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ABSTRACT: Motor imagery brain-computer interfaces 

(BCIs) face challenges in practical application, notably 

in decoder training. Traditionally, decoders are trained in 

a supervised manner. This approach requires labeled data 

and restricts users to predefined actions during the 

training period. Moreover, regular decoder updates are 

needed. To address these issues, the auto-adaptive BCI 

(aBCI) infers training labels directly from brain signals 

using a neural response (NR) decoder, eliminating the 

need for supervised sessions. This study investigates the 

performance and replicability of the aBCI and explores 

labeling strategies using electrocorticography data from 

three spinal cord injured patients across diverse 

paradigms. Results demonstrate that aBCI can be used to 

significantly increase decoding performance above 

chance level in all three patients. Performance depended 

on patients and labeling strategy. The labeling strategy, 

focusing on correct neural responses (CNR), 

demonstrates significantly improved performance 

compared to correct/error neural responses (CENR) 

labeling strategy. Despite limitations of pseudo-online 

simulation, our findings underscore the aBCI's promise 

in advancing BCI technology. 

 

INTRODUCTION 

 

Motor brain computer interfaces (BCIs) come with a 

number of recognized limitations that hinder their 

practical use in everyday situations. Many of these 

limitations relate to the need for training of BCI decoders. 

Traditionally, motor control (MC) decoders in BCIs are 

trained using supervised learning. In such a framework, 

access to the neural data along with the labels is required. 

Labels are derived from the user’s intention. 

Consequently, during MC decoder training, BCI users 

are constrained to perform predefined actions under the 

supervision of researchers or the dedicated environment 

[1] [2]. In addition, the MC decoder must be regularly 

updated due to the degradation of performance over time. 

Facing these limitations, the use of neural responses (NR) 

to BCI task performance for unsupervised updating of 

BCI decoders has been explored [3] [4] [5]. The majority 

of studies use event-related NR, namely event-locked 

error-related potentials, e.g. [6]. Most studies focus on 

NR in brain areas outside the sensorimotor cortex using 

electroencephalography (EEG)-based BCIs [7]. A 

limited number of studies investigates NR within the 

sensorimotor cortex. Invasive electrocorticography 

(ECoG)-based [8] [9] or microelectrodes array-based 

BCIs [10] reveal detectable NR following discrete 

erroneous events in a sensorimotor cortex. 

 

Continuous in time NR (in contrast to event-locked NR) 

is explored by Rouanne et al. [11] [12], demonstrating 

detectability of such NR in the sensorimotor cortex using 

ECoG recording device. For complex BCI auto-

adaptation, access to continuous in time NR is powerful 

as it would provide performance assessments at each 

time point, whereas event-locked NR would have to 

extrapolate performance around measured points. On the 

bases of such continuous in time NR, an auto-adaptive 

BCI (aBCI) framework with the objective of training the 

MC decoder during the free use of ECoG-based motor 

BCI is proposed [11] [12]. The core idea is to infer the 

training labels directly from the brain signals rather than 

from the environment, thus removing the necessity for 

training sessions. Within this aBCI framework, the user 

can update the MC decoder at will, enabling greater user 

autonomy in determining their actions. This first proof-

of-concept study demonstrated in offline simulation that 

aBCI can be used to train in an unsupervised manner a 

MC decoder from scratch, eliminating the necessity for 

precise label assignment. However, to evaluate the aBCI 

framework, Rouanne et al. worked on data from a single 

patient. In order to build a robust and replicable aBCI 

framework, several questions are still to be addressed. In 

this paper, we explore the replicability of the aBCI 

framework [11] [12] with three patients. In addition, we 
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compared two aBCI labeling strategies to improve aBCI 

performance, and make the aBCI framework more 

versatile and compatible across different paradigms. 

 

MATERIALS AND METHODS 

 

     Experimental recordings: To investigate the 

replicability, we tested the aBCI on datasets from three 

patients implanted with two ECoG-recording 

WIMAGINE implants, one on each hemisphere, on the 

sensorimotor cortex [1] [13]. Two of these patients, 

referred as BCI001 and BCI002, are involved in the “BCI 

and Tetraplegia” clinical trial at CEA/Clinatec 

(NCT02550522). Data for the third patient (BSI001) was 

collected in the STIMO-BSI clinical trial 

(NCT04632290). Both clinical trials focus on recording 

and decoding motor intentions with different effectors 

respectively. Consequently, experimental paradigms 

slightly differed between BCI and BSI patients. 

