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ABSTRACT: Determination of the wakefulness and con-
sciousness state in patients with disorders of conscious-
ness (DOC) is vital for clinical decision-making. Typi-
cally, behavioral indicators and motor responses are em-
ployed. Recent advancements in neuroimaging have en-
abled motor independent assessment of DOC patients.
We present a single-case analysis of a 24-year-old female,
selected from a sample of n=77 patients, diagnosed with
a DOC. We investigated the single-trial classification of
stimuli within the peri-personal space (PPS) using event-
related potential (ERP) features. Data from two sessions,
conducted ten days apart, were analysed.
We observed significant differences in classification ac-
curacies between sessions (high in session one, low in
session two), which did not correspond to the patient’s
recovery from UWS to MCS. ERP analyses confirmed
the difference between sessions, supporting the observed
changes in classification accuracies.
Our study underscores the importance of longitudinal as-
sessments to accurately diagnose DOC patients. In future
research we aim to expand our analyses to the full dataset.

INTRODUCTION

Reliably determining the state of wakefulness and con-
sciousness of patients with disorders of consciousness
(DOC) is crucial for clinical decision-making, providing
appropriate care and ensuring patient rights. Usually, be-
havioral indicators and motor performance in response to
specific instructions are used to determine this. The Glas-
gow Coma Scale [1], for example, assesses a person’s
level of consciousness based on their ability to open their
eyes and perform verbal and motor responses. The Coma
Recovery Scale-Revised (CRS-R) [2] is a more compre-
hensive assessment tool that covers multiple domains and
allows for a more detailed assessment and differentiation
between states of consciousness such as coma, vegetative
state (VS), minimally conscious state (MCS), and locked-
in syndrome.

In recent times, researchers have been exploring func-
tional neuroimaging technologies and brain-computer
interface-based approaches with the aim to detect unique
cognitive patterns when assessing the consciousness state
of patients who cannot exhibit motor behavior due to
brain injuries [3–5]. One of the several brain networks
that have been targeted for this purpose is the cortical
network that encodes the Peri-Personal Space (PPS). The
PPS is the space surrounding the body that defines the
immediate physical domain and is relevant to the inter-
action between self and others or self and the environ-
ment [6]. It is assumed that the related cortical network
is linked to bodily self-consciousness and therefore hy-
pothesised to be altered in patients with DOC. Indeed, a
physiological index of PPS was identified in evoked elec-
troencephalogram (EEG) responses to tactile, auditory, or
audio-tactile stimulation at distances within and outside
the PPS [7]. Seventeen patients with DOC participated
in the study. The results suggest that the extracted multi-
sensory evoked responses degrade in patients with DOC
and correlate with the Lempel-Ziv complexity, a metric
used to predict global states of consciousness in contin-
uous EEG signals, but not with CRS-R scores [7]. Al-
though these results seem to be in line with neuroscien-
tific findings, they are not yet conclusive and more data
is needed to make more precise statements. Among other
things, because the Lempel-Ziv complexity as a measure
of conscious experience has been called into question [8].
To minimise errors in diagnosis, it is recommended to re-
peat the CRS-R at least five times within a time period
of a few weeks [9]. Given the non-stationarity and in-
herent variability of EEG signals, the question arises of
how many repetitions are required before reliable clini-
cal decision about the state of consciousness of a patient
with DOC can be made when using EEG. To answer this
question, the experiment in [7] was repeated in a larger
cohort of patients with DOC and the EEG and CRS-R as-
sessments were repeated several times per patient. The
study is still ongoing, but in this paper we present initial
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results and a case study that highlights and emphasizes
the need for repeated measurements for making informed
decisions.

MATERIALS AND METHODS

Patients: A dataset of 84 patients (23 female, median
age 53 years, range=18–84) with a disorder of conscious-
ness (CRS-R at assessment median=15, range=0–23) was
recorded at the University Hospital of Lausanne (CHUV),
Switzerland. Seven patients were excluded from the anal-
ysis in this paper due to incomplete data. For the remain-
ing n=77 patients a total of 202 sessions (median=2 ses-
sions, range=1–7 sessions) were recorded.
The patient (Patient A) selected for detailed analysis in
this paper was 24 years old at the time of the experi-
ment, female and admitted with a traumatic brain injury.
Session 1 was performed two days and Session 2 twelve
days post-admittance to the acute care unit. The patient
was diagnosed with unresponsive wakefulness syndrome
(UWS; CRS-R 7) in Session 1 and minimally conscious
state minus (MCS-; CRS-R 11) in Session 2. Approxi-
mately three months post-injury the patient emerged from
the MCS.

