
RESTING-STATE BRAIN CRITICALITY AND PERFORMANCE WITH 

P300-BASED BCIS 
 

T. Settgast1, A. Kübler1 

 

1 Institute of Psychology, Section Intervention Psychology, Julius-Maximilians-Universität 

Würzburg 

E-mail: tomko.settgast@uni-wuerzburg.de 
 

 

ABSTRACT: Here we present correlations between 

criticality-related measures calculated from resting-state 

electroencephalography (EEG) recordings and 

subsequent performance with a visual P300-based brain-

computer interface (BCI) in healthy participants. Results 

suggest a positive relationship between resting-state 

brain criticality and subsequent BCI performance using 

P300-based BCIs. 

 

INTRODUCTION 

 

The P300-based brain-computer interface (BCI) speller 

is the most widely used BCI application, and P300-based 

BCIs are generally described as being convenient, 

reliable, and easy to use [1] – see also a direct comparison 

between sensorimotor rhythm-based and event-related 

potential (ERP)-based BCI applications such as the 

P300-based BCI speller in Kübler et al. [2]. However, 

attempts to predict the future performance of a P300-

based BCI based on neural brain activity have been rare1. 

Halder et al. [3] and Won et al. [1] showed that in healthy 

participants2, elicited ERPs in a preceding oddball or 

rapid serial visual presentation (RSVP) task were related 

to subsequent performance with a P300-based BCI. In the 

Won et al. [1] sample, the P300 amplitude elicited during 

the RSVP was positively correlated with subsequent 

P300 speller performance. The sample of Halder et al. [3] 

showed that the amplitude of the N2 ERP elicited in the 

preceding oddball paradigm was related to subsequent 

performance with a visual P300-based BCI. The latter 

result was subsequently replicated in patients with 

amyotrophic lateral sclerosis (ALS) [6]. Nonetheless, 

these attempts were based on task-related activity and 

would not allow for performance prediction based on 

spontaneous brain activity. To establish relationships 

between spontaneous brain activity and performance 

 
1 We have limited our review here to neurophysiological 

predictors of P300-based BCI performance because of 

our interest in the relationship between spontaneous brain 

activity and BCI performance. Research on the influence 

of psychological factors, e.g., Kleih et al. [4], is not 

included. 
2 We specifically focus on healthy participants here 

because many studies investigating the predictability of 

upcoming performance for the use of a P300-based BCI 

have examined patients with amyotrophic lateral 

with a P300-based BCI that may be useful for predicting 

performance in the future, it seems fruitful to investigate 

correlations between performance with P300-based BCIs 

and preceding resting-state electroencephalography 

(EEG) recordings. 

While attempts have been made to detect relationships 

between resting-state brain activity and the subsequent 

performance achieved with motor imagery BCIs [8, 9, 

10, 11], to our knowledge there is only one available 

study that has attempted to predict BCI performance for 

the use of a P300-based BCI from resting-state brain 

activity in healthy participants. Shin et al. [12] found a 

negative correlation between delta-frequency band 

power in the resting-state EEG and the subsequently 

achieved performance with a P300-based BCI. They also 

reported negative correlations between delta- and alpha-

frequency band connectivity at rest and subsequent BCI 

performance, and a positive correlation between gamma-

frequency band connectivity at rest and subsequent BCI 

performance. Recently, we also investigated the 

relationship between resting-state brain activity and the 

subsequently achieved performance with a P300-based 

BCI [13]. Aiming to establish a relationship between BCI 

performance and the level of consciousness, we 

examined the correlations between two theoretically 

supported measures of consciousness, i.e., the power-law 

exponent (PLE) and the Lempel-Ziv complexity (LZC), 

at rest and the subsequently achieved performance with a 

P300-based BCI. We showed strong and significant 

correlations between both PLE and LZC at rest and the 

performance of a locked-in ALS-patient during the 

subsequent use of a tactile P300-based BCI. 

