
Exploring Learning-Based Approaches for Bomb Crater Detection in Historical
Aerial Images

Marvin Burges, Sebastian Zambanini, Robert Sablatnig
Computer Vision Lab, TU Wien

1040 Vienna, Austria
{mburges, zamba, sab}@cvl.tuwien.ac.at

Abstract

Many countries were the target of air strikes during
World War II. The heritage of these attacks is still present to-
day, as numerous unexploded bombs are uncovered yearly
in Central Europe. While these bombs pose a significant
explosion hazard, they can be inferred from the existence of
craters. Therefore, analyzing aerial images from World War
II surveillance flights allows for preliminary risk estimation.
In this paper, we train and evaluate 12 different object de-
tector architectures and compare them to a crater detection
algorithm on our custom historical aerial dataset. We show
that modern detectors, in combination with a large enough
historical aerial crater dataset, can outperform a current
method for crater detection, achieve a precision of 0.6 and a
recall of 0.6 on our dataset, and can process large remotely
sensed images within seconds, rather than minutes. Ad-
ditionally, pretraining and different dataset extensions are
evaluated and discussed.

1. Introduction

Although the last air raids of World War II happened
more than 70 years ago, UneXploded Ordnances (UXOs)
still pose a significant explosion hazard for European con-
struction projects [11]. Specialized companies provide a
preliminary risk estimation by reviewing and interpreting
aerial images from World War II surveillance flights over
the area of interest. To generate these risk estimations,
historical aerial images have to be georeferenced, and all
objects that indicate increased combat activity have to be
marked. Currently, both the georeferencing task and the
search for increased combat activity are performed manu-
ally by specialists. The goal of our work is to automatically
generate “explosive ordnance maps” from selected images,
by detecting increased combat activity. These “explosive
ordnance maps” indicate whether an area is likely to be con-
taminated and therefore may contain UXOs, while in un-

Figure 1. An example detection result of the best performing de-
tector on a rural area. Blue point: Prediction, best viewed in color.

contaminated areas, UXOs are unlikely [11]. To achieve
this goal, we survey the performance of existing fully-
automatic object detectors in detecting increased combat ac-
tivity by training them on our custom dataset consisting of
historical aerial images.

Specifically, we focus on the detection of bomb craters,
as they are the most abundant type of warfare-related ob-
ject visible in aerial images. Furthermore, they represent
direct evidence for the presence of an UXO, as it is as-
sumed that 10 - 15 % of all bombs dropped during World
War II did not explode [2]. We concentrate on the detec-
tion of warfare-related objects instead of the prediction and
segmentation of potentially contaminated areas due to ex-
plainability reasons. As this is a task with potentially dan-
gerous consequences, the network results always have to be
verified by an expert. An example for this task is given in
Fig. 1, where the automatic detections on a image from the
H2OPM dataset [25] are given. In this work, we compare
Convolutional Neural Networks (CNNs)-based detectors on
the task of automatic detection of bomb craters and compare
our findings with a crater detection method from the litera-
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ture [2]. We specifically focus our comparison on network
architectures that can be retrained on consumer hardware,
as we intend to focus on domain adaptation in future work,
which can require an end-user to retrain on newly obtained
data of a different domain. We will include the best per-
forming network in a plugin for the geographic information
system QGIS1, for which we will release the code2 and the
weights3 for the best performing networks can be used di-
rectly with the original YoloV5 implementation of Glenn
Jocher et al. [8].

The remainder of this paper is structured as follows.
First, in Sec. 2 the related work on object detection in his-
torical aerial images and related domains is presented, fol-
lowed by the data used for this paper in Sec. 3. The exper-
imental setup is described in Sec. 4 and results and discus-
sion are given in Sec. 5. Finally, a summary and potential
future work is presented in Sec. 6.

2. Related Work
As the amount of related work on the topic of crater de-

tection in historical aerial images is limited, we include se-
lected methods for mars and moon crater detection, which
are visually similar to bomb craters.

