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ABSTRACT: The auditory BCI spellers are considered
the only means of communication for late-stage patients
with severe neurological disorders such as amyotrophic
lateral sclerosis (ALS). To date, several auditory BCI
spellers have been proposed. However, they require mul-
tiple steps, visual support, or multi-channel audio sys-
tems. In this study, we proposed an ASME-speller, which
stands for Auditory Stream segregation, Multiclass, ERP
speller, that uses an auditory BCI paradigm based on au-
ditory stream segregation to detect the target of the user’s
selective attention by presenting a QWERTY keyboard-
like audio stimuli. The 64-channel electroencephalo-
gram was measured while the six subjects carried out 15-
character ASME-speller paradigms. Offline simulation
using dynamic stopping showed that the ASME speller
achieved an average accuracy of 0.73 and an average ITR
of 3.78 bits/min. The best results were achieved with an
accuracy of 0.97 and an ITR of 7.61 bits/min. These re-
sults indicate that the ASME speller can be used as a new
auditory BCI speller. This study provides more users with
a high-accuracy and intuitive new speller option.

INTRODUCTION

Brain-computer interfaces (BCIs) give their users com-
munication and control channels that do not depend on
the brain’s normal output channels of peripheral nerves
and muscles [1]. Many BCIs aimed to restore commu-
nication for locked-in patients suffering from progres-
sive motor diseases such as amyotrophic lateral sclerosis
(ALS) [2]. Many spelling protocols using visual stimuli
have been proposed [3] to realize the application of BCI
in communication. However, it is known that patients
with late-stage ALS have unreliable gaze control [4], and
the BCIs using visual stimuli are not adequate for those
patients. On the other hand, auditory BCIs do not occupy
their sight and can be used by visually impaired patients.
Thus, it is meaningful to realize the auditory BCIs for
spelling application.
Furdea et al. [5] proposed an auditory speller BCI similar
to a visual P300 speller [6]. In this system, a display of a
5 × 5 matrix containing 25 alphabet characters and voices
two number words coded with each character’s position
in the matrix was presented. One corresponded to the
row, and one corresponded to the column. The system

detected which character the users paid attention to with
two steps. The target row was detected in the first step,
and the target column was detected in the second step.
Klobassa et al. did a similar study but with a 6 × 6 matrix
containing all 26 alphabet characters and miscellaneous
[7]. Also, they changed the human voice to environmen-
tal sounds. Schreuder et al. [8] utilized the AMUSE
paradigm [9] for a spelling application. This system also
detected the target character using a two-step procedure.
They divided alphabet characters into six groups. The
target group was detected in the first step, and the target
character was detected in the second step. Each charac-
ter group and character was presented from one of the six
loudspeakers surrounding the subjects’ heads.
Some auditory speller BCIs have been proposed; how-
ever, these studies had one of the following issues. —(1)
One trial cannot determine the target character. (2) The
mapping from the character to sound streams or stimuli
is not intuitive and requires memorization or visual sup-
port. (3) It requires a multi-channel audio system, com-
plicating setup and making it unavailable to patients who
have hearing impairment in one ear.— Thus, we propose
a novel auditory speller BCI protocol for solving these
issues, the ASME-speller.

ASME paradigm: ASME (for Auditory Stream seg-
regation, Multiclass, ERP) is the paradigm for auditory
BCI based on auditory stream segregation. The auditory
stream segregation is one of the auditory illusions that
alternately presented sounds can be perceived as segre-
gated multiple streams [10]. e.g., when sounds that have
different frequencies (A and B) are presented alternately
(ABABAB...), they can be perceived as two segregated
sound streams (AAA... and BBB ...). The authors pro-
posed an auditory BCI paradigm utilizing auditory stream
segregation [11–14]. In this system, the oddball sequence
was put into segregated streams and presented simultane-
ously to the subjects, and the subjects paid attention to
the target stimuli in the target stream. The target stream
was estimated by detecting ERP responses elicited by the
target stimuli. To date, we tested the ASME paradigm
with two streams [11, 12], three streams [13], and four
streams [14].

The ASME speller:
The QWERTY is a keyboard layout widely used in com-
puters and smartphones, and many personal computer
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Figure 1: The conceptual diagram of the ASME-speller.

and smartphone users are expected to be familiar with the
QWERTY layout. Since all 26 characters are mapped to
three-row keys, the entire keyboard layout can be repre-
sented with three streams ASME paradigm. Fig. 1 shows
the QWERTY layout and the corresponding tone stream
on the ASME-speller. Three key rows are assigned to the
sound stream, and the top, middle, and bottom rows cor-
respond to the stream, which has high, middle, and low-
frequency bands, respectively. Within each stream, each
character is presented as a spoken voice. When the user
is going to type "T," the user thinks of which row "T" is
located in the QWERTY layout. Since the character "T"
is in the top row, the user will listen to the corresponding
stream (the stream with a high-frequency band) and pay
attention to the "T" sound stimuli. Since one stimuli are
paid attention to and the others are ignored, this sequence
can be considered an oddball, and the target stimuli elicit
ERPs, including P300 [11–14]. The target character can
be estimated by detecting ERP responses with a machine
learning approach. This study tested the ASME-speller
paradigm with 15 characters as a pilot study.

