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ABSTRACT: Decoding movements from the human
sensorimotor cortex has been of great interest for
brain-computer interfaces (BCIs). To establish the
possibility of increasing the degrees of freedom of a
sensorimotor-driven BCI, we investigated the decod-
ability of 20 hand gestures using 7-Tesla fMRI and
narrowed it down to a set of six best distinguishable
gestures. Six able-bodied volunteers performed ges-
tures from the American Sign Language alphabet and
single-digit movements. Results indicated significant
classification accuracies across all 20 gestures (mean =
46%, range = 39.5% − 51.5%, chancelevel = 5%),
with some differences in decodability across gestures.
Subsequently, optimal sets of six gestures were identified
by establishing classification performance for all possible
permutations, and applying the identified set in a leave-
one-subject-out cross-validation scheme. The results
showed a near-optimal classification in five out of six
subjects. Our findings contribute to the understanding
of the generalizability of gesture decoding performance
and offer insights for refining BCI control strategies
to enhance communication for individuals with motor
impairments.

INTRODUCTION

Fully implantable brain-computer interfaces (BCIs)
intend to establish a communication pathway between
signals directly measured from the surface of the brain
and a computer [1]. This can be of great use
for individuals with locked-in syndrome, a condition
that can result from Amyotrophic Lateral Sclerosis
(ALS) or brainstem stroke [2]. A common target
for BCI-readout is the sensorimotor cortex due to its
well-established topographic representations and the fact
that it shows activity during attempted movement even
years after paralysis, despite the absence of the actual
movement [3, 4]. For BCI control, different attempted
movements need to be classified and coupled to intended
commands. However, if the cortical activity related
to the selected movements is not distinct enough, the
BCI may misclassify the intended action – resulting in
outcomes that are not desired by the user. Thus, it is
crucial to ensure that the command-coupled movements

are well-decodable and not easily confused by the BCI.
While fully implanted electrocorticography (ECoG)-
BCIs used at home have shown considerable success
[5], their degrees of freedom have been limited so
far (i.e., opening and closing the hand to produce a
‘brain-click’). Expanding the range of BCI control
signals could significantly speed up communication,
thereby improving their usability. A substantial increase
in the degree of control in a home-use ECoG-BCI
could be provided by the ability to decode six different
movements, each corresponding to a specific command
(i.e., “up”, “down”, “left”, “right”, “select”, and
“escape”). These six commands would be produced
through six different attempted movements with the hand.
Particular sets of attempted movements may be more
or less suitable for this purpose based on the similarity
of the elicited cortical activity patterns. To optimize
the performance of such BCI, we require a set of hand
movements that is maximally distinct based on brain
activity patterns in the sensorimotor cortex. As there is
potentially a huge number of possible movements, the
options need to be narrowed down at the outset.
Functional magnetic resonance imaging (fMRI) allows
us to measure the representations of different hand
movements in the sensorimotor cortex non-invasively and
with high spatial resolution. This method provides the
opportunity to explore activity in the sensorimotor cortex
for various movements and across multiple individuals.
Using fMRI, it is feasible to distinguish individual finger
movements [6, 7], but also hand gestures consisting of
the flexion and extension of multiple fingers [8, 9], even
for attempted movements without an actual motor output
[10]. Furthermore, fMRI results can be extrapolated to
an implanted BCI as previous work has shown that fMRI
activity patterns map consistently to the gamma band of
ECoG recordings [11–13], for review, see [14].
Here, we investigate the decodability of 20 unimanual
hand gestures in six healthy individuals, using 7-Tesla
fMRI. From these 20 gestures, we identify the set
of six that results in the most accurate classification.
Furthermore, we explore the consistency of classification
performance across individuals and look at the potential
compromise of choosing hand movements based on
group averages as opposed to individual results. These in-
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sights can serve as a starting point to predict which hand
movements can be well-decoded from the sensorimotor
cortex.

MATERIALS AND METHODS

Participants: Six healthy, able-bodied volunteers
(age: mean = 23 years, SD = 1.8; 4 females;
all right-handed) performed a hand gesture task during
the acquisition of functional scans in a 7-Tesla MRI
scanner. All participants gave written informed consent
to participate, which was approved by the Medical
Research Ethics Committee according to the Declaration
of Helsinki (2013).