Brenner et al. [2] developed an approach to automati-
cally detect craters in historical aerial images using a ma-
chine learning approach based on a CNN. They use a slid-
ing window in combination with DenseNet [10] to ex-
tract candidate crater positions from the image and then
use post-processing to refine the detections. These post-
processing steps include a spatial proximity prior, as bombs
are dropped in clusters thus, “lonely” bombs are likely a
false positive, non-cluster suppression, as due to the overlap
of the sliding window, bombs should be detected multiple
times, as outliers are detections that are not part of a cluster
detection and a non-maxima suppression to reduce multi-
ple detections. Overall, their approach achieved a preci-
sion/recall of 90.7%/91.3% with the same amount of craters
and background images in the test set. However, with a
more realistic distribution of around 1:250, the precision is
reduced to 4%. In [11], Kruse et al. assume that multiple
images of the same area exist, based on which they propose
an approach that combines the individual detection results
of a stochastic approach based on marked point processes.
This increased the F1-score from 39 % (based on single im-
ages) to 67 % (based on multiple images). In [12] Kruse et
al. further evaluate this method by examining the influence
of random number generation. They also compare their ap-
proach to a Faster RCNN object detector [17] trained on

1https://qgis.org/en/site/
2https://github.com/mburges- cvl/QGIS_Plugin_

for_OAGM_2022
3https://owncloud.tuwien.ac.at/index.php/s/

AxarN33AnClCDhA, PW: ”oagm2022”

their dataset. The results show that the CNN can outperform
their approach if the correct threshold is selected. However,
they also note that in a scenario where only a limited amount
of training data is available, their approach delivers superior
results.

Wu et. al. [23] propose a Crater Detection Algorithm
(CDA) called SUNnet 3+, that is based on the UNET archi-
tecture [18] and detects craters in the digital elevation model
of Mars. The CDA proposed in [9] aims at detecting lunar
craters in images in real-time by a crewed lunar lander dur-
ing the landing procedure, based on a modified YoloV4 [1]
architecture.

The listed publications show that, while learned crater
detectors have been evaluated before, only one publication
trains an object detector on this task. Brenner et al. [2] ex-
tracts regions via a sliding window and classifies the patches
via a CNN and Clermont et al. [4] use a blob detector,
also in combination with a CNN as classifier. Only in [12]
Kruse et al. train and evaluate an object detector and show
its potential. The primary challenge, frequently mentioned,
was the lack of training data [4, 11, 12]. However, due to
an industry partnership, we have access to a dataset suitable
for training. Hence, this paper evaluates different object de-
tectors trained on crater samples. We expect that by training
object detectors with learned regions proposals we can out-
perform current crater detection methods.

3. Data
To the best of our knowledge, no dataset for crater detec-

tion in historical aerial images is publicly available. There-
fore, we use our dataset, which covers both urban and ru-
ral areas. These images originate from finished projects
in which experts georeferenced the historical aerial im-
ages and annotated the bomb craters. In total, 111 im-
ages are georeferenced, and a total of 19,506 craters have
been marked in the images. Note, the analysis per image
is only performed within the Region Of Interest (ROI). As
a result, we had to ignore all regions outside of the ROI,
as no ground truth data is available outside of the ROI.
The images were made between 1943 and 1945 and con-
tain craters with a minimum size of 1m, an average size
of 8m, and a maximum size of 17m. The minimum im-
age size is 2, 274× 2, 388, the average is 11, 626× 10, 864,
and the maximum image size is 16, 714 × 16, 973. All im-
ages are split into 960×960 images with an overlap of 10%
for training for a total of 3,711 images. The Ground Sam-
pling Distance (GSD) for all images is normalized to 0.25m,
and they cover an area of 505 km2. An example of a ru-
ral image can be seen in Fig. 2a, one of an urban image
in Fig. 2b, both images are from the H2OPM dataset [25]
and are also part of our dataset. Additionally, we exper-
imented on 12 panchromatic Martian satellite images [6]
with a crater size of less than 5 km and a total amount of
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around 42,000 craters (Fig. 2c). These images were also
split into 960×960 images with an overlap of 10% for train-
ing, which resulted in 384 images. We also generated a syn-
thetic dataset, which is based on the XVIEW dataset [13]
were 16,931 cut-out craters from our training dataset are
imprinted onto the XVIEW images. An example of the syn-
thetic data is presented in Fig. 2d. We discarded the origi-
nal classes of the XVIEW dataset, converted the images to
grayscale and to a GSD of 0.25, and augmented the crater
patches before imprinting them in the image. The augmen-
tation consists of rotation, horizontal flipping, and Fourier
Domain Adaptation (FDA) [24], with the target being the
XVIEW-image. This resulted in 17,234 960 × 960 images
with a total of 603,190 craters and a similar GSD to the
original project images.

