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ABSTRACT: Brain-computer interfaces (BCIs) can
help people with locked-in syndrome to communicate.
While continuous speech decoding can be used in
everyday communication, navigating a computer menu
or interacting with external devices may be easier and
more reliable using a small set of distinct command
keywords.
In this preliminary study, two able-bodied epilepsy
patients, temporarily implanted with high-density
electrocorticography (ECoG) electrodes, spoke 14
potential keywords out loud in Dutch. With optimized
Support Vector Machines (SVMs), the maximal
decoding accuracy reached was a median of 93.3% for
50 repetitions per word (practical chance level 9.6%).
We also identified that a minimum of 30 repetitions was
needed to achieve this result, and determined that the
most relevant electrodes for decoding were on the
ventral sensorimotor cortex, close to the central sulcus.

INTRODUCTION

People with a neurodegenerative disease, such as
amyotrophic lateral sclerosis (ALS), can over time lose
their ability to communicate verbally. Such a loss of
communication has a direct negative impact on their
perceived quality of life [1]. Fortunately, this effect can
be assuaged: using communication devices has been
shown to have a positive impact on quality of life and
mood in dysarthric people with ALS [2].
Recently, there have been advancements in
large-vocabulary decoding using brain-computer
interfaces (BCIs) [3,4]. However, these large language
models have not yet been shown to work in a home-use
scenario. For daily communication or for controlling the
home environment, a more robust and stable solution
may be preferred. A very robust solution, using high
gamma signals for one-dimensional cursor control, has
been utilized successfully over several years [5].
However, such one-dimensional control limits the
agency of the user. The next step allowing for more
complex computer control could be the use of a limited
set of keywords. For example, using six-keyword
navigation with commands “up”, “down”, “left”,
“right”, “enter” and “back” decoded from ECoG
signals has recently demonstrated reliable control of
computer menus and environment at high accuracy
(median accuracy of 90.59%) over several months [6].
However, scaling up the individual word decoding from

ECoG has proven rather challenging due to inter-subject
variability, limited amounts of data and inherent
limitations of decoding from brain signals. Further
recent studies of keyword decoding from brain signals
achieved 47.1% accuracy decoding 50 words in a
paralyzed person with anarthria [7], 74.1% accuracy in a
person with vocal paralysis [8], and 92%–100%
decoding accuracy of 12 words in able-bodied
participants [9].
One very relevant question both for researchers working
with limited time and for BCI patients wanting to utilize
their assistive devices with as little delay as possible is
how much data is necessary to reach an acceptable
decoding accuracy. Current decoding attempts are often
limited by the small amounts of data researchers are
able to collect with transient ECoG recordings.
Therefore, determining the minimum amount of data
necessary for satisfying decoding accuracies is one of
our main goals.
In this study, we acquired high-density ECoG data from
two subjects who spoke 14 Dutch words out loud, with
S1 repeating each word 50 times. Using this data, we
investigated three specific questions: 1. What is the
highest accuracy of decoding 14 individual words? 2.
How much data is needed to reach this accuracy, and 3.
Which cortical areas are relevant for decoding?
We found that an accuracy of 93.3% (chance level
9.6%) could be reached with optimized SVMs with only
30 repetitions per word and that the electrodes
contributing to the decoding performance the most were
located on the postcentral gyrus of the ventral
sensorimotor cortex, close to the central sulcus.

