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Preface

The OAGM Workshop aims to bring together researchers, students, professionals, and practitioners
from the fields of Computer Vision and Pattern Recognition to present and actively discuss the latest
research and developments. As every year, there is a core topic which was ”Digitalization for Smart
Farming and Forestry“ in the 2021 edition. Originally, the OAGM Workshop 2022 was planned again
as an on-site event at the University of Natural Resources and Life Sciences, Vienna (Campus Tulln) in
September 2022. As a result of the official restrictions by both the university and the government due
to the still ongoing COVID-19 pandemic, we needed some re-organization, with the final decision not
to cancel the workshop but to have an online event scheduled in three sessions (October 18, November
8, and November 9, 2022).

Consequently, it was possible to publish the conference proceedings. We thank the authors and re-
viewers for their contributions to this publication. We received 22 original contributions which 21
(9/9 full papers, 2/3 student papers, and 10/10 industrial and scientific spotlight papers) have been
accepted. Each contribution was peer-reviewed in a double-blind process by at least two reviewers
from an international program committee. One outstanding contribution will be awarded the best
paper prize sponsored by OCG. In addition, there will be an IEEE Women in Engineering Award,
sponsored by the Austrian Institute of Technology, for the best contribution of a female first author.
We want to thank OCG and IEEE/AIT for sponsoring these awards and the project DILAG for the
financial support.

We would also like to thank the invited speakers, Ribana Roscher (University of Bonn) and Martin
Hirt (Austrian Chamber of Agriculture) for their presentations taking into account the scientific and
application points of view.

Hermann Bürstmayr, Andreas Gronauer, Andreas Holzinger, Peter M. Roth, and Karl Stampfer
(conference chairs)

Tulln, November 2022
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Keynote Talks



Generating the unseen and explaining the seen
Ribana Roscher

Institute of Geodesy and Geoinformation

University of Bonn

                                                                   
Abstract

      
Deep generative models and explainable machine learning are two emerging areas of
data  science  that  we  can  use  to  address  current  challenges  in  agricultural  and
environmental sciences. Deep generative models are neural networks that are capable
of learning complex data distributions. In general, they can be used for a variety of
applications,  such  as  anomaly  detection,  current  state  estimation,  and  prediction.
Explainable machine learning, which analyzes the decision-making process of machine
learning methods in  more detail,  is  used whenever  an explanation  for  the result  is
required in addition to the result. This can be done for various reasons, e.g., to increase
confidence in the outcome or to derive new scientific knowledge that can be inferred
from patterns in the decision process of the machine learning model. This talk addresses
methods and applications from both areas and how we can take advantage of their
combination.
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Uptake & usage of Smart Farming in Austrian agriculture
                                                             

Martin Hirt

Austrian Chamber of Agriculture 

                                                                               

                                               

Abstract

In 2021 Austrian Federal Institute of Rural Education and Training conducted a survey
among 1.000 farmers regarding attitudes, motivation and investment intentions towards
increasing digitization in Austrian agriculture.  The study aimed to provide valuable
insights  into  actual  usage  and  intended  uptake  of  digital  and  precision  farming
technologies since this has been very much discussed since several years. While general
attitude towards digitization seems to be quite “positive-pragmatic” (only 11% stated to
be sceptical or negative),  the actual usage vary largely between technology groups:
Low-cost solutions in farm management like nutrient management recording are used
more often than specific precision farming technologies. When asked about motivations
for using digital technologies, farmers don’t argue with higher yields or performance
but rather with more easier environmental recording (73%), less physical strain (65%)
and increased  time flexibility  and leisure  time (59%).  Coming to  the  barriers  of  a
quicker  uptake,  they  stated  mainly  economic  factors  like  doubtful  cost-benefit
considerations  (70%),  initial  investments  (69%)  and  running  costs  (62%).  It’s
interesting that even while most farmers named themselves as well-informed about new
technologies in farming, a high share stated to be open for visiting further training
(68%) or  even individual  advisory (59%) dealing  with  digital  technologies  in  their
specific agricultural branches.

                                      

3



Full Papers



Redundant 1-cells in Multi-labeled 2-Gmap Irregular Pyramids

Majid Banaeyan, Walter G. Kropatsch and Jiřı́ Hladůvka
Pattern Recognition and Image Processing Group, TU Wien

1040 Wien, Favoritenstr. 9/5, E193-03, Vienna, Austria
{majid,krw,jiri}@prip.tuwien.ac.at

Abstract

Nowadays the amount of generated digital data is grow-
ing faster and faster in a broad spectrum of application
domains such as biomedical and biological imaging, doc-
ument processing, remote sensing, video surveillance, etc.
Processing such big data encourages efficient data structure
and powerful processing algorithms. The n-dimensional
generalized map is a useful structure that completely rep-
resents the topological structure of an image. Their ad-
vantages have been widely proved in the literature. Nev-
ertheless, the main disadvantage of these structures is the
high rate of memory requirement. This paper, first pro-
poses an efficient method that implicitly encodes two of the
three involutions in the 2-Gmap that dramatically reduces
the amount of required memory. Second, it introduces a new
formalism to define and detect redundant 1-cells (edges), in
the 2-Gmap. Removing such redundant information the re-
duced memory is further decreased approximately by half.
Finally, experiments show the advantage of the proposed
method in a real database of high-resolution X-ray micro-
tomography (µCT ) and fluorescence microscopy.

1. Introduction

We are live in the era of Big Data. In 2018 it was stated
”Data volumes are exploding; more data has been created
in the past two years than in the entire history of the hu-
man race [9].” Nowadays, the data volume and velocity is
growing even faster [15]. Processing such a huge amount
of data requires efficient data structures and efficient pro-
cessing algorithms. In addition, currently we are work-
ing on the Water’s gateway to heaven project1 dealing with
high-resolution X-ray micro-tomography (µCT ) and fluo-
rescence microscopy. The size of the labeled cross slice of
a leaf scan is more than 2000 in each dimension. To cor-
rectly preserve the structure of the elements in the image,
in this paper we employ 2-dimensional generalized map (2-

1https://waters-gateway.boku.ac.at/

Gmap) [13].
Although the n-Gmap is an efficient structure for de-

scribing an n-dimensional orientable or non-orientable
quasi-manifold [13] it suffers from requiring a huge amount
of memory storage. To remedy this problem, this paper first
introduces an efficient encoding to implicitly preserve ele-
ments of the 2-Gmap without taking extra space of memory.
Second and more important, it introduces a new formal-
ism to define and detect redundant elements of the 2-Gmap
structure of the multi-labeled image.

By removing the redundant elements, the resulted 2-
Gmap not only has the same structure to the original one but
it would be also computationally more efficient to be used
in upcoming processing. In particular, to process both gen-
eral and local information of the structure we use the irreg-
ular graph pyramid. Removing such redundant elements in
the hierarchical structure, simplifies and speeds up the con-
struction of the pyramid. In this paper we are dealing with
multi-labeled images. The multi-labeled image is defined as
an image consists of different connected components (CCs)
where each CC has a unique label (color).

1.1. Irregular Pyramid

Pyramids are powerful and efficient hierarchical struc-
tures in pattern recognition that were introduced by Rosen-
feld [16]. They are able to propagate local information from
the base level into global and abstract information at top of
the pyramid [14]. Irregular image pyramids consist of a se-
ries of successively smaller images constructed over a base
image [10]. By presenting a digital image as a 4-adjacent
neighborhood graph, each pixel in image P corresponds to
a vertex v ∈ V of the graph G = (V,E). Each edge,
e ∈ E, of the graph encodes the neighborhood relation-
ship between pixels. In addition, the gray-value of a pixel
g(p) becomes an attribute of the corresponding vertex v,
g(v) = g(p) and the contrast(e) = |g(u)− g(v)| becomes
an attribute of an edge e(u, v) where u, v ∈ V . In an ir-
regular pyramid, in order to produce the smaller graph at
the upper level, two operations are performed at each level:
edge contraction and edge removal [5, 6]. The former re-

1
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moves one edge and one vertex while preserving the con-
nectivity of a graph and the latter removes one edge. Ver-
tices (edges) of the current level that will be disappeared
at the upper level are called non-surviving vertices (edges)
while those that remain at the upper levels are called sur-
viving vertices (edges). The decision of which vertices (and
consequently which edges) must be selected as the surviv-
ing vertices (edges) is taken by introducing the contraction
kernel (CK).

Definition 1 (Contraction Kernel (CK)) A CK is a tree
consisting of a surviving vertex as its root and some non-
surviving neighbors with the constraint that every non-
survivor can be part of only one CK.

An arrow over an edge is commonly used to indicate the
direction of contraction, i.e., from non-survivor to survivor
vertex. Using the 4-adjacent neighborhood relationship re-
sults in the plane graph. A plane graph is a graph embedded
in the plane such that its edges intersect only at their end-
points [18]. In a plane graph, a face is the connected spaces
between edges and vertices where its degree is the number
of edges bounding the face. A face bounded by a cycle is
called an empty face.

1.2. Gmap

An n-dimensional generalized map (n-Gmap) is a
combinatorial data structure allowing to describe an n-
dimensional orientable or non-orientable quasi-manifold
with or without boundaries [13]. An n-Gmap is defined by
a finite set of darts D on which act n + 1 involutions2 αi,
satisfying composition constraints of the following defini-
tion [7]:

Definition 2 (n-Gmap) An n-dimensional generalized
map, or n-Gmap, with 0 ≤ n is an (n + 2)-tuple
G = (D, α0, ..., αn) where:
1. D is a finite set of darts,
2. ∀i ∈ {0, ..., n}: αi is an involution on D
3. ∀i ∈ {0, ..., n − 2}, ∀j ∈ {i + 2, ..., n}: αi ◦ αj is an
involution.

A 2-Gmap (D, α0, α1, α2) represents the structure of a set
of surfaces. Darts as the fundamental elements of the 2-
Gmap are linked together by involution functions. For ex-
ample in Fig. 1, α0(21) = 22, α1(21) = 10 and α2(21) =
23.

Definition 3 (i-cell) Let G = (D, α0, ..., αn) be an n-
Gmap, d ∈ D, and i ∈ {0, ..., n}. The i-dimensional cell
(or i-cell) containing d is:

ci(d) = < α0, ..., αi−1, αi+1, ..., αn > (d) (1)
2self-inverse permutations

Figure 1. An example of a 2-Gmap

where

1. ⟨α1, α2⟩(d) denotes the propagation of (α∗
1, α

∗
2)

∗(d)
and identifies the 0-cell (a point), the eight darts sur-
rounding C in Fig. 1.

2. ⟨α0, α2⟩(d) denotes the propagation of (α∗
0, α

∗
2)

∗(d)
and identifies the 1-cell consisting of the four darts be-
tween B and C in Fig. 1.

3. ⟨α0, α1⟩(d) denotes the propagation of the orbit
(α∗

0, α
∗
1)

∗(d) and identifies the 2-cell between A, B,
C and D in Fig. 1.

Based on the definition 3, in Fig. 1, c0(22) =
{22, 24, 41, 43, 27, 25, 38} means this set of darts repre-
sents the 0-cell of the d = 22. In addition, the set
{22, 21, 23, 24} and the set {22, 21, 10, 9, 1, 2, 37, 38} rep-
resent 1-cell and 2-cell corresponding to d = 22, respec-
tively.

2. Corresponding graph of a 2-Gmap
Let G be a corresponding graph of a 2-Gmap. 0-cells

and 1-cells of the 2-Gmap correspond to the vertices and
edges of G, respectively. The 2-cells of the 2-Gmap cor-
respond to the faces of degree 4 in the G. Fig. 2 shows G
as the corresponding graph of the 2-Gmap of Fig. 1. Each
edge of G consists of two half-edges or darts. There are
three involutions, α0, α1 and α2 encoding the relationships
between darts (Fig. 3). To store the involutions one may
consider an array of darts encoding each involution. How-
ever, we introduce specific encoding such that only one of
these three involutions, i.e. α1, explicitly be stored in the
1D array of darts. The remaining two involutions, α

0
and

α2, are implicitly encoded.
Assume G consists of M by N vertices containing nd =

2× 2(M +N) + 2× (2MN −M −N) darts. The first
term, 2 × 2(M + N), indicates the number of darts in the

2
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Figure 2. Corresponding graph G of a 2-Gmap

Figure 3. Array of darts in the 2-Gmap of Fig. 2

boundary where α2(k) = k and k ∈ [1, 2 × 2(M + N)].
In Fig. 2 these darts are indicated by numbers 1 to 20. The
second term, 2×(2MN−M−N), illustrates the remaining
darts where α2(4k+1) = 4k+3 and α2(4k+2) = 4k+4
where k ∈ [(2 × 2(M + N)) + 1, nd]. In this manner, α2

is implicitly encoded. In Fig. 2, these darts are indicated by
numbers 21 to 48. Furthermore, we consider α0(2k − 1) =
2k, where k ∈ [1, nd/2]. Therefore, the α0 can be implicitly
encoded as well.

2.1. Edge Classification

A multi-labeled image consists of different labels where
each label represents an object (connected component). In
the neighborhood graph of an input image, each connected
component (CC) consists of a set of vertices with the same
label (color). In this regard, we partition the edges of the
neighborhood graph into two categories: intra-CC and inter-
CCs as follows:

Definition 4 Intra-CC edge: an edge e = (u, v) is intra-
CC iff g(u) = g(v).

Definition 5 Inter-CCs edge: an edge e = (u, v) is inter-
CCs iff g(u) ̸= g(v).

Based on the definitions above, the contrast of an intra-CC
edge is equal to zero, c(e) = 0. We show the intra-CC edge
by e0 ∈ E0. On the other hand, the contrast of an inter-CCs
edge is larger than zero, c(e) > 0. The inter-CCs edge is
shown by ei ∈ Ei, i ∈ N. Fig. 4 illustrates an example of
multi-labeled image containing 4 CCs where each CC has
a different color. We illustrate the E0 and Ei edges with

black and red color, respectively. The edges are partitioned
as follows:

E = E0 ∪ Ei (2)

2.2. Selecting the CKs

Selecting the CKs is the main procedure in building the
irregular pyramid. In construction of the pyramid, a CC at
the base level will be reduced into a single vertex at top of
the pyramid. In other words, all vertices of a CC will be
contracted through the pyramid until to reach a correspond-
ing surviving vertex at the top level. To this aim, we select
the CKs only from the E0 edges. In addition, in order to
select a unique set of CKs, a total order is used over the
indices of vertices [1, 2]. Consider the corresponding graph
G of the 2-Gmap with M by N vertices. Let (1, 1) be the
coordinate of the vertex at the upper-left corner and (M,N)
at the lower-right corner. The vertices of G receive a unique
index as follows:

Idx : [1,M ]× [1, N ] 7→ [1,M ·N ] ⊂ N (3)
Idx(r, c) = (c− 1) ·M + r (4)

The total order has two main properties [8]. First, any two
elements (indices of vertices) are comparable. Second, ev-
ery subset of vertices has one minimum and one maximum.
Since the CKs are selected from E0, a neighborhood N (v)
is defined as follows [1]:

N (v) = {v} ∪ {w ∈ V |e0 = (v, w) ∈ E0} (5)

If the neighborhood has at least one member (|N (v)| > 1),
then the surviving vertex is selected as follows [1]:

vs = argmax{Idx(vs)| vs ∈ N (v), |N (v)| > 1} (6)

Because there is only one maximum number in every subset
of the total order, there is only one unique surviving vertex
for each non-surviving vertex.

3. Redundant edges in multi-labeled images
Graphs as a versatile representative tool may have many

unnecessary edges [1, 2]. The definition of these unneces-
sary edges is different based on the specific application. In
this paper, we study the redundant edges in multi-labeled
images. In particular, a new formalism is defined to detect
the redundant edges in the hierarchical structure of the ir-
regular pyramid.
In constructing the irregular pyramid [6, 10], the neighbor-
hood graph of an input image forms the base level of the
pyramid. To reach the smaller graph at the upper level, a
set of vertices are selected for contractions. The contrac-
tion operation reduces the number of vertices and edges in
the resulting graph. The resulting graph may have empty
self-loops or double edges that we define later as redundant

3
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Figure 4. Edge classification in a 3×4 multi-labeled neighborhood
graph.

edges. The simplification procedure removes these redun-
dant edges after the contractions. The edge contraction and
edge removal are consecutively performed till the pyramid
reaches to its top level [11,12]. However, the simplification
procedure can be performed before the contraction opera-
tion [4] where it facilitates the construction of the irregular
pyramid.

In [1,4] the redundant edges in binary images are defined
as follows:

Definition 6 (Redundant-Edge (RE)) In an empty face,
the non-oriented edge incident to the vertex with lowest Idx
is redundant iff:

• The empty face is bounded by only non-oriented edges
with the same contrast value.

• The empty face is bounded by non-oriented edges with
the same contrast value and oriented edges.

By defining the new edge classification in Sec 2.1, the def-
inition of redundant edges of binary images would be valid
for the corresponding graph of the multi-labeled image.
Fig. 5 shows all possible configurations of E0 and Ei in
a face of degree 4 in the grid structure. The right column of
this figure illustrates the resulting graph after the edge con-
traction. The RE after the contraction are either empty self
loops or one of the double edges of a face of degree 2.

4. Removing redundant 1-cells
In the previous section, it was shown that the RE can

be predicted before constructing the pyramid. Since these
RE have no rules in pyramid construction, they can be re-
moved without harming the structure. Therefore, removing
the RE reduces the memory space of the pyramid. In a bi-
nary image it is proved that up to 50% of the edges are re-
dundant [4]. Considering the Ei edges as the category of

Figure 5. The configuration of all possible redundant edges in a
face of degree 4.

E1 edges, it is concluded that the upper bound of the RE in
the multi-labeled images is 50% as well.

Having sufficient independent processing elements, the
redundant edges are removed with parallel O(1) complex-
ity [3,4]. To this aim, a set of independent edges (darts) are
selected to be removed at the same time. By definition, two
edges not sharing an endpoint are considered as indepen-
dent edges [4]. Therefore, redundant edges or equivalently
redundant 1-cells in the 2-Gmap are removed in a constant
time.

4
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#Images size |REµ| std(|RE|)
RE 120 1350× 1142 48.43% 1.04

Table 1. The amount of redundant edges (RE) in multi-labeled
image.

5. Results

A 2-Gmap is completely defined by encoding its αi, i =
0, 1, 2 involutions. We have shown in Sec .2 that by only
preserving the α1 darts the 2-Gmap is completely encoded.
By using the canonical encoding [17], the memory con-
sumption is equal to the size of the initial generalized map
independent to the number of pyramid’s level. To build up
the whole pyramid and use only darts at the base level, the
history of contractions is preserved in a 1D array of darts.
Two operations of the pyramid, edge contraction and edge
removal, modify the α1 while the α0 and α2 do not change
in the entire pyramid. By detecting the redundant edges
(darts), we put all the redundant darts on the left side of the
array. These redundant darts have no role in constructing
the pyramid. Fig. 6 shows an example of a 2-Gmap where
the array of α1(d) encodes the entire of the 2-Gmap.

The redundant edges are illustrated by dashed-line in
Fig. 6-b. These redundant edge (darts) are highlighted in the
array of Fig. 6-d. By putting the redundant darts into the left
side of the array, the remaining darts preserve the structure
of the simplified 2-Gmap. As it was proved (Sec .4) up to
50% of the whole darts in a 2-Gmap would be redundant.

To exploit the advantage of the proposed method in a
real application, we calculate the percentage of RE through
a labeled 2D cross slice of a leaf scan (Fig. 7). The multi-
labeled input image (Fig. 7) has six different labels illus-
trating different regions inside the leaf. The size of the
original 2D slice is 2560 × 2560 and there are 2160 slices
in the volume of the 3D imaging. After cropping the un-
necessary parts of the original image, the proposed algo-
rithm was tested over 120 multi-labeled images3 with the
size 1350× 1142.

Tab .1 displays the outcome of the proposed method.
The first column shows number of images (#Images) of our
multi-label data base. The second column displays the size
of the 2D input image. The last two columns give the aver-
age amount of RE (’|REµ|’) along with the standard devia-
tion (’std(|RE|)’) over all images. The results show that the
proposed method enormously reduces the size of the input
image approximately by half.

3The images are from the Water’s gateway to heaven project,
https://waters-gateway.boku.ac.at/

6. Conclusion
The paper presents a novel formalism to define redun-

dant 1-cells in the 2-Gmap of a multi-labeled image. It de-
fines a corresponding graph of the 2-Gmap and detects the
redundant edges in the graph. The obtained formalism then
translated into the 2-Gmap structure where the redundant 1-
cells are detected. We proved that up to half of the whole
1-cells (edges) would be redundant in theory. Having suffi-
cient processing elements by employing the set of indepen-
dent edges, all the redundant edges (1-cells) are removed in
constant complexity. The experiments show almost 48% of
the 1-cells in the 2-Gmap are structurally redundant on aver-
age. By removing these redundant 1-cells the memory con-
sumption is dramatically reduced. Moreover, we introduced
an efficient encoding of involutions in the 2-Gmap where
the two third of the involutions can be implicitly encoded.
Finally, using the generalized map structure the proposed
method can be extended to higher dimensional n-Gmaps.
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Abstract

Photometric stereo refers to the process to compute the
3D shape of an object using information on illumination and
reflectance from several input images from the same point
of view. The most often used reflectance model is the Lam-
bertian reflectance, however this does not include specular
highlights in input images. In this paper we consider the
arising non-linear optimisation problem when employing
Blinn-Phong reflectance for modeling specular effects. To
this end we focus on the regularising Levenberg-Marquardt
scheme. We show how to derive an explicit bound that gives
information on the convergence reliability of the method
depending on given data, and we show how to gain experi-
mental evidence of numerical correctness of the iteration by
making use of the Scherzer condition. The theoretical inves-
tigations that are at the heart of this paper are supplemented
by some tests with real-world imagery.

1. Introduction

The photometric stereo (PS) problem is a fundamental
task in computer vision [5]. The aim of PS is to infer the 3D
shape of an object from a set of multiple images. Thereby
the images depict an object from the same perspective, but
the illumination direction changes throughout the images.
An important information besides the illumination is the
light reflectance of the object. The classic PS model [13, 14]
is formulated in terms of Lambertian light reflectance. A
Lambertian surface is characterised by diffuse reflectance
and the independence of perceived shading from the viewing
angle. The Lambertian set-up is certainly convenient for
modeling, as it represents the most simple mathematical
model for reflectance, and thus resulting formula and inverse
problems are relatively simple. However, it is quite well
known that in PS specular highlights [6] as well as non-
Lambertian diffuse effects [7] may have an important impact
on 3D reconstruction.

Let us also comment on some other basic characteristics
of PS. Depending on the knowledge on the lighting, one
discerns between calibrated and uncalibrated PS. In this
work we consider only the calibrated case, where lighting
directions and intensities are known. Furthermore, the final
goal of PS is to obtain a depth map, such that for each
relevant image pixel three-dimensional information of the
depicted object is obtained. While some approaches tackle
this problem directly in terms of depth values [8], the more
common strategy is to divide depth computation into two
sub-problems. In doing so at first a map of normal vectors
is computed, from which the (relative) depth is obtained in
a second step. See for instance [11] for a survey on surface
normal integration. In this paper we only consider the first
of the latter tasks, that is to find the normal vectors. Another
aspect is sometimes the projection performed by the camera
during image acquisition, often leading to orthographic or
perspective models, respectively. In this work we address
effectively both settings.

Our contribution. In this paper, we consider some the-
oretical aspects of practical value in the optimisation of PS
when using Blinn-Phong reflectance. Here we extend in sev-
eral ways upon previous work; let us especially refer to [6],
where the Blinn-Phong model is employed in a similar way
as here. Thereby, we consider to include the potentially
most important specularity parameter, the so-called shini-
ness, as an unknown in the optimisation, which is in contrast
to [6] and many other works in the field. The approximate
solution of the non-linear optimisation problem arising pixel-
wise is performed by the regularising Levenberg-Marquardt
method, see especially [2]. As this is an iterative method, it is
important to assess the influence of initialisation on the con-
vergence and to give a rigorous bound as a stopping criterion.
Furthermore as the problem is non-linear, one can observe
in practical examples, that it may be difficult to minimise the
underlying residual. To address this issue we investigate the
use of a coarse-to-fine (CTF) scheme as well as an initialisa-
tion obtained through classical PS. We show how to explore
Scherzer’s criterion [3], which appeared in [4] for the first
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time. This criterion is considered for theoretical purposes
within the construction of the method, in order to assess the
convergence property in our PS problem experimentally.

2. Classical Photometric Stereo
Let us reiterate the classic PS approach of Woodham [13,

14]. Given is a set of m ≥ 3 images (I1, . . . , Im)
⊤

=: I,
so that I : Ω → Rm, along with the corresponding lighting
directions Lk ∈ R3 with ∥Lk∥ = 1 for k = 1, . . . ,m,
with associated intensities lk ≥ 0. Throughout the paper
∥ · ∥ denotes the Euclidean norm or the induced spectral
norm. The object to be reconstructed is depicted usually as a
non-rectangular domain Ω ∈ R2, which is embedded in the
image domain.

The surface normal vectors N : Ω → R3 with
∥N (x, y)∥ = 1 for all (x, y)⊤ ∈ R2 and the albedo
ρd : Ω → R are fitted through a least squares approach,
by minimising

∫∫

Ω

∥∥RL(x, y)− I(x, y)
∥∥2 dxdy, (1)

with reflectance function RL :=
(
RL

1, . . . ,RL
m

)⊤
, consist-

ing of components

RL
k := ρdlkL

⊤
k N , k = 1, . . . ,m. (2)

In practice this boils down to finding a local solution N ∈ R3

at every sample location (x, y)⊤ for the problem

min
N

∥LN − I∥2, L :=




l1L
⊤
1

...
lmL⊤

m


 , I := I(x, y). (3)

This, in turn, leads to the computation of the normal vectors
and, as a byproduct, the albedo according to

N =
(
L⊤L

)−1
L⊤I, (4)

ρd(x, y) = ∥N∥, N (x, y) = N/∥N∥ . (5)

3. Blinn-Phong Photometric Stereo
In the general least squares approach Eq. (1), we can mod-

ify the reflectance function to account for non-Lambertian
effects. To this end we investigate the Blinn-Phong (BP)
model [1, 9], which has the form RBP :=

(
RBP

1 , . . . ,RBP
m

)⊤
with components

RBP
k := ρdlkL

⊤
k N + ρshk max

{
0,H⊤

k N
}α

, (6)

k = 1, . . . ,m. We observe by (6) that in the BP model,
diffuse reflection as in (2) is supplemented by a specular
reflection term. Here ρs : Ω → R denotes the specular
albedo. Another material parameter is the specular sharpness

or shininess α : Ω → R. The halfway vectors Hk : Ω → R3

depend on the viewing directions V : Ω → R3 and are
computed for k = 1, . . . ,m as

Hk(x, y) := Hk/∥Hk∥, Hk := Lk + V(x, y). (7)

Making use of focal length f , the viewing directions V⊥ and
V∠ in the orthographic and perspective setting respectively
are

V⊥ = (0, 0, 1)⊤, V∠(x, y) = (x, y, f)⊤. (8)

We reinterpret lk as diffuse intensity of the light source and
denote hk ≥ 0 as specular intensity. To ensure that image
intensities are only increased due to diffuse and specular
terms, it is reasonable to enforce ρd, ρs ≥ 0. Furthermore
ρd, ρs ≤ 1 ensures that at most as much image intensity
is added as light intensity is supplied by each light source.
Finally, it is reasonable to enforce α > 1 to actually produce
specular highlights through the specular term.

The BP model was originally proposed for computer
graphics. It is not based on physical laws, but it enables to
create plausible images with a still simple model compared
to other possible approaches. Despite its simplicity, for use
in inverse problems in computer vision, the non-linearities
in Eq. (6) may pose considerable hurdles.

Let us now discuss the modeling of the components in
Eq. (6) along with a few adaptations we employ. First we
turn our attention to the normal vectors N . One may model
them through derivatives of the depth or its logarithm. In
this approach we may parametrise them at a specific location
through depth derivatives p, q as

N (x, y) =
N(p, q)

∥N(p, q)∥ . (9)

However the step of obtaining a normal vector of length 1
in Eq. (9) adds another layer of non-linearity to the model.
In numerical experiments we found this approach to be not
very reliable. Therefore we opt for an approach in analogy to
classical PS. In Eq. (6) we replace ρdN = N introducing the
auxiliary variable r = ρs/(ρd)α.By furthermore replacing
α = 1 + exp(a) we ensure that RBP has continuous first
derivatives. Eq. (6) then takes the form

RBP
k (N, r, a) = lkL

⊤
k N + rhk max

{
0,H⊤

k N
}1+exp(a)

,
(10)

with r, a ∈ R and N ∈ R3.

4. On the Optimisation Strategy

With BP reflectance, we have to solve a non-linear least
squares problem, to which end we utilise the regularising
Levenberg-Marquardt (RLM) scheme [2, 3]. Writing the
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underlying task in standard notation, with this algorithm one
may aim to find a solution x⃗ of the problem

F (x⃗) = y⃗, F : Rn → Rm, (11)

with a known differentiable function F . Let us note that
the description and discussion of the RLM algorithm in [3]
is in a more general setting. For simplicity we only give
an overview of the algorithm based on finite dimensional
spaces, as is fitting for the problem at hand.

