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ABSTRACT: Monitoring the spectral characteristics of 

brain signals can provide insights into the underlying 

processes responsible for their generation. In brain-

computer interface (BCI) applications, this is relatively 

important in decoding neural activity as it can provide a 

means to differentiate between various tasks or mental 

states. To capture spectral variations, herein, we focus on 

time-varying autoregressive models (TVAR). We 

introduce a framework designed to efficiently optimize 

and apply these models to multi-trial and multi-channel 

data, including electroencephalography (EEG) signals. 

Our approach was validated using EEG data from motor 

imagery tasks.  

 

INTRODUCTION 

Time-varying autoregressive (TVAR) models are 

widely utilized in brain-computer interface (BCI) 

research, serving various purposes including time-

varying power spectral density estimation to analyze 

shifts in brain dynamics [1], [2], [3], as well as feature 

extraction crucial for online BCI applications [4], [5], [6], 

[7], [8], [9], [10]. AR models, known for their ability to 

capture prominent frequency components in the signals, 

provide a powerful tool for brain activity analysis. The 

integration of TV estimation techniques further enhances 

their effectiveness, enabling real-time monitoring of 

temporal variations in these components. 

The central focus of these models revolves around the 

autoregressive (AR) coefficients, which play a 

fundamental role in shaping the power spectrum 

characteristics of the analyzed signal. By segmenting the 

data into overlapping quasi-stationary windows, one can 

monitor the temporal evolution of these coefficients. This 

approach facilitates the detection of changes in the signal 

dynamics associated with alterations in the user's 

cognitive processes or task-related activities. The 

estimated coefficients can subsequently be used for 

classification purposes. Alternatively, to streamline the 

process and eliminate the need for data segmentation, 

recursive techniques such as Recursive Least Squares 

(RLS) and Kalman Filtering (KF) can be employed. 

These methods provide at each time sample an estimate 

of the AR coefficients without the necessity of dividing 

the data into separate windows, which typically results in 

increased processing time. 

Despite the widespread application of TVAR models, 

limited studies have focused on optimizing their use, 

particularly in the context of feature extraction and 

classification within BCIs. Many studies resort to 

windowing approaches due to the absence of clear 

guidelines on employing recursive techniques. They also 

rely on predefined model structures derived from 

previous literature, potentially compromising model 

performance. One of the primary questions that we will 

try to answer here is how to effectively tune and integrate 

these models into multi-channel signals and apply them 

to unseen datasets and online BCI scenarios. Schlögl et 

al. [4], Pfurtscheller et al. [5] and Brunner et al. [7] were 

among the first to provide a comprehensive framework 

on TVAR models for single-trial electroencephalography 

(EEG) classification. They proposed methods to 

optimally tune the model hyperparameters, as well as 

strategies for integrating recursive techniques, as these 

techniques also impact the estimation results.  

Inspired from [4], [5] and [7], we herein, explore 

further the application of these models and we present a 

concise methodological approach that can be readily 

implemented and extended to other TVAR model 

variants such as TV multivariate AR models [11], [12] 

and root tracking techniques [13], [14] for offline and 

online BCI applications. We furthermore propose the 

incorporation of an additional feature derived from the 

tracking process, in addition to the commonly employed 

TVAR coefficients, for classification purposes. This 

recommendation arises from our observation of increased 

accuracy when incorporating this additional feature. To 

validate our approach, we used a publicly available EEG 

dataset that consists of four different motor imagery tasks 

[7], [15]. 

 
MATERIALS AND METHODS 

Time-varying Autoregressive Model (TVAR): In a 

TVAR model, the current value of a time-series 𝒚 is 

expressed as a linear combination of its past values [16], 

𝑦(𝑛) = ∑ 𝑎𝑘(𝑛)𝑦(𝑛 − 𝑘)

𝑝

𝑘=1

+ 𝑒(𝑛), 𝒆~𝑁(0, 𝑅)  (1) 

where 𝒂(𝑛) = [𝑎1(𝑛) … . 𝑎𝑝(𝑛)]
𝑇
 are the AR 

coefficients at time point 𝑛, 𝑝 denotes the model order 

which specifies the number of past lags considered and 

𝑒(𝑛) is zero mean, white gaussian noise with variance 𝑅. 
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In practical terms, Eq. 1 assumes that the analyzed signal 

is the output of a TV filter driven by white gaussian noise. 

