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ABSTRACT 

The establishment of the process–structure–property linkage is essential for designing new materials 

with desired properties. Based on the concept, the discovery of new materials has been accelerated in the 

field of functional and bio- materials by combining quantum and molecular modeling tools with efficient 

machine learning methods. However, in the case of structural materials, even though the development of 

Integrated Computational Materials Engineering (ICME), it is still difficult to efficiently design new 

materials because of the uncertainties within models and experimental data. In the present paper, our 

recent development of a general methodology for extracting the linkage between hierarchical 

microstructure and process conditions as well as properties will be reviewed. In the proposed method, 

the uncertainties will be captured in the form of probability density functions using deep learning 

methods. 

Since microstructures of typical structural materials are composed of finite kinds of dissimilar phases 

developing competitively with totally different physical processes, they are supposed to have different 

geometrical features while maintaining spatial orders. The framework, thus, has two functional 

components: one is for extracting geometrical features of material microstructures necessary to 

decompose each different microstructures, and the other is for clarifying spatial orders among the 

extracted characteristic components. The method was applied for generating virtual steel microstructures 

obtained after a certain continuous cooling process and those for desired mechanical properties. The 

obtained results show that the proposed methodology not only generates realistic microstructural images 

comparable to real experimental images but also clarifies a part of microstructures critically affecting the 

target property. The proposed approach has been developed to help designing the optimum welding 

parameters as well as structural materials with an improved weldability. 
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INTRODUCTION  

Since the performance of structural materials is highly dependent on their microstructures, 

the materials design approach has mainly focused on optimizing microstructure to satisfy 

product-level performance requirements. In addition, microstructures of structural 

materials are usually composed of various phases developed with different kinetic 

processes to each other. Accordingly designing structural materials with targeted 

performance requires a combined strategy of bottom-up modeling and simulation 
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approaches which take into account the development of various levels of hierarchical 

material microstructures as well as their effects on the properties [1]. Especially in the 

case of welding process, since materials are subject to variety of temperature histories in 

heat affected zone (HAZ), it is expected to develop a method which can efficiently predict 

the microstructures and their properties in HAZ. Considering these facts, computational 

materials science and multiscale mechanics modeling play key roles in designing 

structural materials, which has brought much attention to the development of Integrated 

Computational Materials Engineering (ICME) in the materials community [2]. On the 

other hand, computational materials science and microstructural optimization based on 

numerical models encounter many uncertainties, such as stochasticity of processes, 

incomplete understanding of underlying physics, lack of complete data to quantify 

material microstructure, and ambiguity even in the selection of mathematical descriptors 

representing the hierarchical microstructures [3]. These uncertainties sometimes prevent 

us to apply the simple materials informatics approach, in which attention is focused 

mainly on data mining and providing convenient and powerful tools for designing or 

selecting new materials, and hence brought us difficulty in inverting process–structure 

and structure–property relations. 

To take into account these uncertainties, the authors have developed a data-driven 

approach composed of two different kinds of convolution neural networks [4,5]. One is 

for extracting descriptors representing the hierarchical microstructure and the other for 

understanding the correlation between a spatial arrangement of the extracted descriptors 

and corresponding process parameters or mechanical properties. The present paper is a 

brief review of our results obtained for the several problems of extracting process–

structure [4] and structure–property [5] linkages. 

METHODOLOGY 

EXTRACTION OF MICROSTRUCTURAL FEATURES AND THEIR ARRANGEMENTS 

Metallurgists implicitly share the feeling that material microstructures are composed of 

finite kinds of dissimilar phases or small-scale microstructures. In addition, since 

individual small-scale microstructures develop competitively with completely different 

formation kinetics, they are supposed to have different geometrical features while 

maintaining certain spatial orders depending on process conditions such as cooling rate 

and holding temperature. Following this understanding, we demonstrated that a 

convolutional neural network (CNN) provides an efficient route to extract a finite number 

of geometrical features representing each small-scale microstructure and successfully 

provide an unsupervised segmentation for steel microstructures [6]. The concept was 

further implemented into a variational autoencoder to enable the automatic generation of 

virtual microstructures of steel [4]. In this framework, we adopted a vector quantized 

variational autoencoder (VQVAE) [7] to extract a certain number of characteristic 

geometrical features from micrographs of steel as well as to reveal their spatial 

arrangement in the microstructure. 
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Fig. 1 Characterization of material microstructures by VQVAE 