The PLE3 provides information about the non-periodic, 

arrhythmic, and scale-free activity of the brain [14, 15, 

16] by means of the 1/f aperiodic scaling [17], i.e. the 

slope of the EEG power spectrum, also called spectral 

sclerosis (ALS) (e.g., [5, 6]). However, we have recently 

suggested that the brain activity of ALS-patients shows 

alterations in brain criticality, making the relationship 

between their spontaneous brain activity and the use of a 

P300-based BCI a special case [7]. 
3 We will use PLE as a catch-all abbreviation throughout 

this paper, although the cited literature may have referred 

to this phenomenon as 1/f, aperiodic, or scale-free 

activity, 1/f slope, 1/f or aperiodic scaling, spectral slope, 

or power-law distribution. 
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slope [18, 19]. This means that with increasing power in 

lower frequencies and decreasing power in higher 

frequencies, the slope of the power spectrum becomes 

steeper and the PLE value increases. Conversely, with 

decreasing power in lower frequencies and increasing 

power in higher frequencies, the slope becomes flatter 

and the PLE decreases. The LZC applied to neural brain 

activity provides information about the complexity of a 

neural signal according to its compressibility [20]. The 

more easily the brain activity can be compressed, the less 

complex the corresponding brain activity is. This 

complexity has been interpreted as reflecting the amount 

of information content in conscious experience [21], 

most clearly formulated in the Entropic Brain Hypothesis 

[22]. The PLE plays a prominent role in the Temporo-

Spatial Theory of Consciousness, where it shows how 

neural activity of different temporal and spatial scales are 

nested within a single conscious experience [23]. Both 

PLE and LZC have recently received empirical support 

for their ability to discriminate between different states 

of consciousness [14, 18, 24] or brain states [25, 19]. In 

addition, recent results have provided evidence for their 

reactivity to sensory processing [24, 26] as a function of 

the participants’ states of consciousness [24] and the 

ongoing task demands [26]. Finally, both PLE and LZC 

are considered to be closely related to the so-called brain 

criticality, making them criticality-related measures that 

indicate increasing brain criticality with increasing LZC 

and decreasing PLE, and decreasing brain criticality with 

decreasing LZC and increasing PLE [18].4 

Since brain activity at the point of criticality is considered 

to express remarkable information processing 

capabilities, with maximal sensitivity to perturbations, an 

enriched repertoire of system states, and a high capacity 

to store and transfer information [17], brain criticality 

may be an interesting concept to be explored in the 

context of BCI use. Therefore, we have recently 

discussed the relevance of brain criticality for the use of 

P300-based BCIs [7]. Based on the available literature, 

we have argued that an increase in resting-state brain 

criticality appears to be beneficial for reorganizing brain 

activity to meet upcoming task demands, such as the use 

of a P300-based BCI. Central to our argument, Irrmischer 

et al. [27] showed that while a measure of brain criticality 

during a sustained attention task was negatively related 

to the performance in that task, the same measure showed 

a positive relationship with task performance when 

derived from the preceding resting-state EEG recording. 

Thus, Irrmischer et al. [27] hypothesized that two distinct 

 
4 Note that the spectral slope, as calculated by Maschke 

et al. [18], is positively correlated with brain criticality. 

However, in contrast to our calculation (see Materials & 

Methods), they do not use the absolute value of the 

spectral slope. Accordingly, the PLE, as calculated here, 

can be expected to be negatively correlated with brain 

criticality. This difference in calculation also explains the 

observed strong correlation between the spectral slope 

and LZC in Maschke et al. [18], which contrasts with our 

observed anticorrelation between PLE and LZC (see 

processes are at work when it comes to criticality and task 

performance in attention-demanding tasks. While 

increased brain criticality at rest is indicative of the 

brain’s ability to adapt to upcoming task demands, the 

execution of an attention-demanding task appears to 

favor less critical brain activity. This favorable reduction 

in brain criticality was also demonstrated by the only 

study, other than our own [17], that examined a 

relationship between brain criticality and the use of a 

P300-based BCI [28]. The authors showed that when 

using a P300-based BCI, decreasing brain criticality5 was 

associated with increased P300 amplitudes. In contrast, 

Herzog et al. [30] showed that, consistent with Irrmischer 

et al. [27], resting-state brain criticality was positively 

associated with the P300 amplitude in a subsequent 

Go/Nogo task. Investigations of the relationship between 

functional connectivity and the P300 further support the 

proposed relationship between resting-state brain 

criticality and performance on an attentionally 

demanding task. Functional connectivity and brain 

criticality have been shown to be positively related (see, 

e.g., [31,32]). Given this, Li et al.’s [33] finding of a 

positive relationship between increased functional 

connectivity at rest and the P300 amplitude in a 

subsequent task, as well as Li et al.’s [34] finding of a 

positive relationship between decreased functional 

connectivity during the task and the P300 amplitude, 

suggest that while the P300 amplitude appears to be 

positively related with resting-state brain criticality, it 

appears to be negatively associated with on-task brain 

criticality. 

