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ABSTRACT: Electroencephalography (EEG) is a 

popular tool in brain-computer interfacing (BCI), due to 

its unique time resolution and simplicity of application. 

For the design of BCIs, rapid and accurate classification 

algorithms are needed to classify the brain state correctly 

in real-time. Recent technological advancements 

facilitate the use of novel methods for signal processing 

and analysis such as real-time source estimation and 

classification via deep learning approaches. In this work 

a previously established convolutional neural network 

(CNN) architecture, the EEGNet, was applied to a 

publicly available motor imagery EEG dataset for 

classification of sensor measurements and source 

estimates that were computed with three different inverse 

approaches. Both for sensor signals and source estimates 

similar classification accuracies as in the literature could 

be achieved. However, no significant difference in 

performance between sensor and source space analysis 

was observed.  

 

INTRODUCTION 

 

In the field of brain-computer interfaces (BCI), the 

electroencephalogram (EEG) remains one of the most 

popular measurement tools for acquiring brain signals, 

due to its many positive characteristics for the BCI use 

case. BCIs offer the possibility to interact with an 

external machine such as a computer or a rehabilitation 

robot based primarily on modulations of brain activity. 

With EEG, electrical brain activity can be measured non-

invasively on the surface of the scalp. EEG is 

comparatively cheap and easy to use, and it is portable. 

In addition, due to its high temporal resolution in the 

millisecond range, the EEG allows for measuring 

ongoing brain activity basically in real-time. EEG-based 

BCI systems are therefore used in a great variety of 

settings such as in rehabilitation, health and attention 

monitoring, entertainment and skill improvement [1, 2]. 

To allow for the control of an external device it is 

necessary to analyze data and derive a control command 

in real time. Various measurement paradigms for EEG-

based BCIs exist to elicit specific EEG patterns from 

which control signals can be generated. Common 

paradigms include motor imagery (MI), visually evoked 

potentials or error-related potentials [2]. 

A control signal is extracted by detecting suitable 

features to distinguish the respective signal patterns and 

then classifying them. To train the classifier in the best 

possible way, a time-consuming recording of training 

data and an offline training phase are usually required. 

Since the goal is to provide BCI users with good, precise, 

and intuitive control of the external device, achieving 

high classification accuracies in real-time is essential [1, 

3]. One of the greatest difficulties in the real-time 

derivation of control signals lies in the low signal-to-

noise ratio (SNR) of single-trial evaluations. Further 

challenges are the large variability of signals between 

subjects, but also within subjects from session to session, 

as well as the large amount of training data required to 

train a classifier [3]. 

One frequently used BCI paradigm, especially in the field 

of rehabilitation, is based on Motor Imagery (MI), where 

the user has to imagine a movement without actually 

performing it. MI-based BCIs have been used for 

example to control a robotic rehabilitation device in 

motor training of the upper extremity after stroke [4], to 

trigger functional electrical stimulation (FES) in muscles 

when using an orthosis after spinal cord injury [5], or to 

elicit electrical stimulation with transcranial magnetic 

stimulation (TMS) during neurorehabilitation to enhance 

cortex excitability [6]. Typically, control commands are 

generated from these signal types using classification 

methods such as linear discriminant analysis (LDA) or 

support vector machines (SVM) [3, 7]. 

Recently, the use of convolutional neural networks 

(CNN) has been increasingly investigated for the 

classification of brain activity. It was stated that CNNs 

work reasonably well even in the presence of artifacts 

and noisy data. Their application is therefore interesting 

to tackle the challenge of poor SNR in real-time analyses. 

In addition, CNNs offer the possibility of being used in 

transfer learning, which can help to reduce time-

consuming data collection from individuals and lengthy 

training cycles. Here, the influence of possible 

differences in the measurement setup and electrode 

configurations between recordings must be considered, 

when data from multiple measurements and various 

individuals are combined [3, 8, 9]. 

