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ABSTRACT: Epileptic spikes, indicative of the seizure 

onset zone (SOZ), provide meaningful insight for 

neurosurgeons looking to find seizure locations, 

particularly during intraoperative procedures. Many 

algorithms have been proposed to detect epileptic 

spikes, primarily based on offline data analysis. 

However, none of these algorithms have been 

successfully adapted for online applications. In this 

study, we introduce a novel method for online detecting 

epileptic spike patterns in electrocorticography (ECoG) 

data. This algorithm dynamically models statistical 

distributions of signal envelopes, which could 

discriminate between signals containing epileptic spikes 

and those showing background activity. The 

effectiveness of the proposed algorithm is evaluated 

using resting-state data from two patients. The results 

reveal a sensitivity of 73% and a specificity of 95% for 

detecting epileptic spikes online, with an overall 

accuracy of 93% and an f1 score of 52%. Overall, these 

results validate the potential of online detection as a 

valuable method for epilepsy monitoring and diagnosis. 

 

INTRODUCTION 

 

Epileptic seizures result from the excessive and 

synchronized activity of large neuronal groups, making 

epilepsy one of the most common neurological 

disorders globally, impacting around 50 million 

individuals [1]. While many epilepsy patients 

effectively manage seizures with medication, 

approximately one-third continue to experience seizures 

despite treatment [2]. For these cases, surgical resection 

of the brain tissue responsible for seizures becomes a 

feasible treatment, which needs to identify SOZ 

accurately. 

Clinical localization of the seizure onset zone (SOZ) 

requires implanting intracranial EEG (iEEG) electrodes, 

recorded over several days, to capture spontaneous 

seizures [3]. Electrodes within the SOZ are identified 

through visual inspection of iEEG recordings taken 

during seizures, guiding the removal of surrounding 

tissue during surgery. Despite serving as the current 

gold standard for mapping the epileptic brain clinically, 

this manual process is time-consuming, costly, and 

carries potential risks of morbidity [4]. Consequently, 

there is growing interest in automating SOZ localization 

to simplify epilepsy monitoring and facilitate the 

identification of the SOZ [5].  

Interictal epileptiform discharges (IEDs) are 

transient electrographic events observed in patients with 

epilepsy. They serve various diagnostic and monitoring 

purposes, aiding in the identification of epileptic 

activity and the localization of epileptogenic tissue and 

SOZ. During presurgical evaluations [6], neurosurgeons 

often use information from interictal discharges to 

understand where the seizures start in the brain and to 

plan where and how much tissue to remove [7, 8]. 

Studies have indicated that resecting regions exhibiting 

frequent spikes correlates with improved surgical 

outcomes [9, 10]. Research has demonstrated that IEDs 

can effectively localize the seizure onset [11], with the 

most common types of IEDs identified through visual 

and semi-automated detection in long-term monitoring 

(LTM) and visual detection in high-density EEG 

(hdEEG) significantly aligning with the SOZ [12]. 

This study aims to address the growing need and to 

create an automated online epileptic spike detection 

method for SOZ localization. It leverages signal 

envelopes to model the statistical distributions of ECoG 

signals. This approach aims to enable real-time 

epilepsy, including intraoperative application. To 

achieve this goal, electrocorticography (ECoG) data 

from patients with epilepsy were used, in which half-

second segments of data were analyzed to detect 

epileptic spikes. Later, a sequence detection algorithm 

was applied to the identified spikes to capture spatial 

information. This algorithm identifies spikes occurring 

across multiple electrodes in close temporal proximity, 

improving the understanding of epileptic activity 

distribution. 

 
MATERIALS AND METHODS 

 

The study utilized ECoG data from two patients 
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undergoing diagnostic subdural grid implantation at 

Megumino Hospital in Japan. This data collection 

occurred within the Epilepsy Monitoring Unit (EMU) 

during the patients' resting-state sleep at night. The 

recordings were conducted under the influence of 

antiepileptic drugs (AEDs). As a result, it was expected 

that the recorded data would show a decrease in 

interictal epileptiform activity due to the administration 

of AEDs. 

