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ABSTRACT: Public Motor Control-based brain-
computer interface (BCI) datasets are being used to
develop increasingly good classifiers. However, they
usually follow discrete paradigms where participants
perform Motor Imagery, Attempts or Execution at reg-
ularly timed intervals. It is often unclear what changes
may happen in the EEG patterns when users attempt to
perform a control task with such a BCI. This may lead to
generalisation errors. We demonstrate a new paradigm
containing a standard calibration session and a novel BCI
control session based on EMG. This allows us to observe
similarities in sensorimotor rhythms, and observe the
additional preparation effects introduced by the control
paradigm. In the Movement Related Cortical Potentials
we found large differences between the calibration
and control sessions. We demonstrate a CSP-based
Machine Learning model trained on the calibration
data that can make surprisingly good predictions on the
BCI-controlled driving data.

INTRODUCTION

The public availability of various BCI datasets has al-
lowed for more transparent and more reliable progress in
the development of Machine Learning models for EEG
processing. The most convenient datasets to collect and
make Machine Learning models for assume cue-based
BCIs. These have cleanly separated instances of the vari-
ous classes, which increases consistency and makes for a
clear classification task.
However, such Machine Learning benchmarks often do
not align with the EEG processing that a BCI with high
usability needs. BCI competition IV dataset 1 [1] at-
tempts to address this by aiming for Motor Imagery clas-
sifiers where the cue is not known in the EEG processing.
This dataset has a training section with visual cues for
three Motor Imagery class, and a test session with audi-
tory cues for the same classes and a rest condition. The
candidate models then need to predict for all moments
in the test session which of the four states (including the
rest) the participant is in.
This dataset bridges a gap from the classical trial-based
EEG classification to BCI systems that need to make pre-
dictions without trial information. However, it also has
some limitations that we aim to address with the intro-
duction of a newly collected dataset.

[1] highlights that the participants will have a transient
phase between hearing the auditory cue and performing
the corresponding task. The timing of this is not precisely
known, so the models are not evaluated on these transient
phases. As a result, these models will not be optimised
to detect the onset of a new state. This can be a problem
when BCIs require low latency, which is important for
learning to use a BCI [2].
Like most available paradigms, it also does not give a
good reflection of the mental state of a user using the BCI
to achieve a task. The transition from a BCI model that
works well in a controlled paradigm to using the BCI to
perform a control task introduces many unknowns. The
EEG patterns may change due to planning, eye move-
ments or visual attention and it is generally unclear ex-
actly what does and does not change when shifting from
a calibration paradigm to a control task.

Contributions: To address these issues we demonstrate
a new paradigm with a preliminary data analysis. The
paradigm has a visual cued calibration session similar to
BCI competition IV dataset 1 [1]. However, the testing
session has the participant drive a simulated car. The
steering of the car is done through the detection of the
flexion of the left and right hand based on electromyog-
raphy (EMG) signals. By using the EMG to control the
car we can observe the EEG of a participant as if they
are using a BCI for a control task. The task is then to pre-
dict the motor execution state (as measured by the EMG),
based on the EEG patterns from the motor cortex.
Motor Execution is chosen over Motor Imagery as an
analog for Motor Attempts in paralysed patients because
Motor Imagery results in lower BCI accuracy in stroke
patients compared to Motor Attempt [3]. Motor Execu-
tion might give optimistic results due to affect effects.
The track is designed to have left turns, right turns, and
straight sections that can be used as artificially segmented
trials. The EMG can then be used to determine the motor
execution onset, and allow us to investigate differences
in EEG patterns between the calibration session and the
driving session.
We show a preliminary analysis of a dataset recorded
under this paradigm looking at Sensorimotor Rhythms
(SMR) and Movement Related Cortical Potentials
(MRCP) for calibration and compare these to the artifi-
cially segmented trials during driving. We also demon-
strate classification with multiclass CSP [4] in the cali-
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Figure 1: Design of the data acquisition. First participants do
a calibration session following the Graz-BCI Motor Imagery
paradigm. The EMG for this is used to develop a mock BCI,
which the users then use to control a simulated car. The EMG,
EEG and markers are recorded in both sessions resulting in a
driving dataset and a calibration dataset.

bration session, the driving session, as well as a classifier
trained on the calibration and applied to the driving ses-
sion.
We believe that introducing this paradigm will allow for
experimentation with motor decoding models that are ex-
ceptionally well suited for transferring from the bench-
mark to the user.