(a) Rural bomb craters (b) Urban bomb craters

(c) Martian craters (d) Synthetic bomb craters

Figure 2. Four example images from our dataset. a) and b) Images
from company projects, c) Martian satellite image from [6] and d)
Image from the XVIEW-Dataset [13] with synthetic craters.

4. Experimental Setup

In this section, we present the experiments conducted for
this paper. We start by evaluating different object detec-
tors on our historical crater dataset, then compare the re-
sults with the crater detection method proposed by Brenner
et al. [2]. We continue with the pretraining and synthetic
data results and finish with the evaluation metrics.

4.1. Evaluation of State-of-the-Art Object Detectors

For this work, we evaluated 12 different object detec-
tion architectures. An overview of the networks can be
seen in Tab. 1, which highlights the trainable parameters as
well as whether the networks use one stage or two stages.
Single-stage networks perform classification and regression
on dense anchor boxes without generating a sparse ROI set,
while two-stage networks first generate sparse region pro-
posals, which are then further regressed and classified in
a second stage [14]. We chose these specific networks as
they are capable of running on consumer hardware and be-
cause these networks have been repeatably used for few-
shot learning. We trained all networks on the historical
aerial dataset with an image size of 960 × 960 pixels and
a batch size of 2 (32 for YoloV5n), until the Average Preci-
sion (AP) started plateauing, which was between 10 - 50
epochs depending on the dataset size (larger datasets re-
quired more epochs). For the data augmentation, we re-
lied on the Albumentations framework [3]. We used com-
mon augmentations like blur, random brightness and con-
trast changes, rotation, translation, and histogram equaliza-
tion, but we also used the mosaic augmentation method pro-
posed in [1] as well as FDA. All networks were pretrained
on COCO before being finetuned on our crater dataset and
used the same anchors (if applicable).

Table 1. Evaluated networks with their respective parameter count
in million and their architecture style.

Name Parameters (M) Stages
YoloV5n [8] 1.9 One
YoloV4 [1] 27.6 One

YoloV7 [22] 37.1 One
Faster RCNN R 50 [17] 41.3 Two
Faster RCNN R 101 [17] 60.2 Two

YoloV3 [16] 65.3 One
ScaledYoloV4(-p5) [21] 70.2 One
EfficientDet(-d7x) [19] 76.8 One

YoloV5x [8] 86.7 One
YoloX [7] 99.0 One

Faster RCNN X 101 [17] 104.4 Two
YoloR(-d6) [20] 151.0 One

4.2. Comparison with State-of-the-Art Crater De-
tection Methods

To the best of our knowledge, no historical aerial crater
detection frameworks for comparison are publicly available.
We therefore chose to compare the best performing detec-
tor from Sec. 4.1 to the detector proposed by Brenner et al.
in [2] on our crater data. However, as we did not have access
to the original version, the approach was re-implemented.
Similar to the original implementation, we used a 40-layer
DenseNet with an input size of 32× 32 pixels and trained it
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on a binary classification problem. We trained the network
for 100 epochs on the 42.172 crater patches extracted by a
sliding window from the training set with roughly the same
amount of negative examples. Differently to the original
approach, however, we use patches of size 80 × 80 pixels
instead of 20 × 20 pixels to achieve a similar window size
of 20m×20m as our dataset has a GSD of 0.25m instead of
1m. These patches are then resized to the network input size
of 32× 32 pixels. We evaluated the approach in two ways.
First the classification way, where we extracted all 1.614
crater patches from the validation set as well as the same
amount of negative samples (resulting in a 1:1 ratio of pos-
itive and negative samples). Second in the (more realistic)
object detection way, where the network is applied as a slid-
ing window to the validation images (resulting in roughly a
1:250 ratio of positive and negative samples). In a final ex-
periment, we compared the run-time of the approach from
Brenner et al. with YoloV5n and YoloV5x on one example
image with the size of 10, 644× 10, 042.

4.3. Pretraining and Synthetic Data

We also experimented with different strategies to im-
prove the training result. One idea was to pretrain the net-
work. In our case, we chose COCO, the Mars dataset de-
scribed in Sec. 3 and the XVIEW dataset. Additionally, we
experimented with increasing the raw crater dataset size by
adding a combination of the Martian and synthetic data to
our historical aerial crater dataset. The intention with the
Martian data was to add more crater variants, while the idea
for the synthetic data was to add more urban structures to
the dataset. We again chose the best performing detector
from Sec. 4.1 and trained it on the different dataset combi-
nations.

