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ABSTRACT: Decades of research thoroughly established
various neural correlates of processing discrete errors,
i.e., events that may be classified as either correct or
wrong. However, despite many successful demonstra-
tions of brain-computer interfaces (BCIs) utilizing these
discrete correlates, a range of everyday tasks (e.g., car
driving) requires fine-tuned feedback control that al-
ready transgresses such coarse distinction. Following
up on recent research in the field of continuous erro-
neous feedback processing, we propose the regression
of continuous feedback-target deviations from the elec-
troencephalogram (EEG). Within thirty pre-recorded ses-
sions of data in ten participants, employing a 2D target-
tracking task that offered online feedback, we thus uti-
lized a convolutional neural network to infer ongoing
feedback-target deviations and correct the feedback’s po-
sition accordingly in an offline evaluation. The presented
correction approach significantly improved correlations
between feedback and target kinematics - a first indica-
tion that continuous error-related cortical activity can be
utilized in BCIs as well.

INTRODUCTION

Over the last thirty years, a large body of research ex-
tensively documented the cortical response to discrete er-
roneous stimuli [1, 2]. In this context, the error-related
negativity (ERN) and error positivity (Pe) – frontocen-
tral and centroparietal deflections in the scalp potentials,
respectively – quickly emerged as two key markers for
error processing and error awareness [3, 4]. Arising ap-
proximately 100ms (ERN) and 300-500ms (Pe) after an
erroneous stimulus, the sequence of these two potentials
was termed the error-related potential (ErrP) and met in-
creasing interest as a control signal within the field of
brain-computer interfaces (BCIs) [5–7]. However, while
various approaches emerged to utilize the ErrP as a con-
trol signal - seeking, e.g., to prevent the execution of er-
roneous commands altogether, or recalibrate the interface
in response to errors [5] - a number of issues surrounding
the discrete correlates to error processing persist.
For one, the neurophysiology of the ErrP proved notably
sensitive to a range of factors. Advanced age [8], low-
ered levels of attention [9], or reduced attributed signifi-
cance to an error [10] reportedly alter the measured po-

tentials, leading to corresponding difficulties in BCI oper-
ation [11]. Furthermore – and arguably the biggest limita-
tion to utilizing ErrPs for BCI applications – the presence
or absence of the ErrP intrinsically encodes binary infor-
mation only. However, various tasks such as car driving
or moving a cursor on-screen demand minute adjustments
depending on the perceived discrepancy between inten-
tion and outcome rather than a coarse distinction into er-
ror or no error.
While some literature already attempted an expansion to
continuous error processing within BCIs, this predom-
inantly encompassed the presentation of discrete stim-
uli in a continuous paradigm [12–15]. Recent work by
our group first reported the occurrence of cortical modu-
lations with continuous feedback-target deviations [16],
however, the usefulness of this neural substrate within
BCIs remains to be established.
In this work, we thus aimed to close the gap in knowl-
edge and answer two major questions. First, is it pos-
sible to regress target-feedback discrepancies from neu-
ral markers of continuous erroneous feedback process-
ing within the electroencephalogram (EEG)? And sec-
ond, can these inferences be used to subsequently correct
the initial feedback and alleviate the feedback-target mis-
match? Using thirty sessions of previously recorded data
of an online target-tracking task with different feedback
conditions, we trained a convolutional neural network
(CNN) to infer the discrepancy (error signal) between
feedback and target position in two spatial dimensions
from the EEG. We then adjusted the recorded feedback
trajectories as decoded and presented during the online
measurements by the inferred error signal to obtain cor-
rected feedback trajectories. Compared to the recorded
feedback trajectories, correlations with the target trajec-
tories significantly improved for the corrected feedback
trajectories, indicating notable merit to using neural sig-
natures of continuous erroneous feedback processing for
automated correction of interface-related errors within a
BCI.

