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ABSTRACT: This study deals with the adoption of deep
learning and transfer learning in motor imagery-based
brain-computer interfaces to develop a robust system with
a zero-calibration approach. Deep neural networks would
be also sought to improve the classification accuracies of
these interfaces. However, these approaches are affected
by inherent variability in their performance, so that dom-
inating uncertainty sources appears crucial. To assess the
performance variability of deep neural networks, the ef-
fects of parameter initialisation and pre-processing were
studied. EEGNet and Sinc-EEGNet were used for this
purpose. The results highlight that network’s weight ini-
tialisation significantly affect the performance. For in-
stance, classification accuracy can improve from 67 % ±
3 % to 73 % ± 3 % by just changing the weight initial-
isation. Meanwhile, EEG pre-processing does not im-
prove the performance, thus it can be avoided to reduce
the computational effort. These results pave the way for
real-time application scenarios.

Keyword: brain-computer interface, motor imagery, deep
learning, transfer learning, uncertainty.

INTRODUCTION

A motor imagery-based Brain-Computer Interface (BCI)
measures voluntarily modulated brain signals generated
while imagining a movement [1]. Notably, non-invasive
and wearable BCIs based on motor imagery have been in-
vestigated more and more [2, 3]. These typically exploit
electroencephalographic (EEG) signals acquired through
electrodes placed on the scalp [4]. During the execution
of a motor imagery task, spectral power changes occur in
the µ (7 Hz to 13 Hz) and β (13 Hz to 30 Hz) bands of
the signals recorded over the sensorimotor brain area. In
particular, event-related desynchronisation and synchro-
nisation can be observed immediately before and after
motor imagery, respectively [5]. Therefore, the interface

attempts to detect the imagined movement through the
analysis of temporal, frequency, and spatial features of
the acquired signals.
Despite their potential in several fields [3, 6–8], motor
imagery-based BCIs still suffer from many limitations.
Firstly, the user must learn how to modulate sensorimo-
tor rhythms. Secondly, motor imagery signals are hin-
dered by noise, which can be either baseline neural ac-
tivity [9] or artefacts. In addition, a large amount of data
are needed for an effective training and testing of pro-
cessing pipelines, typically relying on machine learning
[10–12]. Hence, long calibration periods (20-30 minutes)
are needed before properly using the BCI system [10].
Moreover, EEG signals suffer from a significant inter-
and intra-subject variability [13]. This implies that cal-
ibration data should be acquired for each new user and
new session of the same user. The highlighted challenges
are exacerbated when the BCI system has to discriminate
as the number of motor imagery tasks increases [14].
In this framework, research has recently focused on
deep learning methods to improve motor imagery clas-
sification, especially in multi-class problems [12, 14,
15]. However, deep learning techniques require a bigger
amount of data with respect to classical machine learning
approaches [14–16].
EEG data are typically acquired in controlled experimen-
tal conditions, but the experimental burden make it dif-
ficult to obtain large and significant datasets in practice
[16]. Therefore, common strategies to compensate for the
lack of data are data augmentation and transfer learning
(TL) [10, 16, 17]. In particular, TL is based on training a
model by relying on the knowledge gained from another
pre-trained model. This approach has the advantage of
reducing training time [12, 16, 18] or neglecting it in a
"zero calibration" scenario, where the EEG data of a sub-
ject are classified by a model identified on independent
data from other subjects.
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Figure 1: Adopted deep neural network architectures for motor imagery EEG processing, namely EEGNet and Sinc-EEGNet. The only
difference between the two is in Block 1, which is a standard convolutional layer for EEGNet and a Sinc-layer for Sinc-EEGNet. The
remaining blocks are identical in both architectures.

