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ABSTRACT: Electromyography (EMG)–based brain-
computer interface (BCI) systems primarily rely on elec-
trical signals generated by muscle activity instead of
the typically used brain activity measured via electroen-
cephalography (EEG). Such EMG-BCIs are promising
systems that enhance communication and control. This
study introduces a simple EMG-BCI communication sys-
tem developed as a football game for a communication-
impaired participant. The football in the game can be
moved to a left-side or a right-side goal, representing an-
swers to two-state queries, i.e., yes-or-no-questions. By
using restricted game controls, correctly following ver-
bal instructions, and showing movement-related brain ac-
tivity preceding muscle contractions, our participant can
deliberately control the directions of the ball movements
and, thus, successfully use our game for communication.

INTRODUCTION

BCI technology has witnessed significant advancements
by integrating a diversity of neurophysiological signals
besides the traditionally used EEG signals [1, 2]. EMG-
based BCI systems have emerged as a promising ap-
proach among these neurophysiological signals. Making
use of the electrical activity generated by skeleton muscle
contraction, the integration of EMG enhances the scope
and precision of BCI applications, unlocking new pos-
sibilities for communication and control [3, 4]. Initially
used for prosthetic control and rehabilitation, EMG-BCI
systems have expanded their scope to include assistive
technology, gaming, and communication [5, 6]. Zhang et
al. introduced an EMG-based wearable multifunctional
eye-control glass to control home appliances and com-
municate by voluntary blinks [7], Chai et al. and Rashid
et al. combined steady-state visually evoked potentials
(SSVEPs) and EMG to control communication interfaces
[8, 9].
This study introduces an EMG-BCI communication sys-
tem designed as a simple football game developed for
a communication-impaired participant. The idea behind

developing this communication system was twofold: 1.
test whether our participant was intellectually and phys-
ically capable of communicating with others, and 2. if
so, provide a very simple yet engaging game as a com-
munication basis. The following sections introduce our
participant, the game design and controls, the recording
modalities, and the implemented signal processing proce-
dures. Furthermore, we demonstrate with our results that
our participant understood verbal instructions and inten-
tionally controlled arm muscle activity to move the ball
to the left or to the right.

MATERIALS AND METHODS

Participant: The study was designed for one partic-
ipant (seven years old, male) who suffered through an
accident from a severe hypoxic-ischemic encephalopathy
(especially in the basal ganglia), dysphagia, dysarthro-
phonia, and a severe bilateral spastic and dystonic cere-
bral movement disorder. Based on our interactions, we
learned that our participant communicates by looking and
smiling at someone to show joy or contentment or by
looking displeased if otherwise. During the whole study,
our participant’s parents were present, and the comfort
and safety of our participant were our highest priorities.
The study was approved by the University of Vienna’s
ethics committee.

Game design: We designed our communication sys-
tem to resemble a football game since it was one of our
participant’s biggest interests before the accident. With
that, we wanted to ensure that the game was engaging
enough to be played over a longer period of time. The
game was designed in Python1 using the PsychoPy2 li-
brary. Fig. 1 shows the interface of the football game.
The game’s aim is to move the football to the left-side
or the right-side goal and can be played in two modes:
practice or playing. During practice, the distances to the
goals are shortened to learn how the game is controlled

1https://www.python.org/
2https://www.psychopy.org/
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more easily. At the beginning of each round, the ball is
placed at the center of the field.

Figure 1: The interface of the football game.

Game controls: The football’s movement is controlled
by the EMG. To move the ball to the left or the right,
the left-arm or the right-arm muscles must be activated,
causing an increase in the EMG signal amplitude. The
ball can move in single steps or continuously, depending
on the duration of the muscle contraction. Two restric-
tions were introduced to avoid random, unintended move-
ments: a signal threshold window and one-sided contrac-
tion. The signal threshold window ensures a controlled
movement of the ball by only moving the ball if the sig-
nal amplitude is within a lower and an upper limit. Fur-
thermore, the ball only moves if the arm muscles are con-
tracted only on one side and stops if the muscles are con-
tracted at both arms simultaneously. As feedback for the
user, the ball turns red if a restriction is applied, i.e., if the
signal amplitude is above the upper limit of the threshold
window or if both arms are contracted simultaneously.

