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ABSTRACT: BCIs using code-modulated visual evoked
potentials (c-VEP) have become popular for their re-
liable, high-speed control of applications and devices.
However, traditional circular shifting paradigms based
on black & white stimuli can cause eyestrain for some
users. We previously showed that adjusting the number
of code events and spatial frequency can enhance user
comfort. Despite c-VEP calibration being notably shorter
than other BCIs, the optimal number of calibration cycles
for effective system control remains unexplored. This
study aims to investigate the impact of calibration dura-
tion on various c-VEP-based BCIs, with stimulus vari-
ations to improve user experience. We evaluated per-
formance with different calibration cycles using five p-
ary m-sequences encoded with shades of gray and eight
spatial frequency variations of checkerboard-like stimuli.
Results indicate that all conditions achieved over 90% ac-
curacy and 80 bpm with calibration durations ranging be-
tween 6–70 seconds. These findings highlight the impor-
tance of selecting a configuration based on the functional
requirements of the BCI.

INTRODUCTION

Non-invasive brain-computer interface (BCI) systems en-
able users to control external applications or devices by
processing their electroencephalographic (EEG) activity
in real-time [1]. However, direct interpretation of users’
intentions from EEG signals is not feasible, making nec-
essary to rely on task-based paradigms that elicit spe-
cific control signals. These paradigms encompass strate-
gies that induce measurable deflections in the EEG dur-
ing cognitive tasks or the processing of external stimuli,
such as visual flashes [1]. Among such approaches, code-
modulated visual evoked potentials (c-VEPs) have gained
popularity in recent years due to their ability to achieve
high-performance BCIs with short calibration times.
Traditional c-VEP-based BCIs utilize flickering stimuli
generated by pseudorandom binary codes that shows per-
fect autocorrelation properties [2]. These time series en-

code selectable commands using temporally shifted ver-
sions of the same code. Calibration in this paradigm,
known as circular shifting, typically requires extracting
the brain response elicited by the original code over the
primary visual cortex as a template. It is assumed that the
response to subsequent commands corresponds to tempo-
rally shifted versions of this template according to each
command’s lag [2]. Thus, the main advantage of the cir-
cular shifting paradigm is that calibration is drastically
reduced by estimating the brain response to a single se-
quence, independently of the total number of commands.
Despite the excellent performance of high-contrast flick-
ering produced by binary codes, which encode com-
mands with black and white flashes, several studies have
highlighted potential issues such as visual eyestrain and
fatigue among certain users [3, 4]. One of the current
areas of research in the state-of-the-art is focused on
improving users’ comfort without compromising perfor-
mance. Previous studies have shown that this goal can
be achieved through various methods, such as increas-
ing the stimulation rate [5], employing customized codes
that confine spectral density to high-frequency bands [6],
using sequences with a high number of events allowing
encoding with different shades of gray rather than high-
contrast stimuli [5], or increasing the spatial frequency of
checkerboard-like stimuli [7]. Specifically, we have pre-
viously demonstrated in studies by Martínez-Cagigal et
al. (2023) [5] and Fernández-Rodríguez et al. (2023) [7]
that these two latter approaches effectively enhance user
comfort while maintaining similar levels of accuracy and
information transfer rate (ITR).
In comparison with other systems, such as those based on
P300 potentials or sensorimotor rhythms, c-VEP-based
BCIs require notably fewer calibration trials. Neverthe-
less, some authors have proposed adaptive algorithms to
further reduce or completely eliminate the need for cal-
ibration. For example, Spüler et al. (2013) [8] intro-
duced an unsupervised clustering-based approach with
two calibration targets, Thielen et al. (2021) [9] pre-
sented an adaptive version of “reconvolution” tailored for
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zero-shot calibration contexts, and Stawicki & Volosyak
(2022) [10] explored the potential of transfer learning to
minimize recalibration across multiple sessions.
In spite of the increasing popularity of c-VEPs in non-
invasive BCIs, to our knowledge, no study has specifi-
cally investigated the number of calibration cycles needed
to effectively control the system. Consequently, this has
not been explored for stimulus modifications aimed at en-
hancing user experience either. Therefore, the aim of
this study is to analyze the impact of calibration dura-
tion in circular shifting c-VEP paradigms. Specifically,
we examine typical binary black and white stimuli, p-ary
m-sequences encoded with different shades of gray, and
variations of spatial frequencies in checkerboard patterns.