METHODS

The implementation of the paradigm focuses on building
a mock BCI that the participants can use to perform a
control task. The goal is to collect all the EEG data as
if the participants are using a BCI, without the risk of
complete loss of control introduced by using a real EEG-
based BCI.
The design for the current study consists first of a cali-
bration session following the Graz-BCI Motor Imagery
paradigm [5]. The EMG from the calibration session is
used to make an EMG-based classifier, which will func-
tion as our mock BCI. The EEG is recorded for offline
analysis. After this, the EMG-based mock BCI is used to
make online predictions during a simulated driving task.
This gives us the EEG patterns of our participants using
the mock BCI, with EMG as the ground truth of their
control intentions.1 The whole setup of the recording is
visualised in Figure 1.
In an offline analysis, we can then look at the EEG during
calibration using the cues as the ground truth and the EEG
during driving using the EMG as the ground truth. Within
the calibration and driving sessions we can look at the
MRCP and SMR, and we can develop classifiers on the
calibration EEG and apply them to make predictions with
the driving EEG.
This study was conducted with 20 healthy participants
aged 19-45 years old (µ = 26,σ2 = 40), although the
data from one participant was removed from the anal-
ysis because a section of the driving was not recorded.
None of the participants had prior BCI experience. The
EMG, EOG and EEG were recorded using the Biosemi

1The driving paradigm is available at https://github.com/
lukeluna/continuous_control, the EMG classifier at https://
github.com/ivopascal/emg_classifier and the analysis code at
https://github.com/ivopascal/continuous_control_bci.

Time (s)
-3 0 1.25 5 6.5-10.5

Figure 2: Timing of the calibration paradigm from OpenVibe.

ActiveTwo. 32 EEG channels were collected following
the 10-20 system. Two monopolar EMG channels were
measured on each forearm to correspond with wrist flex-
ion and wrist extension, resulting in four total EMG chan-
nels. Four EOG channels were measured to capture hori-
zontal and vertical eye movements. All 40 channels were
recorded at 2048Hz. Participants sat in a chair facing a
computer with their arms resting on a desk at a comfort-
able height. A towel was placed under the forearms to
elevate the wrists slightly which allowed for easy wrist
flexion.
Whenever participants needed to perform a "left" com-
mand they flexed their left hand inward. The "right" com-
mand corresponded with flexing the right hand inward.
At the end of each trial or turn they returned their hand to
a forward resting position.

Calibration Paradigm: The Motor Imagery paradigm
from OpenVibe[6] version 3.5.0 was used without any
modification to the timing. This entails a 30 second
preparation time, followed by 2x20 shuffled trials of left
and right hand motor execution. Each trial starts with a
cross displayed for 3 seconds as a preparation cue. Then
an arrow pointing left or right is displayed for 1.25 sec-
onds. When this disappears the participant performs the
movement and keeps the wrist flexed while looking at the
cross. After 3.75 seconds this cross disappears and the
participant moves their hand back to a resting position. A
random rest period of 1.5 to 3.5 seconds separates each
of these trials. The timing of the paradigm is visualised
in Figure 2. We set t = 0s to the moment that the par-
ticipant knows the direction, so the movement onset is at
t = 1.25s
We chose to have the movement performed after the ar-
row disappears, instead of when it appears. This way, the
participant is able to prepare the action belonging to the
visual cue and initiate the movement when the arrow ap-
pears. This should provide a more consistent movement
onset, and allows effects of movement planning and inhi-
bition to be included in the calibration data.
In between the left and right hand trials 40 rest samples
were extracted, from 0.5s after the end of the previous
trial, until 4.5s after. This means it is partly recorded
while the participant is looking at a blank screen, and
partly when the fixation cross of the next trial is shown.
This makes the rest slightly more noisy, but also more
similar to rest periods during the driving session. These
trials will be used for the online EMG classifier, as well
as for the offline analysis of the calibration dataset.
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Figure 3: Participant view during the driving session.

