
APPROXIMATE UMAP ALLOWS FOR HIGH-RATE ONLINE
VISUALIZATION OF HIGH-DIMENSIONAL DATA STREAMS

Peter Wassenaar1⋆, Pierre Guetschel1⋆, Michael Tangermann1

⋆These authors contributed equally to this work.
1Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

E-mail: pierre.guetschel@donders.ru.nl

ABSTRACT: In the BCI field, introspection and inter-
pretation of brain signals are desired for providing feed-
back or to guide rapid paradigm prototyping but are chal-
lenging due to the high noise level and dimensionality
of the signals. Deep neural networks are often intro-
spected by transforming their learned feature represen-
tations into 2- or 3-dimensional subspace visualizations
using projection algorithms like Uniform Manifold Ap-
proximation and Projection (UMAP) [1]. Unfortunately,
these methods are computationally expensive, making the
projection of data streams in real-time a non-trivial task.
In this study, we introduce a novel variant of UMAP,
called approximate UMAP (aUMAP). It aims at gener-
ating rapid projections for real-time introspection. To
study its suitability for real-time projecting, we bench-
mark the methods against standard UMAP and its neural
network counterpart parametric UMAP [2]. Our results
show that approximate UMAP delivers projections that
replicate the projection space of standard UMAP while
decreasing projection speed by an order of magnitude and
maintaining the same training time.

INTRODUCTION

The recording of neural signals offers a window into un-
derstanding brain activity, with potential applications in
various fields. However, a considerable challenge lies in
the fact that these signals, particularly electroencephalo-
grams (EEG), are high-dimensional and very susceptible
to noise. Consequently, this situation requires the devel-
opment of specialized analysis techniques to describe and
eventually understand the underlying neural processes.

Introspectability deficiency is an issue for various use
cases. An example is the brain-computer interfaces (BCI)
field, where providing feedback to the BCI user is key to
either improve the BCI’s performance [3–5] or aid in re-
habilitation therapies [6]. Another example is the inves-
tigation of novel experimental protocols. To evaluate if a
new BCI paradigm is suited, it must be determined if the
resulting brain signals contain discriminative information
related to the task and if this information is sufficient to
accomplish control over an application. Both of these ex-
amples could benefit from data introspection in an online
environment, as providing feedback immediately may en-
able a BCI user to adapt on the spot, and experimenters

to investigate novel paradigms using a rapid prototyping
approach.

Interpretability challenges of brain data can be tackled
by extracting higher-level features, such as the embed-
dings of a neural network, from the data. These features
are typically less noisy and have a lower dimensional-
ity, even though they are still too high-dimensional for a
human to capture. Obtaining such higher-level features,
also known as latent features, is at the core of most ma-
chine learning methods in a BCI system. For providing
feedback to a human and investigating novel paradigms,
these features must be visualized. This may be done by
transforming a set of latent features into a 2D or 3D repre-
sentation and visualizing these features in an image. This
process is known as projecting.

Projecting may be achieved by numerous methods,
such as Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), Uniform Manifold Ap-
proximation and Projection (UMAP) [1], t-distributed
Stochastic Neighbor Embedding (t-SNE) [7], and Isomet-
ric Mapping (ISOMAP).
Unfortunately, not all of these methods are well-suited
for online projections. For example, while ISOMAP is
known to deal well with noisy data, it has a high computa-
tional complexity for larger datasets [8], which increases
the model training time and may stagger the projection
rate. Alternatively, PCA may be used for rapid project-
ing, yet it can not account for complex non-linear struc-
ture in the data [9]. To determine if a projection method
is a good fit for online projecting, we defined the follow-
ing four criteria: 1) The produced projections should be a
sufficiently accurate lower dimensional (2D or 3D) repre-
sentation of the input data. 2) The time it takes to train/fit
a model should be relatively brief, i.e., in the range of
minutes for the typical data dimensionalities encountered
in BCI. 3) Projecting a novel data point into an exist-
ing 2D/3D representation should be fast, i.e., take tens
to one hundred milliseconds at most, 4) Optimally, the
method should be lightweight to avoid strain on the hard-
ware that may impact projection and/or training time, and
to avoid requiring specific hardware or technical knowl-
edge to run.

Uniform Manifold Approximation and Projection
(UMAP) [1] is a good candidate for an online projec-
tion. It comes with benefits such as utilizing a math-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

349

mailto:pierre.guetschel@donders.ru.nl


Table 1: Summary description of the datasets used to evaluate the accuracy of approximate UMAP.