It is furthermore assumed that the original data y⃗ is not
known, but with some δ > 0 an estimate is required on
how good the given data y⃗δ approximates the original data,
according to ∥∥y⃗δ − y⃗

∥∥ ≤ δ. (12)

Then with some starting point x⃗0 the iterative rule takes the
form

x⃗k+1 = x⃗k +
(
F ′(x⃗k)

⊤F ′(x⃗k) + αkIn
)−1

F ′(x⃗k)
⊤ (y⃗δ − F (x⃗)

)
(13)

with Jacobian matrix F ′, n× n-dimensional identity matrix
In and a regularisation weight αk > 0 such that with a
preassigned ρ ∈ (0, 1) the new iterate x⃗k+1 fulfils
∥∥y⃗δ − F (x⃗k)− F ′(x⃗k) (x⃗k+1 − x⃗k)

∥∥ = ρ
∥∥y⃗δ − F (x⃗k)

∥∥.
(14)

The stopping criterion of the RLM scheme depends explic-
itly on the noise level δ in the given data. To stop at an iterate
x⃗k, it has to fulfil

∥∥y⃗δ − F (x⃗k)
∥∥ ≤ τδ, (15)

with a preassigned τ > 2, fulfilling ρτ > 1. For numerical
experiments we set ρ = 0.5, τ = 2.5, following [3].

The discussion of the RLM scheme in [3] relies on the
strong Scherzer condition [4]. For the Jacobian matrices at
two points x⃗1, x⃗2 ∈ Rn there exists a matrix R = R(x⃗1, x⃗2)
such that F ′(x⃗1) = RF ′(x⃗2) and

∥R− Im∥ ≤ CR∥x⃗1 − x⃗2∥ (16)

with some CR > 0, which is constant for all x⃗1, x⃗2 ∈ Rn.
This condition imposes a certain regularity of the Jacobian
matrix F ′. In this context we are interested in a local approx-
imation of CR. For two consecutive iterations x⃗k, x⃗k+1 we
estimate R as a solution of F ′(x⃗k) = R(x⃗k, x⃗k+1)F

′(x⃗k+1)
with minimal norm. Then we can locally approximate the
constant in Eq. (16) as

CR,loc
k =

∥R(x⃗k, x⃗k+1)− Im∥
∥x⃗k − x⃗k+1∥

. (17)

Since F in Eq. (11) is nonlinear, we employ a CTF frame-
work. In doing so the data is scaled to a coarser scale, i.e.

to a lower resolution. The obtained result is then used as
initialisation on the next finer scale, until we arrive at the
original resolution.

Let us focus on the assumption Eq. (12). The noise level
δ governs the stopping criterion of the RLM scheme. If
Eq. (12) is not fulfilled then the iterates may actually diverge.

At this point we make the assumption that our data I(x, y)
is a realisation of the BP model corrupted by additive white
Gaussian noise, i.e. it can be modelled as

I(x, y) = R(x, y) + ε(x, y), for (x, y)⊤ ∈ Ω. (18)

Here ε(x, y) is a realisation of a multivariate normal distri-
bution, such that the m components are independent and
identically distributed (i.i.d.) with mean zero and standard
deviation σ > 0, the corresponding density function is

f(X) =
1√

2π
m
σm

exp

(
− 1

2σ2

m∑

i=1

X2
i

)
, (19)

cf. [10]. The probability that Eq. (12) holds can be computed
with the following result. The proof, which is technical but
straightforward, is included for the readers convenience. The
following result is also related to the Chi distribution.

Proposition 1. Let m ∈ N, δ > 0 and let ε be a realisation
of an m-dimensional multivariate normal distribution with
mean zero, standard deviation σ > 0 and density Eq. (19).
The probability of P := P (∥ε∥ ≤ δ|σ,m) can be computed
as follows:

(i) If m is even, then

P = 1− exp

(
− δ2

2σ2

) m
2 −1∑

i=0

(
δ2

2σ2

)i
1

i!
. (20)

(ii) If m is odd, then

P =

√
2

π

(
1

σ

∫ δ

0

exp

(
− r2

2σ2

)
dr−exp

(
− δ2

2σ2

)

m−1
2∑

i=1

((
δ

σ

)m−2i
m+1

2 −i∏

j=1

(
1

2j − 1

)))
. (21)

Proof. For any continuous probability density f we have

P = P (∥ε∥ ≤ δ|σ,m) =

∫

∥X∥≤δ

f(X) dX. (22)

Since the density function in Eq. (19) is radially symmetric,
this simplifies to

P =

∫ δ

0

Om(r)f(r, 0, . . . , 0) dr, (23)
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where

Om(r) = 2rm−1 π
m
2

Γ
(
m
2

) (24)

denotes the surface area of a sphere with radius r around
the origin in Rm. Γ denotes the gamma function. Inserting
Eq. (19), we write

P =
21−

m
2

σmΓ
(
m
2

)
∫ δ

0

rm−1 exp

(
− r2

2σ2

)
dr. (25)

Since
∫
r exp(r2/(2a)) dr = a exp(r2/(2a)) + c, for m >

2 the integral in Eq. (25) can be simplified by partial integra-
tion, i.e.

∫ δ

0

rm−2 · r exp
(
− r2

2σ2

)
dr

= −σ2

[
rm−2 exp

(
− r2

2σ2

)]δ

r=0

+ σ2(m− 2)

∫ δ

0

rm−4 · r exp
(
− r2

2σ2

)
dr. (26)

We now consider the two cases of m being even or odd.
Let m ∈ N be even. Then repeated partial integration of

the integral Eq. (25) leads to

∫ δ

0

rm−1 exp

(
− r2

2σ2

)
dr

= −
m
2 −1∑

i=1

σ2i
i−1∏

j=1

(m− 2j)

[
rm−2i exp

(
− r2

2σ2

)]δ

r=0

+ σm−2

m
2 −1∏

j=1

(m− 2j)

∫ δ

0

r exp

(
− r2

2σ2

)
dr

= −
m
2∑

i=1

σ2i
i−1∏

j=1

(m− 2j)

[
rm−2i exp

(
− r2

2σ2

)]δ

r=0

= −
m
2∑

i=1

σ2i 2
i−1
(
m
2 − 1

)
!(

m
2 − i

)
!

[
rm−2i exp

(
− r2

2σ2

)]δ

r=0

= σm2
m
2 −1

(m
2

− 1
)
!

−
m
2∑

i=1

σ2i 2
i−1
(
m
2 − 1

)
!(

m
2 − i

)
!

δm−2i exp

(
− δ2

2σ2

)
.

(27)

This formula can easily be verified for m = 2, as
in this case the initial integral simplifies to the form∫
r exp(r2/(2a)) dr. Inserting Eq. (27) and Γ(m/2) =

(m/2 − 1)! into Eq. (25), we obtain after an index shift
Eq. (20).

Now let m ∈ N be odd. Again we use repeated partial
integration on the integral in Eq. (25), until we arrive at

∫ δ

0

rm−1 exp

(
− r2

2σ2

)
dr

= σm−1

m−1
2∏

j=1

(2j − 1)

∫ δ

0

exp

(
− r2

2σ2

)
dr

−
m−1

2∑

i=1

σ2i

∏m−1
2

j=1 (2j − 1)
∏m+1

2 −i
j=1 (2j − 1)

δm−2i exp

(
− δ2

2σ2

)
.

(28)

Plugging this together with

Γ
(m
2

)
= Γ

(
m− 1

2
+

1

2

)
=

(m− 1)!
√
π(

m−1
2

)
! 2m−1

=

∏m−1
2

j=1 ((2j)(2j − 1))
√
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into Eq. (25) leads to Eq. (21).

5. Experiments
Since we focus on the computed vector fields of surface

normals, it appears adequate to employ colour coding of
surface normals for visual assessment, cf. Figure 1. For
quantitative evaluation we consider here the standard AAE,
where the averaging is performed over the object domain.
Let us note that we use the result obtained through classical
PS as an initialisation for the BP model. Throughout the
experiments we computed δ according to Proposition 1, such
that Eq. (12) is fulfilled with a probability of 95%. We
observed that the choice of this confidence level is not critical
for the outcome of our experiments.

Synthetic Test Example. As a synthetic experiment for
our investigations we consider the sphere example, see Fig-
ure 1. Let us note that we consider an orthographic setting
for all the sphere experiments. As we observe in Figure 1,
in this experiment the developed computational model and
set-up enables to obtain a nearly perfect result. For optimisa-
tion we employed in total 5 input images, of which we show
here just one example. For comparison, we give here the
corresponding result obtained by Lambertian PS applied at
analogous input images where we filtered the specular high-
lights by the subspace technique proposed in [15], which
is supposed to make the input nearly Lambertian. As is
confirmed here visually as well as quantitatively, it appears
favorable (at least in this example) to explore an explicit
modeling like with the proposed BP framework.
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Figure 1. (left-to-right:) one of the input images of the sphere rendered using the BP model; colour coded vector field of ground truth normal
vectors; classical PS with preprocessing [15], average angular error (AAE) 1.02; developed BP framework with CTF, AAE 0.37

Let us note that in fact this test example may not be too
easy, as can be observed by the results obtained by prepro-
cessing and Lambertian PS. The reason is that the specular
highlights in the input are not perfectly distributed over the
sphere and may result in distortions if not being accounted
for sufficiently accurate in the model.

Evaluation of Scherzer’s Condition. As discussed in
Sec. 4, between two iterates of the RLM scheme we observe
the local approximation CR,loc

k of the constant in Eq. (16)
according to Eq. (17). As the Scherzer condition is an impor-
tant assumption for the results in [3], we opt to add a break
condition, where the algorithm stop if the estimate grows
too large. In practice the algorithm is halted if we observe
an iterate with CR,loc

k ≥ 2000. As can be seen in Figs. 2
and 3 this is usually the case at locations where specular
highlights may occur, as the angle between halfway vectors
and surface normals becomes small. One may interprete this
result in the way, that the energy that is minimised features
at highlights many small variations that makes it difficult to
obtain a reliable local minimum.

We evaluated the restarting of the RLM scheme with a
larger parameter ρ in Eq. (14), if it stopped before an iterate
fulfils Eq. (15). This may lead to a smaller trust region and
to a more stable behaviour of the algorithm. However we did
in general not observe a significant increase in quality. The
results displayed here were thus computed without restart-
ing the RLM scheme, giving an account of the unstabilised
version of the method.

Real World Test Example. In order to assess the proper-
ties and usefulness of the developed numerical BP frame-
work, we exploit here a selected variety of examples taken
from the DiLiGent data set [12] which gives an account of
photographed real-world objects with different reflectance
properties. Here we do not employ a CTF scheme, as we
rely on the initialisation obtained with classical PS. Let us
note that the underlying model is now (in practice, weakly)
perspective.

Figure 2. Algorithmic behaviour in the sphere experiment (left)
and an example from the DiLiGent data set [12] (right). White
depicts the locations where the RLM scheme stopped due to the
CR,loc

k ≥ 2000 criterion.

As can be visually assessed by means of Figure 3, the
proposed model along with its adaptations performs very
reasonably but in some details not perfect, depending on the
actual example. For clarifying thereby the zones of influence
of the specular terms we depict masks showing the object
parts where the BP model gives an effective contribution.
When taking into account the properties of the considered
examples, it appears especially that the broad specularities
as appearing in the input (teddy bear, goblet) may result in
a certain inaccuracy. In turn, when highlights appear but
are not too strong (cat, tea pot), results are quite convinc-
ing, given that the underlying reflectance in these cases is
supposed to be non-linear in the diffuse reflectance as the
underlying material is rough. In the tested real world setting
from DiLiGent the results are overall of similar quality to the
preprocessed Lambertian method. Therefore we conjecture
that our numerical BP framework appears to be especially
suited for dealing with objects with not too strong highlights,
being at the same time able to tackle a certain range of diffuse
reflectance of rough materials.

6. Conclusion

We discussed the BP reflectance in the context of PS. The
augmentation of classical PS with this reflectance model is
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Figure 3. (left-to-right:) Examples from Diligent data sets. (top-to-bottom:) Visualisation of ground truth normals; normal fields based on
BP (where we note the effect of the not satisfied Scherzer condition at some highlights at the goblet); mask based on half directions. White
depicts locations where the maximum of the cosines between halfway vectors and the normal vector obtained with classical PS is ≥ 0.99.

straightforward, but solving the arising optimisation problem
is less so. This task can be tackled with the RLM scheme,
which leads to satisfactory results.

The findings for the implementation of the RLM scheme
may be translated to other problems, since the assumption
that the data follows a normal distribution is very common.
The application of the BP model to more complex data sets
poses considerable hurdles, which may be adressed in future
work.
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Abstract

To fight the growing problem of fake news – and specif-
ically image manipulation – we propose a simple, yet effi-
cient neural network architecture for detecting and localiz-
ing various image forgeries on a pixel-level. Robust fea-
tures for forgery detection and localization were learned
and the trained model performs well, even on heavily down-
scaled images, but without the excessive processing time of
competitive approaches based on image decomposition and
merging of the fragmental results. We provide detailed ex-
planations regarding the creation of our training dataset
comprising 1.9 million images. Finally, we compare the
proposed solution against several state-of-the-art methods
on four public benchmark datasets in order to demonstrate
its superior performance.

1. Introduction
”Fake News” are a growing problem of our society.

Technological progress makes it easier and faster to pro-
duce high quality forgeries of digital media material such as
audio, video and images. The impact ranges from satirical
memes to orchestrated political Fake News campaigns aim-
ing to influence public opinion – and at the same time rais-
ing the hard question where to draw a line between fighting
Fake News and the fundamental right of free speech. In this
paper, we present a new approach for identifying forged re-
gions in images, thereby enabling institutions such as media
organizations and interested citizens to get a better indica-
tion of whether specific images may have been manipulated.

During the last decade, various approaches for detect-
ing the main categories of image forgery were proposed:
copy-move [9] splicing [11], inpainting [8] and further spe-
cific filtering, subsumed as enhancement [20]. However,
these approaches frequently focus on specific features of
the respective manipulation type. In recent years, more gen-
eral approaches for multiple manipulation types were devel-
oped, such as [24] and [23]. Each of them promotes sophis-
ticated and problem-specific concepts, like modeling known
and unknown noise on images that result from transmis-

Forged Image Ground Truth Output

Table 1. Results of our model for image forgery detection and
localization. Example images are taken from the CASIA [4] and
the NIST [15] datasets.

sion to Online Social Networks (OSNs). In this paper, we
present an image forgery detector which outperforms state-
of-the-art approaches with a quite simple and general deep
learning network architecture and a carefully constructed
training dataset. To be more specific, our major contribu-
tions are as follows:

• We propose a deep learning network architecture for
the task of image forgery detection and localization,
capable to learn relevant features for composed image
manipulations.

• We present a model that outperforms current state-of-
the-art (SOTA) approaches on four public benchmark
datasets.

• We present a processing time comparison with a SOTA
approach showing a significant time saving, especially
for larger images.

• We give a detailed description of our training dataset,
as well as instructions on how to generate such a
dataset.

2. Related Work
Many methods of detecting and localizing image forgery

have been published (see, for example, the review of [21]
and references therein), in order to ensure visual informa-
tion authenticity. Some of these forensic techniques are de-
signed to detect specific forms of tampering, such as splic-
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ing [11], copy-move [12, 16, 22, 25–27], and inpainting [8].
Unfortunately, these forensic approaches can only be ap-
plied to detect specific tampering manipulations.

In recent years, deep learning-based methods were de-
veloped to address the problem of detecting general (com-
pound) types of forgeries. In [28], a two-stream Faster R-
CNN network is trained end-to-end to detect the tampered
regions in a manipulated image. One of the two streams is
an RGB stream whose purpose is to extract features from
the RGB image input. The other one is a noise stream that
leverages the noise features extracted in order to discover
noise inconsistencies between authentic and tampered re-
gions. Notably, [24] proposes a unified deep neural archi-
tecture called ManTra-Net, which is an end-to-end network
that performs both detection and localization without extra
preprocessing and postprocessing. ManTra-Net is a fully
convolutional network which can handle images of arbitrary
sizes and many known – and even unkown – forgery types.
Furthermore, the authors design a self-supervised learning
task to learn robust image manipulation features, formu-
late the forgery localization problem as a local anomaly
detection problem, and propose a long short-term memory
(LSTM) solution to assess local anomalies.

In [13], a CNN-based image forgery detection frame-
work is proposed which makes decisions based on full-
resolution information gathered from the entire image,
without the need for preliminary image resizing. The frame-
work is trainable end-to-end with limited memory resources
and weak (image-level) supervision, thus allowing for the
joint optimization of all parameters. The work of [29] ad-
dresses the issue of tampering localization by focusing on
the detection of commonly used editing tools and opera-
tions in Photoshop. A fully convolutional encoder-decoder
architecture is designed, as well as a training data genera-
tion strategy by resorting to Photoshop scripting.

The widespread availability of online social networks
(OSNs), e.g., Twitter, Facebook, Whatsapp, etc., makes
them the dominant channels for transmitting forged images.
However, almost all OSNs manipulate the uploaded images
in a lossy fashion (including format conversion, resizing,
enhancement filtering and JPEG compression). The noise
introduced by these lossy operations could severely affect
the effectiveness of forensic methods. In a recent paper
[23], the problem of OSN-shared image forgeries is tackled
by employing a dedicated training scheme. A baseline de-
tector is presented, which is based on a modified U-Net [17]
as the backbone architecture. Next, an analysis of the noise
introduced by OSNs is conducted, and the noise is decou-
pled into two parts, i.e., predictable noise and unseen noise.
These are then modelled separately and the modelled noise
is further incorporated into the training framework.

Outline: The rest of this paper is structured as follows:
Section 3 describes in detail how the datasets for training

and validation were generated. In section 4, we present dif-
ferent models we have created, evaluate them on benchmark
datasets, and describe the architecture of the best perform-
ing model in detail. In section 5, our proposed network is
evaluated and compared to state-of-the-art methods. Final
remarks are made in section 6.

3. Datasets
Currently, there are no sufficiently large training datasets

publicly available for the task of image forgery detection. In
the following, a detailed description is provided, of how our
training dataset, which comprises 1.9 million manipulated
images, was created.

3.1. Training and Validation Datasets

As a source of pristine and donor images we facilitated
the MS-Coco [10] 2017 training dataset containing 118K
images. This public and widely used dataset encompasses
a wide range of images. Our training dataset includes 4
major types of image manipulation: splicing, copy-move,
removal and enhancement. The overall process for training
data generation was as follows:

1. Select Pristine Image:
A pristine image IP from MS-COCO 2017 was se-
lected randomly. For the few images with width
W or height H smaller than 224 pixels, the image
was resized to the size (max(W, 224),max(H, 224)).
For 50% of the images IP in the training dataset,
a proportion-preserving downscaling was executed.
This avoided extracting only small portions of big-
ger images (like a monochrome patch depicting a part
of the sky from the original image). This scaling for
an image IP with size (W,H) to (Wnew, Hnew) was
done as follows:

Wnew = max(⌊( 224 ·W
min(W,H)

)⌉, 224)

Hnew = max(⌊( 224 ·H
min(W,H)

)⌉, 224)

IP = IP .resize((Wnew, Hnew))

(1)

Next, a patch of size (224, 224) pixels is randomly
chosen from the image IP and used as a pristine image
patch P .

2. Select Donor Image:
A donor image ID from MS-COCO was selected.
For the splicing operation, a random image other than
the pristine image IP was selected. For the copy-
move, removal and enhancement manipulations, the
same pristine image was selected as a donor image
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Forgery Type Manipulation Mask
Shape

Copy-Move triangle

Enhance rounded rectangle

Enhance ellipse

Removal poligon 5 vertices

Copy-Move ellipse + 4V polygon

Copy-Move superpixel segmentation

Splicing person segmentation

Table 2. Training and Validation data: showing forged images for
major manipulation types and related manipulation mask shapes

(ID = IP ). Then, a donor patch D of size (224, 224)
was randomly cropped from ID. For enhancement and
removal (inpainting) manipulations, the donor patch D
and the pristine patch P share the same location in
ID = IP .

3. Preprocess Donor Image Patch D:
Table 4 shows which preprocessing steps may be

applied to the donor image patch D for each manip-
ulation type. Resample rescales the height and the
width image dimension independently by 70 to 130
percent. The resulting image has at least the size
(224, 224). The preprocessing step Flip flips the
donor image horizontally with a likelihood of 50%,
while Rotate rotates the image by either 90, 180 or
270 degrees with a likelihood factor controlled by a
parameter (for the generated dataset, 30% of the donor
images were rotated). Blur is blurring the donor image
with a likelihood of 50%. In case the blurring fil-
ter is applied, either ImageFilter.BoxBlur
or ImageFilter.GaussianBlur from
the Python package PIL are used with equal
probabilities. The blur radius is set ran-
domly between 1 and 7 pixels. Contrast
uses one of the ImageFilters EDGE ENHANCE,
EDGE ENHANCE MORE, SHARPEN, UnsharpMask
or ImageEnhance.Contrast from the Python
package PIL. Noise adds Gaussian noise with mean
and standard deviation (µ, σ) = (0, 12) with like-
lihood of 1 out of 3. The Brightness is changed
with probability of 50% by a factor uniformly
chosen from the range [0.5-1.5]. With 0.5 prob-
ability, a JPEG-Compression with quality factor
10x for x ∈ [1, 2, 3, 4, 5, 6, 7] is employed. In
case the manipulation type is Removal, an in-
painting filter from OpenCV [2] is applied (either
cv2.INPAINT TELEA or cv2.INPAINT NS) on
the manipulation mask defined in the next step.
In case the chosen manipulation type is Enhance and
none of the filters (blur, contrast, noise, brightness,
jpeg compression) were applied to the donor patch D,
the process is repeated.

4. Create Binary Manipulation Mask
7 types of binary masks were used to define the region
in an image where manipulations have been executed
(see Tab. 3). In Table 2, various examples for created
masks and the resulting forged images are shown. The
Python’s image processing toolbox scikit-image is em-
ployed to segment the donor patch in Superpixels [1]
of appropriate size, and selects one Superpixel (con-
nected set of pixels) for the splicing manipulation. The
”person segmentation” uses the segmentation ground
truth from the MS-COCO dataset. All pixels from a
donor image patch D marked as person are selected
and used as splicing input. Masks are recalculated if
their portion of the image patch is not in the range of
5% to 40%.

5. Generate Forged Image
Given a pristine patch P , a donor patch D, a manipula-
tion m and a binary manipulation mask M, the forged
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Shape of Mask Parameters Impact
Triangle p1, p2, p3 3 random points
Rounded Rectangle X,Y, r 2 points for Bbox; radius of the corners
Ellipse X, Y 2 points to define the bounding box
Polygon with 5 vertices p1,. . . ,p5 sequence of 5 random points
Ellipse + Polygon with 4 vertices X,Y, p1,..,p4 ellipse + 4 vertex polygon
Superpixel Segmentation [min, max] range for number of Superpixels
Person Segmentation -

Table 3. Types of mask shapes generated for local image manipulation

image X is given by

X = M · P + (1−M) ·m(D) (2)

meaning that each pixel of the resulting image X is
taken either from the pristine patch P or the manip-
ulated donor patch D, depending on the binary mask
M. In case of a copy-move manipulation, an addi-
tional translation of the copied image part (1 − M) ·
m(D) towards another position in the pristine image
patch is made.

Using this process, a training dataset with 1.9 million
forged images was generated, comprised of 700, 000 splic-
ing, 500, 000 copy-move, 400, 000 enhance and 200, 000
inpainting images as their main forgery type. This training
dataset was used in Section 4 for model training.

Manipulation-Type C S R E
Resample × × – –
Flip × × – –
Rotate × × – –
Blur – – – ×
Contrast – – – ×
Noise – – – ×
Brightness – – – ×
JPEG-Compression – – – ×

Table 4. Preprocessing steps for donor image per manipulation
types: Copy-Move (C), Splicing (S), Removal (R) and Enhance-
ment (E)

4. Network Architecture Evaluation
In this section we implemented several network archi-

tectures for image forgery detection and localization. The
models were trained on the dataset created in Sec. 3. The
problem of image forgery detection and localization is es-
sentially a segmentation problem in which each pixel is
classified as an original or a manipulated pixel. For this
task, U-Nets are a well established network architecture and
we present 3 variants of U-Net models with promising per-
formance, evaluate them on 4 benchmark datasets and de-
scribe the best performing model in more detail.

4.1. Models and Evaluation

MobileNet - MoNet: This model is a modified U-
Net. U-Nets consist of an encoder for downsampling and
a decoder for upsampling. MobileNetV2 [19], pretrained
on Imagenet, is used as an encoder. MobileNet [5] is a
lightweight architecture that has already learned robust fea-
tures in the context of image classification and hence al-
lows to reduce the number of trainable parameters. For up-
scaling, the Tensorflow implementation of pix2pix [7] was
utilized. Furthermore, 5 skip connections between output
layers from downsampling and layers form the upsampling
part were established.
U-NET: This network is one implementation of the original
U-Net architecture [17].
SE-UN: Our improved version of U-NET architecture,
which adds a recalibration with Spatial and Channel
Squeeze & Excitation Blocks [18].

Table 5 shows results for the three network architec-
tures evaluated on the benchmark datasets CASIA [4],
Columbia [6], DSO [3] and NIST16 [15].

While the MobileNet implementation (MoNet) gives the
best results for the metrics F1 and IoU averaged over all
4 benchmark datasets, SE-UN performs better for AUC and
the pixel-wise accuracy. Since the average over all 4 metrics
is higher for the latter model (0.574) compared to MoNet
with a score of 0.566, we chose our U-Net variation with ad-
ditional Spatial Channel Squeeze and Excitation (SE-UN)
for further experiments and SOTA comparison. The archi-
tecture is depicted in more detail in Fig. 1.

4.2. Implementation Details

The deep learning framework Tensorflow was used for
training our network. For training and detection, the images
were resized to (224, 224) pixels. An Nvidia GeForce
GTX 1080 Ti GPU was used for training, with batch size
set to 16. We use Adam optimizer and perform 1500 steps
per epoch and stop after the loss of the validation dataset did
not improve for 35 epochs. Training starts with a learning
rate of 0.00006, which is halved after 20 epochs without
improvement.
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Test Datasets
Models DSO [3] Columbia [6] NIST [15] CASIA [4] Average

AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC AUC F1 IoU ACC all
MoNet .690 .348 .227 .716 .781 .663 .568 .829 .660 .257 .195 .833 .723 .384 .306 .878 .713 .413 .324 .814 .566
U-NET .599 .098 .061 .835 .803 .519 .411 .802 .655 .222 .174 .897 .750 .212 .176 .924 .701 .263 .206 .864 .508
SE-UN .732 .152 .108 .848 .827 .503 .428 .827 .780 .265 .221 .921 .851 .429 .369 .929 .797 .337 .282 .881 .574

Table 5. Comparison of three developed U-Net architectures (MoNet, U-NET, SE-UN) by AUC, F1 and IoU metrics.

Figure 1. Our proposed network: A U-Net architecture with 4 skip
connections and spatial channel Squeeze & Excitation (scSE) ex-
tension. Two (3x3)-convolutions combined with one scSE layer,
a batch normalization (BN) layer and a Relu activation layer form
the building blocks, followed by Max-pooling (encoder) respec-
tively upscaling (with a Conv2DTranspose layer in the decoder
part on the right side). The expected input image size (H,W ) =
(224, 224).

4.3. Image Manipulation Classification

To investigate the capability of our networks to han-
dle the image manipulation classification (IMC) task, we
trained the encoder part of our MoNet model with an addi-
tional Softmax layer to detect one of the 4 main manipula-
tion types (splicing, copy-move, removal, enhancement) as
the outcome. We trained on a dataset created according to
Sec. 3 with one million images divided into 4 classes. For
an evaluation dataset with 1,200 images created similarly
to the training dataset, a classification accuracy of 94, 92%
was achieved, thus showing the capacity of the model for
the classification task.

5. Experimental Evaluation
5.1. SOTA Comparison

The proposed model SE-UN was compared with 4 state-
of-the-art methods: ForSim [14], DFCN [29], ManTra-Net

[24] and OSN [23]. We used the officially released models
from the latter two approaches to evaluate the methods on
the four benchmark datasets CASIA V1 [4], Columbia
[6], DSO [3] and NIST16 [15]. For DFCN and ForSim, we
listed the results from [23]. As metric, the Area Under the
Receiver Operating Characteristic curve (AUC) was chosen
as it is widely used in the research field of image forgery
detection. As in previous works (e.g. [23]), the ground truth
mask is inverted if it sums up to more than 50%) of the
image. This seems in line with the principal concept of ma-
nipulation detection, although it has an insignificant impact
on the overall metric scores.

As shown in Table 6, our approach performed best on the
Columbia, NIST16 and CASIA datasets. Only for the
DSO dataset, the ForSim achieved the highest AUC value.
With an average AUC-value of 79.7 our approach outper-
formed OSN, the second best performing approach, by 5.3
points. Table 7 shows examples from each of the benchmark
datasets, comparing the three methods with the highest av-
erage AUC values.

