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ABSTRACT: This study explores two zero-training
methods aimed at enhancing the usability of brain-
computer interfaces (BCIs) by eliminating the need for
a calibration session. We introduce a novel method
rooted in the event-related potential (ERP) domain, un-
supervised mean maximization (UMM), to the fast code-
modulated visual evoked potential (c-VEP) stimulus pro-
tocol. We compare UMM to the state-of-the-art c-VEP
zero-training method that uses canonical correlation anal-
ysis (CCA). The comparison includes instantaneous clas-
sification and classification with cumulative learning
from previously classified trials for both CCA and UMM.
Our study shows the effectiveness of both methods in
navigating the complexities of a c-VEP dataset, high-
lighting their differences and distinct strengths. This re-
search not only provides insights into the practical im-
plementation of calibration-free BCI methods but also
paves the way for further exploration and refinement. Ul-
timately, the fusion of CCA and UMM holds promise
for enhancing the accessibility and usability of BCI sys-
tems across various application domains and a multitude
of stimulus protocols.

INTRODUCTION

A brain-computer interface (BCI) records the user’s brain
activity and converts these into computer commands, of-
fering an alternative output channel that does not rely
on muscular activity. Electroencephalography (EEG) is
commonly used to record brain activity due to its afford-
ability, practicality, and non-invasiveness. The primary
application of BCIs lies in restoring lost control, particu-
larly in communication. One notable example is the vi-
sual BCI speller, where users can select symbols by fo-
cusing their gaze on them when displayed on a screen.
This technology proves invaluable for individuals facing
challenges such as amyotrophic lateral sclerosis, where
progressive loss of voluntary motor control makes speak-
ing and typing difficult [1].
Prior to BCI usage, a machine learning model capable
of classifying unseen brain signals needs to be calibrated
on labelled EEG data from the same user, as individuals
display different patterns of brain activity. Additionally,
the same user might show different patterns over multi-
ple days of use (session-to-session variability) and even

