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ABSTRACT:
Introduction: Stereoelectroencephalography (sEEG)
is a mesoscale intracranial monitoring method which
records from the brain volumetrically with depth elec-
trodes. Implementation of sEEG in BCI has not been
well-described across a diverse patient cohort.
Methods: Across eighteen subjects, channels with high
frequency broadband (HFB, 65-115Hz) power increases
during hand, tongue, or foot movements during a motor
screening task were provided real-time feedback based on
these HFB power changes to control a cursor on a screen.
Results: Seventeen subjects established successful con-
trol of the overt motor BCI, but only nine were able to
control imagery BCI with ≥ 80% accuracy. In success-
ful imagery BCI, HFB power in the two target condi-
tions separated into distinct subpopulations, which ap-
pear to engage unique subnetworks of the motor cortex
compared to cued movement or imagery alone.
Conclusion: sEEG-based motor BCI utilizing overt
movement and kinesthetic imagery is robust across pa-
tient ages and cortical regions with substantial differences
in learning proficiency between real or imagined move-
ment.

INTRODUCTION

Brain–computer interfacing (BCI) requires a signal that
is strongly correlated to a behavioral state such as
movement or speech. Many types of electrical signals
can be used for real-time BCI, including scalp elec-
troencephalography (EEG)[1], magnetoencephalography
(MEG)[2], electrocorticography (ECoG)[3, 4], and single
neuron recordings[5, 6]. Stereoelectroencephalography
(sEEG) is a mesoscale measurement that records from
the brain volumetrically using depth electrodes[7]. Like
ECoG, it represents an intracranial population measure of
the summation of local field potentials generated from the
n-poles of 100,000s of neurons surrounding the recording
electrode. Compared to ECoG, sEEG is not limited to the
surface of the cortex. Thus, sEEG allows for sampling
from distance cortical and subcortical regions that were
not previously possible with ECoG.
Currently, sEEG is utilized in the treatment of drug-
resistant epilepsy. Once implantated with sEEG depth

electrodes, patients remain in the hospital for characteri-
zation of their seizures. This often takes days to weeks,
allowing patients to participate in experiments including
brain computer interfaces, if they wish to. Historically,
researchers have used spectral changes on the cortical
surface to provide feedback [3, 4], allowing individuals
to control a cursor on a computer screen in a matter of
minutes. Our work describes the extension of this work
to sEEG, including its design, implementation, and feasi-
bility.

MATERIALS AND METHODS

Ethics statement: The study was approved by the In-
stitutional Review Board of the Mayo Clinic (IRB 15-
006530) and conducted according to the guidelines of the
Declaration of Helsinki. Each patient or their parental
guardian provided informed consent as approved by the
IRB.

Subjects: Eighteen patients (8 females, 6-37 years of
age, Table 1) with drug resistant eilepsy participated in
this study, after implantation with 10-17 sEEG electrode
leads. Electrode planning was performed by the clini-
cal epilepsy team using brain imaging, typical semiology,
and scalp EEG. Electrode locations were not modified to
accommodate research; no extra electrodes were added.
All experiments were performed in the epilepsy monitor-
ing unit (EMU) or Pediatric Intensive Care Unit (PICU)
at the Mayo Clinic in Rochester, MN.

Lead Placement, Electrode Localization, Re-
referencing: Platinum depth electrode contacts (DIXI
Medical) were 0.8mm in diameter with 10-18 2mm
length circumferential contacts separated by 1.5mm (Fig
1). Surgical targeting and implantation were performed
in the standard clinical fashion. Anatomic locations
of electrodes were determined using the steps and
tools described previously[8, 9]. All data were bipolar
re-referenced such that channels reflect mixed activity
at two adjacent electrode contact sites (Figs 1-4). These
dipolar channels were plotted using SEEGVIEW, which
slices brain renderings, and projects channels to the
center of the closest slice [9] in order to present analyses
in a more clinically familiar manner.