Dataset Classes Samples total Dimensionality Features

Iris plants 3 150 4 Real positive numbers
hand-written digits 10 1797 64 Integers in [0-16]
breast cancer Wisconsin 2 569 30 Real positive numbers

ematical model to solve a clearly defined optimization
problem, making it lightweight. Additionally, UMAP is
widely adopted in the field, as such there are numerous
variations of the method. However, UMAP projection
times are slow, possibly conflicting with the third crite-
rion. To overcome this potential drawback, parametric
UMAP (pUMAP) is a possible alternative [2]. One of
the advantages of pUMAP over standard UMAP is that it
generates projections faster, due to utilizing a neural net-
work. However, pUMAP is less lightweight, which may
conflict with criterion 4.

Approximate UMAP Motivated by the limitations of
existing approaches, we introduce approximate UMAP
(aUMAP), a novel alternative that drastically reduces the
projection time of UMAP. Its training procedure is iden-
tical to standard UMAP and the projection speed increase
is achieved by approximating the standard UMAP projec-
tions using a nearest neighbors approach.

Experiments. The accuracy of the aUMAP projections,
i.e., criterion 1, is evaluated by comparing them with pro-
jections obtained by standard UMAP on three datasets.
The training and projection times, i.e., criteria 2 and 3,
are evaluated for all three UMAP methods. The models
will be trained on data and project data characterized by
varying dimensionality and sample counts in order to ex-
amine the impact of these variables.

Structure of the paper After introducing details of
UMAP, pUMAP and the proposed novel aUMAP method
we provide results related to our research questions. In
the final discussion section, we debate if the presented
UMAP methods satisfy the conditions for online project-
ing we proposed earlier and provide our conclusion as to
which method is most suited for online projecting.

MATERIALS AND METHODS

Approximate UMAP (aUMAP) is designed to be an
adaptation of UMAP that reduces the time it takes to pro-
duce projections on new data points. It does not deviate
from standard UMAP when fitting a model, however, it
does train an additional k-nearest neighbors model in tan-
dem. Additionally, aUMAP has a different approach for
projecting novel data points. It does so by minimizing
the summed Euclidian distance between the new projec-
tion and the projections of the points that lie closest to
the new data point in the input space. The mathematical
equation of this is expressed in Equation 1:

u =
k

∑
i=1

1
di

∑
k
j=1

1
d j

ui (1)

where u is the projection of a new data point x, k is
the number of neighbors considered, u1 . . .uk are the al-
ready existing UMAP projections of the k nearest neigh-
bors x1 . . .xk of point x in the input space, and di =
distance(x,xi).

Benchmarking Data: In order to account for the im-
pact of sample size and data dimensionality on training
and projection times, we generated a number of mock
datasets containing data of varying dimensionality. Each
dataset contained an equal number of samples, allowing
for the selection of subsets for testing multiple sample
counts. The datasets were generated from a multiclass
Poisson distribution. These datasets were used for mea-
suring the training and projection times for the varying
models.
To measure the accuracy of aUMAP, we selected the
sklearn datasets Iris plants, hand-written digits, and
breast cancer Wisconsin. These datasets were chosen for
two reasons. First, they cover a variety of data parame-
ters which includes the number of classes, dimensional-
ity, and sample count, see Table 1. Secondly, standard
UMAP is able to learn an unsupervised solution for each
of these datasets that separates all classes of the data.

Model parameters: The models used during the exper-
iments were initiated using the default parameters pro-
vided by their base implementation. While this choice
clearly leaves room for domain-specific optimizations,
we opted to make use of the default parameters to max-
imize generalizability. The most notable parameters are
the distance metric, number of neighbors, minimum dis-
tance, and number of components used by UMAP and
nearest neighbors (knn) models. These parameters de-
fault to ’euclidean’, 15, 0.1, and 2 respectively. For the
default parameters of pUMAP see the official documen-
tation 1. We diverged from the default parameters on two
occasions only. First, we increased the number of near-
est neighbors used by the knn model from its default 5
to 15 in order to be consistent with the default of the
UMAP model. Secondly, we adapted the parameters of
the UMAP and knn models to produce better UMAP pro-
jections. For the breast cancer dataset, we set the number
of neighbors to 200 and the minimum distance to 1. The
minimum distances for the Iris plants and hand-written
digits datasets were also increased to 5 and 1, respec-
tively. The remaining parameters were kept the same.