The combination of TL methods with deep learning-
based processing pipelines appears promising in the BCI
context [14, 16, 19]. However, it is worth emphasis-
ing that deep neural networks performance is very sen-
sitive to the weight initialisation and data pre-processing:
the former affects the training process [20–22], while the
latter improves the quality of the data [12, 15, 23, 24].
Unfortunately, in context of TL applications for motor
imagery-based BCI, there is a lack of studies investigat-
ing those performance variations [15, 21, 22], especially
regarding the pre-processing [24].
This paper thus focuses on performance variability due
to weight initialisation and pre-processing in the context
of TL for motor-imagery BCI towards a zero-calibration
approach. Notably, EEGNet [25] and Sinc-EEGNet [26]
were investigated. As common pre-processing strategies
for EEG signals consist of the use of basic filtering tech-
niques, this paper focuses on the use of band-pass filter
[27, 28] and Laplacian filter [29].
Therefore, the remainder of the paper is organised as fol-
lows. Sec. MATERIALS AND METHOD describes EEG-
Net and Sinc-EEGNet architectures as well as the anal-
ysis conducted on them by involving TL. Sec. RESULTS
presents the exploited dataset and discusses inherent re-
sults.

MATERIALS AND METHODS

The purpose of this Section is to present the architec-
tures used in the study and the analyses performed on
them. It is worth remarking that all the analyses were per-
formed under zero calibration. The Section is structured
as follows: in Sec. Architectures, EEGNet [25] and Sinc-
EEGNet [26] are presented (Fig. 1), while the methodol-
ogy proposed for comparing different setting is detailed

in Sec. Experimental Setup.
Architectures: EEGNet is one of the most commonly

used deep learning architectures in BCI [25]. It is a
low-density convolutional neural network designed to ro-
bustly extract information from EEGs. It uses both depth-
wise and separable convolutions to extract EEG features.
The architecture is structured in four blocks. In the first
block, two sequential convolutional layers are used as a
temporal filter. In the second block, a depth-wise convo-
lutional layer is used. In EEG-specific applications, this
type of layer provides a direct way to learn the spatial fil-
ters for each temporal filter, allowing for efficient extrac-
tion. The third block uses a separable convolution, which
reduces the number of parameters to be fitted and explic-
itly decouples relationships within and between feature
maps. Finally, in the classification block, the features are
passed directly to a softmax function.
Interestingly, the architecture of EEGNet resembles the
steps of the well-known filter bank common spatial pat-
tern algorithm [30], adding flexibility thanks to the end-
to-end training procedure of deep learning models. The
strengths of this architecture with respects to general-
purpose convolutional neural networks include (i) re-
duced number of trainable parameters due to the use of
depthwise and separable convolutions, (ii) applicability
to low-dimensional data, and (iii) adaptability across dif-
ferent EEG datasets and tasks [25, 31, 32].
An EEGNet variant called Sinc-EEGNet was also re-
cently proposed [26]. It consists of merging EEGNet [25]
with Sinc-Net [33], which is characterised by a convolu-
tional layer having learnable sinc functions as filters. The
main strength of Sinc-Net consists in deriving a custom
filter bank, specifically tuned for the desired application
[33]. Sinc-EEGNet consists of an EEGNet architecture in
which the first convolutional layer has been replaced by
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a sinc-layer, resulting in a reduced number of trainable
parameters [26]. Different ways for combining the two
architectures were proposed in literature [34–36]. This
works focused on the version proposed in [26]. It faith-
fully reproduced the original version of EEGNet except
for the first block, in which the first traditional convo-
lutional layer was replaced by a sinc layer [33]. The
structures of the two architectures are jointly illustrated
in Fig. 1 to stress that the only difference resides in the
first block. Such architectures are both suitable for TL,
with the Sinc-EEGNet variant that is more prone to ex-
plainability [26].

Training hyperparameters Values
n. of training epochs 1000

learning rate 0.0001
batch size 32
optimizer Adam

early stopping patience 150
weight decay 0.02

Table 1: Training setup for the conducted analyses.