SUBJECTS

In this study, we utilized data from two previously
recorded databases [5, 7]. In both databases, all aspects
of BCI operation were managed using open-source ap-
plications of MEDUSA©, accessible at medusabci.com
[11]. Visual stimuli were presented on an LED FullHD @
144 Hz monitor (model: KEEP OUT XGM24F+ 23.8”)
with a refresh rate of 120 Hz. EEG signals were regis-
tered using a g.USBamp device (g.Tec, Guger Technolo-
gies, Austria) from 16 active Ag/AgCl channels at po-
sitions F3, Fz, F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7,
POz, PO8, Oz, I1, and I2, according to the International
System 10/5. The device was grounded at AFz and ref-
erenced to the right earlobe. All participants provided
informed consent before participating [5, 7].

P-ary m-sequences database: This dataset com-
prises 15 healthy participants (aged 28.80 ± 5.02
years, 10 males, 5 females) [5] who engaged in BCI
spelling tasks using the open-source “P-ary c-VEP
Speller” application of MEDUSA©, accessible at medus-
abci.com/market/pary_cvep [11]. Participants completed
a single session consisting of a calibration phase compris-
ing 300 cycles and an online spelling task comprising 32
trials (with 10 cycles per trial) for each p-ary m-sequence.
A total of five p-ary m-sequences were assessed: binary
GF(26) with a base of 2, GF(35) with a base of 3, GF(53)
with a base of 5, GF(72) with a base of 7, and GF(112)
with a base of 11. Events were encoded using various
shades of gray; e.g., GF(26) employed black and white
flashes, while GF(53) used three equidistant grey tones in
addition to black and white flashes, and so forth. Fig-
ure 1(A) illustrates all p-ary m-sequences, along with
the arrangement of commands’ lags. Online selections
were made using a 4× 4 command matrix (chance level
of 6.25%), comprising alphabetic characters from A to
P. For further details, please see Martínez-Cagigal et al.
(2023) [5].

Checkerboard database: This dataset comprises 16
healthy participants (aged 29.63 ± 4.06 years, 11 males,
5 females) [7] who undertook BCI spelling tasks using a
modified version of the open-source “c-VEP Speller” ap-
plication provided by MEDUSA©, accessible at medus-

abci.com/market/cvep_speller [11]. Participants com-
pleted a single session, which included a calibration
phase consisting of 300 cycles and an online spelling
task comprising 18 trials (with 8 cycles per trial) for
each spatial condition. All conditions employed a binary
m-sequence of 63 bits encoded with black-background
checkerboard (BB-CB) patterns, i.e., the encoding rep-
resented “1” with a checkerboard pattern and “0” with
a black flash. Each condition assessed a specific spatial
frequency of the stimuli, which refers to the size of the
squares within a checkerboard-like stimulus, measured in
cycles (pairs of squares of two alternative colors) per de-
gree of visual angle (c/º). A total of 8 conditions were
examined: C001 (0 c/º), C002 (0.15 c/º), C004 (0.3 c/º),
C008 (0.6 c/º), C016 (1.2 c/º), C032 (2.4 c/º), C064 (4.79
c/º), and C128 (9.58 c/º). The stimuli and the arrange-
ment of lags are shown in Figure 1(B). Online selections
were made using a 3× 3 command matrix (chance level
of 11.11%). For further details, please see Fernández-
Rodríguez et al. (2023) [7].

METHODS

Paradigm: In both datasets, the circular shifting
paradigm was employed, which relies on using shifted
versions of a pseudorandom sequence to encode individ-
ual commands, ensuring that only the original sequence
needs to be calibrated. Consequently, it is imperative
for the sequence to demonstrate minimal autocorrelation,
thereby facilitating subsequent decoding [2]. Maximal
length sequences (i.e., m-sequences), represent pseudo-
random temporal series characterized by nearly optimal
autocorrelation properties. These sequences are gener-
ated employing linear-feedback shift registers (LFSR).
The characteristics of m-sequences are determined by
three main factors: the base p, denoting the quantity
of different events (e.g., p = 2 for binary m-sequences:
events 0 and 1); the order r, indicating the number
of LFSR taps; and the generator polynomial expressed
within a Galois Field of p elements, GF(p), which defines
the arrangement of the LFSR taps [5]. In addition to con-
forming to various mathematical constraints, the length
of a m-sequence exactly equals N = pr − 1 bits, repeat-
ing cyclically [5]. The larger the m-sequence, the greater
the number of commands that can be encoded with it.