The required classification steps for BCIs are usually 

carried out directly with sensor space data, i.e., with 

measurements obtained directly from the scalp surface. 
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However, EEG data can be analyzed not only in sensor 

space but also in source space. In general, source 

modeling is widely used across many fields of EEG 

analysis. This involves transforming the superficially 

measured signals into the source space using inverse 

operations. The signals derived at the scalp are 

influenced and distorted on their way from the brain to 

the head surface by the different tissue layers and their 

diverse electrical properties. In order to counteract this 

so-called volume conduction effect, an attempt is made 

to reconstruct the underlying activity of electrical sources 

in the brain using the signals measured externally on the 

scalp. Popular inverse methods for the transformation 

into the source space are minimum norm estimation 

(MNE), weighted MNE, and beamformers [10–13]. 

While source estimation has already been used 

occasionally in the context of BCIs, the combination with 

CNN offers a new perspective. 

The aim of this preliminary work is to combine CNN-

based classification of EEG data with three different 

methods of source analysis to compare the classification 

performance between sensor space and source space. For 

this purpose, a preestablished CNN architecture, the 

EEGNet [9] is applied to a publicly available MI-based 

EEG dataset from the Graz BCI competition IV [14]. 

CNN-based classification is conducted both directly on 

sensor measurements and source estimates generated 

with three different inverse approaches: Minimum Norm 

Estimation (MNE), weighted MNE (wMNE), and 

Beamformer. 

 

METHODS 

 

During this work, all analyses were performed using the 

Graz BCI competition IV dataset 2A [14]. This dataset 

contains EEG measurements from nine healthy subjects, 

who performed four different MI tasks. The four classes 

include cue-based imagination of left-hand, right-hand, 

feet, and tongue movement. There were two sessions 

recorded on different days each containing 288 trials in 

total, yielding 72 trials per class. EEG measurements 

were derived from 22 electrodes arranged according to 

the international 10-20 system with a sampling frequency 

of 250Hz. A more detailed description of this dataset can 

be found in [14]. 

In the context of this work classification of only two 

classes was desired, therefore only data from left-hand 

and right-hand MI were used. For each trial, ten 

overlapping 2s MI-epochs were extracted from the data 

spanning the MI period from 0.5s to 3.5s after cue onset, 

as indicated in [14].  

To perform classification in sensor space, EEG 

measurements from the BCI dataset were provided as 

input to the EEGNet-based CNN, and the performance 

was evaluated using a 10-fold cross-validation. Before 

classification in source space, three different 

representations of source activity were computed using 

MNE, wMNE and beamformer. Then, classification was 

performed on each source estimation using CNN again in 

combination with a 10-fold cross-validation.  

The three different inverse approaches for source 

transformation were computed using MATLAB version 

R2023a (The MathWorks Inc., 

https://www.mathworks.com). As individual head 

geometries were not available, the required lead field 

matrix for inverse computation was taken from the New 

York Head [15], which is a standardized finite element 

human head model that provides lead fields for 231 

electrode locations and approximately 75,000 source 

locations. The scalar lead field matrix for fixed dipole 

orientation orthogonal to the cortex surface was used. 

First, the 22 channels that were also used in the BCI 

dataset were selected and the entire head model was 

down-sampled using cortex2K provided by the New 

York Head to reduce the number of sources. Next, 

regions of interest (ROI) were selected including post- 

and precentral gyrus, central sulcus and paracentral 

lobule according to the Destrieux atlas [16]. In the end, a 

total of 122 source locations remained for estimation. For 

ease of comparison, the same number of sources was 

used for all three inverse operations. Prior to 

classification and source estimation EEG data were 

preprocessed with common average referencing (CAR) 

and the lead field matrix was restricted to the 22 channels 

from the BCI dataset and rereferenced. No further 

preprocessing or artifact removal was performed.  

     Source estimation: In general, the relationship 

between the cortical sources and the resulting signals at 

sensors on the head surface can be described by the 

formulation in equation (1), where y denotes sensor 

signals, x denotes the underlying source activity, L 

denotes the lead field matrix, and n represents noise. The 

underlying sources �̂� can be reconstructed from 

measurements y following equation (2), where M 

describes the inverse operator that maps the sensor 

signals to the source space.  

 

𝑦 = 𝐿𝑥 + 𝑛    (1) 

�̂� = 𝑀𝑦     (2) 

 

The first and simplest approach for transforming the 

sensor measurements to the source space is MNE which 

uses Tikhonov regularization and minimizes the 

expression described in equation (3).  