EMG Classifier: We train a subject-specific online
EMG classifier on the EMG collected during the calibra-
tion session. This EMG classifier will be used during the
driving session to control the simulated car.
The EMG is measured with 4 monopolar electrodes to
measure two muscles on each arm. Specifically the flexor
carpi radialis and the extensor carpi radialis longus.
First, the EMG of these 4 channels is re-referenced using
Common Average Reference (CAR) over the EMG chan-
nels. Then the EMG is band-pass filtered between 30-
500Hz and notch filtered at 50Hz using causal 4th order
Butterworth filters. Since the online classification should
have low latency, the trials are cropped to the middle
200ms of each movement from t = 6.125s to t = 6.145s.
We found this to have a minimal impact on classification
performance. The mean power of the four EMG channels
are used as four features for an LDA classifier. Using 10-
fold cross-validation we find that this per-subject EMG
classifier has a mean accuracy of 94% with a standard
deviation of 5%.
The online implementation of the EMG classification
uses Lab Streaming Layer (LSL). LSL allows for real-
time streaming of the EMG recordings from BioSemi to
the EMG classifier (implemented with MNE-Python [7]),
and streaming the classifications to the driving environ-
ment. It also saves the multiple streams and provides pre-
cise alignment of timestamps from the various streams.

Driving Paradigm: As a control task, we chose to
control a simulated car in Unity. At the start the car ac-
celerates until it reaches a predefined constant speed. The
speed is kept consistent during the driving so the partici-
pant needs to initiate and terminate turns at the right time.
We believe this is an important factor in developing a BCI
for control tasks, as early preparation of a movement may
cause patterns in the premotor cortex which may be con-
fused with the actual movement. The ability to distin-
guish between movement preparation and movement ex-
ecution is necessary to be able to have a good estimate of
the movement onset.
The 3D driving environment is shown in Figure 3. The
choice of a 3D design allows for better engagement, but
may also affect the EEG with eye movements, visual
perception effects, or planning effects. This makes the
recorded EEG more ecologically valid for real BCI con-
trol.
Each participant drives around the track for 5 laps. After

these 5 laps, they have a break and start again when they
feel ready. They perform this task 3 times for a total of 15
laps, resulting in an average of 37.5 minutes (±6 minutes)
of driving per participant.
From the driving session, we extract trials of left turns,
right turns, and straight sections by identifying periods of
at least 3.75 seconds where the EMG classifier made the
same prediction. This allows us to investigate the SMR
and MRCP for left and right turns, and gives rest trials
sufficiently similar to the calibration session. Any tri-
als with peak-to-peak differences exceeding 100µV af-
ter epoching are rejected. This resulted in an average of
54±13 left turns, 27±8 right turns and 41±22 straight
sections.

RESULTS

Sensorimotor Rhythms: We look for the Event Re-
lated Desynchronisation (ERD) that is commonly found
in Motor Imagery, Motor Attempts [3] and Motor Exe-
cution [8]. Specifically, we look for contralateral ERD
in the α band around 8− 12Hz, which may start before
movement onset due to movement planning. We may also
find an ERD in the β band around 12.5−30Hz.
We apply CAR followed by a non-causal FIR band-pass
filter in the range [1,35]Hz with a lower transition band-
width of 1Hz, an upper transition bandwidth of 8.75Hz
and a filter length of 3.3s. Then we apply artefact re-
moval with FastICA [9], and take the Surface Laplacian
[10] around channels C3 and C4. This gives us the rel-
evant frequencies around the parts of the motor cortex
responsible for left hand and right hand movement while
minimising artefacts. We take epochs from both calibra-
tion and driving sessions such that the movement starts at
t = 1.25. Relative to the movement onset we look at the
time-frequency effects from t = −3 to t = 5. This gives
us an indication of the activation before movement onset,
and for the remainder of the trial.
We then use DPSS multitapers to determine the time-
frequency response from [5,35]Hz, at increments of 1Hz.
For this analysis, the epochs are temporarily padded with
0.5s of leading and trailing EEG data to avoid edge ef-
fects. Unlike common ERD visualisations we do not sub-
tract the baseline activation. The baseline sections be-
tween calibration and driving are very different, which
would make it difficult to distinguish changes in the base-
line from ERD/ERS effects. Instead, we look at the abso-
lute time-frequency plots.
This pipeline is applied to both left hand and right hand
movements, both during calibration and driving. This
allows us to see the differences that may affect decod-
ing during calibration and driving. Figure 4 shows the
time-frequency response during calibration and driving
for both left and right trials averaged over the partici-
pants.
In both cases, the movement onset is at t = 1.25s. We
see a contralateral decrease in the α band for both cases,
starting slightly before movement onset. In the calibra-
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(b) Right calibration
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(c) Left driving
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Figure 4: SMR during the left and right trials for calibration and
driving. No baseline is used.