5.2. Processing Time

Our proposed SE-UN model is trained on images of size
(224, 224). Therefore, for the purpose of evaluation, im-
ages are first rescaled to this size. The learned network
features are so robust, that they are capable to predict forg-
eries with SOTA performance even on down-scaled images.
This brings significant advantages compared to other ap-
proaches ( [13], [23]), which make decisions base on full
resolution information gathered from whole images. In Ta-
ble 8, we show a comparison with [23] of the processing
time when predicting all images for each of the benchmark
datasets. For datasets with images of smaller size (CASIA,
Columbia), the processing time of our approach and the
OSN [23] method is on the same scale. For datasets with
larger images (DSO, and specifically NIST), the processing
time for OSN rises rapidly with the size of the images. The
reason is that, for the 564 images of the NIST dataset, this
approach produces 24,996 tiles from the original images,
executes forgery detection on each of these image parts, and
finally merges the result for the predicted outcome per im-
age.
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Models AUC of Test Datasets
DSO [3] Columbia [6] NIST [15] CASIA [4] Average

ForSim [14] .796 .731 .642 .554 .681
DFCN [29] .724 .789 .778 .654 .736
ManTra-Net [24] .795 .747 .634 .776 .738
OSN [23] .723 .815 .686 .751 .744
SE UN (ours) .732 .827 .780 .851 .797

Table 6. Comparison of our SE UN model with SOTA methods using AUC metric on four benchmark datasets. The highest value per
column is bold
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Table 7. Examples of qualitative comparison of MantraNet [24], OSN [23] and our proposed forgery detector. Each line shows one example
image for each of the four benchmark datasets DSO [3], Columbia [6],NIST [15], CASIA [4]. The five columns show: the forged image
(input), manipulated area (ground truth), results (output) from MantraNet, OSN and our detector.

Dataset # Images Format t-OSN t-Ours
CASIA [4] 920 jpg 169 94
Columbia [6] 160 tif 120 178
DSO [3] 100 png 701 20
NIST [15] 564 jpg 15250 188

Table 8. Processing time (t) in seconds for prediction per bench-
mark dataset. For datasets with huge images as NIST (images of
size up-to 5616×3744 pixels) tile-based approaches considerably
take longer than approaches performing pre-scaling.

6. Conclusion

In this paper, we propose a new network model for
image forgery detection. The proposed approach reaches
and exceeds state-of-the-art performance on various bench-
mark dataset. The relatively simple network architecture

learns very robust features from scratch from the presented
dataset. Even on heavily down-scaled images, the detector
delivers very good results, and a considerable processing
time advantage for bigger sized images compared to com-
petitors.
Our model can detect compound and unseen forgeries
of postprocessed images (as included in the benchmark
datasets). But still, the fact that our model achieves pixel-
wise accuracy rates of 99% on a validation dataset cre-
ated similarly to the training dataset, but about 88% on the
benchmark datasets used for evaluation shows potential for
more improvement of the detector by generating more chal-
lenging training data.
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Abstract

Document image classification is the classification of
digitized documents. Typically, these documents are either
scanned or photographed. One page of such a document
is referred to as a document image. Classifying document
images is a crucial task since it is an initial step in down-
stream applications. Most state-of-the-art document im-
age classification models are based on a transformer net-
work, which are pretrained on millions of scanned docu-
ment images and thus require a huge amount of training
resources. Additionally, this and other state-of-the-art doc-
ument image classification models have well beyond 100
million parameters. In this work, we address both chal-
lenges. First, we create a model capable of competing with
the current state-of-the-art models without pretraining on
millions of scanned document images. Second, we create
a model several times smaller than current state-of-the-art
models in terms of parameters. The results show that the
developed approach achieves an accuracy of 93.70% on the
RVL-CDIP dataset, and a new state-of-the-art accuracy of
96.25% on Tobacco3482.

1. Introduction

The increasing digitalization has led companies to digi-
tize their processes and content [4], and organize their infor-
mation to improve the search and access to relevant data [6].
Thus, paper documents are subject to digitization, and doc-
ument images are the output [21]. The task of document
image classification is to categorize a given document im-
age into a set of defined classes [12].

Due to its high importance, document image classifica-
tion has been explored extensively [1]. However, most of
the current State-Of-The-Art (SOTA) methods have either
parameters in the hundreds of millions, pretrain on a larger
dataset, or both, such as [32] or [33].

Thus, we propose a multimodal system based on SOTA
image and language models, which are relatively small in

their size (less than 100 million parameters). Furthermore,
the amount of training data is limited to the RVL-CDIP
dataset. Due to the modular nature of the architecture, we
tested two model combinations to analyze their impact on
the overall test set accuracy. Our experiments show that an
image-only system achieves a higher test set accuracy than
a multimodal system.

The contributions are the following:

• Developing a model that can compete with current
SOTA models on the RVL-CDIP dataset without re-
quiring millions of document images. Moreover, the
developed model is much more efficient than the cur-
rent SOTA models.

• Achieving a new SOTA on the Tobacco3482 dataset
with 96.25% accuracy.

The remainder of this paper introduces the datasets in
Section 2, discusses related work in Section 3, presents the
methodology in Section 4, depicts the results in Section 5,
and concludes the paper in Section 6.

2. Datasets
In the following, the two datasets used in this paper are

discussed. First, the dataset on which the proposed archi-
tecture is trained and evaluated, and second on which it is
finetuned and evaluated.

2.1. RVL-CDIP

This work is based on the RVL-CDIP [11] dataset since
it was specifically created to test image classification algo-
rithms on document images [7]. RVL-CDIP is a subset of
the IIT-CDIP Test Collection (11 million documents) [20],
which itself is a subset of the LTDL dataset [26] (14 million
documents), that was created from public records of law-
suits against American tobacco companies [11]. The RVL-
CDIP dataset contains 400,000 grayscale images with 16
classes, split evenly in an 8:1:1 ratio of training, validation,
and test set.
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Figure 1. An example document image for each class from the RVL-CDIP dataset. From the top left image, the labels are the following:
Letter, Form, Email, Handwritten, Advertisement, Scientific report, Scientific publication, Specification, File folder, News article, Budget,
Invoice, Presentation, Questionnaire, Resume and Memo.

2.2. Tobacco3482

The Tobacco3482 [18] dataset, created from the same
dataset as RVL-CDIP, the IIT-CDIP Test Collection, con-
tains 3,482 grayscale document images. These images are
split into 10 classes, which are not evenly distributed as in
the RVL-CDIP dataset.

3. Related Work

The methods in all of the following works are tested on
the RVL-CDIP test set.

Harley et al. [11], who have created the RVL-CDIP
dataset, stack 5 CNNs, one of which is trained on the whole
document image, and the others are trained over the header,
footer, left body, and right body. These CNNs are either
trained from scratch or transfer-learned from AlexNet [17].
Das et al. [6] use a similar technique. However, their CNNs
are transfer-learned from VGG-16 [27]. A MLP, a class of
artificial neural networks, is then found to perform as the
best ensemble technique.

Afzal et al. [1] show that even though the ImageNet and
RVL-CDIP datasets have different domains, a pretrained
network on ImageNet, such as VGG-16, has a better ac-
curacy score on the RVL-CDIP test set than no pretraining.

Tensmeyer and Martinez [29] train CNNs from scratch,
i.e., randomly initialized. Various modifications are per-
formed, such as changing the network depth, width, or input
size. The authors show that the input size significantly im-
pacts the performance.

Sarkhel and Nandi [25] utilize a spatial pyramid model to
extract highly discriminative multi-scale feature descriptors
from a visually rich document by leveraging the inherent
hierarchy of its layout.

Ferrando et al. [10], Jain and Wigington [12], Audebert
et al. [4], Kanchi et al. [14], and Bakkali et al. [5] combine

image and text features in a two-stream approach by utiliz-
ing a CNN for image and an embedding for text. Jain and
Wigington [12] use the VGG-16 to get image features and
use different methods to extract text features, representing
text at the sequence, word, and character level. Audebert et
al. [4] utilize the MobileNetV2 [23] for image feature ex-
traction, which has a similar performance in terms of accu-
racy, compared to VGG-16 while being significantly faster.
As in [12], word-level text features are generated with Fast-
Text [13], a word embedding technique. Ferrando et al. [10]
combine EfficientNet [28] for image features and a reduced
version of BERT [8], a transformer model, for text features.
Kanchi et al. [14] propose a hierarchical attention network
for the textual stream, with fine-tuned BERT embeddings as
input and an EfficientNet-B0 for the image stream. Bakkali
et al. [5] combine NasNetLarge [34] with BERT to achieve
a SOTA accuracy of 97.05%, using an average ensembling
for the image and text stream.

A transformer [30] architecture for document image
classification is used in the work of Xu et al. [32]. This ar-
chitecture is an extended version of BERT [8]. However, the
model is pretrained on the IIT-CDIP Test Collection, which
contains more than 11 million scanned document images.
Another major difference, compared to all previous men-
tioned approaches, is that this method is suitable for classi-
fying document images, and, for example, for form under-
standing, where the goal is to extract key-value pairs from
document images. Xu et al. [33] extend [32]. The authors
integrate visual information in the pre-training stage and use
2-D relative position representation for token pairs instead
of absolute 2-D position embeddings, which Xu et al. [32]
use to model the page layout. Just as its predecessor, this
model is also suitable for other tasks outside of classifying
document images.

Similarly, Powalski et al. [22], Wang et al. [31]. and
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Srikar et al. [2] develop each a multimodal transformer
based architecture, which performs a pretraining step. [22]
simultaneously learns layout information, visual features,
and textual semantics. In [31] the layout knowledge from
monolingual structured documents is learned and then gen-
eralized to deal with multilingual ones. [2] combines tex-
tual, visual, and spatial features using a novel multi-modal
self-attention layer.

4. Methodology
In this section, both streams (image and text) are elab-

orated, covering the preprocessing steps and the training
strategy and architecture. Then, the method to combine
both streams to form the final piece of the document image
classification system is covered.

4.1. Image Stream

Compared to textual features, image features are pre-
ferred for the problem of document image classification
[16]. The current SOTA CNN architecture, EfficientNet
[28], is used for the image stream. The image stream and
text stream are two independent parts of the whole model,
which are combined in a later stage. The preprocessing
steps, the training strategy, and the architecture are ex-
plained in the following.

4.1.1 Preprocessing steps

In our method, the image stream consists of five Efficient-
Nets, each focusing on a input part. The preprocessing steps
partly follow the work of [11]. First, all images are resized
to 936 × 720. Then, 5 regions are defined for an image;
holistic, header, footer, left body, and right body. The holis-
tic region is the whole image itself. The header is defined
as the first 307 pixel rows. Similarly, the footer is defined
as the last 307 pixel rows. The left body is defined as the
480 central pixel rows and the first 360 pixel columns; sim-
ilarly, the right body is defined as the 480 central pixel rows
and the last 360 pixel columns. A slight intersection exists
between the left and right body areas with the header and
footer. Finally, each image is resized to 384 × 384.

The focus on specific regions of a document follows
from the fact that certain categories show a low interclass
variability, as seen in Figure 1 when comparing memo and
letter. While memos often have a complete address section,
letters typically have a ”To:” and ”From:”. Having a CNN
to classify documents using only this region will much more
likely learn those differences than a holistic CNN [11]. Sim-
ilar to the header region, different CNNs are applied to each
region described in the previous paragraph.

Since the document images are in grayscale, they are
transformed into images with three channels, i.e., copied
two times and stacked depth-wise along the third axis.

4.1.2 Training strategy and architecture

The training strategy and architecture on the full dataset are
inspired by [6]. The main benefit of the following train-
ing strategy is reducing computational complexity. A three-
level transfer learning achieves this.

The first level of transfer learning (L1) is initializing
the weights of the holistic model from the corresponding
EfficientNet-B1 model, trained on the ImageNet dataset. To
train the holistic model, only the classifier added on top
of the EfficientNet-B1 model is trained first, and all other
weights of the model are frozen, such that they are not up-
dated during backpropagation. This model’s weights are
then used to initialize the same model (L2), but with all
layers unfrozen, including the batch normalization layers.
Now, all weights can be updated to further increase the pre-
diction accuracy.

Next, its weights are taken to initialize the remaining
four models (L3), i.e., the models for the header, footer, left
body, and right body region. Like the holistic model, these
four models are trained with early stopping on the validation
loss and patience of 10. ReLU [9] is used as the activation
function.

4.2. Text stream

The recent development in this field suggests that textual
features are necessary to achieve SOTA results. A distilled
version of BERT [8], called DistilBERT [24], is used as the
backbone in our work since it is 40% smaller in size com-
pared to BERT while retaining 97% of its language under-
standing capabilities. In the following sections, the prepro-
cessing steps, as well as the training strategy, are explained.

4.2.1 Preprocessing steps

The Tesseract OCR system (version 4.1.1) extracts the text
from the document images. Once this is done, the next step
is preprocessing the extracted text before feeding it into a
neural network. This is even more important when the text
is extracted from document images, instead of, for instance,
scraping the text from the web. Everything that is not a
letter or a digit is removed. It is ignored if the text is less
than two characters long, but single-digit numbers are kept.
Moreover, the text is lowercased. There are some pages
where no text can be extracted by Tesseract. In this case,
or where the whole extracted text of a document image is
removed due to the preprocessing steps, the extracted text
is set to ””, i.e., a string of length zero.

4.2.2 Training strategy and architecture

Following the results from the image stream, the training
strategy in the text stream takes a similar approach. Only
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Figure 2. Proposed architecture for document image classification based on SOTA architectures, with an image stream, text stream, and
utilizing different levels of transfer learning. EN = EfficientNet.

the classification head added on top of DistilBERT is trained
first, with the features extracted from the base model.

DistilBERT and the original BERT model have two
unique tokens: [CLS], a classification token, and [SEP], a
separator token. The [CLS] token is used for classification
tasks and is added in front of every sequence. Specifically,
the last hidden state representation of the [CLS] token is
used. This hidden state representation is then used as an
input to the classification head.

Like in the image stream, the classification head is first
trained, then the whole model. The final model is trained
with early stopping and patience of 10, with ReLU as the
activation function.

4.3. Stacked generalization

The last part of the system is to train a meta-classifier,
which outputs the final predictions. It is adopted in docu-
ment image classification models, such as in [6], [4], [10],
[12], [3], and works by combining the (intermediary) out-
put of one or more classifiers and feeding that as an input to
a meta-classifier. To reduce overfitting, the meta-classifier
is trained on the validation set. The goal of stacked gener-
alization is to provide a lower generalization error than the
base models. The meta-classifier is the last module of the

document image classification system, and the full architec-
ture is shown in Figure 2.

The input for the meta-classifier are the class probabil-
ities (i.e. the softmax output). In this work, the meta-
classifier, a 3-layer neural network, combines visual and
textual features by concatenating them and producing the
final output of the document image classification system.

Adam is chosen as the optimizer. Moreover, an image-
only system versus a multimodal system is tested.

4.4. Tobacco3482

The document image classification model is also fine-
tuned and evaluated on the Tobacco3482 dataset. To make
results comparable with other works, such as [11], [15],
[18], [19], or [10], the dataset is split as follows. From 3,482
images, 100 images per class are randomly selected. This
constitutes the training set; and the remaining 2,482 images
are the test set. This process is repeated 10 times, such that
there are 10 different training and test sets, from which the
median test set accuracy is reported. From the 1,000 train-
ing images, 200 are used for the validation set.

The training approach first uses the pretrained models
on the RVL-CDIP dataset and then finetunes on the To-
bacco3482 dataset, where only the added classification head
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Results
Author Accuracy # Parameters Modality Extra training data Tobacco3482 Accuracy
Afzal et al. (2017) [1] 90.97 138.36 I No 91.13
Kang et al. (2014) [15] - 4.21 I No 65.35
Kumar et al. (2014) [19] - - I No 43.27
Das et al. (2018) [6] 92.21 691.87 I No -
Audebert et al. (2020) [4] 90.60 3.64 I + T No 87.80
Ferrando et al. (2020) [10] 92.31 85.47 I + T No 94.90
Harley et al. (2015) [11] 89.80 58.35 I No 79.90
Jain and Wigington (2019) [12] 93.60 138.36 I + T No -
Sarkhel and Nandi (2019) [25] 92.77 - I No 82.78
Tensmeyer and Martinez (2017) [29] 91.03 - I No -
Xu et al. (2020) [32] 94.42 160.00 I + T Yes -
Xu et al. (2021) [33] 95.64 426.00 I + T Yes -
Srikar et al. (2021) [2] 96.17 183.00 I + T Yes -
Wang et al. (2022) [31] 95.68 - I + T Yes -
Powalski et al. (2021) [22] 95.52 780.00 I + T Yes -
Bakkali et al. (2020) [5] 97.05 197.21 I + T No -
Kanchi et al. (2022) [14] 95.48 - I + T Yes 95.70
Proposed approach 93.70(I) / 93.50(I+T) 40.72 I No 95.65(I) / 96.25(I+T)

Table 1. Test set results on RVL-CDIP and Tobacco3482. Accuracy in %. The number of parameters (in millions) is either explicitly
stated in the work, an estimation, or omitted. I = Image, T = Text.

is trained.
Additionally, a meta-classifier is trained to combine the

softmax outputs on the training set of the image and text
models. Similarly, an image-only and multimodal system
is trained. The models are trained with Adam, ReLU, and
early stopping with patience of 3.

5. Results

The proposed approach includes two results per dataset,
each with an image-only and multimodal system. The re-
sults are depicted in Table 1.

An accuracy of 93.70% on RVL-CDIP and 96.25% on
Tobacco3482 is achieved. Note that on the RVL-CDIP
dataset, the image-only system achieves a higher accuracy,
while on the Tobacco3482 dataset, it is the multimodal sys-
tem. That is, adding textual information decreases the ac-
curacy on the RVL-CDIP dataset, which goes against the
results of other papers that have used textual information
(see Table 1). The difference in the accuracy between the
image-only and multimodal approach is larger on the To-
bacco3482 dataset.

Most SOTA papers have used additional training data
with a multimodal approach. Table 1 shows, that all papers,
who have reached an accuracy of over 94%, have used an
extra training data, either the full IIT-CDIP Test Collection
(11 million documents) or a fraction of it, except the current
SOTA [5], with 97.05% accuracy. Moreover, all papers with
an accuracy of over 94% are fully based on a Transformer
architecture, except [5] and [14].

The number of parameters of the proposed approach
(around 41 million) is multiple times smaller than in the
current SOTA methods. Even though the result on the RVL-
CDIP dataset could not match them, a new SOTA has been
achieved on the Tobacco3482 dataset using the multimodal

approach, beating the previous SOTA result of Kanchi et
al. [14] by 0.55 percentage points. Additionally, the image-
only approach missed the previous SOTA result by 0.05 per-
centage points.

The model is trained on a NVIDIA T4 GPU with 16GB
VRAM. One epoch takes about 220 minutes for the image
models on the RVL-CDIP dataset. Each image model is
trained for about 14 epochs, i.e., for 70 epochs combined.
The text model is trained for 8 epochs, with about 136 min-
utes per epoch. These numbers refer to those models, where
the weights of all layers are unfrozen.

6. Conclusion

The goal of the proposed approach is to develop a model,
which can compete with current SOTA methods and be rel-
atively efficient, i.e., have a relatively small number of pa-
rameters. Even though the current SOTA results on the
RVL-CDIP dataset could not be quite matched, the devel-
oped model is around 5 times smaller in terms of the num-
ber of parameters. On the Tobacco3482 dataset, however,
a new SOTA result is achieved. Interestingly, contrary to
the papers using a multimodal approach mentioned in Ta-
ble 1, the textual information decreases the accuracy on the
RVL-CDIP dataset.
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Abstract

The human body’s stable posture and movement are dic-
tated by the precise functioning of the vestibular organ,
mainly the ampulla organs in the semicircular canals. The
development of electronic devices such as vestibular im-
plants aims to improve the vestibular system’s capacity by
stimulating the involved vestibular nerves. We aim to de-
scribe and analyze anatomical variations of the inner ear
using computationally derived statistical shape models. The
models should support the design process of vestibular im-
plants. Based on a dataset of 81 cone-beam computed to-
mography, this work covers constructing a statistical shape
model of the semicircular canals using a recently developed
novel Particle-Based Modeling approach. The method op-
timally places correspondence points on each surface using
a gradient descent energy function. Then Principal Com-
ponent Analysis is used to describe anatomical variation.
The model was evaluated in terms of reconstruction accu-
racy, compactness, generalization, and specificity. Results
obtained by the workflow based on human datasets and the
average shape of a statistical model revealed a high qualita-
tive understanding and a quantitatively comparable range.
The first three principal components captured 57.7% of the
cumulative variation. The analysis led to 26 principal com-
ponents to account for 95% of the total shape variation cap-
tured. The shape model can be used for virtual product de-
velopment and testing and to estimate the detailed inner ear
shape from a clinical patient computed tomography scan.
For the first time, we could describe the geometry of the hu-
man semicircular canals based on a large sample of data
from living humans compared with other studies.

1. Introduction

The human ear is the organ that enables hearing and bal-
ance. The anatomy of the human ear consists of three parts:
the outer ear, the middle ear, and the inner ear. The vestibu-

lar system is the apparatus of the inner ear involved in bal-
ance. It is a complex organ consisting of three semicircular
canals (superior/anterior, posterior, and horizontal/lateral)
and the vestibule that houses the otolith organs. The most
common medical complaints [24, 26] associated with im-
balance symptoms include dizziness or vertigo. Among the
vestibular disorders, benign paroxysmal positional vertigo
(BPPV) is the most common cause of vertigo [26] which
affects females twice as often as males [18]. Vestibular
implants (VI) are a new promising technology based on
the experiences of cochlear implants [14]. The vestibular
nerves are the subject for electrical stimulation to treat bal-
ance disorders instead of the cochlear nerve. All the condi-
tions leading to a loss of balance can be severely debilitat-
ing and cause a decrease in the quality of life [13, 23], so
even though much research is still needed, the technology
has a lot of potentials. Patient-specific 3D reconstruction
of the vestibular system and its substructures could improve
different aspects of vestibular implantation. It can facili-
tate anatomical understanding for doctors and suggest mod-
ifications in the design of electrode placement for vestibu-
lar implant manufacturers. To acquire surgical skills, lots
of practice and effort are needed; thus, 3D models could
be used for surgery simulation and training [10]. Quanti-
tative analysis of the anatomical semicircular canal shape
from medical images is essential for diagnosing shape ab-
normality. In this context, statistical shape models (SSM)
turned out to be very useful for investigating variations of
shape within anatomical structures of the inner ear. Statisti-
cal shape models describe and analyze the human anatomy
and its variations, where the parameters of the probabilistic
model have been learned from data [1, 7]. It has become an
indispensable tool for medical image analysis. Moreover,
having a shape model of the vestibular system could be fur-
ther used for segmentation applications.

1.1. Related work

There are many applications concerning SSM of dif-
ferent anatomies (i.e., segmentation of brain and cardiac
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structures, orthopedics, and other non-segmentation appli-
cations). However, few works applied SSM to analyzing the
inner ear, most of which focus on the cochlea [6,12,16,17].
The mathematical method developed by Bradshaw et al. au-
tomatically reconstructs the semicircular ducts from high-
resolution computed tomography (CT) images in living hu-
mans [2] using a 2D B-spline contour. Noble et al. [18,
19] presented a point distribution model (PDM) based on
micro-CT images along with an active shape model (ASM)
approach to segment and predict preoperative CT datasets.
The model is based on micro-CTs of cadaveric cochlea
specimens with 36 µm voxel size. The scala tympani and
scala vestibuli were manually segmented to create surface
models. Point correspondences between the surfaces were
generated using an image registration based on the Adaptive
Bases algorithm [20]. In [16], Kjer et al. created an SSM
of the human inner ear from micro-CT data. The cochlea
and structures of the vestibular system were manually delin-
eated based on 17 micro-CT scans of the human temporal
bones. An initial alignment was applied to remove transla-
tional and rotational differences between the samples, fol-
lowed by a multi-level B-Spline registration approach using
bending energy regularization [21]. The resulting transfor-
mations were used to create a statistical PDM of the inner
ear containing 16 modes of variation.

Fritscher et al. [11] introduced a framework for creat-
ing statistical shape and appearance models of the vestibular
system for morphological analysis and the segmentation of
the temporal bone. To find corresponding points across all
subjects, a transformation consisting of two components: a
global rigid transformation and a local deformable trans-
formation, was applied [11]. The resulting deformation
vector fields represented the shape variations among the
training set and were the input for statistical analysis using
Principal Component Analysis (PCA). Furthermore, the ap-
proach presented in [11] was extended to visualize and an-
alyze novel multi-object models [19]. Based on the manual
segmentation of 31 micro-CT datasets of temporal bones
with an isotropic resolution of 15 µm, the SSMs for the
following structures were created: Perilymph, Endolymph,
Bony labyrinth (approximated using a combined label of
endolymph and perilymph), N. ampullaris, N. singularis, N.
facialis.

Recently, another approach for reconstructing semicir-
cular canals (SCC) uses an automatic skeletonization pro-
cess [8]. This approach is based on magnetic resonance
imaging (MRI) scans of 20 individuals. The method com-
putes the geometric parameters of the SCC through a skele-
tonization process of a binary image. The skeletonization
approach uses potential field methods, which track field
lines and potential valleys in a continuous space. Most of
these works mentioned above are based on specimens from
deceased subjects and have limited data for experiments.

High-resolution images are obtained in cadaveric specimens
after cropping the temporal bone around the bony labyrinth.
The preparation and processing of ex-vivo specimens add
consequent effort to acquiring the samples and potentially
impact the data’s quality and usability. While clinical CT
images provide a less detailed representation of the inner
ear, it is the best data source for living VI candidates. This
study is based on existing clinical patient data, which is used
in the regular routine of medical doctors that will, later on,
use the VI. Therefore we wanted to take not artificially pro-
duced data but the kind of images used at the hospitals. The
present work aims to develop and describe a detailed statis-
tical shape model of the human SCC geometry based on an
initial cohort of 81 subjects to serve as design decision sup-
port for a vestibular implant. Using a novel particle-based
shape modeling approach facilitates the design of VI.

2. Materials and methods
2.1. Dataset

Eighty-one cone-beam computed tomography (CBCT)
scans of human temporal bones used for this study were
acquired from Maastricht University, from which 41 were
from the left ear, and the rest were from the right ear. The
age of the subjects ranged from 19 to 88 years, with an av-
erage age of 58.5 years. The group was divided into 44
men with an average age of 57.7 years and 37 women with
an average of 59.3 years. The images in the dataset were
acquired over a period of approximately ten years with dif-
ferent slice thicknesses. Some scans have a resolution of 0.4
mm and others 0.6 mm. The segmentations performed by
medical experts include hearing bones, vestibular organs,
and the facial nerve.

The dataset used in this work did not include abnormal
anatomy. Exclusion criteria were applied due to missing
CTs in the dataset, with only segmented labels available,
and segmentations containing gaps in the canals. In total,
71 subjects were considered to create the SSM.

2.2. Statistical shape modeling

The approach presented by Cates et al. [4, 5] to establish
correspondence has been used for the creation of the SSM.
The general strategy of Particle-Based Modeling (PBM) is
to represent correspondence points as interacting sets of
particles, one for each shape, that redistribute themselves
under an energy optimization and therefore describe the sur-
face geometry [4]. The optimization function finds corre-
spondence positions that minimize the entropy of the model.
A more detailed description of the PBM method is referred
to [5]. Since the vestibular system is a very complex struc-
ture, the PBM method suits well since its particle system
formulation captures better-detailed areas by increasing the
particle distribution rates in the higher curvature regions.
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The PBM is defined as a collection of n shapes of k cor-
respondence points. In our experiments, n is the number
of SCC segmentations (n = 71), and k represents the num-
ber of landmarks used to describe each surface. The corre-
spondences among the SCC segmentations are determined
by running the PBM method to define a set of k corre-
spondence landmarks x; where point xi on shape number 1
matches to point xi on shape 2, 3, 4,. . . , n and i = 1,. . . , k.
Several experiments were carried out to set parameters for
obtaining an optimal and detailed shape representation of
the SCCs embedded in the bone structures of the inner ear.
The final shape model of the SCC surface was constructed
using 4096 correspondence particles per shape. This num-
ber of points was chosen by adding particles until the rep-
resentation was able to recover anatomically plausible and
accurate SCC shapes, and increasing this number did not re-
veal additional details. The experts quantitatively validated
the final number of points for the surface representation at
our research group (Institute of Biomedical Image Analy-
sis) by visualizing and comparing the results with the given
segmentations.

ShapeWorks Preprocessing ShapeWorks Optimization

Visualization & Analysis 
Binary volumes

Initialize

Align

Optimize

𝑧𝑛 = [ 𝑧𝑛¹, 𝑧𝑛², … 𝑧𝑛
k ] ∈ ℜ3k , 𝑧𝑛

k  ∈ ℜ3 𝑧𝑛 

𝘹¹

𝘹³

𝘹²

- Std. Dev. Mean + Std. Dev.

