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Human Tracking and Pose Estimation for Subsurface Operations
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Abstract— Human lives are particularly at risk in critical
security situations in underground train stations compared to
surface events. Due to the closed situation of such subsurface
events, considerable obstacles to the safe and efficient evacu-
ation of people after an attack must be taken into account.
Thus, this work presents a computer vision system based on
artificial intelligence that uses available surveillance cameras
in the optical and the thermal spectrum to detect and track
human beings, and to allow an activity classification based on
a pose estimation. Those results are then transferred into a 3D
common operational picture to assist subsurface operations.

I. INTRODUCTION
Subsurface structures, like the whole subway infrastruc-

ture, are indispensable for modern societies. To ensure safety
and efficient reaction to crisis, a deep understanding of
the underground structure is necessary for specially trained
and equipped personnel, aware of the associated risks and
dangers – the so called Subsurface Operators [2]. In the
special case of a terrorist attack available technical infras-
tructure can be employed to derive valuable information
for those operators. Since most subsurface structures are
equipped with surveillance cameras, the aim of this work
is to analyse that data to assist the crisis team. From the
computer vision perspective, three important queues can be
derived: (1) Detection of objects of interest, in particular
humans and vehicles, (2) tracking of those objects over
time, and (3) activity recognition, in particular if humans
are walking, standing, sitting, or lying.

With the knowledge of the coarse location and orientation
of the cameras, the detections can be projected onto a map
or a 3D model, which then serves as a common operational
picture within a virtual reality system. To simulate the
subsurface environment the test site Zentrum am Berg (ZaB)
is chosen which allows underground research, development,
training, and education at 1:1 scale [7]. An exemplary view
of one of the tunnel tubes is depicted in Figure 1. This
specific facility is equipped with multiple optical and thermal
cameras (which are very important since critical events often
occur in low or no light conditions) that serve as input for the
developed computer vision and artificial intelligence system.

II. METHOD
This section reports an object detection and tracking,

pose estimation for activity recognition, and the common
operational picture.
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Fig. 1. Subsurface environment at ZaB with ground control points shown
in red color for extrinsic camera calibration.

A. Object Detection and Tracking

For the detection and tracking of persons (and other
objects), we base upon the OmniTrack algorithm [1]. It is
real-time capable and combines a powerful deep learning
based object detector (YoloV3 [8]) with high-quality optical
flow methods (TV-L1 [11]). Within this work, we updated the
key components of the algorithm to more recent methods.
Specifically, for the object detector component we switched
from YoloV3 to the Scaled-YoloV4 method [10]. It achieves
higher accuracy by employing a cross-stage partial network
and can be easily scaled to multiple resolutions. Additionally,
instead of the classical TV-L1 algorithm for optical flow we
employ the recently proposed RAFT optical flow algorithm
[9]. The RAFT optical flow method achieves high accuracy
of the motion field and generalizes well to other domains
(like thermal images which have a different characteristic
than RGB images). Note that for both RGB and thermal
input images, we use the standard Scaled-YoloV4 pretrained
model, which has been trained on the MS COCO dataset [6]
(consisting of RGB images). We do not fine-tune or retrain
on a specific thermal image dataset. For the purpose of the
project we only use the two classes humans and vehicles.

B. Human Pose Estimation

For human pose estimation, we employ the EvoSkeleton
algorithm [5]. The method evolves a limited dataset to
synthesize unseen 3D human skeletons based on a hierar-
chical human representation and heuristics inspired by prior
knowledge. Via this special data augmentation procedure,
EvoSkeleton achieves state-of-the-art accuracy on the largest
public benchmark (Human3.6M [3]) and additionally gener-
alizes well to unseen and rare poses. In order to calculate
the poses (skeletons with 17 joints) for all detected persons
in one frame, we proceed as follows. First, for all detected
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persons the rectangular regions of interest are extracted to
a list of sub-images. These sub-images are now processed
in multiple batches, with the size of the batch set to 4
sub-images. The batching mechanism makes inference more
efficient and ensures that the GPU memory is not exhausted.
With a batch size of 4, roughly 5 GB GPU RAM are
occupied. The thermal images are transferred to a different
color range, which improves the performance of the pose
estimation.

C. Common Operational Picture

Since all information is gathered in image geometry, it has
to be transferred to the map projection of the 3D common
operational picture. Therefore, the cameras are calibrated
intrinsically using planar calibration random dot targets. The
extrinsics are determined using ground control points (cf.
the red points in Figure 1) within a least squares parameter
adjustment. This calibration allows 2D information in image
geometry to be intersected with an existing 3D tube model
that was acquired via terrestrial laser scanning for the whole
ZaB subsurface test site.

III. RESULTS

Figures 2 and 3 depict one video frame of an optical, re-
spectively, thermal camera superimposed with the bounding
boxes from the human detection and the human skeleton for
each detection.

Fig. 2. Human detection and skeleton estimation for an optical image.

Fig. 3. Human detection and skeleton estimation for a thermal image.
The color coding scheme of the thermal image was altered to improve the
quality of the pose estimation.

Figure 4 depicts a screenshot of the 3D common op-
erational picture within a virtual reality system where the
subsurface operators get a simplified overview of the human
detections and classifications.

Fig. 4. The 3D common operational picture within a virtual reality system
(illustration courtesy of [4]).

For RGB video, initial experiments show that both the
object detection and tracking, and also the pose estimation
work very well. For thermal video, the results are worse,
especially for the pose estimation. This can be attributed to
the domain gap, the fact that both methods have originally
been trained on RGB image datasets and not on thermal
images. Nonetheless, it seems that even on thermal video
the result of the pose estimation is good enough for our task
of activity classification of persons. Regarding runtime, the
object detector and tracker works in real-time, whereas the
pose estimation is not real-time capable. We will investigate
techniques like 16-bit inference or frame subsampling in
order to achieve real-time performance also for the pose
estimation.

IV. CONCLUSION

A computer vision system for human tracking and pose
estimation was presented, custom-tailored for subsurface
operations, based on existing surveillance infrastructure. In
the future, the results from the pose estimation, together
with the motion information of the tracked persons, will be
used for activity classification. Specifically, via the motion
information a person could be classified either as stationary
or moving (walking / running). Furthermore, the pose esti-
mation information will be used to for activity recognition, in
particular, whether a person is standing or lying, by analysing
the person’s spine orientation. Another future research focus
is to preserve the privacy of people, where one option would
be to use only thermal cameras.

ACKNOWLEDGMENT

The presented research activity is embedded into the
project NIKE-SubMovCon #879720 within the Austrian Se-
curity Research Programme KIRAS, funded by the Austrian
Research Promotion Agency (FFG).

78



D
ra

ft

REFERENCES

[1] H. Fassold and R. Ghermi, “OmniTrack: Real-time detection and
tracking of objects, text and logos in video,” in Proc. ISM, 2019.

[2] P. Hofer, “Coping with complexity. The development of comprehen-
sive subsurface training standards from a military perspective,” BHM
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