Fig.1 shows the schematic of the architecture of VQVAE. As mentioned above, 

VQVAE is used for the extraction of a finite number of geometrical features representing 

each small-scale microstructure in an unsupervised way. It is composed of a 

convolutional encoder and a convolutional decoder. The encoder maps input 

microstructure images into the corresponding spatial arrangement of characteristic 

microstructures (index list), and the decoder maps the extracted features back to the 

original microstructure images. For example, as candidates of the characteristic 

microstructures of steel alloys, ferrite and martensite phases or their grain boundaries can 

be considered. As a result, we can extract the index lists of characteristic small-scale 

microstructures constructing the input microstructure images. A more detailed discussion 

of the strategy for capturing the qualitatively different characteristic microstructures can 

be found in [4].  

EXTRACTION OF P-S/S-P LINKAGE 

The spatial arrangement of microstructures has a strong correlation with process 

conditions, such as cooling rate and holding temperature, and mechanical properties. A 

pixel convolutional neural network (PixelCNN) [8,9] was applied to reveal spatial orders 

of small-scale microstructures as a function of process parameters/mechanical properties. 

Fig. 2 shows the schematic of the architecture of PixelCNN. PixelCNN is used for the 

determination of spatial correlation among extracted characteristic microstructures which 

is dependent on processing parameters and/or material properties 𝐡. PixelCNN is an 

autoregressive model for building the joint distribution of each component over a spatial 

arrangement (index list) 𝒙 = {𝑥1, 𝑥2,⋯ , 𝑥𝑛} as the following product of conditional 

distributions: 

 

Fig. 2 Determination of spatial orders of small-scale microstructures as a function of process 

paramters/mechanical properties by PixelCNN 

Characterization of material microstructures by VQVAE
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𝑃(𝒙|𝐡) = 𝑃(𝑥1|𝐡)∏𝑃(𝑥𝑖|𝑥2,⋯ , 𝑥𝑖−1, 𝐡)

𝑛

𝑖=2

,                                (1) 

where 𝒙 represents the two-dimensional arrangement of extracted characteristic structures 

𝑥𝑖, and 𝐡 is the given condition. Since each 𝑥𝑖 corresponds to some small-scale 

characteristic microstructure, Eq. (1) can be understood to represent a certain stochastic 

spatial interaction among them. This enables us to capture stochastic spatial correlation in 

the target material structures. This is one of the important advantages of our framework. 

Owing to this definition of spatial correlation, the uncertainties behind the generation of 

material microstructures can be considered.  

APPLICATION OF PROPOSED APPROACH 

AUTOGENERATION OF STEEL MICROSTRUCTURE 

Using the trained network, microstructures can be generated for given conditions such as 

processing parameters and/or material properties. First, we obtain the probability 

distribution of spatial arrangement of characteristic microstructures by giving desired 

conditions into the trained PixelCNN. Then, a two-dimensional spatial arrangement of 

microstructures sampled from the distribution can be converted into a corresponding 

micrograph by the trained decoder. As a result, we can construct a stochastic mapping 

from desired conditions into material microstructures. The detailed procedure of the 

autogeneration of material microstructures was given in our previous paper [4]. 