Data acquisition: MRI data were recorded using a
Philips Achieva 7-T MRI system with a 32-channel
head coil. Functional data were recorded using an EPI
sequence (TR/TE = 1400/29 ms, FA = 60°, multiband
factor 2, voxel size = 1.5 x 1.5 x 1.5 mm3, in-plane
resolution = 200 x 200 mm2, 40 slices). A high-resolution
anatomical T1-weighted MP2RAGE [15] was acquired
for anatomical reference.

Experimental task: Participants performed a gesture
task with their right hand. The movements were a
sub-selection of 15 gestures from the American Sign
Language alphabet based on ease of execution. In
addition, we included individual flexion of each finger,
resulting in a total of 20 gestures (Fig. 1). Participants
practiced the hand gestures at home during the week prior
to scanning to ensure familiarity with the movements.

Figure 1: The task contained 20 right-hand gestures, including
single-finger flexions (gestures “1”, “4”, “9”, “13”, “18”) and
gestures from the American Sign Language alphabet.

During the scan, the stimuli were projected onto a
screen that was visible to the participants through a

mirror and prism glasses. Each trial consisted of three
different images, illustrating either the preparation phase,
execution phase, or resting phase of the gestures to
be performed (Fig. 2). After the preparation phase
(2 s), the participant was instructed to execute the
presented gesture and hold it for 6 s (execution phase)
before returning the hand to the baseline position (hand
relaxed, fingers slightly bent, palm face up; resting
phase). The resting phase lasted for 8.8 s, to prevent
blood-oxygen-level-dependent (BOLD) responses to bias
the activity estimates of the subsequent trial. The stimuli
were presented in a pseudo-random order.
Each gesture was performed once per run. Participants
completed 10 runs in total, split across two scanning
sessions on separate days (5 runs/session). This yielded
a total of 10 repetitions per gesture for each participant.
MRI-compatible data gloves (5 DT Inc, Irvine, USA)
were worn during the task on both hands to record
kinematic data. The data glove measurements were
visually inspected for correct bending of the fingers and
the absence of additional movements.

Figure 2: Trial schematic. An image of a gesture inside a red
rectangle signaled the onset of a preparation phase, which was
included to minimize error in the execution of the movement.
The change of the rectangle’s color to green indicated to the
participant to make the displayed gesture and hold it for the
duration that the gesture was presented. After returning the
hand position to baseline, there was an 8.8 s pause until the
onset of the next stimulus.

Data preprocessing: Functional scans from the
Gesture Task were preprocessed using SPM12
(http://www.fil.ion.ucl.ac.uk/spm/) and custom
MATLAB (https://www.mathworks.com) scripts.
Scans from both sessions were aligned with each other
and coregistered with the T1-weighted image. A General
Linear Model was created including factors for each
gesture. T-maps were computed for each gesture type
while using a leave-one-run-out procedure, resulting in a
total of 200 t-maps (20 gestures x 10 run-combinations).

Region of Interest: The left precentral and postcentral
gyrus were defined as regions of interest through
the Freesurfer surface reconstruction pipeline
(https://surfer.nmr.mgh.harvard.edu), based on the
Desikan-Killiany atlas.

Gesture classification: To assess the discriminability
of hand gestures in the contralateral sensorimotor cortex,
we used a support vector machine (SVM). The 500 voxels
with the highest absolute t-values across gestures were
selected as features. The BOLD signal in these voxels
was detrended and transformed into z-scores for each run
separately. For each trial, the peak signal in the 5th,
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6th, and 7th volume after trial onset was extracted, which
corresponds to the amplitude of the peak of the BOLD
signal.
The SVM was run with a linear kernel and constraint
parameter C = 1. A leave-one-run-out cross-validation
scheme was used, meaning that with each iteration,
one run was left out for training the model, and the
left-out run was subsequently used to test the model.
For each training/test set, the classification accuracy
was calculated as the proportion of correctly classified
gestures. These classification scores were then averaged
across iterations, resulting in a single classification score
per participant.
Classification performance was further evaluated using
confusion matrices, which contain the details on correct
and incorrect classifications. Confusion matrices were
computed per subject and subsequently averaged (Fig. 3).