MATERIALS AND METHODS

Dataset: The prerecorded dataset [17] consisted of
the 60-channel EEG (10-10 electrode system) and 4-
channel electrooculogram (EOG) of ten able-bodied,
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Figure 1: (a) Experimental setup. Participants attempted cursor-like movement of their strapped dominant arm to trace a moving object on-screen (snake, white) with
real-time feedback (red dot). (b) Feedback conditions and approach. Target and feedback kinematic (grey box), as well as EEG, were previously recorded within the three
different feedback conditions Delayed feedback, Slight error, and Severe error. Distances in x and y between recorded target and feedback trajectories are calculated as error
signals (red box) and predicted from a convolutional neural network (c). Corrected feedback trajectories are obtained from initial feedback and decoded error signals (red
framed box). (d) Average number and standard deviation of available trials per cross-validation fold for each participant and session (training: 4 folds, validation: 1 fold,
testing: 1 fold). Exemplary trajectories for the correction approach in (b) are taken from session 1 of participant P2 (y coordinate, Slight error condition).

right-handed participants in total of 30 sessions, sam-
pled at 200Hz. The dataset was chosen due to previously
unveiled cortical modulations with the ongoing target-
feedback deviations [16], indeed suggesting error-related
brain activity elicited within the employed task.

Paradigm: During each session of this previously
recorded online study, participants attempted cursor-like
movement as if wielding a computer mouse to track a
moving target on-screen (snake). An encasing around
their dominant arm (see Fig.1a) limited overt movement.
Utilizing a combination of partial least squares regres-
sion and an unscented Kalman filter (PLSUKF) [18], es-
timates for the snake’s trajectory were decoded in real
time from the EEG and delivered within different feed-
back conditions in the form of a feedback dot on-screen.
Each participant underwent three separate sessions of
measurements within the time span of a week. The mul-
tiple sessions (each employing the identical paradigm
conditions) were initially designed to evaluate session-
to-session differences in performance; as no significant
changes were found in the initial work [17], we disre-
garded the session information and pooled all data to a
total of 30 sessions for the current work.

Feedback conditions: Each session commenced with
four calibration runs, followed by three 50% and three
100% EEG-decoded online feedback runs (see Fig.1b).
One run comprised 12 trials of 23s length, respectively,
during which participants tracked the moving snake on-
screen. The first and last second in each run were omit-
ted from further analysis to further minimize movement-

related artifacts as the participants became aware of the
start and end of each run, leading to 21s of data per run.
Within the calibration runs, EEG data to fit the PLSUKF
online-decoder was recorded; as such, no EEG-decoded
trajectory information was available yet to display as
feedback. To accustom the participants to the addi-
tional visual input of the feedback dot from the begin-
ning nonetheless, fake feedback in the form of a slightly
delayed snake was presented during the calibration runs.
As feedback dot and snake largely coincided through-
out the calibration runs, leading to minimal discrepancy
between target and feedback, calibration runs are hence-
forth termed Delayed feedback.
After fitting the PLSUKF decoder with the calibra-
tion data, the measurement proceeded with online EEG-
decoded feedback. To transition smoothly between fake
and online-decoded feedback, three intermediate 50%
EEG-decoded feedback runs were introduced, wherein
the arithmetic mean between actual (snake) and EEG-
decoded target positions was displayed. Due to the EEG-
decoded information, the discrepancy between target and
feedback increased notably with respect to the calibration
runs. We thus term the 50% EEG-decoded feedback runs
Slight error in the following.
In the final three runs, 100% EEG-decoded feedback was
displayed. In contrast to the mixed information shown
during the 50% EEG-decoded feedback runs, participants
were now faced with considerable discrepancy between
target and feedback due to limitations in decoding. We
thus term the 100% EEG-decoded feedback runs Severe
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error in the following.
Data processing: Both EEG and EOG data were band-

pass filtered between 0.2-10Hz (10th order Butterworth).
Subsequently, noisy channels of the EEG as identified
during the online experiment were spherically interpo-
lated from neighboring channels. Eye artifacts were simi-
larly attenuated utilizing the stored correction matrices of
the SGEYESUB algorithm [19] from the online measure-
ment, after which the EOG channels were removed. Per-
sistent eye artifacts as well as muscle artifacts at periph-
eral EEG channels were identified via independent com-
ponent analysis (ICA) and removed. To further eliminate
any eye- or muscle-related influence, the outermost EEG
channels (i.e., positions AF7-AF8, F7/8, FT7/8, T7/8,
TP7/8, P7/8, PO7/8) were excluded from our analysis
scheme, leading to a remaining number of 43 EEG chan-
nels.
The recorded x and y coordinates of the target (snake), as
well as of the displayed feedback dot, were smoothed us-
ing a Savitzky-Golay filter (second order polynomials, 21
sample window ∼100ms). The distance vector

#»

∆(t) be-
tween feedback (fb) and target (tg) position in each time
point t, i.e., the error signal in two dimensions, was then
derived via:

#»