within-session non-stationarity. To mitigate any negative
effects of these confounders, the user is guided through
an initial stage to record brain activity while being in-
structed which symbol to attend to.
While a trained classification model is necessary for us-
ing the intended BCI application, the calibration record-
ing delays a deployment and may be prohibitive specifi-
cally for users with a limited attention span. In general,
the necessity of calibration may impede the acceptance
and widespread adoption of BCIs by patients and healthy
users. Encouragingly, recent advancements in BCI tech-
nology have surfaced which offer potential solutions to
alleviate this challenge.
The first advancement involves selecting an informative
brain signal feature to minimize the duration of the cal-
ibration phase. BCIs can be driven by various brain
signals, often evoked by advanced stimulus protocols.
Many popular stimulus protocols induce one or more
event-related potentials (ERPs). Among these, the visual
evoked potential (VEP), triggered by a flash, stands out.
VEP-based BCIs are widely embraced due to their effec-
tiveness across diverse user populations [2]. The VEP
can be effectively used in three different ways [3].
Firstly, in a BCI based on time-modulated VEP (t-VEP),
stimuli are sequentially presented to reduce temporal
overlap, resulting in a relatively slow paradigm. Sec-
ondly, in a frequency-modulated (f-VEP)-based BCI,
each stimulus simultaneously and rapidly flashes at a
unique frequency and phase [4]. Despite its speed, f-VEP
faces limitations due to the restricted range of narrow-
band options and potential artefacts that may obscure
signals. Thirdly, in a code-modulated (c-VEP)-based
BCI, each stimulus rapidly flashes with a pseudo-random
noise-code [5]. In this protocol, stimulus sequences
are optimized to be dissimilar, ensuring that their corre-
sponding brain activity is dissimilar as well. Remark-
ably, c-VEP BCI has recently demonstrated unprece-
dented performance [6].
The second advancement involves the choice of the de-
coding approach. In the case of c-VEP, a method was
developed, termed ‘reconvolution’, which relies on a for-
ward model embedded in a canonical correlation analysis
(CCA) [7]. This model characterizes the response to a se-
quence of flashes as the linear summation of responses to
individual flashes. This reconvolution approach substan-
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tially reduced the number of trainable parameters while
it simultaneously increased the number of samples that
were available as training data points. This not only de-
creased the required training data but also empowered the
model to predict responses to unseen stimulus sequences.
Recently, this reconvolution CCA method was shown to
achieve remarkable performances on c-VEP data event
without the need for a calibration session, by finding the
stimulus sequence that best fits the data in a trial [8].
In a recent development, a novel classification ap-
proach was introduced for ERP-based BCI. The ap-
proach, termed ‘unsupervised mean-difference maxi-
mization’ (UMM) does not require labeled calibration
data [9]. UMM does not act on every single epoch, i.e.,
the evoked response of a single stimulus, but on a set of
epochs belonging to one control command, e.g., one trial
that leads to the selection of a symbol in a spelling ap-
plication. Therefore, UMM has similarities to the afore-
mentioned CCA method. While the objective of CCA
is to maximize the explained variance, UMM identifies
an attended target symbol by maximizing the distance
between target and non-target ERPs belonging to one
trial. Diverging from the CCA method, UMM incor-
porates several regularization approaches, including the
use of block-Toeplitz covariance matrices [10] for deter-
mining domain-specific distances, and it can take advan-
tage of a built-in confidence metric. Collectively, UMM
has demonstrated impressive performance across various
ERP datasets, without the need for a training session [9].
In this study, we aim to combine the efficiency of the
c-VEP stimulus protocol and the carefully regularized
UMM approach for zero-training. This will be the first
instance that UMM is applied to c-VEP data, arguably a
much faster stimulus protocol than the conventional ERP
stimulus protocol. In the analysis, we draw a compari-
son with the CCA zero-training pipeline that was already
evaluated on c-VEP data. This study not only sheds light
on the efficacy of CCA and UMM, but also deepens our
understanding of their underlying distinct mechanisms,
unraveling insights into constructing effective BCIs for
communication and control. By eliminating the need for
a calibration session, this research paves the way for plug-
and-play BCIs, marking a significant stride towards user-
friendly and accessible BCI technology.

MATERIALS AND METHODS

Dataset: We assessed the efficacy of the CCA and
UMM zero-training approaches using an open-access
c-VEP dataset [11]. Comprehensive details about this
dataset can be found in the original study [8]. For the
current study, we only used the part of this dataset labeled
as ‘offline experiment’, in which 30 participants engaged
in a copy-spelling task. EEG data were recorded from
8 electrodes placed following the 10-10 system (Fz, T7,
O1, POz, Oz, Iz, O2, T8) amplified using a Biosemi Ac-
tive2 amplifier and sampled at a frequency of 512 Hz.
Throughout the experiment, participants interacted with