The characteristics of the filter as well as its temporal 

variations are captured by the TVAR coefficients.  

Kalman Filter (KF): One common technique used to 

estimate and track the coefficients of Eq. 1 is the KF. The 

KF models the temporal evolution of the AR coefficients 

as a random walk driven by white gaussian noise (also 

known as process noise) with variance 𝑄, 

𝒂(𝑛) = 𝒂(𝑛 − 1) + 𝒘(𝑛), 𝒘~𝑵(0, 𝑄)     (2) 

𝑄 essentially dictates the magnitude of the expected 

coefficient variations. Eq. 1 can thus be expressed as, 

𝑦(𝑛) = 𝒂𝑇(𝑛)𝝋(𝑛) +  𝑒(𝑛),      𝒆~𝑁(0, 𝑅)     (3) 

where 𝝋(𝑛) = [𝑦(𝑛 − 1) …  𝑦(𝑛 − 𝑘)]𝑇 is the regressor 

vector, at time point 𝑛, containing past lags of the time-

series. Using the AR state-space representation of Eqs. 2-

3, the KF algorithm can be employed to estimate the AR 

coefficients (i.e., state variables) at each time point,  

�̂�(𝑛) = 𝑦(𝑛) − 𝝋𝑻(𝑛)�̂�(𝑛 − 1)                   (4) 

𝑲(𝑛) =
𝑷(𝑛 − 1)𝝋(𝑛)

𝑅 + 𝝋𝑻(𝑛)𝑷(𝑛 − 1)𝝋(𝑛)
                (5) 

𝑷(𝑛) = 𝑷(𝑛 − 1) + 𝑄𝑰 − 𝑲(𝑛)𝝋𝑻(𝑛)𝑷(𝑛 − 1)  (6) 

�̂�(𝑛) = �̂�(𝑛 − 1) + 𝑲(𝑛)�̂�(𝑛)                     (7) 

where �̂�(𝑛) is the one-step ahead prediction error, �̂�(𝑛) 

are the tracked TVAR coefficients and 𝑲(𝑛) is the 

Kalman gain matrix which minimizes the a posteriori 

error covariance 𝑷(𝑛). The combination of KF and AR 

models will be referred to, herein, as KF-TVAR. 

KF-TVAR hyperparameters: As indicated in [4], the 

performance of the KF-TVAR approach depends on 

several factors. Here, we focus on the following model 

hyperparameters: 

• The AR model order 𝑝 as it impacts the representation 

of the captured underlying dynamics. 

• The values 𝑅 and 𝑄 of the measurement and process 

noise, respectively. 𝑄 defines the magnitude of the 

AR coefficient variations, whereas 𝑅 represents the 

variance of the underlying noise. 

• The initial value of the covariance matrix 𝑷. A 

common practice is to set the initial covariance matrix 

𝑷(0) to a diagonal matrix 𝑷(0) = 𝑃0𝑰 where 𝑃0 is 

typically assigned a large value. This choice 

determines the initial uncertainty associated with the 

estimated coefficients and affects the early KF 

tracking behavior. 

• The initial coefficient estimates �̂�(0). If the initial 

coefficients approximate the true values at the 

analyzed time point, the KF-TVAR model is more 

likely to quickly converge or adapt to changes in the 

AR coefficients over time. 

Other factors influencing the KF-TVAR performance: 

In addition to the aforementioned hyperparameters, the 

performance of the KF-TVAR model can be influenced 

by various signal preprocessing steps. For instance, the 

choice of sampling rate has been demonstrated to impact 

the KF-TVAR tracking accuracy [17]. Here, we focus on 

spatial filtering methods and particularly on the common 

average reference (CAR) filtering technique which is 

widely applied in BCI research. 

