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ABSTRACT: Prior studies have explored the capability 

of decoding balance perturbations using 

electroencephalography (EEG) in single-trial 

classifications. The potential for real-time detection of 

perturbation-evoked potentials (PEPs) could facilitate 

the implementation of brain-computer interfaces (BCIs) 

in everyday assistive systems. Achieving the detection of 

these potentials in a subject-independent manner is 

crucial for this advancement. A key step towards this 

objective is the development of a model capable of 

identifying balance loss without requiring individual 

calibration for each subject and enabling online analysis. 

Deep neural networks have recently achieved significant 

milestones and have been successfully applied in neural 

engineering. In this study, we propose a lightweight 

neural network to assess the viability of single-trial 

classification of PEPs in a subject-independent manner. 

Our model was tested on three balance perturbation 

datasets, demonstrating superior performance in subject-

independent classification compared to EEGNet, rLDA, 

and RBF-SVM classifiers. 

 

INTRODUCTION 

 
Early detection of balance loss offers a promising avenue 

for preventing falls by enabling brain-computer 

interfaces (BCIs) as an assistive technology. In recent 

years, progress has been made in investigating EEG 

studies related to balance loss [1], [2], [3], [4], [5]. These 

studies have shown that perturbation-evoked potentials 

(PEPs) appear in brain signals during balance 

perturbations [2]. Such event-related potentials (ERPs) 

comprise different EEG components, including the N1 

amplitude -a large negative potential in the fronto- 

central electrodes, with PEPs primarily characterized by 

this component. N1 is followed by a positive component, 

P2, and finally a negative wave called N2. Numerous 

studies have examined how the brain responds to 

different balance perturbations and have explored the 

effects of various stimuli on PEPs. Traditionally, 

research aimed to uncover the neuroscientific 

characteristics of PEPs by studying the grand average 

signals of PEPs [1], [4], [6], [7]. However, few studies 

have explored the feasibility of incorporating these brain 

potentials into BCI systems [8], [9]. One of the main 

steps to achieve this goal is being able to predict balance 

perturbation in single trials prior to muscle activation to 

maintain balance. Previously, single trial classification of 

PEPs was investigated from spontaneous EEG data [9], 

[10], [11]. In another study, we attempted to classify 

PEPs in single trials in a simulated asynchronous task and 

further evaluated the detection of different types of 

perturbation such as angle and direction by using the 

brain signals [8], [12].  

Given the low signal-to-noise ratio (SNR) in EEG 

recordings and differences between persons, a 

classification model trained with EEG data from one 

person is not transferable to another. This requirement for 

individual calibration of the BCI system for each user can 

be both time- and energy- consuming, as it involves 

collecting sufficient data for every participant. This 

challenge motivated researchers to develop methods that 

can mitigate this issue. 

Domain adaptation and transfer learning are two 

techniques developed to address the differences in 

distribution between target and source domains [13]. 

However, these methods face challenges that limit their 

practical application in real-world scenarios [14]. For 

instance, these techniques rely on the offline adaptation 

of feature distribution and typically apply adjustments to 

the pre-built model. To address the challenge of subject-

independent classification, we propose a novel neural 

network designed to detect balance perturbation through 

subject-independent classification using single trials.  

Our model is designed based on neurophysiological 

principles in a manner that keeps the number of 

parameters low while simultaneously extracting subject-

independent PEP features. We evaluated our model on 

three EEG balance perturbation datasets: two open-

access datasets, and data collected during our two 

previous studies. We then compared the performance of 

our model against traditional classification methods, 

including rLDA and SVM, in addition to well-

established neural networks like EEGNet. 

  

 

MATERIALS AND METHODS 

 
Datasets: We evaluated the models' performance using 

three datasets. In the first and second datasets, thirty 

healthy participants were instructed to stand and walk on 

a treadmill-mounted balance beam [15], [16]. Two 

electromechanical motors, positioned on the left and 

right sides of the treadmill, and they were connected to 

the participants' waists via steel cables. These motors 

were programmed to rotate a bar attached to the cables 
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by 90 degrees, inducing mediolateral pull perturbations. 

