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ABSTRACT: A limitation of brain-computer interface
(BCI) spellers is that they require the user to be able to
move the eyes to fixate on targets. This poses an issue
for users who cannot voluntarily control their eye move-
ments, for instance, people living with late-stage amy-
otrophic lateral sclerosis (ALS). This pilot study makes
the first step towards a gaze-independent speller based
on the code-modulated visual evoked potential (c-VEP).
Participants were presented with two bi-laterally located
stimuli, one of which was flashing, and were tasked to
attend to one of these stimuli either by directly looking
at the stimuli (overt condition) or by using spatial atten-
tion, eliminating the need for eye movement (covert con-
dition). The attended stimuli were decoded from elec-
troencephalography (EEG) and classification accuracies
of 88 % and 100 % were obtained for the covert and
overt conditions, respectively. These fundamental in-
sights show the promising feasibility of utilizing the c-
VEP protocol for gaze-independent BCIs that use covert
spatial attention when both stimuli flash simultaneously.

INTRODUCTION

A brain-computer interface (BCI) records its users’ brain
activity and translates it into a computer command, open-
ing a novel non-muscular channel for communication and
control [1]. Typically, a BCI records brain activity with
electroencephalography (EEG) because it is affordable,
practical, and non-invasive.
One of the fastest BCIs for communication uses the code-
modulated visual evoked potential (c-VEP) as measured
in the EEG [2]. The c-VEP is observed during visual
stimulation of the user with a pseudo-random sequence
of flashes. As each of the presented symbols concurrently
flickers with a random but unique sequence of flashes,
specific brain activity is evoked when the user attends
to one of the symbols. Subsequently, machine learn-
ing algorithms infer the attended symbol from the users’
evoked brain activity. Such a visual BCI speller allows its
user to select symbols or commands and as such commu-
nicate, bypassing most of the motor system [3].
Unfortunately, an important limitation of a standard vi-
sual BCI speller is the requirement of the users’ eyes to
shift their gaze towards (i.e., fixate on) a target symbol.
Because BCI control is fully dependent on eye move-
ments, this poses a major challenge and quickly renders
the BCI uncontrollable for people who have lost volun-