 

min
𝑥

‖𝐿𝑥 − 𝑦‖2 + 𝜆‖𝑊𝑥‖2  (3) 

 

For the simple case of MNE, the weight matrix W 

corresponds to the identity matrix I. By solving this 

minimization problem, the inverse mapping operator 

MMNE can be computed as described in equation (4). 

Here, λ denotes the regularization parameter, which was 

estimated from the SNR, and I corresponds to the identity 

matrix. 

 

𝑀𝑀𝑁𝐸 = 𝐿𝑇(𝐿𝐿𝑇 +  𝜆𝐼)−1   (4) 

 

A more refined version of MNE is weighted MNE where 

additional weights W are introduced to compensate for 

the preference of weak superficial sources. The resulting 
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mapping operator MwMNE is presented in equation (5). 

The weights W were computed based on the norm of the 

columns of the lead field matrix L. 

 

𝑀𝑤𝑀𝑁𝐸 =  𝑊−1𝐿𝑇(𝐿𝑊−1𝐿𝑇  +  𝜆𝐼)−1 (5) 

 

Finally, another approach for source estimation is 

provided by the linearly constrained minimum variance 

(LCMV) beamformer. In beamforming, a set of weights 

is computed for each predefined source location 

constructing a spatial filter that relates each sensor’s 

contribution to each source estimate. These weights serve 

as the inverse operator MLCMV and the computation of its 

components mLCMV(r) for the scalar case is described by 

equation (6). Here, R denotes the data covariance matrix 

and l(r) the column of the lead field matrix for a dipole of 

fixed orientation at location r.  

 

𝑚𝐿𝐶𝑀𝑉(𝑟) =  (𝑙𝑇(𝑟)𝑅−1𝑙(𝑟))−1𝑙𝑇(𝑟)𝑅−1  (6) 

 

The resulting three mapping operators, MMNE, MwMNE, 

and MLCMV were applied to EEG measurements from the 

BCI dataset according to equation (2), to compute three 

different time course representations in source space. 

     Classification with CNN: Subsequently, feature 

extraction and classification were performed with an 

EEGNet-based [9] CNN on four different signal 

modalities: sensor signals, source estimates generated 

with MNE, source estimates generated with wMNE, and 

source estimates from LCMV beamformer. The EEGNet 

is a compact CNN architecture consisting of two blocks, 

where at first a 2D temporal convolution is performed to 

learn frequency-specific features followed by depthwise 

convolution to learn spatial filters. In the second block 

2D separable convolution is performed to summarize the 

individual features. In the end, classification is performed 

using a softmax algorithm, however, in the context of this 

work classification based on sigmoid function was used. 

As optimization algorithm the Adam optimizer was used. 

A more detailed explanation of the network can be found 

in [9]. Prior to training the CNN, a hyperparameter search 

was performed to find the most suitable model 

parameters. Based on that eight temporal and two spatial 

filters were implemented, the learning rate was set to 

0.001, batch size was set to 32, and the number of epochs 

was set to 12 both for sensor and source space data. The 

EEGNet-based CNN was implemented in Python using 

TensorFlow (https://www.tensorflow.org/), Keras 

(https://keras.io/), and SciKit-Learn (https://scikit-

learn.org/stable/) libraries. 

In the end, classification accuracies of all four signal 

modalities were compared via the means of Kruskal-

Wallis-Test, to determine whether there is a statistically 

significant difference between the methods. 

 

RESULTS 

 

For the classification in sensor space, an average 

classification accuracy of 79.25 ± 13.90 % for all nine 

subjects was found. Individual classification results for 

each subject for sensor space data are presented in Tab. 

1, where the second column shows testing accuracies 

highlighted in bold, and column three shows training 

accuracies. The lowest accuracy in sensor space was 

found for subject 02 with 56.87 ± 2.92 %, and the highest 

accuracy was obtained for subject 08 with 96.04 ± 1.35%. 

