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ABSTRACT: Mapping neural activity along the spinal
cord is a task that is hardly researched compared to hu-
man brain mapping. By identifying neural sources in the
spinal cord and detecting unique activity patterns associ-
ated with various motor tasks or specific sensory input,
it becomes possible to establish a baseline for healthy in-
dividuals. This could be utilized to classify spinal cord
injuries or monitor changes in the spinal cord. This
study demonstrates the effective application of an inno-
vative approach to localizing the spinal sources of spinal
cord potentials (SCPs) using the finite element method
(FEM) to solve the forward problem and an abstraction
of the sLORETA algorithm to identify the neural sources,
which were induced by functional electrical stimulation
(FES) on the forearms of healthy individuals.

INTRODUCTION

The field of human brain mapping, once limited to static
classifications like Brodmann areas [1] based on struc-
tural composition, has now evolved into a dynamic pro-
cess that allows researchers to gain more knowledge
about the signal processing inside the brain. This dy-
namic process involves functional brain imaging, which
is a set of imaging methods, e.g., functional mag-
netic resonance imaging (fMRI), magnetoencephalogra-
phy (MEG) and electroencephalography (EEG) that can
be applied to analyze real-time neural activity [2].
In the early work by Pfurtscheller et al. [3] brain pat-
terns of hand movement imagination were used to allow
a tetraplegic person to control an electrically driven hand
orthosis. Additionally, this was one first work where mul-
tichannel EEG was projected onto the surface of a brain
model in a BCI context. Since then, the field of func-
tional brain imaging has evolved significantly. Differ-
ent software packages, e.g., Brainstorm [4], EEGLab [5]
and MNE [6] are currently available to visualize EEG
data on a head model but also have large signal pro-
cessing pipelines incorporated. Furthermore, those soft-
ware packages allow to identify the neural sources in the
brain by utilizing forward and inverse calculations. For-
ward computations involve modeling the propagation of
electromagnetic fields from the neural sources within the
brain to the scalp electrodes, taking into account the con-
ductivity properties of the head tissues [7]. As for the
inverse computations, there is a multitude of different al-

gorithms available, which try to identify the location and
magnitude of the neural sources for given EEG measure-
ments [8]. These advancements have facilitated ground-
breaking research in many fields, such as allowing re-
searchers to identify conversely modulated gamma fre-
quency bands in central sensorimotor areas during the hu-
man gait cycle [9] or proving that two different types of
neural networks are active during rhythmic finger move-
ments [10].

With this experience gained in human brain mapping, the
way is paved to explore the mapping of sensory stimu-
lations of the peripheral nervous system and motor tasks
involving the limbs to the spinal cord. So far, there are
hardly any publications that tackle the spinal cord map-
ping problem. In Stroman et al. [11], the neural activity
changes in the lumbar spinal cord due to locally applied
low temperatures on the skin were analyzed. The neural
activity was recorded with fMRI. In Nierula et al. [12],
a comprehensive recording of spinal cord somatosensory
evoked potentials (SEPs) was performed in order to asses
the functional architecture of somatosensory processing.
A first attempt of sources localization of neural sources
inside the spinal cord was done by Moffitt and Grill [13].
With their inverse model, they aimed to create an initial
framework that can be used to obtain a more detailed
map of the neuroanatomy of the spinal cord such that
intraspinal, microstimulating electrodes are placed more
effectively. However, they only simulated the signals us-
ing a basic cylinder structure, intended to mimic a sim-
plified model of the spinal cord. Additionally, given that
they were simulating invasive measurements of the spinal
cord, they selected a relatively high artificial signal-to-
noise ratio (SNR) compared to measurements typically
obtained from the neck’s skin. Currently, there is no work
that uses non-invasively measured SCPs to find correlat-
ing neural sources. Therefore, the approach to spinal cord
mapping herein is to identify neural sources in the spinal
cord that are responsible for discernible potential changes
following a predetermined stimulus.

Neural sources in the brain are believed to arise from
synchronized synaptic activity [14]. Similar effects lead
to measurable potential changes in the spinal cord, e.g.,
dorsal root potential (DRP), dorsal root reflex (DRR), pri-
mary afferent depolarization (PAD) [15]. These similari-
ties provide additional support for choosing sLORETA as
the preferred method for source localization in this initial
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attempt.
Our objective was to demonstrate the presence of
movement-related neural activity in the spinal cord
through non-invasive recordings of spinal cord poten-
tials. In particular, we aimed to identify neural re-
sponses elicited by afferent stimuli from functional elec-
trical stimulation (FES) induced wrist movements.