Experiment: Three different stimuli were adminis-
tered: (1) auditory close (AC; distance 5 cm from ex-
tended arm; 65.2 dB SPL; 50 ms of white noise via
speaker), (2) auditory far (AF; distance 75 cm; 64.1 dB
SPL; 50 ms of white noise via speaker) and (3) tactile (T;
two FES electrodes attached to dorsal part of arm near
elbow; 50 ms of continuous, sub-threshold stimulation
at 35 Hz). Furthermore, auditory and tactile were com-
bined (tactile + auditory close (TAC); tactile + auditory
far (TAF)). One experimental block consisted of 50 pre-
sentations for each of the five stimuli (250 total). Sessions
were planned as a set of three blocks. However, this was
not always possible due to constraints of the clinical envi-
ronment. Further details can be found in the description
of the original study [7].

EEG recording: EEG data were recorded with 16
channels positioned at Fz, FC3, FC1, FCz, FC2, FC4, C3,
C1, Cz, C2, C4, CP3, CP1, CPz, CP2, and CP4 (all refer-
enced to the right earlobe) at a sampling rate of either 500
Hz or 512 Hz (g.USBamp or g.Nautilus respectively, both
by g.tec medical engineering GmbH, Graz, Austria.).

Preprocessing: Recordings were read in GDF format
using Python MNE [10]. Continuous data were high-
passed filtered at 1 Hz. On epoched data (-1 to 2 s) bad
channels were marked using RANSAC [11] and bad tri-
als were marked using AutoReject [12, 13]. Next a 20 Hz
low-pass filter was applied to the continuous data. The
continuous data was then epoched (-1 to 2 s referred to
stimulus onset), bad channels were interpolated, and tri-
als rejected. All the 512 Hz epochs were resampled to
500 Hz. No baseline was applied. This resulted in a me-
dian number of 1358 trials per patient (range=319–4810
trials).

Classification: For classification, epochs from 0 to 1 s
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Figure 1: Single-trial accuracy at distinguishing close and far
in auditory only mode (i.e,. AC vs. AF). Each boxplot repre-
sents the data of one patient across all sessions of that patient.
Patients on the x-axis were sorted by median accuracy. A high
variance of accuracy was expected as we assumed that some pa-
tients in the sample would not be conscious. For this paper we
decided to investigate the patient with the highest median accu-
racy (on the far right; referred to as Patient A in this paper).

after stimulus presentation were used. These epochs were
resampled to 10 Hz. We trained a shrinkage linear dis-
criminant analysis (LDA) classifier on two classes (AC
vs. AF and TAC vs. TAF) and five classes (All vs. All)
using scikit-learn [14]. Performance was assessed via
mean accuracy using stratified 10-fold cross-validation
independently on each session. We used the median ac-
curacy across sessions to select the patient for discussion
in this paper.

ERP Analysis: We compared the ERPs between Ses-
sion 1 and Session 2 by computing the median response
across channels CP1, CPz and CP2 in the time win-
dow from -0.25 s to 1.0 s around stimulus presenta-
tion using the pre-processed data. Furthermore we per-
formed a time-frequency decomposition using eight Mor-
let Wavelets in a range from 2–18 Hz using 1–9 cycles per
frequency band and used this to compute the inter-trial
coherence (ITC) for Session 1 and Session 2 separately
using all trials. A baseline from -0.25 s to 0.0 s was ap-
plied both for ERP and ITC visualisation.

RESULTS

Patient selection: Binary classification accuracies (AC
vs. AF) of single-trial ERPs ranged from a median of
42% to 62% (median of whole dataset 50%; see Figure
1). For this paper we chose to investigate the patient with
the highest median accuracy (referred to as Patient A in
this paper).

Patient A accuracies: Accuracies dropped for all clas-
sification approaches from Session 1 to Session 2 (see
confusion matrices for two-class AC vs. AF in Figure
2, two-class TAC vs. TAF in Figure 3, and five-class
All vs. All in Figure 4). Binary single-trial classifi-
cation accuracies for Session 1 are close to 70% for
both the auditory (Session 1 median=0.69, SD=0.11,
range=0.53–0.87; Session 2 median=0.54, SD=0.11,
range=0.38–0.76) and tactile stimulus modalities (Ses-
sion 1 median=0.66, SD=0.07; range=0.62-0.83; Ses-
sion 2 median=0.58, SD=0.09, range=0.38-0.7). Five-
class classification accuracy drops in Session 2 in par-
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Figure 2: Two-class (AC vs. AF) normalised confusion matrices
for Patient A. The accuracy drops considerably from session 1
(top) to session 2 (bottom).