Mode of variationOptimized particle system

Shape representation

Compact shape space

Unoptimized shape space

Figure 1. ShapeWorks pipeline. First, the binary segmentations
need to be converted to signed DT using a set of grooming steps.
After the ShapeWorks optimization stage, statistical analysis is
performed using PCA. The mean and modes of shape variation
are computed based on the optimized correspondence model. Im-
age modified from [3].

This work uses an open-source distribution of the PBM
algorithm called ShapeWorks [3], developed at the Univer-
sity of Utah. ShapeWorks is a publicly available tool with a
pipeline of pre-processing steps required before computing
the correspondence points. The optimization phase initial-
izes the particle system and runs the PBM algorithm. It
takes an initial set of particle positions and the processed
data to the signed distance transform to construct the cor-
respondence point model of shape Fig. 1. After the Shape-
Works Optimize step, we have a correspondence model for
the population. Then, PCA was used to reduce the high
dimensionality of the data matrix required to examine vari-

ation among the different SCC structures while still retain-
ing most of the geometric information of the shapes. PCA
isolated the modes of variation from the optimized corre-
spondence particle locations. Once the m PCA modes that
contain substantial variation are chosen, the model can rep-
resent every SCC shape in the set as an m-dimensional vec-
tor of scalar values. The shape variations are analyzed by
examining the shape described by each principal compo-
nent (PC), moving between ± 2 standard deviations from
the mean in that PC.

3. Results
3.1. Data processing

The segmentation quality of the data was not sufficient,
and manual clean-up was needed before using the dataset
for further processing in the construction of the SSM (Fig-
ure 2a). Small holes and voxel-islands caused by manual
segmentation were removed using a connected component
analysis and morphological closing operation [25]. Then,
the noticeable defects not eliminated by the pre-processing
algorithms were corrected by hand using the 3D Slicer tool-
box. Since the focus in this work is concerned with the
SCCs, only the segmented labels, including it, were consid-
ered.

(a) (b)

Figure 2. 3D view of two dataset samples (a) before and (b)
after pre-processing. All the segmentations were mirrored and
aligned. Small holes and voxel-islands caused by manual segmen-
tation have been removed using morphological operations.

All the right inner ears were mirrored so that all datasets
appear to be of a left inner ear in order to obtain consistent
data (Fig. 2b). First, a transformation including mirroring
was calculated using the provided fiducial points in each
semicircular canal and applied to all datasets on the right
side. Next, all the datasets were aligned using a two-step
registration process [25]. The fiducial points were used to
apply for an initial rigid point base registration. Then, an
additional rigid registration was applied using the former
stage as initialization to avoid dependence on fiducials from
unknown precision.

All images were resampled using linear interpolation
with an isotropic voxel resolution of 0.15 x 0.15 x 0.15 mm.
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(a)

(d)

(b)

(c)

Figure 3. a) Mean shape. b) Compactness, c) Generalization, and d) Specificity of the SCC shape model.

The size was set to 300 x 300 x 300 voxel ROI spanning. At
the time of writing, the selected SSM software in this study
needed all the data with the same size, and the voxel spac-
ing equals 1. Thus, the volumes were artificially scaled up
by setting the spacing to 1.0 x 1.0 x 1.0 mm. More de-
tails about the registration and processing of the data can be
found in [25].

3.2. Statistical shape model of the vestibular organ

The resulting mean shape after generating the SSM of
the vestibular system using the PBM algorithm is visualized
in Fig. 3a.

The vestibule’s SSMs with different points were gener-
ated and analyzed, showing that poor reconstructions are
observed with a smaller number of particles, especially
along the canals. In our experiments, increasing the parti-
cle counts further than 4096 does not significantly improve
the model’s accuracy but increases the complexity of the
model and computational time. The optimization routine
using 4096 particles in a computer with 96 GB of RAM
and an Intel Core i7 processor took approximately 7 hours.
The duration of the optimization with 256, 1024, and 8192
particles was around 0.31, 1.3, and 14 hours respectively.

3.3. Principal component analysis

The PCA shape decomposition is able to represent 95%
of the variation among SCC using 26 modes. The first three
modes captured 57.7% of the cumulative variation among

S1

S2

Figure 4. Distribution of input datasets with respect to PC1 and
PC2. The red dot represents the mean shape. S1 is the closest
shape to the mean and S2 is a random shape distant from the mean.

all shapes. Specifically, mode 1 captured 28.0% of the
variation, followed by mode 2 at 20.3%, and mode 3 at
9.4%. Knowledge of the position of different datasets in
PCA space is significant for identifying similar shapes and
datasets that are close to the mean shape. Therefore, the PCs
covering the highest amount of shape variation were used to
analyze the distribution of the datasets in PCA space Fig. 4.

Shape variations of the first four modes were investigated
to analyze the influence of specific PCs on the SSM. Fig. 5
shows the mean correspondence positions from the model
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+2 Standard DeviationsMean Shape-2 Standard Deviations

PC 1

PC 2

PC 3

PC 4

Figure 5. Influence of different PCs on the shape variation. The mean shape is in the center. In the left and right columns, deformation
is represented as a color map, and the mean shape is visualized as opaque. The color maps represent the distance for any value inside the
geometry with a negative value (blue) and outside the geometry with a positive value (red). The arrows highlight some relevant parts of the
shape variations.

moved along each of the top four PCA modes. SCC shapes
along each mode are reconstructed from the learned PBM
model parameters at –2 to +2 standard deviations from the
mean.

From Fig. 5, we can interpret that the first PC causes
size changes of the SCC. Variation in a positive direction
describes a shrinkage, whereas changes in the negative di-
rection result in an enlargement of the SCC. The extent of
variation in the lateral canal is less compared to the posterior
and superior canals. By looking at Fig. 5, PC2 affects the
area where the superior and lateral canals converge. Mov-
ing in a positive direction leads to an enlargement of the
posterior canal. PC1 and PC2 cause size variations in the
vestibule area. From –2 to +2, the vestibule area results in

a shrinking and vice-versa. PC3 mainly captures changes
in the middle part of the lateral semicircular. PC4 primarily
influences the area of the posterior semicircular canal and
the superior semicircular canal. Looking at Figure 6, we
can tell that the shape outlier S2 from the plot in Figure 5
has a large vestibule area and a large size of the canals.

3.4. Shape model evaluation

A substantial part of the creation of SSM is to vali-
date the results. Intuitively a first qualitative approach is
the visual inspection of the shape instances that the model
is able to create. When shapes have point-to-point corre-
spondence, an SSM is evaluated using more objective ac-
cepted measures, namely Generalization, Specificity, and
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Compactness, which are considered as useful benchmarks
for measuring correspondence quality [9, 22].

Figure 3(b,c,d) shows the evaluation of the SSM con-
cerning compactness, generalization, and specificity with
an increasing number of modes of variation included.
Briefly, the generalization measures the model’s ability to
represent unseen shape instances of the class. It is per-
formed using leave-one-out cross-validation reconstruction
experiments. The generalization error is expected to de-
crease with an increasing number of model parameters.
Specificity measures whether the model can generate in-
stances of an object close to those presented in the train-
ing set. It is measured by generating a large number of N
random instances (N = 1000 in our experiments) using dif-
ferent modes. For every new sample, compute the distance
to the closest shape in the training set. The mean distance
error is expected to increase with more parameters, as the
increasing number of PCs gives more flexibility to shape
reconstruction. The compactness of the model is the abil-
ity to use as few parameters as possible to represent more
shape instances in the training sets. Compactness is defined
as the cumulative variance of the M largest modes.

3.5. Reconstruction accuracy

The reconstruction accuracy of the model has been eval-
uated by computing the mean surface distance between ap-
proximated model instances and input segmentations to en-
sure that each shape in the training set is well represented.
The landmarks of the shape model constitute a point cloud.
To represent an instance of the training data, the point cloud
should cover the important part of the shape. The origi-
nal mesh is obtained from the distance transform created
from the initial manual segmentation and then compared to
a mesh reconstructed from the predicted PBM. We compute
the Hausdorff distance (mm) that takes the max of these
vertex-wise distances to return a single value as a measure
of accuracy [15]. The results after computing the Hausdorff
distance range from 1.15 to 4.91 mm. The mean surface-to-
surface distance was 2.42 mm (0.87 Std. Dev.).

4. Discussion and conclusion
This study aimed to explore and analyze the shape vari-

ations of the vestibular system for further application of the
electrode placement for VI. To control design and implant
variables, having realistic and detailed computational mod-
els of the SCC are needed, including population variability.
This work describes the first stage, having the model which
can be used currently for design decision support of an im-
plant.

An important aspect in this work was the use of data sets
that are acquired in clinical practice. On the other hand,
the quality of the data, especially the resolution and con-
trast of the scans and the accuracy of the manual segmen-

tation, was a major concern. In some samples, the spacing
between voxels is so low that the SCC consists of a sin-
gle voxel across the entire diameter. In addition, due to the
different voxel spacings for all images, resampling the vol-
umes introduces even more artifacts. A challenge during
the construction of the shape models is the methodology
for creating point correspondences between the data. The
initial shape model contained imperfections due to bad cor-
respondences, which was alleviated with the application of
a smoothing filter. Several experiments were carried out
to establish the parameters to obtain an optimal SSM of
the SCCs. Increasing the number of particles above 4096
does not significantly improve the shape representation of
the model in the sense that no additional anatomical details
become visible, but increases model complexity and com-
putational time, especially when modeling such a complex
structure as the vestibule and larger datasets. Therefore, a
balance between a good representation and the number of
particles is necessary. In general, the rest of the parameters
involved in the optimization do not significantly affect the
final model for this dataset.

The analysis of the shape variation based on the princi-
pal modes could help to find some outliers. Of course, it
is mainly a proof-of-concept since the model is built with
a small number of datasets, and therefore the representa-
tion of actual anatomy is not proved completely. Neverthe-
less, the accuracy tests have shown that the generated model
based on the 71 segmentations approximated the shape of
the vestibular system with reasonable accuracy. A lower
generalization and specificity error is desirable for an ideal
shape model, but Fig. 3(c, d) indicates that they move in op-
posite directions with an increasing number of model com-
ponents. The compactness is also essential to guarantee that
most of the shape variation is captured by the model us-
ing as few model parameters as possible. So how many
components should be used to represent 90% or more of
the shape variation is still a very interesting question when
dealing with biological data, and a trade-off between these
three metrics is necessary. In our model, 17 PCs are suf-
ficient to represent 90% of the variation. For representing
more than 95%, the gains in compactness and generaliza-
tion are very light after 30 PCs, and there is a diminishing
penalty in specificity as the number of components in the
model increases. This flattening of the curve mainly occurs
between 20 and 30 components. With more than 30 compo-
nents used, the model constructed has the best performance,
but also more noisy shape variation is introduced, and more
computation is required to fit our models.
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Abstract

The segmentation of plant leaves is an essential prerequisite
for vision-based automated plant phenotyping applications
like stress detection, measuring plant growth and detecting
pests. Segmenting plant leaves is challenging due to oc-
clusions, self-shadows, varying leaf shapes, poses and sizes
and the presence of particularly fine structures. We present
a novel leaf segmentation approach that takes single pixels
as input to initialize the segmentation of leaves. Addition-
ally, we introduce a new strategy for transfer learning that
we call “tandem learning” which enables the integration
of previously learned network representations into a struc-
turally different network. We evaluate different configura-
tions of our approach on publicly available data sets and
show that it yields competitive segmentation results com-
pared to more complex segmentation approaches.

1. Introduction

Plant phenotyping refers to methodologies for the charac-
terization of plants, i.e., plant architecture and composition
at different scales [4]. This includes the visual assessment
of plant traits to investigate plant growth, plant state and
plant stress [11]. The manual assessment of these properties
from visual observation is an expensive and tedious process.
Phenotyping at larger scales thus requires automated meth-
ods for the quantification of plant traits. Computer vision
approaches can solve plant phenotyping problems at large
scales in a non-invasive manner. Thereby, automated leaf
segmentation is an essential prerequisite for many down-
stream tasks including leaf counting, leaf/plant tracking and
the detection of plant stress, diseases and pests.

Leaf segmentation is an instance segmentation prob-
lem [7], where the goal is to pixel-accurately segment ob-
jects of the same type (here leaves). Plants pose a number
of challenges to this task including (i) coping with complex
background (e.g., from soil visible in the images, trunks,
branches etc.); (ii) handling fine structures (e.g., the stems

*both authors contributed equally to this paper

Tandem

Iterate

Figure 1. One-pixel instance segmentation: our approach first
learns to estimate useful seed points for leaf segmentation and
then segments leaves from these seed points via tandem learning,
a more flexible form of traditional transfer learning.

of the leaves); (iii) solving occlusion problems introduced
by overlapping leaves; (iv) coping with differently sized and
shaped leaves (e.g., due to different ages) and different leaf
poses; and (v) handling shadowing and varying reflectivity
of differently oriented leaves [19].

In this paper, we present a simple and thus robust leaf
segmentation approach that achieves promising segmenta-
tion results on established benchmark data sets. Our ap-
proach is anchor-free and thus makes no a priori assump-
tions about leaf size and shapeand can principally learn ar-
bitrary leaf shapes. In our approach we introduce two novel
concepts for instance segmentation (see also Figure 1):

• One-pixel segmentation: a form of instance segmen-
tation that requires only minimal input, i.e., a single
seed pixel to segment an object instance. One-pixel
segmentation makes our approach equally suitable for
fully automated and interactive segmentation, which is
usually hard for fully end-to-end trained methods.

• Tandem learning: a new form of transfer learning that
helps to incorporate existing knowledge captured in
a pre-trained network in a novel task that requires a
structurally different network architecture.

We design and evaluate different configurations of our ap-
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proach and perform ablation studies to evaluate the influ-
ence of the individual processing steps.

2. Related Work

Segmentation methods can be split into anchor-based and
anchor-free approaches. Here, we review both types to
place our approach in context. We further review related
methods that inspired our approach.

Anchor-Based Instance Segmentation. A common
strategy for instance segmentation is the utilization of
predefined anchor boxes for generating region proposals.
A popular network of this category is Mask-RCNN [8].
In Mask-RCNN, first image features are extracted, fol-
lowed by the prediction of object classes and Regions of
Interest (RoIs), which is facilitated by the initial anchor
boxes. In a second step, segmentation masks are predicted
from the proposed RoIs. Huang et al. [9] introduced a
separate Intersection over Union (IoU) prediction branch
to Mask-RCNN to increase performance. Liu et al. [13]
further improved the architecture by using a bottom-up
path augmentation scheme for the extraction of image
features. Other follow-up works focus on aspects such as
inference speed [2] or object border refinement [10]. To get
optimal results for different types of image data sets, preset
anchor boxes and their dimensions have to be adapted to
the dimensions of the target objects. Since our method does
not require anchors it is not subject to this restriction.

Anchor-Free Instance Segmentation. Tian et al. [22]
demonstrated an effective method for object detection that
does not require the use of anchor boxes. Instead, dis-
tances to the nearest bounding box and its dimensions are
directly learned and represented as a 4D feature map. This
work inspired other authors to adopt this method for re-
gion proposal-based instance segmentation. Bounding box-
based methods in general work best for objects with similar
height and weight, but can fail for elongated objects that
overlap as demonstrated in [3]. Consequently a strand of
research has evolved using different working principles to
avoid this issue. Bai and Urtasun [1] predict the per-pixel
angle to the nearest object border, enabling the segmenta-
tion of instances through their computed watershed energy
level. De Brabandere et al. [3] formulate instance segmen-
tation as a per-pixel problem, where the discriminative loss
function enforces pixels of the same object to be close in
latent space. Our work falls into the group of anchor-free
instance segmentation methods and uses automatically es-
timated seed points in combination with a trained instance
model to iteratively segment leaves.

Leaf Instance Segmentation. Gomes and Zheng [5]
adopted a standard Mask-RCNN architecture for leaf seg-
mentation and demonstrated that leaf masks of high qual-
ity can be predicted by employing simpler strategies, such
as threshold adjustment and test time augmentations. To
simulate the counting process of humans, Ren and Zemel
[16] utilized a recurrent neuronal network (RNN), which
sequentially proposes new regions of interest based on an
attention mechanism. Guo et al. [6] devised a multi-scale
attention module and mask refining module to improve the
segmentation quality of their instance segmentation model.
Wolny et al. [24] introduced a technique, which can also
deal with sparsely labelled instance annotations and is based
on the pixel embedding method in [3]. Feeding perturba-
tions of the same input image to two embedding networks,
a penalty is applied if both predicted masks are not geomet-
rically consistent, thus enforcing constraints for the embed-
ding space leading to better segmentation accuracy. In con-
trast to existing methods, our network architecture is more
simple and straightforward and works well with already es-
tablished loss functions such as binary cross-entropy.

Interactive Instance Segmentation. We further draw in-
spiration from interactive segmentation approaches. In re-
cent methods, users can draw positive and negative object
regions to guide the segmentation process [25], or are in-
volved in a human-in-the-loop process where they actively
annotate pixels of regions which are difficult to segment
[20]. Lin et al. [12] developed an approach, in which inter-
active segmentation is guided by multiple user clicks with a
focus on the first click acting as a segmentation anchor. Our
goal for the future is to advance our method for efficient and
low-effort interactive segmentation, which is facilitated by
our one-pixel segmentation strategy.

3. Approach

An overview and illustration of our approach is shown in
Figure 2. Below, we describe the individual steps in detail.

3.1. Data Preparation

Input data for our approach are RGB images of plants (see
also Section 4). Additionally, for foreground segmentation
we use binary segmentation masks as ground truth. For
instance segmentation, we use masks including individual
leaf annotations (multi-labeled ground truth masks). The
training of the leaf instance segmentation model further re-
quires the computation of masks, which specify the center
for each leaf. In these masks the center pixel is highlighted
by a value of 1, while all other values are 0. These masks
can easily be created from the multi-labeled ground truth
masks by applying e.g., distance transform and peak detec-
tion on each instance’s area.
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Foreground Segmentation Model (FG-model)Data Preparation

Leaf Instance Segmentation Model (LIS-model)
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Figure 2. Overview of our leaf instance segmentation approach. First, we identify relevant image regions corresponding to leaves of the
plant via semantic segmentation, see “FG-model” in (b). The result is a binary segmentation that captures the entire leaf tissue. From
this segmentation we estimate potential leaf centers, which serve as seed points for one-pixel instance segmentation. The seed points are
added as additional input channel to the leaf instance segmentation model, see “LIS-model” in (c). Using the proposed tandem learning
scheme, a pre-trained encoder is incorporated into the LIS-model to accelerate training. The LIS-model segments one leaf at a time and is
iteratively called to successively segment all leafs of the plant (d). Post-processing (e) consolidates the individual instance segments.

3.2. Training
3.2.1 Foreground Segmentation

For foreground segmentation we employ an encoder-
decoder architecture with skip connections, similar to U-
Net [17]. A pre-trained VGG16 backbone [21] serves as
encoder [18]. The architecture of the decoder mirrors that
of the VGG backbone, but instead of max-pooling layers
we use up-convolutional layers (4 layers) to bring the fea-
ture maps back to the input image dimensions. In addition,
the decoder receives feature maps through skip connections
which are thereby incorporated in the training process. We
use RGB images as input, binary segmentation masks as
learning target, and binary cross-entropy as loss function.

3.2.2 Leaf Instance Segmentation

The LIS-model is also based on the U-Net architecture [17]
from Section 3.2.1, but has two encoders A and B (see Fig-
ure 3) which are connected side-by-side in a tandem. Both
encoders compute feature maps at different scales, which
are concatenated with each other along the depth dimension.
This architecture, which we call a “tandem architecture” en-

ables to combine network models (here two encoders) de-
signed for different types of inputs.

As Encoder A we use VGG16 [21], which has been
fine-tuned during foreground segmentation and takes three-
channel RGB images as input. Therefore, the network is
already capable of extracting meaningful plant-related fea-
tures from RGB images. Encoder B receives images with a
channel size of 4: the RGB channels plus the center point
mask of a given leaf instance. Since no pre-trained model
exists for this type of input, the model is initialized with
random weights. Encoder B is further connected to the de-
coder in the same fashion as in the U-Net architecture [17].
All layers of the tandem network are fine-tuned/trained.

The tandem architecture should foster the integration
of previously learned knowledge into a new learning task,
which requires a different input (and potentially output)
structure. This architecture is more flexible than standard
transfer learning where usually the input is required to be
equivalent and only the output layer is adapted. Addition-
ally, it enables to combine two simple network architectures
(VGG and U-Net) avoiding the need for a more complex
(and more difficult to train) architecture.

42



B CA

(128 × 128 × 3) (128 × 128 × 4) (128 × 128 × 1)

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Figure 3. The concept of tandem learning: two encoders A and B
are connected side by side. Thereby, A and B may have different
input structure. Via connections ai pre-learned information from
A is shared with B. The final output is generated by decoder C.

Essential for training the network is data augmentation.
Aside from conventional image transforms (see Section
4.3), we adjust the fourth input channel to make the net-
work less dependent on the actual leaf center location. We
propose two augmentation methods. First, instead of tak-
ing the leaf mask with the exact leaf center, a random pixel
from the area of the leaf is taken. Second, starting from the
exact center we specify a radius r that is increased by one
pixel with each epoch. For augmentation, pixels are cho-
sen at random that lie within this increasing radius. This
facilitates location invariance in the optimization.

3.3. Inference

The goal of inference is to utilize both trained models in
a combined manner to segment all leaves in an input im-
age in absence of ground-truth. First, the foreground mask
of the whole plant is computed with the FG-model. From
this segmentation, we estimate potential center points au-
tomatically to initiate leaf instance segmentation. To select
appropriate seed candidates, we propose two methods:

Distance transform (DT) selection (sorted/unsorted):
First, morphological erosion is applied to the foreground
mask to separate leaves that are loosely connected (i.e.,
touching each other). Next, the DT is computed for each
connected region. The seed candidate is then selected at
the location of the maximum value of the DT. Optionally,
we sort the connected regions by area to start segmentation
with the largest potential leaf.

Gaussian kernel selection (sorted/unsorted): The 2D
convolution of the foreground segmentation with a Gaus-
sian 2D kernel is computed. In the result image, pixels close
to leaf borders have low values, since foreground (value 1)
and background pixels (value 0) are in the effective range of
the Gaussian kernel. Pixels in the center of leaves, however,
yield high output values (only foreground in the effective
range). We apply 2D peak detection to identify potential

leaf centers. The 2D Gaussian kernel has 15 × 15 pixels
and a sigma of 7. As in the first method, we optionally sort
the connected regions by area.

Following the selection of seed candidates, the trained LIS-
model is used to predict the leaf instance mask. Next, the
segmented leaf is added to a pool of leaf candidates and the
mask of this leaf is subtracted from the foreground mask.
This assures that no seed candidates are selected in an al-
ready segmented area, which would lead to repeated seg-
mentation of the same leaf. Inference repeats and keeps
adding new leaf instances to the pool of leaf candidates un-
til the foreground segmentation mask is empty.

3.4. Post-Processing

The result of leaf instance segmentation is a set of poten-
tially overlapping leaf candidate regions. Noisy foreground
segmentation may lead to oversegmentation (too many leaf
candidates). Post-processing aims to compensate this by
fusing only partially segmented leaves. We propose three
strategies for consolidating leaf segments: (i) deleting, (ii)
merging and (iii) intersecting. Thereby, all leaf candidate
regions are compared via Intersection over Union (IoU) to
estimate their mutual overlap. IoU is used as criterion to
decide how to proceed with the two candidates as follows:

• Strategy deleting is based on the hypothesis that our
leaf segmentation model performs better on large
leaves. As soon as the IoU threshold for two candi-
date segments is exceeded, the smaller one is deleted.

• In merging two overlapping segments are joined to-
gether when their IoU is in a certain range. Hereby, we
account for only partially detected leaves, i.e., cases
where one leaf is over-segmented.

• In strategy intersecting only those leaf areas are pre-
served, which are supported by more than one candi-
date segment. This should help to increase the robust-
ness of the segmentation.

The two latter methods facilitate the merging of leaves with
a significant overlap and at the same time avoid that adja-
cent and touching leaves are merged.

4. Experimental Setup
4.1. Datasets

We employ publicly available data sets to facilitate perfor-
mance comparisons with other methods. The first data set is
subset “A1” from the Plant Phenotyping Dataset (PPD) in-
troduced in [14, 15], which consists of 128 manually anno-
tated images. To show how well our approach generalizes
to other types of data and plants, we further evaluate our
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Figure 4. Instance segmentation results from our method for test images of the Plant Phenotyping Dataset (a-d) and KOMATSUNA (e,f).

method on the KOMATSUNA data set [23], that comprises
300 semi-automatically annotated images. Data has been
split into 80% training and 20% testing for all experiments.

4.2. Performance metrics

To assess training progress for both models in our approach
we utilize Intersection over Union (IoU) and Dice similarity
coefficient (DSC). As proposed by [14,15] the final instance
segmentation results are measured with the Symmetric Best
Dice (SBD) measure, which is particularly designed for in-
stance segmentation problems and can cope with different
but equivalent label assignments. All metrics in our experi-
ments are averaged over three complete repetitions with dif-
ferent random initializations of the network weights.

4.3. Parameters

Our approach has a number of hyperparameters and con-
figuration options, which we evaluate in this paper. For
object center estimation we evaluate both strategies from
Section 3.3 with sorted and unsorted components. For
post-processing we evaluate the three strategies from Sec-
tion 3.4). For strategy deleting we apply an IoU threshold
of 0.7, for merging an IoU range between 0.1 and 0.5 and
for intersecting an IoU threshold of 0.5 (suitable parameter
values were found via grid search in a preliminary experi-
ment). The training parameters for the foreground segmen-
tation network are as follows: training is conducted for 40
epochs with a learning rate of 0.00001 and batch size 20.

Downscaled RGB images of size 128× 128× 3 serve as
the network input. For the LIS-model, training (input size
128× 128× 4) is initiated for 150 epochs with a batch size
of 32 and a learning rate of 0.0001. For both models, bi-
nary cross-entropy and Adam optimizer are applied. To aid
the learning process, we employ random geometrical (flip-
ping, zooming, shifting, rotating, shearing) and color data
augmentation (noise, brightness, contrast) in addition to the
augmentation of leaf centers as described in Section 3.2.2.

5. Results
Overall performance. The overall instance segmentation
performance of our approach in terms of SBD is shown in

Table 1. Additionally, we provide Dice and IoU for fore-
ground segmentation and leaf instance segmentation. The
highest scores for the PPD are achieved with center es-
timation via distance transform selection (no sorting) and
post-processing via deleting strategy. Similarly, the highest
scores for KOMATSUNA are achieved with distance trans-
form selection (sorted) and deleting strategy. However, also
Gaussian kernel selection and intersection strategy lead to
the same peak performance, showing that the robustness of
center estimation and post-processing strategy is high.

Tandem training. To evaluate the tandem architecture for
transfer learning we perform an ablation experiment by re-
moving the second encoder in the LIS model. The result is
an average performance drop of 2.1% in SBD for the PPD
and 1.8% for KOMATSUNA. We notice during our exper-
iments that the training in tandem fashion leads to a faster
and smoother convergence of the training loss compared to
training without tandem. This shows that tandem learning
is a suitable approach to take benefit of a previously learned
representation, even if it has a different input structure.

Instance center estimation. Here, we evaluate the differ-
ent leaf center estimation strategies from Section 3.3 sys-
tematically and the sensitivity of results to different choices.
Results (see Table 2) show that Distance transform selection
provides the highest performance across both data sets.

Post-processing strategies. Similarly, as above, we eval-
uate the different post-processing strategies introduced in
Section 3.4. Table 2 shows their impact on overall results.
We conclude that delete and intersection outperform post-
processing via merging throughout all experiments.

Performance comparison. To objectively assess our re-
sults, we compare them with state-of-the-art results from
the literature for both data sets, see Table 3 for a listing. For
the PPD we achieve comparable scores to both De Braban-
dere et al. [3] and Ren and Zemel [16] and outperform the
approaches reported in [19]. The most recent approaches
still outperform our results, which may be due to the higher
complexity of the approaches. An additional factor might
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Data set FG IoU FG Dice LIS IoU LIS Dice SBD

Plant Phenotyping 0.862 (±0.0014 ) 0.928 (±0.010 ) 0.819 (±0.012 ) 0.882 (±0.011 ) 0.832 (±0.008 )
KOMATSUNA 0.871 (±0.006) 0.930 (±0.003 ) 0.754 (±0.033 ) 0.836 (±0.030 ) 0.754 (±0.005 )

Table 1. Overall segmentation results of our approach for both evaluated data sets.

