntargets

∑
n=1

P(x,y)n · pn (4)

where [x,y] are the coordinates of the attractor point on
the table surface, P(x,y)n represents the position of the tar-
get n, and pn is the probability associated to that target as
computed by the shared control system. The probability
of each object was also shown in real-time to the subjects
through the visual feedback to help them understanding
the behavior of the robotic device. For more details on the
shared control implementation, please refer to [17, 18].

RESULTS

Feature evolution: Figures 2a-b summarize the evolu-
tion of the features, the distribution of the posterior prob-
abilities and the performances of the subjects during the
5-day sessions. In particular, Figure 2b illustrates the
distributions of the posterior probabilities for a pair of
subjects (G1 on the x-axis and C7 on the y-axis) dur-
ing the control of the robotic manipulator. It can be seen
that, while subject C7 was able to span the whole range
of probabilities since the first session, the second sub-
ject G1 started from a distribution quite shrank around
0.5, meaning that he was not significantly contributing to
turning the robot left-right. Nevertheless, thanks to the
training also subject G1 was able to expand the distribu-
tion of probabilities covering nearly the entire probabil-
ity space, particularly around the extreme values during
the last session. This improvement is then reflected in
the distribution of the fused probabilities (Figure 2b, bot-
tom right), where each curve colour corresponds to the
same session in the scatter plots. Initially, on the first
day, they were concentrated around 35% and, as sessions
progressed, the distribution gradually transformed into a
more uniform distribution, encompassing a broader range
of possible velocity commands to control the robot. To
better understand how this improvement is reflected at the
neural level, we analysed the feature maps of each sub-
ject during robot control. In order to provide a reliable
label (both hands or both feet) to each sample, we cal-
culated the angle ϕee−goal between the current position of
the robot’s end-effector and the position of the trial’s goal
with respect to the forward direction. If ϕee−goal ≥ 30◦,
the corresponding EEG sample was labelled as both feet,
if ϕee−goal ≤ −30◦ as both hands, otherwise it was not
considered for the feature maps analysis. Figure 2a shows
for each session the grand-average across all subjects of
the feature maps in the α (8−12Hz) and β (18−22Hz)
bands calculated using the Fisher’s score [4]. Overall,
it can be noted a clear emergence of discriminant fea-
tures through the sessions, particularly in lateral channels
(C4,C6,FC6,FC4 and C3,C5,FC5,FC3) and in the β

band, as expected from our MI paradigm.
BMI accuracy: Figure 2c shows the average accuracy

and the pick error for each pair over the five days. The
pick accuracy is computed by counting the correct trials
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Figure 2: BMI performances. (a) Topographic representations across sessions of the grand-average feature maps of all the subjects
computed as the Fischer’s score in the α (8−12Hz) and β (18−22Hz) bands. (b) Scatter plot of the combined posterior probabilities
of the pair G1-C7 during the control runs of every session (G1 on the x-axis and C7 on the y-axis). The bottom-right plot represents the
distributions of the merged probabilities across the training sessions (same color as the corresponding scatter plot). (c) Pick accuracy
and pick error for every pair of subjects across the five sessions.

Robot pick accuracy [%] Robot pick error [number of objects]
Session 1 2 3 4 5 1 2 3 4 5
G1-C7 30±10 47±25 47±25 40±20 73±5 1.0±0.1 0.7±0.1 0.9±0.7 1.1±0.7 0.3±0.1
G2-D7 20±14 37±5 63±11 20±0 33±20 1.2±0.3 0.9±0.1 0.6±0.1 2.0±0.0 1.3±0.6
C9-C8 43±15 50±8 17±15 46±15 57±11 0.9±0.3 0.8±0.3 1.7±0.2 0.9±0.5 0.5±0.1

Table 1: Average pick accuracy (chance level at 20%) and pick error over the sessions for every pair.

(i.e., trials in which the manipulator reaches the correct
object) over all trials. Instead, the pick error measures the
precision of the control as the number of objects between
the picked object and the correct one. For example, if the
correct object is the one in the forward-left direction and
the users pick the forward object, this error is equal to 1.
On the other hand, if they pick the right-most object, the
error is equal to 3. If a trial is correct, the error is equal to
0 for this trial. This metric is then normalized by the total
number of trials in a single session. The average values
of accuracy and pick error for each pair and each session
are reported in Table 1.
Overall, all the pairs showed an improvement in perfor-
mance from the first to the last session, both in terms of
pick accuracy and error. The best improvement is shown
by the pair G1-C7 with an increase of accuracy from 30%
on average to more the 70% in the last session. Moreover,
in the last session, the wrong picks are limited only to ad-
jacent objects as highlighted by the average pick error of
0.3± 0.1. The worst improvements are achieved by the
pair G2-D7 showing the highest performance in session

three. Nevertheless, they also obtained an increase in the
average pick accuracy of more than 10% in the last ses-
sion with respect to the beginning of the training.