 

Table 1: Classification accuracies in sensor space  

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 85.49 ± 2.71 88.26 ± 7.95 

02 56.87 ± 2.92 79.86 ± 7.39 

03 90.21 ± 3.10 98.19 ± 1.54 

04 65.42 ± 5.65 85.76 ± 4.32 

05 73.68 ± 5.06 88.26 ± 1.72 

06 67.29 ± 4.09 87.92 ± 2.97 

07 84.44 ± 2.41 93.06 ± 2.51 

08 96.04 ± 1.35 99.03 ± 0.82 

09 93.82 ± 0.89 93.06 ± 3.29 

AVG 79.25 ± 13.90  90.38 ± 6.09 

 

The classification accuracies for source estimates 

generated with MNE and wMNE can be seen in Tab. 2 

and Tab. 3, respectively. Again, obtained accuracies on 

the test data are presented in column two and training 

accuracies are presented in column three.  

 

Table 2: Classification accuracies in source space 

generated with MNE 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 71.39 ± 8.87 73.47 ± 12.56 

02 50.21 ± 2.62 78.06 ± 8.33 

03 83.68 ± 13.13 91.46 ± 12.36 

04 51.11 ± 2.08 56.67 ± 9.33 

05 74.44 ± 6.24 83.61 ± 6.60 

06 52.71 ± 2.33 62.36 ± 15.05 

07 69.31 ± 10.25 86.94 ± 12.30 

08 83.33 ± 11.95 94.72 ± 5.44 

09 88.19 ± 3.91 82.85 ± 11.03 

AVG 69.37 ± 14.84 78.90 ± 12.79 

 

Table 3: Classification accuracies in source space 

generated with wMNE 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 65.07 ± 9.47 86.46 ± 4.30 

02 51.67 ± 2.95 77.99 ± 9.62 

03 93.40 ± 0.94 97.64 ± 2.48 

04 50.00 ± 2.07 81.53 ± 4.53 

05 58.12 ± 5.37 81.46 ± 7.74 

06 60.42 ± 6.15 83.68 ± 5.65 

07 67.50 ± 6.40 83.68 ± 10.64 

08 93.06 ± 1.64 99.10 ± 0.98 

09 90.21 ± 3.30 97.99 ± 1.48 

AVG 69.94 ± 17.63 87.72 ± 8.21 

 

The average classification accuracy over all subjects for 

the MNE-based source space was 69.37 ± 14.84 % and 

69.94 ± 17.63 % for wMNE. Here, the minimal accuracy 
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for MNE was found for subject 02 with 50.21 ± 2.62 %, 

and in wMNE for subject 04 with 50.00 ± 2.07 %. 

Similarly, the maximal accuracy in MNE source space 

was obtained for subject 09 with 88.19 ± 3.91 % and in 

wMNE source space for subject 03 with 93.40 ± 0.94 %. 

In Tab. 4 the classification accuracies for sources 

reconstructed using LCMV beamformer are provided. 

The average accuracy achieved with this inverse method 

was 78.14 ± 13.12 %. The lowest accuracy was achieved 

for subject 02 with 55.83 ± 2.60 % and maximum 

accuracy was achieved for subject 08 with 95.56 ± 1.10 

%. 

 

Table 4: Classification accuracies in source space 

generated with LCMV beamformer 

Subject  

# 

Test accuracies 

in % 

Training accuracies 

in % 

01 85.83 ± 3.63 95.35 ± 3.09 

02 55.83 ± 2.60 89.17 ± 5.00 

03 85.07 ± 6.87 98.47 ± 2.29 

04 64.51 ± 6.28 87.71 ± 7.34 

05 81.46 ± 4.31 91.11 ± 2.61 

06 65.00 ± 3.50 90.69 ± 2.89 

07 83.26 ± 5.86 94.58 ± 4.62 

08 95.56 ± 1.10 99.51 ± 0.74 

09 86.74 ± 3.72 97.99 ± 1.62 

AVG 78.14 ± 13.12 93.84 ± 4.34 

 

The distribution of classification accuracies across all 

four modalities for all nine subjects is depicted in Fig. 1. 

The comparison of all four methods with the Kruskal-

Wallis-Test showed that there is no significant difference 

(Chi square = 2.93, p = 0.40, df = 3) in classification 

performance between the different approaches. 

   

DISCUSSION  

 

In this study, the classification performance of a 

previously introduced CNN architecture, the EEGNet, 

was assessed for four different input datasets generated 

from a publicly available MI BCI dataset. The first input 

provided were unprocessed sensor measurements and the 

other three modalities were corresponding source 

estimates computed with three distinct inverse methods. 