Adapting and tuning the KF-TVAR method on multi-

channel and multi-trial signals: BCI systems typically 

rely on multi-channel signals. These systems are built 

upon a training dataset to establish associations between 

the features and the desired target tasks. Once adequately 

trained, they can make predictions or classifications on 

unseen data. This study focuses on extracting TVAR 

coefficients as key features for classification purposes. 

Since the data includes multi-channel and, typically, 

multi-trial signals we propose a two-step approach. The 

first step involves optimizing the KF hyperparameters, 

namely 𝑅, 𝑄, 𝑃0, �̂�𝑇(0) in a data-driven manner for 

varying AR model orders. The second step includes 

extraction of the TVAR coefficients and classification. 

During this step, the optimal AR model order is selected 

based on cross-validation (CV). Our proposed approach 

can be summarized as follows, 

Step 1) Select the first, in chronological order, trial from 

each class of the training set.  

Step 2) For an ascending model order 𝑝 (e.g., 𝑝 =
1 … 12) , apply the KF-TVAR approach to each channel 

and tune the model hyperparameters 𝑋𝑝 =

[𝑅, 𝑄, 𝑃0,�̂�𝑇(0)] using a genetic algorithm (GA) [18] or 

any other global optimization technique. As objective 

function, based also on the work of Schlögl et al. [4], we 

propose the average normalized mean squared error 

(NMSE) within the selected trials defined as, 

𝐽(𝑋𝑝) =
1

𝐶
∑

‖�̂�𝑘‖2
2

‖𝒚𝑘‖2
2

𝐶
𝑘=1                           (8)  

where 𝐶 is the number of classes (and therefore trials 

used for model optimization), �̂�𝑘 is the a priori error of 

Eq. 4 and  𝒚𝑘 the corresponding channel signal belonging 

to the kth class/trial. The optimization process can be 

performed separately for each channel, yielding different 

sets of hyperparameters. However, an alternative strategy 

involves averaging Eq. 8 across all channels to obtain a 

unified set of hyperparameters.  

Step 3) For each model order 𝑝, use the obtained 

hyperparameter set/sets 𝑋𝑝 and apply the KF-TVAR 

technique to all subsequent training trials to extract the 

TVAR coefficients from each channel. Furthermore, as 

an additional feature we propose the TV trace of the 

covariance matrix 𝑷(𝑛) (Eq. 6). Within each trial, the 

feature vector at each time point consists of the 

concatenated AR coefficients and KF covariance traces 

from all channels resulting into a vector of dimension 𝑀 ·
𝑝 + 𝑀, where 𝑀 is the number of channels. If the 

covariance trace is excluded, the vector's dimensionality 

becomes 𝑀 · 𝑝.  

Step 4) For each model order 𝑝, employ a machine 

learning algorithm to map the relationship between 

TVAR coefficients and the various target classes. The 

optimal AR order 𝑝𝑜𝑝𝑡  can be selected through cross-

validation within the training set. Note that the same AR 
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model order is applied across all channels. 

Step 5) Use 𝑝𝑜𝑝𝑡  and the set of hyperparameters 𝑋𝑝𝑜𝑝𝑡
 

obtained in step 2 on a new dataset or for online tracking. 

Data: The proposed KF-TVAR methodology was 

applied to dataset 2a of the BCI competition IV 

(https://www.bbci.de/competition/iv/) [15]. This dataset 

consists of EEG recordings from nine subjects during 

four cue-based motor imagery tasks, namely movement 

imagination of the tongue, the left and the right hand and 

both feet. The recordings were obtained on two different 

days. Each session consisted of 72 trials from each class. 

At the start of each session, a recording lasting 

approximately 5 minutes was conducted to assess the 

influence of the electrooculogram (EOG). The EEG data 

comprised 22 channels, sampled at a rate of 200 Hz, and 

bandpass-filtered within the range of 0.5 to 100 Hz. 