tary control of their eye movements, i.e., people living
with late-stage amyotrophic lateral sclerosis (ALS).
In the visual domain, several studies have attempted to
develop a gaze-independent BCI. For instance, Blankertz
and colleagues developed a BCI speller called the ‘Hex-
o-Spell’ that used motor imagery (imagined right hand
and right foot movement, i.e., N = 2 classes) of the
user to aid the selection of characters from six hexagonal
fields [4]. They reported a typing speed of 2.3–5 char/min
and 4.6–7.6 char/min, for their two participants respec-
tively. Interestingly, Treder and Blankertz showed that
visual covert spatial attention can also be used to oper-
ate the ‘Hex-o-Spell’ and the ‘Matrix’ speller using the
P300 event-related potential (ERP) [5]. This covert ‘Hex-
o-Spell’ outperformed the covert ‘Matrix’ speller, with a
classification accuracy of 60 % (N = 36 classes) and 40 %
(N = 30 classes), respectively.
Furthermore, work by Treder and colleagues compared
the P300-based ‘Hex-o-Spell’, the ‘Cake Speller’, which
is similar to the former, and a ‘Center Speller’, where
unique geometric shapes with different colors were
closely surrounded by characters, and presented centrally
on the screen in a sequential fashion [6]. A classification
accuracy of 91.3 %, 88.2 %, and 97.1 % was reported for
the three spellers, respectively (N = 30 classes). Sim-
ilarly, Chen and colleagues [7] used an extension of
the P300 oddball paradigm, namely, rapid serial visual
presentation (RSVP). The authors used two versions:
a colored circles paradigm (CCP), and a dummy face
paradigm (DFP). The average performances obtained
from the CCP and DFP paradigms were in the range
51.6 % and 73.5 %, respectively.
Additionally, Treder and colleagues, in another instance,
focused on using changes in alpha band activity induced
by covert attention shifts to classify the direction in which
attentional shifts occurred [8]. The authors showed that
a classification accuracy of 73.65 % was obtained (N =
2 classes). These results indicate the potential of using
alpha activity as a feature for spatial attention decoding
in gaze-independent BCIs.
Furthermore, Kelly and colleagues designed a gaze-
independent BCI for communication by combining fea-
tures from the steady-state visual evoked potential
(SSVEP) and alpha band modulations to decode covert
spatial attention [9]. The authors reported an average
performance of 70.3 %, 72.8 % and 79.5 % when using
the SSVEP, alpha band, or both features in their analysis
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pipeline, respectively (N = 2 classes). Similarly, Egan
and colleagues [10] aimed for a hybrid gaze-independent
speller using the P300 ERP and alpha in addition to the
SSVEP. Importantly, adding the P300 response and alpha
as additional features in their classification pipeline im-
proved the performance by 17 % to an overall 79 % when
compared to the performance using only the SSVEP,
achieving 62 % (N = 2 classes).
In this pilot study, we work towards a gaze-independent
BCI. The gaze-dependent c-VEP has recently demon-
strated exceptional performance, surpassing other evoked
paradigms like ERP and SSVEP [11]. Another study
revealed the reliable decoding of c-VEP from periph-
eral stimulation (away from fixation) compared to direct
foveal stimulation (at fixation) [12].
Our objective is to acquire fundamental insights on
the feasibility of decoding the c-VEP in a fully gaze-
independent manner. Specifically, participants will use
covert spatial attention to concentrate on stimuli, elimi-
nating the need for direct eye movements to foveate on
them. In this pilot work, the stimuli were presented se-
quentially, to assess whether the c-VEP can be decoded
from the far periphery, before testing the more complex
parallel stimulation case, where stimuli would be pre-
sented simultaneously. If successful, this study provides
the first steps to a gaze-independent c-VEP BCI, poten-
tially providing a high-speed neuro-technological assis-
tive device for individuals who may not have reliable con-
trol of their eye movements.

MATERIALS AND METHODS

Participants: Five participants (all male, mean age
31 years, range 24-50 years) were included in this study
after obtaining written informed consent. Two partici-
pants were authors of this study. A pre-screening proce-
dure excluded any participants with a history of epilepsy
or brain injury. All participants had normal or corrected-
to-normal vision and reported no central nervous system
abnormalities. This study was approved by the Ethical
Committee of the Faculty of Social Sciences at the Rad-
boud University Nijmegen.

Materials: EEG data from 64 Ag/AgCl active elec-
trodes placed according to the international 10-10 sys-
tem were recorded at 512 Hz amplified by a Biosemi Ac-
tiveTwo amplifier. The data were preprocessed using a
notch filter at 50 Hz and a bandpass filter with a lower
cutoff at 1 Hz and a higher cutoff at 40 Hz. Subsequently,
the data were sliced to trials starting at 500 ms before
stimulus onset until 20 s after stimulus onset. Finally,
the data were downsampled to 120 Hz, and the 500 ms
pre-stimulus that may have captured filter artefacts due to
initial slicing and subsequently filtering were removed.
The stimulus protocol (see Fig. 1) was displayed on
a 27 in Corsair Xeneon 27QHD240 OLED screen at a
1920×1080 px resolution with a 120 Hz refresh rate. The
participants were seated at a 60 cm distance in front of the
display. A black fixation cross was presented at the cen-