Recording sessions: Fig. 2 shows the recording setup.
Our participant was sitting in a wheelchair, looking at a
monitor to play the football game. The game was played
over four sessions. The first two sessions were used to
accustom our participant to the game and its controls. In
the beginning, a squeeze bulb was used to move the ball.
After establishing that the principles of the game were
understood, the game controls were switched to the EMG
since it did not require the coordinated muscle activation
necessary to squeeze a bulb and, hence, was easier to use.
The third session was split into practice runs and a play-
ing run. During the playing run, our participant was in-
structed verbally to move the ball to the left or the right
goal. In session four, we recorded both the EMG and
the EEG. The session was divided into a resting-state run
and two playing runs. Playing run one (run P1) was fur-
ther split into six trials, where our participant was asked
again to move the ball to the left or the right goal (three
trials for each side).

Recording modalites: EMG and EEG signals were
recorded with the Bittium NeurOneTM Tesla EEG sys-
tem3, with a sampling frequency of 1 kHz. The EMG was

3https://www.bittium.com/medical/bittium-neurone

Figure 2: Setup for our participant playing the football game.

recorded with bipolar electrode channels at the follow-
ing arm muscles (for each side): flexor digitorum profun-
dus (FDP), extensor digitorum (ED), and abductor polli-
cis longus (APL). For the EEG, passive, gel-based elec-
trodes were used at the following channels: F1, Fz, F2,
FC3, FC4, C3, C1, Cz, C2, C4, CP3, CP4, and Pz. In
addition to the physiological signals, event markers were
recorded to put time stamps on certain events or phases
of the game, e.g., when a new trial started or a goal was
scored.

Online signal processing: To access the recorded sig-
nals in (near-)real-time, the lab streaming layer (LSL)4

and its Python interface pylsl5 were used. With the pylsl
library, the EMG signals could be streamed into the Psy-
choPy game framework for further processing. The EMG
signals were processed in three steps: 1. applying a 4th-
order Butterworth bandpass filter between 20 and 40 Hz,
2. calculating the envelope via Hilbert transform, and 3.
smoothing the signal with a Savitzky-Golay filter [10].
Since our participant suffered from a spastic and dys-
tonic movement disorder, we decided to define a person-
alized EMG signal band. The EMG bandwidth was cho-
sen by maximizing the cross-correlation coefficients be-
tween the squeeze bulb signal and the EMG signals. After
processing the EMG signals and checking the movement
restrictions, the position or color of the ball on the screen
was updated, giving feedback to the user on whether the
movement attempt was successful.

Offline data analysis: The offline data analysis was
also implemented in Python. Similar to the EMG sig-
nal processing, we also personalized the EEG frequency
bands. After inspecting the power spectral density (PSD)
function of the resting-state EEG, the following fre-
quency bands were chosen for further investigation: 5–7
Hz for the mu band and 15–25 Hz for the beta band. The
EMG was again filtered between 20 and 40 Hz. The band
power was calculated for each frequency band (mu, beta,
and EMG) by squaring the amplitude values. All applied
filters were 4th-order Butterworth filters.
Due to our participant’s involuntary repeated head move-
ments during the recording session, the EEG cap was
pressed and shifted against the headrest, which led to a

4https://github.com/sccn/labstreaminglayer
5https://github.com/chkothe/pylsl
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low signal-to-noise ratio (SNR) and gel bridges between
channels. Artifact correction with independent compo-
nent analysis (ICA) proved to be ineffective. However, a
simple bipolar derivation, i.e., subtracting channels from
one another, led to clean EEG signals of a few channel
pairs.
After cleaning the EEG, we investigated the mu and beta
rhythms. First, the cross-correlation functions (CCFs)
of mu and beta band power vs. right-hand and left-hand
EMG were calculated. After inspecting the results, we
decided to continue with the mu band only since the
CCFs of the beta band were inconclusive. Next, the
continuous signals of run P1 were split into left-goal
and right-goal trials for calculating the cross-correlation
functions of mu band power vs. right-hand and left-hand
EMG. A permutation test with cyclical shifts and n =
1000 permutations was applied to generate p-values for
the CCFs, i.e., finding significance in our results. The
p-values were corrected using the false discovery rate
(FDR) correction with the Benjamini-Hochberg proce-
dure [11].

