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ABSTRACT: Communication by means of evoked brain 

signals is one of the main applications of brain-computer 

interfaces (BCIs). Commonly, in BCI applications the 

user’s intention is directly fed back and openly 

perceivable. Here we used hyperscanning to investigate 

a communication approach, in which two users can 

covertly communicate by brain signal modulation. To 

achieve this, we artificially generated synchronous and 

asynchronous oscillatory brain activity by presenting a 

choice of two flickering stimuli inducing steady-state 

visual evoked potentials (SSVEPs) and provided 

feedback that indicated the synchronicity of the brain 

signals of participant pairs. We used different approaches 

to determine synchronicity. When we used broadband 

activity, the accuracy varied considerably between 

participant pairs, which could be attributed to individual 

differences in the timing and the amplitudes of SSVEPs. 

However, when we involved features reflecting the 

stimulus frequencies, the predictions were highly 

reliable. Beyond demonstrating the feasibility of our 

approach, our findings have the potential to identify 

challenges in studying social interaction using 

hyperscanning. 

 

INTRODUCTION 

 
Hyperscanning refers to recording brain data from more 

than one person simultaneously. It is increasingly being 

used to investigate neuronal correlations during social 

interaction [1,2] and learning [3]. A common approach in 

hyperscanning is to determine the degree of brain-to-

brain synchrony, i.e., the synchronicity, of two users. 

Portable electroencephalography (EEG) headsets allow 

involvement of multiple individuals in real-world 

environments, e.g., a classroom [4]. Simultaneous EEG 

recordings from multiple users have also been utilized in 

brain-computer interface (BCI) research to incorporate 

collaborative/competitive BCI control in video games [5] 

and to increase the decoding accuracy in single trial 

classification of visual evoked potentials (VEPs) [6]. 

Collaborative BCIs have the potential to increase the 

signal-to-noise ratio by combining activity from multiple 

brains. For communication purposes, collaborative 

control would not have a practical benefit, since users 

would be required to know their mutual intention. In 

contrast, a brain-to-brain communication, in which one 

user sends a message and the other user infers the 

message from comparing BCI-generated feedback and 

their own intention, could enable a covert 

communication only perceivable by the users involved. 

Brain-to-brain interface control using brain stimulation 

techniques applied to the receiver has been demonstrated 

in rats [7] and humans [8,9]. Here we introduce a 

noninvasive approach for implementing indirect brain-

to-brain communication by simultaneously recording 

EEG signals from both the sender and the receiver of a 

communication. The content of the communicated 

message is inferred from feedback indicating the degree 

of brain synchrony. We artificially induce brain 

synchronicity and asynchronicity by presenting flicker 

stimuli. While the approach of decoding the steady-state 

visually evoked potentials (SSVEPs) induced by these 

types of stimuli is a common approach for controlling 

BCIs [10,11], decoding the synchronicity of brain signals 

from two brains induced by flicker stimuli has not yet 

been performed. 

 
MATERIALS AND METHODS 

 
     Subjects and Task: Fourteen participants (mean age 

26.4±4.2 years, 8 male) were recruited to participate in 

the hyperscanning BCI experiment, resulting in seven 

participant pairs, or dyads (6 male/female, 1 male /male).  

They provided informed consent and received 25 € for 

participation. The study was approved by the Ethics 

Committee of the Otto von Guericke University, 

Magdeburg, Germany.  

Two participants were seated next to each other, each in 

front of a custom stimulation device, which consisted of  
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two small light-emitting diode (LED) panels 

(35×35 mm²), 18cm apart. A partition panel on the desk 

prevented the participants from being distracted by the 

stimuli presented to the partner (see Fig. 1 for the 

technical setup). The task of the participants was to 

silently communicate yes/no responses by focusing on 

particular flickering stimuli. One participant was asked 

to send a yes/no response (Sender role) and the other was 

asked to infer the response from the feedback generated 

by the BCI (Receiver role). The roles were changed 

between participants halfway through the experiment. 

