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Abstract

Document image classification is the classification of
digitized documents. Typically, these documents are either
scanned or photographed. One page of such a document
is referred to as a document image. Classifying document
images is a crucial task since it is an initial step in down-
stream applications. Most state-of-the-art document im-
age classification models are based on a transformer net-
work, which are pretrained on millions of scanned docu-
ment images and thus require a huge amount of training
resources. Additionally, this and other state-of-the-art doc-
ument image classification models have well beyond 100
million parameters. In this work, we address both chal-
lenges. First, we create a model capable of competing with
the current state-of-the-art models without pretraining on
millions of scanned document images. Second, we create
a model several times smaller than current state-of-the-art
models in terms of parameters. The results show that the
developed approach achieves an accuracy of 93.70% on the
RVL-CDIP dataset, and a new state-of-the-art accuracy of
96.25% on Tobacco3482.

1. Introduction

The increasing digitalization has led companies to digi-
tize their processes and content [4], and organize their infor-
mation to improve the search and access to relevant data [6].
Thus, paper documents are subject to digitization, and doc-
ument images are the output [21]. The task of document
image classification is to categorize a given document im-
age into a set of defined classes [12].

Due to its high importance, document image classifica-
tion has been explored extensively [1]. However, most of
the current State-Of-The-Art (SOTA) methods have either
parameters in the hundreds of millions, pretrain on a larger
dataset, or both, such as [32] or [33].

Thus, we propose a multimodal system based on SOTA
image and language models, which are relatively small in
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their size (less than 100 million parameters). Furthermore,
the amount of training data is limited to the RVL-CDIP
dataset. Due to the modular nature of the architecture, we
tested two model combinations to analyze their impact on
the overall test set accuracy. Our experiments show that an
image-only system achieves a higher test set accuracy than
a multimodal system.
The contributions are the following:

* Developing a model that can compete with current
SOTA models on the RVL-CDIP dataset without re-
quiring millions of document images. Moreover, the
developed model is much more efficient than the cur-
rent SOTA models.

* Achieving a new SOTA on the Tobacco3482 dataset
with 96.25% accuracy.

The remainder of this paper introduces the datasets in
Section 2, discusses related work in Section 3, presents the
methodology in Section 4, depicts the results in Section 5,
and concludes the paper in Section 6.

2. Datasets

In the following, the two datasets used in this paper are
discussed. First, the dataset on which the proposed archi-
tecture is trained and evaluated, and second on which it is
finetuned and evaluated.

2.1. RVL-CDIP

This work is based on the RVL-CDIP [11] dataset since
it was specifically created to test image classification algo-
rithms on document images [7]. RVL-CDIP is a subset of
the IIT-CDIP Test Collection (11 million documents) [20],
which itself is a subset of the LTDL dataset [26] (14 million
documents), that was created from public records of law-
suits against American tobacco companies [11]. The RVL-
CDIP dataset contains 400,000 grayscale images with 16
classes, split evenly in an 8:1:1 ratio of training, validation,
and test set.
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Figure 1. An example document image for each class from the RVL-CDIP dataset. From the top left image, the labels are the following:
Letter, Form, Email, Handwritten, Advertisement, Scientific report, Scientific publication, Specification, File folder, News article, Budget,

Invoice, Presentation, Questionnaire, Resume and Memo.

2.2. Tobacco3482

The Tobacco3482 [18] dataset, created from the same
dataset as RVL-CDIP, the IIT-CDIP Test Collection, con-
tains 3,482 grayscale document images. These images are
split into 10 classes, which are not evenly distributed as in
the RVL-CDIP dataset.

3. Related Work

The methods in all of the following works are tested on
the RVL-CDIP test set.

Harley et al. [11], who have created the RVL-CDIP
dataset, stack 5 CNNs, one of which is trained on the whole
document image, and the others are trained over the header,
footer, left body, and right body. These CNNs are either
trained from scratch or transfer-learned from AlexNet [17].
Das et al. [6] use a similar technique. However, their CNNs
are transfer-learned from VGG-16 [27]. A MLP, a class of
artificial neural networks, is then found to perform as the
best ensemble technique.

Afzal et al. [1] show that even though the ImageNet and
RVL-CDIP datasets have different domains, a pretrained
network on ImageNet, such as VGG-16, has a better ac-
curacy score on the RVL-CDIP test set than no pretraining.