RESULTS

All results in this section were generated from EMG and
EEG signals recorded in session four’s resting-state run
and run P1 since this was the only session with EEG
recordings, and only run P1 included verbal instructions.

Resting-state EEG: The resting-state EEG signals were
used to find personalized frequency bands for our partic-
ipant’s mu and beta rhythms. Fig. 3 shows the power
spectral density (PSD) function of the resting-state EEG
at channel pair Cz-C4. We can clearly see the alpha/mu
peak between 5 and 7 Hz and the beta bump between 15
and 25 Hz. The alpha/mu rhythm is slower than an aver-
age adult’s (8–13 Hz [12]). However, this is not a patho-
logical indicator since the alpha rhythm increases with
age during childhood and adolescence [13].

Figure 3: PSD of resting-state EEG at channel pair Cz-C4.

Run-level analysis: We first looked at run P1 as a
whole. In Fig. 4, we see the power of the right-hand
(blue lines) and left-hand (orange lines) EMG. Individ-
ual EMG channels (FDP, ED, and APL) were averaged
on each side. The left-hand EMG power is much lower
than the right-hand EMG power, possibly due to a Botox
treatment on our participant’s left arm before the record-

ing session.

Figure 4: Right-hand (blue) and left-hand (orange) EMG power
of run P1. Individual EMG channels (FDP, ED, and APL) were
averaged on each side.

Fig. 5 shows the CCFs of EEG mu band power (subfigure
A) and beta band power (subfigure B) at channel pair Cz-
C4 vs. right-hand (blue lines) and left-hand (orange lines)
EMG power. In the mu band, we can observe a nega-
tive correlation between EEG power and both left-hand
and right-hand EMG at time lag = 0. A negative cor-
relation means that the mu rhythms desynchronize (de-
crease in EEG mu power) when the arm muscles are ac-
tivated (increase in EMG power), which displays typical,
non-pathological event-related desynchronization (ERD)
[14]. Also, having mu rhythm ERD on the right hemi-
sphere (Cz-C4) for both left-hand and right-hand EMG
indicates bilateral cortical activation for one-sided move-
ments. Even though bilateral mu rhythm ERD is uncom-
mon, it can occur during one-sided hand movements, es-
pecially in the context of motor planning and execution
[15].

Figure 5: CCFs of EEG mu band power (A) and beta band
power (B) at channel pair Cz-C4 vs. right-hand (blue) and left-
hand (orange) EMG power.

When we look at the time course of the CCFs, how-
ever, we can observe very unusual behavior: For the right
hand, the desynchronization process starts roughly 2.5
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seconds before the muscles are activated, whereas for the
left hand, it starts about five seconds before muscle ac-
tivation. The mu rhythm desynchronization is very slow
compared to healthy people [15]. This means that our
participant can react quickly to instructions, but it takes
very long to activate the motor system to cause a mus-
cle contraction. The initially stated damage in the basal
ganglia could be a possible reason for that. The Botox
treatment on the left arm again may have caused the dif-
ference between right-hand and left-hand ERD time.
The CCFs of EEG beta band power with EMG power
didn’t show any conclusive results, and hence, only the
mu band was used for further investigations.

Trial-level analysis (left-goal/right-goal split): Next,
EMG and EEG signals were split into trials. Our partic-
ipant successfully moved the football to the correct goal
in all six trials of run P1 (three left-goal trials and three
right-goal trials). Therefore, we used the left-goal and
right-goal trials for ball movements to the left and the
right, respectively.
In Fig. 6, we can see the CCFs of EEG mu band power at
channel pair Cz-C4 vs. right-hand (blue lines) and left-
hand (orange lines) EMG power at left-goal trials (sub-
figure A) and right-goal trials (subfigure B). The cross-
correlation coefficients are rather small, but the CCFs
are highly significant (p < 0.05) around time lag = 0, as
shown in Fig. 7 by the corresponding FDR-corrected p-
values.