Experimental Setup: The analyses performed in this
work were based on EEGNet and Sinc-EEGNet with ei-
ther 4 or 32 filters in the first block. In particular, 4 is
the optimal number of filters for EEGNet [25] and 32
is the optimal number of filters for Sinc-EEGNet [26].
The name of the architecture followed by the number of
filters is used to refer to the specific architectures (e.g.
EEGNet-4 refers to EEGNet with 4 filters in the first con-
volutional layer). Training hyperparameters were opti-
mized in a previous work [26] and they are recalled for
clarity in Tab. 1. All the analyses were done in the zero
calibration TL scenario. Notably, the leave-one-subject-
out [37] technique was used for this purpose. Once the
dataset is selected, all samples relating to a single sub-
ject are removed and the model is then trained on the re-
maining samples. The performance of the model is then
evaluated on the independent samples from the left-out
subject. Such an offline analysis simulates the straight-
forward usage of a BCI on a previously unseen subject.
Two comparative analyses were carried on by using the
above mentioned architectures. The first one consisted
of analysing the models’ performances with different
weight initialisation. The He initialisation [38] was used
in this work. To this aim, the seed for pseudo-random
generation of initial parameters was firstly varied from
42 to 56 (15 values). Then, by exploiting the optimal
seed for each model, a second analysis step was carried
on. This consisted of analysing the models’ performance
as the EEG pre-processing strategy was varied. In par-
ticular, the following three cases were tested: (i) no pre-
processing, (ii) band-pass filter from 4 Hz to 40 Hz, and
(iii) Laplacian filter.
For all the analyses, the metric adopted to assess mod-
els’ performances was the mean classification accuracy
across subjects of the selected dataset and its associated
type A uncertainty, i.e. the standard deviation divided by
the square-root of the number of averaged accuracies.

Figure 2: Mean classification accuracies and associated uncer-
tainties obtained as a function of the seed (i.e. weight initialisa-
tion) for each architecture. The dotted line refers to the random
accuracy.

RESULTS

This Section presents the results of the analyses. In
details, Sec. Dataset describes the data and its usage,
Sec. Weight initialisation impact presents the results
of the first analysis step, and Sec. Pre-processing im-
pact presents the results associated with different pre-
processing techniques.

Dataset: the benchmark dataset BCI competition IV,
2a was used for the analyses [39]. It includes EEG sig-
nals from nine healthy subjects recorded using 22 wet
electrodes. The sampling rate was 250 Sa/s. The sub-
jects performed four motor imagery tasks during two ses-
sions recorded on two different days. As the present
study adopts an inter-subjective approach, the investiga-
tions considered the only first session. Moreover, two
classes of motor imagery were used, namely left and right
hand motor imagery. Finally, each trial was epoched from
2 s to 6 s, thus including the cue and the motor imagery
windows.

Weight initialisation impact: Fig. 2 shows the re-
sults obtained for each configuration (i.e., EEGNet-
4, EEGNet-32, Sinc-EEGNet-4, and Sinc-EEGNet-32)
when varying the seed. In particular, each point rep-
resents the mean classification accuracy across the nine
subjects of the dataset together with its type A uncer-
tainty. The dotted line shows the random accuracy. As
previously found [26], Sinc-EEGNet-32 is the most ef-
fective configuration architecture, even as the seed varies.
This result was confirmed by the Kruskal-Wallis test (see
Tab. 3).
Fig. 2 shows the results obtained for each configuration
(i.e., EEGNet-4, EEGNet-32, Sinc-EEGNet-4, and Sinc-
EEGNet-32) when varying the seed. In particular, each
point represents the mean classification accuracy across
the nine subjects of the dataset together with its type
A uncertainty. The dotted line shows the random accu-
racy. As previously found [26], Sinc-EEGNet-32 is the
most effective configuration architecture, even as the seed
varies. This result was confirmed by the Kruskal-Wallis
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Figure 3: For each configuration, the results obtained for each subject with seed variation are presented in box plots, each containing
the 15 associated classification accuracy values for each seed. The dotted line refers to the random accuracy.

min (%) max (%)
EEGNet-4 67 ± 4 72 ± 4
EEGNet-32 68 ± 4 73 ± 4
Sinc-EEGNet-4 67 ± 3 73 ± 3
Sinc-EEGNet-32 76 ± 3 81 ± 3

Table 2: Minimum and maximum classification accuracies
across seed values and for each configuration. Uncertainties
associated with these mean accuracies, estimated by using the
standard deviation of the mean, are reported too.