Plant Phenotyping Dataset A1 KOMATSUNA

delete merge intersection delete merge intersection

DTS unsorted 0.831 (±0.0032) 0.825 (±0.0020) 0.831 (±0.0036) 0.719 (±0.0155) 0.710 (±0.0193) 0.712 (±0.0169)
DTS sorted 0.808 (±0.0037) 0.807 (±0.0028) 0.807 (±0.0034) 0.747 (±0.0186) 0.738 (±0.0189) 0.750 (±0.0184)
GKS unsorted 0.787 (±0.0029) 0.786 (±0.0003) 0.789 (±0.0029) 0.751 (±0.0110) 0.739 (±0.0095) 0.754 (±0.0119)
GKS sorted 0.775 (±0.0016) 0.773 (±0.0003) 0.775 (±0.0006) 0.742 (±0.0118) 0.734 (±0.0120) 0.744 (±0.0116)

Table 2. Systematic comparison results for different center estimation strategies (distance transform selection (DTS) sorted/unsorted,
Gaussian kernel selection (GKS) sorted/unsorted) and post-processing strategies (delete, merge, intersection).

Method PPD A1 KOMATSUNA

Scharr et al. [19] (IPK) 0.744
Scharr et al. [19] (Nottingham) 0.683
Scharr et al. [19] (MSU) 0.667
Scharr et al. [19] (Wageningen) 0.711
De Brabandere et al. [3] 0.849
Ren and Zemel [16] 0.842
Gomes and Zheng [5] 0.920 0.745
Guo et al. [6] 0.925
Wolny et al. [24] 0.920

Table 3. SBD scores of different methods on A1 subset of the Plant
Phenotyping Dataset (PPD) and the KOMATSUNA Dataset.

be that the reported results stem from the leader board1

and are not 100% comparable as we test our approach on
a 20% subset of the training set, while the performance in
the leader board refers to a separate test set (for which no la-
bels were available for our experiments). For the KOMAT-
SUNA data set we could identify only one approach [3] for
comparison in the literature (see Table 3). The performance
obtained by our approach with an SBD of 0.754 slightly
outperforms the previously reported result of 0.745.

Qualitative results In Figure 4, exemplary segmentation
results for the test sets of the Plant Phenotyping Dataset (a-
d) and KOMATSUNA (e,f) are shown. Overall, most sepa-
rate leaves are segmented accurately and leaf edges are very
closely aligned to the ground truth. In (c) and (g) it can be
seen that some very small leaves in the center are not cor-
rectly segmented. Sometimes also leaves, which are largely
covered by other leaves are not segmented well (see leaves
in the lower area of (b) and (d)). Examples in (e) and (f)

1https://competitions.codalab.org/competitions/
18405#results

show that leaves with different size and shapes can be seg-
mented well. Remarkable is further that in (d) a leaf of an
neighboring plant is correctly segmented, although it is not
part of the annotated ground truth.

Limitations Our approach works slightly better for larger
objects than for small ones. The reason is that large objects
generate more (overlapping) segment candidates, which can
be better consolidated and refined via post-processing. Our
one-pixel segmentation approach functions well for the seg-
mentation of instances that consist of a single connected re-
gion, but can fail for instances that are fragmented (e.g., a
leaf that is intersected by the petiole of another leaf, and
thus consists of two separate regions).

6. Conclusion
We have presented a novel approach for leaf instance seg-
mentation which uses individual pixels indicating object
centers as seed points for instance segmentation. Our ap-
proach yields promising results on public benchmark data
sets and can compete with much more complex segmenta-
tion approaches from literature. Since our approach makes
no a priori assumptions about the structure, shape and pose
of plant leaves, it may be applicable to other instance seg-
mentation tasks and thus may be of broader interest to the
community. The same applies to the tandem training that
we use for transfer learning. Future work will focus (i) on
predicting leaf centers during foreground segmentation to
replace leaf center estimation during inference and (ii) on
demonstrating the broader applicability of the proposed ap-
proach for other instance segmentation tasks.
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Abstract

In order to use segmented volumetric data for subsequent
analyses, it is important to detect and understand, where the
segmentation is reliable and where it is uncertain. This is
especially critical in deep learning segmentation which re-
lies on manually annotated ground truth. Especially in ap-
plications using medical and biological data, ground truth
annotations are often sparse, imbalanced, and imprecise.

We propose to utilize 2.5D orthogonal ensembles not
only to arrive at dense segmentation but, more importantly,
to indicate areas of high prediction fidelity and areas of un-
certainty.

Our ensemble achieved accuracy above 95% in the high
fidelity areas of a volume of a poplar leaf segment. This
accuracy was achieved not only for a fresh leaf sample sim-
ilar to the training data, but also for a severely dehydrated
sample. Well-represented classes contained large areas of
high prediction fidelity and exhibited high validation met-
rics. By contrast, under-represented classes tend to contain
large areas of uncertainty.

Indication of uncertainty could be used as a basis to re-
vise the predictions by domain experts. This is in turn ex-
pected to improve and/or enlarge the ground truth and al-
lows for training of higher-quality segmentation models.

1. Introduction

Segmentation is crucial step for further biological [17]
or biomedical analysis. Traditional approaches of image
segmentation rely on homogeneity criteria such as inten-
sity values (threshold) or large gradient magnitude (border
line) [12]. Since MRI, CT or µ-CT images are blurred, con-
tain noise or have low contrast, it is more difficult to design
such criteria in medical [18] or biological image segmen-
tation. In these fields deep learning is increasingly gaining
popularity [8] as the features are learned automatically. The

automatic feature learning is beneficial, but the filters im-
portant for the segmentation remain unknown, which makes
it difficult to interpret and improve the results [15].

Deep-learning approaches rely on large ground truth
training sets. Limited annotated data is a remaining chal-
lenge in medical imaging [5], but even more in botany
and agriculture, where annotated image libraries are miss-
ing [13]. Moreover, any manual annotations are subject to
inter- and intra-observed variability. In turn, such ground
truth annotation often may become unreliable in hard-to-
annotate areas.

In 2015 U-Net was introduced [14] and it has become
one of the most commonly used architectures in (bio-
)medical segmentation [18]. It was originally used for 2D
transmitted light microscopy images. Since then it was used
for nearly all major imaging modalities such as CT, MRI
and X-ray [15]. The drawback of using 2D convolution for
3D data such as MRI, CT or µ-CT is the lack of volumet-
ric context [2]. There have been several extensions of U-
Net [15], the 3D U-Net [20] being one of them. Due to high
requirements on GPU memory of 3D convolutions [1] vol-
umetric data is usually divided into smaller patches [5]. To
overcome the drawbacks of 2D and 3D U-Nets, there have
been several attempts to combine these approaches and run
the 2D U-Net networks in parallel on several 2D projec-
tions of a 3D volume in order to incorporate some volumet-
ric context at computationally efficient cost. This kind of
ensemble U-Net is called 2.5D U-Net [15]. Usually the 3D
volume is divided into 2D images along three orthogonal
axes and then three U-Net models are trained and used for
prediction separately. With fusion of the three predictions
the final segmentation result is produced [4, 6, 11, 19]. An-
other possibility is to use random 2.5D U-Net with multiple
2D projections [2].

In this paper we utilize the 2.5D-like approach in order
to localize the high fidelity predictions and to flag voxels
with uncertain predictions. The aim is on one hand to ad-
dress the problem with limited ground truth data typical for
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Figure 1. µ-CT scan viewed as three orthogonal stacks of images.

Figure 2. Example of ground truth cross-section slice of scan time
3 showing all 6 available labels.

biological and (bio-)medical image segmentation. On the
other hand we aim to build a tool that can enlighten how to
fix errors of the predictions. The uncertain regions can be
further reviewed by domain experts. This could enlarge the
labeled data set, while significantly decreasing the manual
labour. We present an approach that serves as the initial step
for human-in-the-loop interactive segmentation.

2. Data

µ-CT scans of a hybrid poplar leaf were taken at the
TOMCAT beamline at the Swiss Light Source of the Paul
Scherrer Institute (Villigen, Switzerland) using acquisition
protocols similar to [17]. The leaf was allowed to wilt and
scanned in five different scan times. The first scan was done
immediately after the leaf strip was prepared and placed
into a holder. The other four scans were done after 10, 20,

25, and 30 minutes, while the leaf was dehydrating. While
only minor differences in leaf structure were apparent dur-
ing scan times 1-4, large differences were noticeable at time
5 and the cells were visibly shrunken.

The µ-CT scans were divided into stacks of 2D slices
along the three orthogonal axes (Fig. 1). Sparse set of 2D
images were manually segmented into 6 classes, i.e., cells,
veins, epidermis, stomata, background air, and intercellular
airspaces (inner air).

This resulted in 10 to 25 segmented slices for each scan
time and each axis. Two of the six classes have been heavily
underrepresented: veins (5%) and the small pores on the
surface, called stomata (≈ 1%).

3. Methodology
In this section we summarize the methodology of seg-

menting 2D slices along three orthogonal axes, orthogonal
axes ensemble used for the selection of 3-consistent voxels
and their evaluation.

3.1. 2D Segmentation Using U-Net

For 2D segmentation we divided the data into the train-
ing and validation sets. For the training set, we used scan-
ning times 1, 2, and 4. For the validation set, the time 3 and
(the challenging) time 5 were used with the aim to validate
the models on a slightly different-looking dataset.

The models were trained and predicted using 3 differ-
ent resolutions, i.e. 1024 × 1024, 512 × 512, 256 × 256.
The models were trained using U-Net [14] architecture. As
shown in Fig. 3 one model was trained for the paradermal
axis and one for the cross- and longitudinal-section.

In order to address the problem with limited labeled
ground truth data-set we used data augmentation [3]. We
applied transformation functions such as random crop, flip,
rotation both on the µ-CT slices and their corresponding la-
beled ground truth slices simultaneously.

3.2. Orthogonal Axes Ensemble

The outputs of the three 2D predictions are aggregated
in one 3-channel volume with 3 label predictions per voxel
(see Figure 3). The number of unique labels per voxel splits
the voxels into three categories:

1. all three models predicted consistently (3-consistent
voxels);

2. two models were consistent, but inconsistent with the
remaining one;

3. all three models were mutually inconsistent.

As no clear consensus is found for voxels of categories 2
and 3, we declare them as uncertain and call for a manual
inspection. We’ll discuss this later in section 5.
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Figure 3. Training and prediction along the 3 orthogonal axes and their aggregation.

Figure 4. Mean IoU and accuracy for the test set (times 3 and 5). 2D predictions (averaged over all orthogonal axes and resolutions)
compared to average of 3-consistent predictions. Black bars represent standard deviation.

In the following we are interested in how reliable are the
predictions of category 1 with respect to the ground truth.
To do so we compute and compare several metrics for both
the ensemble and the three axis-wise 2D predictions.

3.3. Validation Metrics

Five spatial overlap-based metrics [16] are used for vali-
dation.

Pixel Accuracy (PA) is a basic metric used for segmenta-
tion evaluation. It is the ratio of correctly predicted pixels
to the total number of pixels. [9]

Precision is used only for each label class separately:

precision =
TP

TP + FP
(1)

where TP is the true positive fraction and FP is the false pos-
itive fraction [9]. Precision values indicate whether over-
segmentation occurs [10].

Recall Similar to precision, recall is used only for each
label class separately:

recall =
TP

TP + FN
(2)

where TP is the true positive fraction and FN is the false
negative fraction [9]. Recall values indicate whether under-
segmentation occurs [10].

Intersection over Union (IoU, a.k.a the Jacard index [7])
is used both in the per-class and the image-mean variants.
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IoU for individual class is defined as

IoU =
|A ∩B|
|A ∪B| =

TP

TP + FP + FN
(3)

where A is the mask of the class label in the ground truth
image and B is the mask of the class label in the predicted
image. |A ∩B| is the intersection and |A ∪B| is the union
[9] [16].

Mean IoU is defined as the mean for the IoUs of the indi-
vidual classes [9]. The mean IoU was calculated as

meanIoU =
1

n

n∑

c=1

(IoU)c (4)

where n = 6 is number of classes and (IoU)c is the IoU for
class c.

4. Results and Discussion
The metrics in 2D predictions were sufficiently high for

the well represented classes, i.e. cells, epidermis, back-
ground air and intercellular airspace. In scan time 3,
IoU, precision, and recall values were usually higher than
90%. In scan time 5 metrics were usually higher than 70%
(Fig. 5). Since in scan time 5, the poplar leaf was much
more dehydrated than during other scan times, it was ex-
pected that the predictions would be less accurate. Indeed
the accuracy and mean IoU were lower for scan time 5 than
for scan time 3 (Fig. 4).

For the under-represented classes, i.e., stomata and veins
the precision was higher than recall. The recall was espe-
cially low for stomata for both scan times. This indicates
under-segmentation. Therefore IoU was also low for stom-
ata. The low IoU for underrepresented classes can explain
why mean IoU is lower than accuracy for the 2D predic-
tions.

After selection of 3-consistent voxels both accuracy and
mean IoU increased in both scan times. The amount of
voxels of this category was lower in time 5 (≈ 80%) than
in time 3 (≈ 90%). The increase of the metrics values
was higher for the scan time 5 than for scan time 3. Even
though the average accuracy was 95.26% for scan time 3
and 86.82% for scan time 5, after selection of 3-consistent
voxels the average accuracy was comparable, i.e. 97.83%,
96.16%, respectively (see Fig. 4). Mean IoU remained
lower for scan time 5 than for scan time 3. The difference
in the amount of uncertainty voxels for scan time 3 and 5 is
demonstrated on an example in Figures 7b and 7d by yellow
color.

Except for stomata in time 3 and both stomata and veins
in time 5 the metrics increased class-wise. For the under-
represented classes the recall was low and it got even lower

for the 3-consistent voxels (Fig. 5). Therefore also IoU was
lower.

The low recall for stomata for 2D predictions can be ob-
served in Figure 6 (f)-(h). Only some of the stomata were
predicted by the particular models, but along each of the
orthogonal axis it was predicted differently. In paradermal
axis (f) only around half of the stomata were predicted, but
when they were predicted it usually corresponded to the
ground truth. This corresponds to small recall, but higher
precision (see Fig. 5a). Additionally one of the stomata was
predicted around hole visible in µ-CT scan (a) and ground
truth (e) near the stoma. Such an air gap between stoma
and epidermis is highly unusual. In cross- (g) and long-
(h) sections the number of predicted stomata is higher, but
the shapes are slightly deformed. Therefore, as it is visible
in Fig. 6 (b) - (d) the uncertainty depicted with yellow is
high in stomata regions and 3-consistent voxels forms only
small portion of stomata voxels in ground truth. Addition-
ally around the uncertainty the 3-consistent voxels differs
from the ground truth. This explains the decrease of recall
after orthogonal axes ensemble. A similar pattern is visi-
ble for veins and stomata in scan time 5 (see Fig. 7c and
Fig. 5b).

For well represented classes the metric values were for
3-consistent voxels usually above 90% for both scan times.
In scan time 3 most voxels labeled as cells, intercellular
airspace and background were labeled as their correspond-
ing class in all 2D predictions. This is illustrated in Fig. 7b.
In scan time 5 precision was significantly lower for inner air
and stomata than in scan time 3 (see Fig. 5b). This indicates
over-segmentation of these classes. For the 3-consistent
voxels the precision significantly increased.

5. Conclusion and Future Work
We presented an approach that utilizes 2.5D orthogo-

nal axis ensembles and detects areas of confidence and un-
certainty. The validation metrics were higher for the 3-
consistent voxels in comparison to the 2D predictions. For
well represented classes, i.e. cells, epidermis, background
and inner air, they were usually above 90% even for scan
time 5, that was significantly more dehydrated in compari-
son to the training data-set.

Uncertainty areas tend to correlate with the underrep-
resented classes, i.e. stomata and veins. Here, small
recall was typical in 2D predictions, indicating under-
segmentation of these classes. For the classes with large
uncertainty areas, under-segmentation remained also for the
orthogonal axes ensemble.

In future work this approach could be used as an initial
step in a human-in-the-loop segmentation, where the uncer-
tainty areas can be revised.

In Figure 8 we show an example of prediction by or-
thogonal axes ensemble overlaid by uncertainty (yellow)
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(a) scan time 3

(b) scan time 5

Figure 5. Label classes comparison of 2D predictions and 3-consistent voxels for scan time 3 (a) and scan time 5 (b).

for a slice without the ground truth. An increasing opacity
can become a part of an interactive tool for revision of pre-
dictions irrespective of absence/presence of a ground truth.
Such a revision can in turn enrich the training set.

In Figure 7a shows 3-consistent voxels of the veins
surrounded by yellow uncertainty area and several orange
spikes. Because it is hard even for a human expert to distin-

guish cells closely appressed to the veins, such cells were
annotated as veins. Our approach actually correctly anno-
tated these cells, leading to the orange spikes. This shows
our approach can help to identify areas that are hard to man-
ually label to improve the ground truth data.
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(e) (f) (g) (h)

Figure 6. Top row: slice of scan (a) overlaid by ensemble predictions, using increasing opacity (b)-(d). Yellow indicates uncertainty and
requests human revision. Bright orange indicates mismatch between predictions and ground truth. Bottom row: Labels by human expert
(e) and predictions along the three orthogonal axes (f)-(h).

(a) (b) (c) (d)

Figure 7. Selected slices from scan time 3 (a),(b) and 5 (c),(d) overlapped by ensemble predictions and uncertainty.

(a) (b) (c) (d)

Figure 8. Slice of scan (a) overlaid by ensemble predictions, using increasing opacity (b)-(d).
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Abstract

We present a segmentation method for tissue images that
uses the shape of image foreground to infer the location of
individual cells. The method works in arbitrary dimension
and is suited for volumetric scans. It is unsupervised, but
allows a user to specify parameters to correct for the pres-
ence of noise and to steer the segmentation behavior. After
describing the algorithm and its limitations, we analyze its
complexity (linear in voxel count) and evaluate the qual-
ity of the segmentation result by applying it to a leaf x-ray
micro-tomography scan.

keywords: instance segmentation, distance transform,
skeleton, watershed, volumetric image, shape, unsupervised

1. Introduction
After obtaining a high resolution 3d image of biological

tissue, further processing of that data may require identify-
ing the tissue’s constituent cells, i.e. cell instance segmen-
tation. Even if a volumetric scan only allows for differenti-
ation of tissue from background (as in Fig. 1, where the air
space in-between cells is considered background), a human
expert is still often able to identify single cells. They can in-
fer the position and size of single cells from the shape of the
foreground-to-background surface. Due to the large amount
of data in a 3d image and the resulting work load, a full seg-
mentation by experts is often not feasible. Our method aims
to formalize and automate the human shape-based approach
to segmentation. In contrast to other recent methods [8, 14]
we do not rely on a neural network that needs training (”su-
pervised”), but employ classical geometrical methods from
pattern recognition (”unsupervised”).

Throughout the article, we will use 2d images to illus-
trate the concepts involved. The actual method operates in

Figure 1. 2563 voxel X-ray micro-tomography of leaf tissue and
its automated cell instance segmentation result

arbitrary dimension however, not just on slices of 2d im-
ages.

2. Limitations

Our method has the following requirements:

• The image must be an n-d grid (e.g 3d voxels) of grey
values.

• The image must fit into RAM.

• The size of the smallest isolated cells to be captured
must be known a priori or estimated at run time, to not
discard such cells during noise handling.

• Cell shapes must be extractible after a suitable thresh-
olding operation.
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• Cell-to-cell interfaces must be smaller in diameter than
cell bodies.

3. Algorithm
Our segmentation method can be summarized as follow-

ing:

1. Extract foreground and background via thresholding.

2. Clean both from noise via morpholigical filtering.

3. Compute distance transform of foreground from back-
ground.

4. Assign labels to local maxima of the (smoothed) dis-
tance transform.

5. Use watershed to grow the labels.

6. Merge labels, if their border is nearly as wide as their
thickest part.

7. Discard labels that are too small.

8. Grow remaining labels again using watershed.

We will now discuss these individual points in more detail.
The distance transform is a great tool to capture shape

information, but it is highly sensitive to noise [2]: Even tiny
spots of background located in the foreground can severely
distort the transform, rendering it useless. This is why care-
ful handling of noise and image artifacts is required. Rather
than blurring the source image to reduce noise effects and
also discarding potentially important high-frequency data
(see Figure 2), we deal with the noise morphologically: Af-
ter thresholding, we search for connected components of
background and delete (i.e. assign as foreground) those,
whose voxel count is below some specified value. This is a
parameter we must specify, and why we must know in ad-
vance the size of the smallest structures we wish to capture.

The seed labels for watershed are constructed from both
the local maxima of the distance transform (possibly a
smoothed distance transform to merge close maxima), and
the connected components of the background.

To use watershed, we need a height map that steers the
growth of seed labels. Classical watershed segmentation [3]
uses the image gradient magnitude as height, which allows
for regions to grow fast where the source image has uni-
form brightness. This however ignores the shape informa-
tion we have already extracted via the distance transform,
and as such is prone to growing labels along image arti-
facts and noise, which strongly affect the gradient. Instead
we choose to use a convex combination of image gradient
magnitude and negative distance transform for height value:
This allows for region growth to happen from cell centers
outwards, uniformly approaching the background, indepen-
dently from cell size. All the while the image gradient can
inform label growth about subtle differences in brightness

that were lost during thresholding. The weight parameter
in the convex combination allows the user to balance shape
with brightness information.

After the first watershed segmentation, we are left with
an over-segmentation. The core insight into how a human
expert segments is now modeled by the constriction factor
c: Each label remembers its radius at the thickest spot, i.e.
the maximum of the distance transform within that label. At
the interface between two neighboring labels, we scan for
the maximum of the distance transform along the interface.
This yields the local thickness of both labels at their border.
Now, if this thickness value is close to the bigger of the two
involved maxima, then the labels don’t constrict much at
their interface, and we assume that they actually belong to
the same biological cell. Hence we merge them. Exactly
how much of a constriction should warrant keeping both
labels? This is another parameter to be specified. In order
to keep the parameter scale-free, we model it as the ratio

c =
distance maximum at border

distance maximum within both labels

From our experience, keeping labels separate for c < 0.75
seems to work best.

Even after merging labels, there might be structures
present that are too small in volume to reflect biological
cells. An effective way to merge those tiny labels with their
bigger neighbors is to discard them and use the result as
the seed for another iteration of watershed (using the same
height map as before). This grows the remaining labels,
filling the holes just created. The result is a labeled im-
age, with different labels for connected components of the
background, labels for individual cells wherever their shape
allows for separation, and with a single label per cluster of
cells where they are packed tightly.

4. Runtime & Complexity
The building blocks of our method are thresholding, con-

nected component search, distance transform, local maxima
search, gradient magnitude, and watershed. All of these
components have implementations with linear complexity
O(n) where n is the number of voxels in the data set [4,6,9].

We have implemented our algorithm in a Jupyter note-
book, employing numpy, Skimage and numba for efficient
computation. With this approach, running the method on a
2563 image takes < 5 minutes on an old laptop (Intel Core
i3-3110M with 8GB RAM), including user input.

5. Validation
To assess the quality of the resulting segmentation, we

apply it to a volumetric X-ray micro-tomography scan of a
poplar leaf (see Figure 1). This image was downsized to
get an isotropic voxel edge length of 0.325µm, and then
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(a) Example of a thresholded source im-
age. Note that there is salt-and-pepper noise
present. Best viewed magnified.

(b) The distance transform of Fig. 2a heavily
distorted by the noise.

(c) Blurring the source image and threshold-
ing removes the noise, but also details from the
image. Note how the bottom shape becomes
disconnected.

(d) Removing tiny connected components
from both background and foreground in
Fig. 2a cleans noise without losing image de-
tails.

(e) The resulting distance transform of Fig. 2d

(f) Local maxima of the distance transform are
marked as black dots. They are the used as
seeds for watershed, yielding this oversegmen-
tation.

(g) Blurring the distance transform prior to
local maxima detection merges neighboring
peaks, reducing oversegmentation and compu-
tation effort in subsequent steps.

(h) We investigate the diameter of Fig. 2g’s re-
gion borders (marked as black lines): In the
top shape, the distance maximum on the bor-
der between the two regions is far smaller than
the maxima in either cell. This characterizes a
noticeable constriction in the shape.

(i) The result after merging neighboring labels
with only slight constrictions at their border.

Figure 2. 2d illustration of steps involved in the algorithm

cropped to 2563 voxels. Ground truths of all cells present
in three paradermal and four transversal 2d slices were hand
labeled, with the exception of the within-vein cells which
are too densely packed and were assigned a single label.

To compare the human-generated ground truth with the
automated segmentation, we use the metric

error = 1− F1 = 1− 2 · precision · recall
precision + recall

suggested in [1] as error measure, as well as the
information-based measures described in [11]: The varia-
tion of information (voi) of a segmentation with respect to
the ground truth can be understood as a measure of over-
segmentation, whereas voi of the ground truth with respect
to another segmentation quantifies under-segmentation. We
refer to these measures as splits and merges, respectively.
From the results listed in Table 1, we recognize that both
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over- and under-segmentation occurs, but mostly in moder-
ate less-than-one-bit amount. Error values are high in the
palisade (slice 5) due to low recall, even though the seg-
mentation looks promising upon visual inspection. Correct
segmentation of the water vein from its neighboring cells
proves difficult for our shape-based approach, as can be ob-
served on slices 6 and 7.

6. Conclusion
We have demonstrated a linear-time method for unsuper-

vised seeded watershed segmentation of images in arbitrary
dimension. Human interaction is required only to select a
few parameters. The seeds for seeded watershed segmenta-
tion are auto-generated.

The novelty of our method compared to established wa-
tershed segmentation methods [7, 10, 15] lies in the follow-
ing aspects:

1. A careful morphological pre-processing regime to
compensate for the distance transform’s sensitivity to
noise.

2. Operating on level sets of the distance transform in-
stead of explicitly constructing a shape skeleton [5,12,
13].

3. The height map employed during watershed uses in-
formation from both image gradient and the shape of
the foreground-background surface.

4. Over-segmentation resulting from watershed is cor-
rected using a scale-independent, isotropic shape cri-
terion that models human expert behavior.

7. Future Work
We intend to explore further shape-based instance seg-

mentation methods and aim to improve the quality of our
result. The local variation of the constriction factor near la-
bel borders may offer another suitable criterion for merging
labels and correcting for watershed over-segmentation.
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(a) leaf scan slice 1 (b) ground truth (c) automated segmentation

(d) leaf scan slice 2 (e) ground truth (f) automated segmentation

(g) leaf scan slice 3 (h) ground truth (i) automated segmentation

(j) leaf scan slice 4 (k) ground truth (l) automated segmentation

Figure 3. Transversal slices (perpendicular to the surface and to the leaf midrib)
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(a) leaf scan slice 5 (b) ground truth (c) automated segmentation

(d) leaf scan slice 6 (e) ground truth (f) automated segmentation

(g) leaf scan slice 7 (h) ground truth (i) automated segmentation

Figure 4. Paradermal slices (parallel to the leaf surface)

slice no. error [%] precision [%] recall [%] splits [bit] merges [bit]
1 6.3 98.8 89.0 0.6 0.7
2 4.5 98.0 93.1 0.7 0.5
3 12.2 88.6 87.0 0.8 0.8
4 14.3 91.8 80.4 0.9 0.8
5 40.1 93.0 44.1 0.6 1.2
6 37.6 52.9 76.0 1.5 0.9
7 15.9 88.2 80.4 1.2 0.7

Table 1. Segmentation error metrics

59



Exploring Learning-Based Approaches for Bomb Crater Detection in Historical
Aerial Images

Marvin Burges, Sebastian Zambanini, Robert Sablatnig
Computer Vision Lab, TU Wien

1040 Vienna, Austria
{mburges, zamba, sab}@cvl.tuwien.ac.at

Abstract

Many countries were the target of air strikes during
World War II. The heritage of these attacks is still present to-
day, as numerous unexploded bombs are uncovered yearly
in Central Europe. While these bombs pose a significant
explosion hazard, they can be inferred from the existence of
craters. Therefore, analyzing aerial images from World War
II surveillance flights allows for preliminary risk estimation.
In this paper, we train and evaluate 12 different object de-
tector architectures and compare them to a crater detection
algorithm on our custom historical aerial dataset. We show
that modern detectors, in combination with a large enough
historical aerial crater dataset, can outperform a current
method for crater detection, achieve a precision of 0.6 and a
recall of 0.6 on our dataset, and can process large remotely
sensed images within seconds, rather than minutes. Ad-
ditionally, pretraining and different dataset extensions are
evaluated and discussed.

1. Introduction

Although the last air raids of World War II happened
more than 70 years ago, UneXploded Ordnances (UXOs)
still pose a significant explosion hazard for European con-
struction projects [11]. Specialized companies provide a
preliminary risk estimation by reviewing and interpreting
aerial images from World War II surveillance flights over
the area of interest. To generate these risk estimations,
historical aerial images have to be georeferenced, and all
objects that indicate increased combat activity have to be
marked. Currently, both the georeferencing task and the
search for increased combat activity are performed manu-
ally by specialists. The goal of our work is to automatically
generate “explosive ordnance maps” from selected images,
by detecting increased combat activity. These “explosive
ordnance maps” indicate whether an area is likely to be con-
taminated and therefore may contain UXOs, while in un-

Figure 1. An example detection result of the best performing de-
tector on a rural area. Blue point: Prediction, best viewed in color.

contaminated areas, UXOs are unlikely [11]. To achieve
this goal, we survey the performance of existing fully-
automatic object detectors in detecting increased combat ac-
tivity by training them on our custom dataset consisting of
historical aerial images.