Motor Screening Task: Our motor task involved 3 sec-
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Figure 1. sEEG recordings during movement - Subject 1. (A) Power spectrum from a SEEG electrode at the sulcal base of primary motor cortex
during hand movement (pink) and rest (black), from the recording site noted in panels B-D. (B) Broadband power (approximated by 65-115Hz band)
increases during movement compared to rest. (C) Sagittal slice showing electrodes within 5mm of this slice allows viewing broadband power increases
on the surface and at depth. (D) As in (C), but for axial slices and electrodes within 2.5mm. Activation maps for movement are shown in the central
colorbar (signed r2, scaled to 1 maximum, with red/blue reflecting power increase/ decrease with movement). Yellow and peach in B-D indicate
the central & sylvian fissures. Note the simultaneous measurement of M1, PMd, PMv, Insula (In), SMA, and S1 (primary sensory), which all show
movement-associated broadband power increases.

onds of 1) opening and closing of the hand, 2) side-to-
side movement of the tongue with mouth closed, and
3) alternating dorsi- and plantar flexion of the foot with
3 second rest periods interleaved as described previously
[8]. The BCI2000 software was used for stimulus presen-
tation and synchronization of (EMG) and sEEG signals
[10].

Offline Signal Processing and Analysis: All analyses
were performed in MATLAB. EMG signal was recorded
in parallel to determine the precise timing of movement
onset and offset in response to a visual cue. Within
each movement trial, averaged power spectral densities
(PSDs) were calculated from 1 to 300 Hz every 1 Hz us-
ing Welch’s averaged periodogram method with 1 second
Hann windows to attenuate edge effects and 0.5 second
overlap[11]. The averaged PSD for each movement or
rest trial was normalized to the global mean across all tri-
als. The PSDs were normalized in this way since brain
signals of this type generally follow a 1/f power law and
shape[12], so that lower frequency features dominate in
the absence of normalization. From each of these nor-
malized single trial PSDs, averaged power in a broadband
high frequency band (65-115 Hz) was calculated for sub-
sequent analysis, as previously described [8]. This band
was chosen as it captures broadband activity above most
oscillations and avoids ambient line noise at 60 Hz and
120 Hz.
For each bipolar re-referenced channel, signed r2 cross-
correlation values (r2) of the mean spectra from 65-115
Hz were calculated for each movement modality. The
r2 value of each channel was determined by comparing
mean power spectra between rest and movement trials

separately. The sign of each r2 indicates whether power
is increasing or decreasing with movement, as illustrated
by red and blue circles, respectively, in each figure.

BCI Task: We implemented our BCI using the
BCI2000[10] software, which applies a spectral estima-

Table 1. Subject Information, DNP = did not participate, "/"
indicates that modalities pushed cursor in opposing directions.
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1 10/F R 198/14/L DNP DNP DNP
2 16/F L 217/14/B T/ RF 100 93
3 17/F R 168/13/R LH 95 97.5
4 18/M L 231/14/R LH 100 89.5
5a 15/F R 159/10/L RH 100 50
5b 15/F R 159/10/L RH/T 95 70.5
6 13/M R 196/13/R H/F 100 73
7a 15/M L 185/12/L RH 100 47.5
7b 15/M L 185/12/L RH 83.5 50
8a 36/F R 199/14/B T/F 100 45
8b 36/F R 199/14/B H/F 96 86
9 8/F R 230/17/B RH 90 DNP
10 19/M R 211/15/B RH 100 100
11 6/M R 193/13/R LH 100 DNP
12 37/M R 237/15/B T 100 45
13 15/M R 215/16/B LH 100 100
14 35/M R 252/15/B RH 100 100
15 17/F R 232/15/B RH 90.5 DNP
16 36/M B 195/15/R LH 100 84
17 12/F R 232/16/B LH 100 66
18 16/M R 254/16/R LH 96 100
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Figure 2. The homunculus in 3 dimensions - Subject 2. SEEG allows us to measure the volumetric structure of the homunculus electrophysiologically,
shown here for the first time. (A&B) Locations of coronal insets in D-F. (C) Reproduction of Penfield’s classic motor homunculus (Wikipedia.org). (D)
Comparison of blocks of foot movement vs rest from an SEEG array, plotting movement associated broadband (65-115Hz) change. (E&F) As in D, for
Hand and Tongue movement. Note that the classic 2-dimensional homunculus extends into the brain depths, reflecting the volumetric nature of motor
representation.

tor to incoming signals using an autoregressive model of
the input, operating like a Fast Fourier Transform with
a limited number of coefficients. A linear classifier was
applied to the feature space of 70-110 Hz power in the
channel(s) chosen for BCI to differentiate between move-
ment (or imagined movement) and rest periods allowing
for cursor control. During the initial experimental run,
BCI2000 adapted this classifier based on the mean and
variance of a data buffer (previous 30 sec of incoming
data). The threshold was then set to the mean of the data
buffer, and the velocity is set to the inverse square root
of the variance of the data buffer. These parameters were
then fixed for the remainder of the experiment to allow
for online learning by each subject.
In overt BCI, patients controlled the cursor by moving
in order to modulate cortical activity in the pre-selected
channels, and in imagery BCI, the cursor was controlled
using kinesthetic imagery alone (confirmed by EMG.
Both overt and imagery BCIs in this study provided feed-
back to channels that demonstrated the highest soma-
totopic tuning based on r2 values [8] during the motor
screening task (Fig. 2).