The patients underwent implantation of subdural 

grid electrodes to localize the SOZ and perform real-

time functional mapping to identify critical brain 

function areas, aiming to minimize resection before 

surgery. The implanted grids, sourced from Ad-Tech in 

Racine, WI, USA, comprised platinum discs with a 

diameter of 4.0 mm, spaced apart at 5-10 mm intervals. 

The ECoG signals were acquired in the EMU using 

a 256-channel g.HIamp biosignal amplifier (g.tec 

medical engineering GmbH, Austria). The signals were 

digitized with a high resolution of 24 bits at a sampling 

rate of 4800 Hz. Ground and reference electrodes were 

in the dorsal parietal cortex to ensure signal stability and 

consistency. 144 channels were recorded for patient 1 

and 136 for patient 2 (280 channels total). 

The online detection system for epileptic spikes was 

developed using MATLAB Simulink (MathWorks, Inc.) 

and comprises several key components. Initially, the 

signal was down-sampled to 200 Hz and subjected to a 

high-pass filter with a cutoff frequency of 2 Hz to 

eliminate DC offset. Later, each channel underwent an 

8th-order Butterworth filtering within the 10-60 Hz 

band. Following this preprocessing step, the signals 

were processed using a common average reference 

(CAR) technique to mitigate noise and non-cerebral 

artifacts, a critical step for ensuring the accuracy of 

spike detection algorithms by reducing false positive 

events. The input signal was then segmented into half-

second intervals to facilitate spike detection. The output 

of the spike detection block, depicted in scope with 

markers denoting detected events (Figure 1), relies on a 

real-time adaptation of the method outlined in [13]. 

 

To achieve real-time spike detection, the 

instantaneous envelope of each filtered channel was 

computed using the absolute value of the Hilbert 

transform. Spikes typically produce an energy increase, 

resulting in peaks in the envelope within the 10-60 Hz 

frequency band. Statistical distribution of the envelope 

was computed for each segment, and a model was fitted 

using a maximum likelihood algorithm (MLE). Later, 

the mode and median of the normalized (log-normal 

distribution) data were used to establish a threshold for 

detecting segments containing spikes from those 

displaying background activity. Statistical parameters 

such as mean and standard deviation were calculated for 

each window and accumulated for ongoing threshold 

adjustment to ensure adaptability. This adaptive 

thresholding mechanism optimizes spike detection 

performance across varying signal conditions.  
 

 
Figure 1: The Simulink model of real-time epileptic 

spike detection. 

 

ECoG data were examined for interictal discharges 

to assess the model's performance. For this purpose, a 

10-minute segment of ECoG data was selected. The 

signals were analyzed using g.BSanalyze software 

(g.tec medical engineering GmbH) to identify spikes. 

IEDs typically start with a sharp wave or spike, 

indicating a brief, high-amplitude deviation from 

baseline. Subsequently, a slow wave component may 

follow, characterized by a slower and more prolonged 

deflection than the sharp wave [14]. Figure 2 illustrates 

the labeling of epileptiform discharges. 

 

 
Figure 2: Annotation of epileptiform discharges for use 

compared to the detected event. 

 

After the completion of the simulation, the detected 

events are saved in a file, which are indicators of spike 

occurrence in the signal. Later, these events are 

organized into vectors for each channel. Each vector 

represents the spike times detected for the 

corresponding channel. For the evaluation, true positive 

(TP) is defined as an event where the predicted event is 

located on the marked event in ground truth, i.e., at least 

some samples overlap. A false positive (FP) is defined 

as an event where the predicted event does not overlap 

with the marked event. A false negative (FN) is defined 

as an event where the predicted event does not overlap 

with the event in ground truth. A true negative (TN) is 

defined as an event where no event is predicted, and no 

event is in the ground truth. Several performance 

metrics based on these definitions are calculated. 