Group A Group B p-value

EEGNet-4 EEGNet-32 0.966
EEGNet-4 Sinc-EEGNet-4 0.955
EEGNet-4 Sinc-EEGNet-32 < 0.001

EEGNet-32 Sinc-EEGNet-4 0.100
EEGNet-32 Sinc-EEGNet-32 < 0.001

Sinc-EEGNet-4 Sinc-EEGNet-32 < 0.001

Table 3: Results of post-hoc analysis with Kruskal-Wallis test.

test as extensively reported in Tab. 3.
It is important to stress that, for a specific architecture,
the performance can vary significantly with different ini-
tialisation. Tab. 2 displays the minimum and maximum
results obtained as the seed varies for each configuration.
This analysis demonstrates the importance of testing the
model’s performance with different seeds before effec-
tively using them. For example, in [26] all analyses were
performed with a fixed seed of 42, which was found to be
the worst case for most of the configurations. However,
once the seed was fixed, the accuracy resulted repeatable.
Fig. 3 also shows the results obtained for different seeds,
subject by subject. Each box plot represents the 15
classification accuracies, while the dotted line indicates
the random classification accuracy reference. Although
results are consistent among different architectures for
some subjects, there is significant variability in others.
For instance, subject A09 displays several outliers when
EEGNet is employed, resulting in performance differ-
ences of over 15 % when just varying the seed. Next, it
can be noted that the zero calibration scenario changes
the discrimination between "good" and "bad" subjects

with respect to previous literature evidence [40]. For
instance, for the notoriously good subject A03, Sinc-
EEGNet model leads to a good performance but the EEG-
Net model does not. In other case, like for A08, perfor-
mance is relatively low with the proposed approaches,
while other literature approaches led to higher perfor-
mance. In this regard, it is important to recall that the
results were obtained by training the models on data from
other subjects, which could be associated with a non-
compatible probability distribution.

Pre-processing impact: Fig. 4 shows the variations in
models’ performance by varying the pre-processing for
each configuration. The networks were initialised with a
random seed (seed = 0), but it is worth noting that com-
patible results were obtained when the best seed from the
previous step was selected. Each box plot contains the
results obtained for the nine subjects. The dotted line
indicates the random classification accuracy. As usually
proposed, one type of pre-processing has been used for
each experiment [12]. This also facilitates online classifi-
cation in terms of computational effort. The models per-
formance resulted reduced by applying a band-pass filter.
This is in contrast to what is observed by using classi-
cal machine techniques, where filtering the data trial by
trial is often recommended [15, 24, 30]. The application
of the Laplacian filter, instead, led to compatible perfor-
mance than the "no pre-processing" case. Hence, this ev-
idence suggests that pre-processing can be avoided. It is
worth noting that EEGNet was originally proposed with
a band-pass filter [25], whereas Sinc-EEGNet was pro-
posed without any kind of pre-processing [26].

CONCLUSION

Deep learning has attracted more and more attention in
the processing of EEG data for motor imagery-based
BCIs, and transfer learning promises to improve classi-
fication accuracy while reducing the calibration burden.
This would disclose a very large use of such BCI tech-
nologies in practice. However, literature results are still
quite variegated and uncertainty sources are not domi-
nated yet.
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Figure 4: For each configuration, the box plots contains the results obtained using different pre-processing. The dotted line refers to
the random accuracy.

To make a further step towards the repeatability and
reproducibility of deep neural network results, a com-
parative analysis of the performance has been proposed
for two relevant networks, namely EEGNet and Sinc-
EEGNet, when varying fundamental settings. All the
analyses were carried out under a zero-calibration ap-
proach, hence exploiting the leave-one-subject-out tech-
nique on the benchmark dataset BCI competition IV, 2a
limited to two motor imagery tasks.
It was found that the performance varies significantly
with different weights initialisation. Then, by analysing
models’ performance for varying pre-processing strate-
gies, the performance of the deep network models was
unchanged by Laplacian filter and even reduced by band-
pass filtering. This finding is in contrast to what is ob-
served by using classical machine learning, where filter-
ing the data is recommended to improve classification re-
sults. This outcome suggests the use of pre-trained deep
architectures on a new subject without the need for any
preliminary data processing. This would reduce the pre-
processing time of the data and foster an online classifica-
tion. Overall, it is worth noting that Sinc-EEGNet-32 re-
sulted the most effective architecture in accordance with
previous studies.
This preliminary analysis emphasised the importance of
carefully investigating the variability of deep neural net-
works adopted in BCI. Nonetheless, future works will
deal with extending these analyses to more dataset to
collect more evidence. Moreover, an experimental plan
will be designed for a more comprehensive uncertainty
assessment as the main networks settings vary.
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