Considering the classification accuracies for both sensor 

and source space data, the proposed EEGNet-based CNN 

was able to achieve a comparable performance to other 

standard classification methods from previous studies 

that were also evaluated on the BCI competition IV 

dataset [9, 17–19], with a relatively small number of 

epochs. The presented network yielded an average 

classification accuracy of about 79% on sensor space data 

and thereby shows slightly higher classification 

accuracies than e.g. Schirrmeister et al. who reported an 

average accuracy of about 74% with their 

ShallowConvNet [18] or Kar et al. who achieved an 

average accuracy of about 70% with their CNN-model 

[19]. It has to be considered, however, that the present 

work discriminated only two classes whereas most other 

studies performed classification of all four tasks 

contained in the dataset.  

Figure 1: Distribution of classification accuracies across all four modalities (sensor measurements in blue, MNE 

estimates in orange, wMNE estimates in yellow, beamformer estimates in purple) for all nine subjects. For better 

visualization the y-axis was cut to contain only accuracy values between 45 and 100 %. 
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To keep conditions across models as similar as possible 

the same hyperparameters, including number of epochs, 

were used for all four modalities. Overall, the training 

accuracies in all four cases were quite high while still 

matching the general trend, meaning that subjects with 

lower testing accuracies also had lower training 

accuracies. In some cases, like for example with subject 

02, the training accuracies were considerably higher than 

the accuracies achieved in testing, however, this is likely 

due to a higher intra-subject variability between the first 

and second recording session rather than due to 

overfitting. When comparing the classification results 

from sensor space to those achieved with source 

estimates in Fig. 1, it is evident that the accuracy values 

do not differ noticeably between the different modalities, 

even though it seems that source estimation with MNE 

and wMNE yielded slightly lower accuracies for most of 

the subjects. The Kruskal-Wallis-Test confirms that there 

is no significant difference between sensor space and any 

of the source space data. These findings are in contrast to 

other studies that found an improvement in BCI 

performance when applying source analysis prior to 

classification, although these studies did not use CNNs 

for classification [11, 12]. The results of the present work 

support the idea that CNNs are good at finding optimal 

separation criteria despite noisy data, as the 

compensation for the volume conduction effect via 

source estimation did not seem to significantly affect the 

classification performance. One reason for the 

comparatively weaker classification performance of 

source estimates could be the rather small number of 

measurement channels that are provided with the BCI 

dataset. In this work, 122 source estimates were 

generated using a standardized head model and only 22-

channel EEG measurements with poor head coverage. No 

individual head geometries and exact electrode positions 

were available. It was previously shown, however, that 

an increased electrode density and good head coverage 

allow for improved source reconstruction [20, 21]. Other 

studies that found an improvement in BCI performance 

in combination with source estimation used a larger 

number of sensors distributed over the entire head [11, 

12]. Results of source estimation could further be 

improved by additional preprocessing such as data 

whitening with noise covariances, regional clustering for 

optimally reducing the source space, or introducing 

spatial normalization strategies to beamformers [12, 13, 

22, 23]. So, with measurements providing better 

electrode configurations spanning the entire head 

surface, computation of more accurate source estimates 

and thereby an improvement of classification 

performance might be feasible. 

Nonetheless, as comparable classification accuracies 

could be achieved with source estimates, future 

implementations using CNN and source reconstruction 

for transfer learning in BCIs are promising. The 

transformation of sensor measurements to the source 

space offers the possibility to jointly process data of 

several individuals and different recording sessions in a 

common signal space, as the effect of changes in 

electrode configuration can be circumvented. 

 

CONCLUSION 

 

Accurate real-time classification of EEG data is essential 

to provide users with precise and intuitive BCI control. 

In this study, it was shown that CNNs can achieve 

comparable classification performances based on sensor 

and source space data respectively. Future investigations 

will focus on the real-time applicability of CNNs and 

transfer learning for BCI systems will be explored. The 

reliable classification of source estimates as shown by 

this work is promising for the application in transfer 

learning. Furthermore, CNN-based classification of 

source estimates will also be performed on own recorded 

data during MI and arithmetic learning tasks, to explore 

whether alternative tasks can be discriminated from EEG 

measurements and could be used for providing 

neurofeedback.   
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