MATERIALS AND METHODS

Experimental Design: Two different conditions were
conducted. (1) The ASME condition: Each row of the
QWERTY layout was spoken by a different person and
had a different pitch, so each row could be perceived as
a different sound stream. (2) The control condition: all
stimuli were spoken by the same person and had the same
pitch. In a session, four runs were conducted with chang-
ing conditions. In total, two ASME runs and two control
runs were conducted. In a run, 15 trials were conducted.
Before starting each trial, the target character was shown
on the display in front of the subject, and the subject was
instructed to pay attention to the target stream and the
target character. All subjects were familiar with the QW-
ERTY layout, and no visual support was provided. 225
stimuli (15 targets and 210 nontargets) were delivered in
a trial, and the trial length was about 46 seconds.

Stimuli: The fifteen characters (E, R, T, I, O, A, S, D,
H, L, C, V, B, N, and M) were selected for this study.
Each voice stimuli were generated by Amazon Web Ser-
vices (AWS) Amazon Polly. AWS Amazon Polly is a
cloud service that converts text into synthesized spoken
audio. The voice stimuli of characters corresponding to
the top (E, R, T, I, and O), middle (A, S, D, H, and L), and
bottom (C, V, B, N, and M) row on the QWERTY layout
were generated with the voice ID of Ruth (Female), Kevin
(Male child) and Joey (Male), respectively. The voice IDs
were selected as the top, middle, and bottom rows could
be perceived as higher, middle, and lower pitch streams.

Figure 2: The time chart of presented stimuli block.

To enhance the difference between each stream, the char-
acters corresponding to the top and bottom are shifted in
pitch with +2 halftones and −2 halftones, respectively.
Fig. 2 shows the "block" of the sequence. Each block had
15 stimuli in total. Within each stream, the order of the
characters was randomized. For both ASME and control
conditions, the stimuli were presented in the order of the
characters corresponding to the top, middle, and bottom
rows of the QWERTY layout. In a trial, 15 blocks were
played. The stimulus onset asynchrony (SOA) was set to
0.2 s. All 15 characters were generated with the voice ID
of Kevin for the control condition, and no pitch shifting
was applied. All other parameters for the control condi-
tion were the same as the ASME condition. All sound
stimuli were delivered by Fireface 802 (RME, Germany)
with headphones (MDR-EX800ST, Sony, Japan).

Signal Acquisitions: The following 64-channel (Fp1,
Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2,
F4, F6, F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4,
FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4, C6, T8,
TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8,
TP10, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz, and O2) electroencephalogram
(EEG) were measured with Ag-AgCl passive electrodes
(Easycap, Easycap GmbH, Germany). The vertical and
horizontal electrooculogram (EOG) were also measured.
All EEG and EOG signals were amplified and recorded
with BrainAmp DC and BrainAmp MR plus (Brain Prod-
ucts GmbH, Germany). The reference and the ground
electrodes were placed on the right and left ear mastoid,
respectively. The signals were recorded at a sampling
frequency of 1000 Hz. Subjects sat on a comfortable
chair placed in a soundproofing electromagnetic shielded
room.

Subjects: Six subjects (ages 22 – 27, mean: 24.0) par-
ticipated in this study. This study protocol was approved
by the Review Board on Bioengineering Research Ethics
of Shibaura Institute of Technology and was conducted in
accordance with the Declaration of Helsinki. Before the
experiment, subjects were given information orally and in
writing, and written informed consent was obtained from
all subjects. No subject had known neurological disor-
ders or hearing problems.

ERP Analyses: The EOG artifacts were removed with
independent components analysis (ICA). The measured
signals were bandpass filtered by 2nd order Butterworth
filter in the range of 1–30 Hz, and responses to each stim-
ulus were epoched in the range of −0.1–1.0 s relative to
stimulus onset. Then, all epochs were downsampled to
250 Hz. To assess the separability between the responses
to the target and nontarget stimuli, signed-r2 values [15]
were obtained.