 

For the BCI001 and BCI002 patients, we used the dataset 

collected during the Runner paradigm experiments 

(Fig. 1A). Runner represents a binary classification test 

where the BCI user controls a human avatar to either 

walk or stand still. BCI001 dataset spans a period of 5 

months, from September 2019 to January 2020, 

comprising 13 half-day sessions for a total of 142 

minutes of recordings. BCI002 dataset spans a period of 

12 months, from November 2019 to October 2020, 

comprising 34 half-day sessions for a total of 653 

minutes of recordings. For the BSI001 patient, we used a 

dataset collected during the Gait paradigm (Fig. 1B). In 

this paradigm, the patient used the BCI system to 

modulate electrical stimulation of the spinal cord 

enabling walking. A 3-class decoder (left/right hip 

flexion and rest) was used to decode the intention to 

perform each independent step and modulate the 

amplitude of stimulation according to the decoder 

prediction [13]. This dataset spans a period of 4 months, 

from September 2022 to January 2023, comprising 19 

sessions for a total of 518 minutes of recordings. 

 

 

During real time BCI experiments, time–frequency 

information was extracted for each of the 64 electrodes 

used [1] from each 1s-long epoch (spaced by 0.1s, 90% 

overlap), using continuous complex wavelet transform 

(Morlet) with 15 central frequencies 10 Hz apart from 10 

to 150 Hz for patients BCI001 and BCI002. 0.2s-long 

epoch (spaced by 0.1s, 50% overlap) with 24 central 

frequencies (2, 5:5:100, 125, 150, 200 Hz) were used in 

BSI001 patient sessions. Recursive Exponentially 

Weighted Markov-Switching multi-Linear Model (REW 

MSLM) was employed as MC decoder as in [2]. 

 

The aBCI framework have been evaluated across these 

three labeled datasets, shortly noted Runner BCI001, 

Runner BCI002 and Gait BSI001. 

 

     aBCI framework description: The overview of the 

aBCI framework [12] is given in Fig. 2. In the aBCI 

framework, the labels for the MC decoder training are not 

acquired through traditional training paradigm employed 

in supervised learning. Instead, they are estimated thanks 

to the auto-adaptive module. This module consists in a 

neural response (NR) decoder, also known as task 

performance decoder or satisfaction decoder. Its role is to 

interpret from the input features how well the effector’s 

actions match the user’s intentions. In other words, the 

NR decoder predicts from the brain signals whether the 

user is satisfied or dissatisfied with the action decoded by 

the MC decoder. The NR decoder is trained in a 

supervised manner. The MC decoder is then 

trained / updated in real time in an unsupervised manner, 

relying on the labels estimated by the NR decoder during 

the free use of the BCI. 

 

In the current system, the same feature space described 

above is used by both decoders, which are trained using 

the REW MSLM algorithm [2]. 

 

     aBCI labeling strategy: The process of automatic 

labeling of the training data for the MC decoder update 

is not a straightforward task. Indeed, the estimated labels 

are derived from the output of the NR decoder, noted 

�̂�𝑁𝑅, which have not a perfect accuracy. Therefore, the 

derived labels cannot be expected to be perfect either. To 

limit this imperfection, the epochs with high level of 

uncertainty on the task performance estimation from the 

NR decoder are not labeled, and thus, discarded from the 

MC decoder update dataset. In this study, we compare 

two discarding strategies, resulted in two labeling 

strategies. 

 

The first labeling strategy (Fig. 3A), proposed in [12], 

considers correct and error neural responses (CENR). It 

relies on the use of two thresholds, thcorr and therr, for 

the classification of epochs respectively as correct and 

erroneous. Epochs are considered correct when 

�̂�𝑁𝑅 > thcorr  and erroneous when �̂�𝑁𝑅 < therr . Epochs 

for which therr < �̂�𝑁𝑅 < thcorr are unlabeled and so not 

included in the MC training / update dataset. To evaluate 

the thresholds, the output of the NR decoder �̂�𝑁𝑅  is 

modeled as a mixture of two Gaussians, 𝒩(μcorr, σcorr
2 ) 

for the correct class and 𝒩(μerr, σerr
2 ) for the error class. 