Approximate UMAP accuracy: aUMAP only differs
from standard UMAP by approximating novel projec-
tions instead of calculating them. Both methods seek the

1Paramatric UMAP documentation: https://umap-learn.
readthedocs.io/en/latest/parametric_umap.html

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

350

https://umap-learn.readthedocs.io/en/latest/parametric_umap.html
https://umap-learn.readthedocs.io/en/latest/parametric_umap.html


same solution. As such, a suitable way to benchmark
aUMAP is to investigate how closely its projections fit
those of standard UMAP using the Euclidean distance.
The closer the aUMAP projections are in the latent space
to their associated standard UMAP projections, the better
aUMAP achieves its goal. Here, we refer to associated
projections as latent points that have been produced us-
ing the same input data. We measure the distance as the
mean Euclidean distance in the projection space. As the
UMAP projections are arbitrarily scaled, the Euclidean
distance by itself may not be informative without a nor-
malization by the standard deviation of the projected test
points produced by standard UMAP, which we have in-
cluded for this reason.

Runtime Measurements: Training times were mea-
sured for each method across a predefined range of di-
mensionalities and sample counts. A varying dimension-
ality was paired with a static sample count, i.e., we se-
lected multiple of the mock datasets, which differed in
their data dimensionality, and selected an equal number
of training samples across each set. Similarly when vary-
ing the sample count, the dimensionality was kept consis-
tent by drawing subsets from a single generated dataset.
When measuring the projection times, the models of the
previous step were repurposed to produce the projections,
maintaining either a varying dimensionality or number of
training samples. A static number of test samples was
passed to each model for projecting, matching the data
dimensionality of the model’s training data. To account
for data being presented only a few samples at a time in
an online environment, we recorded the training time us-
ing two approaches. In the first approach, referred to as
one-go, all data was given to the model at once, requiring
only a singular call to the projection method. The second
approach, referred to as batching and designed to better
match an online setting, fed data points to each model in
small batches of five points at a time.

Hardware: All experiments were run using an AMD

Ryzen 7 5800x 8-core processor and a NVIDIA GeForce
RTX 3060 Ti. Windows Subsystem for Linux (WSL)
v.2.0.9.0 was used to enable Tensorflow GPU support.
All models, apart from GPU-run pUMAP, were run on
CPU.

RESULTS

Performance of aUMAP: Table 2 shows the perfor-
mance of aUMAP given as the average Euclidian dis-
tance over all test samples in the dataset in standard devi-
ations between aUMAP projections and their correspond-
ing standard UMAP projection. Figure 1 allows visualis-
ing these projections in addition to the projections of the
points used to train the UMAP model used by both meth-
ods. Overall, aUMAP delivers a set of projections that
closely match the standard UMAP projections. There is
only a small number of aUMAP projections that do not
match the classification of the matching standard UMAP
projection. Across all datasets, the mean distance be-
tween the projections lies around 0.1 to 0.25 standard de-
viations. There is a large variance for each mean distance,
which is most extreme for the breast cancer dataset. The
variance is reflected by various outliers as shown in Fig-
ure 1. While the majority of aUMAP projections match
the projection space clusters, the occasional projection
deviates sharply, sometimes appearing projected closer
to a different cluster than its standard UMAP counter-
part. Standard UMAP also produces outliers, yet these
are fewer and less extreme.

Table 2: Average Euclidean distance between novel standard
UMAP and aUMAP projections. Distances are normalized by
the standard deviation of the novel standard UMAP projections.

Dataset Mean distance Variance

Iris plants 0.256 0.150
hand-written digits 0.083 0.104
breast cancer Wisconsin 0.126 0.211

Iris plants hand-written digits breast cancer Wisconsin

UMAP - train UMAP - test aUMAP - test

Figure 1: Comparison of UMAP and aUMAP using three datasets. The 2D projections of the training data and test data produced
by standard UMAP are displayed in addition to the test set projections produced by aUMAP. The gray lines connect projections of
standard UMAP and aUMAP that were obtained from the same test data sample. Colors indicate the classes of the data (not available
to the projection methods).

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

351



Training Time: Figure 2 visualizes the impact of vary-
ing data dimensionality and number of training samples,
concerning the time required to train a model. When
varying the data dimensionality, the number of training
examples used for training was fixed to 5000. When vary-
ing the number of training examples, the data dimension-
ality was fixed to 1000.
We observe that the training times of standard UMAP and
aUMAP are notably lower than those of pUMAP across
any dimensionality or sample count. Training pUMAP
on a GPU takes an order of magnitude longer to train than
standard UMAP and aUMAP for any dimensionality and
sample count. Training pUMAP on a CPU is likewise an
order of magnitude slower across all batch sizes and for
a dimensionality of 1000, while still being slower than
standard UMAP and aUMAP for lower dimensionalities.