tion session, the decrease starts to appear around t = 1s,
roughly 0.25 seconds before movement onset. In the driv-
ing session, the α band decrease starts as early as t = 0s.
Around t = 4s we see a slight rebound in the α band for
calibration. This rebound also appears in the driving ses-
sion starting at t = 3. This early rebound may be because
the hand is in a consistent flexed position, so there is no
more hand movement.
In all figures we see a short dip in the β band in both
channels, aligned with the onset of the movement. The
timing of the dip in the β band may allow it to be used
to determine the onset of the movement, while the con-
tralateral power decrease in the α band may be used to
determine which hand was moved.

Movement Related Cortical Potentials (MRCP): We
investigated MRCPs as they are commonly used to study
motor preparation effects [11]. Since MRCPs are low-
frequency phenomena we apply a causal 8th order butter-
worth band-pass filter in the range [0.1,3.0]Hz. After this
artefacts are removed with FastICA and the trials are then
epoched so that the movement onset is at t = 1.25s.
Figure 5 shows the MRCPs at C3 and C4 for calibration
and driving. During the calibration, we observe a nega-
tive peak slightly before the movement onset at t = 1s,
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Figure 5: Average MRCP across participants during calibration
and driving. The movement starts at t = 1.25, indicated by the
rightmost dashed line. In the calibration plots the dashed line
at t = 0 shows when participants are given the directional cue.
The blue line indicates the average ERP for left trials, the orange
for right trials. The shaded areas indicate the 95% confidence
interval of the mean.

which is the contingent negative variation [12]. This ef-
fect disappears in the driving session. There are clear pat-
terns that distinguish the classes during calibration, but
they do not transfer well to the driving session.

CSP classifier: To demonstrate the ability to classify
individual samples based on SMR patterns we imple-
mented a simple CSP-based classifier.
First, the EEG data is re-referenced with CAR and the
data is filtered with a non-causal FIR band-pass filter in
the range [1,35]Hz with a lower transition bandwidth of
1Hz, an upper transition bandwidth of 8.75Hz and a filter
length of 3.3s. Then, FastICA is used to remove arte-
facts. The ICs were fitted and rejected or kept based on
the calibration data, but used on both the calibration and
the driving data. This makes the process suitable for on-
line implementations. Epochs are taken from movement
onset t = 1.25s to the end of the trial t = 5s. Rest sam-
ples are also used from between the trials in calibration,
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Figure 6: CSP filters for driving and calibration over all partici-
pants. The filters are ordered according to Mutual Information.
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Figure 7: F1 scores of the CSP classifiers in different sessions.
We show trained and tested on calibration, trained and tested on
driving, and lastly, the transfer scenario is trained on calibration
and tested on driving. Each line represents one participant.