MATERIALS AND METHODS

Data: We based our study on the data from Wimmer et
al. [16]. Eight healthy participants underwent FES of the
forearm, leading to a wrist extension. Simultaneously, a
16-channel EEG as well as 16-channel SCP recordings
were performed (see Fig. 1). The FES-induced wrist
movement was performed with a Microstim 8 stimulator
(Krauth+Timmermann, Hamburg, Germany) and a stim-
ulation frequency of fS = 35Hz (pulse width of 300 µs).
Only the raw 16-channel SCP recordings were considered
for further analysis in this work. After processing the data
with a high-pass ( fH = 0.5Hz), low-pass ( fL = 60Hz) and
notch ( fN1 = 35Hz, fN2 = 50Hz) filter, the signals were
split into trials and averaged (for more detail see [16]).

Figure 1: Electrode setup used in Wimmer et al. [16] to measure
the Spinal Cord Potentials (SCPs). Image taken with permission
from [16].

Geometrical model: To create the geometry for this
model, the NGSolve/NETGEN-package in Python was
used. For simplicity, only the following structures were
added to the model: spinal cord, vertebraes, intervertebral
discs, trachea, oesophagus and neck.

Forward problem: A Volume-Conduction model was
used to describe the potential field distribution. To math-
ematically formulate this, Poisson’s Equation was incor-
porated into the model:

σ · (−∆V ) = Im (1)

For some given current source density Im and conductiv-
ity σ , the resulting potential V was calculated with the
finite element method (FEM) [17]. The forward problem

was implemented with the NGSolve/NETGEN-package in
Python.
For simplicity, the conductivity of all materials was as-
sumed to be homogeneous. Several publications [18–22]
were taken into consideration to determine the conduc-
tivity values. The conductivity values are listed in Tab.
1.

Table 1: List of all materials with their respective conductivity.

Material Conductivity σ

[S/m]
Spine 0.22

Vertebrae 0.0014
Disc 0.008

Trachea 0.015
Oesophagus 0.015

Muscle (Neck) 0.01

Inverse problem: sLORETA [23] is widely acknowl-
edged as a commonly utilized technique in EEG source
localization, thereby validating its adoption in our pro-
posed approach. Moreover, sLORETA was the preferred
inverse algorithm method in [13]. In this study, we uti-
lized a simplified version of the sLORETA algorithm.
Derived from the original algorithm [23], the simplified
version incorporates two key modifications: a cylinder-
like geometry and the exclusion of deep sources.
The number of electrodes is defined as NE = 16 and the
number of dipoles assumed to occur in the cervical part
of the spinal cord are defined as NV .

Starting with the following equality

ΦΦΦ = KJ+ c1 , (2)

in which ΦΦΦ ∈ RNE×1 represents the SCP measurements,
K ∈ RNE×(3NV ) and J ∈ R(3NV )×1 are the leadfield matrix
and the solution vector, respectively. The term 3NV is due
to the dimensionality of the model. While the positions of
the dipoles remain fixed, it’s important to consider the x-,
y-, and z-directions individually for each electric dipole,
as they can assume any orientation in space. The c vari-
able introduces noise to the model. As customary, the
forward problem is employed to compute the leadfield
matrix K. To obtain J, the functional F has to be mini-
mized with respect to J and c

F = ||ΦΦΦ−KJ− c1||2 +α||J||2 , (3)

in which α is a regularization parameter.
The solution to this optimization problem is

Ĵ = TΦΦΦ , (4)

in which Ĵ is the solution vector containing all the neu-
ral sources’ location, direction and magnitude. T is a
pseudo-inverse of the leadfield matrix K, calculated as

T = KTH[HKKTH+αH]+ , (5)

in which H is the centering matrix.
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Figure 2: Average SCP obtained from one channel (Sp1) placed
along the spine (Fig. 1). Three distinct peaks P1, N1, P2 are
marked, as they are typical for potentials in the spinal cord.

More information regarding the calculations can be found
in the original paper [23].

Optimization: From an optimization point of view,
there are two hyperparameters that can be tuned.
The first one is the regularization parameter α =
[0.005,0.01,0.05,0.1,0.2,0.35,0.5] in Eq. 3. The second
one is the number of dipoles NV = [21,42,63,84,105],
which defines the size of the leadfield matrix K. We com-
puted the error functional F in Equation 3 for each com-
bination of hyperparameters. Subsequently, we selected
the hyperparameter combination that resulted in the low-
est error for the final calculation.

RESULTS

After processing the data, the SCP signals exhibited a
typical triphasic spike [24]. One of the 16 channels is
shown representatively in Fig. 2. The characetristics of
the triphasic spikes, calculated from all channels placed
along the spine, are listed in Tab. 2.

Table 2: Amplitude and latency for the waveform points. Mean
and standard deviation (SD) are calculated from the n=16 chan-
nels.