Specifically, we focus on the detection of bomb craters,
as they are the most abundant type of warfare-related ob-
ject visible in aerial images. Furthermore, they represent
direct evidence for the presence of an UXO, as it is as-
sumed that 10 - 15 % of all bombs dropped during World
War II did not explode [2]. We concentrate on the detec-
tion of warfare-related objects instead of the prediction and
segmentation of potentially contaminated areas due to ex-
plainability reasons. As this is a task with potentially dan-
gerous consequences, the network results always have to be
verified by an expert. An example for this task is given in
Fig. 1, where the automatic detections on a image from the
H2OPM dataset [25] are given. In this work, we compare
Convolutional Neural Networks (CNNs)-based detectors on
the task of automatic detection of bomb craters and compare
our findings with a crater detection method from the litera-
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ture [2]. We specifically focus our comparison on network
architectures that can be retrained on consumer hardware,
as we intend to focus on domain adaptation in future work,
which can require an end-user to retrain on newly obtained
data of a different domain. We will include the best per-
forming network in a plugin for the geographic information
system QGIS1, for which we will release the code2 and the
weights3 for the best performing networks can be used di-
rectly with the original YoloV5 implementation of Glenn
Jocher et al. [8].

The remainder of this paper is structured as follows.
First, in Sec. 2 the related work on object detection in his-
torical aerial images and related domains is presented, fol-
lowed by the data used for this paper in Sec. 3. The exper-
imental setup is described in Sec. 4 and results and discus-
sion are given in Sec. 5. Finally, a summary and potential
future work is presented in Sec. 6.

2. Related Work
As the amount of related work on the topic of crater de-

tection in historical aerial images is limited, we include se-
lected methods for mars and moon crater detection, which
are visually similar to bomb craters.

Brenner et al. [2] developed an approach to automati-
cally detect craters in historical aerial images using a ma-
chine learning approach based on a CNN. They use a slid-
ing window in combination with DenseNet [10] to ex-
tract candidate crater positions from the image and then
use post-processing to refine the detections. These post-
processing steps include a spatial proximity prior, as bombs
are dropped in clusters thus, “lonely” bombs are likely a
false positive, non-cluster suppression, as due to the overlap
of the sliding window, bombs should be detected multiple
times, as outliers are detections that are not part of a cluster
detection and a non-maxima suppression to reduce multi-
ple detections. Overall, their approach achieved a preci-
sion/recall of 90.7%/91.3% with the same amount of craters
and background images in the test set. However, with a
more realistic distribution of around 1:250, the precision is
reduced to 4%. In [11], Kruse et al. assume that multiple
images of the same area exist, based on which they propose
an approach that combines the individual detection results
of a stochastic approach based on marked point processes.
This increased the F1-score from 39 % (based on single im-
ages) to 67 % (based on multiple images). In [12] Kruse et
al. further evaluate this method by examining the influence
of random number generation. They also compare their ap-
proach to a Faster RCNN object detector [17] trained on

1https://qgis.org/en/site/
2https://github.com/mburges- cvl/QGIS_Plugin_

for_OAGM_2022
3https://owncloud.tuwien.ac.at/index.php/s/

AxarN33AnClCDhA, PW: ”oagm2022”

their dataset. The results show that the CNN can outperform
their approach if the correct threshold is selected. However,
they also note that in a scenario where only a limited amount
of training data is available, their approach delivers superior
results.

Wu et. al. [23] propose a Crater Detection Algorithm
(CDA) called SUNnet 3+, that is based on the UNET archi-
tecture [18] and detects craters in the digital elevation model
of Mars. The CDA proposed in [9] aims at detecting lunar
craters in images in real-time by a crewed lunar lander dur-
ing the landing procedure, based on a modified YoloV4 [1]
architecture.

The listed publications show that, while learned crater
detectors have been evaluated before, only one publication
trains an object detector on this task. Brenner et al. [2] ex-
tracts regions via a sliding window and classifies the patches
via a CNN and Clermont et al. [4] use a blob detector,
also in combination with a CNN as classifier. Only in [12]
Kruse et al. train and evaluate an object detector and show
its potential. The primary challenge, frequently mentioned,
was the lack of training data [4, 11, 12]. However, due to
an industry partnership, we have access to a dataset suitable
for training. Hence, this paper evaluates different object de-
tectors trained on crater samples. We expect that by training
object detectors with learned regions proposals we can out-
perform current crater detection methods.

3. Data
To the best of our knowledge, no dataset for crater detec-

tion in historical aerial images is publicly available. There-
fore, we use our dataset, which covers both urban and ru-
ral areas. These images originate from finished projects
in which experts georeferenced the historical aerial im-
ages and annotated the bomb craters. In total, 111 im-
ages are georeferenced, and a total of 19,506 craters have
been marked in the images. Note, the analysis per image
is only performed within the Region Of Interest (ROI). As
a result, we had to ignore all regions outside of the ROI,
as no ground truth data is available outside of the ROI.
The images were made between 1943 and 1945 and con-
tain craters with a minimum size of 1m, an average size
of 8m, and a maximum size of 17m. The minimum im-
age size is 2, 274× 2, 388, the average is 11, 626× 10, 864,
and the maximum image size is 16, 714 × 16, 973. All im-
ages are split into 960×960 images with an overlap of 10%
for training for a total of 3,711 images. The Ground Sam-
pling Distance (GSD) for all images is normalized to 0.25m,
and they cover an area of 505 km2. An example of a ru-
ral image can be seen in Fig. 2a, one of an urban image
in Fig. 2b, both images are from the H2OPM dataset [25]
and are also part of our dataset. Additionally, we exper-
imented on 12 panchromatic Martian satellite images [6]
with a crater size of less than 5 km and a total amount of
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around 42,000 craters (Fig. 2c). These images were also
split into 960×960 images with an overlap of 10% for train-
ing, which resulted in 384 images. We also generated a syn-
thetic dataset, which is based on the XVIEW dataset [13]
were 16,931 cut-out craters from our training dataset are
imprinted onto the XVIEW images. An example of the syn-
thetic data is presented in Fig. 2d. We discarded the origi-
nal classes of the XVIEW dataset, converted the images to
grayscale and to a GSD of 0.25, and augmented the crater
patches before imprinting them in the image. The augmen-
tation consists of rotation, horizontal flipping, and Fourier
Domain Adaptation (FDA) [24], with the target being the
XVIEW-image. This resulted in 17,234 960 × 960 images
with a total of 603,190 craters and a similar GSD to the
original project images.

(a) Rural bomb craters (b) Urban bomb craters

(c) Martian craters (d) Synthetic bomb craters

Figure 2. Four example images from our dataset. a) and b) Images
from company projects, c) Martian satellite image from [6] and d)
Image from the XVIEW-Dataset [13] with synthetic craters.

4. Experimental Setup

In this section, we present the experiments conducted for
this paper. We start by evaluating different object detec-
tors on our historical crater dataset, then compare the re-
sults with the crater detection method proposed by Brenner
et al. [2]. We continue with the pretraining and synthetic
data results and finish with the evaluation metrics.

4.1. Evaluation of State-of-the-Art Object Detectors

For this work, we evaluated 12 different object detec-
tion architectures. An overview of the networks can be
seen in Tab. 1, which highlights the trainable parameters as
well as whether the networks use one stage or two stages.
Single-stage networks perform classification and regression
on dense anchor boxes without generating a sparse ROI set,
while two-stage networks first generate sparse region pro-
posals, which are then further regressed and classified in
a second stage [14]. We chose these specific networks as
they are capable of running on consumer hardware and be-
cause these networks have been repeatably used for few-
shot learning. We trained all networks on the historical
aerial dataset with an image size of 960 × 960 pixels and
a batch size of 2 (32 for YoloV5n), until the Average Preci-
sion (AP) started plateauing, which was between 10 - 50
epochs depending on the dataset size (larger datasets re-
quired more epochs). For the data augmentation, we re-
lied on the Albumentations framework [3]. We used com-
mon augmentations like blur, random brightness and con-
trast changes, rotation, translation, and histogram equaliza-
tion, but we also used the mosaic augmentation method pro-
posed in [1] as well as FDA. All networks were pretrained
on COCO before being finetuned on our crater dataset and
used the same anchors (if applicable).

Table 1. Evaluated networks with their respective parameter count
in million and their architecture style.

Name Parameters (M) Stages
YoloV5n [8] 1.9 One
YoloV4 [1] 27.6 One

YoloV7 [22] 37.1 One
Faster RCNN R 50 [17] 41.3 Two
Faster RCNN R 101 [17] 60.2 Two

YoloV3 [16] 65.3 One
ScaledYoloV4(-p5) [21] 70.2 One
EfficientDet(-d7x) [19] 76.8 One

YoloV5x [8] 86.7 One
YoloX [7] 99.0 One

Faster RCNN X 101 [17] 104.4 Two
YoloR(-d6) [20] 151.0 One

4.2. Comparison with State-of-the-Art Crater De-
tection Methods

To the best of our knowledge, no historical aerial crater
detection frameworks for comparison are publicly available.
We therefore chose to compare the best performing detec-
tor from Sec. 4.1 to the detector proposed by Brenner et al.
in [2] on our crater data. However, as we did not have access
to the original version, the approach was re-implemented.
Similar to the original implementation, we used a 40-layer
DenseNet with an input size of 32× 32 pixels and trained it
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on a binary classification problem. We trained the network
for 100 epochs on the 42.172 crater patches extracted by a
sliding window from the training set with roughly the same
amount of negative examples. Differently to the original
approach, however, we use patches of size 80 × 80 pixels
instead of 20 × 20 pixels to achieve a similar window size
of 20m×20m as our dataset has a GSD of 0.25m instead of
1m. These patches are then resized to the network input size
of 32× 32 pixels. We evaluated the approach in two ways.
First the classification way, where we extracted all 1.614
crater patches from the validation set as well as the same
amount of negative samples (resulting in a 1:1 ratio of pos-
itive and negative samples). Second in the (more realistic)
object detection way, where the network is applied as a slid-
ing window to the validation images (resulting in roughly a
1:250 ratio of positive and negative samples). In a final ex-
periment, we compared the run-time of the approach from
Brenner et al. with YoloV5n and YoloV5x on one example
image with the size of 10, 644× 10, 042.

4.3. Pretraining and Synthetic Data

We also experimented with different strategies to im-
prove the training result. One idea was to pretrain the net-
work. In our case, we chose COCO, the Mars dataset de-
scribed in Sec. 3 and the XVIEW dataset. Additionally, we
experimented with increasing the raw crater dataset size by
adding a combination of the Martian and synthetic data to
our historical aerial crater dataset. The intention with the
Martian data was to add more crater variants, while the idea
for the synthetic data was to add more urban structures to
the dataset. We again chose the best performing detector
from Sec. 4.1 and trained it on the different dataset combi-
nations.

5. Results and Discussion
In this section, we present the results of the experiments.

We start by presenting and discussing the quantitative re-
sults in Sec. 5.1 and finish with a qualitative analysis of two
example images in Sec. 5.2. Both show the difficulty related
to detecting craters in historical aerial images.

5.1. Quantitative Results

The trained object detectors presented in Sec. 4.1 were
evaluated on the test set of the historical crater dataset de-
scribed in Sec. 3. The results can be seen in Fig. 3. The
graph shows the precision recall curve for all networks pre-
sented in Tab. 1. It is visible that YoloV5n, YoloV5x, and
YoloR perform similarly and better than the other tested net-
works. One can also see that YoloV3 and Faster RCNN R
50 perform significantly worse. This is due to the coarse
search grid of YoloV3, which hinders the detection perfor-
mance of small objects in the images, as stated by Pham et
al. [15]. Similarly, the Faster RCNN family has issues with

small objects, as has been shown by Eggert et al. [5]. This
could be a possible explanation for why the Faster RCNN
family is outperformed overall by the Yolo variants and why
Faster RCNN R 50, in particular, is underperforming. Over-
all it is shown that the majority of the tested networks have
similar results, which could be due to the training set being
comparatively small for an object detection dataset (com-
pared to COCO, for instance). Overall, YoloV5n is one
of the best performing networks and also has the lowest
amount of trainable parameters which makes the training
less prone to overfitting.
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Figure 3. Precision-Recall-Curves for the different network archi-
tectures trained on the crater dataset.

The comparison with the approach of Brenner et al. is
presented in Tab. 2. It shows that their approach achieves
a precision of 0.91 and a recall of 0.87 during evaluation
with a 1:1 distribution of positive and negative samples on
our dataset, however their real-world performance is signif-
icantly worse. We were unable to achieve any meaningful
detections with the approach, which is also reflected in a
precision of 0.05 with a recall of 0.01 during the evaluation
with a 1:250 distribution. To further show the edge YoloV5n
has, we present the time for a detection of an image with a,
for this task, common size of 10644 × 10042 in Tab. 3. It
is visible that YoloV5n is 58 times faster than the approach
proposed by Brenner et al. with a precision of 0.6 and a
recall of 0.6.

We further explored YoloV5n on different dataset com-
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Table 2. Precision and recall for Brenner et al. on a synthetic
(1:1) and a more realistic (1:250) distribution of positive to neg-
ative training patches, compared to YoloV5n. YoloV5n does not
use a sliding window to generate patches but instead is applied to
the whole image.

Approach Precision Recall Positive-
Negative-Ratio

Brenner et al. 0.91 0.87 1:1

Brenner et al. 0.05 0.01 1:250
YoloV5n 0.6 0.6 1:250

Table 3. Runtime comparison of the best performing detector
and the approach from Brenner et al. Measurement: A 10, 644 ×
10, 042 example image, split into 144 960 × 960 image patches
(with overlap) for YoloV5. GPU: Nvidia T500 (Mobile).

Approach Runtime
QGIS + Brenner et al. 361s

QGIS + YoloV5n 6.2s

binations. The results are presented in Fig. 4, in addition
to YoloV5n, we present YoloV5x trained on the combined
datasets. We chose to add YoloV5x to the comparison, as
it performed similar to YoloV5n but had more parameters
and might benefit more from the additional data. Overall it
is visible that training on the Martian dataset alone does not
result in a suitable detector. While it can detect craters in ru-
ral areas (i.e. fields), it has a high amount of false positives
in urban areas. Training on synthetic data only resulted in a
detector that was unable to detect any crater correctly. The
curve was thus omitted, while training on any combination
of the synthetic and Martian data with our historical dataset
resulted in a similar performance. This is likely due to the
fact that the Martian domain is too trivial as it only contains
well-defined craters in rock and sand. The only challenges
with this dataset are overlapping crater or crater contained
in a larger crater. Both are rare in historical images and
therefore do not contribute much to the overall precision. A
likely reason why the synthetic dataset does not contribute
to a better performance is because the issue with urban areas
is not the false-positive rate on human-made structures but
the high irregularity of the craters. But, as we insert cut-out
historical craters into XVIEW images we do not increase
crater verity.

Lastly, we experimented with different pretraining
strategies: no pretraining, COCO pretrained weights, and
XVIEW pretrained weights. In Fig. 5 one can see the AP
plotted for 20 training epochs. It is visible that after 20
training epochs, all networks achieve similar results, which
was also verified with the test set where all networks again
performed closely. A similar effect can be seen in the vali-
dation loss, which is presented in Fig. 6. It is apparent that
after 16 epochs, the loss of all methods is similar. How-
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Figure 4. Precision-Recall-Curve for the different training dataset
combinations. (n) refers to YoloV5n, and (x) refers to YoloV5x. H
= Historical, M = Martian and S = Synthetic.

ever, it is also visible in both plots that the network pre-
trained on the COCO dataset requires only about 5 epochs
to achieve peak performance. This, considering previous
results, means that YoloV5n can be rapidly retrained on and
finetuned on a new domain.
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Figure 5. Pretraining evaluation: AP per epoch during training.

5.2. Qualitative Results

We present two detection results of YoloV5n in Fig. 7
and Fig. 1, which show a rural, but snow-covered, area and
a field. While YoloV5n can detect all craters flawlessly
in Fig. 1, which shows a barren field, it struggles to catch
all craters in Fig. 7, which similarly presents a field, how-
ever with snow coverage and fresh craters as well as older
craters. It was also observed, that in an urban environ-
ments YoloV5n is performing even worse than in domain
shifted images (i.e snow). This shows that the detector has
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Figure 6. Pretraining evaluation: Bounding box loss per epoch
during training.

a very high recall and precision for more straightforward
tasks, like the detection of craters in rural areas (Fig. 1).
However, it struggles with more complicated tasks, such as
the detection in an urban domain. The primary challenge
here is the fact that craters are highly irregular due to in-
terference with artificial structures. In contrast to this, in
rural areas and especially in barren fields, craters tend to
look similar. Additional challenges are due to the low im-
age quality, like low contrast and noise. A further issue is
a domain change (i.e., fresh craters and old snow-covered
craters), where training images are rare for the new domain.
This can be seen in Fig. 7, where the detector can detect 5
out of 13 craters with snow coverage, which are sparsely
represented in the dataset.

Figure 7. Snowy rural bomb crater detections from [25]. Blue
points: Detections, Green Star: Predictions, best viewed in color.

A solution for this problem could be an interactive ap-
proach, where an end-user could improve the detections by
removing false positives or adding false negatives, and the
network then retrains based on the changes. Another pos-
sibility could be that the user preemptively marks one or a
few craters in the image, which the network then uses as
additional domain information during the detection.

6. Conclusion and Future Work
In this paper, 12 State-Of-The-Art detectors were com-

pared on the task of detecting craters on 111 historical aerial

images, and the best detector was then compared to another
approach from the literature [2]. The detections obtained
by these detectors can be used in the predominantly manual
process of generating an “explosive ordnance map”, which
indicate areas that could be contaminated with UXOs, a sig-
nificant explosion hazard for construction processes in Eu-
rope. We showed that, while the tested detectors were un-
able to achieve sufficient accuracy to be used fully automat-
ically, the best detector, YoloV5n achieves a precision of 0.6
with a recall of 0.6 in real-world use cases. Furthermore, it
only requires 6 seconds to process an image of average size
(10, 644 × 10, 042), while the approach from the literature
requires about 360 seconds for the same image and only has
a precision of 0.05 and a recall of 0.01. This combination
of accuracy and speed allows for a quick and sufficiently
correct preliminary overview over an area, which then can
be manually finetuned to an “explosive ordnance map” by
an expert. YoloV5n also only requires between 5 - 7 epochs
for training when pretrained on COCO, which allows for
rapid retraining of the network. Another possibility to ex-
ploit YoloV5n would be to use it as a base detector for an
interactive learning method or a few-shot learning strategy,
where an expert corrects the detections and finetunes the
network. This idea will be explored in the future. A further
insight is that training on synthetic or Martian data does not
significantly improve the detection accuracy of the network,
primarily due to the fact that the biggest challenges are ir-
regular craters or unseen crater variants.

In general, we see learning-based approaches in favor
of algorithmic approaches like [12]. Our and the results of
related work demonstrate the difficulty of crater detection in
historical images, which makes the use of semi-automatic
approaches inevitable for practical reasons. Learning-based
approaches offer the needed flexibility to allow for an on-
the-fly adaptation to specific image domains, which will be
the direction of our future work.
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Abstract

The prognosis of canine cutaneous mast cell tumors
(ccMCT) is evaluated by various histologic parameters in-
cluding the variability in size and shape of tumor nuclei (nu-
clear pleomorphism). Traditionally, nuclear pleomorphism
is estimated by pathologists. However, a more precise mea-
surement could be achieved by automated morphometry,
which was investigated in this study. Eighty-six annotated
images from ccMCT were used to develop a nuclear seg-
mentation model, which yields an IoU of 0.79 on the test set.
The prognostic value was determined on 96 ccMCT cases
with known patient outcomes by two-fold cross-validation.
Several features of nuclear size and shape were extracted
from the segmentation mask and the ideal combination and
thresholds of these features were determined by an XGBoost
model independently for the two dataset splits. Tumor-
related death was predicted on the left-out data set part with
an AUC of 0.82 and 0.86, respectively. This study shows
a high prognostic value of algorithmic nuclear morphome-
try in ccMCT. Future studies should compare the algorithm
with estimates by pathologists.

1. Introduction

Canine cutaneous mast cell tumors (ccMCTs) are one
of the most frequent skin tumors in dogs. These tumors
are potentially malignant and histologic examination of the
tumor cells is important to prognosticate patient outcome.
Among other cellular criteria, the variability of nuclear size
and shape (nuclear pleomorphism) has a well-known prog-
nostic relevance for ccMCT and many other tumor types.
Traditionally, nuclear pleomorphism is estimated by pathol-
ogists into vaguely defined categories. An alternative to the
subjective assessment is the precise measurement of nuclei
in digital images (nuclear morphometry). The manual mea-
surement of nuclear size by pathologists has already been
investigated in previous studies [2]; however, routine use is
not to be expected since it is quite time-consuming (10 min-
utes per measurement were reported in this study). In com-
parison, fully-automated morphometry using deep learning-
based algorithms would be a very practical solution, assum-
ing that the nuclei can be accurately segmented. Deep learn-
ing methods for nuclear segmentation have been extensively
researched previously [3].
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Figure 1. Algorithmic segmentation mask of tumor nuclei as an
overlay on the histologic section of a ccMCT.

2. Material and Methods

2.1. Development of a segmentation model

Hematoxylin & Eosin-stained sections of 65 ccMCTs
were digitized by a whole slide imaging scanner at 0.25µm

px .
For development of the ground truth dataset, 86 representa-
tive regions of 0.1185 mm² were selected and the bound-
aries of 41,145 tumor nuclei were annotated using the soft-
ware Slide Runner 2.0.0 [1]. The dataset was split for train-
ing (N = 62 cases), validation (N = 11 cases) and testing
(N = 13 cases) of a UNet++ model [3]. Small objects and
connected nuclei were removed.

2.2. Evaluation of prognostic relevance

For evaluation of the prognostic value, 96 additional
cases of ccMCT with known tumor-specific survival of the
patient were collected. The cases were split into two parts
for two-fold cross-validation. Of each case, up to 5 regions
(0.1185 mm²) were extracted and used for analysis.

An algorithm was developed that post-processes the de-
rived nuclear segmentation mask (see above) by computing
the eccentricity and solidity (nuclear shape) as well as area
and diameter (nuclear size) for each nucleus. For each of
these features, the standard deviation, variance, mean and
median value were calculated. The ideal combination of
theses features was determined with an XGBoost model for
each of the two cross-validation folds.

3. Results

Evaluated on the segmentation validation data set, the
model yielded an intersection over union (IoU) of 0.788 and
a Dice score of 0.772 (see Fig. 1).

Tumor-related death was predictable on the validation
sets with AUC values of 0.82 and 0.86, with the accuracy
being 79.2% and 93.8%, respectively (Fig. 2 and Table 1).

Dataset split AUC Accuracy Sensitivity Specificity

1 0.82 79.2% 66.7% 81.0%
2 0.86 93.8% 71.4% 97.6%

Table 1. Prognostic value (tumor-related death) of the nuclear
morphometry algorithm.

Figure 2. Receiver Operating Characteristic curves for tumor-
related death of dogs with ccMCT based on algorithmic nuclear
morphometry.

4. Discussion
Our results show that automated nuclear morphometry

based on a deep learning model can provide an accurate
prognosis in ccMCT. Due to its high time-efficiency and
reproducibility, this methods seem promising for routine di-
agnostic use. Future studies should compare the prognostic
value of automated nuclear morphometry with the patholo-
gist’s estimates and with other prognostic tests, such as the
mitotic count, in large study populations. The influence of
different image properties (such as between different whole
slide image scanners), tumor types and image artifacts on
algorithmic performance need to be evaluated.
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Abstract

Propagation of fluids or gasses in closed compartments,
like CO2 in green plants, is described by diffusion equa-
tion. This partial differential equation is usually solved it-
eratively and, especially in higher dimensions, tends to be
computationally intensive.

In this work, we propose to cast the n-dimensional prob-
lem to 1D diffusion. First, we apply a constrained distance
transform to compute, for every voxel, its distance to the
closest stoma. Second, we cast the iterative computation of
CO2 concentration to the evaluation of closed-form, poly-
nomial functions. This in turn allows us to restrict the com-
putation of CO2 concentration to places of interest, e.g., to
the close vicinity of the epidermis or cell walls where pho-
tosynthesis takes place.

1. Introduction
To study gas exchanges, the diffusion equation is widely

used [2, 7, 8]. The diffusion equation we choose is the heat
equation, described in 1D by the following formula:

∂u

∂t
= α

∂2u

∂x2
(1)

where u(x, t) is the concentration at position x in time t and
α is the diffusion coefficient.

1.1. Iterative Solution in 1D

The majority of solutions use an iterative method using a
finite difference scheme [4,5]. This method in 1D is defined
as follows:

u(x, t+ 1) = u(x, t) +α
∑

n∈Γ(x)

(u(n, t)− u(x, t)) /|Γ(x)|

(2)
where Γ(x) is the set of neighbors of pixel x.

Figure 1. Constrained distance transform in air seeded at 3 stomata
from 2D cross-section of a poplar leaf.

This formulation implicitly includes Neumann boundary
condition [3] with a flow of 0. This condition assumes that
the total gas volumes does not change by the diffusion, e.g.
for all iterations t the total gas volume is constant Eq. (3).

∑

x

u(x, t) =
∑

x

u(x, 0) (3)

1.2. Constrained Distance Transform

To see the distance between two areas of interest in an
image, we can use the constrained distance transform [9].
It is initialized by setting all elements of the constrained
region R 1 to∞ and setting some seed points (stomata) to
zero. Then the elements of the region repeatedly recompute
their values with Eq. (4) until convergence. This algorithm
can be performed with a logarithmic comlexity [1].

d(x) = min{d(x), min
n∈Γ(x)

d(n) + 1} (4)

where Γ(x) is the set of neighbors of pixel x.

In Fig. 1, the distance transform assigned every air-pixel
its distance from the closest stoma. Of uttermost interest,

1CO2 diffuses in R
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Figure 2. Eq. (5) used to describe the diffusion of CO2 from the
central stoma of Fig. 1.

however, are pixels next to cells (green), where photosyn-
thesis takes place. In the following, we aim to show how to
skip the calculation in areas that are of lesser interest.

2. Polynomial Basis Function
Consider one 1D sequence of 4-connected pixels without

self-intersection. The out-of leaf half (x ≤ 0) is initialized
with high concentration of CO2, H , and the inner-leaf (x >
0) with low concentration of CO2, L, the situation before
the stomata open. Iterating with Eq. (2) we can see that the
diffusion can be described by a polynomial in the diffusion
coefficient α of degree t with coefficients c(t, k, x):

u(x, t) = H − (H − L)
t∑

k=0

c(t, k, x)αk (5)

Deriving the coefficients of the polynomial (Tab. 1 shows
the coefficients for the first 5 time steps), we arrived at the
following closed-form involving binomial coefficients for
negative arguments2 [6].

c(t, k, x) = (−1)1+k+x

(
t

k

)(
2k − 1

k + x− 1

)
(6)

3. Results
To study the diffusion of CO2 in the leaf from stomata

to the leaf cells, we first compute the distance transform
d(x) of each pixel x ∈ R in the airspace R. Afterward, we
compute the coefficients c(t, k, x) with t = maxx∈R d(x).
Once we have the coefficients, we can compute the con-
centration u(x, t) by Eq. (6). The result is identical to the
iterative solution and is visualized in Fig. 2.

Another point of interest is to compute only the diffusion
values for the pixels corresponding to the leaf cells border.

2Explaining the colored entries in Tab. 1

Indeed, to know the concentration of the leaf cells, we don’t
need to compute the diffusion values for the other parts of
the leaf.

4. Further Work
This method can be extended to higher dimensions.

Computation using Eq. (5) can be further optimized. Ap-
proximately half of the coefficients are equal to zero.
With the symmetry of coefficients, only the upper half
of the coefficients (for x > 0) needs to be numerically
(pre)computed. To sum the coefficients efficiently, we
can use logarithmic coefficients log(c(t, k, x)αk) and then
make an exponentiation of the sum.

5. Conclusions
The paper presented a new approach to apply 1D dif-

fusion on a pre-computed constrained distance transform.
The method is based on polynomials and can be used to
compute the concentration levels at specific times or for a
specific pixel. One of the purposes is to study the CO2 con-
centrations at locations that contribute to the photosynthe-
sis. With this method, we can restrict the computations only
to those parts of the leaf where the photosynthesis is likely
to happen.
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Abstract

Biometric recognition systems integrated into mobile de-
vices have gained acceptance during recent years. Author-
ities are particular interested on mobile contactless solu-
tions due to many reasons: officers can acquire data wher-
ever they are, solutions are generally easy to use, hygiene
and no latent data is present. This paper presents a new mo-
bile contactless fingerprint sensor which uses a liquid lens
integrated with a TOF sensor. The device was used by the
national police to acquire data of refugees. Matching re-
sults show promising results, while police officers expressed
their satisfaction about the developed prototype.