The experimenter provided verbal instructions to guide 

the participants throughout the experiment. A trial started 

by verbally cueing the participants to focus on their next 

intended response. Subsequently, the presentation of the 

stimuli started. The left LED panel flickered with a 

frequency of 9.09 Hz (110 ms stimulus onset 

asynchrony) and was associated with the response “yes”. 

The right LED panel flickered with a frequency of 

11.11 Hz (90 ms stimulus onset asynchrony) and was 

associated with the response “no”. We identified these 

flicker frequencies as reliable following pilot testing with 

individual test subjects using 9.09 Hz, 11.11 Hz, 12.5 Hz 

and 15.0 Hz stimuli. 

The occipital brain oscillatory activity of the participant 

classically synchronizes with the flicker frequency of the 

panel on which the participant focuses their gaze, 

forming the basis of a classical SSVEP-based BCI. The 

stimuli for the two participants were synchronized, i.e., 

the LEDs in front of them were on and off at the same 

time. After five seconds, the stimulus stopped and the 

synchronicity feedback was presented by a computer 

voice saying “equal” if the BCI detected synchrony 

between the EEG signals of the participant pair, and 

“different”, if the BCI detected asynchronous EEG 

signals. Afterwards, the Receiver combined their own 

internal response with the synchronicity feedback, 

inferring what the Sender had intended to answer and 

pressed the corresponding button on a keypad. The 

inferred Sender response was presented as inference 

feedback (“yes” or “no”). Finally, the Sender assessed 

whether the inferred response was correct or not by 

pressing the corresponding button on a keypad, yielding 

a third feedback item, which could be “correct” or 

“wrong”. This final feedback provided the Receiver with 

the ground truth. Note that for silent communication 

only, the synchronicity feedback is required but no button 

press. The button presses and the additional feedback 

were only necessary for evaluation purposes. 

A session started with 20 training trials in which all 

combinations of responses were cued an equal number of 

times (yes/yes, no/no, yes/no, no/yes) and no feedback 

was presented. These trials were for initial classifier 

training. Afterwards, the feedback mode started, and the 

experimenter asked subjective questions, e.g. “Do you 

play an instrument?”. After each trial, the participant’s 

intentions were determined from their responses and the 

classifier was retrained. We also performed trials in 

which the participants were asked to communicate one of 

32 items. A table was presented, showing 32 numbers 

and letters, or 32 cards of a card deck. Each item shown 

in the tables was assigned a binary color code, where five 

bits were coded with green and red bars located under 

each item. The participants associated green bits with 

“yes” and red bits with “no”. This approach required five 

trials, with the concomitant five binary decisions, to 

communicate one item. Trials in which participants made 

mistakes according to their own statement (e.g., wrong 

button press) were immediately excluded by the 

experimenter from the further analysis. Therefore, the 

number of questions asked varied, resulting in a total 

number of 118.7±6.5 trials on average, including training 

trials. 

     Recordings: EEG data were recorded with a sampling 

frequency of 512 Hz from ten electrode sites (OI1h, 

OI2h, PO7, O1, Oz, O2, PO8, POO1, POO2, Fz) and 

referenced against the right ear lobe using two g.tec 

gUSBamp devices. Synchronization of EEG recordings 

was achieved by sending a trigger signal simultaneously 

to both amplifiers and correcting for time shifts in the 

received data buffers during online processing. The 5 s 

data segments were notch filtered to remove 50 Hz line 

noise and bandpass filtered between 5 and 30 Hz. Finally, 

we resampled the data to 256 Hz sampling rate to reduce 

computational demands in further processing. 