During both the standing and walking scenarios, each 

participant experienced 150 perturbations over a session 

lasting 10 minutes. Brain activity throughout these 

sessions was recorded using a 128-electrode EEG system 

(BioSemi ActiveTwo, BioSemi) with a sampling rate of 

512 Hz. 

The third dataset includes neural recordings from 30 

healthy participants, collected through two separate 

experiments, with each study involving 15 participants 

[8], [17]. The experimental setup was similar across both 

studies, where participants were seated in a glider that 

was tilted in both left and right directions in a simulated 

aviation scenario. An industrial robot was used to impose 

these perturbations by tilting the glider at angles of 5 and 

10 degrees to simulate balance disruptions. In both 

experiments, participants completed six blocks, with 

each block consisting of 40 perturbations in the first 

study and 50 in the second study, respectively. Brain 

activity was measured at a sampling rate of 512 Hz with 

63 electrodes using an EEGO amplifier (ANT-neuro, 

Enschede, Netherlands). 

To simplify the discussion of dataset-specific findings 

and analyses, we will adopt specific notations. "Dataset 

1" and "Dataset 2" will be used to denote the stand and 

walking waist perturbation conditions, respectively. 

"Dataset 3" will represent data from whole-body balance 

perturbations in simulated aviation scenarios. This 

notation will ease the discussion of dataset-specific 

findings and analyses. 

 

Pre-processing: For each dataset, the preprocessing steps 

were consistent: data was first bandpass-filtered from 0.5 

to 30 Hz and subsequently downsampled to 64 Hz. PEP 

epochs were extracted from the time range of 0 to 1.5 

seconds following the perturbation's start. Moreover, rest 

epochs were segmented before each perturbation onset. 

Bad EEG channels were detected and eliminated from 

the rest of analysis. To filter out noise and artifacts, we 

initially applied Artifact Subspace Reconstruction (ASR) 

with a threshold value of 30 [18]. This step was followed 

by the application of independent component analysis 

(ICA) [19] combined with ICLabel [20] for the removal 

of eye and muscle artifacts from the EEG data. The 

processed data were then re-referenced using the 

common average reference (CAR) technique, and the 

removed channels were reconstructed through 

interpolation. 

 

Proposed model: The proposed model begins with a two-

dimensional convolutional neural network (CNN) to 

capture the initial temporal and spatial dependencies of 

EEG data. This CNN layer uses 15 filters with size of 

(2,3), followed by batch normalization and the activation 

function of exponential linear units (ELUs) and a dropout 

layer with rate of 0.3. Drawing inspiration from the 

mixed depthwise convolutions introduced by Google 

researchers [21], the model divides the 15 filters into 

three tensors, with each tensor comprising 5 filters. 

Subsequently, depthwise convolutions are applied to the 

spatial dimension of each tensor individually, with a 

kernel size denoted by C, which corresponds to the 

number of channels. Following the extraction of spatial 

features, the model applies depthwise convolutions to the 

temporal dimension of the data, employing varying 

temporal kernel sizes. The sizes of these temporal kernels 

are 4, 8, and 16, representing temporal durations of 62, 

125, and 250 milliseconds, respectively. These temporal 

kernels were chosen to enable the model to extract the 

long and short temporal representation of the data. The 

output features are then subjected to adaptive averaging 

with a size of 40 and a dropout layer with a rate of 0.65. 

Afterward, pointwise convolutions with filter size of 5 

were applied to the concatenated output from the three 

tensors, and followed by a dropout layer of 0.5.  

All depthwise and pointwise convolutions incorporate 

batch normalization, the ELU activation function, and a 

novel attention mechanism known as simAM [22]. 

Inspired by findings in visual neuroscience, simAM is 

based on the observation that informative neurons exhibit 

distinct firing patterns compared to their neighbors, 

leading to the spatial suppression of surrounding 

neurons. 