Signal preprocessing: All the analysis was conducted 

in Matlab (The Mathworks Inc.). The EOG from the 

initial 5-minute recordings was utilized to perform linear 

regression on the EEG. The coefficients obtained from 

this regression were then applied to remove the influence 

of EOG artifacts from all subsequent EEG recordings 

during the session. The EEG signals were then resampled 

to 64Hz and were temporally aligned around the cue 

onset, with a window spanning from -2 to 7 seconds. We 

analyzed the data with and without CAR filtering. 

Applying the KF-TVAR methodology: Initially, the 

KF-TVAR optimization was employed to each channel 

separately (single-channel optimization) and we 

extracted as features for classification only the TV-AR 

coefficients. To examine the effect of the initial 

coefficient estimates �̂�(0), we first set them to 0 and then 

we allowed the GA to optimize them. We then included 

the TV trace of the 𝑷(𝑛) matrix as an extra feature for 

classification. Finally, we examined the approach of 

obtaining one set of KF-TVAR hyperparameters for all 

channels (multi-channel optimization). The different 

approaches were categorized as follows: 

Single-channel optimization and feature extraction: 

For each channel and each investigated model order, the 

GA provided an optimal hyperparameter set 𝑋𝑝 by 

minimizing Eq. 8. These values were then used to extract 

KF-TVAR features. We examined the following 

scenarios,  

• sC0W0: �̂�(0) set to 0, TV-AR coefficients 

extracted for classification. 

• sC0W1: �̂�(0) optimized by the GA, TV-AR 

coefficients extracted for classification. 

• sC1W0: CAR rereferencing, �̂�(0) set to 0, TV-AR 

coefficients extracted for classification. 

• sC1W1: CAR rereferencing, �̂�(0) optimized by the 

GA, TV-AR coefficients extracted for 

classification. 

• sC1W1+: CAR rereferencing, �̂�(0) optimized by 

the GA, both TV-AR coefficients and TV 𝑷(𝑛) 

trace extracted for classification. 

Multi-channel optimization and feature extraction: 

For each model order, the GA provided a unified set of 

hyperparameters 𝑋𝑝 by minimizing the average of Eq. 8 

across all channels. The scenarios we examined are 

summarized below. 

• mC1W1: CAR rereferencing, �̂�(0) optimized by 

the GA, TVAR coefficients extracted for 

classification. 

• mC1W1+: CAR rereferencing, �̂�(0) optimized by 

the GA, both TVAR coefficients and TV 𝑷(𝑛) trace 

extracted for classification. 

Finally, for both single-channel and multi-channel 

approaches, the optimal model order 𝑝𝑜𝑝𝑡  was selected 

based on the CV performance. Subsequently, the KF-

TVAR 𝑋𝑝 set provided by the GA, corresponding to 𝑝𝑜𝑝𝑡 , 

(i.e., 𝑋𝑝𝑜𝑝𝑡
) was used to estimate KF-TVAR features. 

Classification: By applying the KF-TVAR 

methodology within each trial of the first session 

(Session 1) we obtained features at each time sample (see 

Step 3). Since all trials were aligned to the cue onset, we 

utilized a sample-by-sample classification approach 

wherein a shrinkage linear discriminant analysis (sLDA) 

model was trained on each individual time sample 

relative to the cue onset (covariance shrinkage was 

applied using the Matlab toolbox covShrinkage [19]). 

Additionally, we employed a trial-based 10x1 fold CV 

scheme. This enabled us to estimate the CV accuracy 

within a trial over time (referred to as Session 1 CV). 