∆(t) =
#»
X (t) f b −

#»
X (t)tg ∈ R2. (1)

Neural network architecture: The aim of this work was
to utilize the continuous error-related brain activity repre-
senting the ongoing target-feedback discrepancy to cor-
rect the initially recorded EEG-decoded predictions for
the target position. To this end, we modified EEGNet [20]
and changed the output layer to simultaneously regress
the x and y coordinates of the error signal (

#»

∆ ) from 300-
sample windows of EEG data (i.e., 1.5s). Importantly,
several other architectures, such as Deep ConvNet [21] or
EEG-TCNet [22], could have been employed as well; as
the current study however mainly corresponds to a proof
of concept, benchmarking has not been undertaken in the
scope of this work.
In detail, the utilized network consisted of three layers.
Within the first layer, the temporal dimension of the in-
put frames was zero-padded (75 samples at both edges)
and temporally convolved in 16 filters to extract temporal
features from the EEG (kernel size (1,200)). The large
kernel size corresponding to a 1s window was chosen
to enable the model to learn from frequency information
down to 1Hz, as previous findings revealed contributions
of predominantly the delta band for the used dataset [16].
In the second layer, a consecutive depthwise convolution
(kernel size (43,1)) extracted spatial features in 8 filters
by condensing the information of all considered channels
to one single value, followed by subsequent temporal av-
erage pooling (kernel size (1,4)). In the final third layer,
a second temporal convolution in 4 filters was employed
(kernel size (1,16)), followed by average pooling (kernel
size (1,2)). Each mentioned convolutional layer was fol-
lowed by batch normalization to accelerate convergence
[23], as well as dropout to impede an overfit on the train-

ing data (rates of 0.25, 0.35, and 0.45 for 1st, 2nd and 3rd
layer). For activation functions in each neuron, exponen-
tial linear units were used [24]. Finally, the outputs of the
third layer were flattened and passed through a fully con-
nected layer (92 input features, 2 output features), return-
ing the 2D prediction

#»

∆ pred of the error signal. For each
batch, the predictions were smoothed with a Savitzky-
Golay filter to alleviate noise (2nd order polynomials, 21
samples). All network models were implemented, trained
and evaluated using PyTorch.

Network training procedure and regression perfor-
mance: For each participant, session, and condition, we
sliced the EEG data into windows containing 300 sam-
ples with a stride of 15 samples (i.e., 1.5s windows, sam-
pled every 75ms). We retained the last sixth of the re-
sulting windows for testing in a causal fashion, while the
optimum model - i.e., the model maximizing the valida-
tion correlation (mean of both x and y coordinate) be-
tween actual (

#»

∆ ) and predicted (
#»

∆ pred) error signal - was
found via 5-fold cross-validation on the remaining data.
For each fold, we trained a model for 30 epochs using a
batch size of 64 and a learning rate of 1e-4. Notably, pre-
dicting the error signal for 64 consecutive 1.5s-windows
at a stride of 75ms per batch lead to 64·0.075s=4.8s-long
trajectories of predictions, for which both the correlation
and the RMSE values with the ground truth were eval-
uated. To optimize the model’s parameters with respect
to the mean squared error loss, we used the Adam opti-
mization algorithm [25]. The overall performance of each
regression model was then assessed via Pearson’s corre-
lation coefficient, as well as the root mean square error
(RMSE) between actual (

#»

∆ ) and predicted (
#»

∆ pred) error
signal within each batch. The overall testing performance
then corresponded to the average across all batches within
the testing set.
To additionally analyze each EEG channel’s contribution
to the regression performance, we iteratively set one of
the 43 channels within the testing data to zero (i.e., we
simulated one dead channel at a time) and reevaluated the
regression performance. The absolute difference between
the optimum model’s testing performance and the dead-
channel performance for each removed channel then pro-
vided an estimate for the specific channel’s importance.

Trajectory correction and correction performance:
Utilizing the prediction

#»

∆ pred of the error signal acquired
via the neural network (Fig.1c), we obtained corrected
feedback trajectories (i.e., new target predictions1) via
Equ.(1) as:

#»
X f b,corr =

#»
X f b −

#»

∆ pred =
#»
X tg,pred ∈ R2. (2)

The overall merit of our correction approach was judged
by comparing Pearson’s correlation coefficients and the
RMSE values between a) target and recorded feedback

1Note that from the relation in Equ.(2), we indeed gain target predic-
tions. However, to keep consistent terminology (the recorded feedback
#»
X f b depicted during the measurement corresponded to target predic-
tions as well, if from the PLSUKF regressor), we term these new target
predictions corrected feedback.
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(i.e.,
#»
X tg and

#»
X f b) and b) target and corrected feedback

(i.e.,
#»
X tg and

#»
X f b,corr).