In our research, we aim for the model to focus on key 

electrodes and time periods that are critical for PEP 

detection. In EEG balance studies, the N1 component 

appears with high negative amplitude in the frontocentral 

part of the brain, creating a contrast with other time 

points and brain areas. This feature allows the simAM 

mechanism to highlight these crucial periods and 

electrodes, thereby enhancing PEP identification. 

The simAM method compute the importance of each 

neuron by using the energy function to obtain the linear 

separability among neurons 

𝑒𝑡
∗ =

4(𝛽2+𝜆)

(𝑡−𝛼)2+2𝛽2+2𝜆
         (1) 

In the above formula, t represents the target neuron, and  

λ denotes a coefficient with a value of 1e −4.  

α and β indicate the mean and variance, respectively, 

obtained by the formula provided below: 

𝛼 =  
1

𝑀
∑ 𝑥𝑖

𝑀
𝑖 = 1      (2) 

𝛽
2

=  
1

𝑀
∑ (𝑥𝑖 − 𝛼)𝑀

𝑖 = 1    (3)
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Figure 1. The architecture of proposed model 

 

Where i is the index of the neuron, and M indicates all 

the neurons within each filter. 

Finally, simAM transforms the input feature map into a 

new feature of the same size by applying the sigmoid 

function to the energy function. 

𝑋 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (
1

𝐸
)  ⊙  𝑋         (4) 

 

The last layer of the model consists of a flatten layer and 

a fully connected layer to generate prediction scores for 

the PEP and non-PEP classes. The architecture of the 

model is illustrated in Fig. 1. 

 

Training and Evaluation Approaches: The model was 

implemented in PyTorch on a GeForce RTX 3080 GPU. 

AdamW optimizer with a learning rate of 0.001 and 

weight decay of 1e-2 were used to optimize the 

parameters. Additionally, we utilized a batch size of 50, 

and the model was trained for 250 epochs. The evaluation 

of each model's (classifier's) performance was conducted 

through the accuracy metric for binary classification 

tasks.  

 

EXPERIMENTAL RESULTS 

ERP Analysis: In Figure 2, we displayed the grand 

averaged EEG potentials in relation to the onset of 

perturbations across the three datasets. The analysis 

revealed that in the first and second datasets, the 

Perturbation Evoked Potentials (PEPs) consisted of three 

distinct components: P1, N1, and P2. Notably, the 

standing condition exhibited higher PEP amplitudes 

compared to the walking condition. For the third dataset, 

the PEPs were predominantly characterized by the N1 

component located in the brain's central region. These 

observed differences can be linked to the task designs' 

variations; specifically, perturbations in the first and 

second datasets targeted the participants' waist, while the 

third dataset involved perturbations affecting the entire 

body. Additionally, the N1 component in the third dataset 

demonstrated the highest negative amplitude compared 

to those in the first and second datasets. 

Classification: For the first and second dataset, we 

utilized a leave one subject out approach with 30 

participants to assess our model's PEP detection. In this 

approach, data from one subject served as the test set 

while data from the remaining 29 subjects constituted the 

training set. For the third dataset, we employed the 

recorded data from the first study as the training set and 

the data collected from the second study as the test set. 

As a foundation for comparison, we selected shrinkage 

LDA, RBF-SVM, and EEGNet [23] as baseline models 

to evaluate the performance of our proposed model.  In 

addition to accuracy, we compared each model's number 

of trainable parameters. For the sLDA and SVM 

classifiers, we limited the number of features to 600 

using the Fisher algorithm to select the best 600 features. 