As described earlier, the dataset included also a second 

session of EEG measurements obtained on a different day 

(Session 2). Using the optimized KF-TVAR 

hyperparameters from the first session we extracted TV 

features from trials of the second session (without 

reapplying the KF-TVAR optimization procedure). We 

investigated two scenarios. In the first scenario, for each 

participant we predicted the motor imagery task within 

each trial at the time point of maximum accuracy 

identified in the first session. The sLDA classifier was 

derived at that specific time point using all the data from 

the first session (referred to as Session 2 Prediction). In 

the second scenario, we retrained the sLDAs through 

10x1 fold CV (similarly as Session 1 CV) on the second 

session (referred to as Session 2 CV). These scenarios 

were both analysed to understand whether decreases in 

accuracy resulting from session transfer stem from the 

features extracted or indicate the need for recalibration of 

the sLDA classifier. A similar approach was also 

followed in Brunner et al. [7]. 

Statistics: For statistical testing we employed 

Wilcoxon’s signed-rank test, along with Benjamini-

Hochberg [20] correction for multiple comparisons. 

RESULTS 

Fig. 1 depicts the average runtime (over all 

participants) in seconds for the single-channel and the 

multi-channel optimization approaches as a function of 

the model order 𝑝. As the model order increases, runtime 

increases in both methods, with a slightly lesser impact 

observed for the multi-channel approach. Nevertheless, 
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the overall runtime remains under 1 second. It’s 

important to note, however, that runtime, is also 

influenced by factors such as the number of channels 

(here 𝑀 = 22), sampling rate and trial length. 

In Fig. 2, we present the classification accuracies (%) 

obtained for different scenarios using different 

optimization approaches (single-channel vs multi-

channel optimization). Fig. 2a depicts the maximum 

value of the TV CV accuracy in Session 1 for all 

participants (Session 1 CV). In Fig. 2b, we identified, for 

each participant, the time point of maximum accuracy on 

Session 1 and utilized this time point to predict imagined 

movement in trials of Session 2. The KF-TVAR features 

were extracted from the EEG signals of Session 2 using 

the optimal hyperparameter sets obtained in Session 1 

(Session 2 Prediction). Fig. 2b illustrates the resulting 

prediction accuracies. In Fig. 2c, KF-TVAR features 

were extracted from the EEG signals of Session 2 using 

the optimal hyperparameter set obtained in Session 1; 

however, the sLDA models were retrained using a 10x1 

fold CV approach on Session 2 (Session 2 CV). The 

maximum accuracies acquired for each participant are 

depicted in Fig. 2c.  

 
Figure 1: Average runtime (over all participants) for the single-

channel and multi-channel KF-TVAR optimization approaches 

as a function of the AR model order 𝑝 (on a 13th Gen Intel(R) 

Core TM i7-1355U using MEX files and a parallel pool of 10 

workers). The GA was executed for 50 generations using the 

default ga Matlab settings. The upper and lower bounds for the 

hyperparameters were set as 𝑄: [0, 𝑖𝑛𝑓], 𝑅: [0, 𝑖𝑛𝑓], 
𝑃0: [0, 𝑖𝑛𝑓], �̂�(0): [−2,2]. 

First, we observed that CAR rereferencing led to 

increased accuracies (see results from sC0W0/ sC0W1/ 

sC1W0/ sC1W1 – significant increases (p<0.027) were 

found in Session 1 CV and Session 2 Prediction). 

Optimizing the initial AR coefficients �̂�(0), resulted into 

significant increases only in Session 1 CV, suggesting a 

possible dependence on session specific characteristics. 

Second, multi-channel optimization frequently resulted 

in higher predictive performance compared to single-

channel optimization (see sC0W0/ sC0W1/ sC1W0/ 

sC1W1 vs vs mC1W1 and sC1W1+ vs mC1W1+). Third, 

the augmented feature set containing both the TVAR 

coefficients as well as the TV KF covariance trace led to 

significantly higher accuracies compared to considering 

only the TVAR coefficients (see sC0W0/ sC0W1/ 

sC1W0/ sC1W1 vs sC1W1+ and mC1W1 vs mC1W1+). 

Overall, mC1W1+ exhibited superior performance 

compared to all other methods (p<0.05 except for the 

scenario Session 1 CV, where sC1W1+ and mC1W1+ had 

similar performance). 