ter of the screen on a mean luminance gray background.
To each of the sides of the fixation cross at a distance of
2.1◦, two circles with a 3◦ diameter were presented.
The circles’ background color was luminance modulated
with binary pseudo-random noise-codes, such that ones
represent a white and zeros a black background. We used
126-bit modulated Gold codes [13, 14], which contained
only short flashes of 16,67 ms (bit sub-sequence ‘010’)
and long flashes of 33,33 ms (bit sub-sequence ‘0110’)
at a presentation rate of 60 Hz. From the available mod-
ulated Gold codes, we carefully selected one for the left
side. For the right circle a 61 bits phase-shifted version of
the left code was used. This was done such that the noise-
codes’ properties were identical, but still had a near-zero
correlation at a maximum delay.
Inside the circles (3◦ diameter), five colored shapes were
presented with a maximum possible height and width
of 1.4◦ each. The shapes and their colors are as fol-
lows : a green circle (1.4◦ diameter), magenta hourglass
(0.9◦ × 1.4◦), cyan inverted triangle (0.9◦ × 1.4◦), red
rectangle (1.5◦ × 0.5◦, rotated by 45◦), and the yellow
triangle (0.9◦×1.4◦). All shapes had the same brightness
and were sequentially presented in random order at a rate
of 4 Hz (see Fig. 1). Participants were asked to count the
number of times that the magenta hourglass, i.e., the tar-
get shape, occurred on the cued side, to facilitate sustain-
ing their attention and to evaluate the behavioral perfor-
mance of attending to each of the sides. Within a trial, the
temporal distance between the presentation of two target
shapes was at least 1 s, the target shape could not be pre-
sented on both sides simultaneously, and the number of
times the target shape was presented differed for the two
sides within a trial.
In this pilot study, we used sequential stimulation in both
overt and covert runs to make the first step towards gaze-
independent c-VEP BCI. That is, only the circle on the
attended (cued) side underwent alternating background
changes based on the pseudo-random noise-code, while
the unattended side retained a constant black background.
Notably, both sides featured distinct shape sequences de-
spite this sequential stimulation protocol.

Experiment: During the experiment, participants com-
pleted five runs: four runs required covert attention and
one required overt attention, the order of which was
randomized across participants. Each run consisted of
20 trials, 10 for each of the two classes, in random order.
At the start of a run, a 5 s period was used to let the par-
ticipant prepare for the upcoming trials. At the start of
a trial, a 1-second cue was presented to indicate the to-
be-attended side using an arrow. Subsequently, for a du-
ration of 20 s, the cued circle flashed according to its bit
sequence while the uncued circle remained static, while
both circles showed their distinct shape sequences. At the
end of a trial, participants were given a maximum of 5 s
to enter the number of target shapes they counted on the
attended side using a keyboard, after which they received
feedback for a period of 1 s on the correctness of their
response. Finally, before continuing to the next trial, a
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Figure 1: Stimulus protocol. In (a), a graphical representation of the stimulus interface is depicted, featuring two stimuli positioned
at 2.1◦ on either side of a fixation cross. The stimuli took the form of circles measuring 3◦ in both height and width. The fixation
cross was 0.7◦ for each side. The shapes presented were bound to a maximum height and width of 1.4◦ each. The shapes’ heights
and widths were as follows: green circle (1.4◦ diameter), inverted cyan triangle and yellow triangle (0.9◦× 1.4◦), magenta hourglass
(0.9◦×1.4◦) and the red rectangle (1.5◦×0.5◦, rotated by 45◦). In (b), a graphical representation of the stimulus protocol is depicted
comprising two crucial components: first, the background of the stimuli underwent alternating black-and-white transitions following
a binary pseudo-random sequence; second, diverse-colored shapes were presented within the stimuli. The stimulus background could
dynamically change with each frame of 16.67 ms (60 Hz), while the shapes within the stimuli changed every 250 ms (4 Hz). A trial took
20 s, within which target shapes (the magenta hour glass) appeared randomly in the sequence with at least 1 s distance. Participants
engaged with the stimuli by counting the number of target shapes on the attended side. In this pilot study, we adopted a paradigm
where only the background of the attended stimulus alternated, while the background of the unattended stimulus remained constant. A
left-attended trial is shown in (b).