Choosing an optimal set of six gestures: For
maximizing the performance of a BCI, we aim to select
the six best distinguishable gestures and estimate if the
performance of this set is generalizable across subjects.
For this, we created SVMs for all possible combinations
of a set of six out of the 20 gestures (in total 38760).
This resulted in 38760 classification accuracies for each
participant, containing the classification accuracy per
possible gesture set. The optimal sets were selected
based on the mean accuracy across participants. These
sets were then evaluated using a leave-one-subject-out
cross-validation, by testing their performance relative to
that of all other combinations.

RESULTS

Classification performance of 20 gestures: The
classification accuracy for all gestures across all
participants (mean = 46%; range = 39.5% − 51.5%)
was significantly above the 5% chance level
(t(5) = 19.8, p < 0.001) (Fig. 3). Visual inspection
of the confusion matrix revealed that the decoder often
confused gesture “18” with “15” (mean = 31.7%), and
gesture “9” with “2” (mean = 28.3%).

Gesture set selection: With the aim of finding the set
of six gestures that are maximally decodable, we ran the
SVM for each of the possible 38760 combinations of six
out of 20 gestures. The gesture sets with the, on average,
highest classification performance are shown in Fig. 4, in
addition to the set with the highest mean ranking.
Next, to estimate the extent to which group-mean
performances of optimal gesture sets are generalizable
to different participants, we chose a gesture set based
on a group-average result (leave-one-subject-out cross-
validation) and checked the performance of this set in
an individual. A summary of the results can be seen
in Tab. 1. The difference in classification accuracy
between the chosen gesture set and the set with maximum
classification in the left-out subject ranged from 8.33%
to 20.00%. The percentile scores of the chosen set in the
distribution of all sets ranged between 95.01% to 98.86%

Figure 3: Average group classification in % for all 20
gestures (chancelevel = 5%). The numbers inside the squares
correspond to the accuracy values assigned to the classified
gesture (for values > 5%).

Highest Classification Accuracy (N=6)

Highest Mean Ranking (N=6)

Figure 4: The overall best decodable set of six gestures,
based on average classification accuracy (top row; mean =
87.22%, SD = 4.91%) and on average ranking scores (bottom
row; mean = 76.38%, SD = 6.94%) of all participants
(chance level = 16.67%).

for five subjects, one subject’s (sub006) percentile score
was 82.15% (Fig. 5). Some gestures were consistently
present in the best-performing sets from the group
average, with gesture "7", "16", and "20" being selected
100% of the time (Tab. 2). The highest performing
subject-specific gesture sets were more varied, however,
gesture "7" and "16" were still present in 66.67% of the
sets (the highest observed percentage for subject-specific
sets), and "20" in 50% of the cases. Gestures "10",
"11", and "15" were never present among the highest
performing gestures.

DISCUSSION

In this study, we examined which sets of gestures
are consistently well-decodable across individuals with
7-Tesla fMRI. For this, we first demonstrated the
classification performance of 20 gestures and then
created subsets of six gestures with the highest classi-
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Table 1: Results for leave-one-subject-out gesture set selection. From left to right: Accuracy of the best-performing gesture set for
five subjects ("GS Acc. leave-one-out"); accuracy of the selected gesture set for the left-out subject ("GS Acc. sub"); highest accuracy
of subject’s best-performing gesture set ("Max Acc. sub"); the difference between selected gesture set and subject’s best-performing
gesture set ("Diff"); subject’s average classification performance of all possible gesture sets ("Overall Mean sub").

GS Acc.
leave-one-out (n=5) GS Acc. sub Max Acc. sub Diff ( Max Acc.

sub – GS Acc. sub) Overall Mean sub

sub001 86.67% 88.33% 100.00% 11.67% 76.40%
sub002 86.67% 88.33% 98.33% 10.00% 76.13%
sub003 88.33% 81.67% 90.00% 8.33% 68.37%
sub004 86.67% 88.33% 96.67% 8.33% 73.08%
sub005 87.67% 85.00% 96.67% 11.67% 68.68%
sub006 89.00% 71.67% 91.67% 20.00% 63.35%

Table 2: Comparison of the selected gestures based on group average performance (left column) and the best-performing gestures based
on the left-out subject’s classification accuracy (right column).