Tensmeyer and Martinez [29] train CNNs from scratch,
i.e., randomly initialized. Various modifications are per-
formed, such as changing the network depth, width, or input
size. The authors show that the input size significantly im-
pacts the performance.

Sarkhel and Nandi [25] utilize a spatial pyramid model to
extract highly discriminative multi-scale feature descriptors
from a visually rich document by leveraging the inherent
hierarchy of its layout.

Ferrando et al. [10], Jain and Wigington [12], Audebert
et al. [4], Kanchi et al. [14], and Bakkali et al. [5] combine

image and text features in a two-stream approach by utiliz-
ing a CNN for image and an embedding for text. Jain and
Wigington [12] use the VGG-16 to get image features and
use different methods to extract text features, representing
text at the sequence, word, and character level. Audebert et
al. [4] utilize the MobileNetV2 [23] for image feature ex-
traction, which has a similar performance in terms of accu-
racy, compared to VGG-16 while being significantly faster.
As in [12], word-level text features are generated with Fast-
Text [13], a word embedding technique. Ferrando et al. [10]
combine EfficientNet [28] for image features and a reduced
version of BERT [8], a transformer model, for text features.
Kanchi et al. [14] propose a hierarchical attention network
for the textual stream, with fine-tuned BERT embeddings as
input and an EfficientNet-BO for the image stream. Bakkali
et al. [5] combine NasNety 4.4, [34] with BERT to achieve
a SOTA accuracy of 97.05%, using an average ensembling
for the image and text stream.

A transformer [30] architecture for document image
classification is used in the work of Xu et al. [32]. This ar-
chitecture is an extended version of BERT [8]. However, the
model is pretrained on the IIT-CDIP Test Collection, which
contains more than 11 million scanned document images.
Another major difference, compared to all previous men-
tioned approaches, is that this method is suitable for classi-
fying document images, and, for example, for form under-
standing, where the goal is to extract key-value pairs from
document images. Xu et al. [33] extend [32]. The authors
integrate visual information in the pre-training stage and use
2-D relative position representation for token pairs instead
of absolute 2-D position embeddings, which Xu et al. [32]
use to model the page layout. Just as its predecessor, this
model is also suitable for other tasks outside of classifying
document images.

Similarly, Powalski et al. [22], Wang et al. [31]. and
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Srikar et al. [2] develop each a multimodal transformer
based architecture, which performs a pretraining step. [22]
simultaneously learns layout information, visual features,
and textual semantics. In [31] the layout knowledge from
monolingual structured documents is learned and then gen-
eralized to deal with multilingual ones. [2] combines tex-
tual, visual, and spatial features using a novel multi-modal
self-attention layer.

4. Methodology

In this section, both streams (image and text) are elab-
orated, covering the preprocessing steps and the training
strategy and architecture. Then, the method to combine
both streams to form the final piece of the document image
classification system is covered.

4.1. Image Stream

Compared to textual features, image features are pre-
ferred for the problem of document image classification
[16]. The current SOTA CNN architecture, EfficientNet
[28], is used for the image stream. The image stream and
text stream are two independent parts of the whole model,
which are combined in a later stage. The preprocessing
steps, the training strategy, and the architecture are ex-
plained in the following.

4.1.1 Preprocessing steps

In our method, the image stream consists of five Efficient-
Nets, each focusing on a input part. The preprocessing steps
partly follow the work of [11]. First, all images are resized
to 936 x 720. Then, 5 regions are defined for an image;
holistic, header, footer, left body, and right body. The holis-
tic region is the whole image itself. The header is defined
as the first 307 pixel rows. Similarly, the footer is defined
as the last 307 pixel rows. The left body is defined as the
480 central pixel rows and the first 360 pixel columns; sim-
ilarly, the right body is defined as the 480 central pixel rows
and the last 360 pixel columns. A slight intersection exists
between the left and right body areas with the header and
footer. Finally, each image is resized to 384 x 384.

The focus on specific regions of a document follows
from the fact that certain categories show a low interclass
variability, as seen in Figure 1 when comparing memo and
letter. While memos often have a complete address section,
letters typically have a ”To:” and "From:”. Having a CNN
to classify documents using only this region will much more
likely learn those differences than a holistic CNN [11]. Sim-
ilar to the header region, different CNNs are applied to each
region described in the previous paragraph.