By applying session transfer from Session 1 to Session 

2 (Session 2 Prediction) we observed an anticipated 

statistically significant decrease (p=0.007) in accuracy in 

all methods. However, after retraining the sLDA models 

on Session 2 while maintaining the same extracted KF-

TVAR features as before, the differences were no longer 

statistically significant.  

To provide a more holistic view of the temporal 

evolution of the classification results within each trial, in 

Fig. 3, we present the TV accuracies obtained for the 

various scenarios across each participant. Here, we used 

the proposed multi-signal mC1W1+ approach. The 

optimal AR model orders were found to be 5, 5, 10, 7, 12, 

3, 10, 4 and 2 for Participants P1, P2, P3, P4, P5, P6, P7, 

P8 and P9, respectively. 

DISCUSSION 

We presented a framework for optimal application 

of the KF-TVAR models on cue-based motor imagery 

tasks for the purposes of synchronous classification and 

prediction. Schlögl et al. [4] and Brunner et al. [7] have 

extensively examined the performance of these models 

and outlined a detailed process for optimizing them. 

Additionally, Brunner et al. [7], applied their 

methodology to the same motor imagery dataset analysed 

here. The difference of our study lies in the number of 

channels included in the analysis, the speed of the 

optimization process, as well as the methods applied for 

it. Brunner et al. [7] focused solely on channels C3, Cz, 

and C4, optimizing all relevant hyperparameters based on 

CV classification outcomes. In our approach, we allowed 

the inclusion of multiple channels, and we decoupled the 

KF optimization, enabling it to operate independently of 

the classification process (Fig. 1). Moreover, the 

utilization of GAs facilitates faster processing by 

eliminating the need to iterate through various 

hyperparameter values. The only hyperparameter that 

was selected based on CV was the AR model order 𝑝.  

We decided to use single trials to optimize the KF 

hyperparameters in order to reduce computation runtime. 

We specifically selected the first trials from each class of 

the training set, assuming they were relatively free from 

significant artifacts. Our main goal during optimization 

was to identify the most suitable initialization 

hyperparameters for the KF. While the initialization 

phase influences tracking performance, the KF’s 

adaptability and recursive nature, enables it to adjust to 

variations in the data. Thus, incorporating additional 

trials into the optimization process is unlikely to lead to 

significant changes in the final results. Regarding 

including single trials from all classes, the decision aimed 

to identify appropriate initialization hyperparameters that 

equally accommodate the signal characteristics of all 

classes, without favoring any specific class over others. 

We further observed that using a single set of 

hyperparameters for all channels increased classification 

accuracies. We hypothesize that imposing uniform rate 
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of AR changes across all channels enhances 

discriminability in classification tasks and improves 

robustness against noisy channels. We also opted to 

apply the same AR model order across all channels, as 

assigning a unique order to each channel resulted in 

inferior classification performance (not shown here). 

Instead of relying on traditional model selection criteria 

such as the Akaike or Bayesian information criterion, we 

chose the optimal model order based on CV classification 

results. In [9], conventional AR model selection methods, 

typically applied in time-series analysis, were found 

inadequate for capturing discriminative EEG features 

related to motor imagery tasks. This implies that 

traditional system identification and signal analysis 

approaches may not always translate effectively for 

classification purposes. In some cases, complex tasks 

may necessitate a higher-order AR model to capture 

informative temporal patterns, whereas simpler tasks 

may be adequately represented by a lower-order model.  