Highest gesture set leave-one-out (n=5) Highest gesture set sub

sub001

sub002

sub003

sub004

sub005

sub006

fication performance across participants. Our findings
demonstrate the feasibility of decoding a large set
of gestures across able-bodied individuals. Twenty
gestures could be decoded from sensorimotor activity
with, on average, 46% accuracy. Furthermore, we
evaluated the generalizability of optimal gesture sets
across individuals. By selecting optimal gesture sets
based on a group average and testing their performance
in individual participants, we demonstrated that those sets
still have a well above-average classification accuracy in
the respective individual compared to those of all other
sets (percentile ranks higher than 95% for five out of
six subjects). This suggests that movements identified
through group-level analysis are likely to generalize
to individuals. One participant showed a relatively
low classification accuracy for the group-selected set
(percentile rank at 82%). However, it was still higher
than the subject’s average classification score across all
possible sets. Furthermore, we noticed that the general

classification performance in this subject was lower than
in the other participants and that some trials contained
ambiguous movements. Further investigation is needed
to assess if the performance improves upon the exclusion
of wrong trials.
Visual inspection of the successful gestures indicated
that distinct digit combinations and wrist movements can
be best distinguished from each other. In contrast to
that, gestures that were especially prone to confusion
were “18” (fingers spread, thumb flexed) with “15”
(fingers together, thumb flexed); and “9” (pinky flexed)
with “2” (pinky and ring finger flexed). Interestingly,
this was not the case for gestures “6” (wrist rotation,
thumb, and other fingers touch) and “7” (wrist rotation,
thumb, and other fingers bend, not touching), which were
consistently among the best decodable gestures with a
low confusion score with each other. This may be due to
the difference in sensory feedback, which can be checked
by decoding from the primary motor and somatosensory
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Figure 5: Distribution of the classification accuracies across
all possible gesture sets of 6 (38760 combinations) for each
participant. The red line (“Mean”) indicates the average
classification accuracy across all possible sets. The blue line
(“Value”) shows the accuracy of the selected gesture set based
on the highest performance in the other five subjects. The
black line (“Max”) shows the highest classification score of the
respective subject.

cortex separately. In general, gestures that have only
subtle movement differences are also more difficult to
discriminate.
Partly, this result might not seem very surprising con-
sidering the topography of the sensorimotor homunculus
containing representations of individual fingers [16, 17].
Thus, a gesture consisting of thumb flexion should
be well distinguishable from a pinky flexion gesture.
However, previous research has also observed that the
activation of complex coordinated finger movements
is not a mere linear combination of the activation of
individual finger movements [18–21]. The exact nature
of movement representation in the sensorimotor cortex
and what makes some movements better decodable than
others is thus still to be fully elucidated.

Limitations: One main limitation of our study is the
small sample size. We assume that the predictions
can be improved with higher sample sizes, making
the compromise between the group and an individual’s
optimal result even lower. Additionally, the limitation

of only ten repetitions per gesture may have led
to sub-optimal accuracy results, thus, increasing the
repetition count could yield higher scores. Furthermore,
at the study’s current state, a direct translation to
ECoG-BCIs is not possible, as our features were selected
from the entire sensorimotor cortex which is not fully
accessible by surface recordings. A more restrictive
feature selection that overlaps with the recording of
an ECoG grid can benefit the translation. We also
acknowledge that the acquired data is from able-bodied
participants who produced overt motor output. Even
though the sensorimotor cortex of paralyzed patients
still shows activity [22], potential BCI users might vary
more widely in how well they can induce similar activity
patterns when attempting certain hand movements. Thus,
current results may not apply to every BCI user.

Future directions: Some gestures showed high
decodability, while others were prone to confusion.
However, the exact neuronal mechanisms underlying
these variations are still unknown. Future work directed
towards understanding which parameters are driving
distinct representations in the sensorimotor cortex would
not only provide valuable information for optimizing
decoding algorithms for BCIs but would also enhance
our basic understanding of the nature of movement
representations in the sensorimotor cortex.

CONCLUSION

In this paper, we investigated the decodability and
consistency of sets of six gestures extracted from 20
different gestures. Our findings show potential gestures
that exhibit robust decodability across individuals. The
consistent variations in classification performance across
gestures indicate substantial underlying similarity in
sensorimotor representation patterns across individuals
that makes some gestures more easily decodable than
others. The findings highlight the potential for improving
BCI control through optimized gesture selection.
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