Since the document images are in grayscale, they are
transformed into images with three channels, i.e., copied
two times and stacked depth-wise along the third axis.

4.1.2 Training strategy and architecture

The training strategy and architecture on the full dataset are
inspired by [6]. The main benefit of the following train-
ing strategy is reducing computational complexity. A three-
level transfer learning achieves this.

The first level of transfer learning (L1) is initializing
the weights of the holistic model from the corresponding
EfficientNet-B1 model, trained on the ImageNet dataset. To
train the holistic model, only the classifier added on top
of the EfficientNet-B1 model is trained first, and all other
weights of the model are frozen, such that they are not up-
dated during backpropagation. This model’s weights are
then used to initialize the same model (L2), but with all
layers unfrozen, including the batch normalization layers.
Now, all weights can be updated to further increase the pre-
diction accuracy.

Next, its weights are taken to initialize the remaining
four models (LL3), i.e., the models for the header, footer, left
body, and right body region. Like the holistic model, these
four models are trained with early stopping on the validation
loss and patience of 10. ReLU [9] is used as the activation
function.

4.2. Text stream

The recent development in this field suggests that textual
features are necessary to achieve SOTA results. A distilled
version of BERT [8], called DistilBERT [24], is used as the
backbone in our work since it is 40% smaller in size com-
pared to BERT while retaining 97% of its language under-
standing capabilities. In the following sections, the prepro-
cessing steps, as well as the training strategy, are explained.

4.2.1 Preprocessing steps

The Tesseract OCR system (version 4.1.1) extracts the text
from the document images. Once this is done, the next step
is preprocessing the extracted text before feeding it into a
neural network. This is even more important when the text
is extracted from document images, instead of, for instance,
scraping the text from the web. Everything that is not a
letter or a digit is removed. It is ignored if the text is less
than two characters long, but single-digit numbers are kept.
Moreover, the text is lowercased. There are some pages
where no text can be extracted by Tesseract. In this case,
or where the whole extracted text of a document image is
removed due to the preprocessing steps, the extracted text
is set to 7, i.e., a string of length zero.

4.2.2 Training strategy and architecture

Following the results from the image stream, the training
strategy in the text stream takes a similar approach. Only
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Figure 2. Proposed architecture for document image classification based on SOTA architectures, with an image stream, text stream, and

utilizing different levels of transfer learning. EN = EfficientNet.

the classification head added on top of DistilBERT is trained
first, with the features extracted from the base model.

DistilBERT and the original BERT model have two
unique tokens: [CLS], a classification token, and [SEP], a
separator token. The [CLS] token is used for classification
tasks and is added in front of every sequence. Specifically,
the last hidden state representation of the [CLS] token is
used. This hidden state representation is then used as an
input to the classification head.

Like in the image stream, the classification head is first
trained, then the whole model. The final model is trained
with early stopping and patience of 10, with ReLU as the
activation function.

4.3. Stacked generalization

The last part of the system is to train a meta-classifier,
which outputs the final predictions. It is adopted in docu-
ment image classification models, such as in [6], [4], [10],
[12], [3], and works by combining the (intermediary) out-
put of one or more classifiers and feeding that as an input to
a meta-classifier. To reduce overfitting, the meta-classifier
is trained on the validation set. The goal of stacked gener-
alization is to provide a lower generalization error than the
base models. The meta-classifier is the last module of the

document image classification system, and the full architec-
ture is shown in Figure 2.

The input for the meta-classifier are the class probabil-
ities (i.e. the softmax output). In this work, the meta-
classifier, a 3-layer neural network, combines visual and
textual features by concatenating them and producing the
final output of the document image classification system.

Adam is chosen as the optimizer. Moreover, an image-
only system versus a multimodal system is tested.

4.4. Tobacco3482

The document image classification model is also fine-
tuned and evaluated on the Tobacco3482 dataset. To make
results comparable with other works, such as [11], [15],
[18], [19], or [10], the dataset is split as follows. From 3,482
images, 100 images per class are randomly selected. This
constitutes the training set; and the remaining 2,482 images
are the test set. This process is repeated 10 times, such that
there are 10 different training and test sets, from which the
median test set accuracy is reported. From the 1,000 train-
ing images, 200 are used for the validation set.