Prior to BCI, subjects were instructed to associate a tar-
get (up vs. down, left vs. right) on the screen with
rest or movement (e.g. hand open/close). The target ap-
peared at the top or bottom of the screen 1.5 seconds sec
prior to a red cursor, at which point subjects proceeded to

move/imagine moving or remained still once the cursor
appeared (Fig. 3). Subjects were allowed 5 seconds to
move the cursor to the target. If the trial was not com-
pleted (the cursor hits neither the target nor the opposite
edge of the screen), this trial was not considered in the
accuracy calculation and a new trial began. Each run was
2 min and allowed subjects to complete as many trials
as possible. The first run was for calibration such that
the computer could adapt to the power changes in the
control channel(s) as subjects alternated between move-
ments/imagined movements or rest.

RESULTS

Movement: After participating in our motor screening
task, changes in the power spectral density (PSD) within
each sEEG channel were compared between movement
and rest periods, and as in previous studies [3, 4, 8].
Movement resulted in suppression of oscillatory activity
and an increase in high frequency broadband power (Fig.
1). As broadband power is correlated to local neuronal
activity, it served to localize functional representation of
movement across the sEEG montage (Fig 1). Germane to
our goal of implementing a BCI, this enabled the iden-
tification of the somatotopically tuned cortical regions
which could generate the control signal in a closed-loop
feedback task (Fig. 2).
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Figure 3. Schematic of online BCI feedback (A) Power from 70-110 Hz in the channel chosen in A determines the direction and velocity of the cursor
on screen. (B) Targets are displayed prior to cursors to cue movement or rest and subjects attempt to direct cursosrs toward the rectangular target. (C)
Subjects perform the BCI within their bed viewing a monitor 80-100 cm from their head. (D) Subject 3 learned imagery BCI using a channel in the
precentral gyrus across five consecutive runs. The subpopulations of power during trials of opposing targets gradually separated across the learning
process until an accuracy of 97.5% was obtained (average accuracy across last two runs).

Imagery: Subjects repeated the movement task, but
were instructed to kinesthetically imagine performing the
cued movement [13, 14]. As demonstrated in ECoG [3,
4], kinesthetic imagery produced an increase in broad-
band power within motor regions just as during move-
ment (Fig 5).

BCI closed-loop feedback: Successful BCI control was
defined as runs in which the cursor was moved to the cor-
rect target in ≥ 80% of trials for a minimum of 20 trials.
The control channels were chosen based on the changes
in HFB power associated with movement during the mo-
tor screening tasks, and it was modulation of HFB power
which controlled the speed and 1-dimensional movement
of a cursor on a computer monitor a few feet from the pa-
tient’s head (Fig. 3). All seventeen subjects established
successful control of the overt BCI within minutes. Of
these seventeen subjects, fourteen attempted to perform
imagery BCI with three subjects attempting two separate
BCIs for a total of seventeen. Among these subjects, nine
were able to attain successful BCI control, and three con-
trolled the cursor with above chance accuracy (Tab. 1,
Fig. 4a). As represented by subject 3, learning imagery
BCI occurs across several runs and results in the gradual
separation of the average 70-110 Hz power within control
channels between trials with opposing targets (Fig. 3).
While some patients required many trials to learn the im-
agery BCI (Fig. 3), there was no relationship between the
number of training trials and accuracy (Fig. 4b). The lo-
cation of the control channel varied across patients (Tab.

1), but the majority of control channels were within the
precentral gryus (PCG). Although control channels out-
side of the PCG may be assumed to lead to lower accu-
racies, control channel location did not have a strict rela-
tionship to cortical location (Fig. 4c,d).

Differential cortical engagement across tasks: Al-
though successful BCI control necessitates broadband
power modulation within the pre-selected sEEG chan-
nels controlling the BCI, activity patterns within the rest
of the motor network are unconstrained. Across several
subjects, we see selective engagement and differential ac-
tivation based on the task being performed. For exam-
ple, in Subject 3, we see maximal activity in the dorsal
pre-motor area during the kinesthetic imagery screening
task, and parietal engagement only when feedback in pro-
vided (Fig 5). This not only demonstrates that due to the
volumetric configuration of sEEG, cortical activity across
movement tasks and BCIs can be assessed on the network
level, but that cortical subnetworks can be differentially
engaged across tasks.