Signal processing: During the calibration stage, par-
ticipants are instructed to focus on a single command en-
coded by the original m-sequence (without delay) for a
duration covering k cycles (i.e., repetitions of the same
m-sequence). Initially, the EEG signal undergoes pre-
processing using a filter bank comprising three bandpass
filters (ranging from 1 to 60 Hz, 12 to 60 Hz, and 30 to
60 Hz) and a notch filter set at 50 Hz [5, 7]. Two ver-
sions of the EEG response are subsequently computed
for each signal: (1) concatenated epochs, denoted as
AAA ∈R[kNs×Nc]; and (2) epochs averaged over the k cycles,
denoted as BBB ∈ R[Ns×Nc]. Here, Ns represents the num-
ber of samples per cycle, and Nc represents the number
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Figure 1: Stimuli details for both databases. (A) Gray encoding of each p-ary m-sequence over time, depicting associated lags for
each command in the p-ary m-sequence database (shown in red) and checkerboard database (shown in blue). (B) Binary patterns of
the black-background checkerboard (BB-CB) stimulus for the eight distinct spatial frequencies assessed in the checkerboard database.
Note that all patterns (event 1) were coupled with a flickering monochromatic black square (event 0).

of channels. Subsequently, a canonical correlation anal-
ysis (CCA) is utilized to train the spatial filter ωωωb that
maximizes the correlation between the projected versions
of AAA and BBB. In this process, BBB is replicated k times to
match the dimensions of AAA. The main template (i.e., for
the command without delay) is established by projecting
the averaged signal using the spatial filter ωωωb, resulting
in xxx0 = BBBωωωbbb. Templates for the other commands are
then generated by cyclically shifting this main template
based on their respective delays. Following this proce-
dure, Nt × 3 templates, each for a command and filtered
signal, are obtained, where Nt indicates the number of
commands in the online stage. Therefore, Nt = 16 for the
p-ary m-sequences database, and Nt = 9 for the checker-
board database. Calibration epochs with a standard devi-
ation three times greater than the average standard devia-
tion of all epochs were excluded before training the CCA
[5, 7]. During the online mode, a similar approach is em-
ployed to determine the command the user is focusing on
in real-time. The EEG signal undergoes preprocessing,
and individual epochs are averaged and projected using
the spatial filter ωωωb. The correlation between the result-

ing projection and all templates is then computed, yield-
ing ρ̂ρρ ∈ RNt×3 values. After averaging across the filtered
signals, ρρρ ∈ RNt is obtained. The selected command cor-
responds to the one that produces the highest correlation
value, identified as argmaxi(ρρρ) [5, 7].

RESULTS

To understand how the duration of the calibration period
affects the system’s final performance, we (1) selected a
specific number of calibration cycles k, (2) trained the
model as outlined in the methods section, and (3) pre-
dict the outcome of the test trials and extract accuracy
and ITR while varying the number of online cycles. The
parameter k was systematically increased until the entire
calibration dataset was utilized for each database, i.e.,
k ∈ [1,300]. Figures 2 and 3 depict the grand-averaged
accuracy across subjects for each condition and dataset.
This accuracy is presented as a function of the number
of calibration cycles k and the number of online cycles.
The amount of calibration data is expressed in both the
number of cycles and duration in seconds. As depicted, a
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Figure 2: Grand-averaged accuracy across subjects for the p-ary m-sequences database as a function of the number of calibration cycles
and the number of online cycles. The x-axis illustrates the quantity of calibration data utilized to train the model, expressed in both the
number of cycles (bottom axis) and duration in seconds (top axis). Each curve represents a distinct number of online cycles (i.e., the
length of the test epoch). Each plot corresponds to a different base. Chance level was 6.25%

Table 1: Analysis of plateau performance on the p-ary m-sequences database.