Control performance: Figure 3 illustrates the trajec-
tories computed for a sample pair (G1-C7) throughout
all sessions, wherein the target reached corresponds to
the one prompted by the cue (i.e., correct trials). No-
tably, there is an observable enhancement in spatial ex-
ploration across sessions. In the initial session, the pair
was able to reach only the most central target objects.
While, in sessions two and three, they managed to reach
four targets, and in the subsequent two sessions, they suc-
cessfully reached all five targets. Figure 3b portrays the
Fréchet distance [19] with respect to ideal trajectories,
computed by averaging the trajectories of all the correct
trials of every pair and every session for each target. This
metric is calculated for both correct and erroneous trials,
with the mean value computed for each session. Addi-
tionally, Table 2 outlines the average Fréchet distance for
each session and pair. Except for the pair G2-D7, the
subjects showed a reduced Fréchet distance of more than
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Figure 3: Control performances. (a) Correct trajectories computed by pair G1-C7 for each session. In the initial session, they reached
three targets, while in the subsequent two sessions, they achieved four goals. Remarkably, in the last two sessions, they successfully
reached all five targets. (b) Fréchet distance (in centimetres, cm) for each session and pair of subjects.

G1-C7 G2-D7 C9-C8
session 1 33.0±22.1 36.7±20.0 31.6±22.5
session 2 30.8±21.2 32.0±22.0 27.1±23.5
session 3 32.2±24.8 25.5±20.7 46.5±24.8
session 4 36.4±24.0 51.9±28.4 29.9±23.8
session 5 19.0±14.8 36.6±25.9 24.1±15.0

Table 2: Frechet distance (cm) for each session and pair.

10cm in the last session with respect to the first session,
signifying a reduced deviation of the paths traversed to
the ideal trajectories.

DISCUSSION

As anticipated, the aim of this work is to deviate from
the literature which uses the cBMI only as a method to
increase the BMI performance but rather to exploit it in
combination with a real robotic application as an innova-
tive approach to foster the subject’s learning. As reported
in Figure 2, all the pairs show improvements in control-
ling the robotic device through the cBMI. Indeed, when
the experiment started we hypothesised that each subject
had a low capacity to control the robot, due to inexpe-
rience with this new approach, and because the modula-
tion of brain rhythms is difficult at the beginning. More
in details, at the beginning it was difficult for subject G1
to explore all the probability space of the BMI decoder.
Nevertheless, thanks to the cBMI approach the pair was
able to have sufficient control to directly train on the real
robotic device and subject G1 learnt how to perform the
required mental tasks leading to a more uniform distribu-
tion of the BMI output in the last sessions. It is worth not-
ing that a broader spanning of the probability space is par-
ticularly important in our paradigm as the robotic device
was controlled by mapping the BMI output to continuous
control commands, rather than exploring a discrete con-
trol approach as commonly employed in the literature. By
analysing the evolution of the neural correlates over the
training sessions, we suggest that these improvements of
performance in all the subjects are not only related to a

familiarization of the subjects to the system, but rather
to an effective learning of BMI skills. Indeed, the topo-
graphic maps of Figure 2(b) displays a visible increase in
the number and power of the discriminant features in both
α and β bands, in line with previous works on subject’s
learning in BMI [4, 5].

A thing to note is that the third session was done im-
mediately after the winter holidays, thus more than two
weeks apart from the previous two sessions. This may
explain why all the pairs show a drop in the performance
around the third and fourth sessions, as it can be seen also
in Figure 2(c). Indeed, all the subjects were either com-
pletely naive or not proficient BMI users at the beginning
of the experiment. Thus, they were not able to stabilize
their features and skills in the short-term training before
the stopping period. Nevertheless, when the training was
restarted they recovered and further boosted the discrim-
inant features. The learning of these BMI skills is also
suggested by the performance of robot control. Two out
of three pairs (G1-C7, C9-C8) showed an improvement
in pick accuracy, pick error and Fréchet distance from
the first to the last session, highlighting a more optimal
control of the robotic manipulator directed to the desired
target object.

Our study suggests that cBMI might be exploited as an
alternative training protocol for MI BMIs. However, this
work suffers from some limitations. First of all, the small
number of subjects participating in the experiment, in
fact, a larger pool is required to verify and strengthen our
findings. Secondly, the relatively short training period
(only 5 sessions) that might be not sufficient for all sub-
jects to acquire stable and robust features. Future work
will address these limitations by expanding the number
of subjects and by designing a longitudinal study.

CONCLUSION

In this article, we introduce a novel protocol for collab-
orative MI BMI with shared control for manipulating a

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-063

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

364



robotic arm. Our hypothesis posited that with a collab-
orative BMI, both subjects would acquire proficiency in
generating BMI commands and, thus, in controlling the
robotic arm across multiple sessions. The outcomes ob-
tained from a sample of three pairs of subjects, either
completely naive or not expert in MI BMI, suggested
promising results supporting our hypothesis and demon-
strating the feasibility of utilizing this protocol to train
subjects in acquiring BMI skills while directly engaging
with real robotic application since the first days. We be-
lieve that the proposed approach of using the cBMI as
training protocol will help not only to reduce the time
investment required for reaching satisfying BMI perfor-
mance, but also to mitigate the potential frustration expe-
rienced by naive users at the beginning of the training.