1 s blank inter-trial interval was presented. At the end of
a run, the behavioral accuracy of correct responses was
shown on the screen. Participants could take self-paced
breaks in between runs.
In summary, we gathered 20 trials for each participant
in the overt condition, whereas the covert condition in-
volved the recording of 80 trials per participant. In both
conditions, the labels (left and right) were balanced.

Analysis: We used a template-matching classifier to
predict the attended side (left or right) given the recorded
brain activity. Specifically, we used the ‘reconvolution’
method [14], which assumes that the evoked response to
a stimulus sequence can be described by the linear su-
perposition of the responses to the individual flashes in
that sequence. The reconvolution approach can substan-
tially reduce the number of parameters while increasing
the number of samples to train these parameters, which
effectively can limit the required training data [15].
In reconvolution, the event time-series of the ith stimulus
sequence are listed in the event matrix Ei ∈ RE×T for E-
many events and T -many samples. This matrix describes
the onset of each of the events in a sequence. In this work,
the events were defined as the onset of the stimulation
sequence in each trial, and one event for each of the the
flash durations (short ‘010’ and long ‘0110’), for a total
of E = 3 events.
The event time-series are subsequently transformed to a
structure matrix that not only describes the onset, but
also the modeled length and importantly the overlap of
the transient responses for each of the events in the event
matrix. Assuming that the transient response length can
be limited to L samples without losing relevant data, the
structure matrix of the ith stimulus sequence is a Toeplitz-
like matrix Mi ∈ RM×T for M = E ∗L event time points.

Let’s assume we have a training dataset
{(X1,y1),(X j,y j) . . . ,(XJ ,yJ)} including labeled EEG
data for j ∈ {1, ...,J} trials with the single-trial EEG
X ∈ RC×T of C-many channels and T -many samples and
the associated binary label y ∈ {0,1}. With this data, we
can learn a spatial filter w ∈ RC and a temporal response
vector r ∈ RM by maximizing the following correlation
ρ as part of a canonical correlation analysis (CCA):

argmax
w,r

ρ(w⊤S,r⊤D) (1)

where S = [X1,X j, . . . ,XJ ] are the concatenated single
trials and D = [My1 ,My j , . . . ,MyJ ] are the concatenated
accompanying structure matrices.
Having learned the spatial filter and temporal response
vector, we can now predict the label of a new trial ŷ by
maximizing the following Pearson’s correlation ρ:

ŷ = argmax
i

ρ(w⊤X,r⊤Mi) (2)

Here, w⊤X is the spatially filtered data and r⊤Mi is the
predicted response template for the ith stimulus sequence.
To evaluate the performance of the reconvolution CCA
on the overt and covert data, we used a chronological 4-
fold cross-validation within each condition. The classi-
fication accuracy was averaged across folds. Note, the
c-VEP stimulation was only applied on the attended side,
while the unattended side remained a black background
color. In the decoding analysis, we simulated as if the
unattended side had been flashing with the noise-code
other than the one presented on the attended side.
Code for the reconvolution CCA approach is available at:
https://github.com/thijor/pyntbci.
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RESULTS

As this study presents the initial step to decode c-VEP
from peripheral stimulation, aiming towards covert spa-
tial attention, it is imperative to study how classifica-
tion accuracy is influenced by the modeled transient re-
sponse length. Given the potential for distinct transient
responses between conditions, we assessed the mean ac-
curacy across transient response lengths spanning from
0.1 to 0.9 s, for all participants (S1-S5) and both condi-
tions (see to Fig. 2).
In the covert condition, mean accuracy fluctuated from
55 % to 99 % across participants, whereas in the overt
condition, mean accuracy remained consistently at 100 %
for all participants across all transient response lengths.
In the covert condition, participants S3 and S4 achieved
a peak accuracy of 85 % and 86 % respectively, observed
at a transient response length of 200 ms. Participants S1
and S5 reached a highest accuracy of 88 % and 89 %,
respectively, at a transient response length of 300 ms.
Participant S2 demonstrated a peak accuracy of 99 % at
400 ms. Notably, the mean accuracy across participants
in the covert condition was highest at a transient response
length of 300 ms. Hence, for subsequent analysis, we use
a transient response length of 300 ms.
Tab. 1 shows the classification accuracy for a transient
response length of 300 ms. The scores obtained in the
covert condition for S1-5 were 88%,98%,84%,81 %
and 89 %, respectively, leading to an average of 88 %.
The overt condition performed better for all participants
(100 %). All individual scores in Tab. 1 are significantly
higher (p < .001) than chance level (50 %) as verified by
a permutation test using 1000 permutations.