a 4 × 5 matrix speller displayed on a 12.9 in iPad Pro
with a 60 Hz refresh rate and a 1920× 1080 px resolu-
tion. The N = 20 cells within this matrix each mea-
sured 3.1 cm × 2.8 cm, with a 0.4 cm separation both hor-
izontally and vertically between cells. The cells were
presented against a mean-luminance gray background.
Each cell i ∈ {1, . . . ,N} was luminance modulated using
a unique binary stimulus sequence at full contrast, with a
1 encoding a white cell and a 0 a black cell. The stimulus
sequences were carefully chosen from an optimized sub-
set of Gold codes [12]. These sequences were modulated
such that they contained flashes of only two durations: a
short flash of 16.67 ms and a long flash of 33.33 ms. The
sequences had a length of 126 = 2 ∗ (26 − 1) bits and at
60 Hz cycling through a stimulation code once took 2.1 s.
Participants completed 5 identical runs, with each run
comprising 20 trials, one for each of the 20 cells pre-
sented in a random order. Each trial started with a 1-
second cue highlighting the target cell in green. Sub-
sequently, all cells started flashing with their respective
stimulus sequences for a duration of 31.5 s (equivalent
to 15 code cycles), during which participants maintained
fixation on the target cell. Post-trial, no feedback was
provided and the subsequent trial commenced without de-
lay. To sum up, each participant contributed 100 trials of
31.5 s, including 5 repetitions for each of the 20 stimuli.
The EEG data underwent preprocessing using Python
version 3.10.9 and MNE version 1.6.0. Initially, a notch
filter at 50 Hz was applied to eliminate line noise. This
was followed by a band-pass filter with a lower cut-off at
6 Hz and an upper cut-off at 50 Hz, which was optimized
in an initial analysis. Subsequently, the data were seg-
mented into single-trials, spanning from 500 ms before
stimulus onset to 31.5 s after stimulus onset. The dataset
was then downsampled to 180 Hz, which is a multiple
of the monitor refresh rate at 60 Hz. Finally, the initial
500 ms of data per trial, which may have caught artefacts
resulting from the initial slicing and subsequent filtering
processes, were removed.

Canonical correlation analysis (CCA): Using CCA,
let’s assume that the current trial X ∈ RC×T contains T -
many temporal features extracted from each of the C-
many channels. Here, C = 8. To decode the attended
target symbol ŷ of a new trial via CCA, each of the
i ∈ {1, . . . ,N} possible hypotheses about which cell, i.e.,
which stimulus sequence, may have represented the tar-
get, are considered. Here, N = 20.
As CCA operates at the trial level, its ith stimulus se-
quence is described by the event time-series Ei ∈ RE×T

for E-many events and T -many temporal features. Here,
we modeled E = 3 events including the two flash dura-
tions and an onset event for the sudden start of the stimu-
lation.
Subsequently, the event time-series are transformed into
a structure matrix Mi ∈ RM×T with M-many event time-
points and T -many temporal features. Let’s assume
equally long responses to each of the E events, then
M = E ∗L. Here, L = 54, which corresponds to 300 ms
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at 180 Hz. This structure matrix is a Toeplitz matrix de-
scribing the onset, duration and overlap of the responses
to each of the events in the ith stimulation sequence.
We fit a CCA model for each of the N candidate stimulus
sequences i ∈ {1, . . . ,N} by learning sequence-specific
spatial filters wi ∈ RC and temporal filters ri ∈ RM:

argmax
wi,ri

w⊤
i XM⊤

i ri

w⊤
i XX⊤wir⊤i MiM⊤

i ri
(1)

Instantaneous classification of the current trial, i.e., deter-
mining the one attended target symbol ŷ from the N = 20
symbols, is then performed by maximizing the correla-
tion, which is equivalent to the square root of the ex-
plained variance:

ŷ = argmax
i

w⊤
i XM⊤

i ri

w⊤
i XX⊤wir⊤i MiM⊤

i ri
(2)

Alternatively to this instantaneous CCA, CCA can learn
across trials. Specifically, previous trials can be included
to improve the estimates for the current trial, as described
in [8]. Equation 1 can be formulated using the spatio-
temporal cross-covariance ΣΣΣXMi ∈ RC×M , the spatial co-
variance ΣΣΣX ∈ RC×C and the temporal covariance ΣΣΣMi :

argmax
wi,ri

w⊤
i ΣΣΣXMiri

w⊤
i ΣΣΣXwir⊤i ΣΣΣMiri

(3)

The estimation of these covariance matrices can be im-
proved by accumulating the data X and predicted struc-
ture matrix Mŷ of the previous trial(s). This cumulative
CCA is an optimistic one, as it assumes that previous tri-
als were classified correctly (i.e., naive labeling).
In summary, in this work, we applied two versions of
CCA. For both we used the empirical covariance matrix
identical to the original work [8]. The first version, de-
noted CCA_e1, was instantaneous and estimated the co-
variance from the current trial only. The second version,
denoted CCA_ec, was cumulative and used previous tri-
als for covariance estimation to facilitate decoding of the
current trial. Code for the CCA approach is available at
https://github.com/thijor/pyntbci.