The data displays an upward trend across all projection
methods as the number of samples increases. This trend
is most extreme for CPU-run pUMAP and has a minor
effect on GPU-run pUMAP training times until increas-
ing the sample count from 1000 to 5000. Only CPU-run
pUMAP is strongly affected by an increase in dimension-
ality.

Projection Time: The projection times are visualized
in Figure 3. These results were obtained by projecting
500 test samples either in a single batch (one-go) or in
multiple sub-batches of 5 samples (batching). The exper-
iments were repeated 10 times to obtain an average result.
Two outlier training times for specific runs were left out
in the final averages due to these measurements deviat-
ing more than two standard deviations from the average,
whereas the remaining projection times were all within

5 25 100 250 1000
Dimension

10
1

10
2

tra
in

in
g 

tim
e 

(s
)

50 100 250 500 1000 5000
Num Samples

pUMAP - GPU
pUMAP - CPU
aUMAP
UMAP

Figure 2: Training times. Models were trained on mock datasets generated from a multiclass Poisson distribution. Left: Models
were trained on datasets of 5000 samples with varying dimensionalities. Right: Training across varying sample counts was done using
subsets of a 1000-dimensional dataset. Standard UMAP and aUMAP models were trained on the CPU. pUMAP models were trained
on both, CPU and GPU separately. Note that aUMAP and standard UMAP results are near-identical, causing the line of the latter to
be concealed in the graph. All results shown were averaged across 10 repetitions. Error bars indicate the standard deviation across the
runs.

10
1

10
0

10
1

on
e-

go
 p

ro
je

ct
io

n 
tim

e 
(s

)

5 25 100 250 1000
Dimension

10
1

10
0

10
1

ba
tc

h 
pr

oj
ec

tio
n 

tim
e 

(s
)

50 100 250 500 1000
Num Samples

UMAP
pUMAP - GPU
pUMAP - CPU
aUMAP

Figure 3: Projection times. The models used for projecting were obtained from the training time experiment. For each model and
condition, 500 samples from a multiclass Poisson distribution were passed to the models to be projected. Samples were provided either
in a singular batch of 500, denoted as one-go (upper figures), or in small batches of 5 samples, denoted as batch (bottom figures).
Standard UMAP and aUMAP models were trained on CPU. pUMAP was trained on both CPU and GPU separately. The results were
averaged across 10 repetitions.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

352



one standard deviation. These outliers occurred for CPU-
run pUMAP under the batches condition, one for dimen-
sionality = 1000 and the other for sample count = 1000.
The results show that the projection speed of UMAP is
significantly worse compared to the other methods. Un-
der the one-go condition, standard UMAP takes over a
magnitude longer than aUMAP and pUMAP. This dif-
ference remains under the batch condition between stan-
dard UMAP and pUMAP, while increasing by an order
of magnitude against aUMAP.
The effects of an increase in dimensionality or sample
count are only notable for aUMAP in both the one-go
and batching conditions. Other methods do not seem af-
fected, except for standard UMAP under the one-go con-
dition at the highest sample count tested, however, this
increase is paired with a significant increase in variance.
Between the one-go and batch conditions, aUMAP re-
tains similar projecting times. For standard UMAP and
pUMAP, projection times are increased by an order of
magnitude when comparing batch to one-go. As a result,
aUMAP runs an order of magnitude faster than pUMAP
for the batched condition, while running at a similar
speed for the one-go condition.

DISCUSSION

In the INTRODUCTION, four requirements are pre-
sented to determine if a projection method is suitable for
an online setting. 1) The produced projections should be
an accurate lower dimensional (2D or 3D) representation
of the input data, 2) The time it takes to train/fit a model
should be relatively brief, i.e. a timescale of minutes,
3) projections should be rapidly producible in an online
fashion on a time scale of tens to 100 milliseconds, 4)
preferably, the method needs to be lightweight to ensure
projection or training times do not suffer due to strain on
the hardware and to avoid a need for specific hardware or
technical knowledge.