1. Introduction
Contactless (CL) and mobile-embedded biometric

recognition systems have made considerable progress and
gained acceptance in recent years. Advantages of CL de-
vices are high-user acceptance, no latent data is present in
the acquisition device, hygienic reasons, less effort to ac-
quire data, usability and speed. On the other hand, mobile
devices also present many advantages: portability, more
productivity and higher efficiency of the end-user, and the
possibility to acquire data on different locations, i.e. un-
constrained capturing environment. This paper presents a
new mobile CL fingerprint (FP) sensor which uses a liq-
uid lens integrated with a Time-of-Flight (TOF) sensor. A
liquid lens substitutes a static optic glass lens and it has not
any mechanical parts inside. Liquid lens are controlled cells
containing a transparent fluid capsule. Changing the shape
of the cells, the focal length is changed within millisec-
onds. Despite the advantages of liquid lens ((i) no moving
parts inside the lens, (ii) one lens can deliver different focal
lengths, (iii) good image quality, and (iv) speed), not much

work was reported. Oku and Ishikawa [6] reported a high-
speed liquid lens and its applications in different computer
vision applications. Tsai et al. [10] used a liquid lens to
acquire finger images. Their approach applied a strong illu-
mination and a small distance between the lens and the fin-
gertip to minimize environmental distortions. Recently, Jun
and Won [4] used a liquid lens together with chromatic aber-
ration to improve accuracy in depth-measurement of real
3D objects. The main contribution of this paper is the intro-
duction of an operative mobile CL device aimed for police
use. The device uses a liquid lens combined with a TOF
sensor. The fully functional CL prototype is a mobile FP
capturing tool aiming to optimize the process carried out by
national police officers. To show the feasibility of the devel-
oped prototype, results of a matching comparison on real FP
data are presented. This paper is organized as follows: Sec-
tion 2 describes the developed prototype, the processing of
the finger images and acquired data. Results are discussed
in Section 3. Concluding remarks are summarised in Sec-
tion 4.

2. Processing Chain

2.1. Developed device

We developed the capture device under various require-
ments: (i) to be mobile and contact-less, (ii) to record high
quality images, (iii) easy to use, and (iv) the hardware costs
should be as low as possible. Active illumination of the
fingers during recording is a key feature to achieve a suf-
ficiently strong contrast between the ridges and valleys of
the fingertips. We use a daisy chain to connect 64 colour
LEDs arranged in a U-shape with 45 degrees. The arrange-
ment of the light emitting elements ensures a uniform illu-
mination and provide sufficient illumination to all four fin-
gers of a single hand. The camera sensor delivers grey-scale
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Figure 1. Left image: contactless fingerprint capture device. Right
image: device usage.

Figure 2. Overview of the processing pipeline.

images (3052×2015 pixels @ 10 fps). The sensor is con-
nected via a USB3 interface to the processor. The minimum
distance between the sensor and finger is 105 mm and the
maximum is 175 mm. The camera sensor is supplemented
by a TOF sensor to measure the distance of the fingers to the
sensor. Thus, the most suitable focal plane can be targeted
to capture sharp fingertips. We integrated a digital variable-
focus liquid lens into the device which enables the acqui-
sition of the fingers at pre-elected focal planes and within
5 ms a new focal plane can be reached. Fig. 1 shows the
developed device. In order to capture images consisting of
the detailed topology of the fingers we configured the cam-
era in fast exposure modes with low apertures. In a pre-
processing step, a flat-field correction [8] is carried out to
cancel the effects of image artifacts caused by variations in
the pixel-to-pixel sensitivity of the sensor, and the images
are rectified to correct for lens distortions [11].

2.2. Image processing

The processing pipeline is depicted in Fig. 2. The fin-
gertips are segmented using a Mask R-CNN [3], which is a
two-stage pipeline for instance segmentation. Manually la-
beled fingertips images are used to fine tune the pre-trained
model. Then, the images are cropped, rotated to a finger
upright position, and scaled to 500 DPI (to be compliant to
FBI-standards [2]). Because the device works with a small
depth of field many images are blurred. Thus, we perform
a sharpness evaluation based on edge pixels [1] and images
with sufficient sharpness are enhanced to increase the con-

Figure 3. Probability density functions of NFIQ2.0 scores of con-
tactless and contact-based fingerprints.

trast between ridges and valleys by applying a histogram
equalization [7]. We use the well-established NFIQ2.0 [9]
standard for quality estimation. NFIQ2.0 was developed for
touch-based fingerprints and therefore likely not optimal for
CL fingerprints.

3. Results
Data was acquired by national police officers using two

devices: the developed prototype and a contact-based (CB)
fingerprint device1. Data (all 10 fingers) of 481 people was
acquired. Based on the sharpness value (at least 0.2) [5],
the best 6 images of each finger were selected. To acquire
10 fingers the acquisition time is between 45 seconds and
120 seconds in case of the CB sensor, and between 8 sec-
onds and 30 seconds in case of the CL prototype. Recording
sessions took place in a national refugee registration cen-
ter; thus, the dataset is diverse: people came from 4 differ-
ent continents, and the gender distribution is 68.52% male,
31.32% female and 0.16% not indicated. In order to give
an impression of the quality of the captured fingerprints,
the distributions of NFIQ2.0 scores are shown in Fig. 3.
The biometric performance is evaluated employing the ID-
Kit SDK 8.0.1.50. We obtained equal error rates (EER) for
different NFIQ2.0 thresholds in both cases, matching CL
data against CL data (CL → CL) and CL data against CB
data (CL → CB). When using a NFIQ threshold >= 20,
obtained EERs are CL → CL = 1.1e-04% and CL → CB
= 2.7e-04% which are very good values in terms of per-
formance recognition. The end user also expressed their
satisfaction with the solution: it is very simple to use, the
scanner turns on automatically when the hand is held over
it and capturing data seems to be easier and better than using
flatbed sensors.

4. Conclusion
This work presented a new mobile CL fingerprint sensor

integrating a liquid lens and a TOF sensor, and its usability
in a real setting scenario. Real fingerprint data was acquired
by national police officers who expressed their satisfaction

1Optical fingerprint scanner IDEMIA TP 5300 scanner with 1000 DPI,
https://www.idemia.com/palmprint-scanner
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with the developed prototype. Acquired data was used to
perform a fingerprint matching against data of an official
database acquired using a CB device. Promising and en-
couraging results were obtained showing the feasibility of
the prototype for operational police use.
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Abstract

Mechanical weed control is becoming increasingly im-
portant over conventional methods, not least because of en-
vironmental challenges. Precise guidance of the hoeing ma-
chine along the crop rows is necessary to be able to work ef-
ficiently. In this work, the use of deep learning methods for
crop row detection is presented and evaluated on a custom
data set. Recent advances in the task of vision based lane
detection, like Spatial CNN (SCNN) and Recurrent Feature-
Shift Aggregator (RESA), can potentially be applied to crop
row detection as well. These methods are expected to im-
prove the detection of the crop rows, especially in the case
of strong weed growth and challenging environmental con-
ditions, compared to the state of the art.

1. Introduction
There is a steadily increasing demand on the food mar-

ket for food produced according to organic farming stan-
dards. Likewise, the proportion of organically farmed agri-
cultural areas or organically managed arable farms in Eu-
rope is growing continuously. The change from chemical
to mechanical weed control can only remain economical
with a high degree of automation. Row hoeing equipment
for weed removal often uses duck-foot shares that must be
guided precisely along the row to prevent crop damage.
State of the art camera systems used for row guidance have
limitations, due to the robustness of conventional row de-
tection algorithms especially with strong weed cover [6].

1.1. Related Work
Plant row detection in robotics as well as in marketed

row guidance systems is based on conventional methods
like line detection and color thresholds [4]. However, first
approaches for convolutional neural network (CNN) based
row recognition have already been presented [2]. Recent
advances in the task of vision based lane detection could
potentially be applied to crop row detection as well. These
methods can be categorized into segmentation-based, point-
based and curve-based lane detection methods [3]. Point-
based methods directly output points whereas curve-based

methods output curve parameters. Accordingly, other loss
functions are used during training for point- and curve-
based methods compared to segmentation based methods.
Point- and curve-based methods are not discussed in detail
in this paper and are also not included in the evaluation.
Segmentation-based methods, like Spatial CNNs (SCNN)
[7] and Recurrent Feature-Shift Aggregator (RESA) [9],
output segmentation masks. A threshold is applied to the
output to get sample discrete points on the lines. SCNN
uses a spatial CNN module to model spatial relationships
more efficiently than MRF or CRFs. The module is inte-
grated after the top hidden layer. It preserves the continuity
of long, thin structures over discontinuities. The RESA pro-
posed in [9] utilizes spatial information by shifting sliced
feature map. RESA is more computationally efficient than
SCNN and also introduces an up-sampling decoder, the so
called Bilateral Up-Sampling Decoder (BUSD). It is com-
posed of two branches, a coarse grained branch and a fine
detailed branch.

Methods for lane detection have not been utilized for
crop row detection before. In this work, a new approach for
crop row detection based on CNNs is presented. Addition-
ally, the SCNN and RESA methods with different backbone
CNNs are investigated for this task with a custom data set.

2. Method
Twelve different architectures for crop row detection

were tested. As backbones ResNet [5] architectures of dif-
ferent sizes (ResNet18, ResNet34 and ResNet101), as well
as a VGG16 [8] architecture are used. The up-sampling is
done by a DeepLab [1] architecture except for the RESA
method where the Bilateral Up-Sampling Decoder is used.
The models take an input size of 800×288 pixel and outputs
the segmentation mask in the same resolution. For augmen-
tation, the training images were randomly flipped, rotated
and a color jitter as well as random lighting were added. The
backbone CNNs were pretrained on ImageNet. The imple-
mentation is built upon the framework introduced in [3]. All
models were trained 120 epochs on the data set introduced
in the following Section 3. At 120 epochs, convergence was
observed for all variants.
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ground truth ResNet18 ResNet101 VGG16 + SCNN

Figure 1. Segmentation result shown in red of different models (side by side) for two example test images (among one another).

3. Evaluation
For training and evaluation of the different methods, a

custom data set was created. The data set consists of 3870
images of maize rows captured in the seasons 2021 and
2022 under various lighting conditions. The RGB images
have a resolution of 1600 × 1200 pixels. The images are
labelled with our custom labelling tool. A row can be de-
fined by clicking a minimum of 2 points within a row. The
row is afterwards interpolated by a polynomial of degree 2
from which regularly sampled points are stored. A segmen-
tation mask is automatically generated by drawing curves
with width of 16 pixel. All architectures have an input size
of 800 × 288 pixel, therefore all images are resized to this
resolution. The data set is split into 3475 images for training
and 395 test images.

3.1. Results
The segmentation accuracy of the different methods on

the test images is presented in Table 1. Figure 1 shows two
examples of the test set with the segmentation results for
ResNet18, ResNet101 and VGG16 with SCNN. The num-
bers presented, as well as the sample images, show an ad-
vantage in the use of SCNNs for detecting crop rows. The
superiority of RESA over SCNN on lane detection data
sets [3] could not be achieved in crop rows. Although, im-
provements of RESA over the baseline model (just Back-
bones with Deeplab) are visible. Likewise, it is recogniz-
able that larger models, like ResNet101, achieve better de-
tection rates without the use of spatial modules.

It might be assumed that the model is implicitly distin-
guishing crops from weeds based on test images with strong
weed cover. However, this needs to be investigated in more
detail.

ResNet18 ResNet34 ResNet101 VGG16

Baseline
Accuracy 66.83 67.63 67.90 66.98
IoU 44.07 45.48 44.82 44.53

SCNN
Accuracy 68.15 69.18 68.58 70.33
IoU 44.19 44.93 44.83 45.59

RESA
Accuracy 66.51 68.06 56.93 N/A
IoU 43.58 44.30 40.66

Table 1. Accuracy and Intersection over Union (IoU) of the crop
row segmentation based on 395 test images.

4. Conclusion and Outlook
The work demonstrates the ability of CNNs for semantic

segmentation to detect crop rows. Especially the SCNN but
also the RESA method could improve the detection com-
pared to the baseline methods. When selecting a method
for steering a hoeing machine, however, the computational
load should also be taken into account where SCNN has its
drawbacks. Currently, we are working on integrating the
models into a machine to steer along the rows. This allows
for end to end evaluation of the system and an assessment
of acceptable model errors. Future work could also focus
on point- and curve-based methods.
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Abstract

The usage of field robots is increasing as more com-
mercial products become available on the market. Among
other measures, they can be used for seeding and mechan-
ical weed control, using the geolocation of each individual
seedling. The weed control process is performed without vi-
sual recognition of the plants. The precision of such weed
control robots depends on the quality of the localisation,
plant emergence, and soil properties. In order to evalu-
ate the field robot operation accuracy, we developed a cost-
effective, long-term autonomously working computer vision
evaluation system based on two RGB cameras for pre- and
post-weed control image capture. Our system was success-
fully tested to collect image data of the hoeing precision of
a FarmDroid FD20 field robot.

1. Introduction

Recently, robotics and automation is playing an impor-
tant role in smart farming technologies. Available field
robots can be used for a variety of operations, e.g. for
mechanical weed control using duck foot share and active
hoes [1], a tube stamp [4] or a side-shifting frame [5]. Some
of the field robots use computer vision to identify different
plant species, such as [4], while others rely on a global nav-
igation satellite system (GNSS) for high precision localisa-
tion [5]. Those systems store the location of each individ-
ual seedling and operate the area around the expected crops.
The precision of such a system depends on the accuracy of
the sowing, the regularity of the emergence of the crops,
and the precision of the localisation [2]. The objective of
this work is to develop a computer vision system to evalu-
ate the weed control precision of a field robot.

Figure 1. Field robot FarmDroid FD20 with mounted computer
vision evaluation system (CVES) on the field.

2. Material and Methods
2.1. Computer vision evaluation system

Our computer vision evaluation system (CVES) consists
of a front and back camera, see Figure 1. It was used
to collect RGB images before and after the weed control
took place. We refer to those images as the pre-weed
control (Figure 2, top left) and post-weed control (Figure
2, bottom left) images, respectively. The system consists
of two single-board computers (Raspberry Pi - Model 3B+)
with an integrated RGB camera (Raspberry Pi camera
v2) with a resolution of 2596×1944 px. To mount the
cameras top-down at a height of 1 m, we built an aluminum
carrier, that could be adjusted to the robot construction. A
GNSS module (Emlid Reach M+) with an antenna above
the back camera was used for RTK GNSS localization.
Consumer-grade power banks were used to supply the
CVES, resulting in operation times of about 8 hours.

2.2. Field robot

The used field robot FarmDroid FD20 [1] has seeding
modules, duck foot share for inter-row and active hoes for
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Figure 2. Representative RGB images (left) and vegetation seg-
mentation (right) of the front camera (pre-weed control image,
top) and the back camera (post-weed control image, bottom) at the
same location during weed control of the anise plot at 2022/05/24.

intra-row hoeing. It is equipped with two GNSS antennas
and receives real-time kinematic (RTK) correction signals.
The field robot is powered by batteries that are loaded with
solar panels and achieves to work for up to 24 hours, fully
autonomously. The operating speed is limited to a maxi-
mum of 0.26ms−1. The weeding is based solely on the
localization and the stored seeding points of the crops.

2.3. Field trial

Data was collected at a plot in Fuchsenbigl, Lower Aus-
tria, Austria in 2022. The field robot was used for seeding
a 3.2 ha plot of anise (Pimpinella anisum). After seeding,
our CVES was mounted. The first weed control was trig-
gered manually based on the emergence of weeds and on a
regular basis in the following weeks. Before the first weed
control a test run of the CVES was performed. At selected
weed control dates, we activated our CVES by connecting it
with the power supply and validated the status. If the setup
phase was successful, the system worked autonomously and
the weed control process of the field robot continued.

3. Results

3.1. Evaluation based on total plant cover

Exemplary data analysis has shown that a decrease in the
total plant cover can be observed between the pre- and post-
weed control image of the same site. Here the plant cover
dropped from 9.0 % (pre-weed control, Figure 2 top right)
to 6.4 % (post-weed control, Figure 2 bottom right). We
used decision tree classifiers based on color index maps for
the vegetation segmentation [3] and analyzed all images of
pre- and post-weed control in a given operating area, lead-
ing to a total of 9,113 images from two measurement dates.
Results are given in Table 1.

Images Date Camera m PC sd PC

2,027 2022/05/06 Pre 0.58% 0.22%
1,808 2022/05/06 Post 0.44% 0.19%

2,649 2022/05/24 Pre 4.19% 2.36%
2,629 2022/05/24 Post 4.10% 2.27%

Table 1. Comparison of pre- and post-weed control total plant
cover (PC) for two measurement dates, mean (m) and standard
deviation (sd) are given in %.

4. Conclusion
We successfully developed a cost-effective, long-term

autonomously working system to capture geolocated RGB
images with the field robot FarmDroid FD20. A plant cover
based evaluation of the whole area has limited power, see
Table 1. Therefore, more advanced methods, such as a
three-class semantic segmentation method are currently be-
ing developed. They should be used to distinguish between
crops, weeds, and killed weeds but need more labeling ef-
fort. Our CVES is very flexible to use and can be adapted
for usage with other field robots or robotic platforms.
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Abstract

With image- and video-capable devices in the hands of a
majority of the population worldwide, the amount of media
data keeps growing. Hence, the search of specific images
and clustering of datasets is of great importance to extract
the relevant information, e.g. search for a specific person
by legal enforcement agencies (LEAs). This paper presents
a new tool which uses vision-language models to filter and
cluster forensic data. The tool provides a GUI, which en-
ables a flexible search by accepting textual as well as image
input, to search large amounts of data in near real-time.

1. Introduction
The search for a specific person in images and videos

is an important task in forensics and part of Content-Based
Image Retrieval (CBIR) [3]. Unfortunately, a manual search
is very time-consuming and a fully automatic search is usu-
ally not applicable. As a result, critical evidences might
literally be hidden in plain sight, among an overwhelming
number of images and videos.

In this work we do propose a system based on vision-
language models assisting an operator to quickly filter and
cluster image data by searching for pedestrian attributes.
Pedestrian attributes are humanly searchable semantic de-
scriptions such as gender, hair length, clothing style, or fa-
cial features and can be used as soft-biometrics in visual
surveillance.

Pedestrian attributes recognition (PAR) is often ap-
proached as a metric learning problem [11], where one
seeks to retrieve images containing the person attributes
(Fig. 1). This is challenging in the sense that images cap-
tured by different cameras often contain significant intra-
class variations caused by the changes in background, view-
point, human pose, etc.

The developed solution shall enable the operator to filter

(a) ”Man with glasses
and dark jacket”

(b)

(c)

”Man with glasses,
gray hair, black
west, beige pants
and plaid shirt.”

Figure 1. Vision-Language models enable a flexible search: (a)
text→image retrieval, (b) image→image retrieval, (c) image→text
retrieval

and cluster image data by person attributes (Sec. 2). Some
results are presented in Sec. 3.

2. Vision-Language Models for Filtering and
Clustering

More recently, CBIR systems have been extended by
multimodal inputs such as image-text pairs, which we de-
note as Vision-Language (VL) models [2,6,10] . In contrast
to prior models that are trained on images with class anno-
tations, VL models are directly trained on image-text pairs
to group relevant text vectors matching to the meaningful
image content vectors. Recently some very large models
such as CLIP [9], ALIGN [5], and BASIC [8] were trained,
which achieve large robustness even on challenging datasets
and a high accuracy with zero-shot classification. For in-
stance, CLIP is a contrastive approach to learn image repre-
sentations from text, with a learning objective which maxi-
mizes similarity of correct text-image pair embeddings.

VL models allow a textual search in image data by en-
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tering keywords or sentences. The possibility of extensive
textual input is especially beneficial for PAR analysis, since
different attributes can be combined. For example, if an
operator searches for a man with a black backpack, the op-
erator can enter ”man with a black backpack”. The model
returns a confidence score (probability) that an image con-
tains the searched attributes. The free text input simplifies
the use of the system. There are also numerous application
variations such as providing reference image as input or ex-
tracting semantic information from images (Fig. 1). More-
over, VL models also produce robust embeddings, which
are indispensable to accurately cluster forensic datasets.

Optionally persons in the image data can be segmented
(instance segmentation) and extracted from the original im-
age. While object detection identifies objects in the image
data, segmentation assigns an object class to each pixel. For
the instance segmentation used here, a network architecture
called Mask R-CNN is used [4]. The Mask R-CNN model
was fine-tuned on the OpenImages1 and Coco2 datasets to
segment persons. A single segmented person is the input to
our VL model as illustrated in Fig. 1.

The developed tool for clustering and filtering image
data enables LEAs to search their data in a targeted and
focused manner, but also to conduct general screenings of
large data sets (working with over 100.000 files) before a
clear investigation target is defined. The VL model gener-
ates 512-dimensional embedding vectors of the image-text
input. The tool automatically groups content into mean-
ingful clusters using unsupervised machine learning [1] and
arranges the input images by a nonlinear down projection.
The tool also provides a simple GUI to search for specific
persons by providing natural language search terms or an
image or by selecting special trained classifiers. In addition
to the reference text or reference image search, the third
alternative for the analysis of image data is the implemen-
tation of particularly trained MLP (multi-layer perceptron)
networks that were trained on several classes. By choos-
ing a certain classifier inside the application, the provided
image data is automatically classified. For each class, a dis-
tinct single-label classifier was trained.

3. Results
For generating the results we used the ViT-B/16

model [9]. Fig. 2 depicts the clustering result of a fraction
of the PA-100k dataset as well as the search result for the
reference image shown on the left. Similar results can be
received if a textual description is the input.

The VL model reliably classifies pedestrian attributes
as illustrated in Fig. 3. For illustration purposes the cor-
responding attention parameters are saved per residual at-

1https://opensource.org/licenses/MIT
2https://cocodataset.org
3https://creativecommons.org/licenses/by/4.0/

Figure 2. Top: Clustered and displayed result of a fraction of the
PA-100k dataset. Bottom: Found top results for a sample image
of the PA-100k dataset (provided by [7] under the CC BY 4.0
license3). Using a visual indication (red crosses) in the presented
two-dimensional space, the software identifies the most relevant
images to the user’s particular search operation.

(a) (b) (c)

Figure 3. Searching in (a) for a bag and child. Resulting heatmaps
are displayed in (b) and (c), respectively.

tention block during the forward pass of an image and a
backpropagation is conducted following the forward pass
computation, with respect to the known output vector. Af-
ter multiplying these two values (attention value and gra-
dient) in the respective layers and the respective subspace,
the computed information of all residual attention blocks is
superimposed as a heatmap over the input image.

The filtering can be very efficiently executed and enables
near real-time searches, since the embeddings are highly
compact and only a dot product between text and image or
image and image embeddings need to be carried out.
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4. Conclusions
This work presents a new tool to search through forensic

data. The tool is highly flexible because of the used VL
models, which enable a clustering as well as search using
pedestrian attributes or a reference image. Promising and
encouraging results were obtained showing the feasibility
of the tool for operational use by LEAs.

Note, that the solution is not limited to persons.
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Abstract 

 

The objective of this study was to estimate nitrogen yield 

in wheat based on hyperspectral reflectance measurements 

with a handheld spectroradiometer. To do so, the radiative 

transfer model PROSAIL was inverted and an artificial 

neural network applied. The model was trained and tested 

using a simulated dataset and field experimental data. 

Results of the simulated dataset show that the inversion of 

PROSAIL based on an artificial neural network was 

successful. Furthermore, estimations of nitrogen yield 

compared to experimentally collected data feature high R2 

and low RRMSE. The technique proposed in this study is a 

promising tool to collect information on nitrogen yield of 

wheat canopy in a quick and non-destructive way with low 

calibration requirements. This can be utilized by practical 

farmers for field monitoring and site-specific nitrogen 

fertilization as well as scientists and breeders for quick and 

non-destructive data collection in field experiments. 

Additionally, this approach can be adapted for different 

crops and varying sensors, e.g., multi- and hyperspectral 

UAV-mounted sensors as well as satellite data. 

 

1. Introduction 

Remote sensing allows quick and non-destructive 

measurements of canopy characteristics. Commonly, 

vegetation indices are applied, however, this approach 

usually requires continuous calibration and cannot use all 

available spectral data for analysis. Radiative transfer 

models (RTMs) are a promising alternative to vegetation 

indices. These models describe the interaction between 

solar radiation and vegetation canopy [1]. Compared to 

vegetation indices, RTMs generalize well, have low 

calibration needs and allow analysis of all available 

spectral data [2]. 

The objective of this study was to estimate nitrogen yield 

in wheat (Triticum aestivum L.) using an artificial neural 

network-based inversion of the RTM PROSAIL.  

2. Materials and methods 

The RTM PROSAIL simulates the spectral reflectance 

of vegetation canopy from 400 to 2500 nm in 1 nm 

increments using information on leaf characteristics, 

canopy architecture, viewing geometry and other effects 

(Figure 1). Simulations in the RTM PROSAIL (version 

5B) were conducted using the package hsdar (version 

1.0.3) in R programming language (version 4.1.1). 

 
Figure 1: Calculation of canopy reflectance using the coupled 

PROSPECT + SAIL model (PROSAIL) [2]. N: leaf structure 

index (unitless). Cab: chlorophyll a + b content (µg cm-2), Ccx: 

carotenoid content (µg cm-2), Canth: anthocyanin content  

(µg cm-2), Cbp: brown pigment content (unitless), Cm: dry matter 

content (g cm-2), Cw: water depth (mm), LAI: leaf area index  

(m2 m-2), ALIA: average leaf inclination angle (°), Hot: hot-spot 

parameter (m m-1), soil spectrum (% reflectance), psoil: soil 

brightness factor (unitless), SZA: sun zenith angle (°), OZA: 

observer zenith angle (°) and rAA: relative azimuth angle (°). 

A simulated dataset consisting of 100 000 observations 

was created for model training and testing. Each 

observation included a random set of PROSAIL input 

parameters drawn from uniform distributions of the 

PROSAIL input parameters within wheat-specific ranges 

from literature [3, 4]. Furthermore, spectral reflectance for 

background soil was varied among observations in the 

simulated dataset. To do so, available data on soil 

reflectance by the ICRAF-ISRIC Soil MIR Spectral 

Library of the International Soil Reference and Information 

Centre (ISRIC) were used [5]. The simulated dataset was 

divided into a train and test set in a 9:1 ratio. 

Field experiments were conducted at the Experimental 
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Farm Groß-Enzersdorf of the University of Natural 

Resources and Life Sciences, Vienna, in the seasons 

2019/20 and 2020/21. Data on nitrogen yield (NY, g m-2) 

were collected in approximately 14-day intervals from 

March until harvest in July in both seasons. Destructive 

plant sampling was conducted on 0.6 m2 per plot. Plant 

material was dried, weighed, milled and analyzed for  

N concentration according to the Dumas combustion 

method [6] using an element analyzer (vario MAX cube 

CNS, Elementar Analysensysteme, Germany). Resulting  

N concentration values were multiplied by above-ground 

dry matter to calculate NY. Measurements on canopy 

reflectance in the field experiment were conducted with the 

spectroradiometer FieldSpec Handheld 2 (ASD Inc., 

USA). This sensor provides hyperspectral reflectance data 

from 325 to 1075 nm in 1 nm increments. 

An artificial neural network (ANN) was set up to 

achieve the inversion of the radiative transfer model 

PROSAIL. Model inputs were viewing geometry, 

background soil reflectance and canopy reflectance from 

400 to 1075 nm in 1 nm increments. The spectral 

resolutions of soil reflectance, simulated PROSAIL canopy 

reflectance and spectral measurements from the field 

experiments were matched. Model outputs were the 

PROSAIL parameters N, Cab, Ccx, Cbp, Cm, Cw, LAI, ALIA 

and Hot. The ANN consisted of three dense layers with  

128 neurons each, ReLU activation function, loss function 

“mean absolute error” and optimizer “Adam”. Training 

epochs were set to a maximum of 500 with early stopping 

at 50 to avoid overfitting. Google Colaboratory, an 

available Keras implementation (version 2.8.0) in Python 

(version 3.6), was used to set up the ANN. Experimentally 

measured NY was estimated using predictions of  

Cab × LAI. The model performance was evaluated using the 

simulated test dataset and field experimental data. 

The accuracy of model predictions compared to 

measured values was evaluated using regression 

coefficients and coefficients of determination (R2) in 

regression analysis. Furthermore, root mean square error 

(RMSE) and relative root mean square error (RRMSE) 

were calculated for model testing. 

3. Results 

Figure 2 presents the results of predicted LAI and Cab 

compared to true values in the simulated test dataset. The 

parameters LAI and Cab show high R2, i.e., above 0.9, and 

low RRMSE (LAI: 17.3%, Cab: 8.5%). 

The relationship between measured and predicted Cab is 

linear, while LAI shows a quadratic fit. When LAI was  

0 m2 m-2, Cab could not be estimated. For observations with 

LAI below 0.5 m2 m-2, Cab predictions show slight 

underestimation at high Cab. 

 
Figure 2: Estimation of leaf area index (left, m2 m–2) and 

chlorophyll content (right, µg cm–2) of the simulated test dataset. 

Predicted Cab × LAI was calibrated using experimental 

data on NY from 2020/21. The calibrated predictions of 

NY were validated using experimental data from 2019/20 

(Figure 3). In both seasons, R2 values were high, i.e., above 

0.8. In the experimental validation data of 2019/20, the 

deviation from the 45° line was low. At high NY, 

predictions show a slight underestimation. 