Base 2, GF(26) Base 3, GF(34) Base 5, GF(53) Base 7, GF(72) Base 11, GF(112)
Noc 2 5 10 2 5 10 2 5 10 2 5 10 2 5 10

0.9M
cal. (s) 74.55 9.45 5.78 96.00 37.33 28.67 19.63 10.33 5.17 - 24.40 12.40 34.00 27.00 24.00
acc. (%) 89.45 89.84 89.84 88.09 87.89 87.89 90.04 91.02 91.02 - 89.65 89.84 89.06 89.45 89.06
ITR (bpm) 177.3 71.53 35.76 135.3 53.90 26.95 91.25 37.31 18.66 - 93.47 46.94 92.24 37.22 18.45

0.95M
cal. (s) - 34.12 31.50 - 76.00 52.00 62.00 22.73 11.37 - 73.60 65.20 195.0 47.00 37.00
acc. (%) - 94.73 94.34 - 92.97 92.97 95.12 95.51 94.92 - 94.53 94.53 93.95 93.95 94.14
ITR (bpm) - 79.91 39.60 - 60.45 30.22 102.4 41.34 20.39 - 104.4 52.21 103.0 41.21 20.70

1M
cal. (s) - - 109.2 - - 175.3 - - 276.9 - - 118.8 - - 237.0
acc. (%) - - 99.22 - - 97.66 - - 99.80 - - 99.41 - - 98.83
ITR (bpm) - - 44.61 - - 33.73 - - 23.06 - - 58.88 - - 23.17

Noc indicates the number of online cycles, M the maximum accuracy for each base, “cal” the duration of the calibration in seconds, “acc.” the accuracy
in %, and “ITR” the information transfer rate in bits per minute. This analysis unveils the minimum calibration duration necessary to achieve 90%, 95%,
and 100% of the maximum accuracy for each base, provided that such accuracy can be attained with each number of online cycles.

performance plateau is generally observed across all con-
ditions. Tables 1 and 2 summarize the minimum calibra-
tion duration required to achieve 90%, 95%, and 100% of
the maximum accuracy for each condition and database.
Results are provided for varying numbers of online cy-
cles. If that accuracy cannot be achieved with a particular
number of online cycles, it is denoted with a hyphen.

DISCUSSION

As expected, the longer the calibration duration, the
greater the accuracy achieved, regardless of the p-ary m-
sequence or the spatial frequency of the BB-CB stimuli.
While all conditions reached a performance plateau after
a specific number of calibration cycles, independently of
the number of online cycles, the slope (learning curve)
appears to be dependent on the database or condition.

In the p-ary m-sequences database, all conditions
achieved an average accuracy higher than 97% when us-
ing the maximum calibration duration. Overall, it is evi-
dent for all conditions that at least 2 online cycles are re-
quired to reach suitable performance. However, the per-
formance plateau varied among them, indicating a trade-
off between calibration duration and final performance.
Specifically, GF(53) and GF(26) exhibited higher accu-
racy with less calibration duration, followed by GF(112),
GF(72), and GF(34). Considering an intermediate num-
ber of 5 online cycles, the 95th percentile of maximum
accuracy (all above 92%) was achieved by using the fol-
lowing calibration durations, as shown in Table 1: 22.73 s
for GF(53), 34.12 s for GF(26), 47.00 s for GF(112),
65.20 s for GF(72), and 76.00 s for GF(34). These con-
figurations also yielded ITRs above 40 bpm in all cases,
i.e. maximum of 104.1 bpm for GF(72), and minimum
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Figure 3: Grand-averaged accuracy across subjects for the checkerboard database as a function of the number of calibration cycles and
the number of online cycles. The x-axis illustrates the quantity of calibration data utilized to train the model, expressed in both the
number of cycles (bottom axis) and duration in seconds (top axis). Each curve represents a distinct number of online cycles (i.e., the
length of the test epoch). Each plot corresponds to a different spatial frequency. Chance level was 11.11%.

Table 2: Analysis of plateau performance on the checkerboard database.

C001 C002 C004 C008 C016 C032 C064 C128
(0 c/º) (0.15 c/º) (0.3 c/º) (0.6 c/º) (1.2 c/º) (2.4 c/º) (4.79 c/º) (9.58 c/º)

Noc 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8

0.9M
cal. (s) 3.67 3.67 9.45 6.83 8.93 7.35 7.88 5.78 4.20 4.20 3.67 3.67 7.88 6.30 12.07 9.45
acc. (%) 90.97 91.67 89.93 89.58 90.97 89.93 92.71 90.28 90.63 90.97 89.58 91.67 88.19 90.62 88.89 88.19
ITR (bpm) 73.37 46.58 71.67 44.44 73.37 44.79 76.31 45.14 72.80 45.86 71.11 46.58 68.91 45.50 70.00 43.07