Approximate UMAP Accuracy: Our results in Figure 1
show that the proposed aUMAP method upholds the clus-
tering produced by standard UMAP. The average distance
between the aUMAP projections and standard UMAP
projections remains well below one standard deviation of
the standard UMAP projections. Although aUMAP pro-
duces quantitatively more and more extreme outliers than
standard UMAP, it still reproduces the same clustering
in the projection space as standard UMAP. This suggests
that the accuracy of aUMAP is close enough to that of
standard UMAP to suite online projecting, although more
prone to outliers. As such, aUMAP satisfies the Crite-
ria 1.

Training Time: Our results show that all tested meth-
ods satisfy the training time condition. The maximum
of approx. 2 minutes was observed for pUMAP when
trained on 5000 samples of 1000 dimensions. This time
is in line with the requirement we set out. However, it
should be noted that this method is sensitive to an in-
crease in the number of training samples, so it might vio-

late the requirement if more training data were to be used.
Unfortunately, we cannot properly assess the runtime of
pUMAP when using a GPU. A closer look at the GPU-
based pUMAP experiments is presented in a later section.
We observe that pUMAP scales with data dimensionality,
more so than the other methods, yet to a lesser extent than
the input sample size.

Our data shows that GPU-run pUMAP takes more time to
train than CPU-run pUMAP. These results go against our
prior expectations which expected pUMAP to be trained
faster when having access to a GPU. As such, a closer
look at GPU-run pUMAP is presented in a later section.
This and the following section will focus only on CPU-
run pUMAP when discussing pUMAP.
Comparing the training speed of CPU-run pUMAP to the
other methods, pUMAP is notably outperformed by both
standard UMAP and aUMAP, which have about the same
training time due to also fitting a UMAP model which
is what dominates the training duration. aUMAP fits a
nearest neighbors model in addition, yet this only triv-
ially contributes to the training time complexity. Standard
UMAP and aUMAP are trained an order of magnitude
quicker than CPU-run pUMAP and are less influenced
by larger dimensionality and sample size. As a result,
standard and aUMAP would each be the best choices for
a projection method according to Criteria 2.

Projection Time: The observed projection times dis-
play a significant difference between the one-go and
batches condition for all methods except aUMAP, which
consistently obtains the lowest projection times. Under
the one-go condition, the projection time is significantly
faster for standard UMAP and CPU-run pUMAP, be-
ing an order of magnitude quicker. The projections of
aUMAP take longer in the batch condition but remains
on the same scale.
Given that only a few data points are provided at a time
in an online environment, the times given in the batch
condition are of greater interest. Therefore, the following
discussion is based on this condition. Standard UMAP re-
quires a significantly longer time to generate projections
compared to the other methods. For every dimensionality
and training sample count tested, UMAP requires approx-
imately 40 seconds to project 500 samples, translating to
roughly 800 ms per sample, which is significantly longer
than the acceptable projection duration we proposed in
our third criterion. As such, standard UMAP cannot be
regarded as a good fit for online projecting. CPU-run
pUMAP is a better fit, as it projects the 500 points in just
above one second under its slowest conditions, or 2 ms
per data point. This satisfies Criteria 3. aUMAP per-
forms an additional order of magnitude faster, where all
500 projections are generated in less than 100 millisec-
onds. Both aUMAP and CPU-run pUMAP scale with the
number of training samples and dimensionality, however,
not at a significant degree. As such, the impact of the
training sample count or data dimensionality on projec-
tion time may be disregarded unless dealing with values
that are of multiple magnitudes larger than the highest

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

353



values we tested.
This leads to the conclusion that, according to Criteria 3,
aUMAP is most suited for online projecting, however,
CPU-run pUMAP is also a feasible option.

GPU-run parametric UMAP: Finally, we will discuss
GPU-run pUMAP. The results we obtained show that
pUMAP runs faster on CPU than on GPU, both when
fitting a model and projecting. This is contradictory to
our expectations and the results of the paper that intro-
duced pUMAP [1]. Although the pUMAP study does
not comment on the effect of CPU or GPU usage on
the model’s training speed, the authors do compare the
projection speed of a CPU-run model to that of a GPU-
run model, showing that the projection speed is faster
for GPU-run pUMAP. According to that paper, GPU-run
pUMAP achieves a projection time that is approximately
one magnitude lower than CPU-run pUMAP for three of
the six datasets used. Additionally, the study shows the
effect of data dimensionality on the projection time, com-
paring 2 to 64 dimensions, which is in line with our re-
sults.
Based on the results of the original pUMAP paper,
we may make an inference on how GPU-run pUMAP
would compare to the projection times found for CPU-
run pUMAP. At worst, there would be an insignificant
difference, at best, GPU-run pUMAP would run an or-
der of magnitude faster. Given the best-case scenario,
pUMAP would still project slower than aUMAP. This im-
plies that, given Criteria 3, aUMAP would still be a better
projection method for online projecting.
Additionally, the pUMAP paper states that the training
times of pUMAP are within the same order of magnitude
as those of standard UMAP. The study highlights this by
showing the cross-entropy loss convergence of pUMAP
and standard UMAP, which occurs at around 1 second
for two of the three shown datasets and at 102 seconds for
the other dataset. Based on these results, we could specu-
late that training pUMAP, when having access to a GPU,
is as fast as both standard UMAP and aUMAP, making
pUMAP an equally valid choice as an online projection
method in accordance with Criteria 3.