MATERIALS AND METHODS

Two human subjects S1 and S2 (1 male, 1 female, 26
and 46 years old, respectively) with medication-resistant
epilepsy were implanted with 32-electrode high density
(HD-)ECoG grids with platinum-iridium electrodes, a 4
mm inter-electrode distance and 1 mm exposed
diameter. The grids were located on the left hemisphere
covering the ventral sensorimotor cortex. Participant S1
had a previous tissue resection in the left temporal
cortex. The study was approved by the Medical Ethical
Committee of the University Medical Center Utrecht in
accordance with the Declaration of Helsinki (2013). The
subjects gave written informed consent to participate in
research tasks.
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The 14 words were candidates for navigational words in
Dutch, namely (in alphabetical order): "beneden"
(down), "boven" (up), "kiezen" (choose), "links" (left),
"noord" (north), "omhoog" (upwards), "omlaag"
(downwards), "oost" (east), "rechts" (right), "selecteer"
(select), "terug" (back), "verwijder" (“remove”),
"west" (west) and "zuid" (south). During each repetition
of the task, the 14 words and “-” (for rest trials, referred
to as “rest” hereafter) were shown 5 times each in
random order and read aloud by the participant. For S1,
the task was repeated 10 times over the course of four
days, resulting in a total number of 10*5 = 50
repetitions per word. For S2, one run was recorded,
resulting in 5 repetitions of each word. HD-ECoG data
was recorded using a Micromed system at 2048 Hz.
Simultaneously, microphone data was recorded to
determine the voice onset times. Voice onsets were
defined manually as the first moment during which
speech could be audibly perceived. In S1, one trial of
the word “terug” was excluded from further analysis,
since the subject did not say it during this trial.
Data pre-processing consisted of notch filtering of line
noise (50 Hz) and its harmonics, common average
re-referencing, and high frequency band (HFB)
component extraction (70-170 Hz) using a Morlet
wavelet decomposition in 1 Hz frequency bins,
implemented via MNE-Python [10]. The
high-frequency components were then averaged across
frequencies, log-transformed and downsampled to 100
Hz.
The HFB signals of each run were “re-calibrated”, i.e.
normalized individually per run using the mean and
standard deviation of a 2-second rest period prior to the
beginning of the task. The signals were then
concatenated across runs and split into trials of 0 to 1
second after each voice onset time. Extending the trial
length and including signals from before the voice
onset, namely from 0.5 seconds before to 2 seconds
after, did not change the accuracy results and was
therefore not further pursued.
Due to the limited sample size, theoretical chance levels
and practical chance levels differ [11]. Therefore, we
used a binomial cumulative distribution to derive
statistical significance thresholds for the obtained
accuracies [11]. The practical chance levels were set at
p < 10−3 for the given sample sizes.
One repetition of every word was used as validation,
and another as part of the test set, resulting in as many
folds as there were repetitions per word. The flattened
trial data (vectorized electrodes x time-points) was used
to train an optimized Support Vector Machine (SVM)
with a linear kernel in a one-vs-one approach with
leave-one-group-out nested cross-validation. In the
inner loop, the SVM regularization parameter was
optimized using an automatic hyperparameter selection
library Optuna [12], while the outer loop was necessary
for cross-validating the classification results.
Since SVMs do not inherently provide probability
estimates, the class membership probability estimates
for the SVM were calculated with Scikit-learn [13],

which uses Platt scaling and five-fold cross-validation.
The electrode weights were determined by the L2 norm
of the respective coefficients in the trained SVM. As per
calculation of the L2 norm, we summed over the time
dimension. The electrodes with the largest absolute
classifier weights have the biggest impact on the
classification.

RESULTS

Accuracy and Misclassified Trials
In S1, when trained and tested using all 50 repetitions
per word or rest trial, the SVM reached a median
accuracy of 93.3 ± 6.7% across folds. For S2 with 5
repetitions, a median accuracy of 73.3 ± 6.7% across
folds was reached. The practical chance levels were
9.6% and 17.3% for S1 and S2, respectively - thus, both
results were well above chance.
Not performing the re-calibration, which normalized the
HFB data per run for S1, did not change the decoding
accuracy.

Figure 1: Normalized confusion matrix for S1 for 14
words and rest, with 50 repetitions for every word but
“terug” (49 repetitions).

Figure 2: Normalized confusion matrix for S2 for 14
words and rest, with 5 repetitions for every word.
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As can be seen in Figures 1 and 2, the prediction
accuracy varied between different words. Although for
S1, the highest accuracy was a 3-syllable word,
“selecteer”, there was no significant correlation between
decoding accuracy and length of the words (Pearson
coefficient of 0.16, p-value 0.90).
To see how uncertain the trained SVM for S1 was about
its predictions, we visualized the calculated class
probabilities for each trial, sorted by words (Figure 3).
For trials classified correctly (in gray), the probability
often peaked at the near-maximum for the target class
and was quite low for all non-target classes. For the
misclassified trials (in red), there were often several
probability peaks that included the target class.
Quantitatively, across all misclassified trials, the target
class was assigned the second or third highest
probability in 78% of cases, showing that even in trials
with incorrect predictions, correct patterns were still
being picked up by the SVM. In total, in 98.3% of trials,
the correct class was among the top three predictions.

Figure 3: The probability distributions of the SVM
predictions for each word and rest-trials for S1. The
target words are on the y axis, the predicted words on
the x axis. Correctly classified trials are plotted in gray,
the misclassified trials are plotted in red, and the
incorrect predictions are marked with red crosses.