Waveform-
point

Latency Amplitude
Mean SD Mean SD
[ms] [ms] [µV] [µV]

P1 (n=16) 0.264 0.003 1.108 0.103
N1 (n=16) 0.487 0.004 -0.944 0.077
P2 (n=16) 0.739 0.005 0.708 0.097

The simplified neck geometry is visualized in Fig. 3.
It captures only the most important features of a human
neck that are necessary for the forward problem to de-
liver meaningful results. To show the functionality of the
forward model, an axially oriented example dipole was
inserted into the spinal cord (Fig. 4). A visualization of
the solution vector Ĵ is shown in Fig. 5 as red arrows.
The vector length is normalized to the cylinder diameter

trachea

oesophagus

neck

atlas

axis

cervical
spinal cord

cervical
vertebra

thoracic
spinal cord

thoracic
vertebra

Figure 3: Neck part of the model dissected to reveal the spine,
the trachea and the oesophagus with the cervical part of the
spinal cord marked in red. The model incorporates a differ-
ent structure for atlas and axis as well as different sizes for the
vertebral bodies.

for each of the three solutions. The gray cylinder repre-
sents the neck.
The behaviour of the error functional F with respect to
the hyperparameters α and NV is shown in Fig. 6 for the
first peak P1.

DISCUSSION

In this study, we successfully employed well-established
methods for the forward and inverse computations to
accurately localize neural sources within the spinal cord.

Based on the results of the forward problem, the potential
field propagates primarily through the nervous tissue,
indicating that the forward model works properly.

The nerves in the forearm are part of the Plexus
Brachialis, which is a composition of spinal nerves C5-
C8 and Th1 [25]. Since the large dipoles of P1 are located
in the lower section of the cervical spinal cord, this result
coincides with the anatomical structure of the nervous
system. This is still partially true for the neural sources
seen in points N1 and P2. Therefore, the results demon-
strate the possibility of localizing the neural sources in
the spinal cord. The influence of the hyperparameters
(Fig. 6) on the error of the model indicates that α = 0.1
offers the lowest error and that α has a more significant
impact on the error than the number of dipoles NV . Sim-
ilar results were found for the N1 and P2 wave. Since
the model does not capture much of the complexity the
human body has to offer, these hyperparameter results
should only be considered as initial guesses for future,
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Figure 4: Visualization of the potential field distribution inside
the model for an axially oriented electric dipole located in the
spinal cord.

Figure 5: Solution of the source localization algorithm. The
calculated dipoles are shown as red arrows originating from the
spinal cord. The solution is shown for every wave P1, N1 and
P2. The gray cylinder represents the neck.

Figure 6: Behaviour of the error with respect to the two hyper-
parameters α and NV .

more complex, models.
In this paper, only three points in time were compared.
For actual mapping purposes, it would be appropriate
to analyze the complete time domain to possibly obtain
more differences in the neural activity induced by differ-
ent stimuli.
Assuming that this mapping was conducted across nu-
merous healthy individuals, it would establish a reference
dataset that could be applied in various contexts and ap-
plications. For example, classifying the spinal cord in-
jury level, monitoring disease progression through track-
ing changes in the spinal cord neural activity (e.g., in
amyotrophic lateral sclerosis (ALS)) or changes during
rehabilitation of spinal cord injured individuals.
Additionally, one could try to analyze the characteristics
of the triphasic spike (latency and magnitude, Tab. 2)
to distinguish between different motor tasks or stimuli.
If more SCP recordings were available with a different
stimulus, the characteristics might be slightly different
and therefore, could be used for mapping.
This framework does come with a few limitations. First,
the mathematical and geometrical model is very simple
and does not capture the complexity oh the human phys-
iology and anatomy, respectively. Especially, when it
comes to large vessels like the Arteria carotis, which can
distort the electric field. Further, the conductivity of bio-
logical tissue is anisotropic and is different for every hu-
man. Second, the measurements were taken from only
one side of the neck and therefore, introduce a bias to
the resulting sources. It is assumed that this bias is ex-
pressed in less precise directions of the dipoles. Third,
since the stimulation of the forearm was performed with
a 1s long 35Hz biphasic current pulse, the resulting SCPs
are a summations of several consecutive stimuli, not just
a single stimulus.
These considerations emphasize the importance of fur-
ther refining both models and measurements in future re-
search.

CONCLUSION

In this work, the feasibility of localizing electric dipoles
in the cervical spinal cord based on recorded spinal cord
potentials was demonstrated. By resolving the compli-
cated challenges associated with the source localization
problem, the findings reveal the potential for reasonably
precise spatial identification within this neural region.
These findings conclude that a spinal cord mapping of
certain motor tasks or sensory stimuli is possible.
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