Implementation: The implementation of the aUMAP
algorithm can be found online2. Additionally, a graphical
application for visualizing incoming data stream in real-
time and integrating this algorithm was created in the 3

platform.

CONCLUSION

To conclude, our results suggest that aUMAP can approx-
imate the projection space of standard UMAP sufficiently
well for the targeted application. aUMAP may generate
projections that lay closer to different clusterings than
their standard UMAP counterparts and produces more
and more extreme outliers than standard UMAP.

2aUMAP implementation: https://neurotechlab.socsci.
ru.nl/resources/approx_umap/

3Dareplane: https://github.com/bsdlab/Dareplane

Additionally, our results suggest that pUMAP and
aUMAP are good fits for real-time projecting. Standard
UMAP, on the other hand, does not meet the criteria to
be regarded as a good fit due to its projection times being
longer than our proposed acceptable maximum. Over-
all, aUMAP seems the best option for an online pro-
jection tool, having the lowest training and projection
times while being more accessible than pUMAP. How-
ever, aUMAP is more prone to producing outliers in pro-
jection space than standard UMAP. As such, if high ac-
curacy is desired pUMAP may be a better choice.

ACKNOWLEDGEMENTS

We thank Matthias Dold for his insights into the Dare-
plane platform which was used to implement the graph-
ical application. Additionally, this work is in part sup-
ported by the Donders Center for Cognition (DCC) and is
part of the project Dutch Brain Interface Initiative (DBI2)
with project number 024.005.022 of the research pro-
gramme Gravitation which is (partly) financed by the
Dutch Research Council (NWO).

REFERENCES

[1] McInnes L, Healy J, Melville J. UMAP: Uniform
manifold approximation and projection for dimension re-
duction. 2018.
[2] Sainburg T, McInnes L, Gentner TQ. Parametric
UMAP embeddings for representation and semisuper-
vised learning. Neural Computation. 2021:1–27.
[3] Tidoni E, Gergondet P, Kheddar A, Aglioti SM.
Audio-visual feedback improves the BCI performance in
the navigational control of a humanoid robot. Frontiers in
Neurorobotics. 2014;8.
[4] Sollfrank T et al. The effect of multimodal and
enriched feedback on SMR-BCI performance. Clinical
Neurophysiology. 2016;127(1):490–498.
[5] Luu TP, He Y, Brown S, Nakagome S, Contreras-
Vidal JL. Gait adaptation to visual kinematic perturba-
tions using a real-time closed-loop brain–computer inter-
face to a virtual reality avatar. Journal of Neural Engi-
neering. 2016;13(3):036006.
[6] Pillette L, Lotte F, N’Kaoua B, Joseph PA, Jeunet C,
Glize B. Why we should systematically assess, control
and report somatosensory impairments in BCI-based mo-
tor rehabilitation after stroke studies. NeuroImage: Clini-
cal. 2020;28:102417.
[7] Hinton G, Maaten L van der. Visualizing data
using t-sne. journal of machine learning research.
2008;9(11):2579–2605.
[8] Liang D, Qiao C, Xu Z. Enhancing both efficiency
and representational capability of isomap by extensive
landmark selection. Mathematical Problems in Engineer-
ing. 2015;2015:241436.
[9] Nyamundanda G, Brennan L, Gormley IC. Proba-
bilistic principal component analysis for metabolomic
data. BMC Bioinformatics. 2010;11(1):571.

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-061

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

354

https://neurotechlab.socsci.ru.nl/resources/approx_umap/
https://neurotechlab.socsci.ru.nl/resources/approx_umap/
https://github.com/bsdlab/Dareplane