Chance level estimation: To establish whether the net-
work models truly discern cortical activity rather than
noise, we estimated individual chance levels for the re-
gression performance in each participant, session, and
condition. To this end, we randomly shuffled the target
information (i.e., the error signal

#»

∆ ) across batches of
testing data, effectively breaking any causal relation be-
tween brain activity and corresponding target-feedback
discrepancy without changing the frequency content of
#»

∆ (equivalently, the input signals could have been shuf-
fled as well, leading however to the same results at a
higher computational cost). The previously trained op-
timum model for the corresponding participant, session,
and condition was then evaluated on the shuffled data.
This approach was repeated for 100 times, yielding a
chance distribution of correlations and RMSE values be-
tween actual (

#»

∆ ) and predicted (
#»

∆ pred,shu f f ) error sig-
nals. The chance levels for the correlations and RMSE
values within each regression model were then identi-
fied as the 95th and 5th percentiles of the corresponding
chance distributions, respectively.
We further investigated the nature of possible improve-
ments in correlations and RMSE values due to our ap-
proach in Equ.(2). Specifically, improvements in cor-
relation or RMSE values between target and corrected
feedback (i.e.,

#»
X tg and

#»
X f b,corr) compared to those be-

tween target and recorded feedback (i.e.,
#»
X tg and

#»
X f b)

may merely correspond to spurious fluctuations in per-
formance due to the addition of the smoothed (low-
frequency) predictions to the recorded feedback. To erad-
icate this concern, we once more exploited the previously
outlined shuffling approach. We randomly shuffled the
pairs of recorded target and feedback information across
batches, breaking all causal relations with the EEG in-
put while retaining the temporal structure within each
batch. The optimum model then predicted the error sig-
nals

#»

∆ pred , which in turn served to obtain randomly cor-
rected feedback trajectories according to Equ.(2). The
shuffling was repeated for 100 times, yielding chance
distributions for the correlation and RMSE values be-
tween target (

#»
X tg ) and randomly corrected feedback

(
#»
X f b,corr,shu f f ) trajectories. The chance levels for the

correlations and RMSE values within the correction ap-
proach for each participant, session, and condition were
then found as the 95th and 5th percentiles of the chance
distributions, respectively.
Table (1) summarizes all utilized evaluation approaches.

RESULTS

Regression performance: Individual CNN models
were trained for each participant, session and condi-
tion; the overall regression performance for each feed-
back condition is outlined in Fig.2(a-b). The single dots
correspond to the 30 sessions (pooling all three sessions
per participant in the 10 participants); mean and median

Table 1: Summary of evaluation approaches
Assessment Correlation/RMSE between
Regression #»

∆ ,
#»
∆ predperformance

Regression
#»
∆ ,

#»
∆ pred,shu f f

chance level (p95 for correlation, p5 for RMSE)
Correction #»

X tg,
#»
X f b,corrcompared to

#»
X tg,

#»
X f bperformance

Correction
#»
X tg,

#»
X f b,corr,shu f f

chance level (p95 for correlation, p5 for RMSE)

are displayed as dashed and solid lines within the boxes,
respectively, solid black lines denote the corresponding
chance levels.
On average, we obtained mean correlations across both
coordinates of 0.36, 0.32 and 0.23 between actual (

#»

∆ )
and predicted (

#»

∆ pred) error signals for Delayed feedback,
Slight error and Severe error conditions, each of which
ranges above the corresponding chance level (approxi-
mately 0.15, 0.17 and 0.17). Similarly, the observed
mean RMSE values across both coordinates of 56px,
106px and 187px for Delayed feedback, Slight error and
Severe error condition cut beneath their corresponding
chance levels (64px, 115px and 193px; see Fig.2b).
Notably, the regression performance worsened for both
metrics with increasing discrepancy between target and
feedback (note the different scales). In this context, our
feature analysis unveiled growing scalp regions of impor-
tance across feedback conditions, displaying increasing
central and parietooccipital engagement as the feedback
deviates from the target (see Fig.2(e)). Left (bright) and
right (dark) topographical maps correspond to the most
relevant EEG channels for predicting x and y coordinate
of the error signal

#»

∆ , respectively.
Correction performance: The mean correction perfor-

mance due to our approach is displayed in the white panel
of Fig.2. Light and dark gray results correspond to the x
and y coordinate results pertaining to the recorded feed-
back (

#»
X f b); light and dark red display the x and y coor-

dinate results for the corrected feedback (
#»
X f b,corr).