Table 1: Mean classification accuracy. The table shows
the classification accuracy using a transient response length of
300 ms, for each participant and the grand average, for both
overt and covert conditions. All classification results for both
conditions and all participants individually were significantly
higher than chance (50 %) as verified by a permutation test with
1000 permutations (p < .001).

S1 S2 S3 S4 S5 Avg

Overt 1.00 1.00 1.00 1.00 1.00 1.00
Covert 0.88 0.98 0.84 0.81 0.89 0.88

To investigate the differences in characteristics of the spa-
tial activity patterns and transient responses, we com-
puted these at a transient response length of 300 ms for
both conditions. Fig. 3 shows an example of the spatial
pattern and transient responses for S4. Across partici-
pants, we observed that the spatial activity pattern for the
overt condition was more focally distributed, whereas it
was more lateralized for the covert condition.

DISCUSSION

Our pilot study provides fundamental insights into the
plausibility of a c-VEP-based stimulation paradigm for

decoding covert spatial attention, thereby potentially
eliminating the need for the ability to make eye move-
ments to control a c-VEP BCI. We implemented a two-
class paradigm, requiring participants to attend on a stim-
ulus either to the left or to the right of their fixation
point. The stimuli background flashed following pseudo-
random noise-codes, while their foreground simultane-
ously presented a random sequence of five distinct shapes
with an infrequent target shape. Participants were tasked
with counting the occurrences of the target shape amidst
the shape sequence (see Fig. 1). In this pilot study, we
used sequential stimulation to assess the feasibility of
covert c-VEP, before moving to the more complex par-
allel stimulation requiring covert spatial attention.
In our experiment, participants engaged with the stimuli
through either overt means, involving eye movements to
foveate on the target, or covertly, relying on spatial at-
tention to focus on a target. In the overt condition, we
reached a decoding performance of 100 % for all partic-
ipants. In the covert condition, we achieved an average
accuracy of 88 %. To the best of the authors’ knowl-
edge, this marks the first evaluation of a c-VEP BCI using
covert attention, although here we still rely on sequential
stimulation. Our study highlights the feasibility of such a
design for developing gaze-independent BCIs that can be
used by people with ALS.
In the overt condition, all participants achieved 100 % ac-
curacy, likely caused by the large data availability, low
number of classes, and sequential stimulation. Specifi-
cally, this study used 5.3 min of data for training and 20 s
for testing, while 1 min training and 1-2 s testing would
suffice [15]. In the covert condition, we employed 16 min
of data for training, achieving a decoding accuracy of
88 %. This result underscores the lower SNR in the covert
condition compared to the overt scenario. Nevertheless,
although using sequential stimulation, the attained per-
formance surpasses the 62 % accuracy reported in a simi-
lar SSVEP study that used parallel stimulation [10], of-
fering evidence for the potential performance of gaze-
independent c-VEP.
It is essential to approach the results of our study on gaze-
independent c-VEP BCI with caution and consider two
important limitations. Firstly, this preliminary study in-
volved a small cohort of five highly motivated partici-
pants. Secondly, the c-VEP protocol employed sequential
stimulation, where only the stimulus on the attended side
alternated its background based on the pseudo-random
noise-code. In practical online usage of the BCI, simul-
taneous stimulation on both sides is necessary. While our
study offers valuable fundamental insights into the fea-
sibility of gaze-independent c-VEP BCI, it is imperative
to acknowledge these limitations. Further research, in-
cluding a larger sample size and parallel stimulation, is
crucial to fully unveil the potential of this approach.
Additionally, it is important to acknowledge that stim-
ulation paradigms outside the visual domain have been
explored as well for developing independent BCIs. For
instance, Schreuder and colleagues developed the P300-
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Figure 2: Classification accuracy across modeled transient response lengths. Depicted are the participant-specific classification
accuracies for both overt (solid lines) and covert (dashed lines) conditions across transient response lengths ranging from 0.1 s to 0.9 s.
The grand average over participants is shown in black. Please note, that for the overt condition, the classification accuracy was 100 %
for all transient response lengths and all participants. The dashed gray line indicates theoretical chance level (50 %).
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Figure 3: Spatial activity pattern and transient responses of participant S4. (a) and (b) show the spatial activity pattern and transient
responses of S4 for the overt and covert conditions, respectively. For all participants, the spatial activity for the overt condition was
more focally distributed as compared to the more lateralized distribution seen for the covert condition. The spatial pattern a ∈ RC was
estimated as a = w⊤ΣΣΣ, where ΣΣΣ ∈ RC×C is the spatial covariance matrix.