ticular due to incorrect classification of pure tactile (T)
and tactile-auditory-close (TAC) trials (Session 1 me-
dian=0.54, SD=0.06; range=0.46–0.66; Session 2 me-
dian=0.35, SD=0.06, range=0.27–0.47). The difference
in accuracy between Session 1 and 2 is statistically sig-
nificant according to t-tests for independent samples with
Bonferroni correction (see Figure 5; AC vs. AF Session 1
vs. Session 2 t18 = 3.73, p = .004; TAC vs. TAF Session
1 vs. Session 2 t18 = 2.72, p = .04; All vs. All Session 1
vs. Session 2 t18 = 6.99, p < .0001).

Patient A ERPs: Investigation of the event-related po-
tentials aligns with the classification results. See Figure
6 for responses to tactile-auditory close and far stimuli
shown separately for Session 1 and Session 2. Phase-
locked responses to the tactile stimulus are visible in
Session 1 between 100 and 300 ms post stimulus. Dif-
ferences in the response to close and far stimuli were
clearly visible in Session 1 between 300 and 600 ms.
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Figure 3: Two-class (TAC vs. TAF) normalised confusion ma-
trices for Patient A. The accuracy drops considerably from ses-
sion 1 (top) to session 2 (bottom).

No phase-locked responses were observed in Session 2.
The time-domain responses align with inter-trial coher-
ence (see Figure 7). In Session 1 strong phase-locking
was observed between 0 and 500 ms post-stimulus with
the strongest response around 7 Hz. The visualisation of
the ITC has no coherent pattern in Session 2.

DISCUSSION

The case study presented in this paper offers insights into
the delineation of PPS in patients with disorders of con-
sciousness using ERP features and single-trial classifica-
tion. To limit the analysis, as a starting point we selected
the patient with the highest median classification accu-
racy in our database (Patient A), who also exhibited high
variability in classification performance across two ses-
sions which took place 10 days apart.
The results demonstrate our approach is capable to dif-

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-056

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

321



T AC AF TAC TAF
Classified label

T

AC

AF

TAC

TAF

Tr
ue

 la
be

l

0.36 0.03 0.01 0.36 0.25

0.00 0.72 0.28 0.00 0.00

0.00 0.33 0.67 0.00 0.00

0.45 0.01 0.03 0.31 0.20

0.17 0.00 0.03 0.17 0.63

Patient A Session 1

T AC AF TAC TAF
Classified label

T

AC

AF

TAC

TAF

Tr
ue

 la
be

l

0.41 0.10 0.16 0.20 0.14

0.11 0.41 0.26 0.12 0.11

0.15 0.25 0.32 0.13 0.15

0.24 0.20 0.10 0.28 0.17

0.21 0.12 0.20 0.16 0.31

Patient A Session 2

Figure 4: Five-class confusion matrices for Patient A. The accu-
racy drops considerably from session 1 (top) to session 2 (bot-
tom).

ferentiate stimuli presented within the PPS across vari-
ous conditions (T, AC, AF, TAC, TAF), with notably high
classification accuracies in the first session (particularly
as these results are obtained on single-trial ERPs). These
findings underscore the sensitivity of PPS delineation as
a potential tool for assessing consciousness in DOC pa-
tients independently of motor output [7, 15].
After suffering a car accident, Participant A’s record-
ings were performed 2 and 12 days post-injury (Session
1 and Session 2, resp.), with the patient being deemed
unresponsive (CRS-R=7, UWS) in the first session and
minimally conscious (CRS-R=11, MCS-) in the sec-
ond one. She was discharged from acute care 21 days
post-injury and emerged from minimally conscious state
(CRS-R=21) 2.5 months post-discharge.
The variation in classification accuracy between the first
and second sessions, particularly with the observed re-
covery from DOC as indicated by the final available CRS-

Figure 5: Distribution of accuracy in the 10-fold cross-
validation performed on the data of each session. Colours indi-
cate session: blue Session 1 and orange Session 2. The first and
second violins represent the binary classification results (TAC
vs. TAF; AC vs. AF, resp.) and the third five-class classifica-
tion results (All vs. All). Stars indicate significance according
to t-test for independent samples with Bonferroni correction: *:
p < 0.05, **: p < 0.01, ****: p < 0.0001. The central dashed
line was placed at the median of each violin, the finer dashed
lines at the first quartiles.