Lastly, we propose including the TV trace of the KF 

covariance matrix 𝑷(𝑛) (Eq. 6) as an additional feature 

alongside the TVAR coefficients. This recursively 

estimated feature contributes positively to the 

classification performance. Changes in the trace of this 

matrix over time indicate fluctuations in the variability of 

the estimated coefficients. Large trace variations may 

correspond to periods of significant changes in the 

underlying EEG signals, such as transitions between 

 
                                         (a)                                                        (b)                                                (c)  

Figure 2: Boxplots depicting the (a) maximum CV accuracy (%) across participants on Session 1 using different KF-TVAR 

optimization approaches (Session 1 CV), (b) prediction accuracy (%) on Session 2, defined as the accuracy obtained on the time 

point of maximum accuracy identified in Session 1, along with the classifier derived at that specific time point (Session 2 

Prediction) and (c) maximum CV accuracy (%) across participants on Session 2 (Session 2 CV). Features were extracted using the 

KF-TVAR hyperparameter sets obtained from Session 1. The sLDA was trained on Session 2 using a 10x1 fold CV procedure. 

The various colored lines represent different participants and depict the accuracy changes resulting from the application of different 

optimization approaches within the specific participant.  

 
Figure 3: Temporal evolution of the accuracy (%) for each participant based on the proposed mC1W1+ optimization method. The 

plotted curves depict the instantaneous accuracy achieved using a sample-by-sample classification approach. The black vertical 

line at n = 0s denotes the cue onset. Session 1 CV (red line) refers to the TV accuracy obtained through CV in Session 1. Session 

2 Prediction (purple line) represents the TV accuracy estimated by extracting KF-TVAR features using the optimal hyperparameter 

sets obtained from Session 1, as well as the sLDA models trained on Session 1. Session 2 CV (cyan line) refers to the TV accuracy 

estimated by extracting KF-TVAR features using the hyperparameter sets obtained from Session 1, and training the sLDA models 

through CV on Session 2. The theoretical chance level was 25% (dashed horizontal black line at 25%). 
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different states or tasks. Based on our results (Fig. 2), this 

feature augmentation led to significantly higher 

classification accuracies. In terms of signal 

preprocessing, we found that CAR filtering generally led 

to improved classification performances compared to no 

spatial filtering.  

We observed a significant decrease in accuracy 

when predicting Session 2 motor imagery tasks using 

optimal KF-TVAR hyperparameter sets and sLDA 

models from Session 1 (Session 2 Prediction). This 

outcome was anticipated, considering Session 2 was 

conducted on a separate day. To determine whether this 

decrease stemmed from the TVAR estimation procedure 

or the classification algorithm, we extracted KF-TVAR 

features on Session 2 using the hyperparameters of 

Session 1 and retrained the sLDA models. The CV 

accuracy was found to be similar to that of Session 1, 

suggesting no necessity to readjust the KF-TVAR 

tracking, but rather the sLDA algorithm (e.g., using an 

adaptive sLDA). 

While direct comparisons may not be feasible due to 

variations in CV strategies and the number of channels 

employed, we reference the results obtained in [7]. For 

scenarios Session 1 CV, Session 2 Prediction and Session 

2 CV the average, across participants, 0.9 quantile of the 

classification accuracy was 54.28%, 39.3% and 51.12%, 

respectively. In contrast, the proposed mC1W1+ 

algorithm achieved 63.4%, 58.3% and 63.4%, 

respectively.  

Our approach, initially designed for synchronous 

classification, can be readily adapted to asynchronous 

BCI applications. This can be achieved by either 

optimizing KF-TVAR on continuous data or by 

segmenting the data and extracting optimal KF-TVAR 

hyperparameters, as described here. Once the optimal 

KF-TVAR hyperparameters are determined, the TVAR 

coefficients can be continuously tracked. Finally, the 

method can be extended to other TVAR variants such as 

the multivariate TVAR models [7], [11]. Rather than 

using TVAR coefficients for classification, future work 

will explore AR-based root tracking techniques [13], 

[14], [21]. These techniques directly track the poles and 

zeros of the signal-generating system, capturing its 

dominant spectral components. This transition from AR 

coefficients to poles and zeros, could offer additional 

predictive value in discriminating various EEG tasks. 

 
CONCLUSION 

In conclusion, the methods discussed offer a robust 

framework for effectively applying TVAR models on 

BCI tasks. Future work will focus on further optimizing, 

speeding up and improving their application.  
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