          Decoding approach: Different decoding 

approaches were applied in the online and offline 

analyses described in this section. All approaches used 

canonical correlation analysis (CCA), a statistical 

method that maximizes correlation between two variable 

sets 𝑋 and 𝑌: 

 (𝑈, 𝑉) = argmax
𝐴,𝐵

corr(𝑋𝐴, 𝑌𝐵) (1) 

where the canonical coefficients in 𝐴 and 𝐵 linearly 

combine 𝑋 and 𝑌, such that the correlation is maximal in 

the first variables of matrices 𝑈 = 𝑋𝐴 and 𝑉 = 𝑌𝐵, and 

decreases with increasing component ranking. The 

approach suggested by Lin et al. [12] has become 

established in BCIs as a reliable way of detecting 

SSVEPs and uses 𝑋 as the time varying brain signals 

(EEG) and 𝑌 as a set of sine and cosine functions with 

frequencies equal to the stimulus frequencies and their 

harmonics. We used this approach to determine classifier 

features, using the two stimulation frequencies, 9.09 and 

11.11 Hz, and their first harmonics, resulting in four 

features per stimulation frequency. We used only the first 

two canonical correlation coefficients per stimulation 

frequency and participant as features, resulting in four 

 

Figure 1: Technical setup for the hyperscanning BCI. 
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features per participant and eight features per dyad. We 

refer to this feature set as 𝑅𝑆𝑆𝑉𝐸𝑃. This feature set 

specifically captures the brain activity associated with the 

flicker stimuli. To investigate whether the brain 

synchronicity, which we artificially induced through the 

stimulus, can also be predicted when we do not include 

information about the stimulus, we calculated another 

feature set by setting 𝑋 as the EEG signal of one 

participant and 𝑌 as the EEG signal of the other 

participant. With this approach, we investigated whether 

we can determine synchronous brain signals from 

broadband (here limited to 5-30 Hz) brain activity. Here 

we used only the first two canonical correlation 

coefficients and refer to this feature space as 𝑅𝐵 and to 

the canonical components as 𝑈𝐵 and 𝑉𝐵, respectively. 

During online decoding, we used the 𝑅𝑆𝑆𝑉𝐸𝑃 feature set 

and trained a k-nearest-neighbor classifier (kNN) using 

trials with equal stimulation frequencies as one class and 

trials with different stimulation frequencies as the other 

class to decode the synchronicity and present feedback 

accordingly. We also predicted the synchronicity directly 

from this feature set in a leave-one-out cross-validation 

(LOOCV) using a nonlinear support vector machine 

(SVM) classifier and radial basis function (RBF) as 

kernel. Finally, the 𝑅𝑆𝑆𝑉𝐸𝑃 feature set was used to classify 

the SSVEP response in single participants as in 

conventional SSVEP-based BCIs, using LOOCV and the 

RBF SVM classifier. To test whether the direct 

classification of synchronicity is advantageous compared 

to classifying the SSVEP of the participants separately 

and subsequently determining the synchronicity 

indirectly by comparing the predictions of both 

participants, we calculated the indirect decoding 

accuracy from the predictions obtained by conventional 

SSVEP decoding.  

In a final approach, we used LOOCV and RBF SVM to 

decode the synchronicity of brain activity based on 

broadband EEG signals, using the 𝑅𝐵 feature set as 

described above. To compensate for potential shifts in 

individual latencies of VEPs, we shifted the signals in 

steps of single sample points against each other before 

applying CCA and compared the maximum accuracy of 

the time-shifted analysis with the accuracy achieved with 

the non-shifted signals. 

We performed permutation testing for all reported 

classification approaches by permuting the labels that 

indicate the focused stimulus frequency and repeating the 

LOOCV 1000 times. This procedure resulted in a 

distribution of chance accuracies from which we 

determined the mean chance level and the 95% 

confidence intervals. 