Binary Classification: The EOG artifacts were re-
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moved using independent components analysis (ICA).
The measured signals were bandpass filtered by 2nd or-
der Butterworth filter in the range of 0.1–8Hz, and re-
sponses to each stimulus were epoched in the range of
0–1.0 s relative to stimulus onset. Then, all epochs were
downsampled to 250 Hz. The mean amplitude in the fol-
lowing ten intervals ([0.0, 0.1; 0.1, 0.2; 0.2, 0.3; 0.3,
0.4; 0.4, 0.5; 0.5, 0.6; 0.6, 0.7; 0.7, 0.8; 0.8, 0.9; 0.9,
1.0] seconds relative to the stimulus onset) were used as
the classification feature. The dimension of the feature
vector was 10intervals×64channels= 640. The classifi-
cation accuracy (AUC: area under the receiver operating
characteristic curve) between the responses to the target
and nontarget stimuli was obtained by a shrinkage linear
discriminant analysis (Shrinkage-LDA) [15] with 4-fold
chronological cross-validation. For the binary classifica-
tion, the chance level was 0.5. The information transfer
rate (ITR) was calculated using the equation proposed by
Wolpaw et al. [16].

BCI simulation (target character detection): In the
BCI simulation, the target character of the trial was es-
timated. For both ASME and control conditions, 30 tri-
als were conducted. The BCI simulation was conducted
with chronological 3-fold cross-validation by training
data from 20 trials and testing with data from 10 trials.
From the training data, the mixing and unmixing matri-
ces were derived using ICA to remove EOG artifacts. The
mixing and unmixing matrix was applied to the training
data to remove EOG artifacts, and the feature vector was
obtained with the same method described in the section
"Binary Classification", and Shrinkage-LDA was trained.
The classification output f (xi) = wT xi + b was defined
as follows, where xi is a feature vector, w is the weight
vector obtained by LDA, and b is a bias. Each feature
vector xi had a corresponding class label yi ∈ {−1,1},
and assumed that class label +1 is the target and −1 is
nontarget. The LDA was trained as f (x)≥ 0 if xi was in
class +1 and f (x)< 0 if xi was in class −1. The mixing
and unmixing matrix derived using ICA was applied for
epoch data in each trial in test data, and the feature vec-
tors were obtained. Then, the classifier output f (xi) for
each feature was computed, and the class with the largest
mean value of classifier output was estimated as the final
classification result. The classification results were eval-
uated by accuracy. For the BCI simulation, the chance
level was 0.067.

Dynamic Stopping: To optimize the trial length, the
dynamic stopping strategy [17, 18] was also tested for
BCI simulation. Dynamic stopping could be triggered
after presenting the 75 stimuli in each trial. A one-sided
Welch’s t-test was applied to the classifier outputs f (x) of
the class, between which the mean value of f (x) was the
largest and second largest. If the difference was signifi-
cant (p < 0.05), the classification procedure was stopped,
and the classification result for the trial was determined
with the data up to that stimuli.

RESULTS

Table 1: Binary classification results. The classification accu-
racy (AUC) for the ASME and control conditions are shown.
The chance level was 0.5.

Subject ASME control
A 0.72 0.53
B 0.71 0.52
C 0.86 0.63
D 0.76 0.58
E 0.63 0.56
F 0.74 0.61

Average 0.74 0.57

Fig. 3 shows grand averaged ERP responses to the tar-
get and nontarget stimuli. In the time range from 0.2 to
0.4 seconds, N2 was observed in the ASME condition.
Furthermore, in the time range from 0.4 to 0.8 seconds,
P300 was observed. The amplitude of N2 and P300 were
larger for the target stimuli than for nontarget stimuli,
and the absolute value of the signed-r2 was also larger,
which implies it was informative for the machine learn-
ing model for classification. In contrast, a clear differ-
ence between the responses to the target and the nontarget
stimuli was not observed in the control condition. The ab-
solute value of the signed-r2 was small compared to that
for the ASME condition; the separability between the re-
sponse to the target and nontarget stimuli was small com-
pared to that for the ASME condition. Tab. 1 shows the
binary classification accuracy (AUC) for the ASME and
control conditions. The accuracy for the ASME condition
was significantly larger than that for the control condition
(p = 0.031, two-sided Wilcoxon signed-rank test). Fig.
4 shows the result of the BCI simulation (detecting the
target character of the trial) without dynamic stopping.
The average accuracy was 0.72 (ASME) and 0.31 (con-
trol), and the accuracy of the ASME condition was sig-
nificantly larger (p = 0.031, two-sided Wilcoxon signed-
rank test). The average ITR was 2.79 bits/min (ASME)
and 0.726 bits/min (control), and the ITR of the ASME
condition was significantly larger (p = 0.031, two-sided
Wilcoxon signed-rank test). Fig. 5 shows the result of
the BCI simulation using dynamic stopping. The aver-
age accuracy was 0.73 (ASME) and 0.31 (control), and
the accuracy of the ASME condition was significantly
larger (p = 0.031, two-sided Wilcoxon signed-rank test).
The average ITR was 3.78 bits/min (ASME) and 0.775
bits/min (control), and the ITR of the ASME condition
was significantly larger (p = 0.031, two-sided Wilcoxon
signed-rank test). After applying dynamic stopping, the
ITR (Information Transfer Rate) was improved without
any drop in accuracy. The best ITR was reached at 7.61
bits/min with an accuracy of 0.97 (subject C). The worst
ITR was 0.902 bits/min with an accuracy of 0.40 (sub-
ject E). Fig. 6 shows the results of BCI simulation using
dynamic stopping in the confusion matrix.