These results suggest that resting-state brain criticality is 

likely to be related to subsequent performance with a 

P300-based BCI, and that increased criticality at rest is 

related to better performance during the subsequent use 

of a P300-based BCI. The latter hypothesis was tested in 

this paper using two selected criticality-related measures, 

LZC and PLE, and the open-access dataset of Won et al. 

[35]. In our first study [13], in which we looked for 

correlations between these variables and BCI 

performance in a locked-in ALS-patient, we already tried 

to find similar correlations for healthy participants from 

the Won et al. [35] dataset. Problematically, the online 

BCI performance of the participants in this dataset 

showed a pronounced ceiling effect, which prevented 

meaningful correlation analyses. To circumvent this 

ceiling effect in this re-analysis of these data, we here use 

BCI offline performance as a measure of BCI 

performance, calculated on the basis of the letter 

Results).  
5 Bojorges-Valdez and Yanez-Suarez [28] did not use the 

word criticality, only a measure of brain criticality. This 

is a more common phenomenon. A recent review 

highlighted the inconsistent use of criticality in the brain 

criticality literature [29]. Although authors may use 

concepts or measures that are part of the brain criticality 

concept, they do not necessarily refer to the concept or 

use the word. 
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detection accuracy after only two repetitions of the 

stimulus sequence (see Materials and Methods for 

details). We show correlations between our criticality-

related measures calculated from resting-state EEG and 

the subsequent BCI offline performance using a visual 

P300-based BCI. The positive correlation between LZC 

at rest and subsequent BCI offline performance, and the 

negative correlation between PLE at rest and subsequent 

BCI offline performance, suggest that increased resting-

state brain criticality is associated with better subsequent 

BCI performance when using a P300-based BCI. 

 

MATERIALS AND METHODS 

 

     Dataset: The dataset we used is part of the publicly 

available BCI dataset by Won et al. [35]. The data 

analyzed here include the BCI performance of 55 

participants using a visual P300-based BCI speller, as 

well as their open-eyes resting-state EEG recordings that 

were taken prior to the BCI use and that were the closest 

to the BCI use (see Procedure). 

     Participants: 55 participants took part in the study of 

Won et al. [35]. 14 of the participants were female and 

their mean age was 22.91 years (± 2.87). None of the 

participants were excluded for this analysis. 

     Procedure: The data analyzed here, i.e., BCI 

performance achieved with a visual P300-based speller 

and a preceding open-eyes resting-state EEG recording, 

were obtained as part of a larger experimental procedure 

consisting of 3 blocks of resting-state EEG recordings, 

each with an open-eyes and closed-eyes condition, a 

RSVP task, and the use of a visual P300-based BCI 

speller (for details, see [35]). The entire experiment was 

presented and recorded using BCI2000 [36]. The EEG 

data was recorded at a sampling rate of 512 Hz using a 

Biosemi Active Two system with 32 AG/AgCl active 

electrodes placed according to the international 10-20 

system (Fp1, AF3, F7, F3, Fc1, Fc5, T7, C3, Cp1, Cp5, 

P7, P3, Pz, Po3, O1, Oz, O2, Po4, P4, P8, Cp6, Cp2, C4, 

T8, Fc6, Fc2, F4, F8,, AF4, Fp2, Fz, Cz). To investigate 

possible correlations between preceding resting-state 

EEG recordings and the performances reached with the 

visual P300-based BCI, which may have predictive 

value, we used the resting-state EEG recording that was 

taken before and closest to the BCI use. The resting-state 

EEG recordings analyzed here were recorded with 

opened eyes. The resting-state EEG was recorded for 

approximately 139 seconds, and the participants were 

instructed to fixate a cross on the screen in front of them, 

to remain relaxed, and to minimize movement. The 

subsequent BCI use consisted of two calibration runs and 

four test runs. In each of the two calibration runs, the 

participants were instructed to copy spell a word without 

visual feedback. In each of the test runs, the participants 

were instructed to copy spell a word with visual 

feedback. The visual P300-based BCI speller was based 

on a 6x6 matrix speller with six columns and six rows 

and included the letters of the alphabet, digits, and a 

space. Each of the 12 stimuli – six columns and six rows 

– of a stimulus sequence was flashed for 125 ms followed 

by a 62.5 ms inter-stimulus interval before the next 

stimulus of the sequence was flashed. For the selection 

of a single letter, the stimulus sequence was presented 15 

times, resulting in a total of 180 stimuli with 30 stimulus 

flashes comprising the target and 150 non-target stimulus 

flashes. 