Unsupervised mean-difference maximization (UMM):
Using UMM, we first slice the current trial into the con-
tained K-many epochs, which are synchronized to each
bit in the stimulus sequences, i.e., the monitor refresh rate
at 60 Hz.
Let’s assume that an epoch x ∈ RD is described by a D-
dimensional feature space, which contains T -many tem-
poral features extracted from each of the C-many chan-
nels, i.e., D =C ∗T . Here, C = 8 and T = 54 for epochs
of 300 ms long at 180 Hz. To decode the attended tar-
get symbol ŷ via UMM for the current trial, each of the
i ∈ {1, . . . ,N} possible hypotheses about which cell may
have represented the target, are considered. Here, N = 20.
For every possible hypothesis i ∈ {1, . . . ,N} we then esti-
mate the mean-difference vector ∆µµµ i ∈ RD, which is the
difference between the flash ERP and non-flash ERP:

∆µµµ i =
1

|A+
i |

∑
j∈A+

i

x j −
1

|A−
i |

∑
j∈A−

i

x j (4)

where x j ∈ RD is the D-dimensional EEG feature vec-
tor of the j-th epoch, and A+

i and A−
i denote the sets of

epochs for which a flash was either presented (bit is 1) or
not (bit is 0) under the current hypothesis of i being the
target stimulus sequence.
Instead of determining the attended symbol of the current
trial by maximizing the Euclidean distance between flash
and non-flash ERPs across all N-many hypotheses, the
metric is first normalized using the inverse of the global
feature covariance matrix ΣΣΣ ∈ RD×D to better cope with
non-spherical feature distributions in the feature space
RD, known as the Mahalanobis distance:

ŷ = argmax
i
(∆µµµ i)ΣΣΣ

−1(∆µµµ i) (5)

Please note that the covariance matrix can be estimated
based on the epochs of the current trial only, which makes
UMM an instantaneous decoding approach that does not
require calibration data. Due to the challenging ratio of
the feature dimensionality and the number of epochs con-
tained in a single trial, we used a block-Toeplitz regular-
ization with tapering to obtain a more robust estimate of
the covariance matrix [10].
Alternatively to this instantaneous use of UMM, know-
ledge from previous trials about both, the estimated class
means and the covariance matrix can be included for ob-
taining improved estimates for the current trial, as de-
scribed in [9]. Specifically, as the covariance matrix
can be calculated without label information the covari-
ance matrix can more robustly be estimated by also using
epochs from previous trials [9]. A similar approach can
be used to more robustly estimate the flash and non-flash
ERPs, by using information from previous trials. How-
ever, for this, label information is required. UMM simply
uses its own predictions from previous trials as pseudo la-
bels (sometimes also referred to as naive labeling). This
approach is made more robust, by weighting the mean
estimates from previous trials by UMM’s confidence in
these previous trials [9]. Specifically, if UMM is very
certain of its own prediction, these ERP means will have
more weight in later trials and vice versa.
In summary, for this work, we used two versions of
UMM. For both versions we used the block-Toeplitz
regularized covariance matrix. The first version, denoted
UMM_t11, is instantaneous by estimating the covariance
and means only from the current trial. The second ver-
sion, denoted UMM_tcw, is cumulative by using previ-
ous trials to facilitate decoding of the current trial. For an
overview of all method’s abbreviations used, please refer
to the legend of Fig. 1. Code for the UMM approach is
available at: https://github.com/jsosulski/umm_
demo.