based auditory multi-class spatial ERP (AMUSE) inter-
face reaching a classification accuracy of about 85 %
(N = 6 classes) [16]. Similarly, Brouwer and van Erp
designed a P300-based BCI using vibro-tactile feedback
around the waist with an accuracy of 58 % (N = 6 classes)
and 73 % (N = 2 classes) [17]. Moreover, Van der Waal
and colleagues [18] used tactile stimulation on the fin-
ger tips reaching a classification accuracy of 82 % (N = 6
classes). These results may also highlight the potential
to explore the pseudo-random stimulation protocol in the
auditory and tactile domain.

Our studies’ design enables the use of two additional fea-
tures in the analysis pipeline, possibly further improving
the accuracy. Firstly, the stimulus protocol used in the
study was designed such that the infrequent occurrence of
the target events within the shape sequence could poten-
tially evoke a P300 response. Hence, the P300 response
could be used alongside the c-VEP to decode the attended
side, similar to P300 response that was used alongside
the SSVEP by Egan and colleagues [10]. Secondly,
the alpha-band modulations are expected to be lateral-
ized with respect to the attended side [19]. Specifically,

covertly attending to a stimulus on one side suppresses
visual alpha-activity in the contra-lateral (task-positive)
hemisphere, while it increases alpha in the ipsi-lateral
(task-negative) hemisphere [20]. Hence, visual alpha os-
cillations can also be used as an additional feature, again
similar to the alpha response used alongside the SSVEP
in earlier work [10]. Thirdly, aligning with the antici-
pated lateralization in the alpha-band, we also anticipate
lateralization in the c-VEP itself during the covert condi-
tion. In our current application of reconvolution CCA, a
single spatial filter was employed to decode the attended
side. This method can be extended by incorporating dis-
tinct spatial filters for each side, a concept referred to as
an ‘ensemble’ decoder [21]. Finally, in the present study,
we employed only two stimuli positioned on either side
of the fixation point, using luminance modulation with
two 126-bit Gold codes. Given the limited number of
classes, there is potential to explore shorter codes, which
could lead to faster decoding. Furthermore, alternative
codes, such as the m-sequence or Golay sequence, may
be considered, as they have shown promise in enhancing
classification accuracy [22].
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CONCLUSION

Our study shows the feasibility and high performance of
a novel covert BCI design based on c-VEP. Our design
eliminates the dependence on gaze, which is an essen-
tial feature if BCIs are to be used by people that have
no voluntary control over their eye movements, such as
people living with late stage ALS. Further, the design of
the study makes it possible to use additional measures
of brain activity to improve classification performance,
which is a potential fruitful avenue for future work to im-
prove the efficacy of the gaze-independent c-VEP BCI.
Overall, our results suggest the potential for a high-speed
BCI that does not rely on any overt behavior.
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