Figure 6: CCFs of EEG mu power at channel pair Cz-C4 vs.
right-hand (blue) and left-hand (orange) EMG power at left-
goal trials (A) and right-goal trials (B).

Looking at the right-goal trials, we can observe a nega-
tive correlation between EEG mu band power and right-
hand EMG power but no correlation between mu power
and left-hand EMG. These results suggest that there is
only a clear mu rhythm ERD for right arm muscle activ-
ity, meaning only the right hand was intentionally used
for moving the ball to the right goal, which is expected
behavior.

Figure 7: FDR-corrected p-values of CCFs of EEG mu band
power (A) and beta band power (B) at channel pair Cz-C4 vs.
right-hand (blue) and left-hand (orange) EMG power. The p-
values were calculated by a permutation test with a cyclical shift
and n = 1000 permutations, including an FDR correction with
the Benjamini-Hochberg procedure.

For the left-goal trials, however, we see something very
interesting: There is a negative correlation between EEG
mu band power and both left-hand and right-hand EMG.
This indicates clear mu rhythm ERD for left and right
arm muscle activity, meaning both hands were intention-
ally used for moving the ball to the left goal. This could
mean that our participant used the right-hand activity to
trigger a left-hand activity, which we could actually ob-
serve during the recording sessions. A reason for that
could be again the Botox treatment on the left arm, which
is also manifested in the slow and long-lasting (∼ 5 s) mu
rhythm ERD, compared to the faster (∼2.5 s) desynchro-
nization for right-hand muscle activity.

DISCUSSION

In the first two recording sessions, we tested whether our
participant could use the game controls. Both the squeeze
bulb and the EMG were successfully used to move the
ball to the left or right. We decided to continue control-
ling the game with the EMG because it does not require
coordinated muscle activations necessary to squeeze a
bulb and, hence, was easier to use. In the third session,
our participant could follow our verbal instructions to go
to the left or the right goal. In run P1 of the fourth ses-
sion, our participant again successfully followed verbal
instructions, this time split into six trials, with three left-
goal and three right-goal trials in random order.
Overall, we found three indicators that demonstrated that
the ball movements did not occur randomly but were the
results of deliberate control of our participant:
1. Game control restrictions: Every ball movement re-
sulted from precise muscle activity since a lower and an
upper threshold defined an EMG amplitude/power win-
dow. Furthermore, only one-sided EMG activity led to a
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ball movement.
2. Successful task completion: In session four, run P1,
all six trials were completed successfully. That means
our participant could understand the verbal instructions
and generate the appropriate response to suit the game
controls.
3. Mu rhythm ERD preceding muscle contraction: By
simultaneously recording EMG and EEG signals in the
fourth session, we could further demonstrate that the
muscle activity to move the ball did not occur through
random or spastic contractions but followed movement-
related brain activity. Fig. 6 and Fig. 7 show a clear de-
crease in mu band power that precedes muscle contrac-
tion for ball movements on both sides. The slow mu
rhythm desynchronization could be due to the damaged
basal ganglia, which could cause a delay in activating
the motor system. The left arm was also treated with
Botox, which would explain the even slower and long-
lasting left-hand mu rhythm ERD. It is also noteworthy
that our participant developed a strategy to overcome the
increased difficulty of activating the left arm muscles by
involving the right arm, which eventually triggered the
left-hand muscle contraction.

CONCLUSION

This study demonstrated that our participant could delib-
erately control a football game and follow verbal instruc-
tions despite the severe impairments. Furthermore, the
combination of EEG and EMG revealed normal reaction
times to instructions but a slow motor system activation.
This provided important information about our partici-
pant’s mental abilities for the family.
Currently, the game can be used for simple two-state
queries, e.g., answering yes-or-no-questions by moving
the ball to the left or the right. Future game adaptations
could facilitate the controls or increase the number of
goals, i.e., the number of answers to select. Combining
EMG and EEG signal features could further improve our
communication system’s precision and robustness.
Finally, we also want to emphasize that even simple sys-
tems can be very effective. Straightforwardness and con-
venience are key features for people with mobility and/or
communication impairments.
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