Analysis: This study assessed the effectiveness of CCA
and UMM in classifying c-VEP data without calibra-
tion, including both an instantaneous approach, where tri-
als are classified without any prior calibration (CCA_e1,
UMM_t11), and a cumulative approach, where trials are
classified while leveraging information from previously
analyzed trials (CCA_ec, UMM_tcw).
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Figure 1: Bandpass hyper-parameters for CCA and UMM. Depicted are the grand average classification accuracy for CCA and
UMM across varying highpass (left) and lowpass (right) cutoff values. Here, a single-trial duration of 31.5 s is used. When varying the
highpass, the lowpass remained at 40 Hz, and when varying the lowpass, the highpass remained at 6 Hz. In order, the symbols behind a
method refer to: the type of covariance matrix being empirical (e) or block-Toeplitz (t); covariance matrices computed instantaneously
(1) or cumulative (c); and the mean vectors (of UMM) computed either instantaneously (1) or using a weighted cumulative average
(w). The dashed gray line denotes the theoretical chance level (5%).

As previously mentioned, we first varied the cutoff fre-
quency of the highpass and lowpass filter in the bandpass
spectral filter used for preprocessing, to explore the in-
fluence of these hyper-parameters on the performance of
the analyzed methods. For the highpass we tested 0.1,
0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0 and 12.0 Hz, for a to-
tal of 9 evaluations, all with a lowpass at 40 Hz. For the
lowpass we tested 10 to 90 Hz in 10 Hz increments, for a
total of 9 evaluations, all with a highpass at 6 Hz. These
evaluations were always carried out using the full trial
durations of 31.5 s. Recognizing that each method may
respond uniquely to these variations, our final compara-
tive analysis focused on the bandpass cutoff frequencies
that resulted in the highest classification accuracy.
To assess the methods, we generated decoding curves by
varying trial durations from 1.05 s (half a code cycle)
to 10.5 s (5 code cycles) in 1.05 s increments, and from
10.5 s to 31.5 s in 2.1 s increments, for a total of 20 de-
coding time steps. Across these time steps, the number
of bits ranged from 63 to 630 in 63-bit increments, and
630 to 1.890 in 126-bit increments, directly correspond-
ing to the available epochs for UMM at each decoding
time step. Because modulated Gold codes have an equal
number of ones and zeros, the number of flash and non-
flash epochs were always equal or deviated at most by
1 when using half a code cycle, for any of the stimulus
sequences. In this analysis, a bandpass filter of 6–50 Hz
was used, as it turned out optimal for all methods.
In this study, all statistics were carried out using a one-
sided paired Wilcoxon signed-rank test to test for a larger
classification accuracy of one versus another method.
The significance level was set to α = 0.025. Reported
p-values were not corrected for multiple comparisons.

RESULTS

In this study, we assessed the performance of two
calibration-free methods when applied to c-VEP data.
These methods, CCA and UMM, were evaluated as an in-
stantaneous version that classified each new trial without
prior information, treating it as the first, and a cumula-