The parameters of the two Gaussians are estimated on the 

training data for each class. Then, the thresholds are 

defined as thcorr = μcorr + 𝑎 σcorr  and 

therr = μerr −  𝑎 σerr , where 𝑎  is a hyper-parameter to 

balance accuracy and data inclusion. Similarly to [12], 

  
Figure 1: Experimental paradigms of datasets included 

to the study. (A) Runner paradigm, binary classification 

of human avatar to either walk or stand still. (B) Gait 

paradigm, 3-class classification of left/right hip flexion 

and resting to control spinal cord stimulator. 

(A) 

 
(B) 
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we set 𝑎 = 1 in this study. Finally, the fixed thresholds 

are used during the update of the MC decoder. When the 

epoch is estimated correct, the true MC label is the most 

probable MC output, while when it is estimated 

erroneous, the true MC label is the second most probable 

MC output. 

 

The second labeling strategy (Fig. 3B), that we propose, 

is more restrictive and focuses exclusively on correct 

neural responses (CNR). It relies on the use of only one 

threshold for the classification of epochs as correct when 

�̂�𝑁𝑅 > thcorr and unlabeled when �̂�𝑁𝑅 < thcorr. The rest 

of the conditions and parameters employed with the CNR 

labeling strategy were consistent with those from the 

CENR one. We have headed for the CNR labeling 

strategy to make the aBCI framework more generic and 

adapted to multiclass classification, regression problems 

or combinations, where wrong decoded motor actions are 

very hard to relabel. 

 

     Pseudo-online simulation: We conducted a pseudo-

online simulation to evaluate the performance of the 

aBCI framework, aiming to replicate conditions closely 

resembling online uses. To achieve this, we divided each 

dataset into three non-overlapped splits containing 

approximately the same number of recording sessions. 

The first split was dedicated to train the NR decoder. The 

second split was allocated to train the MC decoder from 

scratch within the aBCI framework, i.e. without 

knowledge of the real labels for the MC decoder. The 

third split was reserved for evaluating the performance of 

the newly trained MC decoder. The training data for the 

NR decoder were labeled according to the decoded MC 

outputs obtained during the online experiment: an epoch 

with a decoded MC output being consistent with the 

desired MC output was labeled correct, while it was 

labeled error when inconsistent. We chose to train the 

MC decoders from scratch, meaning that no prior training 

was required, using solely the aBCI framework to 

highlight its capacity in training MC decoders. 

 

In a typical online use, the neural data corresponding to 

the second split would be gathered during free use of the 

BCI. However, in our simulation study, we utilized pre-

existing labeled datasets. The MC decoder training 

process was emulated in a pseudo-online fashion, where 

neural data was iteratively fed into the algorithm to 

mimic online acquisition. Labels are continuously 

estimated and training of the MC decoder were 

conducted using the aBCI framework every fifteen 

seconds, corresponding to the acquisition of labeled data. 

Notably, the newly updated MC decoder did not 

influence BCI actions, as the datasets were pre-recorded. 

 

     Performance evaluation: Cross-validation with the 

three splits by permuting their roles, which leads to six 

performance measures, was used to evaluate aBCI 

performances. For the Runner paradigm (binary 

classification), the performance was evaluated using the 

AUC of the ROC curve of the MC decoder. For the Gait 

paradigm (3-class classification), the performance was 

evaluated using a generalized version of the AUC of the 

ROC curve for multi-class classification [14]. The final 

performance of the aBCI for each paradigm was assessed 

with the mean AUC of the ROC curves over each test 

split. For a comparative evaluation, the MC decoder 

trained from scratch using the aBCI framework was 

compared to MC decoders trained in two other ways. The  

Figure 2: Diagram of the aBCI framework. An extra auto-adaptive module is added to the classic BCI framework, 