The training approach first uses the pretrained models
on the RVL-CDIP dataset and then finetunes on the To-
bacco3482 dataset, where only the added classification head
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Results

Author Accuracy # Parameters ~ Modality ~ Extra training data ~ Tobacco3482 Accuracy
Afzal et al. (2017) [1] 90.97 138.36 I No 91.13

Kang et al. (2014) [15] - 4.21 1 No 65.35

Kumar et al. (2014) [19] - - I No 43.27

Das et al. (2018) [6] 92.21 691.87 I No -
Audebert et al. (2020) [4] 90.60 3.64 1+T No 87.80
Ferrando et al. (2020) [10] 92.31 85.47 1+T No 94.90

Harley et al. (2015) [11] 89.80 58.35 1 No 79.90

Jain and Wigington (2019) [12] 93.60 138.36 I+T No -

Sarkhel and Nandi (2019) [25] 92.77 - I No 82.78
Tensmeyer and Martinez (2017) [29] 91.03 - I No -

Xu et al. (2020) [32] 94.42 160.00 1+T Yes

Xu et al. (2021) [33] 95.64 426.00 1+T Yes

Srikar et al. (2021) [2] 96.17 183.00 I+T Yes

Wang et al. (2022) [31] 95.68 - I+T Yes

Powalski et al. (2021) [22] 95.52 780.00 1+T Yes

Bakkali et al. (2020) [5] 97.05 197.21 1+T No -

Kanchi et al. (2022) [14] 95.48 - I+T Yes 95.70
Proposed approach 93.70(I) / 93.50(1+T) 40.72 1 No 95.65(I) / 96.25(1+T)

Table 1.
stated in the work, an estimation, or omitted. I = Image, T = Text.

is trained.

Additionally, a meta-classifier is trained to combine the
softmax outputs on the training set of the image and text
models. Similarly, an image-only and multimodal system
is trained. The models are trained with Adam, ReLLU, and
early stopping with patience of 3.

5. Results

The proposed approach includes two results per dataset,
each with an image-only and multimodal system. The re-
sults are depicted in Table 1.

An accuracy of 93.70% on RVL-CDIP and 96.25% on
Tobacco3482 is achieved. Note that on the RVL-CDIP
dataset, the image-only system achieves a higher accuracy,
while on the Tobacco3482 dataset, it is the multimodal sys-
tem. That is, adding textual information decreases the ac-
curacy on the RVL-CDIP dataset, which goes against the
results of other papers that have used textual information
(see Table 1). The difference in the accuracy between the
image-only and multimodal approach is larger on the To-
bacco3482 dataset.

Most SOTA papers have used additional training data
with a multimodal approach. Table 1 shows, that all papers,
who have reached an accuracy of over 94%, have used an
extra training data, either the full IIT-CDIP Test Collection
(11 million documents) or a fraction of it, except the current
SOTA [5], with 97.05% accuracy. Moreover, all papers with
an accuracy of over 94% are fully based on a Transformer
architecture, except [5] and [14].

The number of parameters of the proposed approach
(around 41 million) is multiple times smaller than in the
current SOTA methods. Even though the result on the RVL-
CDIP dataset could not match them, a new SOTA has been
achieved on the Tobacco3482 dataset using the multimodal

Test set results on RVL-CDIP and Tobacco3482. Accuracy in %. The number of parameters (in millions) is either explicitly

approach, beating the previous SOTA result of Kanchi et
al. [14] by 0.55 percentage points. Additionally, the image-
only approach missed the previous SOTA result by 0.05 per-
centage points.

The model is trained on a NVIDIA T4 GPU with 16GB
VRAM. One epoch takes about 220 minutes for the image
models on the RVL-CDIP dataset. Each image model is
trained for about 14 epochs, i.e., for 70 epochs combined.
The text model is trained for 8 epochs, with about 136 min-
utes per epoch. These numbers refer to those models, where
the weights of all layers are unfrozen.

6. Conclusion

The goal of the proposed approach is to develop a model,
which can compete with current SOTA methods and be rel-
atively efficient, i.e., have a relatively small number of pa-
rameters. Even though the current SOTA results on the
RVL-CDIP dataset could not be quite matched, the devel-
oped model is around 5 times smaller in terms of the num-
ber of parameters. On the Tobacco3482 dataset, however,
a new SOTA result is achieved. Interestingly, contrary to
the papers using a multimodal approach mentioned in Ta-
ble 1, the textual information decreases the accuracy on the
RVL-CDIP dataset.
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