0.95M
cal. (s) 6.83 5.25 13.12 9.45 14.70 12.07 12.60 7.88 5.25 5.78 6.30 5.25 9.97 7.88 23.10 18.90
acc. (%) 94.10 95.49 94.10 94.10 94.79 94.44 95.14 95.83 95.14 97.22 95.14 94.79 94.10 93.06 93.06 93.06
ITR (bpm) 78.76 50.83 78.76 49.23 80.03 49.62 80.68 51.25 80.68 52.98 80.68 50.02 78.76 48.07 76.91 48.07

1M
cal. (s) - 71.92 - 44.10 - 68.25 124.95 31.50 - 19.43 - 71.92 - 32.02 - 71.92
acc. (%) - 98.96 - 98.61 - 98.96 100.00 100.00 - 100.00 - 98.96 - 97.92 - 97.92
ITR (bpm) - 55.37 - 54.86 - 55.37 91.43 57.14 - 57.14 - 55.37 - 53.89 - 53.89

Noc indicates the number of online cycles, M the maximum accuracy for each base, “cal.” the duration of the calibration in seconds, “acc.” the accuracy
in %, and “ITR” the information transfer rate in bits per minute. This analysis unveils the minimum calibration duration necessary to achieve 90%, 95%,
and 100% of the maximum accuracy for each base, provided that such accuracy can be attained with each number of online cycles.

of 41.21 bpm for GF(112). Nevertheless, the tradeoff
between calibration/online selection duration and perfor-
mance makes it difficult to select any specific configura-
tion. For instance, in GF(26), it is feasible to calibrate
with only 9.45 s, albeit at the cost of reducing the av-
erage accuracy to 89.84% and utilizing 2.62 s of online

selection duration (at 71.53 bpm). Conversely, an impres-
sive ITR of 177.3 bpm (at 89.45%) can be attained with
an online selection duration of only 1.05 s by employ-
ing a calibration duration of 74.55 s. To sum up, all p-
ary m-sequences prove capable of achieving above 90%
mean accuracy through various configurations of calibra-
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tion and online durations.
Regarding the checkerboard database, all spatial fre-
quency conditions displayed similar performing plateaus.
Once again, two online cycles are necessary to attain a
practical level of control over the system. Note that con-
dition C001 (0 c/º) is analogous to GF(26), and its supe-
rior performance may stem from the fact that the checker-
board database comprises only 9 commands instead of 16
[5, 7]. For 5 online cycles (2.62 s), all conditions demon-
strated more than 93% accuracy and 76 bpm. Condition
C016 stands out by achieving 95.15% accuracy and 80.68
bpm using only 5.25 s of calibration. Extending the cali-
bration duration to 19.43 s and the online cycles to 8 (4.20
s), C016 attains 100% accuracy and 57.14 bpm. While
we emphasize C016, similar behaviors are observed for
C008 and C032, as indicated in Table 2. Generally, cal-
ibrations lasting between 3.67–12.07 s are sufficient to
achieve accuracies around 88%-90% for all conditions,
where C128 likely exhibits the poorest results.
It is evident that there exists a four-variable tradeoff in-
volving calibration duration, online selection duration,
system performance, and user comfort. Although all
conditions can provide high-speed and high-performance
BCIs, the performance plateau varies among them. The
total number of commands also plays a significant role
in interpreting these results. In conclusion, performance
levels around 95% accuracy and 80 bpm can be readily
attained with calibration durations ranging of 6–35 s and
online selections of 2–3 s for binary m-sequences. Higher
bases (i.e., p > 2) would lead to increased user comfort,
as suggested by Martínez-Cagigal et al. (2023) [5], albeit
at the cost of longer calibration periods. Concerning spa-
tial frequencies, C016, followed by C008, emerged as the
BB-CB stimuli associated with higher comfort scores [7].
Ultimately, the choice of configuration would depend on
the functional requirements of the BCI system.

CONCLUSION

To our knowledge, this is the first study to examine
the impact of the calibration phase on circular shifting
paradigms for c-VEP-based BCIs. Regardless of the p
base of the code or the spatial frequency of the BB-CB
stimuli, all conditions can achieve high-speed and high-
performance BCIs with sufficient calibration. We iden-
tified a tradeoff between calibration duration, online se-
lection duration, performance, and user comfort. Perfor-
mance levels nearing 95% accuracy and 80 bpm can be
reached with calibrations lasting 6–70 s. While achiev-
ing over 95% accuracy with approximately 5 s of cali-
bration and a selection duration of 2.62 s is possible with
binary m-sequences, we stress the importance of select-
ing a configuration based on the requirements of the final
BCI system, such as target performance and user comfort.
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