FUTURE WORKS

To further validate the proposed approach, we aim to
evaluate in a larger study the improvements introduced
by the collaborative BMI on the subject’s learning with
respect to training the subjects individually. Moreover,
we want to investigate how the learning process is influ-
enced by the pairing of individuals. Thus, we will com-
pare the learning of pairs of both nave subjects with re-
spect to pairing a naive subject with an expert BMI user.
Finally, the use of the proposed cBMI will be extended to
other and more challenging scenarios such as controlling
the robotic arm in daily-living tasks or for entertainment
in collaborative gaming applications.

ACKNOWLEDGMENT

The work is partially funded by the Piano Nazionale
di Ripresa e Resilienza (PNRR), Project PE8 “AGE-IT”
(Spoke 9) and Progetti di Rilevante Interesse Nazionale
(PRIN 2022, 2022BCZ52A) - Ministero dell’Università e
della Ricerca. This manuscript reflects only the authors’
views and opinions, neither the European Union nor the
European Commission can be considered responsible for
them.

REFERENCES

[1] McFarland DJ, Wolpaw JR. EEG-based brain–
computer interfaces. current opinion in Biomedical En-
gineering. 2017;4:194–200.
[2] Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X.
A comprehensive review of EEG-based brain–computer
interface paradigms. Journal of Neural Engineering.
2019;16(1):011001.
[3] Alimardani M, Nishio S, Ishiguro H. Brain-computer
interface and motor imagery training: The role of vi-
sual feedback and embodiment. Evolving BCI Therapy-
Engaging Brain State. Dynamics. 2018;2(64).
[4] Tortora S et al. Neural correlates of user learning
during long-term BCI training for the cybathlon compe-

tition. Journal of NeuroEngineering and Rehabilitation.
2022;19(1):1–19.
[5] Tonin L et al. Learning to control a BMI-driven
wheelchair for people with severe tetraplegia. iScience.
2022;25(12).
[6] Leeb R et al. Transferring brain–computer interfaces
beyond the laboratory: Successful application control for
motor-disabled users. Artificial intelligence in medicine.
2013;59(2):121–132.
[7] Poli R, Valeriani D, Cinel C. Collaborative brain-
computer interface for aiding decision-making. PloS one.
2014;9(7):e102693.
[8] Bonnet L, Lotte F, Lécuyer A. Two brains, one game:
Design and evaluation of a multiuser BCI video game
based on motor imagery. IEEE Transactions on Computa-
tional Intelligence and AI in games. 2013;5(2):185–198.
[9] Valeriani D, Poli R, Cinel C. Enhancement of
group perception via a collaborative brain–computer in-
terface. IEEE Transactions on Biomedical Engineering.
2017;64(6):1238–1248.
[10] Yijie Z et al. A multiuser collaborative strategy for
MI-BCI system. In: 2018 IEEE 23rd International Con-
ference on Digital Signal Processing (DSP). 2018, 1–5.
[11] Wang Y, Wang YT, Jung TP, Gao X, Gao S. A col-
laborative brain-computer interface. In: 2011 4th Interna-
tional Conference on Biomedical Engineering and Infor-
matics (BMEI). 2011, 580–583.
[12] Myrden A, Chau T. Effects of user mental state
on EEG-BCI performance. Frontiers in human neuro-
science. 2015;9:308.
[13] Roc A et al. A review of user training methods in
brain computer interfaces based on mental tasks. Journal
of Neural Engineering. 2021;18(1):011002.
[14] Müller-Putz G, Scherer R, Brunner C, Leeb R,
Pfurtscheller G. Better than random: A closer look on
bci results. International journal of bioelectromagnetism.
2008;10(1):52–55.
[15] Tortora S, Tonin L, Chisari C, Micera S, Menegatti
E, Artoni F. Hybrid human-machine interface for gait de-
coding through bayesian fusion of EEG and EMG classi-
fiers. Frontiers in Neurorobotics. 2020;14:582728.
[16] Lin TY, Goyal P, Girshick R, He K, Dollár P. Fo-
cal loss for dense object detection. In: Proceedings of the
IEEE international conference on computer vision. 2017,
2980–2988.
[17] Tortora S, Gottardi A, Menegatti E, Tonin L. Con-
tinuous teleoperation of a robotic manipulator via brain-
machine interface with shared control. In: 2022 IEEE
27th International Conference on Emerging Technologies
and Factory Automation (ETFA). 2022, 1–8.
[18] Gottardi A, Tortora S, Tosello E, Menegatti E.
Shared control in robot teleoperation with improved po-
tential fields. IEEE Transactions on Human-Machine
Systems. 2022;52(3):410–422.
[19] Alt H, Godau M. Computing the Fréchet dis-
tance between two polygonal curves. International
Journal of Computational Geometry & Applications.
1995;5(01n02):75–91.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-063

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

365