tive version that learned from the insights gained through
previously classified trials.
Acknowledging the potential for each method to ex-
hibit distinct responses to varying bandpass filter hyper-
parameters, our initial focus involved determining the op-
timal hyper-parameters for each method. The classifica-
tion accuracy of 31.5-second trials across different cutoff
frequencies and methods is illustrated in Fig. 1.
In the highpass analysis (Fig. 1, left side), it was evi-
dent that CCA is more sensitive to a low highpass value
than UMM. For both CCA’s instantaneous and cumu-
lative versions, a decline in accuracy was observed for
highpass values below 2 Hz. In contrast, UMM appeared
to be less affected. In the pursuit of the highest accu-
racy, CCA_ec achieved a classification accuracy of 0.97
at 2 Hz, CCA_e1 0.96 at 6 Hz, UMM_tcw 0.94 at 4 Hz,
and UMM_t11 0.89 at 2 Hz. When adopting a common
highpass at 6 Hz for all methods, the methods still at-
tained these peak performances.
In the lowpass analysis (Fig. 1, right side), an inverse
trend emerged, revealing that UMM is more sensitive
to the lowpass value than CCA. Specifically, UMM
achieved a peak performance only when the lowpass
value was set no lower than 40 Hz, whereas for CCA,
this peak was already attained at 20 Hz. In the pursuit
of optimal performance, we identified a peak classifica-
tion accuracy of 0.97 at 20 Hz for CCA_ec, 0.96 at 30 Hz
for CCA_e1, 0.94 at 50 Hz for UMM_tcw, and 0.89 at
50 Hz for UMM_t11. When applying a common low-
pass at 50 Hz for all methods, they continued to operate
at these peak performance levels.
The above mentioned results led to the selection of a com-
mon passband set to 6 to 50 Hz. We then continued ana-
lyzing the behavior of the different methods by estimating
so-called decoding curves that show the classification ac-
curacy across different amounts of data available in each
single-trial, see Fig. 2.
From these decoding curves, two general trends could
be identified. Firstly, the cumulative versions of both
methods (CCA_ec and UMM_tcw) outperformed their
instantaneous counterparts (CCA_e1 and UMM_t11).
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Figure 2: Decoding curve for CCA and UMM. Depicted are the grand average classification accuracy for CCA and UMM across
varying single-trial durations. Here, a bandpass of 6-50 Hz is used. For a definition of method names, see 2. The dashed gray line
denotes the theoretical chance level (5%).

Secondly, overall, the CCA methods (CCA_ec and
CCA_e1) outperformed the UMM methods (UMM_tcw
and UMM_t11). For an overview of the classification ac-
curacy at some time points, please see Tab. 1.

Table 1: Classification accuracy. Listed are the grand average
accuracy reached by the four methods at distinct trial durations.

1.05 s 2.1 s 4.2 s 10.5 s 31.50 s

CCA_ec 0.24 0.52 0.86 0.96 0.97
CCA_e1 0.06 0.29 0.59 0.85 0.96
UMM_tcw 0.13 0.39 0.75 0.94 0.94
UMM_t11 0.09 0.19 0.37 0.69 0.89

The cumulative CCA method (CCA_ec) achieved an ac-
curacy of 0.24 at the smallest trial duration of 1.05 s
(half a code cycle) and 0.52 at 2.1 s (one code cycle).
At these two early time points, CCA_ec did not signif-
icantly outperform UMM_tcw, which reached 0.13 and
0.39, respectively. At all further time points, CCA_ec
did significantly surpass UMM_tcw. At the maximum
trial length of 31.5 s, CCA_ec achieved a classification
accuracy of 0.97, significantly outperforming UMM_tcw,
which achieved 0.94.
The instantaneous CCA method (CCA_e1) achieved a
performance of 0.06 at 1.05 s, while the instantaneous
UMM (UMM_t11) reached 0.09. At this time point,
UMM_t11 significantly outperformed CCA_e1. Instead,
at any further time point CCA_e1 significantly surpassed
the accuracy of UMM_t11. At the maximum trial length
of 31.5 s, CCA_e1 reached a classification of 0.96 which
was significantly higher than UMM_t11 with 0.89.
The cumulative versions always outperformed the instan-
taneous version for both CCA and UMM. Notably, the
instantaneous CCA (CCA_e1) performed almost on par
with its cumulative version (CCA_ec) for trials longer
than 25.2 s. Specifically, at 27.3 s, CCA_e1 reached an
accuracy of 0.95 while CCA_ec reached 0.97, which was
not significantly higher. Also at the 29.4 and 31.5 s trials,
CCA_ec did not significantly surpass CCA_e1.