This was done to prevent overfitting, maintaining a 

feature-to-sample ratio of 1/10. Tab. 1 and 2 shows the 

obtained accuracy for the standing and walking 

conditions for 4 models respectively. In the standing 

condition, it can be seen that neural network models can 

improve the accuracy substantially in comparison with 

traditional machine learning algorithms such as sLDA 

and SVM. The model exhibited superior performance 

compared to sLDA and SVM, with improvements of 

9.2% and 8%, respectively. The proposed model 

achieved the highest performance, with an average 

accuracy of 86.9%, and it outperformed the EEGNet 

model by achieving a 1.6% increase in accuracy while 

having 16% fewer parameters.
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Figure 2. The scalp topography of three datasets in the time range of 0, 100, 200, 300, 400 and 500 ms. For improved visualization, 

we adjusted the amplitude scales differently for each dataset. The scales range from [-4.7, 4.7], [-2.2, 2.2], to [-12.2, 12.2] microvolts. 

 

 

Table 1: Results of Dataset 1 (standing condition) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

 

77.7 

 

600 

SVM 78.9 600 

EEGNet 85.3 3248 

Our model 86.9 2727 

   

 

Tab. 2 presents the average subject-independent 

classification accuracy for the walking condition, noting 

that due to the smaller PEP amplitude compared to the 

standing condition, the accuracy in detection of 

perturbation was lower than the standing condition. For 

this dataset as well, the proposed model led in 

performance, attaining an accuracy of 71.8%. EEGNet 

came in second with a 70% accuracy rate. Following 

these, SVM and LDA demonstrated accuracies of 66.7% 

and 65.3%, respectively. 

 

Table 2: Results of Dataset 2 (walking condition) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

 

65.3 

 

600 

SVM 66.7 600 

EEGNet 70 3248 

Our model 71.8 2727 

   

 

Lastly, the model's performance was assessed on the third 

dataset, which involved participants experiencing 

balance perturbations in a simulated cockpit scenario. 

Our model demonstrated superior performance 

compared to other models. Within neural networks, our 

model achieved 3.2% higher accuracy than EEGNet 

while maintaining 20% fewer parameters. Additionally, 

SVM showed comparable performance to the neural 

network models, with only 4% difference in accuracy. 

 

Table 3: Results of Dataset 3 (whole body perturbation) 

Model Accuracy 

(%) 

#of parameters 

 

sLDA 

SVM 

 

87.8 

92.4 

 

600 

600 

EEGNet 92.8 2208 

Our model 96 1752 

   

 

 

DISCUSSION 

 

In this research, we investigated the potential of detecting 

PEPs in a subject-independent manner through EEG 

single trials, by employing a lightweight CNN-based 

model. Our approach initially involves extracting spatio-

temporal patterns from the data, followed by the 

implementation of temporal mixed depthwise 

convolutions using three distinct temporal kernel sizes to 

accommodate the variability of ERP durations. 

Additionally, we incorporated a novel attention 

mechanism, simAM, designed to focus on discriminative 

features. This attention mechanism is unique in its ability 

to introduce 3D weights into the model without 

increasing its parameter count, thereby maintaining a low 

parameter structure for the model. To assess our model's 

efficacy, we applied it to three balance perturbation 

datasets and compared its performance against traditional 

models like sLDA and SVM, as well as advanced neural 

networks such as EEGNet. Our findings indicate that 
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neural networks surpass traditional machine learning 

methods in subject-independent classification across all 

datasets. Moreover, our model achieved accuracy 

improvements over EEGNet by 1.3%, 1.8%, and 3.2% 

for the first, second, and third datasets, respectively. 

Future endeavors will focus on evaluating our model 

across additional ERP datasets, also subsequent research 

will aim at enhancing the model's capability to extract 

complex spatial patterns of the data. 

 

CONCLUSION 

 

We introduced a novel CNN model that utilizes mixed 

depthwise convolutions and the simAM attention module 

to enhance the detection of PEPs from spontaneous EEG 

data. The efficacy of this model was evaluated across 

three distinct datasets and its performance was 

benchmarked against both traditional machine learning 

techniques and advanced neural networks. Our findings 

demonstrate that our model achieved the highest 

accuracy rates when compared with the other models 

examined. 
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