DISCUSSION

Similar to ECoG studies utilizing high-frequency power
to control a motor BCI[3, 4, 15], we demonstrate that
both overt and imagery motor BCI can be implemented
using sEEG. Even more, sEEG BCI is robust, enabling
successful control of overt and imagery BCI in patients
as young as six and thirteen years old, respectively. In
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Figure 4. Overt and Imagery BCI accuracy across subjects. A Both overt (left) and imagery BCI accuracies are displayed for each subject. In some
cases, subjects performed multiple BCIs that differed in either the pre-selected sEEG channels, controlling modalities, or both. Each BCI within these
subjects were assigned a unique bar (e.g. subject 5a vs. 5b). † indicates subjects who attained 100% accuracy in less than 20 trials. B The relationship
between number of training trials and peak accuracy during imagery BCI was not significant (p = 0.6185). C Distribution of accuracies during overt
BCI (left) with locations of BCI controlling electrodes transformed to the left hemisphere of the MNI152 brain. D As in B, but during imagery BCI.
Note that electrodes used for BCI control in subject 7 are not shown as their anatomy did not allow for accurate transformation into MNI space.

the majority of cases in which imagery BCI accuracy was
not ≥ 80%, this was due to either a lack of interest from
the patient, insufficient time due the rapidly progressing
clinical schedule, or an inability to learn the BCI in the
allotted time.
Across the learning process, power distributions specific
to time periods when each target was shown separated
into two clear sub-distributions (Fig 3), with the active
targets being more easily hit than inactive targets early
on in learning. Presumably this may be due to the more
concrete nature of kinesthetic imagery compared to rest
which allows subjects to anchor to a tangible process.
This is supported by results in subject 5 where the combi-
nation of imagined tongue and hand movement increased
accuracy. All but two of the sEEG channels controlling
the BCI were located in the pre-central gyrus (PCG). This
said, selection of control channels within the PCG is not
necessary nor sufficient for successful BCI control as 5
out of 8 subjects who failed to establish successful im-
agery BCI control used control channels in the PCG. In
addition, successful imagery BCI control using channels
outside of the PCG was performed in several subjects.
For example, control channels for subject 4 were in the
parietal operculum (Tab. 1), and control channels for sub-
ject 6 were in both primary and cingulate areas. Addition-
ally, 14 of 17 BCI modalities involved hand movement,
and of the 3 BCIs that did not utilize hand movement, 2
were unsuccessful. The disproportionate representation
of the hand in our BCI is due to the sEEG trajectories
chosen by the clinicians, but future work should continue
to explore motor BCI modalities outside of the upper limb
to allow for more powerful studies into the unique char-
acteristics of each modalities.
Although training time was limited, there was no corre-
lation between the number of training trials and the peak

accuracy achieved by each subject (Fig 4b). This indi-
cates that there may be a qualitative difference in the abil-
ity to learn imagery BCI across subjects independent of
training volume. Certainly, the causal mechanism under-
lying this difference should be a explored further in future
work.
Movement, kinesthetic imagery, and imagery BCI appear
to differentially engage the motor network (Fig 4). While
detailed exploration of this concept is outside the scope
of this work, the examination of the unique roles of non-
primary subnetworks of the motor network in abstract
learning is a critical advantage of sEEG-based BCI.

CONCLUSION

One-dimensional motor, sEEG-based BCI utilizing overt
movement and kinesthetic imagery is robust across pa-
tient ages and cortical regions. Subjects differ in their
ability to learn imagery BCI, and further work should ex-
plore the mechanism behind this difference.
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h
Figure 5. Hand movement, movement imagery, and one-dimensional BCI cursor control using sEEG - Subject 4. (A) Axial insets in (B-D)
are as shown here. (B) r2 maps of hand movement vs rest, broadband 65-115Hz power, as in Fig 1D. (C) Hand movement kinesthetic imagery in the
same patient. (D) Map of left hand imagery-based cursor control, comparing left-to-right target presentation times (cursor velocity linked linearly to
65-115Hz power from M1 site indicated by yellow arrow). Note 1) the selective augmentation in recruitment of the PMd (blue arrow) during movement
imagery, and 2) the PRR (green arrow) activity selectively during BCI, but not during movement or imagery.
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