BCI Offline Performance: BCI offline performance was 

calculated from the letter detection accuracy provided 

with the dataset [35]. Letter detection accuracy was 

calculated as the number of correctly selected letters of 

the word to be copied in a single test run as a function of 

the number of repetitions of the stimulus sequence. 

Provided for each of the 55 participants, consisting of 4 

test runs with one word to be copied per run, and 15 

repetitions of the stimulus sequence per letter selection, 

the letter detection accuracy was provided as a matrix 

with dimensions of 55x4x15. We first calculated a mean 

letter detection accuracy for each participant as the 

average of the letter detection accuracies of the four 

words which had to be copied. As shown in Settgast et al. 

[13], the letter detection accuracies after 15 repetitions of 

the stimulus sequence showed a pronounced ceiling 

effect, with 25 out of 55 participants having reached 100 

percent accuracy and 51 out of 55 participants having 

reached the 70 percent benchmark for successful BCI 

performance [37]. To avoid problems related to this 

ceiling effect, we decided to use the letter detection 

accuracy whose distribution was closely centered around 

50 percent and did not show a violation to normal 

distribution. We tested the normal distribution for each 

of the letter detection accuracies across participants as a 

function of the number of repetitions of the stimulus 

sequence. We chose the letter detection accuracy after 

two repetitions of the stimulus sequence as BCI offline 

performance. This cross-participant letter detection 

accuracy after two stimulus sequences showed a mean of 

0.52 (0.2), showed no significant skewness and kurtosis, 

and showed no violation of normality according to the 

Shapiro-Wilk test. 

     EEG Pre-Processing (Resting-State): Resting-state 

EEG data was pre-processed with EEGLAB [38]. First, 

the data was band-pass filtered from 1-40 Hz. The 1-Hz 

low cutoff was applied according to the 

recommendations of Winkler et al. [39] to ensure good 

results in the later performed independent component 

analysis (ICA). The EEGLAB built-in clean_artifacts 

function was used to remove flatline, highly correlated, 

and noisy channels as well as short time bursts and 

otherwise bad data periods. Deleted channels were then 

spherically interpolated. The EEG data was re-referenced 

to the common average because the used EEG recording 

device does not provide a hardware-based reference [35]. 

An ICA was performed, and artifact components were 

automatically flagged and removed using MARA [40]. 

     Data Analyses: Both PLE and LZC values were 

obtained using custom MATLAB scripts. Each of the 

variables was computed using a sliding-window method 

with 1-second windows and 50% overlap between 

windows (for computation details, see [14]) for each of 

the 32 EEG channels. To account for differences in EEG 
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recording length due to bad data period rejection in the 

previous pre-processing step, we took 130 s of EEG data 

for each participant, starting 5 s after the start of the 

recording, for further analysis. To calculate the PLE, the 

power spectral density (for computation details, see [14]) 

was logarithmically transformed in both frequency and 

power spectrum domain. The slope of the PSD was then 

calculated by linear least squares regression. The PLE 

was then obtained as the absolute value of this slope. For 

further analysis, we took the average of these values 

across channels and time windows for each participant. 

LZC values were computed largely according to the 

algorithm of Zhang and Roy [41], using the median as 

the threshold for binarization due to its robustness to 

outliers [42]. To reflect the number of accruing pattern in 

the sequence, the LZC was normalized [43]. As for the 

PLE, the LZC values were averaged across time windows 

and channels for further analysis. LZC and PLE were 

tested for normality. None of the variables showed 

significant kurtosis, skewness, and/or a violation of 

normality according to the Shapiro-Wilk test. Therefore, 

the following correlation analysis was performed using 

parametric Pearson’s product-moment correlation (two-

tailed). To adjust for multiple comparisons, we report 

Bonferroni-corrected p-values. 

 

RESULTS 

 

The results of the correlation analysis are shown in Tab. 

1. 