Amount of Data Necessary
How much data is necessary in order to reach an
acceptable decoding accuracy? For S1, 50 repetitions
per word were recorded across 10 runs over the course
of several days (5 word repetitions per run). When
trained with the data from successive runs cumulatively,
the decoding accuracy increased (Figure 4). This
analysis uses mean accuracy values instead of medians
since the mean provides a smoother statistic over the
number of repetitions.
A mean accuracy of 68.0 ± 9.8% for S1 and 66.6 ±
11.2% for S2 was reached after the first run. A similar

result was achieved for the calculations based on
median values.
Notably for S1, even after the decoding accuracy
reached the ceiling, the variance in performance
decreased as more trials were added, suggesting a
further stabilization of the decoding performance.

Figure 4: Cumulative accuracy for SVMs as a function
of number of word repetitions.

Electrodes Relevant for Decoding
Not all of the 32 electrodes in each grid contributed to
the decoding performance in the same proportion.
In Figures 5 and 6, the positions of the grids for S1 and
S2 on the left hemisphere are shown. In addition, we
visualize the normalized absolute SVM weights to
highlight electrodes most relevant for the decoding
performance. For both subjects, the most relevant
electrodes were located close to the central sulcus on the
ventral sensorimotor cortex, an area associated with the
cortical control of articulation [14]. Importantly,
electrodes with highest SVM weights were located on
the postcentral gyrus.

Figure 5: The electrode grid of S1, with darker colors
corresponding to higher normalized SVM weights of
the electrode. The central sulcus is highlighted in
yellow.
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Figure 6: The electrode grid of S2, with darker colors
corresponding to higher normalized SVM weights of
the electrode. The central sulcus is highlighted in
yellow.

DISCUSSION

In this study, we set out to answer three questions
concerning decoding of individual words from
HD-ECoG, namely: what is the highest decoding
accuracy, what is the minimal amount of data necessary
and what are the locations of the most informative
electrodes.
We were able to reach a median accuracy of 93.3% for
decoding 14 words with 50 repetitions per word. Upon
closer inspection, we saw that in over 98% of all trials,
the correct words were among the top three SVM
predictions. This result could be used to improve
predictive performance even further, for example by
giving the user a list of top-ranking alternatives or
combining top predictions with statistics of previous use
to enable quick corrections by the user in case of
misclassification.
For controlling external devices, an accuracy of
command identification of at least 90% has been
determined as the acceptable threshold in a survey
among ALS-patients [15]. This threshold was reached
after 6 runs, corresponding to 30 repetitions per word,
see Figure 4.
For both subjects, we obtained a mean accuracy of over
66% with only five repetitions per word, which is well
above chance. While this accuracy does not yet
approach the threshold desired for long-term use, a
model trained on only five repetitions could already be
used to provide immediate feedback to the user while
continuing to update the decoder in the background. In
our experience, participants find tasks with feedback
more engaging, leading to a higher quantity of data
collection. The concrete influence of such early
feedback on both motivation and performance could be
further investigated in a future work.
The most relevant electrodes in both subjects were
located on the dorsal part of the ventral sensorimotor
cortex, with the highest weights found closest to the
central sulcus. This mirrors the results of another

ECoG-study for keyword decoding [6]. Interestingly,
most contributing electrodes seemed to be located on
the postcentral gyrus – the somatosensory area of the
brain. Since our subjects were able-bodied people, one
might attribute this result to the sensory feedback from
mouth movements. However, motor decoding from the
somatosensory cortex has previously been shown both
for amputees [16] and people with paralysis due to ALS
[17], suggesting that there is information about
movement in somatosensory areas even in the absence
of direct sensory feedback. This is in line with work on
an efference copy of voluntary movements in the
somatosensory cortex [18, 19]. It remains to be seen
whether comparable decoding performance from the
sensorimotor cortex can be achieved in locked-in
individuals using a BCI.
One important difference between our study subjects
and future locked-in users is that the voice onset times
will not be available as ground truth for training the
classifiers. As an alternative, different methods of
extracting activity onset directly from brain signals have
already been proposed and used [4,6].

CONCLUSION

In the present study, we achieved a high accuracy of
decoding 14 individual words from HD-ECoG brain
activity recorded from the ventral sensorimotor cortex
of two able-bodied subjects. For a subject with 50
repetitions per word, 30 repetitions per word were
sufficient to reach a decoding accuracy of over 90%,
and the most informative electrodes for both patients
were located in the ventral postcentral gyrus.
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