CONTINUOUS COOLING MICROSTRUCTURE 

As an example of the applications of the proposed approach, we considered the problem 

of autogeneration of microstructure of low-carbon-steels obtained after a certain 

continuous cooling process [4]. An Fe-0.15C-1.5Mn (wt.%) low-carbon steel samples 

were austenitized at 1000 ℃ and cooled at 1.0, 3.0, 10.0, and 30.0 ℃/s to room 

temperature. To create a training dataset, square patches (128 × 128 pixel) are cropped 

from the original microstructure images (1024 × 786 pixel). In total, 52 800 square 

images were cropped from 160 original images. 

We trained VQVAE and PixelCNN presented in Figs. 1 and 2 using the training 

dataset. In this application, the cooling rate was given as the condition 𝐡 to PixelCNN. As 

a result of training, we can obtain a stochastic mapping from the cooling rate to the 

corresponding microstructures. Fig. 3 shows the generated microstructures corresponding 

to the given cooling rates by the proposed methodology along with the sampled training 

images in the dataset for each cooling rate.  
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Fig. 3 Original microstructures images and generated microstructures images corresponding 

to the given cooling rates. Parts (a)-(b) are original microstructures for each of the four 

cooling rates, respectively. Parts (e)-(h) are generated microstructures for each of the four 

cooling rates, respectively. Each panel has four microstructure images. 

These results indicate that the proposed method can produce qualitatively realistic 

microstructure images for each cooling rate in the sense that the generated microstructures 

have similar features to those observed in training microstructure images in terms of the 

basic topology of microstructures and a similar trend relative to the change in the cooling 

rate. It should be emphasized that the introduced method can generate new 

microstructures in the sense that the generated microstructure images are not exactly the 

same as the images in the training microstructure dataset. In addition, it should be noted 

that this method can generate an ensemble of microstructures illustrating the distribution 

of material microstructures for any given parameters. In this way, the uncertainty of 

microstructure resulting from the stochastic nature of their formation kinetics can be 

naturally treated, and hence help to understand the process–structure linkage. 

To validate the generated microstructures quantitatively, we consider two traditional 

descriptors of microstructure morphology: the volume fraction and the average grain size. 

We calculated the ferrite volume fraction for 1000 training and 1000 generated images for 

each of the four cooling rates. Fig. 4 shows the box plot of the calculated ferrite volume 

fraction for the training images and the generated images corresponding to each cooling 

rate. In terms of mean values, the ferrite volume fractions of the generated images for all 

cooling rates are in satisfactory good agreement with those of the training images. Also, 

the volume fraction of ferrite in the generated images in Fig. 4 clearly shows a similar 

trend of variances to the observed microstructures; as the cooling rate increases, the 

variance of the volume fraction of ferrite also increases. 

(a) (b) (c) (d)

(e) (f) (g) (h)
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Fig. 4 Box plots of the ferrite volume fraction in (a) the microstructure patches cropped from 

the original images, and (b) the microstructure patches generated by the proposed 

methodology. The black lines and green triangles in the boxes denote median and mean 

values of sets of images for each cooling rates, respectively. 

Next, we consider the average grain size in a micrograph. Fig. 5 shows the box plots of 

the local average grain sizes and their mean values as the overall averages for each patch 

cropped from original microstructures and the generated images. The local average grain 

sizes are calculated for 1000 training and 1000 generated images for each of the four 

cooling rates. The trend of the predicted average grain size is in good agreement with the 

trend of the grain size calculated using the original microstructure images. This result 

demonstrated that the proposed approach can also capture the trend of the traditional 

microstructural characteristic including their spatial variation from the given datasets. 

 

Fig. 5 Box plots oft he average grain sizes (a) in each patch cropped from the original 

images, and (b) in each generated microstructure patch by the proposed methodology. The 
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black lines and green triangles in the boxes denote median and mean values of sets of images 

for each cooling rates, respectively. 