5. Results and Discussion
In this section, we present the results of the experiments.

We start by presenting and discussing the quantitative re-
sults in Sec. 5.1 and finish with a qualitative analysis of two
example images in Sec. 5.2. Both show the difficulty related
to detecting craters in historical aerial images.

5.1. Quantitative Results

The trained object detectors presented in Sec. 4.1 were
evaluated on the test set of the historical crater dataset de-
scribed in Sec. 3. The results can be seen in Fig. 3. The
graph shows the precision recall curve for all networks pre-
sented in Tab. 1. It is visible that YoloV5n, YoloV5x, and
YoloR perform similarly and better than the other tested net-
works. One can also see that YoloV3 and Faster RCNN R
50 perform significantly worse. This is due to the coarse
search grid of YoloV3, which hinders the detection perfor-
mance of small objects in the images, as stated by Pham et
al. [15]. Similarly, the Faster RCNN family has issues with

small objects, as has been shown by Eggert et al. [5]. This
could be a possible explanation for why the Faster RCNN
family is outperformed overall by the Yolo variants and why
Faster RCNN R 50, in particular, is underperforming. Over-
all it is shown that the majority of the tested networks have
similar results, which could be due to the training set being
comparatively small for an object detection dataset (com-
pared to COCO, for instance). Overall, YoloV5n is one
of the best performing networks and also has the lowest
amount of trainable parameters which makes the training
less prone to overfitting.
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Figure 3. Precision-Recall-Curves for the different network archi-
tectures trained on the crater dataset.

The comparison with the approach of Brenner et al. is
presented in Tab. 2. It shows that their approach achieves
a precision of 0.91 and a recall of 0.87 during evaluation
with a 1:1 distribution of positive and negative samples on
our dataset, however their real-world performance is signif-
icantly worse. We were unable to achieve any meaningful
detections with the approach, which is also reflected in a
precision of 0.05 with a recall of 0.01 during the evaluation
with a 1:250 distribution. To further show the edge YoloV5n
has, we present the time for a detection of an image with a,
for this task, common size of 10644 × 10042 in Tab. 3. It
is visible that YoloV5n is 58 times faster than the approach
proposed by Brenner et al. with a precision of 0.6 and a
recall of 0.6.

We further explored YoloV5n on different dataset com-
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Table 2. Precision and recall for Brenner et al. on a synthetic
(1:1) and a more realistic (1:250) distribution of positive to neg-
ative training patches, compared to YoloV5n. YoloV5n does not
use a sliding window to generate patches but instead is applied to
the whole image.

Approach Precision Recall Positive-
Negative-Ratio

Brenner et al. 0.91 0.87 1:1

Brenner et al. 0.05 0.01 1:250
YoloV5n 0.6 0.6 1:250

Table 3. Runtime comparison of the best performing detector
and the approach from Brenner et al. Measurement: A 10, 644 ×
10, 042 example image, split into 144 960 × 960 image patches
(with overlap) for YoloV5. GPU: Nvidia T500 (Mobile).

Approach Runtime
QGIS + Brenner et al. 361s

QGIS + YoloV5n 6.2s

binations. The results are presented in Fig. 4, in addition
to YoloV5n, we present YoloV5x trained on the combined
datasets. We chose to add YoloV5x to the comparison, as
it performed similar to YoloV5n but had more parameters
and might benefit more from the additional data. Overall it
is visible that training on the Martian dataset alone does not
result in a suitable detector. While it can detect craters in ru-
ral areas (i.e. fields), it has a high amount of false positives
in urban areas. Training on synthetic data only resulted in a
detector that was unable to detect any crater correctly. The
curve was thus omitted, while training on any combination
of the synthetic and Martian data with our historical dataset
resulted in a similar performance. This is likely due to the
fact that the Martian domain is too trivial as it only contains
well-defined craters in rock and sand. The only challenges
with this dataset are overlapping crater or crater contained
in a larger crater. Both are rare in historical images and
therefore do not contribute much to the overall precision. A
likely reason why the synthetic dataset does not contribute
to a better performance is because the issue with urban areas
is not the false-positive rate on human-made structures but
the high irregularity of the craters. But, as we insert cut-out
historical craters into XVIEW images we do not increase
crater verity.