 

RESULTS 

 

The intention of participants with Sender role was 

correctly determined on the basis of the feedback 

regarding the synchronicity of their brain activity with 

that of the Receiver in µ=93.6% (σ=10.7%) on average 

during the BCI hyperscanning. The LOOCV using the 

same approach (direct classification of synchronicity) 

yielded an average accuracy of µ=94.3% (σ=9.4%), 

which was not statistically significantly different to that 

attained using online decoding. Using the approach of 

indirectly classifying synchronicity resulted in an 

average accuracy of µ=94.7% (σ=9.2%) and was neither 

different from online decoding nor from direct 

classification of synchronicity. Conventional decoding of 

the stimulus frequency from SSVEPs using 𝑅𝑆𝑆𝑉𝐸𝑃 

features resulted in an average decoding accuracy of 

µ=97.4% (σ=6.8%) across all 14 participants. These 

decoding accuracies are shown in Fig. 2 for each 

participant pairs. It can be seen that the classification of 

synchronicity is bounded by the accuracy in detection of 

the focused stimulus frequency of the less well-

performing participant. 

 

 

Figure 2: Decoding accuracies achieved with different 

decoding approaches using the 𝑅𝑆𝑆𝑉𝐸𝑃 feature space. All bars 

show accuracies obtained with LOOCV except the blue bar, 

which shows online accuracy. Solid and dashed black lines 

indicate the mean and upper 95% confidence interval of the 

chance level obtained by permutation testing. 

 

In a next step, we did not include information about the 

stimulus frequencies but rather calculated canonical 

correlation coefficients using the broadband signals from 

all channels of both participants as variable sets to use 

them as features for classification of the brains’ 

synchronicity. This analysis showed strong variability 

between dyads, ranging from 50.5% to 97.2% decoding 

accuracy (µ=72.5% σ=18.1%). The decoding accuracy 

could be improved by shifting the time series of either 

participant to compensate for potential individual 

differences in visual processing latencies. Selecting the 

maximum accuracy from the latency shifts, decoding 

accuracy ranged from 62.2% to 97.2% (µ=78.2% 

σ=14.5%). Latency shifts resulting in these improved 

accuracies ranged from 0ms to 23.4 ms (µ=10.0 ms, 

σ=9.0 ms). 

To investigate the reason for the large inter-dyad 

differences when using the 𝑅𝐵 features, we calculated the 

spectra of the first component in 𝑈𝐵, obtained by CCA, 

of each trial and participant and averaged across trials 

where the visual stimuli were identical in both 

participants. For each stimulus frequency and their first 

harmonics, we calculated the Pearson correlation 

coefficient ρ between amplitudes (obtained by the spectra 

of the first component in 𝑈𝐵) and decoding accuracies 
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(achieved with the broadband synchronicity 

classification approach) across dyads (see Fig. 3). We 

found a significant correlation (p<0.05) for frequencies 

9.09 Hz (ρ=0.93), 11.11 Hz (ρ=0.86) and 18.18 Hz 

(ρ=0.73) but not for 22.22 Hz (σ=0.34). Therefore, the 

accuracy of broadband synchronicity classification is 

influenced by the magnitude of SSVEP amplitudes.  
 

 

 

Figure 3: Decoding accuracies of broadband synchronicity 

classification according to signal amplitudes at different 

stimulus frequencies and their 1st harmonics. Regression lines 

visualize the correlation, asterisks indicate significant 

correlation (p<0.05). Upward and downward triangles indicate 

first and second participant of a dyad. Solid and dashed black 

lines indicate mean and upper 95% confidence interval of the 

chance level obtained by permutation testing. 

 

 

DISCUSSION 

 

The study demonstrates that covert communication can 

be performed using a noninvasive hyperscanning BCI. 

We induced synchrony of brain signals by presenting 

synchronous and asynchronous visual stimuli and used 

the degree of synchrony as a feedback signal. Brain-to-

brain synchrony was decoded with an accuracy close to 

100% in five dyads. This was only constrained by the 

lowest single subject SSVEP detection accuracy within a 

dyad in two instances using features that incorporate 

prior knowledge about the flicker frequency of the 

stimuli. Although direct classification could potentially 

exploit multivariate relationships between individual 

𝑅𝑆𝑆𝑉𝐸𝑃 features, decoding accuracy was not significantly 

different from the indirect approach that compared 

independently predicted SSVEPs of each participant. 