MECHANICAL PROPERTIES 

As a second example, we applied the proposed methodology to the problem of clarifying 

a hotspot critically affecting the target property [5]. The sample problem is the structure 

optimization of artificial dual-phase steels composed of the soft phase (ferrite) and hard 

phase (martensite). The prepared dual-phase microstructures can be divided into four 

major categories: laminated microstructures, microstructures composed of rectangle- and 

ellipse-shaped martensite/ferrite grains, and random microstructures. The size of 

microstructure images is also 128 × 128 pixel and the total number of prepared 

microstructures is 3824. As an example of a target material property, the fracture strain 

was selected since fracture behavior is strongly related to the geometry and distribution of 

the constituent phases. The fracture strain is the elongation of materials at rupture 

estimated using the Gurson–Tvergaard–Needleman (GTN) model [10]. Using this dataset, 

we investigate whether the machine learning framework can identify a part of material 

microstructures that strongly affects a target property in a similar way that human experts 

can predict based on their experiences. 

To identify a critical part of microstructures, we consider calculating a gradient of 

material microstructures with respect to the fracture strain based on the mapping obtained 

by our methodology in the same way as shown in the previous section. This assumes that 

human experts unconsciously consider the sensitivity of material microstructures to a 

slight change in target property. If the machine learning framework correctly captures the 

physical correlation between the geometry of the material microstructures and the fracture 

strain, the gradient calculated based on the correlation is expected to correspond to the 

areas that highly affect the determination of the fracture strain even without giving the 

physical mechanism itself. 

Fig. 6 shows the comparison of the parts of microstructures critically affecting the 

fracture strain obtained by the physical model and our machine learning framework. Figs. 

6 (a) and (b) illustrate the crucial parts of the microstructures composed of relatively long 

and narrow rectangle-shaped martensite grains. We can see an acceptable agreement 

between the results of the physical and machine learning methods in terms of the overall 

distribution of crucial areas which are shown in red in the colormaps. Figs. 6 (c) and (d) 

show the results for the microstructures composed of similarly shaped martensite grains. 

In Fig. 6 (c), the rectangle-shaped martensite grains are irregularly arranged, and some 

martensite grains are close to each other, whereas, in Fig. 6 (d), circular martensite grains 

are almost regularly arranged. In both Figs. 6 (c) and (d), the machine learning framework 

identifies the crucial parts that are predicted by the physical model. As mentioned above, 

the hotspots are in the regions where martensite grains are close to each other. 

For incompletely laminated structures such as that shown in Fig. 6 (a) the martensite 

layers are suggested to expand to achieve a higher fracture strain. Similarly, we can see in 

Fig. 6 (c) that it is suggested to fill a small gap between martensite grains. Together with 

the fact that eliminating tiny holes that could cause hotspots and reaching completely 

laminated structures markedly improve their fracture strains [5,11], these results imply 
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that the framework recognizes the potential of laminated structures to achieve a higher 

fracture strain in a similar way that human researchers reach an intuition on complete 

laminate structures as a result of the consideration of reducing the occurrence of hotspots. 

 

Fig. 6 Comparison of derivative of microstructures with respect tot he fracture strain obtained 

using deep learning framework with the distributions of void volume fractions calculated on 

the basis of physical model. The left, middle, and right column in (a)-(d) correspond tot he 

reference microstructures, the volid distributions by the physical model, and the derivative by 

the deep learning mframework, respectively. 

From the above results, we can conclude that our framework can identify the areas that 

critically affect a target property without human prior knowledge. 

CONCLUSION 

In the present paper, our recent development of a general methodology for extracting 

the linkage between hierarchical microstructure and process conditions as well as 

References Physical model Machine learning

a

b

c

d

(a)

(b)

(c)

(d)
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properties was reviewed. In the proposed method, the uncertainties are captured in the 

form of probability density functions using deep learning methods. The method was 

applied for generating virtual steel microstructures obtained after a certain continuous 

cooling process and those for desired mechanical properties. The obtained results show 

that the proposed methodology not only captures the stochastic nature of the real 

microstructure but also helps to clarify a part of microstructures critically affecting the 

target property 
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