which is usually composed of a (motor) control (MC) decoder and an updater. The aBCI module includes a neural 

response (NR) decoder aiming at detecting continuous in time NRs to task performance and estimating the labels to 

update the MC decoder, instead of using the ones supplied by the researcher’s supervision or the dedicated 

environment as it is commonly done in a classic BCI framework. 
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first  one  was  a  supervised  training  of  the  MC  decoder 

using the true labels of each epoch from the recorded 

dataset. The second one was a MC decoder trained 

following the aBCI framework, but with random outputs 

of the NR decoder (chance level). For each dataset, the 

three training strategies were tested against each other 

through two-sided Wilcoxon Mann Whitney tests. 

 

RESULTS 

 

Fig. 4 shows the mean AUC of the ROC curves for the 

MC decoding of the three compared training methods 

(random aBCI training / aBCI training / supervised 

training), across the three examined datasets (Runner 

BCI001 / Runner BCI002 / Gait BSI001) and using both 

labeling strategies (CENR / CNR). 

 

     Replicability study across patients: First, we could 

remark performance variations among patients, 

especially looking at the supervised trainings with mean 

AUC of the ROC going from 0.650 to 0.894. The aBCI 

decoding performances follow a similar trend. Second, 

we could also note that the aBCI decoding performances 

consistently exceed chance levels (50%, whatever the 

number of classes) and almost always in a significant 

manner (p-values < 0.05), except for the CENR labeling 

strategy on the Runner BCI002 (p-value > 0.05). 

 

     Comparison of labeling strategies: First, one should 

note that the aBCI decoding performances for the CENR 

labeling strategy always fall short of the gold standard 

performances achieved through supervised training, 

sometimes very significantly as for the Runner BSI001 

and the Gait BSI001 (p-values < 0.01). Second, a direct 

comparison of aBCI decoding performances using both 

labeling strategies reveals a discernible improvement 

when exclusively using correct neural responses. 

Notably, this enhancement is particularly pronounced in 

the case of the Runner BCI001 dataset, with the AUC of 

the ROC increasing from 0.637 to 0.819. Although not 

displayed on the figures, a p-value of 0.0022 for this 

dataset means significance when comparing the results of 

both labeling strategies through a two-sided Wilcoxon 

Mann Whitney test. No significant difference were 

observed when comparing CENR and CNR for the other 

datasets. Third, CENR presents high AUC variabilities in 

terms of standard deviation compared to low AUC 

variabilities for CNR. 

 

DISCUSSION 

 

     Replicability across patients: We showed over three 

patients that the aBCI control decoding performances are 

significantly higher than the random auto-adaptive 

trainings. This result demonstrates the potential of the 

aBCI framework for replication across different patients 

and its capacity to train / update MC decoders. aBCI 

performance is lower than supervised BCI, with essential 

cross-patient differences observed for the CENR labeling 

strategy (-29%, -12% and -15%, respectively). However, 

the cross-patient results are rather consistent for the CNR 

labeling strategy with smaller differences, down to -8%, 

-0.3% and -9% for the three patients respectively. 

 

     Improvements using CNR labeling strategy: The CNR 

labeling approach resulted in an improvement of 29%, 

13%, and 8% in AUC compared to the CENR labeling 

approach, also reducing drastically AUC variabilities as 

indicated by lower standard deviations. These 

improvements brought aBCI decoding performance 

closer to supervised ones in terms of mean AUC and 

standard deviation of AUC. Several reasons may explain  

(A)     CENR labeling strategy 

 

(B)     CNR labeling strategy 

 

  

Figure 3: Two aBCI labeling strategies, one (A) focusing on correct/error neural responses (CENR) and the other (B) 

on correct neural responses (CNR). These histogram examples show the outputs of the neural response (NR) decoder, 

�̂�𝑁𝑅, on one training fold (top) and its associated test set (bottom). The thresholds for the inclusion of epochs in the 

training set of the aBCI-based motor control (MC) decoder are based on a tradeoff parameter 𝑎 and the means and 

standard deviations of the Gaussians fitted to the correct and error class (for the CENR labeling strategy) or only the 

correct class (for the CNR labeling strategy) on the training set. 
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this performance improvement.  First, the distribution of

class ‘correct’ is possibly better evaluated as it is better 

presented in the recordings. Therefore, the model of class 

‘correct’ may have better generalization ability compared 

to the model of class ‘error’. Second, in case of detection 

of class ‘error’ by the NR decoder, supplementary 

relabeling is needed: the second most probable class is 

used as label in the CENR labeling strategy. In case of 

more than two classes in the MC decoder, it may increase 

the probability of erroneous labeling. 