Lastly, we experimented with different pretraining
strategies: no pretraining, COCO pretrained weights, and
XVIEW pretrained weights. In Fig. 5 one can see the AP
plotted for 20 training epochs. It is visible that after 20
training epochs, all networks achieve similar results, which
was also verified with the test set where all networks again
performed closely. A similar effect can be seen in the vali-
dation loss, which is presented in Fig. 6. It is apparent that
after 16 epochs, the loss of all methods is similar. How-
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Figure 4. Precision-Recall-Curve for the different training dataset
combinations. (n) refers to YoloV5n, and (x) refers to YoloV5x. H
= Historical, M = Martian and S = Synthetic.

ever, it is also visible in both plots that the network pre-
trained on the COCO dataset requires only about 5 epochs
to achieve peak performance. This, considering previous
results, means that YoloV5n can be rapidly retrained on and
finetuned on a new domain.
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Figure 5. Pretraining evaluation: AP per epoch during training.

5.2. Qualitative Results

We present two detection results of YoloV5n in Fig. 7
and Fig. 1, which show a rural, but snow-covered, area and
a field. While YoloV5n can detect all craters flawlessly
in Fig. 1, which shows a barren field, it struggles to catch
all craters in Fig. 7, which similarly presents a field, how-
ever with snow coverage and fresh craters as well as older
craters. It was also observed, that in an urban environ-
ments YoloV5n is performing even worse than in domain
shifted images (i.e snow). This shows that the detector has
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Figure 6. Pretraining evaluation: Bounding box loss per epoch
during training.

a very high recall and precision for more straightforward
tasks, like the detection of craters in rural areas (Fig. 1).
However, it struggles with more complicated tasks, such as
the detection in an urban domain. The primary challenge
here is the fact that craters are highly irregular due to in-
terference with artificial structures. In contrast to this, in
rural areas and especially in barren fields, craters tend to
look similar. Additional challenges are due to the low im-
age quality, like low contrast and noise. A further issue is
a domain change (i.e., fresh craters and old snow-covered
craters), where training images are rare for the new domain.
This can be seen in Fig. 7, where the detector can detect 5
out of 13 craters with snow coverage, which are sparsely
represented in the dataset.

Figure 7. Snowy rural bomb crater detections from [25]. Blue
points: Detections, Green Star: Predictions, best viewed in color.

A solution for this problem could be an interactive ap-
proach, where an end-user could improve the detections by
removing false positives or adding false negatives, and the
network then retrains based on the changes. Another pos-
sibility could be that the user preemptively marks one or a
few craters in the image, which the network then uses as
additional domain information during the detection.

6. Conclusion and Future Work
In this paper, 12 State-Of-The-Art detectors were com-

pared on the task of detecting craters on 111 historical aerial

images, and the best detector was then compared to another
approach from the literature [2]. The detections obtained
by these detectors can be used in the predominantly manual
process of generating an “explosive ordnance map”, which
indicate areas that could be contaminated with UXOs, a sig-
nificant explosion hazard for construction processes in Eu-
rope. We showed that, while the tested detectors were un-
able to achieve sufficient accuracy to be used fully automat-
ically, the best detector, YoloV5n achieves a precision of 0.6
with a recall of 0.6 in real-world use cases. Furthermore, it
only requires 6 seconds to process an image of average size
(10, 644 × 10, 042), while the approach from the literature
requires about 360 seconds for the same image and only has
a precision of 0.05 and a recall of 0.01. This combination
of accuracy and speed allows for a quick and sufficiently
correct preliminary overview over an area, which then can
be manually finetuned to an “explosive ordnance map” by
an expert. YoloV5n also only requires between 5 - 7 epochs
for training when pretrained on COCO, which allows for
rapid retraining of the network. Another possibility to ex-
ploit YoloV5n would be to use it as a base detector for an
interactive learning method or a few-shot learning strategy,
where an expert corrects the detections and finetunes the
network. This idea will be explored in the future. A further
insight is that training on synthetic or Martian data does not
significantly improve the detection accuracy of the network,
primarily due to the fact that the biggest challenges are ir-
regular craters or unseen crater variants.

In general, we see learning-based approaches in favor
of algorithmic approaches like [12]. Our and the results of
related work demonstrate the difficulty of crater detection in
historical images, which makes the use of semi-automatic
approaches inevitable for practical reasons. Learning-based
approaches offer the needed flexibility to allow for an on-
the-fly adaptation to specific image domains, which will be
the direction of our future work.
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