Accuracy measures the proportion of correctly 

identified events, computed as accuracy = (TP + TN) / 

N. Sensitivity reflects the model's ability to correctly 

identify true events, calculated as sensitivity = TP / (TP 

+ FN). Specificity gauges the model's proficiency in 

identifying true negative events, determined by 
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specificity = TN / (TN + FP). The F-score, the harmonic 

mean of precision and recall, is computed as F-score = 

(2×FP) / (2×TP + FP + FN). 

 

 

RESULTS 

 

The proposed system was applied to two patients, 

including data collected under the influence of AEDs. 

Figure 3 displays an example output from the scope, 

illustrating the detected epileptic spikes for patient 1. 

This visual representation clearly depicts the identified 

epileptic activity within the recorded ECoG data, aiding 

in assessing and analyzing epileptic spike detection 

performance. 

 

 
Figure 3: Visualization of online detection of epileptic 

spike. 

 

Upon running the model, sensitivity, specificity, 

accuracy, and F-score are calculated for model 

evaluation, as depicted in Table 1. This table presents 

the average performance metrics for patients, where the 

predicted values of the proposed system are compared 

with the ground truth labels of epileptic spikes. The data 

used for analysis were extracted from minutes 3 to 10 of 

the recording. This duration includes 7 minutes of data, 

during which the model's performance was considered 

stable. This specific timeframe was focused on ensuring 

that the analysis is conducted on data where the spike 

detection algorithm has reached a consistent and reliable 

performance level. First, thresholds were established to 

detect epileptic spikes with 95% specificity for the 

entire patient. Then, sensitivities for detecting epileptic 

spike events were calculated on the patients with those 

thresholds. A comparison from Table 1 shows that the 

performance of the online system closely resembles that 

of offline reference methods. This observation 

highlights the effectiveness of the online system in 

accurately detecting epileptic spikes, demonstrating its 

potential as a feasible alternative to traditional offline 

methods. The low F1 score in the comparison is 

primarily due to the high number of false positive (FP) 

events, which arise from the complexity of the 

comparison. In this scenario, the time samples of 

detected spikes with those of marked spikes (ground 

truth) across all channels were compared. This presents 

a significant challenge because the detected spike 

should be aligned with the time sample of a spike in the 

ground truth. In contrast, some other research groups 

solely compare the spike detection algorithm's spike rate 

with the SOZ or spike rate in the ground truth across all 

channels, resulting in higher scores. However, this 

approach overlooks the temporal validation aspect. 

 

Table 1: Performance results of the proposed system for 

datasets 
Methods TP TN FP FN Sens. Spec. Acc. F1 

ONLINE 44 737 43 17 0.73 0.95 0.93 0.52 

REF [13] 47 743 39 11 0.70 0.95 0.94 0.45 

REF [15] 18 768 34 20 0.39 0.95 0.94 0.23 
REF [16] 46 742 39 13 0.69 0.95 0.94 0.48 

 

Figure 4 demonstrates the calibration time of the 

proposed method for detecting spike events in the 

ECoG signals. Here, it can be seen that after minute 3, 

the method could reach a stable detection period.  

 

 

 
Figure 4: Calibration time of epileptic spike 

detection for use in real-time BCI application. 

 

Figure 5 illustrates the spatial distributions of 

epileptic spikes for different methods in a 3D brain 

schema for patient 1. To represent the spatial 

distribution, the spike rate for each channel is calculated 

in terms of spikes per minute. Notably, the seizure onset 

location for patient 1 is in channels 41-43, shown in 

yellow electrodes. By reviewing Figure 5, it becomes 

evident that channels in the models exhibiting high 

spike rates are either located within the SOZ or close to 

it, which is why the proposed method aligns with the 

offline method for pointing the SOZ location. This 

observation strengthens the correlation between 

epileptic activity and the SOZ, emphasizing the 

importance of accurately localizing the SOZ for 

effective diagnosis and treatment of epilepsy. 