DISCUSSION

We introduced UMM to c-VEP BCI, a calibration-free
method originating from the ERP domain. We conducted

a systematic offline comparison with the conventional
c-VEP method employing CCA. Both methods under-
went evaluation in an instantaneous manner, classifying
each single trial without prior knowledge, as well as in
a cumulative way, utilizing previously classified trials
as training data. The ultimate goal was to establish a
c-VEP BCI with enhanced usability and broader adop-
tion potential by eliminating the initial calibration ses-
sion. We gave both methods access to EEG data only
that would be available in an online experiment such that
we don’t expect a major problem for online use. For
CCA approaches, online performance was reported in [8]
where the non-instantaneous version matched a super-
vised model after a warm-up period.
Both the conventional method, CCA, and the novel ap-
proach, UMM, hinge on the principle that selecting a sin-
gle symbol from a set of candidate symbols is consid-
erably simpler than the reconstructing the entire stimu-
lus sequence. Using 20 symbols in this study, one has
to evaluate 20 candidate stimulus sequences only for a
symbol selection. In contrast, the exhaustive reconstruc-
tion of the stimulus would invole an exponential growth,
reaching 260 potential sequences for a 1-second stimulus
at a presentation rate of 60 Hz.
Without involving a calibration session, the cumulative
CCA already reached higher than 90 % performance for
trials of 5.25 s, with the cumulative UMM just behind
reaching a similar performance at 7.35-second trials. De-
spite CCA regularly outperforming UMM, astonishingly,
these results demonstrate that UMM performs rather
well, despite not being optimized for c-VEP data.
Furthermore, we demonstrated the capability of instan-
taneous classification, where CCA reached higher than
90 % accuracy at 14.70-second trials and UMM 89 %
at 29.40 s. Instantaneous decoding does not learn from,
or consider in any way, previous trials. Under station-
ary conditions, this scarcity of data may not allow the
model to reach peak performance. On the other hand,
non-stationary feature distributions like latency- or am-
plitude changes of ERP components over time, will likely
not affect instantaneous decoding, while models mainly
trained on data collected before the appearance of such
feature drifts may suffer from performance degradation.
Both CCA and UMM make different assumptions and ex-
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ploit them. These assumptions may be met by different
datasets to various degrees. For instance, CCA strongly
leverages the sequential structure and large overlap be-
tween responses to adjacent stimuli in c-VEP datasets.
Additionally, the event definition used focusses on the
target ERP while discerning between ERPs associated
with short and long flashes, but more and different event
types can easily be implemented. Furthermore, UMM
maintains its operations within the original EEG feature
space, whereas CCA operates in the component space.
In contrast, UMM searches for the stimulus sequence
with the largest target to non-target ERP distance, poten-
tially rendering it less susceptible to slow drifts in the
data, as evidenced by the highpass analysis. Besides,
CCA uses the empirical covariance matrix, which can be
challenging to estimate with limited data, while UMM
employs domain-specific regularization techniques such
as shrinkage and a block-Toeplitz covariance matrix [10].
Lastly, in the non-instantaneous UMM formulation, ERP
mean estimates are improved using previously classified
trials, by carefully weighting mean updates based on the
confidence of each previous trial. Gaining a compre-
hensive understanding of the strengths and limitations of
both methods bears the potential to develop refined ver-
sions tailored to specific characteristics of novel datasets
through thoughtful hyper-parameterization.
Essentially, CCA and UMM necessitate a specific stim-
ulus protocol involving repetitions, and both require
knowledge about the precise timing and sequence of
stimuli within a single trial (i.e., the selection of one sym-
bol). While such information is typically available in BCI
protocols using evoked responses, it may not seamlessly
extend to other protocols like those based on sensorimo-
tor rhythms. Moreover, these decoding methods are only
applicable for benchmarks if the sequence information is
provided, as demonstrated in MOABB [13]. This charac-
teristic classifies the studied CCA and UMM methods as
semi-supervised, given that stimulus information is requi-
site, while label information is not required.

CONCLUSION

We showed that both CCA and UMM offer the poten-
tial to eliminate the necessity for a calibration session,
thereby enhancing the usability for BCI applications, es-
pecially when integrated with the c-VEP protocol. These
findings mark an initial stride toward combining the ro-
bust capabilities of machine learning methods across di-
verse domains. They inspire the exploration of their
cross-application and cross-pollination, unlocking new
possibilities for advancing BCI technologies.
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