
Neural network transfer learning with fast calibration for
mental imagery decoding

Pierre Guetschel1*, Théodore Papadopoulo2, Michael Tangermann1

1Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen, Netherlands;
2INRIA, Université Côte d’Azur Valbonne, France.

*Thomas van Aquinostraat 4, Nijmegen, 6525GD, Netherlands. E-mail: pierre.guetschel@donders.ru.nl

Introduction: A typical decoding challenge faced with brain-computer interfaces (BCI) is the
small dataset size compared to other domains of machine learning like computer vision or
natural language processing. A possibility to tackle this lack of training data is through transfer
learning, but this is non-trivial because of the non-stationary of EEG signals. Consequently,
explicit calibration phases at the start of BCI sessions are usually required.
In this study, we show how a deep neural network can be used in the context of motor imagery
transfer learning, while still allowing for a session-specific calibration phase and without a
computationally expensive model fine-tuning.

Methods, Materials and Results: We introduce a simple domain adaptation technique. It first
learns an embedding (i.e., abstract vectorial representation)
across subjects to deliver a generalized data representation. It
then feeds the embeddings into subject-specific or
session-specific simple classifiers. The embedding functions
were obtained by training EEGNet [1] using a
leave-one-subject-out (LOSO) protocol, and the embedding
vectors were classified by the logistic regression algorithm.
We conducted offline experiments on multiple motor imagery
datasets from the MOABB library [2]. Our pipeline was
compared to two baseline approaches: EEGNet without
subject-specific calibration and the standard Filter-Bank
Common Spacial Patern (FBCSP) [3] pipeline in a within-subject training.

Discussion: We observed that the representations learned by the embedding functions were
non-stationary across subjects, justifying the need for an additional subject-specific calibration.
We also observed that the subject-specific calibration improved the score. Finally, our data
suggest, that building upon embeddings requires fewer individual calibration data than the
FBCSP baseline to reach satisfactory scores.

Significance: Our method allows to use deep learning and all its recent advances for EEG
decoding while still having a session-specific calibration in a reasonable time.
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