A right-tailed paired Wilcoxon signed rank test,
Bonferroni-corrected for six tests (three conditions in
two coordinates), revealed significantly higher correla-
tions with the target trajectories (

#»
X tg ) for our corrected

feedback trajectories (
#»
X f b,corr) compared to the recorded

ones (
#»
X f b) (see Fig.2(c); significance levels of 0.05, 0.01,

and 0.001 are marked as *, **, and ***).
Overall, we observed an average improvement in correla-
tion across both coordinates of approximately 0.03, 0.07,
and 0.08 for Delayed feedback, Slight error, and Severe
error conditions due to the feedback correction; however,
only the corrections for the first two conditions range on
average above chance. In terms of RMSE values, signifi-
cant differences arose only for the Delayed feedback con-
dition and one coordinate within the Slight error condi-
tion, even though all mean values fell beneath the chance
levels (see Fig.2(d)).

DISCUSSION AND CONCLUSION
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Figure 2: (a-b) Correlations and RMSE values between actual and decoded error signal as obtained by the CNN-regression. Bright and dark red color indicate results in
the x and y coordinate, respectively. (c-d) Correlations and RMSE values for the correction approach. Measures between target and recorded feedback trajectories are shown
in gray, measures between target and corrected feedback trajectories in red. Bright and dark colors indicate results in the x and y coordinate. For all box plots, single session
means are depicted as dots, dashed and solid lines denote mean and median of the distributions, respectively. Black horizontal lines indicate the corresponding chance levels.
(e) Averaged normalized channel importance maps for the error signal regression as obtained by setting one channel at a time to zero and evaluating the resulting drop in
performance. Left and right topographical maps correspond to the importance in predicting the x and y coordinate of

#»
∆ , respectively.

Within the offline analysis of 30 sessions of EEG record-
ings, we present a first attempt at correcting previously
inferred feedback trajectories during a target tracking
task by utilizing markers for continuous erroneous
feedback processing within the brain.
Using an adaption of the well-known neural network
architecture of EEGNet, we presented evidence for
the successful inference of continuous feedback-target
deviations (error signals) from the EEG for the first
time. Achieving mean correlations with the actual error
signals of between 0.23 and 0.36 for the investigated
conditions (Fig2(a)), the obtained predictions proved to
range above chance level, indicating that the regression
of this type of error-related information from the EEG is
indeed feasible.
Interestingly, the regression performance peaked within
the only minor deviations during the Delayed feedback
condition and dropped steadily across conditions with
increasing feedback-target deviation. However, previous
neurophysiological findings for the used dataset indicated
an opposing effect, e.g., increasingly prominent cortical

modulations with increasing absolute distance from the
target [16]. While the obtained channel importance
maps affirm the previous findings with the emergence
of increasing central and centrooccipital relevance with
increasing error severity and indeed indicate that the
models learned from error-related features, our overall
results might suggest that the error signal’s x and y
components are not sufficiently encoded within the
brain. Future approaches will have to clarify whether
better performance could be achieved by taking the
modulus, i.e., the Euclidean distance between feedback
and target, into account; possible implementations could
for example switch to radial coordinates or add the error
signal’s modulus to the network’s training procedure.
Despite the moderate correlations for the regression
itself, the correction approach nonetheless proved to
be of merit. We observed significant improvements in
correlations with the target trajectories for our corrected
feedback compared to the initially recorded feedback
trajectories across all feedback conditions. A chance
level evaluation certified these improvements as better

Proceedings of the
9th Graz Brain-Computer Interface Conference 2024

10.3217/978-3-99161-014-4-014

CC BY
https://creativecommons.org/licenses/by/4.0/deed.en

This CC license does not apply to third party material and content noted otherwise.

Published by
Verlag der Technischen Universität Graz

78



than random for all but the Severe error condition.
However, for this condition, initial correlations between
recorded target and feedback trajectories already failed
to meet the chance level, which could be improved
considerably due to our approach nonetheless.
In summary, we conclude that the use of continuous
error-related brain activity can significantly improve the
performance of a BCI and that further work in this field
will be of great value for future implementations.
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