R score, may suggest an alteration in sensory processing
or awareness levels as the patient regained consciousness.
This is further supported by the presence of clear ERP
peaks for combined tactile and auditory conditions in the
first session, which seem to diminish alongside improved
consciousness levels. However, the reduction in classi-
fication accuracy during the second session poses ques-
tions about the dynamics of PPS and its neural correlates
as patients recover, such as the representation of PPS and
how it might be centered around the body, offering in-
sights into the neural mechanisms that could be involved
in PPS processing [16]. Thus, the lower accuracy might
occur as a consequence of a reorganization of sensory
processing networks or changes in the salience of peri-
personal stimuli as the patient’s cognitive state evolves.
These observations are critical for developing a nuanced
understanding of consciousness and its manifestations in
DOC patients, providing a foundation for future inves-
tigations into the mechanisms underlying consciousness
recovery.

On the other hand, there are other plausible explanations
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Figure 6: Median ERPs (across channels CP1, CPz and CP2)
from Session 1 (top) following combined tactile-auditory stim-
ulation and Session 2 (bottom) of Patient A. Epochs were base-
lined to the average of the 250 ms before stimulus presenta-
tion. The blue lines indicate the response to the close stimulus
(tactile-auditory close; TAC), the orange the response to the far
stimulus (tactile-auditory far; TAF). The vertical dashed line in-
dicates the timepoint of stimulus presentation. The shaded area
indicates the parametric confidence interval (95%).

for the observed low performance in the second session,
which is particularly surprising as the patient was dis-
charged shortly after and was associated with a higher
CRS-R than Session 1. Firstly, it is conceivable that the
patient may have been in a state of sleep during the sec-
ond session, akin to the absence of responsiveness we
would expect to observe if the patient was unconscious
[17, 18]. Alternatively, technical issues with the record-
ing equipment or environmental factors, the likelihood of
which increases due to the harsh experimental conditions
at bedside in an acute unit, could have influenced the
quality of the recordings and therefore the final perfor-
mance of our classifiers. Finally, the discrepancy between
the results and the CRS-R scores for each of the ses-
sions could be due to the inherent limitations of the CRS-
R themselves [19, 20], particularly as clinical underesti-
mation of conscious awareness may occur (which might
have happened in Session 1 of Patient A). However, it
is important to note that we cannot definitively conclude
which of the four scenarios is applicable in this particu-
lar case and further exploration of the larger database is
needed. The seeming contradiction of CRS-R and ERP
classification results may be resolved by including fur-
ther measures of consciousness in the analysis, such as
measures of EEG signal diversity, such as the Lempel-Ziv
Complexity [21, 22] as suggested in [7]. This measure
can be computed from the spontaneous EEG enabling us
to include this in a future analysis.
A key takeaway from our study is the recognition that re-
lying solely on data from the second session would have
led to an erroneous diagnosis for Patient A. This is par-

Figure 7: Inter-trial coherence computed for all trials of Ses-
sion 1 (top) and 2 (bottom) of Patient A. Stimulus presentation
occurred at 0.0 s. ITC was calculated for 8 frequency bands in
the range of 2-18 Hz. Epochs were baselined to the average of
the 250 ms before stimulus presentation. Colour indicates the
strength (red stronger, blue weaker) of the ITC.

ticularly evident in light of the patient’s reemergence to a
state of minimum consciousness shortly after the record-
ing of this session. Consequently, our findings align with
the perspective advocated by Wannez and colleagues [9]
regarding the necessity of conducting multiple recording
sessions over time, encompassing various times of the
day to account for circadian rhythms. This approach is
essential for accurately assessing DOC and avoiding po-
tentially misleading interpretations based on discrete ob-
servations. In essence, our study underscores the impor-
tance of adopting a longitudinal approach to clinical as-
sessments in this domain.

CONCLUSIONS

In conclusion, our study adds to the body of literature ad-
vocating in favour of conducting multiple recording ses-
sions over time when assessing DOC to minimise erro-
neous diagnoses of patients. However, it is important
to acknowledge that we are basing this stance on results
from a single patient selected from a larger dataset. In
the future, we plan to expand our analyses to the other
patients, with the aim of providing a more comprehen-
sive understanding of the factors influencing variability
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in performance and the implications for clinical practice.
By broadening our scope and methods (e.g., by including
the Lempel-Ziv Complexity measure), we can contribute
to enhancing the accuracy and reliability of diagnostic as-
sessments in this challenging area of healthcare.
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