 
Figure 3: Calibration of predicted chlorophyll content × leaf area 

index (left, g m–2) with measured nitrogen yield (g m–2) of the 

field experiment in 2020/21 as well as validation of calibrated 

predictions on nitrogen yield (right) with respective 

measurements of the field experiment in 2019/20. 

4. Discussion 

Results on predicted LAI and Cab based on the simulated 

test dataset showed, that the ANN based inversion of the 

RTM PROSAIL was successful. The quadratic relationship 

between true and predicted LAI indicates, that LAI 

estimations saturate at high values, i.e., above 4 m2 m-2. No 

leaf area is present for observations with LAI = 0 m2 m-2. 

As a result, leaf characteristics, such as Cab, cannot be 

estimated. When LAI is low, e.g., below 0.5 m2 m-2, the 

effect of background soil on reflectance measurements is 

large and thus affects the estimation of leaf characteristics. 

This results in an underestimation of high chlorophyll 

concentrations, when LAI is low. 

Results on estimations of Cab × LAI compared to 

measured NY are promising, because of their high R2 in 

both seasons as well as the low deviation from the 45° line 

and the low RRMSE of experimental validation data in 

2019/20. This indicates high predictability of NY based on 

our model as well as high stability among seasons. 
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Abstract 

 
Activity monitoring of sows in farrowing pens is an 

important application of computer vision in Precision 
Livestock Farming. One example with a benefit for welfare 
of sows is farrowing prediction in pens with a possibility of 
temporary crating. In 2 experiments we tested various 
YOLOX backbones to estimate the generalization ability of 
the models on seen and unseen farrowing pens and 
animals. Models performed better on known pens and 
animals (~0.9 mAP) in comparison to unknown (~0.8 
mAP). Results suggest that it is better to include some 
images of sows in the training set from the environment 
where the algorithm will be implemented. However, mAP 
as high as 0.8 suggests that on many farms it might be not 
necessary to re-train the model. Speed of inference of 
YOLOX models was ranging from 21 fps (YOLOX-x) to 42 
fps (YOLOX-nano) on recorded videos. This should be 
sufficient to monitor activity level of sows in the farrowing 
compartment of production unit of VetFarm Medau (20 
pens). 

 

1. Introduction 
It is common practice in modern intensive pig husbandry 

to confine sows in farrowing crates including at least a few 
days before the onset of farrowing. The main reason for 
this practice is to improve piglet survival rate by protecting 
newborn piglets from fatal or injurious crushing by the 
mother sow [1]. However, the confinement of sows in 
crates has a negative impact on the sows’ welfare, such as 
limited freedom of movement. Farrowing pens with a 
possibility of temporary crating offer a good compromise 
between the needs of the farmer, the sow and the piglets 
[2]. However, due to lack of precision in estimation of 
expected time of farrowing based on average length of 
gestation, there is a risk that farmer will keep the sows 
confined in crates in a period of nest-building, few hours 

before the start of farrowing, to protect the piglets from 
crushing.    

Automated detection of increase in sow activity with the 
use of sensor technology makes it possible the prediction 
of the onset of farrowing [3]. This could be useful in 
practical conditions to shorten surveillance intervals by 
farm staff, and the pen with a possibility of temporary 
crating could be prepared for an optimal farrowing [4]. 

To detect a sow in a farrowing pen we decided on 
application of YOLOX from YOLO series of object 
detection algorithms. YOLOX is a state-of-the-art object 
detector surpassing YOLOv3, one of the most widely used 
detectors in industry [5]. We hypothesize that YOLOX will 
provide an optimal trade-off between the speed and 
accuracy for real-time applications. 

The objective of this study was to select an optimal 
backbone of YOLOX for real-time measurement of 
activity of sows, considering generalization ability of the 
model in unseen farrowing pens and on unseen animals. 

2. Methodology 

2.1. Animals and housing 

Images with sows in farrowing pens were collected at 
the pig research and teaching farm (VetFarm) of the 
University of Veterinary Medicine Vienna, Vienna, 
Austria.  Dataset 1 was collected between June 2014 and 
May 2016, while dataset 2 between December 2021 and 
July 2022. In total, images of 78 Austrian Large White 
sows and Landrace × Large White crossbreds sows were 
recorded. These sows were housed in four types of 
farrowing pens. Out of 78 sows, 11 were kept in SWAP 
(Sow Welfare and Piglet Protection) pens (Jyden Bur A/S, 
Vemb, Denmark), 11 in trapezoid pens (Schauer 
Agrotronic GmbH, Prambachkirchen, Austria), 11 in wing 
pens (Stewa Steinhuber GmbH, Sattledt, Austria) and 45 in 
BeFree pens (Schauer, Prambachkirchen Austria). None of 
the animals included in the experiment were confined in a 
farrowing crate from the introduction to the farrowing pen 
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until the end of farrowing.  

2.2. Video recording 
Behaviour of sows was video recorded from 

introduction to the farrowing pens until weaning with 2D 
cameras in order to create a data set that could be 
annotated. Each pen in dataset 1 (SWAP, trapezoid and 
wing) was equipped with one IP camera (GVBX 1300-KV, 
Geovision, Taipei, Taiwan). In dataset 2 each IP camera 
(GV-BX2700, Geovision) was installed with a view on 2 
farrowing pens (BeFree). Additionally, infrared spotlights 
(IR-LED294S-90, Microlight, Moscow, Russia) were 
installed in order to allow night recording. The videos were 
recorded with 1280x720 pixel resolution, in MPEG-4 
format, at 30 fps. 

2.3. Datasets 
Out of 11 232 hours of recorded videos 15 242 images 

were selected for annotation and training of object 
detection models. To reduce correlation between sampled 
images K-means algorithm [6] was applied on recorded 
videos. For the 1st dataset 14 242 images were selected 
from videos recorded in SWAP, trapezoid and Wing pens. 
For the second dataset 1000 images were selected from 
videos recorded in BeFree pens.   

Only one object class, a sow, was annotated on both 
datasets using CVAT and COCO annotator software 
packages (Fig. 1).  
 

 
Figure 1. Annotated images with sows: top left – SWAP; 
top right – BeFree (one of two pens under camera view is 
masked); bottom left – trapezoid, bottom right – wing. 

2.4. Experiments 
We designed 2 experiments to test various backbones 

of YOLOX algorithm (YOLOX-nano, YOLOX-tiny, 
YOLOX-s, YOLOX-m, YOLOX-l, YOLOX-x) in terms of 
generalization ability and inference speed. We used 
MMdetection framework to train, validate and test the 
models [7]. Training was set to 50 epochs and was done on 
RTX Titan. 

 

In both experiments out of total 15 242 images, 9969 
(65.4%) were selected for the training set, 4273 (28%) for 
the validation set and 1000 (6.6%) for the test set. In 
experiment 1 training and validation sets included images 
from dataset 1, while test set from dataset 2. Thus, in 
experiment 1 it was possible to test the generalization 
ability of YOLOX backbones on new unseen farrowing 
pen (BeFree) and sows. In experiment 2 all 4 pen types and 
sows were represented in training, validation and test sets.  

3. Results 
Results of both experiment 1 and 2 revealed, as could be 

expected, that more complex backbones of YOLOX 
(YOLOX-m, YOLOX-l, YOLOX-x) had better mAP in 
both validation sets and test sets (Fig. 2).  Higher mAP was 
achieved for these models after shorter training than for  

Figure 2. Performance metric mAP on a) validation set – 
experiment 1; b) validation set - experiment 2; c) test set – 
experiment 1; d) test set – experiment 2. 

 
simpler models. Performance of models in experiment 1 
was generally worse than in experiment 2 in the test set i. 
e. ~0.8 mAP vs 0.9 mAP for YOLOX-m, YOLOX-l and 
YOLOX-x. This suggests that for practical implementation 
of YOLOX for activity monitoring it is better to include 
some images of sows in the training set from the 
environment where the algorithm will be implemented. 
However, mAP as high as 0.8 suggests that on many farms 
it might be not necessary to re-train the model. Further 
validation of YOLOX with reference data on activity level 
of sows is needed to verify it.  
 Speed of inference of YOLOX models was ranging from 
21 fps (YOLOX-x) to 42 fps (YOLOX-nano) on recorded 
videos. With assumption that 1 fps is sufficient to monitor 
activity level of sows, even with the most complex 
YOLOX-x backbone, it would be possible to monitor the 
whole farrowing production unit at VetFarm Medau with 
one RTX Titan (20 pens).  
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Abstract

The botanical composition of grassland stands can be
determined using a combination of hyperspectral imaging
and machine learning. Data processing before machine
learning can significantly improve overall model perfor-
mance. Specific preprocessing variants, such as smoothen-
ing and derivation of the spectrum, were found to be ben-
eficial for classifying grassland species groups in detached
models using hyperspectral data from permanent grassland
obtained under laboratory conditions. Compared to exten-
sively preprocessed data, raw spectral data yielded no sta-
tistically decreased performance in most cases.

1. Introduction

Grassland vegetation typically comprises grasses, herbs,
and legumes which represent different functional traits [14]
and feed values; knowledge of their relative proportions of-
fers several advantages for site-specific management and
livestock feeding. Remote sensing is a non-destructive
method used for the reproducible sensing of large areas
[16] as detected spectral signatures may vary depending
on the species group. Machine learning models based on
hyperspectral data can be used for species group classifi-
cation [4, 5]. For this, data preprocessing might be a sub-
stantial step in enhancing model performance. The use of
derivatives together with spectral data is a common tech-
nique [10,18] as removes background signals and visualizes
spectral curve shape differences that might not be evident
in the spectra [7]. Smoothing operations such as Savitzky-
Golay filtering are frequently applied [6, 8] as well as data
standardization or normalization (see Fig. 1). A systematic
review under laboratory conditions can reveal the influence
of the vast number of data processing variants in combina-
tion with machine learning on the spectral-based classifica-
tion of permanent grassland vegetation.

Figure 1. Representative reflectance spectrum and different pre-
processing variants for a single red clover (Trifolium pratense L.)
sample. Left upper corner denotes preprocessing variant.

2. Materials and Methods

The dataset used throughout this study is described in
detail by Britz et al. [5]. Briefly, an in-house hyperspectral
imaging setup was used under standardized laboratory con-
ditions. In total, 5768 plant samples were acquired at two
Austrian grassland sites. Each sample was derived from an
individual plant, manually annotated and labeled according
to species group (grass, herb, or legume).

2.1. Data Preprocessing

For each sample, a total of 100 pixels were drawn
randomly stratified. All samples were grouped based on
their species group, then randomly stratified and assigned
a chunk number from 1 to 5. Further, data was pre-
processed using different combinations of Savitzky-Golay-
smoothening (function savgol with a filter length of 5 and
quadratic filter from R package pracma 2.3.3 [3]), deriva-
tion, and Z-standardization (see Tab. 1). In total, 27 prepro-
cessing variants were generated and analyzed.
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Step Variant

1. O O O O O O O O O O O O O O O O O O O O O O O O O O O
2. Z S S D D D D S S S S D D D D D D D D S S S S S S S
3. Z Z S S D D D D D D D D S S S S D D D D D D D
4. Z Z S S Z S S D D D D D D D D S S S
5. Z Z Z S S Z S S D D D
6. Z Z Z S

Table 1. Preprocessing variants generated from original data (O).
D = derivative, S = Savitzky–Golay filter, Z = Z-standardization.

2.2. Machine Learning Algorithms

Multi-Layer Perceptron (MLP), Random Forest (RF),
and Partial Least Squares Discriminant Analysis (PLS-DA)
models were trained for species group classifications. The
class weights were normalized to compensate for unbal-
anced classes. Final training was performed, 5-fold cross-
validated, and performance metrics were calculated based
on validation parts not used for training. Details on machine
learning algorithms can again be found in Britz et al. [5].

Briefly, MLP networks were trained using Python, Py-
Torch [13], Tune [9] included in Ray [12] and hyperopt
[2]. The architecture is a fully connected layer followed
by batch normalization and a rectified linear unit activa-
tion function (ReLU). After another fully connected layer
with a ReLU, the final layer is connected to the three output
classes. Cross-entropy loss with class weights was used to-
gether with a stochastic gradient descent optimizer. Hyper-
parameters for each variant were searched using an ASHA
and in total 100 hyperparameter combinations per dataset
variant and group were evaluated. The five hyperparame-
ter combinations, having achieved the highest accuracy per
dataset variant and group, were retrained with 5-fold cross-
validation for 120 epochs. Then, the model with the highest
cross-validated accuracy found at any epoch is depicted in
the results. RF classifiers were trained using the function
ranger from the ranger package [17] with mtry of 40, SF of
1 and 400 trees, resulting in reasonable accuracy and com-
putation time for training. PLS regression was performed
using the cppls function from the pls package [11] with 64
components. Subsequently, linear DAs with the lda func-
tion from MASS package [15] were performed.

3. Results and Discussion
MLP achieved cross-validated accuracies of 96.9 % for

species group (grass, herb, or legume) classification. While
MLP and PLS-DA performed well across a wide range of
preprocessing variants and showed a high generalization
ability, this was not true for RF (see Fig. 2). The main rea-
son for this is that RF usually uses only a few predictors at
the tree level to form a decision boundary [1], which makes
it more sensitive to data variations than MLP and PLS-DA.

Figure 2. Mean species group classification accuracy based on
the preprocessing variant for multilayer perceptron (MLP), partial
least squares discriminant analysis (PLS-DA), and random forest
(RF) models. X-axis abbreviations (preprocessing steps from bot-
tom to top): O = original data, D = derivative, S = Savitzky–Golay
filter, Z = Z-standardization. Error bars indicate standard devia-
tion, 5-fold cross-validated.

In general, similar trends in classification accuracy could
be observed depending on the preprocessing variant. Vari-
ants differing only in subsequent Z-standardization showed
no significant differences independent of model type. Pre-
processing steps that do not lead to increased accuracy
should be avoided for the sake of simplicity. Preprocessing
variants including a Savitzky-Golay filter before a deriva-
tion work particularly well for data with low spectral band
distances. Here, differences between successive spectral
channels may be slight compared to random noise [7].
Other variants can also benefit from Savitzky-Golay filter-
ing as a noise reduction technique. Interesting preprocess-
ing variants that performed well, independent of the model
type, included the combination S-D without a second D. In
particular for RF but also in other models, variants contain-
ing a derivation (D) without prior Savitzky–Golay filter (S)
mainly performed worse than variants with a combination
of S and D. This underlines the usefulness of spectral gra-
dients in combination with smoothing for machine learn-
ing applications. However, for MLP and PLS-DA, even the
original dataset variant (O) generated models that were not
significantly different from the best statistical model.
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Abstract

In this paper, we tackle the problem of analyzing neural
network training via information plane analysis. The key
idea is to describe the mutual information between the input
and a hidden layer and a hidden layer and the target over
time. Even though this is a reasonable approach, previous
works showed inconsistent or even contradicting interpre-
tations. Since the mutual information cannot be computed
analytically, the authors applied different kinds of estima-
tors, often not describing the mutual information very well.
Taking these findings into account, we want to show that
despite this theoretical limitation information planes allow
at least for a geometric interpretation. Thus, enabling us
to analyze different aspects of neural network learning for
real-world problems.

1. Introduction and Problem Statement
One prominent approach to analyze neural network

training is information plane (IP) analysis [7]. Building
on the idea of the information bottleneck principle [8], the
main idea is to describe and analyze the mutual information
between the layers of a neural network over time. In partic-
ular, we are interested in the plane described by the mutual
information I(X;T ) between the input X and the activa-
tion values of a hidden layer T and the mutual information
I(Y ;T ) between T and the target variable Y .

This is illustrated in Fig. 1 for two examples. From
Fig. 1a, two phases can been observed, cf. [7]: first, a phase
in which both I(X;T ) (expansion) and I(Y ;T ) (fitting) are
increasing, and, second, a compression phase during which
I(X;T ) is decreasing again, whereas I(Y ;T ) is increas-
ing only slightly. The compression phase was interpreted as
the hidden layer T discarding irrelevant information about
the input X , and was causally connected to generalization.
In contrast, Fig. 1b shows only fitting as an increase of
I(Y ;T ).

Even though these examples show that IPs appear to be
an appealing way to analyze learning behaviors of NNs,
we are facing the problem that the literature on IP analysis

reports partially contradicting interpretations, cf. [2, 6, 7].
This, however, can be explained by the fact that the mutual
information can often not be computed analytically, and dif-
ferent kinds of estimations for the mutual information terms
I(X;T ) and I(Y ;T ) are applied. Thus, similar to recent
findings [2, 3], we would like to demonstrate that IPs rep-
resent geometric rather than information-theoretic phenom-
ena. In this way, we are still able to use this technique to an-
alyze NN training if the estimates are interpreted correctly.
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Figure 1. Information planes reveal different behavior during neu-
ral network training.

2. Geometric Interpretation of Information
Planes

To this end, we create an IP from the plugin estimates for
mutual information between the uniformly discretized acti-
vation value T̂ and the network input X or class label Y ,
respectively. Introducing both fixed and adaptive binning
schemes for obtaining T̂ , we get the estimators Î(Y ; T̂ )
and Î(X; T̂ ) = H(T̂ ). In this way, we argue that the cor-
rect interpretation of H(T̂ ) yields an insight into the ge-
ometric compression of the activation T , both in absolute
(e.g., describing the diameter of the set of all activations of
a dataset) and relative (e.g., clustering of activations of a
dataset) terms. To allow for a more intuitive interpretation,
we additionally show a 2D visualization of latent space. For
more details on the theoretical background and the applied
binning approaches, we would like to refer to [1].
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3. Illustrative Results

In the following, we show an example demonstrating
that information planes can be a valuable tool to analyze
and interpret neural network learning. To this end, we train
a bottleneck network (100-100-2-100) for the well-known
MNIST dataset [4] and Brightness MNIST (BMNIST) [5], a
modified version of MNIST, where the illumination of the
images has been increased. In this way, the contrast of the
images is decreased and, thus, the classes are pushed closer
together in the image space. The bottleneck model was cho-
sen to make the geometric interpretation more apparent. In
fact, in both cases, we finally obtain a similar classifica-
tion result in terms of accuracy: 96.62% for MNIST and
95.25% for BMNIST. However, when looking at the corre-
sponding information planes in Fig. 2 (MNIST) and Fig. 3
(BMNIST) reveals that the learning behavior is different. To
make the temporal character of the trajectories more appar-
ent, the first and the last epoch are highlighted by a black
point and a large circle, respectively.

For MNIST, using adaptive binning (see Fig. 2b), we can
recognize a fitting phase, i.e., Î(Y ; T̂ ) is increasing over
time, indicating a growth of the class separability. In ad-
dition, using fixed binning (see Fig. 2a), we can recognize
a geometric compression with an absolute scale for Ĥ(T̂ )
from the first to the last epoch for the last two layers. In-
deed, as can be seen in Fig. 4, where we plot the two-
dimensional latent space, the absolute scale reduces from
approx. 47× 69 to approx. 7× 7 during training.
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Figure 2. IPs for MNIST: (a) fixed and (b) adaptive binning.
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Figure 3. IPs for BMNIST: (a) fixed and (b) adaptive binning.

In contrast, for BMNIST, the IP analysis shown in Fig. 3
reveals that the learning behavior is different due to a dif-
ferent initial setting. Due to reduced contrast in the images,
the classes are mapped to highly overlapping regions in the
beginning (see Fig. 5a); for the original MNIST dataset, this
is not the case (see Fig. 4a). Thus, during NN training the
data points in the latent space have to be pushed apart ac-
cording to their class label. In this way, we can recognize a
fitting phase, i.e., increasing Î(Y ; T̂ ), for adaptive binning
(see Fig. 3b) and an expansion phase for fixed binning (see
Fig. 3a). Simultaneously, the data points are pushed apart
and occupy a larger volume in the latent space (increased
from 10× 8 to 22× 17), as can be seen in Fig. 5.

(a) First epoch. (b) Last epoch.

Figure 4. 2D plots for MNIST: (a) first and (b) last epoch.

(a) First epoch. (b) Last epoch.

Figure 5. 2D plots for BMNIST: (a) first and (b) last epoch.

4. Discussion and Conclusion

To overcome the known issues of IP analysis, we
demonstrated that the IP represents geometric rather than
information-theoretic effects, which we showed based on
an inllustrative example. To support these findings, we
built a bottleneck architecture (i.e., using a two-dimensional
layer), which allows us to directly relate the information
covered by IPs to the geometric structure of the latent space.
For more technical details and a more thorough evalua-
tion, we would like to refer to [1].
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Enumeration of tumor cells undergoing cell division (mi-
totic figures) is a very practicable method to quantify tumor
proliferation as it can be determined in histological sections
with routine staining methods. The mitotic count (number
of mitotic figures per 2.37 mm² tumor area) has been shown
to correlate strongly with patient outcome in several humans
and animals tumors types. Tumors with a higher amount of
proliferating cells are associated with a more aggressive tu-
mor behavior and thus are more likely to result in death of
the patient. Therefore, this prognostic test is routinely con-
ducted by pathologists for many tumor types. The diagnos-
tic task of the mitotic count is to find the tumor region with
the highest density of mitotic figures (hotspot) and to count
all mitotic figures within this area. Both subtasks of the mi-
totic count are, however, problematic for human experts as:

• Mitotic figures can only be spotted at high magnifica-
tion and a tumor section may comprise of thousands of
fields of view exceed the human mental capacity and
time availability to screen the entire tumor.

• Mitotic figures can easily be overlooked due to the
high complexity of histological images.

• Mitotic figures can be difficult to distinguish from
other cell structures (such as necrotic cells) with simi-
lar morphological appearance.

Subsequently, marked observer variability is well known
for the mitotic count. In order to improve the accuracy and
reproducibility of the mitotic count, computer-assistance
using deep learning-based algorithms with verification by
pathologists have been proposed. Whereas most previous

Figure 1. Algorithmic heatmap of mitotic density in the tumor
(left image) is based on the algorithmic predictions (right image;
green boxes). Based on current recommendations, the area with
the highest density (black box in the right image) should be se-
lected for the mitotic count.

studies have focused on developing mitotic figure algo-
rithms, there are only few studies that evaluate the imple-
mentation of those algorithms into a diagnostic workflow.

In our study [1], we compared the performance between
the routine method (without computer-assistance, stage 1),
with computer-assisted mitotic counts using algorithmically
preselected hotspot tumor areas (stage 2, Fig. 1) and visu-
alisation of mitotic figures candidates within this hotspot
tumor area (stage 3, inset Fig. 1). The deep learning-
based algorithms was developed with a dataset of 32 mast
cell tumor cases comprising 48,880 mitotic figure annota-
tions. The three mitotic count approaches were conducted
by 23 pathologists in 50 cases of canine mast cell tumors.
A ground truth for the mitotic figures in the hotspot loca-
tion of stage 2 and 3 was created by a pathologist assisted
by immunohistochemistry for phosphohistone H3, which is
a specific staining for mitotic figures.

1
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Figure 2. Comparison of the mitotic figure detection performance
(F1-score) by 23 pathologists in the same tumor area without
(stage 2) and with (stage 3) visualization of mitotic figure can-
didates detected by a deep learning-based algorithm. The perfor-
mance of the algorithm without review by a pathologists exceeds
most study participants. Data taken from [1]

The experiment found that pathologists had higher mi-
totic counts in stage 2 with the preselected tumor area than
in stage 1 with area selection by each pathologists. Our
work demonstrates that algorithms are superior in analysing
the mitotic density in large tumor sections. The ability to
identify and classify individual mitotic figures was com-
pared between stage 2 (no further computer assistance) and
stage 3 (visualization of mitotic figure candidates). The F1-
score was higher in stage 3 for all 23 pathologists with an
average increase of 10.7 percentage points (Fig. 2). Most
notably the number of false negative mitotic figures was re-
duced by 37.4% proving the tremendous benefits of high-
lighting mitotic figure candidates in the images.

In conclusion, this study [1] demonstrates the benefits
of computer-assisted mitotic counts for a routine diagnostic
workflow. The reproducibility and accuracy of identifying
hotspot tumor locations and detecting individual mitotic fig-
ures was markedly improved. Further benefits could be an
improved diagnostic efficiency, which was not systemati-
cally evaluated in our study. Further studies are needed to
improve robustness of mitotic figure algorithms to different
sources of domain shift, particularly image from different
scanners and tumor sections with suboptimal tissue quality,
in order to allow a widespread application of the software
solutions.
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Abstract

Wildfire is a constant threat to wildlife, vegetation, and
society in history. Thus, detecting such fires in an early
stage is of high relevance, raising the need for automatic
approaches building on visual object detection, namely to
detect smoke. To this end, typically feature-based ap-
proaches have proven to work well in the past. However, the
goal of this work was to evaluate whether or not modern ap-
proaches building on neural networks would be beneficial in
this context. To this end, we generated a new dataset, allow-
ing us to train and evaluate neural-network-based smoke
detectors. In addition, we demonstrate that each of the ap-
proaches has benefits and shortcomings, however, also that
a carefully designed fusion strategy can improve the detec-
tion results in practice.

1. Introduction and Problem Statement

As also recent events in Australia, the USA, Russia, Ger-
many, and even Austria show, wildfires have massive con-
sequences for nature, wildlife, and the human population.
Due to climate change, socio-economic changes, and gen-
eral population development, the wildfire situation is likely
to become worse [6]. Besides prevention, the best way to
minimize damage to nature and wildlife is to early detect
wildfires. However, the flames are often not directly visi-
ble in an early stage, requiring to apply indirect approaches
to detect smoke. The most common approach is human in-
spection. Indeed, fire watchers are sitting on fire watchtow-
ers and looking out for smoke plumes in the distance.

However, the detection by humans is very time-
consuming, monotonously and thus tiring, and very expen-
sive. An alternative to traditional smoke detection methods
is given by terrestrial visual detection systems such as IQ
FireWatch1, building on three different camera sensors: a
monochrome sensor for the detection in daylight, an RGB
sensor, which provides a better view for the human eye, and
a sensor working in the near-infrared (NIR) spectrum for

1https://www.iq-firewatch.com/.

Figure 1. IQ FireWatch sensor system in practical use.

night vision. One sensor system can reliably cover a radius
of 15 kilometers in a 360 degrees view, which is illustrated
in Figure 1.

Even though data from different sensors is available, in
this work we focus on high-resolution monochrome images,
which are characterized by higher light sensitivity, which is
beneficial when detecting smoke [2]. To this end, we com-
pare the F-Shell detector [1] building on handcrafted fea-
tures, to Faster R-CNN [3] using learned features. For that
purpose, we created a new benchmark dataset for smoke de-
tection. In addition, we evaluated how these approaches can
be combined effectively for real-world scenarios

2. Smoke Detection
To detect the smoke, in this work we considered three ap-

proaches: the feature-based F-Shell detector [1], the neural-
network-based Faster R-CNN [3], and a combination of
both.

F-Shell follows a three-stage process: defining candidate
regions, feature extraction, and classification, where three
queues are run in parallel on a sequence of images. Using a
sophisticated background subtraction to identify the regions
of interest, these are described by (a) region properties such
as shape or size, (b) by correlation to distinguish between
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moving objects and smoke clusters, and (c) by texture prop-
erties. Finally, an alarm is raised if at least one of the three
queues yields a response.

Similarly, R-CNN builds on two stages: First, the re-
gion proposal network predicts regions of interest class-
agnostically. Second, these proposals are cropped and fi-
nally classified. Yielding the best trade-off of speed and
accuracy, we finally decided to build our system on an In-
ceptionV2 backbone [5]. We pre-trained it using the COCO
dataset and finetuned it with our newly generated dataset.

The finally obtained results for the individual detectors
are summarized in Table 1 (F-Shell and FRC). Showing a
similar accuracy (acc.), we see differences in other practi-
cally relevant metrics such as true positive rate (TPR), false
positive rate (FPR), true negative rate (TNR), false negative
rate (FNR), and thus in precision (prec.).

Detector Acc. TPR FPR TNR FNR Prec.
F-Shell 0.80 0.68 0.07 0.92 0.31 0.90
FRC 0.81 0.83 0.19 0.80 0.16 0.81
COMB 0.82 0.80 0.14 0.85 0.19 0.84

Table 1. Detection results of individual detectors.

Thus, the idea was to combine both approaches to get
the best tradeoff for all of these parameters. In particular,
we applied the The COMBINATOR (COMB) [4] to combine
the individual results, which additionally takes into account
the confidence and the complementarity coefficients of each
detector. As can be seen from Table 1 (COMB), in this way,
a higher number of detections can be provided while still
maintaining a decrease in false alarms.

3. Discussion and Conclusion

In this paper, we tackled the problem of wildfire detec-
tion in the context of the IQ FireWatch system. In particu-
lar, we investigated smoke detection using high-resolution
monochrome images using two different approaches: F-
Shell and Faster R-CNN. Since both approaches have pros
and cons, we finally proposed a combination of both, i.e.,
using The COMBINATOR, providing a reasonable trade-off
in practice. For more details, we would like to refer to [7].

Future work will include establishing a larger dataset al-
lowing for both training and evaluation and further combi-
nations of the different approaches.
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