or from straight sections in driving.
Six multiclass CSP filters [4] regularised with shrinkage
are used to extract the features. The logarithm of the
band power for each filter is used by a Logistic Regres-
sion classifier to predict the classes. This pipeline is fitted
5 times with 5-fold cross-validation to make the predic-
tions. The model is then trained once more on all the data
to show the CSP filters.
This procedure is applied once to the calibration data, and
once to the driving data. Lastly, we also train the model
on all the calibration data and use it to make predictions
on the driving data. Transferring the model in this way
means it is never trained on EMG data but is still able to
predict the EMG data.
We use the first 10% of driving trials to calibrate a rest
threshold, addressing a shift in class imbalance between
calibration and driving. The transfer performance is then
evaluated on the remaining 90% of driving trials. The
threshold that would need to be used in an online scenario
should be set manually.
Figure 6 shows the learned CSP filters for the calibration
and driving sessions over all participants combined, or-
dered by Mutual Information. In the calibration CSP0
and CSP1 clearly identify the relevant areas of the motor
cortex for left and right hand motor control. CSP3 and
CSP4 show bipolar effects around the motor cortex. The
CSP filters learned on the driving data are not as clean.
However, CSP2 and CSP4 still correspond to the relevant
parts of the motor cortex. There are no discernible effects
in the prefrontal areas, indicating that the learned patterns
are not due to eye movement artefacts.
Figure 7 shows the F1 scores for each participant
in each session. The performance is best in the
calibration session (µ = 0.69,σ2 = 0.011), followed by
the driving session (µ = 0.65,σ2 = 0.013), followed by
the transfer scenario (µ = 0.53,σ2 = 0.025). The partic-
ipants with poor performance on the calibration data are
also more likely to have poor performance in transfer, but
this is not consistent.
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Figure 8: Averaged confusion matrix for model transfer.

Lastly, Figure 8 shows the confusion matrix averaged
over all participants in the transfer scenario. A model
was trained for each participant based on their calibra-
tion data, and then tested on their driving data. The
(mis)classifications were then aggregated into this con-
fusion matrix. There are few cases where a left hand is
mistaken for a right hand, or the other way around, but
many movement samples are still mistaken for rest sam-
ples.

DISCUSSION

The SMR analysis showed that there are patterns to ob-
serve in the calibration phase, that remain mostly con-
sistent when people are using a BCI for a control task.
We notice that there is a longer movement preparation
effect and that the average α power is lower during the
driving task. The dip in the β band corresponds with the
movement onset both in the calibration and in the driving
session, and is minimally affected by preparation effects.
We found that the MRCPs are different between calibra-
tion and driving. ERPs identified in the calibration data
are not identifiable in the driving data. This may be be-
cause the two paradigms are too different, or because the
200ms EMG classification interval gives too imprecise
movement onsets.
From the MRCPs and the SMR we find that a classifier
that needs to be transferable from calibration to driving
is best suited using band power features. The subsequent
CSP-based classifier was able to distinguish between left
and right hand trials surprisingly well, but it had quite a
few false positives for the rest trials. As expected, ac-
curacy becomes worse in driving due to the added stim-
ulation of the environment, and the accuracy becomes
even worse when transferring from calibration to driving.
However, both of these factors have a relatively minor
impact compared to the individual differences between
participants.
The CSP filters showed that the models are picking up
phenomena from the motor cortex, indicating that the pat-
terns are originating from movement (intention) and not
from eye artefacts or visual attention. The fact that the
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ICA was fitted to the calibration, and used in the driving
makes this design suitable for use in an online BCI.

CONCLUSION

The findings from the SMR analysis, MRCP analysis
and the CSP classifier show that an SMR-based classi-
fier trained on calibration and applied for a control task is
feasible. The SMR patterns are largely similar between
the calibration and the driving session, allowing for a sur-
prisingly small decrease in classification accuracy.
However, the current analysis still leaves some hurdles
for the implementation of an online EEG-based BCI to
control the driving task that can be addressed by future
analyses on this dataset.
The primary limitation is that this paper is still mak-
ing classifications and doing analysis on isolated sections
with 3.75s of a consistent movement. To allow continu-
ous control of a BCI we need to have predictions at every
timestamp as proposed by [1]. Solutions proposed to this
continuous decoding as presented in [13] may be a suit-
able direction.
The second limitation is that the classification perfor-
mance of the models that we employed is very low for
some participants. For the participants on which the high-
est performance was achieved an acceptable driving con-
trol would be possible. For the participants with low per-
formance (F1 < 0.6) it is unlikely that the EEG-based
BCI will allow for successful control.
The problem of low-performing participants may be ad-
dressed in future experiments by having participants use
the EMG and EEG for control in a shared-control BCI
[14, 15]. By interleaving EMG predictions with EEG
predictions and providing the participants with feedback
they can improve the separation of their EEG patterns,
without reaching complete loss of control. Such a shared-
control BCI should maximise the amount of EEG-based
predictions to allow for learning, while still maintaining
sufficient control with EMG.
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