 

Table 1: Correlation Matrix 
Variables LZC PLE BCI offline 

performance 

LZC -   
    

PLE -.99** -  
 [-.99, -.98]   

BCI offline 
performance 

.38* -.34* - 

 [.13, .59] [-.55, -.08]  

Table 1: Pearson’s product-moment correlation (two-

tailed) between the selected criticality-related measures, 

PLE and LZC, and BCI offline performance. * indicates 

p<.05, and ** indicates p<.001 after Bonferroni 

correction for multiple comparison. Confidence interval 

for the according correlations provided in square 

brackets. 

 

There was a very high and significant anticorrelation 

between PLE and LZC (r=-.99, p<.001). We also 

observed significant moderate correlations between both 

PLE and LZC and the BCI offline performance (see Fig. 

1). PLE and BCI offline performance showed a negative 

correlation (r=-.34, p<.05), whereas LZC and BCI offline 

performance showed a positive correlation (r=.38, 

p<.05). This supports our hypothesis that brain criticality 

calculated from resting-state brain activity is related to 

the subsequent BCI performance – as indicated by BCI 

offline performance – when using a P300-based BCI.  

 

Figure 1: Correlations between the selected criticality-

related measures, LZC and PLE, and BCI offline 

performance (Pearson’s product-moment correlation 

(two-tailed)).   

 

DISCUSSION 

 

We present here, to our knowledge, the first results 

indicating a relationship between brain criticality 

calculated from a preceding resting-state EEG recording 

and the subsequently achieved performance with a P300-

based BCI in healthy participants. The presented 

correlations between two criticality-related measures, 

PLE and LZC, at rest and subsequent BCI offline 

performance suggest that increased resting-state brain 

criticality appears to be positively related to BCI 

performance when using a P300-based BCI. This finding 

is consistent with our hypothesis based on the proposed 

relationship between resting-state brain criticality and 

BCI performance with P300-based BCI, which we 

recently outlined [7]. Increases in EEG-derived measures 

of brain criticality at rest seem to improve the 

performance during the subsequent use of a P300-based 

BCI. This is sound with the idea that brain activity at the 

point of criticality expresses remarkable information 

processing capacities [17] and, as shown by Herzog et al. 

[30], the resting-state brain criticality may even interact 

with the P300 amplitude itself.  

The only other available study that examined the 

relationship between resting-state brain activity and 

subsequent performance with a P300-based BCI [12] 

may support our findings. Shin et al. [12] showed a 

negative correlation between resting-state delta-

frequency band power and subsequent BCI performance 

with a P300-based BCI. Given that significant increases 

in low-frequency oscillatory activity in the EEG power 

spectrum may reflect, or at least be confounded by, a 

steepened spectral slope [26], i.e., an increased PLE, the 

results of Shin et al. [12] would suggest that BCI 

performance with a P300-based BCI decreases with an 

increasing PLE value, i.e., decreasing criticality. 

Therefore, their result suggests a positive relationship 

between resting-state brain criticality and BCI 

performance with a P300-based BCI, as we have shown 

here. 

The investigation of BCI performance based on brain 

criticality from preceding brain activity has also been 

performed with motor imagery (MI) BCI [44]. Samek 

and colleagues showed that brain criticality during a 

training session with a MI BCI was positively associated 
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with the subsequent performance in the test session. 

Although they did not use resting-state brain activity, this 

finding further suggests the importance of state-

dependent brain criticality for the upcoming task, such as 

BCI use. 

We speculate that one of the classical target groups for 

P300-based BCIs, i.e., complete locked-in (CLIS) ALS-

patients, could benefit from the demonstrated 

relationship between resting-state brain criticality and 

subsequent BCI performance with a P300-based BCI. 

Limiting BCI communication attempts to periods of 

increased brain criticality might eventually improve their 

often inadequate performances with non-invasive BCIs 

(see e.g., Bettencourt et al. [45] for a recent overview). 

This would be a first attempt to detect the so-called 

Windows of Consciousness postulated by Kübler [46]. 

The potential increase in resting-state brain criticality 

may be even more relevant, as CLIS patients appear to 

show a general decrease in brain criticality, as indicated 

by changes in our selected criticality-related measures 

[14]. 

 

CONCLUSION 

 

We present here results indicating a relationship between 

resting-state brain criticality and subsequent performance 

with a visual P300-based BCI. Increasing brain criticality 

in resting-state brain activity, as indicated by criticality-

related measures, appears to be beneficial for the 

subsequent use of a P300-based BCI in healthy 

participants. 
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