 

In addition, we suggest that using the CNR labeling 

strategy, the aBCI becomes more versatile and 

compatible across different paradigms, including 

classification, regression problems and combinations. On 

the other hand, the CNR labeling strategy is more 

selective and keeps less data for the model update 

compared to the CENR labeling strategy. It may result in 

a slower MC decoder adaptation. 

 

     Limitations and perspectives: By modifying the aBCI 

labeling strategy to the only use of correct neural 

responses, we get rid of the uncertainty on relabeling 

error ones but we also reduce the quantity of data used 

for updating the MC decoder. This reduction of data 

could be dramatic for cases with lots of error neural 

responses. The labeling strategies should be further 

explored. 

 

According to the results of this study, on simple BCI 

paradigms with three patients, the aBCI framework 

seems highly promising. However, it remains essential to 

validate this approach on more complex datasets, 

featuring additional degrees of freedom and a 

combination of discrete and continuous tasks, through 

classification and regression. Such paradigms will be 

tested with our aBCI framework in the near future. 

 

A significant limitation of the study lays in the pseudo-

online simulation rather than actual online use. While 

pseudo-online simulation studies allow for greater 

parameter exploration, they may not fully capture the 

variability of online experiments, even if it was designed 

to closely mimic the online use. In the near future, we 

will test the online version of the proposed aBCI 

framework. 

 

On another hand, a more in-depth cross-paradigm and 

cross-patient study of features extraction should be 

conducted in terms of frequency and spatial 

characterization, for NR decoders. Indeed, the NR 

decoder is of critical importance in the aBCI framework 

and features extraction have not been optimized yet. For 

now, extracted features are the same as for the MC 

decoder. Therefore, studying other feature extraction 

methods would allow better interpretation of the aBCI 

performance results. 

 

CONCLUSION 

 

The aBCI framework addresses critical limitations 

associated with traditional BCIs, especially the need for 
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Figure 4: Motor control (MC) decoding performances for three MC training methods, on three datasets (as columns) 

and using two aBCI labeling strategies (as rows). Performances are given in terms of mean AUC of the ROC curves 

of the MC decoders trained using the aBCI (in red) compared to MC decoders trained using supervised learning (in 

yellow) or using random outputs of the neural response decoders (in gray). CENR stands for correct/error neural 

response and CNR stands for correct neural response. Stars denote significant differences between training methods 

(two-sided Wilcoxon Mann Whitney test, * p-value < 0.05, ** p-value < 0.01). 
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supervised retraining sessions by allowing MC decoders 

to be updated during the free use of the BCI. This 

innovation not only offers greater user autonomy but also 

the potential for more natural and intuitive control. 

 

In the continuation of the initial work of Rouanne et 

al. [12], the present paper provides valuable insights into 

the replicability and performance of the aBCI 

framework. Our investigation into using data from 

multiple patients and diverse paradigms with varying 

number of degrees of freedom, demonstrates the 

framework's adaptability. However, the variation of 

performance observed across patients and paradigms, 

highlights the need for further research to enhance the 

framework's robustness and generalizability. 

 

Furthermore, we delved into refining the labeling 

strategy for training the MC decoder, emphasizing the 

use of correct neural responses exclusively. This 

approach yielded significant improvements in aBCI 

control decoding performance, showcasing the potential 

of this labeling strategy for future development. 

 

In summary, the aBCI framework represents a promising 

avenue for advancing BCI technology, offering the 

potential for greater user autonomy and more natural 

control. Current and further exploration of the 

framework's capabilities and optimization strategies will 

undoubtedly contribute to its continued development for 

real-world applicability. 
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