Thus, both approaches are well suited to implementing 

the proposed BCI for covert communication. 

A secondary aim of the study was to investigate the 

feasibility of classifying brain-to-brain synchrony in 

general, without taking knowledge about stimulus 

frequencies into account. When we used broadband 

activity to calculate CCA features, decoding accuracy 

strongly depended on the SSVEP amplitudes, i.e., on 

how much the stimulus was reflected in the brain signals. 

Two of the dyads were highly reliably decoded (>90%), 

two were moderately reliably decoded (>80%) and three 

achieved accuracies slightly above chance level 

(>61.5%).  

Flicker frequencies in the alpha band have been shown to 

have an impact on attentional processing, which is 

presumed to result from interactions between the flicker 

rhythm and the endogenous alpha rhythm [13]. Note that 

although the stimulus frequencies we used both lie within 

the alpha band, common CCA-based decoding resulted 

in high accuracy. The interaction between flicker stimuli 

and the endogenous alpha rhythm is, however, highly 

variable, with dependency on the individual alpha 

frequency and also the particular source of the 

endogenous alpha rhythm [14]. Future work should 

include exploration of potential relationships between 

synchronicity decoding accuracies and both individual 

alpha activity and flicker frequencies within and outside 

the alpha band. 

Our approach provides an alternative strategy for 

hyperscanning experiments, given the general discussion 

on interpretability of coherence measures applied for 

investigating social interaction with this technique 

[15,16]. Mainly, however, our findings uncover 

important challenges in hyperscanning, namely that 

individual differences in EEG signals can lead to quite 

different degrees of brain-to-brain synchrony detection. 

This variability is illustrated by our findings when we 

classified synchronicity using 𝑅𝑆𝑆𝑉𝐸𝑃  and 𝑅𝐵 features. 

The SSVEP amplitude was sufficiently high to enable 

decoding of the focused frequency at close to 100% in 12 

of 14 subjects, and the synchrony decoding based on 

these features was related to these accuracies. However, 

the SSVEPs were not sufficiently represented in the 

EEGs of some dyads to enable comparably reliable 

synchrony decoding from broadband activity. 

Furthermore, latency shifts of evoked potentials might be 

a limiting factor for determining brain-to-brain 

synchrony, as not only suggested by our analyses but also 

known from the literature. 

In future work, features based on coherence and 

information theory could be investigated for suitability of 

synchronicity detection for comparison with our 

broadband CCA approach. A limitation of our approach 

to performing covert communication is that it can only be 

performed in binary mode, by inferring binary responses 

from feedback indicating the degree of synchrony. 

However, using color-coded items, the participants also 

could communicate letters in five steps of binary 

decisions and thus, the proposed BCI could potentially be 

used to communicate whole sentences. Another 

limitation is that SSVEPs depend on eye movements, and 

only sensory processing is decoded rather than higher 

cognitive functions. However, gaze-independent 

paradigms communicating binary decisions using 

attention processes exist [17], which would be suitable 

for decoding brain-to-brain synchrony as well, and might 

be the next step towards a gaze-independent, covert 

communication BCI. 
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CONCLUSION 

 

SSVEPs can be used to stimulate brain-to-brain 

synchrony, which was decoded with high accuracy using 

stimulus-based features and enabled dyads of 

participants to reliably communicate binary messages, 

not perceivable by external observers. Synchrony 

features obtained from broadband signals reflected the 

synchronous stimulating signals, resulting in reliable 

decoding only in some dyads. These findings may have 

implications for other neuroscientific hyperscanning 

studies investigating social interaction. 
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