DISCUSSION

The letters in each row of the QWERTY keyboard layout,
mapped to three sound streams, were presented as voice
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Figure 3: The grand averaged ERP responses to the target (solid line) and nontarget (dashed line) stimuli on electrode Cz (Orange)
and F3 (Blue). (a) ASME condition. (b) control condition. Timepoint 0 is the stimulus onset. Stimuli were delivered with SOA of 0.2
s. The colormap below each ERP plot shows the signed-r2 values on each electrode. The topography map shows the responses to the
target, nontarget stimuli, and the signed-r2 values from the top in each time range denoted as blue and orange mesh in the ERP plot.

stimuli, and it was shown that it is possible to pay selec-
tive attention to a single target letter stimulus. In addi-
tion, ERPs such as P300 and N2 were elicited only to the
target stimuli by paying attention to them. Furthermore,
the target letter could be detected with a machine learn-
ing approach with high accuracy. It can be concluded that
the ASME-speller can be realized. However, the number
of characters in this study was limited to 15. Thus, the
speller with 26 letters needs to be tested. By applying
the dynamic stopping procedure, the average Information
Transfer Rate (ITR) was found to be 3.78 bits/min. Tab. 2
shows ITRs achieved in previous studies. The ITR of this
study is superior to other studies except for the work by
Schreuder et al. [8]. However, the best ITR was higher
than theirs (7.61 bits/min v.s. 7.55 bits/min). ASME-
speller has the capability to achieve higher or competitive
ITR (Information Transfer Rate) and deliver high perfor-
mance.

Necessity of stream segregation: The ASME-speller
was achieved by dividing the sound stimuli into three
groups, corresponding to each row of the QWERTY key-
board layout. However, these stimuli can also be deliv-
ered with a single stream, and it was not clear whether
the sound stimuli needed to be delivered with segregated
groups. Therefore, as a control, the condition of deliver-
ing all stimuli with a single stream was also tested in this
study. Compared to the ASME condition, the amplitude
of ERPs was smaller in the control condition, resulting

Table 2: ITRs achieved in previous studies. The ITR of [19]
was read from a figure.

Average ITR (bits/min) Authors
1.54 Furdea et al. [5]
2.0 Klobassa et al. [7]
3.4 Höhne et al. [20]

5.26 Schreuder et al. [8]
about 1.3 Höhne et al. [19]

1.11 Kleih et al. [21]
2.38 Markovinović et al. [22]
3.78 Kojima et al. (this paper)

in low classification results. In this study, the SOA was
set to 0.2 s; however, in ASME condition, SOA within
the stream was 0.6 s. It is expected that this slower SOA
within the stream made the subject find the target stim-
uli easier and feel less overlap between stimuli. It can
be concluded that utilizing the ASME paradigm makes
SOA within the stream slower and making easier to find
the target stimuli from the sequence.

CONCLUSION

In this study, the ASME-speller, which detects the users’
target letter from 15 characters mapped to three sound
streams corresponding to the QWERTY keyboard layout,
can be realized as an auditory speller BCI. The achieved
ITR was faster than most of the proposed auditory BCI
spellers. This study also proved to provide stimuli di-
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Figure 4: The results of the BCI simulation (estimating the target character of the trial) without dynamic stopping. (a) Accuracy and
(b) ITR.

Figure 5: The results of the BCI simulation (estimating the target character of the trial) using dynamic stopping. (a) Accuracy and (b)
ITR.

Figure 6: The confusion matrix for conditions (a) ASME and (b) control in the BCI simulation using dynamic stopping.

viding into groups by using auditory stream segregation,
drastically improving the ASME-speller’s performance.
Furthermore, the target letter can be determined with a
single trial, and no visual support is required if the users
are familiar with the QWERTY layout. Additionally, All
sound stimuli can be delivered with a monaural audio
channel, solving the issues proposed by the auditory BCI

spellers. This system has the potential to be used by pa-
tients who have severe motor impairment or hearing im-
pairment in one ear with high ITR, and it provides users
with more choices of auditory BCI spellers.
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