 

 
 

          (a) Ground truth   (b) ONLINE 
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  (c) REF [13]      (d) REF [15] 

 

 
(e) REF [16] 

 

 

Figure 5: Epileptic spike rate in 3D brain schema for the 

models. Electrodes 41-43 indicate SOZ. Subfigures a-e 

indicate the epileptic spike rate for ground truth, online 

method, method ref [13], and method ref [15]. 

 

 

DISCUSSION 

 

In contrast to the approach described in [16], the 

current study presents a novel online epileptic spike 

detection method. Unlike the existing offline methods 

[13, 15, 16], which necessitate the use of the full length 

of the signal for detection, the approach in this work 

utilizes only a half-second segment to model the 

statistical distribution of ECoG signals for detecting 

epileptic spikes. Changes to the method described in 

reference [13] have enhanced its online performance. 

This distinction highlights the efficiency and 

effectiveness of the online method, offering potential 

advantages in terms of computational resources and 

speed of analysis compared to traditional offline 

methods. 

In this research, the proposed approach involves 

relying solely on a reviewer for signal labeling, which 

introduces potential limitations. This could be a reason 

why comparing spike occurrences solely in the time 

domain can be challenging due to the inherent 

variability in EEG signals and the potential for small 

temporal deviations between ground truth and detected 

spikes. Furthermore, inherent limitations, such as 

mislabeling or biases towards specific markers, may 

exist. These factors could contribute to the observed low 

sensitivity, specificity, and accuracy values when 

comparing spikes in the time domain to ground truth. 

However, analyzing spike activity in the spatial 

domain, such as plotting the rate of spikes across 

different channels, offers a more comprehensive 

understanding of the underlying neural activity. Spatial 

information provides insights into the specific regions 

or electrodes where spikes frequently occur, allowing 

for a more robust comparison between ground truth and 

predicted data. Therefore, integrating spatial analysis 

can reduce some of these limitations and provide a more 

reliable assessment of spike detection performance. 

 

One of the primary challenges hindering the 

practical implementation of a brain-computer interface 

(BCI) is the long calibration period required. However, 

this paper proposes a novel approach utilizing adaptive 

thresholding, which accumulates statistical 

characteristics of the ECoG signal. This method 

demonstrates stable epileptic spike detection in terms of 

specificity after approximately 3 minutes, thereby 

significantly reducing the calibration time required for 

spike detection in epilepsy monitoring applications. The 

experimental results depicted in Figure 4 illustrate that 

the proposed algorithm rapidly achieves a predefined 

performance level. This capability suggests that the 

algorithm can facilitate real-world applications of spike 

detection without the need for extensive data to train a 

model. Instead, it leverages only a small amount of 

initially available data, making it highly practical for 

deployment in clinical settings. 

 

One of the limitations of this study lies in the limited 

data population of epileptic patients and the reliance on 

a single signal reviewer for marking epileptic spikes. It 

would be beneficial to involve multiple signal raters to 

enhance the robustness and reliability of the statistical 

distribution used to establish thresholds for spike 

detection. By incorporating input from multiple 

reviewers and considering the intersection of their 

marked events across time samples, biases toward 

specific spike patterns can be reduced. This approach 

can improve sensitivity and specificity in spike 

detection, as it captures a more comprehensive range of 

epileptic activity patterns. Therefore, future studies 

should consider involving a larger pool of signal 

reviewers, a longer length of ECoG data, and more 

patient data to address this limitation and enhance the 

accuracy of spike detection algorithms. 

 

 

CONCLUSION 

 

The study introduces a novel automated method for 

real-time detection of epileptic discharges to support 

evaluation for epilepsy surgery. The method employs 

adaptive thresholding based on the statistical 

characteristics of signal envelopes. This approach also 

incorporates spikes' spatial information to capture spike 

propagation patterns. The automated real-time epileptic 

discharge detection system can potentially reduce the 

duration of long-term ECoG monitoring in the EMU. 
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Furthermore, it could be utilized in intraoperative 

monitoring to assist neurosurgeons in localizing the 

SOZ, thus enhancing surgical precision and patient 

outcomes. 
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